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Abstract. Sorting is one of the most important primitives in various systems, for
example, database systems, since it is often the dominant operation in the running
time of an entire system. Therefore, there is a long list of work on improving its
efficiency. It is also true in the context of secure multi-party computation (MPC),
and several MPC sorting protocols have been proposed. However, all existing
MPC sorting protocols are based on less efficient sorting algorithms, and the re-
sultant protocols are also inefficient. This is because only a method for converting
data-oblivious algorithms to corresponding MPC protocols is known, despite the
fact that most efficient sorting algorithms such as quicksort and merge sort are
not data-oblivious. We propose a simple and general approach of converting non-
data-oblivious comparison sort algorithms, which include the above algorithms,
into corresponding MPC protocols. We then construct an MPC sorting protocol
from the well known efficient sorting algorithm, quicksort, with our approach.
The resultant protocol is practically efficient since it significantly improved the
running time compared to existing protocols in experiments.

Keywords: Multi-party protocol, sorting, comparison sort, secret sharing,
unconditional security.

1 Introduction

With the growth in information technology, the use of personal data is also increasing.
Therefore, awareness concerning privacy issues has been growing, and systems that use
sensitive data without breaching privacy are needed. Secure multi-party computation
(MPC) is a technique that enables the creation of such secure systems, and frame-
works, such as FairplayMP [3], Sharemind [6], SEPIA [7], TASTY [17], and VIFF
[13], have been implemented. MPC protocols allow a set of participants (parties) to
compute a function privately. That is, when a function is represented as (y1, . . . , yn) =
f (x1, . . . , xn), each party with its private input xi obtains only the output yi and noth-
ing else. In a typical MPC framework, input and output values are in secret-shared
form. Namely, xi and yi are the shares of input and output values, respectively. Al-
though any function can be computed securely by using a circuit representation of the
function [4,15], it is not easy to design practically efficient MPC protocols for com-
plex algorithms, such as database operations. Therefore, proposals have been made to
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construct specific and efficient MPC protocols as building blocks, e.g., computing bit-
decomposition and comparison [10,25], and modulo reduction [24].

Sorting is one of the most important primitives in various systems, for example,
database systems, since it is frequently conducted and comparatively time-consuming.
The importance of a sorting algorithm is known, and there is a long list of work on
improving its efficiency. To obtain a practically efficient sorting algorithm, researchers
not only investigated computational complexity but also experimental performance. Al-
though computational complexity is a good asymptotic metric of efficiency, sometimes
an inferior (in the sense of computational complexity) sorting algorithm exceeds the ex-
perimental performance of superior ones. For example, quicksort is more popular than
merge sort since quicksort often performs better even though its computational com-
plexity is worse than that of the merge sort algorithm. One of the most famous classes
of sorting is comparison sorts. A comparison sort determines the sorted order based
only on comparisons between the input elements. Comparison sorts include a number
of well-known and efficient sorting algorithms, such as quicksort, shell sort, heapsort,
and merge sort.

In the context of MPC protocols, sorting is also a very important primitive. MPC
sorting protocols are often required in various database operations and have many appli-
cations such as cooperative IDS [20], oblivious RAM [12] and private set intersection
[19]. Therefore, a number of MPC sorting protocols has been proposed [16,3,20,32].
However, they are based on less efficient sorting algorithms, and the resultant proto-
cols are also inefficient. One of the main causes is the obstacle in constructing MPC
protocols.

1.1 Obstacle for Using Well-known Algorithms

We say that an algorithm is data-dependent if the control flow of the algorithm depends
on data values, and an algorithm that is not data-dependent is said to be data-oblivious.
Generally speaking, there is a large obstacle when one constructs a practically efficient
MPC protocol from a well-known algorithm. That is, MPC protocols should be data-
oblivious while most efficient algorithms are not. Furthermore, how to convert data-
dependent algorithms to data-oblivious algorithms is not known.

To illustrate this obstacle during the conversion from data-dependent algorithms to
MPC protocols, let us consider the following two algorithms. Both algorithms receive
a sequence of values a1, . . . , am ∈ Zp = {0, 1, . . . , p − 1}, where p is a prime, as input,
and the output is the number of non-zero values in a1, . . . , am. 1

CountNonZero1(a1, . . . , am):

1: c = 0.
2: for i = 1 to m do
3: c = c + ((ai)p−1 mod p).
4: return c.

CountNonZero2(a1, . . . , am):

1: c = 0.
2: for i = 1 to m do
3: if ai � 0 then
4: c = c + 1.
5: return c.

1 (ai)p−1 mod p =

{
0 if ai = 0
1 otherwise

holds by Fermat’s little theorem.
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Fig. 1. Running time of four compared sorting implementations. Number of elements on x-axis
is on log-scale.

The running time of the first algorithm is O(m log p) since (ai)p−1 mod p is com-
puted with O(log p) multiplications over Zp by using the exponentiation by squaring
technique, and that of the second algorithm is O(m). Therefore, the second algorithm
seems more efficient than the first one.

Next, let us consider the case when we convert these algorithms to MPC proto-
cols. For the first algorithm, we need only minor modifications: We replace the values
a1, . . . , am and c with secret-shared values (or values in other forms depending on the
MPC environment), and replace operations applied to these values, such as additions
and multiplications, with corresponding MPC subprotocols. 2

The resulting protocol requires only O(m log p) invocations of subprotocols. For the
second algorithm, it is not enough to apply the same modifications as the first one since
the second algorithm has an if condition, and the result of the if condition discloses the
information that ai = 0 or not. Even if the result is hidden, the branch of subsequent
processes discloses the information. To avoid these disclosures naively, we have to ex-
ecute both cases of the if condition. Therefore, the resulting protocol requires Ω(2m)
invocations of subprotocols.

This significant difference between the complexities of the converted protocols is
due to the fact that the first algorithm is data-oblivious while the second algorithm is
data-dependent. Thus, the naive method used to convert data-oblivious algorithms to
MPC protocols does not work when the algorithm is data-dependent.

Above obstacle also occurs in the area of sorting. Therefore, all existing MPC sorting
protocols are based on specific sorting algorithms, which are data-oblivious but less
efficient. This is one of the main causes of the large gap on efficiency between MPC
sorting protocols and well known sorting algorithms.

1.2 Contributions

In this paper we show that in the areas of comparison sort one can efficiently convert
data-dependent algorithms to MPC protocols with a simple approach. Furthermore, we

2 We have no need for applying expensive exponentiation protocols since p is a public constant
value.
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propose a practically efficient MPC sorting protocol from the well known sorting algo-
rithm quicksort. Note that we discriminate protocol and algorithm such that the former
is used in a multi-party sense and the other is in an ordinal one, and say an algorithm or
protocol is practically efficient if it not only has less computational complexity but also
delivers good experimental results.

When trying to convert comparison sort algorithms to MPC protocols, an obstacle to
conversion for data-dependent algorithms occurs: The next pair of elements to be com-
pared depends on the outcome of previous comparisons in sorting algorithms. There-
fore, well known and practically efficient comparison sort algorithms, such as quicksort,
have not been applied to MPC protocols.

To overcome the above obstacle, we use a simple approach of shuffling before sort-
ing. That is, the parties first shuffle the input (in an MPC sense) and then use a com-
parison sort algorithm, e.g., quicksort or merge sort, with minor modifications on the
shuffled secret-shared values. Roughly speaking, although the data-dependent compar-
ison leaks the order of compared elements, the order is randomized by the shuffling
and has no relation to the inputs of the protocol. Therefore, we can straightforwardly
construct MPC sorting protocols from comparison sort algorithms after shuffling.

We next show that our approach can construct a practically efficient MPC sorting
protocol. We concretely construct an MPC sorting protocol from the quicksort algo-
rithm with our approach. Our protocol uses O(m log m) comparisons in O(log m) rounds
on average, which are comparable to other existing protocols. We describe a precise
complexity comparison in Sect. 4. Furthermore, we implement the proposed quicksort
protocol and other existing sorting protocols [2,31,32] on (2, 3)-Shamir’s secret-sharing
scheme with corruption tolerance t = 1. This setting is reasonable since our aim is to
produce a practically efficient sorting protocol and the performance of MPC protocols
does not scale well based on the number of parties. As a result, our proposed quick-
sort protocol sorts 32-bit words and 1, 000, 000 secret-shared values in 1, 227 seconds,
while existing sorting protocols cannot sort within 3, 600 seconds. We describe an intu-
itive graph in Fig. 1 and precise experimental results in Sect. 4.

1.3 Related Work

Some circuit-based sorting algorithms are known as sorting networks. Since sorting net-
works are constructed in a circuit style and circuit-based algorithms are data-oblivious,
they can be efficiently applied to MPC protocols. Ajtai et al. proposed an asymptotically
optimal sorting network known as the AKS sorting network, which exhibits a complex-
ity of O(m log m) comparisons, where m is the number of input shares [1]. However,
this algorithm is not practical since its constant factor is very high. On the other hand,
Batcher’s merge sort [2] is more efficient unless m is quite large [21]. This algorithm
exhibits a complexity of O(m log2 m) comparisons with a lower constant factor.

Goodrich proposed a data-oblivious sort called randomized shell sort [16]. Similar
to sorting networks, data-oblivious sorts are also efficiently applied to MPC protocols.
Although randomized shell sort returns a wrong output with low probability, it exhibits
a complexity of O(m) rounds and O(m log m) comparisons.

Wang et al. reported experimental results of some sorting algorithms [31]. Their im-
plementation is based on the MPC system Fairplay [23]. The running times of Batcher’s
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merge sort [2] and randomized shell sort [16] for 256 input values are approximately
3, 000 and 6, 200 seconds, respectively.

Jónsson et al. studied a general technique to hide the number of input values for sort-
ing protocols [20]. They also implemented Batcher’s merge sort [2] and other sorting
protocols on the MPC system Sharemind [6]. Their implementation is optimized using
a technique called vectorization, and the vectorized Batcher’s merge sort sorts 16, 384
secret shared values in 210 seconds.

Zhang proposed data-oblivious sorting algorithms [32] based on bead sort. All of
Zhang’s algorithms exhibit complexities of constant rounds and O(Rm) or O(m2) com-
parisons depending on the algorithm, where R represents the range of input values.
Since these algorithms are data-oblivious, we can convert them to multi-party sorting
protocols by using a circuit-based technique while keeping their complexities.

2 Preliminaries

2.1 Assumptions and Notations

We focus on secret-sharing-based MPC. For simplicity, n parties P1, . . . , Pn are con-
nected by secure channels. All values used in secret-sharing schemes belong to a field
K. We use [[s]]Pi to denote a share for Pi where a secret value is s ∈ K. LetQ be a coali-
tion of parties and [[s]]Q denote a set of shares {[[s]]Pi | Pi ∈ Q}. When U represents all
parties, we simply denote [[s]]U as [[s]] and call it shared values. We call some elements
related to secret-sharing scheme as follows;

– s: secret value,
– [[s]]Pi : share (for a party Pi),
– [[s]] = [[s]]U = {[[s]]P1 , . . . , [[s]]Pn}: shared value.

We use [i] to denote a set {1, 2, . . . , i}.

2.2 Security Model

We consider unconditional, perfect security against a semi-honest adversary with static
corruption of at most t. This means that the adversary can execute unbounded computa-
tion, must follow a protocol, and can corrupt at most t parties only before the protocol
is conducted. More technically, we say that a protocol is secure if there is a simulator
that simulates the view of corrupted parties from the inputs and outputs of the protocol.
We use I = {Pi1 , Pi2 , . . . , Pit } ⊂ U to denote the parties that are corrupted. Due to space
limitation, the formal definition of the security against a semi-honest adversary with
static corruption appears in Appendix A.

2.3 Complexity Metrics in MPC

We use two metrics, round complexity and the number invocations of the comparison
protocol, to evaluate the overall running time of protocols. The round complexity of a
protocol is the number of rounds of parallel invocations of the communication. Because
the comparison protocol is a dominant factor of the complexity of communications, we
measure the amount of data transmitted by the parties with the number of invocations
of the comparison protocol.
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2.4 Secret-Sharing Scheme

We focus on a class of secret-sharing schemes called (k, n)-threshold. This means that
the shares are shared by the n parties in such a way that any coalition of k or more parties
can together reconstruct the secret, but no coalition fewer than k parties can. Shamir’s
secret-sharing scheme [28] belongs to this class. We assume that the corruption toler-
ance t satisfies t < min(k, n − k). We say [[s]] is uniformly random if it is uniformly
randomly chosen from the set of possible shared values whose secret value is s.

A secret-sharing scheme ΠSS is a pair of algorithms, dealing and revealing. The
dealing algorithm takes a secret value s as input and outputs a uniformly random shared
value. The revealing algorithm takes at least k shares and outputs the secret value s.

2.5 Shuffling, Comparison, and Reveal Protocols

We introduce some existing MPC protocols used as building blocks of our protocol.
Our protocols are designed to be used as building blocks in the paradigm of comput-

ing on shared values, which is one of the most common paradigms for MPC protocols
[8]. In this paradigm, secret values are preliminary shared with a secret-sharing scheme
to all parties that participate in MPC protocols. Then MPC protocols take secret-shared
values as inputs from each party and output the result in secret-shared form. The result
is finally recovered by the revealing algorithm of the secret-sharing scheme.

Comparison protocol. The comparison protocol [10,25] receives two shared values
and outputs a shared value of the comparison result of the inputs. More precisely, the
comparison protocol accepts [[a]]Pi , [[b]]Pi from each Pi ∈ U as input and outputs [[c]]Pi

to each Pi ∈ U such that c = 1 if a ≤ b and c = 0 otherwise. We assume that K is
totally ordered and denote this protocol as “[[c]] ← [[a ≤ b]]”. We formally define the
comparison protocol with the following function f CMP

ΠSS
.

f CMP
ΠSS

: On inputting [[x]]Pi and [[y]]Pi from each Pi ∈ U, it reveals x and y with the
revealing algorithm of ΠSS, sets z = 1 if x ≤ y and z = 0 otherwise, and generates [[z]]
with the dealing algorithm of ΠSS. Finally, it outputs [[z]]Pi to each Pi ∈ U.

The comparison protocol proposed by Nishide and Ohta [25] exhibits the complexity
of O(1) rounds and O(�) invocations of multiplication protocols where � is the bit-length
of K.

Shuffling protocol. The shuffle protocol receives some shared values and outputs re-
newed shared values where their secret values are uniformly randomly permuted. More
precisely, the shuffle protocol accepts [[a1]]Pi , . . . , [[am]]Pi from each Pi ∈ U and out-
puts [[b1]]Pi , . . . , [[bm]]Pi to each Pi ∈ U such that b j = aπ( j) for a uniformly random
permutation π : [m]→ [m] and every j ∈ [m]. A run of this protocol is denoted as

[[b1]], . . . , [[bm]]← Shuffle([[a1]], . . . , [[am]]).

We formally define the shuffling protocol with the following function f Shuffle
ΠSS

.

f Shuffle
ΠSS

: On inputting ([[a1]]Pi , . . . , [[am]]Pi ) from each Pi ∈ U, it reveals a1, . . . , am

with the revealing algorithm of ΠSS, selects a permutation π : [m] → [m] uniformly
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at random, sets bi = aπ(i) for i ∈ [m], and generates [[b1]], . . . , [[bm]] with the dealing
algorithm of ΠSS. Finally, it outputs ([[b1]]Pi , . . . , [[bm]]Pi) to each Pi ∈ U.

Laura et al. proposed efficient shuffling protocols [22]. One of their protocols exhibits
the complexity of O(2n/

√
n) rounds and O(2nn3/2m log m) communications. When the

number of parties is constant, it exhibits O(1) rounds and O(m log m) communications.
We use this protocol as the shuffling protocol.

Reveal protocol. The reveal protocol accepts [[x]]Pi from each Pi ∈ U and outputs x
to each Pi ∈ U. This protocol just has a role of the reveal algorithm in a multi-party
setting. A run of this protocol is denoted as

x ← Reveal([[x]]).

We formally define the reveal protocol with the following function f Reveal
ΠSS

.

f Reveal
ΠSS

: On inputting [[x]]Pi from each Pi ∈ U, it reveals x with the revealing algo-
rithm of ΠSS and outputs x to each Pi ∈ U.

The reveal protocol can be easily constructed in a semi-honest model by distributing
all shares among all parties. Even in the malicious model it can be constructed by using
secret-sharing schemes secure against cheating [27,26].

3 MPC Sorting Protocols

In this section, we propose an approach of constructing efficient sorting protocols, and
then we apply our approach to the quicksort algorithm. For simplicity, we split the
construction of our quicksort protocol with two steps: we begin by describing the con-
struction with restricted inputs and later show how to remove this restriction. We also
discuss further extensions of our approach.

We assume that the following protocols can be executed on ΠSS; shuffling, compar-
ison, and reveal. For example, Shamir’s secret-sharing scheme satisfies this condition.

3.1 Our Approach of Constructing Efficient Sorting Protocols

To construct an efficient sorting protocol, it is natural to try to construct an MPC sorting
protocol that emulates practically efficient sorting algorithms. However, this approach
has to solve a certain problem; When trying to convert well-known sorting algorithms
to MPC protocols, the problem with most practically efficient sorting algorithms is that
they are data-dependent. On the other hand, if an MPC protocol changes its behavior
according to the input, it might violate privacy. Therefore, all existing sorting protocols
use less efficient data-oblivious sorting algorithms. Consequently, we have to fill the gap
between data-dependency and data-obliviousness to construct MPC sorting protocols
from well-known sorting algorithms.

Sorting algorithms which determine the sorted order based only on comparisons
between the input elements are called comparison sorts. Comparison sorts include a
number of practically efficient sorting algorithms, such as quicksort, shell sort, heap-
sort, insertion sort, and merge sort. However, comparison sorts are essentially data-
dependent since the next pair of elements to be compared depends on the outcome of
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previous comparisons. Therefore no comparison sort, including well known quicksort
algorithm, has been applied to MPC protocols.

To solve the above problem, we use a simple approach of shuffling before sorting.
Our approach consists of the following modifications to the original comparison sort
algorithm.

1. We apply the shuffling protocol to the inputs at the first step.
2. We execute as the same to the original (data-dependent) comparison sort algorithm,

except to replace the comparison operation with a continuous execution of compar-
ison and reveal protocols.

In the execution of the protocol, the revealed result of comparison seems to leak ordinal
information. However, the ordinal information is randomized by the shuffling at the
first step, so it leaks no information about true inputs. This approach is quite simple
and effective for constructing practically efficient sorting protocols. Our approach is
also quite general since, to our knowledge, all of practically efficient comparison sort
algorithms can be converted to MPC protocols with our approach.

3.2 Quicksort Protocol

Now, we concretely construct an MPC sorting protocol, which we call quicksort pro-
tocol, from the quicksort algorithm with our approach. Note that we assume that the
secret values of inputs are distinct here and discuss the unrestricted input case in the
following subsection.

The sorting function is defined as follows.
f Sorting
ΠSS

: On inputting ([[a1]]Pi , . . . , [[am]]Pi ) from each Pi ∈ U, it reveals a1, . . . , am

with the reveal algorithm of ΠSS, sorts (a1, . . . , am) to (b1, . . . , bm) such that bi ≤ bi+1

for i ∈ [m−1], and generates [[b1]], . . . , [[bm]] with the dealing algorithm ofΠSS. Finally,
it outputs ([[b1]]Pi , . . . , [[bm]]Pi) to each Pi ∈ U.

We describe our quicksort protocol constructed by applying our approach in Proto-
col 1. Next we discuss the property of our quicksort protocol.

Correctness. Our quicksort protocol has two differences compared to the original quick-
sort algorithm. The first difference is comparison; however, this has no effect on execu-
tion since the replicated protocols simply emulate the original. The second difference
is an additional shuffling step inserted at the beginning of our quicksort protocol. Since
the secret values of the input shared values are distinct, the order of the secret values of
the output is unique. Therefore, the first shuffling step does not affect the results.

Security. Roughly speaking, the shuffling and comparison protocols are secure, and
the swapping operation is just a local computation. Therefore, the only possible infor-
mation leakage is the revealed results from the comparisons. However, the results of
each comparison have no relation to the input. This is because the input shared values
are shuffled in the first step by the shuffling protocol. We formally claim the following
theorem.

Theorem 1. Protocol 1 t-privately reduces f Sorting
ΠSS

to f Shuffle
ΠSS

, f CMP
ΠSS

, and f Reveal
ΠSS

.

The proof of the theorem appears in Appendix B.



210 K. Hamada et al.

Protocol 1. Quicksort protocol
Notation: [[b1]], . . . , [[bm]]← Quicksort([[a1]], . . . , [[am]])
Input: Shared values [[a1]], . . . , [[am]].
Output: Shared values [[b1]], . . . , [[bm]] where b1 ≤ · · · ≤ bm.

1: Unless this is a recursively called execution, apply the shuffling protocol to [[a1]], . . . , [[am]].
2: if 1 < m then
3: p, [[e1]], . . . , [[em]]← Partition([[a1]], . . . , [[am]]).
4: [[b1]], . . . , [[bp−1]]← Quicksort([[e1]], . . . , [[ep−1]]).
5: Let [[bp]] = [[ep]].
6: [[bp+1]], . . . , [[bm]]← Quicksort([[ep+1]], . . . , [[em]]).
7: else
8: Let ([[b1]], . . . , [[bm]]) = ([[a1]], . . . , [[am]]).
9: return [[b1]], . . . , [[bm]].

Notation: p, [[e1]], . . . , [[em]]← Partition([[a1]], . . . , [[am]])
Input: Shared values [[a1]], . . . , [[am]].
Output: Position p and shared values [[e1]], . . . , [[em]].

1: Let i = 0.
2: for j = 1 to m − 1 do
3: [[c]]← [[aj ≤ am]].
4: c← Reveal([[c]]).
5: if c = 1 then
6: Let i = i + 1.
7: Swap [[ai]] and [[aj]].
8: Let p = i + 1.
9: Swap [[ap]] and [[am]].

10: Let ([[e1]], . . . , [[em]]) = ([[a1]], . . . , [[am]]).
11: return p, [[e1]], . . . , [[em]].

Complexity. There are only two subprotocols that matter in terms of complexity. One is
the shuffling protocol and the other is the comparison protocol. As described previously,
we use the shuffling protocol proposed by Laura et al. [22], which exhibits a complexity
of O(1) rounds and O(m log m) communications when the number of parties n is con-
stant. Since the quicksort algorithm requiresΩ(m log m) invocations of comparison, we
have no need to take into account the complexity of the shuffling protocol.

The number of invocations of the comparison protocol is exactly the same as that of
comparisons in the original quicksort algorithm. With a naive implementation, there-
fore, our quicksort protocol exhibits a complexity of O(m log m) rounds and O(m log m)
comparisons.

We can improve the round complexity of the main part of the proposed quicksort
protocol to O(log m) by setting the invocations of the comparison protocols to be par-
allel. First, we claim that the depth of the recursive calls is Θ(log m) on average. Since
our quicksort protocol shuffles the input in the first step, the input to the main part of
the quicksort protocol is uniformly randomized. When the input is assumed to be uni-
formly randomized, the depth of the recursive calls for the quicksort algorithm is known
to beΘ(log m) on average [9]. Additionally, we can easily confirm that we can make the
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invocations of the subprotocol Partition parallel at each depth. Thus, through parallel
implementation, our quicksort protocol exhibits a complexity of O(log m) rounds and
O(m log m) comparisons on average.

3.3 Sorting Duplicated Values

When there are duplicate inputs in its secret values, our quicksort protocol may leak
information regarding the input. For example, if the protocol invokes two comparison
protocols [[a ≤ b]] and [[b ≤ a]] s.t. a = b, the results of the comparisons reveal the
existence of a pair of shared values with identical secret values. Another example is the
case when all the values are same. In this case, the results of comparisons are all true,
and this implies many values are same with high probability.

We can easily address this problem, for example, by the following steps. Let m be
the number of input shares and add 	log2 m
 bits, which we call a tie breaker, to every
input share in the least significant positions. Then, we execute the protocol treating the
modified input as the input. The above modification gives the identical shared values
strict order; therefore, solving the problem. Furthermore, depending on how we make
the tie breaker, we can give the proposed quicksort protocol certain features. If we
shuffle the tie breaker, the duplicated values are uniformly and randomly ordered. To
generate a sorting protocol while retaining the original order of the duplicated items
(such a sorting operation is called stable), we arrange the tie breakers in ascending
order.

3.4 Further Extensions

Beyond sorting, our approach must be applied to many other data-dependent algo-
rithms. We illustrate a selection algorithm which is for finding the k-th smallest number
in a list. This includes finding the minimum, maximum, and median elements often
executed in the database operation. For example, we can obtain the median MPC pro-
tocol that exhibits O(log m) rounds and O(m) comparisons in the average case from
Hoare’s algorithm [18] and also obtain the protocol that exhibits the same rounds and
comparisons even in the worst case from Blum’s algorithm [5].

Our approach seems to be secure even in the malicious model if the shuffling, reveal,
and comparison protocols are also secure in the malicious model. However, we are
interested in constructing a practically efficient MPC protocol, and to our knowledge,
there is no secret-sharing scheme providing practically efficient shuffling, reveal, and
comparison protocols simultaneously. Therefore, we only give the proof in the semi-
honest model in this paper.

4 Evaluation

In this section, we evaluate our quicksort protocol. We compare this protocol with other
existing sorting protocols both asymptotically and experimentally. As a result, we show
that our quicksort protocol exhibits a comparable computational complexity and signif-
icantly improved the running time in an experiment.



212 K. Hamada et al.

Table 1. Complexities of sorting protocols. m and R represent the number of the input values and
the range of input values, respectively.

Rounds Invocations of comparison
Sorting protocol Average Worst Average Worst

AKS sorting network [1] O(log m) O(log m) O(m log m) O(m log m)
Randomized shell sort [16] O(m) O(m) O(m log m) O(m log m)
Batcher’s merge sort [2] O(log2 m) O(log2 m) O(m log2 m) O(m log2 m)
Oblivious arrayless bead sort [32] O(1) O(1) O(Rm) O(Rm)
Oblivious keyword sort [32] O(1) O(1) O(m2) O(m2)
Quicksort (proposed) O(log m) O(m) O(m log m) O(m2)

Table 2. Performance of sorting protocols. m represents the number of the input values. The
“N/A” means that the execution did not finish in 3, 600 seconds.

Sorting protocol m = 10 m = 102 m = 103 m = 104 m = 105 m = 106

Randomized shell sort [16] 6.356[s] 86.355[s] 911.376[s] N/A N/A N/A
Oblivious keyword sort [32] 0.335[s] 3.392[s] 387.128[s] N/A N/A N/A
Batcher’s merge sort [2] 1.331[s] 4.139[s] 14.285[s] 152.168[s] 2070.890[s] N/A
Quicksort (proposed) 0.247[s] 0.488[s] 1.410[s] 9.859[s] 93.674[s] 1226.267[s]

4.1 Complexity Analysis

We first evaluated our quicksort protocol from an asymptotic perspective. As described
in Sect. 3, this protocol exhibits a complexity of O(log m) rounds and O(m log m) com-
parisons on average, where m is the number of the input values. We summarize the
complexities of ours and existing sorting protocols in Table 1 by taking into account
parallelism.

As mentioned repeatedly, we are interested in practically efficient protocols; there-
fore, we stress the average case rather than the worst case. Our quicksort protocol re-
quires O(m log m) comparisons on average, which is asymptotically optimal for
comparison sorts. Our quicksort protocol is superior to randomized shell sort [16] and
Batcher’s merge sort [2] in either rounds or comparisons. The AKS sorting network
[1] has the same complexity on average. The oblivious arrayless bead sort [32] exhibits
O(1) rounds and O(Rm) comparisons where R is the range of secret values. This algo-
rithm is quite efficient when R is small, e.g., the secret value belongs to {0, 1}. However,
when R is large, e.g., R = 232, it becomes quite inefficient. The oblivious keyword sort
[32] has a comparable complexity to ours. This exhibits a complexity of constant rounds
that is superior to ours but O(m2) comparisons that is inferior on average.

4.2 Experimental Results

As the quicksort often outperforms other sorting algorithms with O(m log m) compar-
isons in practice [30], the experiment results are very important for practical use. We
implemented our quicksort protocol and existing sorting protocols, such as the random-
ized shell sort [16], the oblivious keyword sort [32] and Batcher’s merge sort [2], for
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comparison. The AKS sorting network [1] was not implemented since this algorithm
is not of practical interest. We also did not implement the oblivious arrayless bead sort
[32]. This is because in many applications such as Oblivious RAM the range of num-
bers, R, is large; therefore, this sort protocol becomes quite inefficient.

We implemented sorting protocols on (2, 3)-Shamir’s secret-sharing scheme with cor-
ruption tolerance t = 1. This is because MPC protocols generally do not scale well as
the number of participants increases, and such MPC protocols executed by a few par-
ticipants can be building blocks of ones executed by many participants [11]. For better
performance, we implemented component protocols secure against a semi-honest adver-
sary. This implies all the implemented sorting protocols are also secure against such an
adversary. We implemented the comparison protocol proposed by Damgård et al. [10]
as a building block of all sorting protocols. The quicksort protocol additionally uses the
shuffling protocol proposed by Laura et al. [22]. Our implementation of the randomized
shell sort and Batcher’s merge sort protocols are based on circuit representations. That
is, we replaced the comparators in the original algorithms to comparator protocols con-
structed by comparisons, multiplications, and additions. We implemented all of them on
C++ and compiled by g++ 4.6.1. All values are in Zp = {0, 1, . . . , p − 1}, where p is a
prime number 4294967291 and satisfies 231 < p < 232, that is, 32-bit words.

We then timed how long the running time of these protocols is. All the experiments
were conducted on three laptop machines with an Intel Core i5 2540M 2.6-GHz CPU
and 8 GB of physical memory. These three machines were connected to a 1-Gbps LAN.
The running times of the sorting protocols are shown in Fig. 1, and detailed times in
some cases are summarized in Table 2 where m is the number of input shared values.

As expected, our quicksort protocol allowed us to consider large inputs size. The
results show that our quicksort protocol is much faster than randomized shell sort and
oblivious keyword sort, and about ten to twenty times faster than Batcher’s merge sort.
Consequently, the proposed quicksort protocol significantly improved the running time
of the existing sorting protocols. In other words, our quicksort protocol is practically
efficient.

5 Conclusion

We proposed a simple and general approach, shuffling before sorting, for converting
data-dependent but efficient comparison sort algorithms to MPC sorting protocols. We
then constructed a quicksort protocol from the quicksort algorithm with our approach.
The resultant protocol is practically efficient since it has comparable computational
complexity and significantly improved the running time compared to existing protocols
in experiments.
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A Formal Definition of the Security

We give the formal definition of the security against a semi-honest adversary with static
corruption. Let x = (x1, . . . , xn), xI = (xi1 , . . . , xit ), fi(x) be the i-th output of f (x), and
fI(x) = ( fi1 (x), . . . , fit (x)). We denote the view of Pi during the protocol execution of ρ
on inputs x as viewρPi

(x) = (xi, ri; μ1, . . . , μ�) where ri is Pi’s random tape, and μ j is the
j-th message that Pi received in the protocol execution. We also denote the output of Pi

as outputρPi
(x).

We are now ready to define the security notion in the presence of semi-honest
adversaries.

Definition 1 ([14]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a probabilistic n-ary functionality,
ρ be a protocol, viewρ

I
(x) = (viewρPi1

(x), . . . , viewρPit
(x)), and

outputρ(x) = (outputρP1
(x), . . . , outputρPn

(x)).

We say that ρ t-privately computes f if there exists S such that for all I ⊂ U of cardi-
nality of at most t and all x , it holds that

{(S(I, xI, fI(x)), f (x)
)} ≡ {(viewρ

I
(x), outputρ(x)

)}
.

It is well known that a protocol satisfying the above security notions can be securely
composed with other protocols in a semi-honest setting. To explain this composition
property, we introduce the security notion for a protocol that computes a function with
the help of an oracle.
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Definition 2 ([14]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a probabilistic n-ary functionality,
g : ({0, 1}∗)m → ({0, 1}∗)m be a probabilistic m-ary functionality, and ρ be a protocol.
We say that ρ t-privately reduces g to f if ρ privately computes g with an oracle access
of the functionality of f .

We introduce an informal description of the composition theorem. Suppose that a pro-
tocol Πg privately reduces g to f and a protocol Π f privately computes f . Then the
protocol Πg| f , which is the same as Πg except that all oracle calls are substituted by
the executions of Π f , privately computes g. This implies that we can treat a constitutive
protocol as a black box to prove the security of a high-level protocol.

B Proof of Theorem 1

Let [[b′1]], . . . , [[b′m]] be the shuffled (and renewed) shared values in the Step 1 of
Quicksort(). The view of adversaries consists of their inputs [[a1]]I, . . . , [[am]]I, random
tapes, [[b′1]]I, . . . , [[b′m]]I, [[c]]I, and c. The output consists of [[b1]]I, . . . , [[bm]]I. Note that
the adversaries have no view of the subprotocols Shuffle(·), [[· ≤ ·]], and Reveal(·) since
the execution of these protocols are substituted with the oracle invocation of function-
alities f Shuffle

ΠSS
, f CMP
ΠSS

, and f Reveal
ΠSS

, respectively.
We construct the simulator S as follows. Inputs and outputs are the same as those of

adversaries, and S selects random tapes uniformly at random.
As for [[b′1]]I, . . . , [[b′m]]I and c, let π′ : [m] → [m] be a permutation that satisfies

[[bi]] = [[b′π′(i)]] (i ∈ [m]). There exists exactly one such permutation since {b1, . . . , bm}
is distinct and ([[b1]], . . . , [[bm]]) is a permutated sequence from ([[b′1]], . . . , [[b′m]]) by the
swap operations executed in Step 7 or Step 9 of Partition(·). Once π′ is perfectly simu-
lated, [[b′i]]I is also perfectly simulated by setting [[bπ′−1(i)]]I as the simulated shares and
c is also perfectly simulated by setting the value

c′ =
{

1 if π′−1(i) ≤ π′−1( j)
0 otherwise

when [[b′i ≤ b′j]] is executed. Now we claim that S perfectly simulates π′ by selecting
just a uniformly random permutation. By the correctness of the shuffling and quicksort
protocols, b′i = aπr(i) and bi = aπs(i) (i ∈ [m]) hold for a fixed (according to a1, . . . , am)
permutation πs : [m] → [m] and a uniformly random permutation πr : [m] → [m].
πs = πr ◦ π′ holds and this implies π′ = πr

−1 ◦ πs. Therefore, π′ is uniformly random.
As for [[c]]I, S picks |I| uniformly random numbers and sets them as the simulated

values for [[c]]I. Since [[c]]I is the output shares of Reveal(·), the above simulation is
perfect.

Thus, S perfectly simulates the view of adversaries. ��
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