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Abstract. Salsa20 is a stream cipher designed by Bernstein in 2005 and
Salsa20/12 has been selected into the final portfolio of the eSTREAM
Project. ChaCha is a variant of Salsa20 with faster diffusion for similar
performance. The previous best results on Salsa20 and ChaCha proposed
by Aumasson et al. exploits the differential properties combined with the
probabilistic neutral bits (PNB). In this paper, we extend their approach
by considering a new type of distinguishers, named (column and row)
chaining distinguishers. Besides, we exhibit new high probability second-
order differential trails not covered by the previous methods, generalize
the notion of PNB to probabilistic neutral vectors (PNV) and show that
the set of PNV is no smaller than that of PNB. Based on these findings,
we present improved key recovery attacks on reduced-round Salsa20 and
ChaCha. Both time and data complexities of our attacks are smaller than
those of the best former results.
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1 Introduction

Salsa20 [1] is a stream cipher designed by Bernstein in 2005 for the eSTREAM
project [2]. The 8- and 12-round variants, Salsa20/8 and Salsa20/12 [3], were
also published. ChaCha [4] is a variant of Salsa20 with faster diffusion in the
core function for similar performance. After three evaluation phases, Salsa20/12
was selected into the final portfolio of the eSTREAM Project in 2008.

Since their publication, Salsa20 and ChaCha have undergone significant cryp-
tographic analysis. In 2006, Crowley presented a truncated differential crypt-
analysis on Salsa20/5 [5]. The result revealed that the diffusion of Salsa20 was
not ideal, though it did not threaten the full round security of Salsa20. For the
same variant, V. Velichkov et al. mounted a key recovery attack using UNAF [6]
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Table 1. Comparisons of our attacks with other well known attacks on Salsa20 and
ChaCha

Cipher Round/Key length Time Data Reference

Salsa20

5/256

2165 26 [5]

2167 27 [6]

255 210 This work

6/256
2177 216 [7]

273 216 This work

7/256
2151 226 [9]

2148 224 This work

8/256
2251 231 [9]

2250 227 This work

7/128
2111 221 [9]

2109 219 This work

ChaCha

6/256
2139 230 [9]

2136 228 This work

7/256
2248 227 [9]

2246.5 227 This work

6/128
2107 230 [9]

2105 228 This work

at FSE 2012. At Indocrypt 2006, Fischer et al. described some non-randomness
properties of Salsa20/5 and used this observation to construct a key-recovery at-
tack on Salsa20/6 [7]. At SASC 2007, Tsunoo et al. exploited a bias of Salsa20/4
to construct an attack on Salsa20/7 [8]. So far, the best key recovery attacks on
variants of Salsa20 and ChaCha were proposed by Aumasson et al [9] at FSE
2008, exploiting first-order differential properties combined with the probabilistic
neutral bits (PNB) technique.

In this paper, we extend the approach of Aumasson et al. by considering a
new type of distinguishers, named (column and row) chaining distinguishers,
which can efficiently make use of the biases of multiple differential trails and the
matrix structure of the cipher. Besides, we find new high probability second-
order differential trails that are not covered by the previous results, some of
which are employed in our attack. The notion of PNB is generalized to that
of probabilistic neutral vectors (PNV), which investigate the properties of the
underlying function when more than one input bit are flipped simultaneously and
include the PNB as a special case. It is shown that the set of PNV is no smaller
than that of PNB. Based on these findings, we construct improved key recovery
attacks on reduced-round Salsa20 and ChaCha, repectively. Both time and data
complexities of our new attacks are smaller than those of the best former results.
Table 1 presents our results together with comparisons with other well known
attacks.

The rest of the paper is organized as follows. A brief description of Salsa20 and
ChaCha is presented in Section 2. The attacks of Aumasson et al. are recalled
in Section 3. In Section 4, our new attacks are described in details with the
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introduction of the (column and row) chaining distinguishers, high probability
differential trails and the notion of PNV. Finally, we conclude the paper in
Section 5.

2 Description of Salsa20 and ChaCha

2.1 Salsa20

Salsa20 operates on 32-bit words and supports keys of 128 bits and 256 bits.
During its operation, the key, a 64-bit nonce (unique message number), a 64-bit
counter and four 32-bit constants are used to construct the 512-bit initial state.

Denote the 256-bit key by k = (k0, k1, ..., k7), the 64-bit nonce by v = (v0, v1)
and the 64-bit counter corresponding to the integer i by t = (t0, t1). The Salsa20
function acts on the following 4× 4 matrix of 32-bit words.

X =

⎛
⎜⎜⎝

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

⎞
⎟⎟⎠ .

The ci’s are predefined constants. For the 128-bit key k′, just fill the 256 key bits
in the matrix as k = k′||k′. If not mentioned otherwise, we focus on the 256-bit
version. A keystream block Z is then defined as Z = X +X20, where + is the
wordwise integer addition and Xr = Roundr(X) with the round function Round
of Salsa20. This round function is based on the following nonlinear operation
(also called the quarterround function), which transforms a vector (x0, x1, x2, x3)
to (z0, z1, z2, z3) by sequentially computing

z1 = x1 ⊕ [(x3 + x0) ≪ 7]

z2 = x2 ⊕ [(x0 + z1) ≪ 9]

z3 = x3 ⊕ [(z1 + z2) ≪ 13]

z0 = x0 ⊕ [(z2 + z3) ≪ 18].

In odd numbers of rounds (which are called columnrounds in the original
specification of Salsa20), the nonlinear operation is applied to the columns
(x0, x4, x8, x12), (x5, x9, x13, x1), (x10, x14, x2, x6), (x15, x3, x7, x11). In even
numbers of rounds (which are also called the rowrounds), the nonlinear op-
eration is applied to the rows (x0, x1, x2, x3), (x5, x6, x7, x4), (x10, x11, x8, x9),
(x15, x12, x13, x14). We write Salsa20/R for R-round variants, i.e., with Z =
X +XR. After R iterations of the Salsa20/R round function, the updated state
is used as a 512-bit keystream output. Each such output block is an independent
combination of the key, nonce, and counter.

2.2 ChaCha

ChaCha is similar to Salsa20 except the following three differences: the compo-
sition of the initial matrix, the composition of the quarterround function and
the round function. See [4] for details.



340 Z. Shi et al.

3 Aumasson et al’s Attacks on Salsa20 and ChaCha

In this section, we briefly recall the first-order differential attacks of Aumasson
et al. These attacks are based on the concept of probabilistic neutral bits (PNB).
Let us first list some notations used hereafter.

- Let xi be the i-th word of the initial matrix X and the j-th least significant
bit of xi is denoted by [xi]j .

- Let x′
i be an associated word with the difference Δ0

i = xi ⊕ x′
i.

- The first-order differential for the input X , with a single-bit input-difference
[Δ0

i ]j = 1 and a single-bit output-difference [Δr
p]q after r rounds, is denoted

by ([Δr
p]q|[Δ0

i ]j).

3.1 First-Order Differential Analysis of Salsa20 and ChaCha

First note that the round function of Salsa20 and ChaCha is invertible. Define
the r-round inverseX−r = Round−r(X), which is different depending on whether
it inverts after an odd or an even number of rounds.

For a fixed differential ([Δr
p]q|[Δ0

i ]j), the corresponding output Z and Z ′ can
be observed for nonce v, counter t and key k. Based on Z = X +XR, if we have
v, t and k, we can get Xr = (Z − X)r−R and (X ′)r = (Z ′ − X ′)r−R(r < R).
Then [Δr

p]q = Xr⊕ (X ′)r = (Z−X)r−R⊕ (Z ′−X ′)r−R can be observed. Define
the Boolean function f(k, v, t, Z, Z ′) = [Δr

p]q. Then, for a fixed key, the bias εd
of f is defined by Pr{f(k, v, t, Z, Z ′) = 1} = Pr{[Δr

p]q = 1|[Δ0
i ]j} = 1

2 (1 + εd),
where the probability holds over all nonces and counters.

Given enough output block pairs with the presumed differential, we have
Pr{f(k̄, v, t, Z, Z ′) = 1} = 1

2 (1 + εd) conditioned on k̄ = k, whereas for (almost
all) k̄ �= k we expect f be unbiased, i.e., Pr{f(k̄, v, t, Z, Z ′) = 1} = 1

2 . Note
that the complexity of the above way is 2256. Instead, Aumasson et al. pro-
posed to find some approximation g of f which effectively depends on s key bits
(s < 256). Let f be correlated to g with the bias εa, i.e., Pr{g(k′, v, t, Z, Z ′) =
f(k, v, t, Z, Z ′)} = 1

2 (1+εa), where k
′ is the s bits subkey of k and the probability

holds over all nonces and counters. Assume Pr{g(k′, v, t, Z, Z ′) = 1} = 1
2 (1+ ε),

then under some reasonable independency assumptions, we have ε = εd · εa.
Hence, given enough output block pairs with the presumed differential, we can
verify the correctness of a guessed candidate subkey k̄′ for the subkey k′ by eval-
uating the bias of the function g. More precisely, we have Pr{g(k̄′, v, t, Z, Z ′) =
1} = 1

2 (1+ε) if k̄′ = k′, whereas for (almost all) k̄′ �= k′ we expect g be unbiased,
i.e. Pr{g(k̄′, v, t, Z, Z ′) = 1} = 1

2 . In this way, the complexity is reduced from
2256 to 2s. Next, we will give a concise description of how the approximation g
of f is found.

3.2 Key Recovery Attacks on Salsa20 and ChaCha

In [9], Aumasson et al. gave an efficient way of finding suitable approximations
g(k′, v, t, Z, Z ′) of the function f(k, v, t, Z, Z ′) using the concept of PNB.
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Definition 1. The neutrality measure of the key bit ki with respect to the func-
tion f(k, v, t, Z, Z ′) is defined as γi, where Pr = 1

2 (1+γi) is the probability (over
all k, v and t) that complementing the key bit ki does not change the output of
f(k, v, t, Z, Z ′).

When the threshold γ is set, all the key bits can be divided into two sets: signif-
icant key bits with neutrality measure γi < γ (size of s) and non-significant
key bits with neutrality measure γi ≥ γ (size of ns). Then we can define
g(k′, v, t, Z, Z ′) as an approximation of f(k, v, t, Z, Z ′) just simply making k′

be the significant key bits and the non-significant key bits be set to fixed values
(e.g. all zero). More details of the construction of the distinguisher g can be
found in [9]. Then, the whole attack can be carried out as follows:

Attack Online

Parameters: N , s, ε
1: Collect N pairs of keystream blocks where each pair is produced by states

with a random nonce and counter (satisfying the relevant input-difference).
2: For each choice of the subkey (i.e. the s significant key bits) do:

(2.1) Compute the bias of g using the N keystream block pairs.
(2.2) If the optimal distinguisher legitimates the subkeys candidate as a

(possibly) correct one, perform an additional exhaustive search over
the ns non-significant key bits in order to check the correctness of this
filtered subkey and to find the non-significant key bits.

(2.3) Stop if the right key is found and output the recovered key.

In this attack, there is a set of 2s sequences of random variables by guessing s
significant key bits. Actually, 2s − 1 of them should verify the null hypothesis
H0, and a single one verify the alternative hypothesis H1. For a realization a of
the corresponding random variable A, the decision rule D(a) = i to accept Hi

can lead to two types of errors:

1. Non-detection: D(a) = 0 and A ∈ H1. The probability of this event is pnd.
2. False alarm: D(a) = 1 and A ∈ H0. The probability of this event is pfa.

The Neyman-Pearson decision theory gives results to estimate the number of
samples N required to get some bounds on the probabilities. It can be shown
that

N ≈
(√

α log 4 + 3
√
1− ε2

ε

)2

(1)

samples suffices to achieve pnd = 1.3 × 10−3 and pfa = 2−α. Calculus details
and the construction of the optimal distinguisher can be found in [10].

The time complexity of this attack can be estimated as follows. Step 2 is
repeated 2s times. For each subkey, step (2.1) is always executed which has
complexity of N . The search part of step (2.2) is performed only with probability
pfa = 2−α which brings an additional cost of 2ns(= 2256−s) in case a subkey
passes the optimal distinguisher’s filter. Therefore, the complexity of step (2.2)
is 2256−s ·pfa, showing a total complexity of 2s(N+2256−s ·pfa) = 2s ·N+2256−α.
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4 Our Attacks

In the above attack, α (and hence N) is chosen such that it minimizes 2s ·N +
2256−α based on the single distinguisher g. In this section, our new attacks are
described in details with the introduction of the (column and row) chaining
distinguishers, high probability differential trails and the notion of PNV.

4.1 Chaining Distinguishers

For a subkey K ′, define the set S(K ′) = {ki|ki is involved in the subkey K ′}.
Note that, all the single distinguishers we mentioned below are constructed with
the method in Section 3.

Definition 2. Column Chaining Distinguishers(CCD for short): For a collec-
tion of subkey {K ′

i}i∈A with S(K ′
i) ⊂ S(K ′

j) (∀i, j ∈ A and i < j), if there exists
a collection of distinguishers {Di}i∈A, and ∀i ∈ A the distinguisher Di effectively
depends on the subkey K ′

i, we call {Di}i∈A the Column Chaining Distinguishers
of {K ′

i}i∈A.

What’s the advantage of CCD? Here is an example: Suppose A = {1, 2, 3}, and
{Di}i∈A are CCD of {K ′

i}i∈A with S(K ′
1) ⊂ S(K ′

2) ⊂ S(K ′
3). For each i ∈ A,

there is a relation between the data Ni and (pfa)i = 2−αi with the (pnd)i fixed
(see Eq. 1). Let si = |S(K ′

i)|, so we have s1 < s2 < s3. Then the execution of
CCD is described as follows:

Execution of CCD

Parameters: {Ni}, {si}
1: For each subkey candidate K̄ ′

1 by guessing the s1 key bits of set S(K ′
1),

verify K̄ ′
1 with the distinguisher D1 of N1 pairs of keystream blocks, if this

step succeeds, do Step 2;
2: Guess the s2−s1 key bits of set S(K

′
2)−S(K ′

1), then for the subkey candidate
K̄ ′

2 (K̄ ′
1 plus s2 − s1 guessed key bits), verify K̄ ′

2 with the distinguisher D2

of N2 pairs of keystream blocks, if this step succeeds, do Step 3;
3: Guess the s3−s2 key bits of set S(K

′
3)−S(K ′

2), then for the subkey candidate
K̄ ′

3 (K̄ ′
2 plus s3 − s2 guessed key bits), verify K̄ ′

3 with the distinguisher D3

of N3 pairs of keystream blocks, if this step succeeds, do Step 4;
4: Perform an additional exhaustive search over the 256− s3 key bits (i.e. not

in the set S(K ′
3)) in order to check the correctness of this filtered subkey

and to find the remaining key bits.

Let us discuss the time complexity of such an attack. Step 1 is repeated for
all 2s1 subkey candidates, and each incorrect subkey candidate passes the test
of distinguisher D1 with probability (pfa)1 = 2−α1 (according to N1 pairs of
keystream blocks). Step 2 needs to search over s2 − s1 key bits of set S(K ′

2) −
S(K ′

1), and each incorrect subkey candidate passes the test of distinguisher D2

with probability (pfa)2 = 2−α2 (according to N2 pairs of keystream blocks).
Step 3 needs to search over s3 − s2 key bits of set S(K ′

3) − S(K ′
2), and each
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incorrect subkey candidate passes the test of distinguisher D3 with probability
(pfa)3 = 2−α3 (according to N3 pairs of keystream blocks). And step 4 needs to
search over the remaining 256− s3 key bits. So the total complexity is

2s1 ·N1 + 2s1 · (pfa)1 · 2s2−s1 ·N2 +

2s1 · (pfa)1 · 2s2−s1 · (pfa)2 · 2s3−s2 ·N3 +

2s1 · (pfa)1 · 2s2−s1 · (pfa)2 · 2s3−s2 · (pfa)3 · 2256−s3

= 2s1 ·N1 + 2s2−α1 ·N2 + 2s3−α1−α2 ·N3 + 2256−α1−α2−α3

If we use single distinguisher D1 to recover the key, the time complexity is
2s1 ·N1 + 2256−α1 . Furthermore, we can easily get:

min
N1

{2l1 ·N1+2256−α1} ≥ min
N1,N2,N3

{2l1 ·N1+2l2−α1 ·N2+2l3−α1−α2 ·N3+2256−α1−α2−α3}.

Two ordinary methods of constructing CCD are as follows:

First method of constructing CCD

1: (a) Find a highly biased differential and set a threshold γ(1);
(b) Estimate the measure γi of all the key bits and put all those key bits

with γi ≥ γ(1) into the set S1;
(c) Construct a single distinguisher D1 with the key bits in S1 being set to

a fixed value, if the bias of D1 is non-negligible, do Step 2;

2: (a) Find another highly biased differential and set a threshold γ(2);
(b) Estimate the measure γi of all the key bits in set S1 and put all those

key bits in set S1 with γi ≥ γ(2) into the set S2;
(c) Construct a single distinguisher D2 with the key bits in S2 being set to

a fixed value(the same as in Step1), if the bias of D2 is non-negligible,
do Step 3;

3: (a) Find another highly biased differential and set a threshold γ(3);
(b) Estimate the measure γi of all the key bits in set S2 and put all those

key bits in set S2 with γi ≥ γ(3) into the set S3;
(c) Construct a single distinguisher D3 with the key bits in S3 being set to

a fixed value(the same as in Step1), if the bias of D3 is non-negligible,
do Step 4;

4: Continue the work until only a few key bits are left to be guessed.

Second method of constructing CCD

1: Find a highly biased differential and set a threshold γ;
2: Construct a distinguisher gγ(K

′
γ , v, t, Z, Z

′) based on the subkey K ′
γ =

{ki|γi < γ};
3: If the bias of gγ(K

′
γ , v, t, Z, Z

′) is non-negligible, set a series of thresholds

γ(1) < γ(2) < ... < γ(e) with γ(i) ≥ γ, and for each γ(i), construct the dis-
tinguisher gγ(i)(K ′

γ(i) , v, t, Z, Z
′) effectively depending on the subkey K ′

γ(i) .
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The first method is feasible for lower rounds of Salsa20 and ChaCha because of
sufficient numbers of PNB’s (usually more than half of the key bits with high γi).
And the second method of constructing CCD is based on a single distinguisher,
which is more feasible when the numbers of PNB’s are insufficient.

Definition 3. Row Chaining Distinguishers(RCD for short): For a fixed subkey
K ′, if there exists a collection of distinguishers {Di}i∈A which effectively depend
on the subkey K ′, we call the {Di}i∈A the Row Chaining Distinguishers for K ′.

The advantage of RCD is obvious: firstly, some incorrect subkey candidate K̄ ′
may verify the alternative hypothesis of distinguisher Di, while the probability
that it verifies all the alternative hypothesis of distinguishers {Di}i∈A is much
lower; secondly, RCD can be used as a CCD1 . We will show how to construct
RCD based on a second-order differential in the next subsection.

4.2 Second-Order Differential Analysis on Salsa20 and ChaCha

First, we recall the second-order differential: let X be the initial matrix, X1, X2

and X3 be associated initial matrices with a single-bit input-difference [Δ0
i ]j =

1, a single-bit input-difference [Δ0
m]n = 1 and the double-bit input-differences

[Δ0
i ]j = 1 and [Δ0

m]n = 1 respectively. Note that (i − m)2 + (j − n)2 = 0
should not hold. We consider a single-bit output-difference [Δr

p]q = [Xr
p ]q ⊕

[(X1)p]
r
q ⊕ [(X2)

r
p]q ⊕ [(X3)

r
p]q after r rounds. Then the second-order differential

for the input X is denoted by ([Δr
p]q|[Δ0

i ]j , [Δ
0
m]n). The bias εd of the output-

difference is defined by Pr{([Δr
p]q = 1|[Δ0

i ]j , [Δ
0
m]n)} = 1

2 (1 + εd), where the
probability holds over all keys, nonces and counters. We found many highly
biased differentials for Salsa20 and ChaCha (see Table 2).

For a fixed differential ([Δr
p]q|[Δ0

i ]j , [Δ
0
m]n) with bias εd, let Z = X+XR, Z1 =

X1+(X1)
R, Z2 = X2+(X2)

R, and Z3 = X3+(X3)
R, so Z, Z1, Z2, and Z3 can be

observed for nonce v, counter t and key k. As mentioned in section 3, the round
functions of Salsa20 and ChaCha is invertible, i.e. Xr = (Z −X)r−R(r < R), so
[Δr

p]q = [((Z−X)r−R⊕(Z1−X1)
r−R⊕(Z2−X2)

r−R⊕(Z3−X3)
r−R)p]q. Define

Fp,q,i,j,m,n(k, v, t, Z, Z1, Z2, Z3) = [Δr
p]q. For short, we define Fp,q,i,j,m,n(k,W ) =

[Δr
p]q where W = (v, t, Z, Z1, Z2, Z3). The next work is finding suitable approx-

imations Gp,q,i,j,m,n(k
′,W ) of the function Fp,q,i,j,m,n(k,W ). Here, we also use

the PNB’s mentioned in Section 3.
After all the neutrality measure γl’s of each key bit kl be estimated, we

set a threshold γ and put all the key bits with γl < γ into a set denoted by
Kp,q,i,j,m,n(γ) = {kl|γl < γ}. Having found the set Kp,q,i,j,m,n(γ), we sim-
ply let k′ be subkey with the key bits in the set Kp,q,i,j,m,n(γ) and define
Gγ,p,q,i,j,m,n(k

′,W ) as Fp,q,i,j,m,n(k,W ) with the remaining key bits (i.e. not in
the set Kp,q,i,j,m,n(γ)) with a fixed value. The bias εa of the correlation between
F and G is defined by Pr{Gγ,p,q,i,j,m,n(k

′,W ) = Fp,q,i,j,m,n(k,W )} = 1
2 (1+εa),

where the probability holds over all keys, nonces and counters. Denote the bias

1 Actually, RCD are special CCD with the subkey unchanged.
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Table 2. Some highly biased differentials for Salsa20/4 and ChaCha3

Type [Δ0
i ]j , [Δ

0
m]n [Δr

p]q εd

Salsa20/4

[Δ0
7]24, [Δ

0
8]17 [Δ4

1]7 0.67

[Δ0
7]24, [Δ

0
8]18 [Δ4

1]7 0.64

[Δ0
7]24, [Δ

0
8]19 [Δ4

1]7 0.62

[Δ0
7]24, [Δ

0
8]20 [Δ4

1]7 0.58

[Δ0
7]25, [Δ

0
8]17 [Δ4

1]7 0.59

ChaCha3

[Δ0
12]15, [Δ

0
13]20 [Δ3

3]0 0.43

[Δ0
12]20, [Δ

0
15]15 [Δ3

2]0 0.43

[Δ0
13]15, [Δ

0
14]20 [Δ3

0]0 0.43

[Δ0
14]15, [Δ

0
15]20 [Δ3

1]0 0.43

[Δ0
13]16, [Δ

0
14]20 [Δ3

0]0 0.41

of G by ε, i.e. Pr{Gγ,p,q,i,j,m,n(k
′,W ) = 1} = 1

2 (1 + ε). Under some reasonable
independency assumptions, the equality ε = εd · εa holds. Hence, given enough
output block pairs with the presumed differential, we can verify the correctness
of a guessed candidate subkey k̄′ for the subkey k′ by evaluating the bias of the
function G. More precisely, we have Pr{Gγ,p,q,i,j,m,n(k

′,W ) = 1} = 1
2 (1 + ε)

conditioned on k̄′ = k′, whereas for (almost all) k̄′ �= k′ we expect G be un-
biased, i.e. Pr{Gγ,p,q,i,j,m,n(k

′,W ) = 1} = 1
2 . The way for searching such a

distinguisher is similar to that of the first-order differentials.
Now, we show how to use the second-order differentials to construct RCD. For

a second-order differential ([Δr
p]q|[Δ0

i ]j , [Δ
0
m]n), we choose a threshold γ empiri-

cally and construct a single distinguisher Gγ,p,q,i,j,m,n(k
′,W ) using the method

above, where k′ is the subkey of all key bits in the set Kp,q,i,j,m,n(γ). In order
to construct RCD, the subkey should stay the same, i.e. the set Kp,q,i,j,m,n(γ)
should stay the same. Now, we consider the factors of the set Kp,q,i,j,m,n(γ):
p, q, i, j,m, n, γ. By tests, we find: if the value of p changes, the set Kp,q,i,j,m,n(γ)
will change with a high probability, so do the factors q, i,m, γ; while, if only the
factor j changes, Kp,q,i,j,m,n(γ) will stay the same with a high probability, so
does the factor n. Hence, for the distinguisher Gγ,p,q,i,j,m,n(k

′,W ), we search
over all j’s only or all m’s only to construct a new distinguisher with subkey
unchanged. Here we give an example of the RCD on 256-bit ChaCha7. We con-
struct 4-Step RCD {Gγ,9,0,14,j,15,12(k,W )}j∈{0,1,2,28}. Let γ = 0.3, and we get
K9,0,14,j,15,12(γ) ={ 3, 7, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 63, 67, 79,
80, 95, 99, 159, 160, 184, 185, 186, 187, 188, 189, 190, 191, 200, 255} for any
j ∈ {0, 1, 2, 28}.
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Actually, we can easily find RCD for Salsa20 and ChaCha using the method
above. However, we did not find enough PNB’s to improve our attacks2 on
Salsa20 and ChaCha. And such a reality limits us to display the use of RCD.
We believe the concept of RCD can be used in other ciphers.

4.3 Probabilistic Neutral Vectors

Note that, contrary to the mutual interaction between neutral bits, we have
directly combined several PNB’s without altering their probabilistic quality, so
do J. Aumasson et al. In order to justify the reasonableness, we introduce a
generalized concept of PNB’s called probabilistic neutral vectors(PNV’s).

Definition 4. The neutrality measure of the two-dimension key bit vector (ki, kj)
with respect to the function f(k, v, t, Z, Z ′) is defined as γ(i,j), where Pr =
1
2 (1 + γ(i,j)) is the probability (over all k, v and t) that complementing the key
bit ki and kj does not change the output of f(k, v, t, Z, Z ′).

Simulations shows that: for key bit vector (ki, kj), we have γi · γj ≤ γ(i,j) ≤
max{γi, γj}. Furthermore, for a fixed differential, denote the setH1(γ)={ki|γi ≥
γ} and H2(γ) = {ki|γ(i,j) ≥ γ for at least one kj}. Then we have the following
lemma:

Lemma 1. For a fixed differential of Salsa20 or ChaCha, H1(γ) ⊆ H2(γ), and
hence | H1(γ) |≤| H2(γ) |.
For Salsa 20/7 with the differential ([Δ4

1]14|[Δ0
7]31), we have H2(0.4)−H1(0.4) =

{k1, k78}. So it’s reasonable to combine several PNB’s directly in our attacks.
Actually, if we want to construct a distinguisher with s key bits fixed, we should
use the concept of s-dimension PNV’s. However, when s is too big, the cost of
finding the most significant PNV’s is too high to search over all Cs

256 cases.

4.4 Experimental Results with CCD

We present attacks on 256-bit Salsa20/5 and Salsa20/6 with the CCD con-
structed by the first method. And the rest improved attacks are based on the
CCD constructed by the second method. In order to compare our method with
that in [9], we use the same differentials and the same threshold γ as used in [9].
And we believe there exists other choices that lead better results.

Attack on 256-bit Salsa20/5. The output differential is observed after working
two rounds backward from a 5-rounds keystream block. We use five differentials:
([Δ3

3]15|[Δ0
6]0), ([Δ

3
3]9|[Δ0

6]0), ([Δ
3
8]11|[Δ0

7]2), ([Δ
3
8]20|[Δ0

7]0) and ([Δ3
12]23|[Δ0

7]1).
We set the threshold γ = 0.9 and the subkeys for each distinguisher are listed
in the Appendix A. The parameters of our attacks are listed in Table 3 (see

2 We only test the second-order differential with single bit input and single bit(and
double bits) output, and for other second-order differential, there maybe exist enough
PNB’s to improve the attacks.
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Appendix B). And the total attack runs in time 255 and data 210.

Attack on 256-bit Salsa20/6. The output differential is observed after work-
ing two rounds backward from a 6-rounds keystream block. We construct a
CCD using four differentials: ([Δ4

6]26|[Δ0
7]31), ([Δ

4
1]3|[Δ0

7]29), ([Δ
4
1]26|[Δ0

7]13) and
([Δ4

1]12|[Δ0
7]13). For each difference, we use the same threshold γ = 0.9 and the

subkeys for each distinguisher are listed in the Appendix A. The parameters of
our attacks are listed in Table 4 (see Appendix B). And the total attack runs in
time 273 and data 216.

Attack on 256-bit Salsa20/7. We use the differential ([Δ4
1]14|[Δ0

7]31) with |εd| =
0.131. The parameters and results of Aumasson’s attacks are listed in Table 5
(see Appendix B). We construct 2-step CCD using γ(1) = 0.5 and γ(2) = 0.6 with
ε(1) = 0.0022 and ε(2) = 0.0050 respectively. Note that, ε(2) = 0.0050 < 0.0064.
That because we test and find that such a value leads a result: if the correct
key passes the distinguisher of γ(1) = 0.5 (with success probability 50%3), then
it can pass the distinguisher of γ(2) = 0.6 with success probability more than
90% (we define this probability by step success probability). The time complex-
ity is 2125 ·N1 + 2132−α1 ·N2 + 2256−α1−α2 . We choose α1 = 10 and α2 = 104,
then get N1 = 223 and N2 = 223 respectively by Eq.1. So the time complexity is
2125 ·N1+2132−α1 ·N2+2256−α1−α2 ≈ 2148, the data complexity is 223+223 = 224,
and the success probability is 50%× 90% = 45%.

Attack on 256-bit Salsa20/8. For the differential ([Δ4
1]14|[Δ0

7]31) with |εd| =
0.131, we construct 2-step CCD. using γ(1) = 0.15 4 and γ(2) = 0.20 with
ε(1) = 0.00047 and ε(2) = 0.00102 respectively. For the threshold γ(1) = 0.15,
we find ns1 = 33 non-significant key bits, and for the threshold γ(2) = 0.20, we
find ns2 = 30 non-significant key bits. Note that, the value ε(2) = 0.00102 is
chosen with the step success probability 90%. The time complexity is 2223 ·N1+
2226−α1 · N2 + 2256−α1−α2 . We choose α1 = 2 and α2 = 7, then get N1 = 226.5

and N2 = 225 respectively by Eq.1. So the time complexity is 2250, the data
complexity is 226.5+225 = 227, and the success probability is 50%×90% = 45%.

Attack on 128-bit Salsa20/7. For the differential ([Δ4
1]14|[Δ0

7]31), we construct
4-step CCD. The parameters of our attacks are listed in Table 6 (see Ap-
pendix B). Note that, the value ε(i)(i = 2, 3, 4) is chosen with the step success
probability 95%. The time complexity is 290 · N1 + 292−α1 · N2 + 294−α1−α2 ·
N3 + 298−α1−α2−α3 · N4 + 2128−α1−α2−α3−α4 ≈ 2109, the data complexity is
219+217.5+216.5+215.5 ≈ 219, and the success probability is 50%×(95%)3 ≈ 43%.

3 In [9], they use the median bias in their attack, which leads in a success probability
of at least 1

2
(1− pnd) ≈ 50%.

4 In [9], the threshold γ is set to 0.12, and they get εa = 0.0011. However, εa = 0.0011 is
not reasonable as they say: we can only measure a bias of about |εa| > c ·2−12(where
c ≈ 10 for a reasonable estimation error).
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Attack on 256-bit Chacha6. For the differential ([Δ3
11]0|[Δ0

13]13) with |εd| = 0.026,
we construct 3-step CCD. The parameters of our attacks are listed in Table 7 (see
Appendix B). Note that, the value ε(i)(i = 2, 3) is chosen with the step success
probability 95%. The time complexity is 2209 ·N1 + 2213−α1 ·N2 + 2256−α1−α2 ·
N3+2214−α1−α2−α3 ≈ 2136, the data complexity is 227+225.5+226.3 ≈ 228, and
the success probability is 50%× (95%)2 ≈ 45%.

Attack on 256-bit Chacha7. For the differential ([Δ3
11]0|[Δ0

13]13), we construct 4-
step CCD. The parameters of our attacks are listed in Table 8 (see Appendix B).
Note that, ε(i)(i = 2, 3, 4) is chosen with the step success probability 95%. The
time complexity is 2221 ·N1+2222−α1 ·N2+2224−α1−α2 ·N3+2228−α1−α2−α3 ·N4+
2256−α1−α2−α3−α4 ≈ 2246.5, the data complexity is 226.3 + 225.3 + 224.2 +222.4 ≈
227, and the success probability is 50%× (95%)3 ≈ 43%.

Attack on 128-bit Chacha6. For the differential ([Δ3
11]0|[Δ0

13]13) with |εd| = 0.026,
we construct 3-step CCD. The parameters of our attacks are listed in Table 9
(see Appendix B). Note that, the value ε(i)(i = 2, 3) is chosen with the step suc-
cess probability 95%. The time complexity is 277 ·N1+281−α1 ·N2+285−α1−α2 ·
N3 + 2128−α1−α2−α3 ≈ 2105, the data complexity is 227.9 + 224.6 + 223.3 ≈ 228,
and the success probability is 50%× (95%)2 ≈ 45%.

5 Conclusions

In this paper, we extend the approach of Aumasson et al. by considering a
new type of distinguishers, named (column and row) chaining distinguishers,
which can efficiently make use of the biases of multiple differential trails and the
matrix structure of the cipher. Besides, we find new high probability second-
order differential trails that are not covered by the previous results, some of
which are employed in our attack. The notion of PNB is generalized to that
of probabilistic neutral vectors (PNV), which investigate the properties of the
underlying function when more than one input bit are flipped simultaneously
and include the PNB as a special case. It is shown that the set of PNV is no
smaller than that of PNB. Based on these findings, we construct improved key
recovery attacks on reduced-round Salsa20 and ChaCha, repectively. Both time
and data complexities of our new attacks are smaller than those of the best
former results.

Acknowledgement. The authors gratefully acknowledge the anonymous ref-
erees, whose comments helped to improve the presentation.
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Appendix A: CCD of Salsa20/5 and Salsa20/6

For Salsa20/5, we get the significant key bits sets:
A1 = {0, 1, 32, 33, 34, 35, 36, 37, 38, 74, 75, 76, 77, 78, 84, 85, 86, 87, 88, 89,
90, 129, 130 131, 132, 133, 134, 135, 143, 144, 145, 146, 147, 148, 149, 208, 209,
210, 211, 212 244, 245, 246, 247, 248 },
A2 = {21, 22, 23, 24, 25, 26, 27, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 68, 69,
70, 71, 72, 80, 81, 82, 83, 128, 139, 140, 141, 142, 200, 201, 202, 203, 204, 205,
206, 236, 237, 238, 239, 240, 241, 242 },
A3 = { 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, 19, 20, 43, 44, 45, 46, 47, 96, 97, 98,
99, 100, 101, 102, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 207, 213, 214,
215, 216, 217, 218, 219},
A4 = { 9, 10, 11, 12, 13, 28, 29, 30, 31, 50, 51, 52, 91, 92, 93, 103, 104, 105, 106,
107, 108, 109, 110, 111, 136, 137, 138, 181, 182, 183, 184, 185, 186, 187, 188, 189,
192, 193, 194, 195, 196, 220, 221, 222, 223 },
A5 = { 39, 40, 41, 48, 49, 112, 113, 114, 115, 116, 117, 151, 152, 153, 154, 155,
156, 157, 160, 161, 162, 190, 191, 197, 198, 199, 224, 225, 226, 227, 228, 229, 230,
231, 232, 233, 234, 235, 243, 249, 250, 251, 252, 253 }.
For each differential ([Δ3

3]15|[Δ0
6]0), ([Δ

3
3]9|[Δ0

6]0), ([Δ
3
8]11|[Δ0

7]2), ([Δ
3
8]20|[Δ0

7]0)
and ([Δ3

12]23|[Δ0
7]1), construct the single distinguisher Dj(j = 1, 2, ..., 5) with

the non-significant key bits being set to a fixed value. And the Dj effectively

depends on subkey K ′
j = {ki|i ∈ ∪j

l=1Al}.

http://www.ecrypt.eu.org/stream/
http://cr.yp.to/snuffle/812.pdf
http://cr.yp.to/chacha.html
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For Salsa20/6, we get the significant key bits sets:

A1 = {0, 1, 2, 3, 31, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 74, 75, 76, 77,
78, 79, 80, 81, 96 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127,
185, 186, 187, 188 189, 190, 191, 217, 218, 219, 220, 221, 222, 223, 230, 231, 232,
233, 234, 235, 236 },
A2 = { 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 67, 68, 69, 70, 71, 72, 73, 85, 86, 87,
88, 89, 90, 91, 130, 131, 132, 133, 134, 135, 136, 166, 167, 168, 169, 170, 171,
172, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 243, 244, 245, 246, 247, 248,
249, 250},
A3 = { 4, 5, 21, 22, 23, 24, 25, 32, 33, 34, 58, 59, 60, 61, 62, 63, 64, 82, 92, 93,
94, 95, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 198, 199, 200, 201,
202, 203, 204, 205, 206, 237, 238, 239, 240, 241},
A4 = { 7, 15, 18, 19, 20, 50, 51, 52, 53, 54, 55, 65, 66, 139, 140, 141, 142, 143,
144, 145, 175, 176, 177, 178, 179, 180, 181, 192, 193, 194, 195, 224, 225, 226, 227,
252, 253, 254, 255}.
For each differential ([Δ4

6]26|[Δ0
7]31), ([Δ4

1]3|[Δ0
7]29), ([Δ4

1]26|[Δ0
7]13),

([Δ4
1]12|[Δ0

7]13), construct the single distinguisher Dj(j = 1, 2, 3, 4) with
the non-significant key bits being set to a fixed value. And the Dj effectively

depends on subkey K ′
j = {ki|i ∈ ∪j

l=1Al}.

Appendix B: Parameters for Our Attacks

Table 3. Different parameters for our attack on 256-bit Salsa 20/5

i Differential ns εd εa ε α Data

1 ([Δ3
3]15|[Δ0

6]0) 211 0.995 0.677 0.674 45 28

2 ([Δ3
3]9|[Δ0

6]0) 165 0.929 0.670 0.622 46 28

3 ([Δ3
8]11|[Δ0

7]2) 121 0.999 0.737 0.736 44 28

4 ([Δ3
8]20|[Δ0

7]0) 76 0.971 0.947 0.921 45 27

5 ([Δ3
12]23|[Δ0

7]1) 32 0.918 0.943 0.866 44 27

Table 4. Different parameters for our attack on 256-bit Salsa 20/6

i Differential ns εd εa ε α Data

1 ([Δ4
6]26|[Δ0

7]31) 196 0.201 0.680 0.137 60 213

2 ([Δ4
1]3|[Δ0

7]29) 140 0.1113 0.664 0.075 56 215

3 ([Δ4
1]26|[Δ0

7]13) 93 0.110 0.771 0.085 47 214

4 ([Δ4
1]12|[Δ0

7]13) 54 0.183 0.801 0.147 39 213
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Table 5. Different parameters for Aumasson’s attack on 256-bit Salsa 20/7

γ ns εa ε α Time Data

1.0 39 1.000 0.1310 31 2230 213

0.9 97 0.655 0.0860 88 2174 215

0.8 103 0.482 0.0634 93 2169 216

0.7 113 0.202 0.0265 101 2162 219

0.6 124 0.049 0.0064 108 2155 223

0.5 131 0.017 0.0022 112 2151 226

Table 6. Parameters for our attack on 128-bit Salsa 20/7

i γ(i) nsi ε(i) αi Ni

1 0.40 38 0.0059 2 219

2 0.42 36 0.0105 4 217.5

3 0.45 34 0.0165 6 216.5

4 0.60 30 0.0359 18 215.5

Table 7. Parameters for our attack on 256-bit Chacha6

i γ(i) nsi ε(i) αi Ni

1 0.60 147 0.00048 4 227

2 0.66 143 0.00091 8 225.5

3 0.75 139 0.00171 120 226.3

Table 8. Parameters for our attack on 256-bit Chacha7

i γ(i) nsi ε(i) αi Ni

1 0.50 35 0.00059 3.8 226.3

2 0.53 34 0.00080 3.5 225.3

3 0.55 32 0.00127 5 224.2

4 0.58 28 0.00280 9 222.4

Table 9. Parameters for our attack on 128-bit Chacha6

i γ(i) nsi ε(i) αi Ni

1 0.50 51 0.00034 4 227.9

2 0.56 47 0.00114 5.5 224.6

3 0.65 43 0.00281 25 223.3
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