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Abstract. The unconditionally secure Distributed Oblivious Transfer
(DOT) protocol presented by Blundo, D’Arco, De Santis, and Stinson at
SAC 2002 allows a receiver to contact k servers and obtain one out of n
secrets held by a sender.

Once the protocol has been executed, the sender does not know which
secret was selected by the receiver and the receiver knows nothing of the
secrets she did not choose. In addition, the receiver’s privacy is guar-
anteed against a coalition of k − 1 servers and similarly, the sender’s
security is guaranteed against a coalition of k− 1 servers. However, after
the receiver has obtained a secret, she is able to learn all secrets by cor-
rupting one server only. In addition, an external mechanism is required
to prevent the receiver from contacting more than k servers.

The one-round DOT protocol we propose is information-theoretically
secure, allows the receiver to contact k servers or more, and guarantees
the sender’s security, even if the receiver corrupts k − 1 servers after
having obtained a secret.

Keywords: Cryptographic Protocol, Distributed Oblivious Transfer,
Commodity Based Model, Information-Theoretic Security.

1 Introduction

Oblivious Transfer (OT) protocols allow two parties to exchange, in total privacy,
one or more secret messages. The first OT protocol, introduced by Rabin [13],
enables a sender to transmit a message to a receiver in such a way that the
receiver gets the message with probability 1

2 while the sender does not know
whether the message was received. Even, Goldreich and Lempel [8] introduced
a variant of the original OT for a contract signature application. This OT, iden-
tified as OT-

(
2
1

)
, is an exchange protocol between a receiver and a sender who

has two secret messages; the receiver chooses one of the two messages and the
sender transmits the chosen message to the receiver. At the end of the protocol,
the sender does not know which message was selected and the receiver knows
nothing of the other message.

A major drawback with OT-
(
2
1

)
and with the more general OT-

(
n
1

)
proposed

by Brassard, Crépeau and Roberts [6] is the restriction in the availability of the
secret messages, because if the unique sender is unavailable, the receiver cannot
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execute the protocol. To increase the availability of messages, the sender may
distribute them to m servers, like in the first unconditionally secure Distributed
Oblivious Transfer (DOT) protocol introduced by Gertner and Malkin [10] in
1997. However, Gertner and Malkin’s protocol does not guarantee the messages’
confidentiality against curious or corrupted servers.

In 2000, Naor and Pinkas [11] proposed an unconditionally secure DOT proto-
col which takes non-fully trusted servers into account: servers are only provided
with parts – called shares – of the original messages. This DOT protocol was
generalized to n secrets by Blundo, D’Arco, De Santis and Stinson [4,5]. Both
protocols are composed of two phases: (i) the set-up phase and (ii) the transfer
phase. During the set-up phase, the sender generates and sends shares of his
secrets to all the servers. In the transfer phase, the receiver chooses the index
of a secret, selects k servers (1 < k ≤ m) and sends them requests. From the k
responses the receiver is able to determine the chosen secret.

Blundo et al. also defined a security model composed of four fundamental
conditions that every DOT protocol should satisfy:

C1. Correctness – The receiver is able to determine the chosen secret once she
has received information from the k contacted servers.

C2. Receiver’s privacy – A coalition of up to k − 1 servers cannot obtain any
information on the choice of the receiver.

C3. Sender’s privacy with respect to k−1 servers and the receiver – A coalition of
up to k− 1 servers with the receiver does not obtain any information about
the secrets.

C4. Sender’s privacy with respect to a “greedy” receiver – Given the transcript
of the interaction with k servers, a coalition of up to k− 1 dishonest servers
and the receiver does not obtain any information about secrets which were
not chosen by the receiver.

As it has been pointed out by Blundo et al. in [4,5], the protocol introduced by
Naor and Pinkas only satisfies conditions C1 and C2. Their own protocol satisfies
conditions C1, C2 and C3 only. Actually, they have proven that condition C4

cannot be guaranteed with a one-round DOT protocol – a round being defined
as a set of consistent requests/responses exchanged between the receiver and k
servers.

Besides, Nikov, Nikova, Preneel and Vanderwalle have demonstrated [12] that
more generally, if the receiver’s privacy is guaranteed against a coalition of kR
servers and the sender’s security against a coalition of kS servers, including when
a secret had already been obtained, then the parameters kS and kR must satisfy
the inequality (kS + 1) + (kR + 1) < k.

Recently, Beimel, Chee, Wang and Zhang [2] introduced communication-
efficient DOT protocols. These protocols, based on information-theoretic pri-
vate information retrieval (PIR) protocols, require that the number of servers
contacted by the receiver is pre-determined.

In this paper, we introduce an information-theoretically secure threshold DOT
protocol. That is, the number of servers the receiver needs to contact to obtain
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a secret is not limited to k. Moreover, unlike other unconditionally secure DOT
protocols, our protocol satisfies security conditions C1, C2 for a coalition of any
size, C3 and C4. Actually, to circumvent the impossibility result established by
Blundo et al., we use the commodity-based model introduced by Beaver [1]. More
precisely, our protocol is based on Rivest’s trusted initializer OT protocol [15].
In this protocol, an additional party – the trusted initializer – is involved in the
set-up phase; he generates and distributes random values, but receives nothing
from other parties (in particular, he obtains neither the sender’s secrets, nor
the receiver’s choice). In addition, our protocol has an efficiency similar to the
efficiency of the full protocol presented by Blundo et al. [4,5].

This paper is organized as follows: in Sect. 2, we give an overview of the OT
protocol proposed by Rivest [15]. In Sect. 3, we introduce some definitions and
notations, as well as our security model. The protocol is described in Sect. 4 and
the security is analysed in Sect. 5. The last section is devoted to the performance
of the protocol.

2 Background

The OT-
(
2
1

)
protocol presented by Rivest [15] is based on the protocol introduced

by Bennett, Brassard, Crépeau and Skubiszewska [3], adapted to the trusted
initializer model.

We assume that a sender S holds two secrets w0, w1 ∈ { 0, 1 }� (� ∈ IN∗ =
{ 1, 2, . . .}) and that a receiver R wishes to learn the secret we (e = 0 or e = 1).

In the set-up phase, the trusted initializer T gives to S two random �-bit
strings r0 and r1. Then, T selects a random bit d and sends the pair (d, rd)
to R.

In the transfer phase,R selects the index e of one secret and transmits c = e⊕d
to S. S replies with two values f0 = w0 ⊕ rc and f1 = w1 ⊕ r1−c. To obtain
we, R calculates fe ⊕ rd.

Clearly, the receiver obtains one secret only and the sender cannot determine
which secret was chosen by the receiver.

3 Preliminaries

3.1 Notations and Definitions

The setting of the DOT protocol described in this paper encompasses a sender
S who owns n secrets w1, . . . , wn (n > 1) in a finite field IK = IFp (p prime),
a receiver R who wishes to learn a secret we (1 ≤ e ≤ n), a trusted initializer
T who generates random elements of IK and m servers S1, . . . , Sm. We assume
that p > max(n,w1, . . . , wn,m) and that all operations are executed in IK.

Our protocol is composed of three phases: a set-up phase, a commodity acqui-
sition phase and a transfer phase. In the set-up phase, for each secret the sender
generates shares thanks to Shamir’s (k, m)-threshold secret sharing schemes [16]
(1 < k ≤ m). Then, the sender distributes the shares to the m servers and does
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not intervene in the rest of the protocol. In the commodity acquisition phase, the
receiver contacts the trusted initializer who generates and distributes consistent
masks to the m servers and to the receiver. The trusted initializer’s presence is
only required in this phase. In the transfer phase, the receiver has to contact t
servers (k ≤ t ≤ m) to collect enough shares to construct we.

The protocol requires the availability of private communication channels be-
tween the trusted initializer and the servers, between the trusted initializer and
the receiver and between the sender and the servers. The receiver sends requests
to the servers thanks to a private broadcast channel and collects responses thanks
to private channels between servers and herself. We assume that private channels
are secure, i.e., any party is unable to eavesdrop on them and that all channels
guarantee that communications cannot be tampered with.

The set { 1, . . . , n } of natural numbers is denoted [n]. The additive group
of univariate polynomials of degree at most k with coefficients in IK is denoted
IKk[X ]. In addition, by an abuse of language, a polynomial and its corresponding
polynomial function will not be differentiated.

Since security conditions are linked to the quantity of information received by
parties, it seems appropriate to use Shannon’s entropy function [17], and more
generally information theory, to demonstrate the security of our protocol. The
following definitions and properties will be used in the paper (for more details
on information theory, see for example [7]).

An element v of a finite field V is described by a discrete random variable V
over a finite set V . The probability distribution Pr(V ) is associated with V .

Let X and Y be two random variables.

– The entropy of X is H(X) = −
∑

x∈X Pr(X = x) log2 Pr(X = x).
– The joint entropy H(X,Y ) of X and Y (joint distribution Pr(X ,Y )) is

H(X,Y ) = −
∑

x∈X

∑

y∈Y
Pr(X = x,Y = y) log2 Pr(X = x,Y = y).

– The conditional entropy H(X | Y ) of X given Y is defined as

H(X | Y ) =
∑

y∈Y
Pr(Y = y)H(X | Y = y),

where the entropy H(X | Y = y) is

H(X | Y = y) = −
∑

x∈X
Pr(X = x | Y = y) log2 Pr(X = x | Y = y).

Note that if Pr(X = x) = 0, then we adopt the convention that
Pr(X = x) log2 Pr(X = x) = 0.

Let X , Y , Z and Xi (i ∈ [n]) be random variables. We use the following
properties in the security demonstrations:
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H(X) ≥ H(X | Y ) (1)

H(X,Y ) = H(X) +H(Y | X) = H(Y ) +H(X | Y ) (2)

0 ≤ H(X) ≤ log2|X | (3)

If H(Y | Z) = 0 then H(X | Y ) ≥ H(X | Z) (4)

If H(Y | Z) = 0 then H(X | Y ,Z) = H(X | Z) (5)

H(Z | X,Y ) = H(Z | X) iff H(Y | X,Z) = H(Y | X) (6)

If H(Z | X,Y ) = H(Z) then H(X | Y ,Z) = H(X | Y ) (7)

and

If H(X | Y ,Z) = H(X) then H(X | Y ) = H(X | Z) = H(X) (8)

3.2 Security Model

The point of the paper is not to propose a verifiable DOT protocol. This is why
we assume that all parties wish to complete the protocol to allow the receiver to
obtain the chosen secret. In particular, the trusted initializer and the sender are
honest. However, even if they are not malicious, servers may actively collaborate
to determine the receiver’s choice (C2) or the sender’s secrets (C3). The receiver
may also actively cheat, either while cooperating with a coalition of active cheat-
ing servers (C3), or by corrupting servers after having obtained a secret (C4). In
this latter case, the receiver has access to all data held by the corrupted servers.

4 Protocol Description

The key idea underlying our t-out-of-n DOT protocol is to extend Rivest’s OT
protocol in two directions:

1. Generalization to n secrets
2. Introduction of a distributed model with m servers

Furthermore, to prevent the servers from learning the sender’s secrets, they
receive shares of the secrets held by the sender. These shares are generated
thanks to Shamir’s secret sharing schemes [16].

In addition, to guarantee that the contacted servers do not receive requests
related to different secrets, they all receive the same request and this request is
broadcast.

The full protocol is described in Fig. 1.

5 Security of the Protocol

5.1 Formal Model

To prove the security of our protocol we use a formal model similar to the
model introduced by Blundo et al. [4,5]. In this model, we assume that the
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Input The sender S contributes with n secrets w1, . . . , wn ∈ IK
The trusted initializer T generates m sets of n random masks
and randomly chooses one of the n sets
The receiver R chooses an index e ∈ [n], and contributes
with a cyclic permutation π ∈ Sn

Output R receives we, while S and T receive nothing.

Set-up Phase

1 - Preparation of shares. For each secret wi (i ∈ [n]), the sender S generates,
thanks to Shamir’s (k, m)-threshold secret sharing scheme, a sharing polynomial
Fi of degree at most k − 1, such that Fi(0) = wi.

2 - Distribution of shares. To each server Sj (j ∈ [m]), S transmits the n shares
F1(j), . . . , Fn(j).

Commodity Acquisition Phase

1 - Preparation of masks. The trusted initializer T generates mn random masks
rj,i ∈ IK (j ∈ [m], i ∈ [n]) and one random index s ∈ [n].

2 - Distribution of masks. T distributes the n masks rj,1, . . . , rj,n to the server Sj

(j ∈ [m]) and the index s as well as the m masks r1,s, . . . , rm,s to the receiver R.

Transfer Phase

1 - Selection of the secret index and generation of the corresponding request. The
receiver R chooses a secret index e and generates the cyclic permutation π ∈ Sn

which satisfies π(e) = s.

2 - Selection of servers and broadcast of a query. R selects a subset I ⊂ [m] of
t ≥ k indices and broadcasts a query containing the first cyclic permutation item,
π(1), as well as the list I.
3 - Responses of the servers. Each server S� such that � ∈ I returns μ�,i = Fi(�) +
r�,π(i) (i ∈ [n]) to R.

4 - Construction of the requested secret. For each of the t responses μ�,e, R calcu-
lates the share μ�,e − r�,s = Fe(�), interpolates Fe and obtains we = Fe(0).

Fig. 1. Protocol Overview

parties execute publicly known programs whose data are private. These data are
described by the following discrete random variables shown on Fig. 2.

By extension, if Xj is a random variable which describes a datum xj held
by a server Sj (j ∈ [m]) and G = { j1, . . . , jt } (t ∈ [m]), we denote XG =
(Xj1 , . . . ,Xjt ) the random variable describing the sequence (xj1 , . . . , xjt ). By
simplification, X[m] is denoted X.

– Each secret wi ∈ IK (i ∈ [n]) is described by a variable W i and the sequence
of secrets w1, . . . , wn by the variable W = (W 1, . . . ,W n ). Moreover, if
e ∈ [n], we denote W ē the sequence (W 1, . . . ,W e−1,W e+1, . . . ,W n ).

– The secret index e ∈ [n] chosen by R is described by the random
variable E.
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Sender S W , RS

Trusted
Initializer T

RmT , RsT

S1

S2

. . .

Sm

F1

F2

Fm

Receiver R E

M1

M2

Mm

S, Ms

Q

A1

A2

Am

Fig. 2. Random Variables

– The random variable M i
j (j ∈ [m], i ∈ [n]) corresponds to the mask rj,i and

the random variable Mj (j ∈ [m]) to the n ordered masks ( rj,1, . . . , rj,n )
distributed by T to the server Sj . Similarly, the random variable F i

j (i ∈
[n], j ∈ [m]) corresponds to the share Fi(j) and the random variable Fj

(j ∈ [m]) to the n shares (F1(j), . . . , Fn(j) ) distributed by S to the server

Sj . By simplification M
[n]
j = (M1

j , . . . ,M
n
j ) is denoted M j and F

[n]
j =

(F 1
j , . . . ,F

n
j ) is denoted F j .

– In addition, the random index s ∈ [n] chosen by T is described by the random
variable S. The notation Ms

j corresponds to the random variable describing
rj,s and Ms is a shorthand for (Ms

1, . . . ,M
s
m ).

– The cyclic permutation π ∈ Sn is described by the random variable Q:

H(Q | E,S) = 0. (9)

– The transcript Tj = (Q,Aj) is composed of a query Q = π described by
the random variable Q and of an answer Aj = (Fj(1) + rj,π(1), . . . , Fj(n) +
rj,π(n) ) described by the random variable Aj . The random variable describ-

ing the answer Fj(i) + rj,π(i) (j ∈ [m], i ∈ [n]) is denoted Ai
j .

– A few uniform random variables are held by the parties involved in the
protocol to allow them to produce private data:
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• The trusted initialiser T holds two uniform random inputs, RmT , to
generate the random masks rj,i (i ∈ [n], j ∈ [m]),

H(M i
j | RmT ) = 0, (10)

and RsT , to determine the secret index s,

H(S | RsT ) = 0. (11)

Note that since H(Ms | M ,S) = 0 then

H(Ms | RmT ,RsT ) = 0. (12)

• The sender S holds a uniform random input RS to generate the shares
Fj(i) (i ∈ [n], j ∈ [m]):

H(F i
j | W i,RS) = 0. (13)

To show properties C1, C2, C3 and C4 is equivalent to show properties listed in
Table 1.

Table 1. Security Conditions from an Information Theory Viewpoint

Security Number of
Servers

Property
Condition

C1 k ≤ |G| ≤ m H(W e | E = e,S,Ms,Q,AG) = 0

C2 |G| ≤ m H(E | FG,MG,Q) = H(E)

C3 |G| ≤ k − 1 H(W | FG,MG,E,S,Ms) = H(W )

C4 k ≤ |G| ≤ m
|G′| ≤ k − 1

H(W ē | FG′ ,MG′ ,E = e,S = s,Q = π,AG,M
s =

( r1,s, . . . , rm,s )) = H(W ē)

5.2 Correctness

Theorem 1. The protocol is correct (condition C1 is satisfied), i.e. if all parties
follow the protocol, the receiver obtains the chosen secret we by contacting t
servers Sj where j ∈ G = I = { j1, . . . , jt } (k ≤ t ≤ m).

Proof.
To demonstrate that H(W e | E = e,S,Ms,Q,AG) = 0 is equivalent to

demonstrate that once the protocol has been executed, Pr(W e = we | E =
e,S,Ms,Q,AG) = 1.

Once R has chosen e, the cyclic permutation π ∈ Sn such that π(e) = s is
determined. The response sent by the server S� (� ∈ I) then contains the value
μ�,e = Fe(�) + r�,π(e) = Fe(�) + r�,s. Since R knows r�,s, she is able to calculate
the t shares Fe(�), to interpolate Fe (degree at most k− 1 < t) and to determine
we = Fe(0). It follows that Pr(W

e = we | E = e,S,Ms,Q,AG) = 1. ��
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5.3 Receiver’s Privacy against a Coalition of Servers

Theorem 2. The protocol guarantees the receiver’s privacy against a coalition
of h servers Sj where j ∈ G = { j1, . . . , jh } (0 ≤ h ≤ m), i.e. condition C2 is
satisfied.

Proof.
To show that H(E | FG,MG,Q) = H(E), first we demonstrate that

H(E | FG,MG,Q) = H(E | Q)

and second that
H(E | Q) = H(E).

For the first part of the demonstration, we adapt a technique applied by Beimel,
Chee, Wang and Zhang [2] in a similar context.

1. First, we show that the conditional entropy of E given FG, MG and Q
satisfies

H(E | FG,MG,Q) = H(E | Q).

For this purpose, thanks to property (6), we show that

H(FG,MG | E,Q) = H(FG,MG | Q).

The choice of the receiver is independent from the data held by the trusted
initializer, by the sender, by the servers and by herself at the end of the
commodity acquisition phase, so

H(E | RmT ,RsT ,W ,RS ,F ,M ,S,Ms) = H(E). (14)

If we apply property (8), we obtain the particular case

H(E | FG,MG,RsT ) = H(E). (15)

Similarly, the uniform random variable RsT held by the trusted initializer
is independent from the uniform random variable RmT , from the sender’s
data and from the data held by the servers at the end of the commodity
acquisition phase. It follows

H(RsT | RmT ,W ,RS ,F ,M) = H(RsT ). (16)

Once more, if we apply property (8), we obtain the particular case

H(RsT | FG,MG) = H(RsT ). (17)

The joint entropy between FG and MG is

H(FG,MG) ≥ H(FG,MG | Q) (from (1))

≥ H(FG,MG | Q,E) (from (1))

≥ H(FG,MG | RsT ,E) (from (9), (11) and (4))

= H(FG,MG | RsT ) (from (15) and (7))

= H(FG,MG). (from (17) and (7))
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Therefore, H(FG,MG | Q) = H(FG,MG | Q,E) and from property (6),
H(E | Q,FG,MG) = H(E | Q).

2. To prove that H(E | Q) = H(E), thanks to property (6), it is sufficient to
show that H(Q | E) = H(Q).
First, we observe that given a secret index e and a cyclic permutation π,
the random index s is uniquely determined: s = π(e). Therefore, in terms of
entropy, it follows that

H(S | Q,E) = 0. (18)

Second, the conditional joint entropy between Q and S given E is

H(Q,S | E) = H(Q | E) +H(S | Q,E) (from (2))

= H(Q | E) (from (18))

and also

H(Q,S | E) = H(S | E) +H(Q | E,S) (from (2))

= H(S | E) (from (9))

It follows that H(Q | E) = H(S | E).
If we apply property (8) to equality (14), we obtain the particular case
H(E | S) = H(E) which, combined with property (6) gives H(S | E) =
H(S). Therefore,H(Q | E) = H(S). Moreover, because the random variable
S is uniform, it holds H(S) = log2 n and because the number of cyclic
permutations of Sn is n, we can write:

log2 n ≥ H(Q) ≥ H(Q | E) = H(S) = log2 n.

It follows that H(Q | E) = H(Q) and from (6) that H(E | Q) = H(E).

We have shown that H(E | Q,FG,MG) = H(E | Q) and H(E | Q) = H(E).
We conclude H(E | FG,MG,Q) = H(E). ��

5.4 Sender’s Security against a Coalition of the Receiver and
Servers

Theorem 3. The protocol guarantees the sender’s security against a coalition
of the receiver and h servers Sj where j ∈ G = { j1, . . . , jh } (0 ≤ h ≤ k − 1),
before the protocol is executed (condition C3 is satisfied).

Proof.
The demonstration is symmetrical to the previous demonstration. First, we

demonstrate that H(W | FG,MG,E,S,Ms) = H(W | FG) and second that
the secrets are independent from the shares received by any set of h servers (h ≤
k−1) in the set-up phase, i.e., H(W | FG) = H(W ). These two demonstrations
will allow us to show that the secrets are independent from the data held by a
coalition between the receiver and h servers.
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1. The uniform random variable RmT held by the trusted initializer is inde-
pendent from the data held by the sender, by the servers and by herself at
the end of the commodity acquisition phase, except masks. It follows

H(RmT | RsT ,W ,RS ,F ) = H(RmT ). (19)

If we apply property (8), we obtain the particular case

H(RmT | RsT ,W ,FG) = H(RmT ). (20)

Likewise, from (14) and (8) we can write

H(E | W ,FG,RsT ,RmT ) = H(E), (21)

and from (16) and (8) we can write

H(RsT | W ,FG) = H(RsT ). (22)

The conditional entropy of W given FG is

H(W | FG) ≥ H(W | FG,MG,E,S,Ms) (from (1))

≥ H(W | FG,E,RmT ,RsT ) (from (10), (11), (12) and (4))

= H(W | FG). (from (21), (22), (20) and (7))

We conclude that H(W | FG,MG,E,S,Ms) = H(W | FG).
2. It is well-known that Shamir’s secret sharing scheme [16] is perfect, i.e, for

i ∈ [n], we have H(W i | F i
G) = H(W i). The n secrets w1, . . . , wn are

shared thanks to independent schemes; Therefore, the previous equality may
easily be generalized to a vector of secrets (W 1, . . . ,W n ). It follows that
H(W | F 1

G, . . . ,F
n
G) = H(W ).

Since F 1
G, . . . ,F

n
G = F

[n]
G = FG, we obtain H(W | FG) = H(W ).

We have demonstrated that H(W | FG,MG,E,S,Ms) = H(W | FG) and that
H(W | FG) = H(W ). We conclude

H(W | FG,MG,E,S,Ms) = H(W ).

��

5.5 Sender’s Security against a “Greedy” Receiver

Theorem 4. The protocol guarantees the sender’s security against a coalition
of the receiver and h servers Sj′ where j′ ∈ G′ = { j′1, . . . , j′h } (0 ≤ h ≤ k − 1),
after the protocol has been executed (condition C4 is satisfied).

Proof.
We assume that in the transfer phase of the protocol, t servers Sj are contacted

by the receiver, where j ∈ G = { j1, . . . , jt } (1 < t ≤ m). We introduce a random
variable K = (E,S,Ms ) describing the data K = ( e, s, (r1,s, . . . , rm,s) ). The
theorem is demonstrated in four steps:
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– First, we demonstrate that,

H(W ē | FG′ ,MG′ ,AG,K = K,Q = π)

= H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K).

– Second, we show that

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K)

= H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K).

– Third, we show that

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K) = H(W ē | F ē

G′ ,F e
G,K = K).

– Lastly, we show that H(W ē | F ē
G′ ,F e

G,K = K) = H(W ē).

1. The random variable AG may be decomposed under the form
AG = (AG\G′ ,AG′ ). Since H(AG′ | FG′ ,MG′ ,Q = π) = 0, we apply
property (5) which yields

H(W ē | FG′ ,MG′ ,AG,K = K,Q = π)

= H(W ē | FG′ ,MG′ ,AG\G′ ,K = K,Q = π).

The random variable AG\G′ may be decomposed under the form AG\G′ =
(Aē

G\G′ ,Ae
G\G′ ). Since for j ∈ [m], we have Fe(j) = (Fe(j) + rj,π(e)) +

rj,π(e) = (Fe(j) + rj,π(e)) + rj,s, it holds that

H(F e
G\G′ | Ae

G\G′ ,Ms
G\G′) = 0 and H(Ae

G\G′ | F e
G\G′ ,Ms

G\G′) = 0.

Applying (5) we obtain

H(W ē | FG′ ,MG′ ,AG\G′ ,K = K,Q = π)

= H(W ē | FG′ ,F e
G\G′ ,MG′ ,Aē

G\G′ ,K = K,Q = π).

From properties (9) and (5), we obtain

H(W ē | FG′ ,F e
G\G′ ,MG′ ,Aē

G\G′ ,K = K,Q = π)

= H(W ē | FG′ ,F e
G\G′ ,MG′ ,Aē

G\G′ ,K = K).

Because MG′ = (M s
G′ ,M s̄

G′ ) and FG′ = (F e
G′ ,F ē

G′ ), we can apply (5). It
follows

H(W ē | FG′ ,F e
G\G′ ,MG′ ,Aē

G\G′ ,K = K)

= H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K).



196 C.L.F. Corniaux and H. Ghodosi

2. To prove that

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K) = H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K),

thanks to property (7) and Lemma 1, it is enough to show that

H(Aē
G\G′ | F ē

G′ ,F e
G,M

s̄
G′ ,K,W ē) = H(Aē

G\G′).

We have:

H(Aē
G\G′ ,M s̄

G\G′ | F ē,F e
G,M

s̄
G′ ,K = K,W ē)

= H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē)

+H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē,M s̄

G\G′)

= H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē)

+H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē,Aē

G\G′).

For i ∈ [n], i �= e and j ∈ [m], we have Fi(j) = (Fi(j) + rj,π(i)) + rj,π(i).
Using property (9), it holds that

H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē,M s̄

G\G′) = 0

and symetrically

H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē,Aē

G\G′) = 0.

It follows that

H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē)

= H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē).

Each mask rj,i (i ∈ [n], j ∈ [m]) is randomly generated by the trusted
initializer and is independent from the other variables held by the different
parties at the beginning of the transfer phase. More precisely, if G1 ⊂ [m],
G2 ⊂ [m], H1 ⊂ [n] and H2 ⊂ [n] are four subsets such that G1 ∩G2 = ∅ or
H1 ∩H2 = ∅, we have

H(MH1

G1
| E,S,W ,F ,MH2

G2
) = H(MH1

G1
). (23)

If we apply property (8) and Lemma 1 (See Appendix A), we obtain the
particular case

H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē) = H(M s̄

G\G′).

Therefore, H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē) = H(M s̄

G\G′).

Furthermore, the random variable M s̄
G\G′ is uniform, so

H(M s̄
G\G′) = log2 p

(n−1)×|G\G′|.
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Thus,

H(Aē
G\G′) ≥ H(Aē

G\G′ | F ē,F e
G,M

s̄
G′ ,K = K,W ē) (from (1))

= log2 p
(n−1)×|G\G′|.

By property (3), H(Aē
G\G′) ≤ log2 p

(n−1)×|G\G′|.

It follows that H(Aē
G\G′) = log2 p

(n−1)×|G\G′| = H(M s̄
G\G′). We conclude

H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē) = H(M s̄

G\G′) = H(Aē
G\G′).

Applying property (8), we obtainH(Aē
G\G′ | F ē

G′ ,F e
G,M

s̄
G′ ,K = K,W ē) =

H(Aē
G\G′) and consequently

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K) = H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K).

3. Once again, we apply property (8) and Lemma 1 to (23) and obtain the
particular case

H(M s̄
G′ | W ē,F ē

G′ ,F e
G,K = K) = H(M s̄

G′).

It follows, from property (7), that

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K) = H(W ē | F ē

G′ ,F e
G,K = K).

4. Thanks to Lagrange’s interpolation theorem, we can write H(F e
G′′ ,W e |

F e
G) = 0 and H(F e

G | F e
G′′ ,W e) = 0 where G′′ is a set of k− 1 distinct non-

null indices. In particular, if G′′ = G′ (|G′| = h < k), we obtainH(F e
G′ ,W e |

F e
G) = 0 and H(F e

G | F e
G′ ,W e) = 0. Using property (5), it follows that

H(W ē | F ē
G′ ,F e

G,K) = H(W ē | FG′ ,W e,K).

In Sect. 5.4, we have demonstrated that if |G| < k then

H(W | FG,MG,E,S,Ms) = H(W ).

Applying this property to G′ and combining it with property (8) gives

H(W | FG′ ,K) = H(W ).

From property (6), H(W | FG′ ,K) = H(W ) involves H(FG′ ,K |
W ) = H(FG′ ,K) and from property (7), H(FG′ ,K | W ) = H(FG′ ,K |
W e,W ē) = H(FG′ ,K) involves H(W ē | FG′ ,K,W e) = H(W ē | W e). We
assume that the secrets are independent; consequently, H(W ē | W e) =
H(W ē), which allows us to conclude H(W ē | FG′ ,W e,K) = H(W ē),
i.e., H(W ē | F ē

G′ ,F e
G,K) = H(W ē). Using Lemma 1, it follows that

H(W ē | F ē
G′ ,F e

G,K = K) = H(W ē).

The demonstrations of the four steps above yield that H(W ē | FG′ ,MG′ ,E =
e,S = s,Ms = ( r1,s, . . . , rm,s ),Q = π,AG) = H(W ē). ��
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6 Efficiency Consideration

Clearly, the number of shares returned by the servers to the receiver is higher with
the proposed protocol (linear communication complexity in n) than with Beimel,
Chee,Wang and Zhang’s DOT protocols [2] (sublinear communication complexity
in n for some PIR protocols). However, in this section, we show that the perfor-
mance of Blundo et al.’s DOT protocol [4,5] and of our protocol are similar.

In Table 2, we list the main computations performed by each party, for Blundo
et al.’s DOT protocol and for our DOT protocol.

Table 2. Computation Efficiency of DOT protocols

Blundo et al.’s DOT Protocol Our DOT Protocol

Set-up Phase

S 2(n− 1) random masks in IK∗,
2n sharing polynomials and 2mn
shares

n sharing polynomials and mn
shares

Commodity Acquisition Phase

T mn random masks in IK
1 random number in [n]

Transfer Phase

R (n− 1) sharing polynomials and
k(n− 1) shares,
4 polynomial interpolations

1 cyclic permutation of Sn,
1 polynomial interpolation

Sj

(j ∈ I)
2 (n− 1)-tuple scalar products
and 2 additions

n additions

Similarly, in Table 3, we list for each protocol the number of shares exchanged
between the sender and the servers, the receiver and the servers, and between
the trusted initializer and (1) the sender and (2) the receiver in the case of
our protocol. We assume that in both protocols, k servers are contacted by the
receiver, i.e., t = k in our protocol.

The operations performed off-line (set-up and commodity acquisition phases)
for both protocols are close, but in our protocol these operations are distributed
between the sender and the trusted initializer. As for the on-line operations, our
protocol is more efficient than Blundo et al.’s one: on the receiver’s side, only
one cyclic permutation and one interpolation are required (vs. the generation of
k(n− 1) shares from (n− 1) sharing polynomials and four interpolations in the
case of Blundo et al.’s protocol), whereas on the servers’ side, only n additions
are required (vs. 2(n− 1)-tuple scalar products and two additions in the case of
Blundo et al.’s protocol).

The number of shares distributed by the sender in the set-up phase is around
3n in Blundo et al.’s protocol and 2n in our protocol. However, our protocol
requires an additional distribution of m(n+ 1) shares by the trusted initializer
in the commodity acquisition phase. In the transfer phase, the request sent to
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Table 3. Communication Efficiency of DOT protocols (shares)

Blundo et al.’s DOT
Protocol

Our DOT Protocol

Set-up Phase

S → Sj (j ∈ [m]) 2n shares, n− 1
elements of IK

n shares

Commodity Acquisition Phase

T → Sj (j ∈ I) n masks

T → R 1 index, m masks

Transfer Phase

R → Sj (j ∈ I) n− 1 shares t = k server indices,
1 number in [n] (nota:
broadcast data)

Sj → R (j ∈ I) 2n shares n shares

a server contains n − 1 shares (Blundo et al.’s protocol) whereas the broadcast
request contains k + 1 integers (our protocol). The receiver collects two times
more shares in Blundo et al.’s protocol than in our protocol.

We also note that our DOT protocol can easily be extended to a DOT-
(
n
�

)
;

instead of choosing one set of random masks, the trusted initializer randomly se-
lects � sets of random masks and distributes them to the receiver in the commod-
ity acquisition phase, with the corresponding indices s1, . . . , s�. In this scenario,
the receiver selects � indices e1, . . . , e� and generates a random permutation π,
instead of a cyclic permutation, such that π(e1) = s1, . . . , π(e�) = s�. The op-
erations executed by the servers are the same as in the case where the receiver
wishes to obtain one secret only. On reception of the responses, the receiver has
to interpolate � polynomials to determine the � chosen secrets. Therefore, in our
protocol, due to the constant number of operations performed by the servers and
to the constant number of data exchanged between the servers and the receiver,
the communication and computation performance, relative to �, improves when
� increases. Blundo et al.’s DOT protocol would need to be executed � times for
� secrets, which would be less efficient than our protocol.

In a similar vein, the protocol may easily be extended to a verifiable DOT,
with the simple requirement that enough shares are collected by the receiver to
identify – and discard – incorrect shares returned by malicious servers. Thus,
a Reed-Solomon codes [14] decoding algorithm like the algorithm introduced
by Gao [9] would allow the receiver to determine the chosen secret in spite of
u ≤ t−k

2 malicious servers.
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A Conditional Entropy with Fixed Condition

Let X, Y and Z be three random variables.

Lemma 1. If H(X | Y ,Z) = H(X) then for zi ∈ Z we have H(X | Y ,Z =
zi) = H(X).

Proof.
BecauseH(X | Y ,Z) = H(X), the variablesX and (Y ,Z ) are independent.

Their corresponding probabilities satisfy the relation Pr(X = x,Y = y,Z =
z) = Pr(X = x) Pr(Y = y,Z = z) for (x, y, z ) ∈ X×Y×Z. That is, Pr(X = x |
Y = y,Z = z) = Pr(X = x,Y = y,Z = z)/Pr(Y = y,Z = z) = Pr(X = x).
Hence

H(X | Y ,Z = zi)

=
∑

y∈Y
Pr(Y = y)×H(X | Y = y,Z = zi)

=
∑

y∈Y

(
Pr(Y = y)

×−
∑

x∈X
Pr(X = x | Y = y,Z = zi) log2 Pr(X = x | Y = y,Z = zi)

)

=
∑

y∈Y

(
Pr(Y = y)×−

∑

x∈X
Pr(X = x) log2 Pr(X = x)

)

=
∑

y∈Y
Pr(Y = y)×H(X)

= H(X)
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