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Preface

ICISC 2012, the 15th International Conference on Information Security and
Cryptology, was held in Seoul, Korea, during November 28-30, 2012. This year
the conference was hosted by the KIISC (Korea Institute of Information Security
and Cryptology) jointly with the NSRI (National Security Research Institute), in
cooperation with the Ministry of Public Administration and Security (MOPAS).

The aim of this conference is to provide an international forum for the latest
results of research, development, and applications in the field of information
security and cryptology. This year we received 120 submissions from more than
20 countries and were able to accept 32 papers from 13 countries, with the
acceptance rate of 26.7%. The review and selection processes were carried out
by the Program Committee (PC) members, 88 prominent experts world-wide, via
Springer’s OCS system. First, each paper was blind reviewed by at least three PC
members. Second, to resolve conflicts in the reviewer’s decisions, the individual
review reports were open to all PC members, and detailed interactive discussions
on each paper ensued. For the LNCS post-proceedings, the authors of selected
papers had a few weeks to prepare their final versions based on the comments
received from the reviewers. We also recommended that authors should revise
their papers based on the comments and recommendations they might have
received from attendees upon their presentations at the conference.

The conference featured three invited talks: “Machine Learning on Encrypted
Data” delivered by Kristin Lauter, Microsoft Research; “Another Look at Affine-
Padding RSA Signatures” by David Naccache, Ecole Normale Superieure; and
“New Meet-in-the-Middle Attacks in Symmetric Cryptanalysis” by Christian
Rechberger, Technical University of Denmark. We thank the invited speakers
for their kind acceptance and nice presentations.

We would like to thank all the authors who submitted their papers to ICISC
2012 and all 88 PC members. It was a truly nice experience to work with such
talented and hard-working researchers. We also appreciate the external reviewers
for assisting the PC members in their particular areas of expertise. Finally, we
would like to thank all attendees for their active participation and the Organizing
Committee Members, who nicely managed this conference. We look forward to
next year’s ICISC.

January 2013 Taekyoung Kwon
Mun-Kyu Lee
Daesung Kwon



ICISC 2012

The 15th Annual International Conference
on Information Security

November 28-30, 2012
Konkuk University, Seoul, Korea

Hosted by
Korea Institute of Information Security and Cryptology (KIISC)
National Security Research Institute (NSRI)

Supported by
Ministry of Public Administration and Security (MOPAS)
Electronics and Telecommunications Research Institute (ETRI)
Korea Internet & Security Agency (KISA)
The Korean Federation of Science and Technology Societies (KOFST)

General Chairs

Chang-Seop Park KIISC and Dankook University, Korea
Seokyoul Kang NSRI, Korea

Program Co-chairs

Taekyoung Kwon Sejong University, Korea
Mun-Kyu Lee Inha University, Korea
Daesung Kwon NSRI, Korea

Program Committee

Frederik Armknecht University of Mannheim, Germany
Joonsang Baek KUSTAR, UAE

Alex Biryukov University of Luxembourg, Luxembourg
Zhenfu Cao Shanghai Jiao Tong University, China
Aldar C-F. Chan Institute for Infocomm Research, Singapore
Ku-Young Chang ETRI, Korea

Kefei Chen Shanghai Jiaotong University, China

Jung Hee Cheon Seoul National University, Korea

Yongwha Chung Korea University, Korea

Nora Cuppens-Boulahia TELECOM Bretagne, France



VIII ICISC 2012

Paolo D’Arco
Bart De Decker
Rafael Dowsley
Shaojing Fu

David Galindo
Dieter Gollmann
Louis Granboulan
Johann Groszschaed
JaeCheol Ha
Dong-Guk Han
Martin Hell
Swee-Huay Heng
Deukjo Hong
Dowon Hong

Jin Hong

Seokhie Hong
Jiankun Hu

Jung Yeon Hwang
Eul Gyu Im
David Jao
Hiroaki Kikuchi
Ji Hye Kim
Howon Kim

Huy Kang Kim
Shinsaku Kiyomoto
Hyang-Sook Lee
JongHyup Lee

Jooyoung Lee
Pil Joong Lee
Su Mi Lee
Dongdai Lin
Mark Manulis
Sjouke Mauw
Atsuko Miyaji
Yutaka Miyake

Abedelaziz Mohaisen

Jose A. Montenegro
Fidel Nemenzo
DaeHun Nyang
Heekuck Oh

Tae (Tom) Oh

Rolf Oppliger
Daniel Page

University of Salerno, Italy

IBBT-DistriNet, KU Leuven, Belgium

University of California, San Diego, USA

National University of Defense Technology,
China

University of Luxembourg, Luxembourg

Security in Distributed Applications

EADS Innovation Works, France

University of Luxembourg, Luxembourg

Hoseo University, Korea

Kookmin University, Korea

Lund University, Sweden

Multimedia University, Malaysia

NSRI, Korea

Kongju National University, Korea

Seoul National University, Korea

Korea University, Korea

UNSW, Australia

ETRI, Korea

Hanyang University, Korea

University of Waterloo, Canada

Tokai University, Japan

Kookmin University, Korea

Pusan National University, Korea

Korea University, Korea

KDDI R&D Laboratories Inc., Japan

Ewha Womans University, Korea

Korea National University of Transportation,

Korea
Sejong University, Korea
POSTECH, Korea
Financial Security Agency, Korea
Institute of Software, ISCAS, China
University of Surrey, UK
University of Luxembourg, Luxembourg
JAIST, Japan
KDDI R&D Laboratories Inc., Japan
Verisign labs, USA
Universidad de Malaga, Spain
University of the Philippines, Philippines
Inha University, Korea
Hanyang University, Korea
Rochester Institute of Technology, USA
eSECURITY Technologies, Switzerland
University of Bristol, UK



Susan Pancho-Festin
Omkant Pandey

Raphael C.-W. Phan
Christian Platzer

Carla Réfols

C. Pandu Rangan
Christian Rechberger
Vincent Rijmen
Bimal Roy
Kouichi Sakurai
Palash Sarkar
Nitesh Saxena

Ji Sun Shin

Sang Uk Shin
Hong-Yeop Song
Rainer Steinwandt
Hung-Min Sun
Willy Susilo
Tsuyoshi Takagi
Yukiyasu Tsunoo
Marion Videau
Jorge Villar
Yongzhuang Wei

Wenling Wu
Toshihiro Yamauchi
Wei-Chuen Yau
Ching-Hung Yeh
Sung-Ming Yen
Yongjin Yeom
Jeong Hyun Yi
Kazuki Yoneyama
Myungkeun Yoon
Dae Hyun Yum
Aaram Yun
Fangguo Zhang

Organizing Chair

Dong 11 Seo

ICISC 2012 IX

University of the Philippines, Philippines

Microsoft Research India, India / University of
Texas, Austin, USA

Multimedia University, Malaysia

Automation Systems Group at the Technical
University of Vienna, Austria

Ruhr-Universitdt Bochum, Germany

Indian Institute of Technology Madras, India

DTU, Denmark

Katholieke Universiteit Leuven, Belgium

Indian Statistical Institute, India

Kyushu University, Japan

Indian Statistical Institute, India

University of Alabama, Birmingham, USA

Sejong University, Korea

Pukyong National University, Korea

Yonsei University, Korea

Florida Atlantic University, USA

National Tsing Hua University, Taiwan

University of Wollongong, Australia

Kyushu University, Japan

NEC Corporation, Japan

University of Lorraine / LORIA, France

Universitat Politecnica de Catalunya, Spain

Guilin University of Electronic Technology,
China

SKLOIS, Chinese Academy of Sciences, China

Okayama University, Japan

Multimedia University, Malaysia

Far East University, Taiwan

National Central University, Taiwan

Kookmin University, Korea

Soongsil University, Korea

NTT, Japan

Kookmin University, Korea

Myongji University, Korea

UNIST, Korea

Sun Yat-sen University, China

ETRI, Korea



X ICISC 2012

Organizing Committee

Heuisu Ryu Gyeongin National University of Education,
Korea

Hokun Moon KT, Korea

Howon Kim Pusan National University, Korea

Jason Kim Korea Internet & Security Agency, Korea

Keecheon Kim Konkuk University, Korea

Soohyun Oh Hoseo University, Korea

Tae-Hoon Kim SYWORKS, Korea

Young-Ho Park Sejong Cyber University, Korea



Table of Contents

Invited Papers

ML Confidential: Machine Learning on Encrypted Data ............... 1
Thore Graepel, Kristin Lauter, and Michael Naehrig

Another Look at Affine-Padding RSA Signatures..................... 22
Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi

On Bruteforce-Like Cryptanalysis: New Meet-in-the-Middle Attacks
in Symmetric Cryptanalysis ............ i 33
Christian Rechberger

Attack and Defense

Balanced Indexing Method for Efficient Intrusion Detection Systems. . .. 37
BooJoong Kang, Hye Seon Kim, Ji Su Yang, and Eul Gyu Im

Quantitative Questions on Attack—Defense Trees ..................... 49
Barbara Kordy, Sjouke Mauw, and Patrick Schweitzer

DNS Tunneling for Network Penetration ............................ 65
Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert,
Koen De Bosschere, Pieter Danhieuz, and Erik Van Buggenhout

MeadDroid: Detecting Monetary Theft Attacks in Android by DVM
Monitoring . . ... ..o 78
Lingguang Lei, Yuewu Wang, Jiwu Jing, Zhongwen Zhang, and
Xinggie Yu

Software and Web Security

iBinHunt: Binary Hunting with Inter-procedural Control Flow ......... 92
Jiang Ming, Meng Pan, and Debin Gao

Sometimes It’s Better to Be STUCK! SAML Transportation Unit for
Cryptographic Keys . .. ... 110
Christopher Meyer, Florian Feldmann, and Jorg Schwenk

Cryptanalysis I

Improved Impossible Differential Attacks on Large-Block Rijndael . .. ... 126
Qingju Wang, Dawu Gu, Vincent Rijmen, Ya Liu,
Jiazhe Chen, and Andrey Bogdanov



XII Table of Contents

Cube Cryptanalysis of LBlock with Noisy Leakage ...................
Zhengi Li, Bin Zhang, Yuan Yao, and Dongdai Lin

Comprehensive Study of Integral Analysis on 22-Round LBlock . .......
Yu Sasaki and Lei Wang

New Impossible Differential Attack on SAFER, and SAFER,; .......
Jingyuan Zhao, Meigin Wang, Jiazhe Chen, and Yuliang Zheng

Cryptographic Protocol

An Information-Theoretically Secure Threshold Distributed Oblivious
Transfer Protocol .. ...
Christian L.F. Corniaux and Hossein Ghodosi

Practically Efficient Multi-party Sorting Protocols from Comparison

Sort Algorithms . ... ...
Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and
Katsumi Takahashi

Provably Secure Certificateless One-Way and Two-Party Authenticated
Key Agreement Protocol .......... .. .. ... .. .. i
Lei Zhang

Identity-Based Encryption

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption

without Random Oracles............ .. .. ..
Kaitai Liang, Zhen Liu, Xiao Tan, Duncan S. Wong, and
Chunming Tang

Ciphertext Policy Multi-dimensional Range Encryption ...............
Kohei Kasamatsu, Takahiro Matsuda, Goichiro Hanaoka, and
Hideki Imai

Efficient Implementation

Speeding Up Ate Pairing Computation in Affine Coordinates ..........
Duc-Phong Le and Chik How Tan

An Improved Hardware Implementation of the Grain-128a Stream

Shohreh Sharif Mansouri and Elena Dubrova

Optimized GPU Implementation and Performance Analysis of HC
Series of Stream Ciphers . ...... ... ..
Ayesha Khalid, Deblin Bagchi, Goutam Paul, and
Anupam Chattopadhyay



Table of Contents XIII

Cloud Computing Security

Trusted Launch of Virtual Machine Instances in Public IaaS

Environments . ....... ... 309
Nicolae Paladi, Christian Gehrmann, Mudassar Aslam, and
Fredric Morenius

Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM
Integrity Measurements among Virtual Machines..................... 324
Michael Velten and Frederic Stumpf

Cryptanalysis 11

Improved Key Recovery Attacks on Reduced-Round Salsa20
and ChaCha. ... ... . 337
Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80:
Collisions and Other Differential Properties ......................... 352
Takuma Koyama, Yu Sasaki, and Noboru Kunihiro

Estimating the Probabilities of Low-Weight Differential and Linear
Approximations on PRESENT-Like Ciphers ........................ 368
Mohamed Ahmed Abdelraheem

Side Channel Analysis

Security Evaluation of Cryptographic Modules against Profiling
Attacks . .o 383
Yongdae Kim, Naofumi Homma, Takafumi Aoki, and Heebong Choi

Key-Dependent Weakness of AES-Based Ciphers under Clockwise

Collision Distinguisher ... ... ... .. i 395
Toshiki Nakasone, Yang Li, Yu Sasaki, Mitsugu Iwamoto,
Kazuo Ohta, and Kazuo Sakiyama

Digital Signature

Efficient Group Signatures in the Standard Model ... ................. 410
Laila El Aimani and Olivier Sanders

Batch Verification Suitable for Efficiently Verifying a Limited Number
of SIgnatures . ... ..o 425
Keisuke Hakuta, Yosuke Katoh, Hisayoshi Sato, and Tsuyoshi Takagi

Linear Recurring Sequences for the UOV Key Generation Revisited .... 441
Albrecht Petzoldt and Stanislav Bulygin



XIV Table of Contents

Galindo-Garcia Identity-Based Signature Revisited ...................
Sangjit Chatterjee, Chethan Kamath, and Vikas Kumar

Privacy Enhancement

Private Over-Threshold Aggregation Protocols............... ... ....
Myungsun Kim, Abedelaziz Mohaisen, Jung Hee Cheon, and
Yongdae Kim

Retracted: An Enhanced Anonymous Authentication and Key Exchange
Scheme Using Smartcard ......... ... i
Kyung-kug Kim and Myung-Hwan Kim

Efficient Proofs for CNF Formulas on Attributes in Pairing-Based
Anonymous Credential System............. ... ... ...
Nasima Begum, Toru Nakanishi, and Nobuo Funabiki

Erratum

An Enhanced Anonymous Authentication and Key Exchange Scheme
Using Smartcard .. ...
Kyung-kug Kim and Myung-Hwan Kim

Author Index . .. ... .

472

495

El



ML Confidential:
Machine Learning on Encrypted Data

Thore Graepel!, Kristin Lauter!, and Michael Naehrig!+2

L Microsoft Research
{thoreg,klauter ,mnaehrig}@microsoft.com
2 Eindhoven University of Technology
michael@cryptojedi.org

Abstract. We demonstrate that, by using a recently proposed leveled
homomorphic encryption scheme, it is possible to delegate the execution
of a machine learning algorithm to a computing service while retain-
ing confidentiality of the training and test data. Since the computational
complexity of the homomorphic encryption scheme depends primarily on
the number of levels of multiplications to be carried out on the encrypted
data, we define a new class of machine learning algorithms in which the
algorithm’s predictions, viewed as functions of the input data, can be
expressed as polynomials of bounded degree. We propose confidential al-
gorithms for binary classification based on polynomial approximations to
least-squares solutions obtained by a small number of gradient descent
steps. We present experimental validation of the confidential machine
learning pipeline and discuss the trade-offs regarding computational com-
plexity, prediction accuracy and cryptographic security.

1 Introduction

Cloud service providers leverage their large investments in data centers to offer
services which help smaller companies cut their costs. But one of the barriers to
adoption of cloud services is concern over the privacy and confidentiality of the
data being handled by the cloud, and the commercial value of that data or the
regulations protecting the handling of sensitive data. In this work we propose a
cloud service which provides confidential handling of machine learning tasks for
various applications. Machine learning (ML) consists of two stages, the training
stage and the classification stage, either or both of which can be outsourced
to the cloud. In addition, when both stages are outsourced to the cloud, we
propose an intermediate probabilistic verification stage to test and validate the
learned model which has been computed by the cloud service. In the protocols
we describe here, we identify three parties: the Data Owner, the Cloud Service
Provider, and the Content Providers.

The Data Owner is the customer for the Cloud Service, and owns or is responsi-
ble for the data being processed. Content Providers upload data to the cloud, data
which belongs to or is intended for the Data Owner. Content Providers could be
remote devices, sensors or monitors which belong to the Data Owner, and which

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 1-21, 2013.
(© Springer-Verlag Berlin Heidelberg 2013



2 T. Graepel, K. Lauter, and M. Naehrig

may have been authorized by the Data Owner, for providing data on the Data
Owner’s behalf. A typical scenario might be a patient who is the Data Owner,
and Content Providers which consist of multiple health monitoring devices pro-
visioned to monitor the patient’s health and upload data to the Cloud Service.
Alternatively, the Data Owner could be some large company with many lab tech-
nicians, partners, or contracted Content Providers which upload data to the Cloud
Service on behalf of the company, for example in the financial, pharmaceutical, or
social media industry. The Cloud Service may be run by a third party, a partner
company, or even the company itself, off-premises or in some stand-alone facility.

Our rationale for proposing these protocols is that there are some scenarios
where outsourcing computation to a Cloud Service makes sense from a practical
and rational economic point of view. Namely, when data is collected or uploaded
from many diverse sources or parties, an online service can host the collection, stor-
age, and computation of and on this data without requiring interaction with the
data owner. This service allows the data owner to access and query their potentially
large amount of data at any time from a device with little computational or storage
capacity. The Data Owner may subsequently designate privileges to other parties
(such as a health care provider) to access the data or to receive alerts or updates
concerning some other processed form of the data. When outsourcing computa-
tion to a service makes sense, and confidentiality of the data is an issue, then our
protocols for providing confidential processing of sensitive data are relevant.

One way to preserve confidentiality of data when outsourcing computation is
to encrypt the data before uploading it to the cloud. This may limit the utility
of the data, but recent advances in cryptography allow searching on encrypted
data and performing operations on encrypted data, all without decrypting it.
An encryption scheme which allows arbitrary operations on ciphertexts is called
a Fully Homomorphic Encryption (FHE) scheme. The first FHE scheme was
constructed by Gentry [9], and subsequent schemes [20,4,3,10,11] have rapidly
become more practical, with improved performance and parameters. Gentry’s
scheme and several of the subsequent FHE schemes have a so-called Somewhat
Homomorphic Encryption (SHE) scheme as an underlying building block, and
use a technique called bootstrapping to extend it to an FHE scheme. An SHE
scheme performs additions and multiplications on encrypted data, but is limited
in the amount of such computations it can perform, because encryption involves
the addition of small noise terms into ciphertexts. Operating homomorphically
on ciphertexts causes the inherent noise terms to grow, and correct decryption is
only possible as long as these noise terms do not exceed a certain bound. Noise
growth is much larger in homomorphic multiplications than in additions. This
means that an SHE scheme can only evaluate polynomial functions of the data
up to a bounded degree before the inherent noise grows too large. Bootstrap-
ping, a very costly procedure, is then necessary to reduce the noise to its initial
level, enabling fully homomorphic computation. While noise grows exponentially
in SHE schemes, recent improvements have provided homomorphic schemes in
which noise grows only polynomial in the number of levels of multiplications per-
formed [3,2]. Such schemes are called Leveled Homomorphic Encryption (LHE)
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schemes, and they allow evaluation of polynomial functions of a higher, bounded
degree without resorting to the bootstrapping component.

Recent schemes are based on computational hardness assumptions for prob-
lems related to well known lattice problems such as the Shortest Vector Problem
(SVP). Specifically, schemes based on the Ring Learning With Errors (RLWE)
assumption operate in polynomial rings, where polynomials can alternatively
be viewed as vectors in a lattice. It was shown in [16] how the hardness of the
RLWE problem is related to SVP.

In practice, as was observed in [14], many useful computational services only
require evaluation of low-degree polynomials, so they can be deployed on en-
crypted data using only an LHE or SHE scheme. In this paper, we propose a
confidential protocol for machine learning tasks, called ML Confidential, based
on Homomorphic Encryption (HE), and we design confidential machine learning
algorithms based on low-degree polynomial versions of classification algorithms.
Section 2 describes the general ML Confidential protocol and discusses its secu-
rity. Section 3 is devoted to explaining basic classification algorithms that can
be expressed as low-degree polynomials, including the derivation of division-free,
integer (DFI) versions of these algorithms. Section 4 describes the homomor-
phic encryption scheme we use in our proof-of-concept implementation of the
division-free, integer classification algorithms. Our implementation is discussed
in Section 5 together with some initial performance numbers and analysis.

Our experiments implement a Linear Means (LM) Classifier and Fisher’s Lin-
ear Discriminant (FLD) Classifier on a publicly available data set, the Wisconsin
Breast Cancer Data set from [8]. Using up to 100 training and test vectors with
up to 30 features each for the training and classification stages, our experiments
show that (LM) classification can be accomplished in roughly 6 seconds using
an unoptimized mathematics software package running on a standard modern
laptop. The FLD classifier runs in roughly 20 seconds for vectors with only 10
features. Across all experiments, we observe a slow-down of roughly 6 — 7 orders
of magnitude for operating on encrypted data at these parameter and data sizes.
This compares favorably with other recent benchmarks for HE (see [11]).

Connections between cryptography and machine learning have been consid-
ered for a long time (see, e.g., [19]), mostly with the view that they are inverses
of one another in the sense that cryptography aims to prevent access to informa-
tion whereas machine learning attempts to extract information from data. Note
that the Confidential ML problem discussed in this paper is also loosely related
to doing inference on differentially private data (see [21] and references therein),
the difference being that in our case the Cloud Service performing the inference
calculations is not even able to interpret the results of its analysis.

2 The ML Confidential Protocol and Security
Considerations

This section proposes the ML Confidential protocol based on a homomorphic
encryption scheme that provides algorithms HE.Keygen, HE.Enc, HE.Dec, and
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HE.Eval for key generation, encryption, decryption, and homomorphic function
evaluation. The scheme can be either a symmetric, secret key scheme or an asym-
metric, public key scheme. It can be a fully-homomorphic scheme, in which case
arbitrary machine learning algorithms can be carried out on the encrypted data
by evaluating them with HE.Eval. In a more practical case, it can be a somewhat
or leveled homomorphic scheme, where the function HE.Eval can only evaluate
polynomial functions of the input data with a bounded degree comprised of ho-
momorphic addition HE.Add and multiplication HE.Mult on the message space.
Therefore, in that case, machine learning algorithms are restricted to algorithms
that can be expressed as polynomials with bounded degree. In either case, let
ML.Train and ML.Classify be the training and classification algorithms of the
machine learning task which can be homomorphically carried out on encrypted
data with the function HE.Eval.

Three types of parties interact in the protocol: the Data Owner, the Cloud
Service Provider, and Content Providers. The protocol comprises the following
main components.

Key Generation. The Data Owner executes the HE.Keygen algorithm for either
a private key or a public key version of the homomorphic encryption scheme.
For the private key version, the Data Owner shares the private encryption key
with the Content Providers and they all securely store the key locally. For the
public key version, the Data Owner publishes the public key and securely stores
the private key locally.

Encryption and Upload of Training Data. Content Providers encrypt con-
fidential, labeled data to upload to the Cloud. For all classes of training vectors,
and for all training vectors x in each class, the Content Providers encrypt x and
send HE.Enc(ek,x) to the Cloud Service Provider along with the unencrypted
label of the class. Here ek is the encryption key that is known to the Content
Providers, i.e. it is equal to the secret key in the symmetric version and to the
public key in the asymmetric version of the scheme. Alternatively, the Con-
tent Providers may encrypt preprocessed versions of the training set data, e.g.
synthetic data such as class sums or class-conditional covariance matrices (i.e.
sufficient statistics) for each class of training vectors.

Training. The Cloud Service Provider computes an encrypted Learned Model.
Training vectors consisting of encrypted, labeled content, HE.Enc(ek, x), are pro-
cessed by the Cloud Service Provider. This means that the algorithm HE.Eval
of the homomorphic encryption scheme evaluates the machine learning train-
ing phase ML.Train homomorphically on the encrypted training vectors. An en-
crypted form of the Learned Model is stored by the Cloud Service Provider and
can be returned to the Data Owner on request.

Classification. An encryption HE.Enc(ek, x) of a test vector x, which usually
has not been used in the training stage, is sent to the Cloud Service Provider by
the Data Owner or the Content Providers. The Cloud Service Provider evaluates
the classification phase ML.Classify of the machine learning task on the encrypted
test vector using the encrypted learned model, and encrypted classifications are
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returned to the Data Owner. The Data Owner decrypts the results to obtain the
classifications.

Verification of the Learned Model. The Data Owner probabilistically tests
the Learned Model. The Data Owner encrypts test vectors with known classi-
fications and sends the ciphertexts to the Cloud Service Provider. The Cloud
Service Provider classifies the encrypted vectors homomorphically and returns
encrypted classification results to the Data Owner. The Data Owner decrypts
the results and compares with the known classification labels to assess the test
error of the Learned Model in the Cloud.

Security Considerations. The protocol assumes a model in which the Cloud
is an Honest but Curious party, i.e. the Cloud will follow the stated protocol
to provide the desired functionality, and will not deviate nor fail to provide the
service or return results, but that it is Curious in the sense that it would look
at available information. This assumption is reasonable to model a rational, eco-
nomically motivated Cloud Service Provider: the Cloud is motivated to provide
excellent service, and yet would be motivated to take advantage of extra avail-
able information. A Malicious Cloud is a much stronger adversary, who would
potentially mishandle calculations, delete data, refuse to return results, collude
with other parties, etc. In most of these malicious behaviors, the Cloud would be
likely to get caught, and thus damage its reputation if trying to run a successful
business.

The verification step we propose is analogous to a naive version of Proof-of-
Storage (PoS) protocols. Verification requires the Data Owner to store a certain
number of labeled samples locally in order to be able to test correctness (and
determine test errors) of the Cloud’s computations. After the training stage,
the Data Owner encrypts the test vectors and queries the cloud to provide en-
crypted classifications of the test vectors, and then the Data Owner decrypts
and compares to the correct label. Since we are assuming an Honest but Curious
model for the Cloud, the Data Owner only needs to store enough test vectors to
determine the test error of the Cloud (or detect any accidental error). We are
also implicitly assuming that the Content Providers do not behave maliciously,
and correctly encrypt and upload data.

The Cloud must necessarily learn a certain amount of information in order to
provide the functionality required. The Cloud computes an encrypted Learned
Model from a collection of encrypted and labeled training vectors in Stage 1
and provides encrypted classifications of encrypted test vectors in Stage 2. This
includes knowing the number of vectors used in the training phase, and the num-
ber of test vectors submitted for classification. In addition, our scheme discloses
the number of vectors within each class, and also an upper bound on the entries
in the test vectors can be deduced once the parameters for the HE scheme and
the number of test vectors are known.

The underlying HE schemes are assumed to be randomized and have semantic
security against passive adversaries, a property which ensures that an adversary
cannot distinguish an encryption of one message from another. The Cloud han-
dles encrypted data and performs HE operations, and in the public key setting,
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can encrypt messages of its choice. However, the Cloud does not obtain decryp-
tions of the ciphertexts that it handles.

3 Polynomial Machine Learning

As discussed in Section 2, a homomorphic encryption scheme can be used to
implement the ML Confidential protocol to run machine learning algorithms
on encrypted training and test data. An FHE scheme theoretically supports
arbitrary computations and thus imposes no restrictions on the ML algorithms
used in the protocol. However, implementing a scheme that is fully homomorphic
and does not require fixing a specific bound on the complexity of the computation
to be done is very costly due to the necessity of bootstrapping.

Useful and flexible as it may be, a fully homomorphic scheme is rarely neces-
sary for most applications, see for example [14]. Instead, if the computation is
simple and of low complexity, it is possible to use an SHE or LHE scheme. This
not only avoids the expensive bootstrapping procedure, but might also result in
smaller parameters to instantiate the scheme, leading to a more practical instan-
tiation of homomorphic encryption. Vice versa, fixing an SHE or LHE scheme in
advance raises the question of which applications are possible under the restric-
tions imposed by the homomorphic capability of the scheme. In practice, we can
assume that an SHE or LHE scheme with fixed parameters can homomorphically
evaluate polynomials of a fixed limited degree D in the encrypted elements of the
message space. This means it can homomorphically evaluate and still correctly
decrypt a product of D message elements, while a product of D + 1 elements
can not necessarily be decrypted correctly. This section shows that even when
using a scheme that is restricted to evaluating polynomials for which the degree
bound D is relatively small, it is still possible to perform meaningful machine
learning tasks confidentially.

Let us assume that we are given an HE scheme that is able to homomorphically
evaluate polynomial functions of encrypted messages of degree at most D, and
that we aim at performing a machine learning algorithm on encrypted data. This
means that the predictions viewed as functions of the training and test data must
be polynomials of limited degree D. Note that, when the classification stage is
included, this restriction does not only refer to the actual input-output mapping
learned by the algorithm but to the dependency of the predictions on the training
and test data. To capture this limitation, we define a class of machine learning
algorithms which are represented by polynomial functions of bounded degree.

Definition 1 (Polynomial learning/prediction algorithm). Let A : (R™ x
V)™ x R™ — Y be a learning/prediction algorithm that takes a training sample
(R™ x V)™ of size m and a test input x € R™ and returns a prediction y € Y.
If the function A is at most a polynomial of degree D in its arquments, then we
call the learning/prediction algorithm D-polynomial.

Straightforward implementation of many machine learning algorithms requires
operations which are not necessarily represented by a low-degree polynomial,
ruling out certain algorithms, namely:
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Comparison. A comparison z > y for z,y € R is not D-polynomial, unless the
inputs are encrypted bit-wise and a very deep circuit for comparison is imple-
mented. This rules out learning algorithms like the perceptron or the support
vector machine because they derive their class labels from thresholding real num-
bers. It also rules out the k-nearest neighbors classifier, which requires ordering
neighbors according to distance, and decision trees, which threshold features at
the nodes of the tree.

Division. A division z/y for z € R and y € R\ {0} is not D-polynomial.
This rules out algorithms that rely on matrix inversion such as exact Fisher’s
linear discriminant for classification and the standard rule for determining the
coefficients in regression.

Other Non-polynomial Functions. Other functions such as trigonometric
functions or the exponential function are not D-polynomial, which rules out
methods like exact logistic or probit regression and non-linear neural networks
which rely on the evaluation of sigmoidal functions, in particular bounded sig-
moid functions which are hard to approximate with polynomials.

Given the restrictions imposed by a homomorphic encryption scheme that can
only guarantee correct evaluation of polynomial functions of bounded degree,
we are still able to design non-trivial machine learning algorithms. Often, it
is even possible to sufficiently approximate the above mentioned functions by
polynomials of a bounded degree, for example by means of truncated Taylor
series. The exponential function can be approximated by a truncation of its
Taylor series, so approximate versions of logistic regression can be implemented
with HE as was suggested in [14].

The above definition can be applied directly to regression learning algorithms
where ) = R”l, and tells us that exact least-squares linear regression is not
D-polynomial due to the required matrix inversion. Note that classification
algorithms cannot be D-polynomial by definition because they have discrete
outputs y € ). However, in this case we can still use the above definition as
guidance if we decompose a classification algorithm as A = go f, with a mapping
R xY)™ xR” — R™ to a vector of real-valued scores, and a discretization
operation g : R™ — . This decomposition is possible for a large class of al-
gorithms including Linear Discriminant Analysis and Support Vector Machines,
and allows the Cloud Service to evaluate the function f under D-polynomial
HE, and the Data Provider to evaluate the function g. In the following, we focus
on the task of binary classification to deduce examples of D-polynomial ma-
chine learning algorithms, but note that tasks like regression and dimensionality
reduction could be cast in a similar framework.

3.1 Classification

Let us consider the case of binary classification with inputs in R™ and binary
target outputs from Y = {+1,—1}. We consider a linear classifier of the form
A(x;w,c) = sign(f(x;w,c)) with the score function f(x;w,c) := wix — c.

We assume in the Confidential ML protocol that it is known for two encrypted
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training examples, whether they are labeled with the same classification (without
revealing which one it is). We therefore consider the cardinalities of the positive
and negative training sets to be known as well as which ciphertexts encrypt
data vectors that belong to the same class. Hence we can carry out operations
on these two sets separately. This leads us to consider the simple Linear Means
and Fisher’s Linear Discriminant classifiers, both of which require only class-
conditional statistics to be evaluated.

Linear Means Classifier. The Linear Means (LM) classifier determines w and
¢ such that f(x;w,c) = 0 defines a hyper-plane midway on and orthogonal to
the line through the two class-conditional means. It can be derived as the Bayes
optimal decision boundary in the case that the two class-conditional distributions
have identical isotropic Gaussian distributions [5].

Let I, := {i € {1,...,m}|ly; = y} be the index set of training examples
with label y and let m,, := || I,||. Calculate the class-conditional mean vectors as
my :=m, s, with s, := Zielu x;, from which we obtain the weight vector as
the difference vector between the two class-conditional means w* := m ;—m_j.
The value of the threshold c is calculated using the condition w*7xg — ¢ = 0
for the mid-point, x¢ := (my; + m_;)/2, between the two class means, which
gives for the threshold: ¢* = (my; — m_;)T(m;; + m_;)/2. For a given test
example x the score f*(x;w*, ¢*) := w*Tx — ¢* is a quadratic function in the
training data and a linear function in the test example and the LM classifier is
hence 2-polynomial.

Fisher’s Linear Discriminant Classifier. Now let us move on to a more
demanding example, Fisher’s linear discriminant (FLD) classifier [7]. This algo-
rithm is similar to the Linear Means classifier, but does take into account the
class-conditional covariances. It aims at finding a projection that maximizes the

separation between classes as the ratio S between the variance o2, between
classes and the variance o2, , within classes,
2 T
S = Tinter — w' Dw (1)
o2 wTCw

intra

with D := dd” and d := my; —m_; and C := C,; + C_;. Here, C, =
W}y D ic I (x; — my)(x; —my)7 is the class-conditional covariance matrix of the
data. Taking the gradient w.r.t. w and setting it to zero shows that w* is the
solution of a generalized eigenvalue problem Dw = ACw. Since D = dd”
has rank one, we can write Dw = ad for some ¢ € R and hence Cw*  d.
Determining w* requires solving a linear system of equations, i.e. it can be
determined by calculating the inverse C~! exactly. This requires division, which
is not D-polynomial. In what follows, we refer to this approach as the exact FLD
algorithm.

In a second approach, we aim at solving the linear system approximately using
a least-squares approach so as to obtain a D-polynomial learning/prediction
algorithm. The straight-forward cost function is E (w) := 1||Cw — d|[?, but
instead of the standard Euclidean norm, we choose ||[v||? := vI'C~!v for better
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conditioning. Then the gradient is Vy E(w) = Cw — d and we can use gradient
descent to find the solution w*. Once w has been found the threshold can be
chosen as ¢* := w*T (m4; + m_1)/2.

The challenge then is to approximately solve a linear system using as few
multiplications as possible. For the sake of illustration, let us consider standard
gradient descent with a fixed learning rate 7. If we define R := I — nC and
a := nd, we obtain the well-known recursion w;;1 = Rw; +a. Defining wo = 0,
we can express the rth order approximation w, of w* as

r—1

r—1
W, = ZRj a=mn Z(IfnC)j d. (2)
7=0

J=0

This series converges if the spectral radius of R is less than one, i.e., if the
absolute value of its largest eigenvalue is less than one, which can be ensured
by choosing 7 sufficiently small. Depending on the order of approximation r, we
obtain a D-polynomial FLD algorithm with D = 2(r — 1) + 1. Note that the
sufficient statistics for the FLD algorithm are the class-conditional means m,,
and covariance matrices C,,. If it is desired to reduce the required communication
overhead at the cost of increasing the Data Provider workload, then instead of
transmitting the raw training data to the Cloud Provider, the Data Provider
can calculate and transmit the sufficient statistics for the training data instead.

3.2 Division-Free Integer Algorithms for Classification

In all of the above, the data input to a machine learning algorithm has been
treated as being comprised of vectors of real numbers. Using standard represen-
tations for floating point numbers, one could encrypt approximations to such
numbers bitwise and then operate on single bit encryptions, mimicking the un-
encrypted computations. For the sake of efficiency, it is necessary to deviate from
this bitwise encryption paradigm. Instead, we consider messages being integers
or polynomials with integer coefficients. In most of the recent, more practical ho-
momorphic encryption schemes, it can be assumed that integers up to a certain
size can be embedded into the scheme’s message space, and that the homomor-
phic operations correspond to the same operations on integers, respectively. In
such a setting, it is not possible to perform non-polynomial operations, leaving
only polynomial functions on integers as the only practical possibility. To encode
a real number by an integer, it can first be approximated to a certain precision
by a rational number. Multiplying all such approximations through with a fixed
denominator and rounding to the nearest integer provides an integer approxima-
tion to the original real numbers. We assume from now on that approximations
to real numbers are represented by integers and that we homomorphically embed
such representations into the message space of the HE scheme.

In particular, this means that we must avoid divisions since there is no corre-
sponding operation for encoded integers. Below, we describe division-free integer
(DFI) versions of the LM classifier and the FLD classifier described in Section 3.
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The DFTI versions of these algorithms are obtained by multiplying with all pos-
sible denominators occurring in the computations and adjusting the formulas
to exactly compute multiples with the same sign of all magnitudes involved. In
detail, computations for both classifiers are as follows.

Linear Means Classifier. For the LM Classifier we compute m_jsy; and
my1s—_1 instead of m4; and m_q, and replace the weight vector by

W i=m_1s41 —my1Sc1 =mypimoi(my; —mog) =mpgmogws. (3)
Similarly, the threshold is replaced by ¢* = 2m3_1m2_10* using Xg := m_1S41 +
my1S—1 = 2my1m_1Xo. Given a test vector x, we use the classifier f* (x; W*, &%) :=
2my1m_1w*Tx — &, which simply computes a multiple of the original LM score
function f*(x;w*, ¢*) with the same sign. The algorithm can be made confiden-
tial by encoding all real vector coefficients as integers (as described above). Then
one encrypts the input vectors coefficient-wise and carries out the linear algebra
operations with vectors of ciphertexts using HE.Add and HE.Mult. Note, that the
server only returns the result of the score function for each test example, and that
the client takes the sign to obtain the class label, because we assume that our HE
scheme does not enable comparison.

Fisher’s Linear Discriminant Classifier. A similar procedure is done for
the approximate version of the FLD classifier using gradient descent. We use
the same classifying function f* as for the LM classifier, but with a different
weight vector w*. As above, to avoid divisions, we compute multiples of the
class-conditional covariance matrices as CH = mf”HCH and C,l = mS_IC,l.
In general, we compute C = milé,l +m?3 Cyy = milm‘g_lC, but whenever we
can use equal size training classes, i.e. m41 = m_1, we can reduce the coefficients
by a factor m?,.

The gradient descent iteration is done with fixed step size 7. When n < 1, we
also have to multiply through by its inverse to avoid divisions, which means we
need to choose it such that n~! € Z. Taking good care of all denominators that
need to be multiplied by, we can deduce that the division free integer gradient
descent computes the r-th weight vector w,., which is w,, = (m3,m3,n71)"w,,
where w,. is the result of the r-th iteration described in Section 3.1. In this
way, the DFI version computes multiples of the exact same magnitudes as in
the standard gradient descent approach described earlier, resulting in the score
function being a multiple of the original score function.

3.3 Other Machine Learning Tasks and Generalization Properties

While we focus on binary classification in this paper, it is certainly possible to
extend our methodology to other machine learning tasks including regression,
dimensionality reduction, and clustering. In particular, the case of multivariate
linear regression is quite similar to FLD in that the exact solution requires a
matrix inverse, which can be approximated using gradient descent. Also, princi-
pal component analysis (PCA) [12], which is probably the most popular method
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for dimensionality reduction, can be expressed as a least squares problem the
solution of which can be approximated by gradient descent. Clustering may well
be the most difficult task in this context, but it would appear that spectral
clustering solutions [17] could be approximated in a similar way.

Another interesting aspect of polynomial machine learning is its generaliza-
tion properties. Although in Confidential ML algorithms the hypothesis class
(e.g., linear classifiers) remains the same with respect to the exact algorithm,
the restrictions imposed by D-polynomial HE require us to produce predictions
which are polynomials of limited degree in the input data. As a consequence, the
set of hypotheses that can be reached by a D-polynomial learning algorithm is
very limited. One would expect that this limited capacity would have a positive
effect on the generalization ability. While we do not have any formal results on
this, we believe it may be possible to formalize this idea based on the stability
bounds on the generalization error in [18], because the approximations required
by SHE can be viewed as a specific form of “early stopping”.

4 A Homomorphic Encryption Scheme

In this section, we describe a homomorphic public-key encryption scheme based
on the Ring Learning With Errors (RLWE) problem [16]. It can be used to realize
low degree confidential machine learning algorithms as described in Section 3. It
extends the encryption scheme in [16] and resembles the LHE scheme from [2]
in the RLWE case, as recently described in [6].

For simplicity and later reference in the description of our experiments, we
discuss a special case of the scheme, for more details see [16,2,6]. Ciphertexts
consist of polynomials in the ring R = Z[z]/(f(x)), where f(x) = % + 1 and
d = 2% i.e. integer polynomials of degree at most d — 1. Note that f is the 2d-th
cyclotomic polynomial. Computations in R are done by the usual polynomial
addition and multiplication with results reduced modulo f(z). We fix an integer
modulus ¢ > 1 and denote by R, the set of polynomials in R with coefficients
in (—q/2,q/2]. For z € Z denote by [z], the unique integer in (—¢/2, ¢/2] with
[2]q = z (mod q). The message space is the set R; for another integer modulus
t > 1 (t < q). We use the same notation with ¢ replaced by ¢t. Thus, messages to
be encrypted under the SHE scheme are polynomials of degree at most d—1 with
integer coefficients in (—t/2,t/2]. Let A = |q/t| be the largest integer less than
or equal to g/¢t. When applied to a polynomial g € R, |g] means rounding down
coefficient-wise. We also use the notation |-| for rounding to the nearest integer.
As error distribution we take the discrete Gaussian distribution x = Dza , with
standard deviation o over R. The parameters d, ¢,t and o need to be chosen in
a way to guarantee correctness, i.e. such that decryption works correctly, and
security. Section 5 below gives such concrete parameters. Given the above setting
(following notation in [6]), we now describe the SHE scheme with algorithms for
key generation, encryption, addition, multiplication, and decryption.
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SH.Keygen. The key generation algorithm samples s <— x and sets the secret
key sk := s. It samples a uniformly random ring element a; < R, and an error
e < x and computes the public key pk := (ag = [—(a15 + €)]q, a1).

SH.Enc(pk, m). Given the public key pk = (ag,a1) and a message m € Ry,
encryption samples u < Y, and f,g <+ x, and computes the ciphertext ct =
(co,c1) :=(lao - u+g+A-mlg, [ar - u+ flg).

Note that a homomorphic multiplication (as described below) increases the
length of a ciphertext. Using relinearization techniques, it can be reduced to
a two-element ciphertext again (see e.g. [14,6]). For the purpose of this paper,
we do not consider relinearization, thus ciphertexts can have more than two
elements and we describe decryption and homomorphic operations for general
ciphertexts.

SH.Dec(sk, ct = (cg, €1, ., Ck)). Decryption computes [|¢-[co+sk-c1+...+
sk™ - il /g1

In general, the homomorphic operations SH.Add and SH.Mult get as input two
ciphertexts ct = (cg,c1,...,¢,) and ct’ = (¢, ¢, ..., ¢)), where wlo.g. k > [
The output of SH.Add contains k+1 ring elements, whereas the output of SH.Mult
contains k + [ + 1 ring elements.

SHAdd(pk, ctp, Ctl). Let ct; = (Co, Cly.n, Ck) and cty = (do, dy,... ,dl). Ho-
momorphic addition is done by component-wise addition ctagq = (co + do, ¢1 +
di,...,cq+d,cq1,...,cp).

SH.Mult(pk, ctg, cty). Let ct; = (co,c1,...,ck), cta = (do, d1,...,d;) and con-
sider the polynomials ct; (X) = co+c1X +...+cx X* and cto(X) = do +d1 X +
...+ d; X" over R. The homomorphic multiplication algorithm computes the
polynomial product

ctl(X)-ctz(X):eo+elX+,_.+ek+l+1Xk+l+1 (4)

in the polynomial ring R[X] over R. The output ciphertext is ctme = (|t -
eo/ql, ..., [t ervir1/ql).

This scheme has been recently described and analysed in [6] and is closely re-
lated to the scheme in [4] and [14]. We refer to these papers for correctness and
security under the RLWE assumption. However note that the evaluation of the
ciphertext polynomial at the secret key (as computed during decryption) can be
written as [ct(sk)]; = [A - m + v]q, where v is a noise term that grows during
homomorphic operations. Only if v is small enough, the ciphertext still decrypts
correctly. How quickly v grows with each multiplication and addition determines
the capabilities of the SHE scheme. An advantage of the present scheme is that the
factor by which v grows is independent of the input ciphertext noise (see [2,6]).

Encoding Real Numbers. In order to do meaningful computations for ML,
we would ideally like to do computations on real numbers, i.e. we need to encode
real numbers as elements of R;. Homomorphic operations under HE correspond
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to polynomial operations in R with coefficients modulo ¢. To reflect addition and
multiplication of given numbers by the corresponding polynomial operations, we
resort to the method in [14, Section 4] for encoding integers. We first represent a
real number by an integer value. Since any real number can be approximated by
rational numbers to arbitrary precision, we can fix a desired precision, multiply
through by a fixed denominator, and round to the nearest integer.

An integer value z is encoded as an element m, € R; by using the bits in its
binary representation as the coefficients of m_. This means we use the following
encoding function:

encode : Z — Ry, z =sign(z)(zs, zs—1,---,21,20)2 — m; = sign(z)(z0 + z1z + ... + z52°).

To get back a number encoded in a polynomial, we evaluate it at x = 2. For the
polynomial operationsin R; to reflect integer addition or multiplication, it is impor-
tant that no reductions modulo ¢ or modulo f occur. A multiplication after which
a reduction modulo f is done does not correspond to integer multiplication of the
encoded numbers any more. The same holds for reductions modulo ¢t. The value
t must therefore be large enough that all coefficients of polynomials representing
values in the ML algorithm do not grow out of (—t/2,¢/2]. Also the initial polyno-
mial degree of encoded integers (i.e. their bit size) must be small enough so that the
resulting polynomials after all multiplications still have degree less than d.

5 Proof of Concept and Experimental Results

In this section, we provide experimental results at a small scale to show how
confidential machine learning works in principle. Due to the rather high com-
putational cost of HE, we restrict ourselves to binary classification on a stan-
dard data set: the Wisconsin Breast Cancer data set with 569 records obtained
from [8]. Data vectors in this set have 30 features and whenever we restrict the
number of features in our experiments to some n < 30, we take the subset of the
first n features.

With our experimental data we attempt to demonstrate the following claims:
on small data sets, basic Machine Learning algorithms on encrypted data are
practical. We give performance numbers for both Linear Means (LM) classi-
fier and Fisher’s Linear Discriminant (FLD) classifier, varying both the number
of features and the number of vectors used in the training stage to estimate
how performance and accuracy scales as these parameters vary. We compare
timings for these two classifiers on encrypted and unencrypted data, to show
the magnitude of the computational cost for operating on encrypted data. For
these experiments, we fix the security parameters of the system, to model the
real-world setting where a cloud system deploys an implementation based on
parameters chosen to optimize for performance. In addition, we demonstrate the
difference in accuracy when using the DFI version of the FLD algorithm using
gradient descent instead of the exact linear algebra version that includes a ma-
trix inversion (in the case of LM the DFI version is exact and does not require
an approximation).
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This section is organized as follows: Section 5.1 describes how the security
parameters are chosen and how they scale with the operations to be performed.
Section 5.2 gives timings for basic HE operations for two different choices of
system parameters, (P1) and (P2). Section 5.3 gives performance numbers for
the LM classifier on both unencrypted and encrypted data. On encrypted data,
with fixed security parameters (P1), we vary the number of training vectors
and the number of features. Section 5.4 gives performance numbers for the FLD
classifier on both unencrypted and encrypted data. On encrypted data, with
fixed security parameters (P2), we vary the number of training vectors and the
number of test vectors. In Section 5.5, on unencrypted data, we compare the
accuracy of the models computed with the exact and DFI versions of the FLD
algorithm with varying number of steps in the gradient descent approximation.

5.1 Choice of Parameters

In this subsection, we discuss the specific parameters chosen for our implementa-
tion. It has been recently shown in [13] that the hardness of the RLWE problem
is independent of the form of the modulus. This means that security is not
compromised by choosing ¢ with a special structure. Using a power of 2 for ¢
dramatically speeds up modular reduction when compared to an implementation
where ¢ is prime. Therefore, as in [6] we choose both ¢ and ¢ to be powers of 2,
ie. A= |q/t] = q/tis also a power of 2. We also use the optimization proposed
in [6] to choose the secret key sk = s randomly with binary coefficients in {0, 1}.

To determine parameters that guarantee a certain level of security, one has to
consider the best known algorithms to attack the scheme. Its security is assessed
by the logarithm of the running time of such algorithms. A security level of ¢
bits means that the best known attacks take about 2¢ basic operations. We chose
parameters considered secure under the distinguishing attack in [15], using the
method described in [14, Section 5.1] and [6, Section 6]. For the exact details of
the security evaluation, we refer to [15,14,6]. Security depends on the size of g,
o, and d, and for a given pair ¢, one can determine a lower bound for d.

Additional conditions follow from ensuring correctness of decryption. As long
as the inherent noise in ciphertexts is bounded by A/2 = ¢/2t, decryption works
correctly. Since homomorphic computations increase the noise level, this bounds
the number of computations from above. In the division free integer algorithms
the encrypted numbers tend to grow with the number of operations due to mul-
tiplications by denominators. To ensure meaningful results, ¢ needs to be greater
than all the coefficients of message polynomials that are held and operated on
in encrypted form. The size of the standard deviation for the error terms and
the desired number of homomorphic operations bound A and therefore ¢ from
below. For our implementation, we determined these quantities experimentally
and then chose the degree d according to the security requirements.

5.2 Timings for Basic HE Operations

We implemented the HE scheme described in Section 4 and the division-free
integer ML algorithms under HE in the computer algebra package Magma [1],
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using internal functions for polynomial arithmetic and modular reductions.
Table 1 summarizes timings for the HE operations. The confidential version
of the DFI-LM classifier uses the first parameter set (P;) to encode and encrypt
data. Parameters (P») were chosen for encoding and encryption for the confi-
dential version of the 3-step FLD method. Due to its higher complexity and the
higher value for ¢ it requires a much larger value for q.

Table 1. Timing in seconds for HE operations: key generation, encryption, decryption
of 2- or 3-element ciphertexts, homomorphic addition and multiplication

HE.Keygen HE.Enc HE.Dec(2) HE.Dec(3) HE.Add HE.Mult
q= 2128 t = 215
o= 16 ;i — 4096 0.279 0.659 0.055 0.105 0.001 0.208
q= 234’0 t = 240
oc=28,d=_8192

(P1)

(P2) 0.749 1.56 0.227  0.442 0.005 0.853

All timings in this and the remaining subsections and tables were obtained
running Magma on an Intel Core i7 running 64-bit Windows 8 at 2.8 GHz with
8GB of memory. Timings are given in seconds (s). No communication costs
are included in these experiments since the computations are all done on one
machine. Parameters (P;) have 128 bits of security with distinguishing advantage
2764 Security for (P2) is around 80 bits due to small o compared to q.

5.3 Linear Means Classifier

For the Linear Means Classifier, the exact and the DFI versions of the algorithm
coincide, so there is no difference in the quality of the output. We compare in
this section the timings for the encrypted and unencrypted DFI versions of the
algorithm. The Linear Means Classifier experiments in this section were run with
security parameters (P1),

q=2"8t=2" 5=16, f= X% 1.

The data was preprocessed by shifting the mean to 0 and scaling by the standard
deviation. Also, precision of computation was set at 2 digits, which means real
numbers are multiplied by 100 and rounded to integers.

Timings on Unencrypted Data for DFI-LM. Each line in the tables reports
the number of features used, the number of training vectors used in the training
stage to build the classifier, the number of test vectors used to test the model,
the time spent in the training stage, the time per test vector to classify, and the
number of errors in the classification of test vectors.

Remarks. Note that the time for classifying vectors is relatively constant, which
is as expected. The number of classsification errors varies, but tends to decrease
as the size of the training set increases.
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Table 2. DFI-LM Unencrypted Data

# features # training # test train (s) classify (s) # errors

2 20 100 2.3500E-6 2.0620E-5 11
5 20 100 3.1500E-6 2.0620E-5 8
10 20 100 3.9000E-6 2.0940E-5 12
20 20 100 5.4500E-6 2.1250E-5 16
30 20 100 6.2500E-6 2.1560E-5 12
2 60 100 3.9000E-6 2.0620E-5 8
5 60 100 6.2500E-6 2.0940E-5 10
10 60 100 7.0500E-6 2.1410E-5 8
20 60 100 1.1700E-5 2.2030E-5 12
30 60 100 1.4850E-5 2.2970E-5 11
2 100 100 6.2500E-6 2.0780E-5 9
5 100 100 8.5999E-6 2.0940E-5 8
10 100 100 1.0900E-5 2.1410E-5 9
20 100 100 1.8000E-5 2.2030E-5 13
30 100 100 2.3450E-5 2.2650E-5 8

Timings on Encrypted Data for DFI-LM. In the tables reporting timings
for operations on encrypted data, we also include the total time spent on en-
crypting and encoding the training vectors for the training stage, and the total
time spent on encrypting and encoding the test vectors for the testing stage.
The “ee-train” and “ee-test” columns in Table 3 are for the total time including
the time to encode and encrypt the training and test vectors, respectively. For
the encrypted and unencrypted versions of the the DFI algorithms, there is no
need to list the number of classification errors twice, since the algorithm is the
same and has the same output on encrypted and unencrypted data.

Remark 5.3

1.

The time for classifying a test vector and for encoding and encrypting the test
vectors stays relatively constant as the number of training vectors increases,
as expected.

. The time for computing the classifier in the training stage grows roughly

linearly with the number of training vectors. This is expected as long as the
security parameters are fixed, as is the case here.

. The time for encoding and encrypting data in the training stage grows

roughly linearly with the number of training vectors. Again, this is expected
as long as the security parameters are fixed, as we have modeled here.

. For a fixed training set size, the time for computing the classifier grows

approximately linearly with the number of features. Similarly, the time for
classifying a test vector, and the time for encoding and encrypting the train-
ing and the test vectors each grow approximately linearly with the number
of features.

. The approximate order of magnitude of the slow-down due to operating on

encrypted data is 6 or 7 orders of magnitude. This compares favorably with
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Table 3. DFI-LM Encrypted Data

# features # training # test train (s) ee-train (s) classify (s) ee-test (s)

2 20 100 0.095 19.953 0.327  133.843
5 20 100 0.156 50.172 0.899  343.250
10 20 100 0.391 101.141 1.938  708.969
20 20 100 0.831 201.578 3.880 1405.875
30 20 100 1.374 303.937 5.961 2122.719
2 60 100 0.127 59.641 0.325 133.703
5 60 100 0.484 148.125 0.879  337.953
10 60 100 0.996 309.078 1.864 688.531
20 60 100 2.504 601.688 3.841 1400.266
30 60 100 3.346 899.953 5.838 2106.453
2 100 100 0.565 98.938 0.417  143.719
5 100 100 0.835 249.359 0.998  351.078
10 100 100 2.629 499.063 1.971  699.531
20 100 100 4.034 999.156 3.989 1403.172
30 100 100 6.221  1504.297 6.038 2110.000

the slow-down for performing an AES encryption operation on encrypted
data reported in [11].

6. Note that even with this preliminary unoptimized implementation, both the
training stage and the classification of a test vector can be performed on
encrypted data in roughly 6 seconds using a Linear Means Classifier on 100
training vectors with 30 attributes.

5.4 Fisher’s Linear Discriminant Classifier

The experiments in this section were run with security parameters (P2),
qg= 23407 t = 240’ o= 87 f — X8192 +1.

The data was preprocessed by shifting the mean to 0 and scaling by the standard
deviation. Also, precision of computation was set at 2 digits, which means real
numbers are multiplied by 100 and rounded to integers. The DFI version of the
FLD algorithm was run using 3 steps in the gradient descent method with step
size n = 0.1.

Timings on Unencrypted Data for 3-Step DFI-FLD. Each line in the
table reports the number of features, the number of training vectors used in
the training stage to build the classifier, the number of test vectors used to
test the model, the time spent in the training stage, the time per test vector to
classify, and the number of errors in the classification of test vectors.

Timings on Encrypted Data for 3-step DFI-FLD. Each line in the ta-
ble reports the number of features, the number of training vectors used in the
training stage to build the classifier, the number of test vectors used to test the
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Table 4. 3-step DFI-FLD Unencrypted Data

# features # training # test train (s) classify (s) # errors

2 20 100 2.6600E-4 1.7200E-6 11
5 20 100 7.5000E-4 1.8800E-6 7
10 20 100 2.4690E-3 2.1800E-6 9
20 20 100 9.2030E-3 2.9700E-6 6
30 20 100 0.020390 3.9100E-6 8
2 60 100 4.0700E-4 1.5700E-6 8
5 60 100 1.7030E-3 1.7200E-6 7
10 60 100 6.2190E-3 2.1800E-6 8
20 60 100  0.024125 2.9700E-6 9
30 60 100  0.054250 3.9000E-6 8
2 100 100 5.7800E-4 1.5600E-6 10
5 100 100 2.6410E-3 1.7200E-6 7
10 100 100 0.0100 2.1900E-6 8
20 100 100 0.039282 2.9700E-6 6
30 100 100  0.087594 3.9000E-6 3

model, the time spent in the training stage, the time per test vector to classify,
the total time spent on encrypting and encoding the test vectors (in the “ee”
column in Table 5), and the number of errors in the classification of test vectors.

Table 5. 3-step DFI-FLD Encrypted Data

# features # training # test train (s) classify (s)  ee (s) errors

2 20 20 299.437  3.836 46.562 2
5 20 20 1309.578  10.049 117.033 1
10 20 20 4472.922  20.857 236.514 1
2 60 20 939.156 6.488 51.280 1
5 60 20 3612.953 9.707 117.158 1
10 60 20 12211.719  20.465 235.236 1
2 100 100  1420.781 3.850 619.828 10
5 100 100 6017.688 10.364 1636.265 8
10 100 100 20222.515 21.572 3351.718 35
Remark 5.4

1. The timings in the last line for 10 features and 100 training vectors should
be disregarded, because the 35 classification errors indicate that the compu-
tation exceeded the allowable bounds for the amount of computation which
could be correctly done with these security parameter sizes. This compu-
tation most likely resulted in decryption errors and should be redone with
larger system parameters.

2. Note that for both the LM and the FLD algorithms, the time spent in
computing on encrypted vectors is dominated by the time spent to encrypt
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the data. That is due to the fact that each entry to be encrypted requires
a multiplication of two polynomials of degree d, where d is either 4096 or
8192 in these experiments. Although Magma does have fast multiplication
techniques implemented, this is an aspect of the system where performance
can be significantly improved in a robust high-performance implementation.

3. The time spent in the training stage grows roughly quadratically with the
number of features. This is expected because the algorithm operates on an
n X n matrix, where n is the number of features.

4. The time spent in the training stage grows roughly linearly with the number
of training vectors. Also the time spent on encoding and encryption grows
linearly with the number of features.

5. Time spent on classifying test vectors is relatively constant as the number
of training vectors increases, as expected.

6. The time spent on classifying test vectors grows roughly linearly with the
number of features.

7. As for the confidential LM algorithms, we observe a slow-down of roughly
6 — 7 orders of magnitude when executing the 3-step DFI-FLD algorithm on
encrypted data under HE.

8. Despite the significant performance penalty for operating on encrypted data,
note that classification of test vectors with 10 features is accomplished in 20
seconds with an unoptimized implementation of HE. This time is relatively
independent of the number of training vectors used in the training stage for
fixed system parameters. However, it is dependent on the amount and size of
the data to be processed in the sense that the system parameter sizes must
be increased once the bounds on the amount of computation which can be
properly handled for a given parameter size are exceeded.

5.5 Comparing the Accuracy of Exact and DFI Versions
of Gradient Descent

In Section 5.4 above, we gave performance numbers for the DFT version of the
gradient descent method for Fisher’s Linear Discriminant Classifier. The gradient
descent method for minimizing the cost function is an approximation algorithm,
whereas there is an exact algorithm for minimizing the cost function which re-
quires matrix inversion. In this section, we compare the accuracy of the models
obtained when using the exact version of FLD versus using the gradient descent
approximation method with a varying number of steps. In Table 6 we give the
number of classification errors for the exact version of FLD and the gradient
descent method with 1 — 5 steps. These experiments were performed on unen-
crypted data, with step size 7 = 0.1. Based on these results, three steps seemed
to be sufficient in the gradient descent method for these data set sizes, so we used
3 steps in all experiments in Section 5.4 to produce encrypted and unencrypted
timings for FLD.
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Table 6. # errors in exact and DFI-FLD classification on unencrypted data

# features # training # test exact 1-step 2-step 3-step 4-step 5-step

2 100 100 10 10 10 10 10 11
5 100 100 7 7 7 7 7 7
10 100 100 8 8 9 8 8 8
20 100 100 6 19 5 6 5 6
30 100 100 2 29 6 3 2 1

6 Conclusions and Future Work

With advances in machine learning and cloud computing the enormous value of
data for commerce, society, and people’s personal lives is becoming more and
more evident. In order to realize this value it will be crucial to make data avail-
able for analysis while at the same time protect it from unwanted access. In this
paper, we pointed out a way to reconcile these two conflicting goals: Confiden-
tial Machine Learning. We formalize the problem in terms of a multi-party data
machine learning scenario involving a Data Owner, Data Providers, and a Cloud
Service Provider and describe the desired functionality and security properties.
We showed that it is possible to implement Confidential ML based on a recently
proposed Homomorphic Encryption scheme, using polynomial approximations
to known ML algorithms.

Homomorphic encryption is a rapidly advancing field and so we expect that
more complex ML algorithms applied to larger data sets requiring fewer com-
putational resources may soon be possible. For example, it should soon be pos-
sible to use kernel methods to derive low-degree polynomial machine learning
algorithms implementing non-linear mappings. Other open problems include the
question, which protocols will be useful in practical data analysis scenarios, and
how the computational burden can be optimally distributed between cloud and
client taking into account the cost of communication. Furthermore, one can
imagine even more complex multi-party scenarios in which multiple data-owners
(e.g., Amazon, Netflix, Google, Facebook) would like to provide inputs for a sin-
gle machine learning problem (e.g., product recommendation) without disclosing
their data.
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Abstract. Affine-padding RSA signatures consist in signing w - m + «
instead of the message m for some fixed constants w, a. A thread of pub-
lications progressively reduced the size of m for which affine signatures
can be forged in polynomial time. The current bound is log m ~ 1;)7 where
N is the RSA modulus’ bit-size. Improving this bound to JZ has been an
elusive open problem for the past decade.

In this invited talk we consider a slightly different problem: instead
of minimizing m’s size we try to minimize its entropy. We show that
affine-padding signatures on JZ entropy-bit messages can be forged in
polynomial time. This problem has no direct cryptographic impact but
allows to better understand how malleable the RSA function is. In addi-
tion, the techniques presented in this talk might constitute some progress
towards a solution to the longstanding JZ forgery open problem.

We also exhibit a sub-exponential time technique (faster than fac-
toring) for creating affine modular relations between strings containing
three messages of size IZ and a fourth message of size 3év .

Finally, we show than JZ -relations can be obtained in specific scenar-
ios, e.g. when one can pad messages with two independent patterns or
when the modulus’ most significant bits can be chosen by the opponent.

1 Introduction

To prevent forgers from exploiting RSA’s multiplicative homomorphism [6], it is
a common practice not to sign raw messages m but to first apply to them a
padding function p(m).

This paper considers one of the simplest padding functions called affine padding
(or fixed-pattern padding):

d

o=pu(m)? modn=(w-m+a) modn

Here d denotes the RSA private exponent and n the public modulus. Throughout
this paper |z| will denote the bit-size of z. Let N = |n]|.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 22-32, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Following [1], we use the following notations:

w is the multiplicative redundancy
« is the additive redundancy

(1)

Since no proof of security is known for RSA signatures using such a p, those
signatures should not be used in practice. Nonetheless, the study of such simple
padding formats is useful for understanding how malleable the RSA function is.

In 1985, [2] exhibited forgeries for w = 1 when m ~ v/n2. This attack was
extended by [3] in 1997 to any values of w,a and for m ~ /n. Finally, [1]
exhibited in 2001 forgeries when m ~ /n. This remains the best polynomial-time
result to date. Relaxing the polynomial time constraint [4] showed that smaller
message sizes can be tackled in complexity lower than that of all currently known
factorization algorithms.

w(im) =w-m+ «a where {

It was conjectured that a polynomial time forgery should exist for m ~ ¥/n,
but this remained an elusive open problem for the past decade.

Our Contribution. This paper does not directly address the m ~ ¥/n con-
jecture, but presents several new results in that general direction. Rather than
minimizing logm we try to minimize m’s entropy. Using a variant of [1], we show
(83) how to craft JZ entropy signatures instead of ];[ ones. This has no specific
cryptographic impact but allows to further explore RSA’s malleability.

4 shows how to obtain' a relation between four padded messages, three of
which are of size JZ and the fourth of size Sév .

Finally, §5, investigates special scenarios in which we obtain JZ -relations by al-
lowing the use of two independent padding patterns or by allowing the opponent
to select the most significant bits of n.

2 Brier-Clavier-Coron-Naccache’s Algorithm

In this section we briefly recall the attack of Brier et alii [1] using a slightly
different exposition. [1] will serve as a building block in most of the results to
come.

The goal is to find four distinct messages z,y, z,t € Z each of size g, such
that:

(w-z+a) (wy+a)=w-z+a) (w-t+a) modn (2)

which enables to forge the signature of x using:

d d
. w -t
(w~x+a)d:(w 2 +a) (wd+a) mod n

(@ y+a)

Denoting A = «/w mod n, from (2) it is sufficient to solve the following

equation:
(A4+2)(A+y)=(A+2)(A+t) modn

Lin a time equivalent to that needed to factor a 3év -bit number.
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Theorem 1 (Brier et alii). Given n, A € Z with A # 1, the equation:
(A+2)(A+y)=(A+2)(A+t) modn

has a solution x,y, z,t € Z computable in polynomial time, with 0 < x,y,z2,t <
8- Yn and with y # z and y # t.

Proof. The previous equation gives:
A (z+y—z—t)=z-t—xz-y modn

By developing A/n as a continued fraction, we find U,V € Z such that A-U =V

mod n where —/n < U < ¢/nand 0 < V < 2-v/n2 and ged(U, V) = 1. Therefore
it suffices to solve the following system:

zy—z-t =V

A solution can be found using the following lemma:

Lemma 1. Let A, B,C € Z with ged(B,C) = 1. The system of equations:

r-y—z-t=A
r—z =B
y—t =0C
has a solution given by
r=B+z =B+ (A-C~! mod B)
_ A-C=z _ A-C-(A-C™' mod B)
Y= "8 = B

z=A-C7!' mod B
Proof. Letting x = B+ z and t = y — C, the first equation can be replaced by:
(B+z2)-y—z-(y—C)=A

which gives:
B-y+C-z=A4A (4)

Since ged(B,C) = 1 we get:
z=A-C7' mod B
Moreover from equation (4) we obtain:

A-C:z
y= B (5)

which is an integer since A — C' -z = 0 mod B. This concludes the lemma’s
proof. O
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We return now to the proof of Theorem 1.

Let A =V and choose B such that ¢/n < B < 2-¥/n and ged(B,U) = 1. Let
C = —U — B which gives B + C = —U; therefore from system (3) it suffices to
solve the system:

r-y—z-t=4
r—z =2DB
y—t =C

Since ged(B, C) = ged(B, —U — B) = ged(B,U) = 1, the previous system can be
solved using Lemma 1. Moreover we have 0 < 2 < B < 2-¥/nand 0 < z < 3-¥/n.
From C = —U — B we have:

1<-C<3-¥n

which gives 0 <y <5 - ¥/n, and eventually 0 <t < 8- ¥/n.
Finally since C' # 0 we have y # t. Moreover if y = z from equation (5) we
get A=(B+C)-z=—-U-z= -V which givess V =U - z;

— if z # 1 this gives ged(U, V') # 1, a contradiction;
— if z = 1 this gives U = V and therefore A = 1, a contradiction.

therefore y # z, which concludes the proof of the theorem. O

3 Minimal Entropy Forgeries

We now consider a slightly different equation. Let A\ = 2L%) and consider the
equation:

(A+4+2) - (A4+My)=(A+2) - (A+ M) modn (6)
The following explains how to find in polynomial time four distinct solutions
x,y, z,t of size ~ IZ . Therefore this gives a relation between four messages m; =
x, mo = Ay, mg = z and my = At of size ~ J;’ but an entropy of ~ JZ bits only.

By expanding equation (6) we get:
Alx—z+XMy—t)=Mz-t—2x-y) modn

As previously, by developing A’/n as a continued fraction with A" = A/A
mod n, we can find U,V such that A-U = AV mod n where this time we
take —/n < U < y/n and 0 <V < 24/n. Then it suffices to solve the system:

r—z+ANy—t)=-U
{ zy—z-t =V
Using Euclidean division we write U = HA + L with 0 < L < A; then it suffices
to solve the system:
r-y—z-t=V
r—z =-—L
y—t =-H
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which can be solved thanks to Lemma 1. Since V' ~ 4/n and the size of both
L and H is roughly IZ , one obtains four solutions z, y, z and t of size JZ in
polynomial time.

However, for the lemma to apply, we must assume that ged(L, H) = 1; this
makes the algorithm heuristic. If we assume that L and H are uniformly dis-
tributed, we have:

6

Priged(L, H) = 1] =

™

We illustrate the process in Appendix B using RSA Laboratories’ official 1024-bit
challenge modulus RSA-309.

Note that one can improve the algorithm’s success probability by considering;:

(L'H)=(L+r\H —r)

instead of (L, H), for small values of r € Z. Assuming independent probabilities,
after £ trials the failure probability drops to (1 —6/72)*, which is negligible even
for small values of ¢ (and experiments suggest that in practice failure probability
decreases even faster than this rough estimate).

5N

The idea lends itself to many variants. For instance °;

can be found by solving (mod n)

entropy bit relations

(A+tA+2)(A+tA+y) = (A+A+2)(A+tA+w) = A+tr= 7 %F
w—r—y+z

Letting A = 4 mod n with [4| = ®) and |B| = & we get A+tA = 4TM5 and
fixing t = *L,\%J = A+tA=§ for some |C| = §.

We can hence solve this equation using Lemma 1 by identifying:

C=xy—wz

B=w—-z—-y+=z

3.1 Message Entropy

We now define more precisely message entropy in the context of affine-padding
RSA forgery.

Let A be a fixed pattern? and n a random variable denoting the RSA modu-
lus. We denote by GenKey the RSA key generation algorithm. Let F be a forging
algorithm making ¢ signature queries for messages MM = {ma,...,my} and pro-
ducing a forgery mg11. We regard 9 and mgy; as random variables induced by
n (and possibly by the random tape of F). We consider the entropy of individual
messages separately and take the maximum entropy over all messages:

2 i.e. the integer A appearing in the padding function p(m) = (A + m).
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Ha = max{H(m;) | (M, my11) < F(n,e, A), (n,e) < GenKey(1%)}

We define the forgery’s entropy as the maximum over all possible values of the
pattern A:

H:=max{Ha | A€Z}

We see that in the described algorithm, the message entropy is roughly JZ ,
whereas it was & in [1].

Note that in the previous definition we consider the maximum entropy of all
messages required for the forgery and not only the entropy of the message whose
signature is forged. For example [3] is selective, which means that the attacker
can forge a signature for a message of his choosing; therefore the forged message
can have zero entropy; however the remaining messages in [3] are half the size

of n and their entropy is roughly g .

4 Sub-exponential Strategies

We start by noting that for JZ forgeries of the form

Z+w—x—y

A+z)(A+y)=(A+2)(A+w)modn = A= mod n

TY — W2

This means that A can be written as a modular ratio of two integers (namely
z4+w—2x —y and zy — wz) that are respectively JZ and J; bits long. As this is
expected to occur with probability ~ 2~N/4 we infer that for arbitrary A values,
such forgeries shouldn’t exist in general.

Consider a forgery of the form:

(A+z)(A+y)=AA+z+y+2)modn

Hence, if x,y, z exist, they are such that:

A:xy mod n
z

Write: A N N
A:Bmodn where |A| = 3 and |B| = 3
Then A B
Yu, A+u= tu mod n
B
Thus, if we fix:
A
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we get
A+v'B A
A+ = 5 = g mod n
where [A'| = |B| = 3). We can attempt to factor A’ = x x y into two factors

smaller than JZ bits each. If this factorization fails add one to v’ and start over
again.

N N N 3N
47 47 40 8

Again, the idea lends itself to a number of variants. For instance, relations of
the form

The result is a forgery such as the one given in Appendix C.

(A+tz)(A+ty) = (A+tz)(A+tw) = A= wmi_fi)z

can be found by writing A = 4 mod n with |A| = |B| = ¥, factoring A to find
t and continuing with Lemma 1.

5 Further Research

While computing IZ forgeries remains an open problem, neighboring problems
may lead to surprising algorithms. We give here two such variants as departure
points for future research.

5.1 The Case of Two Interchangeable Padding Patterns

Let A and A’ be two independently generated padding patterns and assume
that the signer can sign messages using either A or A’. We have:

(A4 2)(A"+y) = (A+2)(A" +t) mod n
g
Aly—t)+ A(x — 2) + 2y — 2t = 0mod n

Find A, B, C of respective sizes ¥, Y, Y such that AC + A’'B+ A = 0 mod n

29 47 4
and solve the system
r-y—z-t=A
r—z =B
y—t =C

as before. Note that this yields an JZ forgery only if A and A’ are ”independent”.

If A= A"+ « for a small « then a ];’[ forgery is found.

5.2 Allowing the Attacker To Influence n

Assume that the attacker can select the most significant half of n (e.g. [5] and [7]
report that such a practice does not seem to weaken n). Let A be an arbitrary
padding pattern and:
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(A+a)(A+y) = (A+2/)(A+y) mod n

I3
Ale+y—2' —y)+zy—2'y =0mod n

where z,y,x’,1y’ are all of size IZ . This is solved by writing:

A-a+b =0modn
z+y—2' —y =a
zy — 'y’ =b

Hence, for a given A we need to find an n for which a and b are of respective
sizes JZ and 1;[ . We then find z,y, 2,y exactly as previously but of size IZ (to
do so define z — 2’ = « for an arbitrary a and solve the two equations). Write
Aa + b = kn as we can select the most significant bits of n, let n = ny + ng
where n; (of size 1) is chosen by the attacker and where ng (of size §) is not

under the attacker’s control.

This boils-down to Aa 4+ b = k(n1 + ng). Selecting nq = 2A the attacker gets
Aa+b=k(2A+ng). Hence k =1, a = 2 and b = ng is a satisfactory choice for
which a and b are of respective sizes JZ and J; (as a matter of fact a is much
smaller but this is not an issue).

The attack’s Sage code is given in Appendix A.
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A Allowing The Attacker to Influence n (Sage code)

def hex(x):
s=x.digits(base=16,digits="0123456789abcdef’)
s.reverse()
return "".join(s)

def invmod(a,b):
g,c,d=xgcd(a,b)
return c

def testattack(n=512):
P=ZZ.random_element (2°n)
N1=2xP
gq=random_prime (2~ (n//2))
p=N1//q
NN=p*q
print "N=",NN
print "N/2=",NN//2
print "P=",P

a=2
b=NN-N1

al=ZZ.random_element (2" (n//4))
while gcd(al,a)!=1:
al=ZZ.random_element (2" (n//4))

xp=2Z (mod (b*invmod (a-al,al) ,al))
y=(b-xp*(a-al))/al

x=xp+al

yp=y-(a-al)

print "x=",x
print "y=",y
print "x\’=",xp
print "y\’=",yp

print "(delta+x) (deltaty)=(delta+x\’) (delta+y\’) mod N ",mod((P+x)*(P+y)-(P+xp)*(P+yp) ,NN)==0
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B Minimum Entropy Forgery

p(ma) - p(ma) = p(ms) - p(my) mod nzge with w =1 and o = A = 21023 2516,

naog is RSA Laboratories’ unfactored challenge modulus RSA-309.

The entropy of messages my, ms, mz and my is = |”i°9‘.

RSA-309

bdd14965 645e9e42 e7£658c6 fc3edc73 c69dc246 451c714e b182305b 0fd6ed47
d84bc9ab6 10172fb5 6dae2f89 fad0e7c9 521ec3f9 7eal2ff7 c3248181 ceba33bb
5212378b 579ae662 7bcc0821 30955234 eb5b26a3e 425bc125 4326173d 5f4e25a6
d2e172fe 62d81ced 2c9£362b 9823065 0881ced46 b7d52f14 885eecf9 03076cab

n309

p(me) = TEEEEEEE SEFFEEEF SEFEEELF SEFEEEFF SEFELEFF SEFELLFT FELELLFF FEFELLFS
B 6 6 o i o o o i )
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
0a22096¢ £25655f4 104b2971 bc8b4f4f 817e6f4c dOca8b25 ac5e8377 819e9d23

p(mo) = TEEEEEEE FEFEEEEE FEFELEEE SELFLFEf SELELEES FEFEEFES FEFEEEES FEFFFFES
fEEEF££F £EFEFFEF FELEEFEE FELFELFL FELFEFS FELFLEFE £EELFEFF £EFEFFFO
e1bdb579 4ad9e4b5a 7b17ee62 bf736d1c 8d897862 ce2c3349 72600b8b 44a8d4fb
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

p(mg) = TEEEEEEE FEFEEEEE FEFELEEE SELFLFEf SELELEES FEFELFES FEFEELES FEFFFFLS
fEEEF££F £EFEFFEF FELEEFEL FELFELFL FELFEFS FELFLEFE £EELFEFF £EFEFFFO
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
1132716 527c0815 fbf55d24 4883207b 827b9fb9 dd3baB8ab6 2af1b776 d550a12d

p(my) = TEEEEEEE FEEEEEEE FELELEEE SELFLFEf SELELEET FEFEEFES FEFEELES FEFFFFSFS
B 6 6 o o o e o e 6 o e o o o i o o o
0c9ca82a 80d6e82a e84d12a7 6415e27e d6d909da c2331285 aca27f4e 632d1556
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
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C Fast Sub-Exponential Forgery

p(my) - p(mbh) = p(mp) - p(mf) mod ngpe. Factorization for obtaining this re-
lation was done with YAFU [8] using fast MPQS and SIQS implementations for
Core2 processors.

A" = TEEEEEEE SEEEEEEf FEFEEEEE FELEEFEE FEFFEEEE FEEFEFEF FEFEFEFE FEFEFFESE
B 6 6 o i o e o o e i o e o o o
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008 <— note the 8
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

u(?n'l) = TELE£££f £ELFEEFE £EELFEFF £EELFEEF £EFLFEEF £EFLFFEF FELFLFES FELFLFFS
B 6 6 o o i o o o e i o e o o o
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008
78dfd16f afa9c95b 2fecb797 21eaeda7 5217£260 0a9b852a OldeeOcf 315aea20

u(?ng) = TELE£fff £ELFEEFE £EELFEFF £EELFEEF £ELLFEEF £EFLFFEF FELFLFES FELFLFFS
fEEEEFEf FELFELEE £RELFEFF £RELFLLF £ELLFELF £EFLFFEF FELLLFES FELFLFES
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008
78dfd16f afaad4cb53 011c40cf ce5ff1d9 £9d2£822 3bf3b3ad c770bdd4 4644e869

u(?ng) = TELE£fff £ELFEEFE £EELFEFF £EELFELF £ELLFEEF £EFLFFEF FELFLFES FELFLFFS
fEEEEFEf FELFELEE £RELFEFF £RELFELF £ELLFELF £EFLFFEF FELLLFES FELFLFES
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008
78dfd16f afa9c95b 2fefcd95 alf55dd7 1£55b73a b29e0570 £72a86d2 940£34d1

u(mg) EEST 5 8 6 e o e o o o o o o o o e e
fEEEEFEf FELFELEE £RELFEFE £RELFLLF £ELLFELF £EFLFFEF FELLLFES FELFLFES
00000000 00000000 00000000 00000000 98fb10e4 ef8£2456 b2abl4a2 236dadea
6b28b31b 1bfb2493 8£74d85e eceb7450 2d848353 fe9fldec b40f041b bbb2alf8
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1 Overview

The basic idea of meet-in-the-middle attacks is to split an invertible transforma-
tion into two parts and separate parameters, or chunks, that are involved in only
one part. Then these chunks can be searched independently with a match in the
middle as a filter indicating a right combination. One of the first applications
is the cryptanalysis of DoubleDES FEk,(Ek, (-)), which demonstrated that the
total security level is not the sum of key lengths [4]. The reason is that given a
plaintext/ciphertext pair, an adversary is able to compute the internal middle
state of a cipher trying all possible values of K1 and K5 independently. The same
principle applies at the round level as well. If there is a sequence of rounds in a
block cipher that do not depend on a particular key bit, the meet-in-the-middle
attack might work.

A basic meet-in-the-middle attack requires only the information-theoretical
minimum of plaintext-ciphertext pairs. The limited use of these attacks can be
attributed to the requirement for large parts of the cipher to be independent of
particular key bits. We also mention that a number of variations of the basic
meet-in-the-middle attack theme were used in the literature, including combina-
tions with slide and integral attacks.

Though there has been a great deal of meet-in-the-middle attacks on block ci-
phers recently, overall they received less attention from cryptanalysts than other
standard attack vectors. In fact, it seems this attack vector was overshadowed
by the success of statistical attacks like linear and differential attacks.

Recently a number of conceptual improvements to this attack vector have been
proposed. A concept called bicliques was first introduced for hash cryptanaly-
sis, by Savelieva et al. [8]. It originates from the splice-and-cut framework [1] in
hash function cryptanalysis, and more specifically its aspect called initial struc-
ture [5,13]. The biclique approach led to the best preimage attacks on the SHA

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 33-36, 2013.
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family of hash functions so far, when measured in terms of numbers of rounds,
including the attack on 50 rounds of SHA-512, and the first attack on the round-
reduced SHA-3 finalist Skein [8]. The concept of bicliques for block ciphers and
biclique cryptanalysis for block ciphers was introduced in [2], and a predecessor,
the splice-and-cut framework applied to block ciphers is found in [14]. In the
following we briefly sketch some of the concepts and ideas in this context.

The Concept of a Biclique. A biclique (a complete bipartite graph) connects
2¢ pairs of intermediate states with 22¢ keys. This is the main source of com-
putational advantage in the key recovery — by constructing a biclique on 2¢
vertices only, one covers quadratically many keys 22¢. d is called the dimension
of the biclique.

A biclique is characterized by its length (number of rounds covered) and di-
mension d. The dimension is related to the cardinality of the biclique elements
and is one of the factors that determines the advantage over brute force. We now
briefly describe four cryptanalytic techniques that appear in all known applica-
tions of the biclique concept.

(1) Bicliques from Independent Related-Key Differentials. Often the
easiest way to construct a biclique in a cipher is to consider two related-key
differentials holding with probability one — one with forward key modification
and one with backward key modification. If those differentials are truncated, this
can result in a higher dimensional biclique. A key requirement here is that the
characteristics describing the biclique are all independent.

(2) Narrow-Bicliques. A variant of the above mentioned bicliques from
independent related-key differentials [7]. The conceptual addition is that instead
of probability 1 (truncated) differentials, much smaller probabilities are allowed.
the degrees of freedom in the choice of the internal states for each biclique are
used to efficiently enumerate enough bicliques of a special property that limit
diffusion, and hence the data complexity of the resulting attacks.

(3) Bicliques from Interleaving Related-Key Differentials. This is a
more involved approach, and is also based on related-key differentials. However,
they can interleave (that is, intersect in active nonlinear components such as S-
boxes). The propagation in those differentials can also be of probabilistic nature.
This removes the constraint on the biclique length natural for bicliques from
independent related-key differentials. This however also makes is very difficult to
construct bicliques of higher dimension though. For the only known examples for
biclique attacks of this type, d = 1 in key recoveries on round-reduced AES in [2].
The construction of such bicliques follows the rebound strategy [10] borrowed
from the domain of hash function cryptanalysis.

2 Bruteforce-Like Cryptanalysis

Most published applications of bicliques use them as a means to improve the
bruteforce-like cryptanalysis of a certain cipher or hash function, i.e. they allow
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to include, but also minimize partial brute-force computations . This is based
on another technique that was introduced together with the biclique idea:

(4) Precomputation Technique for the Matching Part of a Meet-in-
the-Middle Attack. The starting observation is that, in case no matching is
possible to merge the independent computations of the two chunks in a meet-in-
the-middle attack because too many rounds are covered, a computation looping
over all combinations can still give the information required to filter key candi-
dates. Note that this is equivalent to test all keys for a particular part of the
cipher or hash function. [2] shows that its combination with biclique cryptanal-
ysis allows for larger savings of computations.

We note here that partial brute-force computations have been considered be-
fore for cryptanalytically improved preimage search methods for hash functions,
e.g. in [1,12]. Even earlier examples that may be considered more implementation-
rather than cryptanalytic-centric are [9,11]. In order to distinguish between these
earlier implementation-centric optimizations of brute force with those that use
more advanced cryptanalytic ideas, we coin the term bruteforce-like cryptanaly-
SiS.

Bruteforce-like cryptanalysis is not able to conclude that a particular tar-
get has a cryptanalytic weakness, as in principle any number of rounds can be
“attacked”. However it can help to better understand the real security offered
against attacks in the absence of other shortcuts. Most recently reported appli-
cations of bruteforce-like biclique cryptanalysis have an advantage that is much
smaller than a factor of 2. For ciphers like AES with key sizes of 128 bits or more
this is merely of academic interest, we argue however that for ciphers with key
sizes of 80 bits or less, this is very useful to know, especially when cost savings
compared to optimized bruteforce implementations are a factor 2 or more [6].

3 Conclusions

Summarizing, the novel biclique meet-in-the-middle cryptanalysis is a promising
cryptanalytic technique for the security evaluation of modern block ciphers and
hash functions. It’s combination with bruteforce-like cryptanalysis can, by its
very nature, not be used to argue that a particular design has a cryptanalytic
weakness. However, it seems advisable to include an assessment with respect to
it into any new design of a symmetric primitives, as e.g. done for the recently
proposed PRINCE |3].
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Abstract. To protect a network from malicious activities, intrusion detection
systems can be used. Most of intrusion detection systems examine incoming
packets with detection signatures to detect potential malicious packets. Because
the portion of malicious packets is usually very small, it is not efficient to
examine incoming packets with all signatures. In this paper, we propose a
method that reduces the number of signatures to be examined and show the
experimental results of our proposed method.

Keywords: Network Security, Pattern Matching, Intrusion Detection System,
Indexing.

1 Introduction

Uses of the Internet have increased tremendously in various applications and so has
the volume of network traffic. Although most of network traffic is generated for
benign purposes such as web browsing, video streaming and peer-to-peer file sharing,
some portions of the network traffic are malicious, and malicious traffic might cause
degradation of network performance or network based services. Examples of
malicious network activities include phishing, sending spam emails, spreading
malware and launching distributed denial of service (DDoS) attacks. With the
increased volume of general network traffic, intrusion detection systems based on
network traffic analysis need to have very high performance to examine a high
volume of bypassing packets; moreover, the attacks are getting more sophisticated
over time, making the detection of attack traffics on the Internet difficult. It is very
import to detect attacks and block the attack traffic as fast as possible to maintain a
certain level of network quality of service.

To detect and classify network-based attacks, network packets are examined to
determine whether the packets contain malicious contents or not. To inspect network
packets, there are two main approaches; packet header inspection and packet payload
inspection. Packet header inspection allows fast detection by collecting the
information in the packet header such as port numbers and IP addresses. On the other
hand, packet payload inspection conducts deeper analysis on the contents of each
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packet and looks for specific keywords that are related to malicious activities. To
maximize the effectiveness, the detection should be accurate as well as fast. Packet
header inspection is fairly easy to implement and is able to provide fast detection if
the information is used appropriately; however, this method is not suitable for
accurate detection schemes because of high false positive rates. Packet payload
inspection, on the other hand, does provide highly accurate detection but there are
issues to be solved such as storage overheads, computational complexity and delays
caused by the payload analysis.

In this paper we propose a method to enhance the performance of network packet
inspection. Our proposed method groups a number of signatures together by indexing
the signatures in a simple way. The experimental results of our proposed method
show the efficiency of signature grouping.

The rest of the paper is organized as follows: Section 2 contains related work. In
Section 3, we explain our indexing method for signature grouping. Experimental
results with our proposed method are shown in Section 4 and Section 5 summarizes
the paper.

2 Related Work

There have been many researches that tried to improve the performance of intrusion
detection systems, including string matching algorithms for memory-efficiency, finite
automata-based approaches, and signature indexing. In this section, we summarized
and explained these researches and their approaches.

2.1  Aho-Corasick Based Approaches

The Aho-Corasick algorithm is one of the most common algorithms for string
matching, and the algorithm forms graphs for signatures to be examined. For the 8-bit
characters sets, the algorithm requires 256 pointers to keep the information of next
states for all possible characters, which eventually causes waste of memory. A
memory-efficient implementation of the Aho-Corasick algorithm was presented by N.
Tuck et al. [1], to overcome this problem. They used a 256-bit bitmap instead of 256
pointers, and if a state can be a next state, the corresponding bit inside the bitmap is
set to one. For the nodes that are close to terminal nodes of the graph, flags are used
instead of bitmaps since most of the bits in the bitmap will be set to zero due to very
few possible transitions. Their experimental results show that the method reduced the
memory utilization down to just 2%, compared to the original approach.

Another approach that aims to improve the performance of the Aho-Corasick
algorithm is presented by L. Tan T Sherwood [2]. Their approach is based on a
specialized hardware architecture consisted of multiple Rule Modules and Tiles. Their
hardware architecture enables Aho-Corasick matching in bit vectors, not in strings.
The bit-level matching has only two possible next states, resulting in significant
performance improvement.
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Many efforts to improve the performance of the Aho-Corasick algorithm, including
the above two approaches, are successful to enhance the performance of intrusion
detection systems because string matching is one of the expensive processes in the
deep packet inspection. However, the number of signature keeps increasing and it is
hard to believe that the improvement of string matching algorithm will clear up the
signature growth.

2.2  DFA or NFA Based Approaches

Deterministic Finite Automaton (DFA) and Nondeterministic Finite Automaton
(NFA) are finite state machine-based models that consist of a number of states and
transitions. Since both DFA and NFA can be represented with regular expressions,
they are widely used for string matching. Although DFA requires more states than
NFA, DFA shows better performance than NFA; therefore making DFA memory-
efficient and improving the performance of NFA are the main issues of these two
schemes. Memory-efficient DFAs can be achieved in various ways, for example, by
introducing cache memory to DFA structure [3], by rewriting the regular expressions
to reduce the number of states [4], and by using perfect hash function for faster
transition table look-up [5]. While DFA implementation is more suitable in software,
NFA implementation shows better performance in hardware environment. J. Bispo et
al. [6] suggested a regular expression matching engine with reconfigurable hardware.
However, these approaches are also hard to solve the same problem as the string
matching approaches are.

2.3  Signature Grouping

Baker et al. proposed a method to avoid redundant comparison of the same characters
by partitioning the whole patterns into several smaller groups [7]. The partitioning is
done by: (1) maximizing the number of repeated characters within a group, (2)
minimizing the number of characters repeated between different groups. Sourdis et al.
[8] introduced a packet pre-filtering approach which used an 8-character prefix for
each signature. In the pre-filtering step, a subset of signatures is selected by the partial
matches, based on the 8-character prefix. If there are matched prefixes during the pre-
filtering step, the full-match engine is activated to inspect the candidate set of
signatures. In this paper, the authors claimed that the packet pre-filtering significantly
reduces the number of signatures matched per packet. Chen et al. proposed a method
to decompose the Snort signature patterns into primary patterns [9]. In the Snort
pattern set, there are two properties: (1) the repetition which is just the same amongst
rules, (2) the composition that each signature is considered as a combination of
smaller pattern fragments. The authors decomposed this pattern with the delimiters,
such as hyphen (‘-’) and period (‘.”). To distinguish text characters and binary data,
any binary data with a ‘I’ in-between, is considered as an individual pattern. Although
these signature grouping methods would solve the signature growth problem, the
criterion of signature grouping is still questionable since the result of signature
grouping is controlled by the criterion.
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Among these various approaches to improve intrusion detection systems, there is
no silver bullet that can solve the signature growth problem. To improve the
performance of intrusion detection systems, various techniques should be explored
and multiple techniques should be combined together. Therefore, we argue that our
proposed indexing method can contribute to improve the performance of intrusion
detection systems.

3 Our Proposed Method

Chen et al. presented the relationship between the number of primary patterns and the
number of Snort rules [9]. A primary pattern is a set of strings that appear repeatedly
within Snort rule signatures. The result of their experiments shows that the number of
primary patterns saturates at some points even though the number of signatures keeps
increasing. This implies that classifying signatures with grouping methods can
increase the efficiency and speed of packet inspection greatly because the size of
primary patterns can be much smaller than that of entire signatures.

We focused on this observation and grouped signatures by applying our indexing
method. Indexing is a method which is commonly used to find a certain item from a
large set of data. In our proposed method, an index is a substring which is part of a
signature. Each index points to a subset of signatures contain the index; therefore the
signatures are arranged into several groups according to indices. Before the packet
inspection stage, the signatures are pre-processed to create indices and the signatures
are grouped together according to the indices.

—m—————— re———- N T ~
|{ Incoming Packet } : Index | : Signatures :
|
| | | | [ '
: | | | | | "/login.aspx (1) :

| [ | | | "/logged/" (2)

|

: : : flog - | : "/log/admin/" (3) :
: | | : | | "/logonfrm.asp" (4)

| | | | |
: ! ! [ ; '
| Jiisprotect/admin ... d | | | scr{pts/repoAst.asp (5) l
| | - | | | "scripts/postinfo.asp" (6) |1
I : : | : "scripts/uploadn.asp" (7) :
| | | : | | "scripts/iisadmin/" (8 |
| I I I | I
| I I I
I | b Jiis l "/iissamples/sdk/asp" (9) |
| } | | "/iisprotect/admin" (10) :
o J _____ 5 J

Fig. 1. Indexing

During the packet inspection, if an input packet has turned out to have some
indices within its payload, it is highly likely that the packet is related to some types of
attacks. In this case, further inspection should be carried on by examining the packet
with the signatures that the indices point. On the other hand, if the payload of the
packet does not include any indices, the packet is harmless; therefore, the inspection
goes on for the next packet. Fig. 1 shows an example of the inspection with the
indexing method, with three indices extracted from signatures: ‘/log’, ‘scri’ and ‘/iis’.
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As the index ‘/iis’ appears in the payload of the incoming packet, only the signatures
(9) and (10) will be used for the further inspection. The signatures from (1) to (8)
would not be examined for this packet, since the indices ‘/log’ and ‘scri’ are not
matched. In this way, the inspection overhead can be significantly reduced by
inspecting only two signatures.

One of the main issues on indexing is how to choose substrings from signatures
when building indices. We will address our index selection algorithm, called
Balanced Indexing. Sourdis et al. [8] proposed an index selection algorithm, called
Prefix Indexing (PI). The indices for PI are selected by extracting the first N-byte
string from each signature. This algorithm is efficient in cases that the beginning of
signatures shares a number of common strings such as the case shown in Fig. 2.

Signatures Index s(_::m“tped
ignatures
“login.aspx" (1) i o)
"/logged/" (2) [log —> "/log/admin/" 3)
"/log/admin/" (3) W "
"/logonfrm.asp" (4) /logonfrm.asp' (4)
"scripts/repost.asp” (5) "scripts/repost.asp” (5)
"'scripts/postinfo.asp" (6) » B ) "scripts/postinfo.asp" (6)
"scripts/uploadn.asp" (7) "scripts/uploadn.asp" (7)
"'scripts/iisadmin/" (8) "scripts/iisadmin/" (8)
"/iissamples/sdk/asp" (9) "iissam "
i [ i ples/sdk/asp (9)
"'/iisprotect/admin (10) [iis —» "iisprotect/admin” (10)
Fig. 2. Prefix Indexing

While PI is a simple way to group signatures with indices, grouping with other
substrings that appear in the middle of signatures could be more appropriate in some
cases. Based on this intuition, Random Indexing (RI) which selects indices randomly
from signatures is proposed [10]. RI extracts an N-byte substring from an arbitrary
point of signatures. Fig. 3 shows an example of RIL.

Signatures Index (.;rouped
Signatures
"/login.aspx" o) jisa ) "scripts/iisadmin/" (8)
"/logged/" @ "/iissamples/sdk/asp" (9)
"/log/admin/" (3) B > "/log/admin/" (3)
"/logonfrm.asp" (4) / "/iisprotect/admin” (10)
"scripts/repost.asp” (5) » ) "scripts/post.asp"” (5)
"scripts/postinfo.asp" (6) ts/p "scripts/postinfo.asp" (6)
"scripts/uploadn.asp" (7) "/logi " 1
e
"'fiissamples/sdk/asp" 9) I d/" @)
"Jiisprotect/admin” 10 ogge
Jiisprotect/admin (10) [/log —» "/logonfrm.asp" )
Fig. 3. Random Indexing

RI, however, exhibits poor grouping results than PI in many cases because RI is
highly dependent on the order of selected indices. Fig. 4 shows a worse-case example
of RI with the same indices in Fig. 3. In this example, 40% of signatures are grouped
together; as a result, performance improvement can be reduced, compared with the
case of Fig. 3.
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Signatures Index qrouped

Signatures
"logi " (1) "/login.aspx" (1)
ogin.aspx "/logged/" 2)
“/Iogged/. ) (2) /log —>» “/log/admin/" 3)
/log/admin/' (3) " /logonfrm.asp” (4)
"/logonfrm.asp" (4) "scripts/iisadmin/" (8)

"scripts/repost.asp" (5) iisa —p - P "
B ; N /iissamples/sdk/asp (9)

scripts/postinfo.asp (6)

"scripts/uploadn.asp” 7) /adm — "Jiisprotect/admin" (10)
"scripts/iisadmin/" (8) - "scripts/post.asp" (5)
"/iissamples/sdk/asp" (9) "scripts/postinfo.asp" (6)
fiisprotect/admin (10) n.as —P "scripts/uploadn.asp" (7)

Fig. 4. A Worse-case Example of Random Indexing

To compensate the disadvantages of RI stated above, we propose a method that
extracts indices with some restrictions. We applied the maximum and minimum
number of signatures per index as restrictions. These restrictions prevent indices from
pointing to too many signatures or too few signatures, generating more balanced
results than RI. We called this approach as Balanced Indexing (BI). By experimenting
various indexing cases, we derived minimum and maximum values as one and three,
respectively, but these values can be set differently when applying to other sets of
signatures. During the experiments we realized that both minimum and maximum
values have limits, depending on the property of the signatures. The limit for the
minimum value takes effect when there is a unique substring from a signature, which
is not shared with any other signatures. In this case the index that contains the
substring will have only one signature. On the other hand, when there is a substring
that appears in many other signatures, the maximum number cannot be smaller than a
certain value because many signatures share a part of signatures.

Algorithm 1. Balanced Indexing Algorithm

Input: All signatures S
Length of an index L
Minimum number of signatures per index Min
Maximum number of signatures per index Max
Output: Extracted indices /
1: 19
2: while S # @ do
3: subsigs — @

4: sig < arandomly selected signature from S
5: index < a L-byte substring of sig (random)
6: for Vs € S do
7 subsigs < subsigs + s that includes index
8: end for
9: if Isubsigs| > Min and Isubsigs| < Max then
10: I I + index
11: S «— S — subsigs
12: end if

13: end while
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Algorithm 1 shows the pseudo code of the BI algorithm. BI randomly selects a
signature and extracts a substring from an arbitrary point of the chosen signature and
searches for other signatures that contain the substring. All found signatures are added
to the list of the corresponding substring. So far, it is the same as RI. After finding all
signatures which contain the substring, the substring will be accepted as an index only
when the number of signatures is within the boundary; Max and Min. The accepted
index and the signatures are stored in the index list, indices, and the signatures are
excluded from further process. BI repeats the above processes until all signatures are
exhausted. To avoid infinite loops, Max and Min are selected appropriately.

4 Experiments

In this section, we present experimental results of our indexing method, BI. We used
Snort 2.9.0.0 to evaluate the effectiveness of our proposed method. Snort has a
number of signature files which are divided into several categories by the types of
attacks and a signature consists of multiple strings to be examined with the incoming
packet. We experimented with three index selection algorithms; PI, RI and BI.

Table 1 shows the information of Web-IIS signatures which are used in our
experiments. Web-IIS contains 143 signatures which are related to attacks against
Windows IIS servers. The total length of signatures within the Web-IIS is 2,363 bytes
and the average length of signatures is 16.52 bytes. With these signatures, we applied
the three indexing methods and analyzed the results. PI always generates the same
result, but RI generates different results in every experiment due to random selection
of substrings; for this reason we analyzed both the best result and the worst result of
RI. BI also generates different result each time; but we only analyzed the best result
for BI because the results of the other cases do not show a big difference.

Table 1. Web-IIS Signatures

Web-IIS
Number of Signatures 143
Total Length of Signatures 2,363
Average Length of Signatures 16.52
Maximum Length of Signatures 65

Indexing results were analyzed with three statistical values: the number of indices
(NI), the average number of signatures per index (ANPI) and the maximum number
of signatures per index (MNPI). NI refers to the size of the entire indices, which is
related to the total length of index to be examined with an input packet; therefore if
NI decreases, the packet inspection process can have better performance. ANPI is
another important factor of performance as it has a close relationship with the amount
of strings to be inspected; the fewer the strings, the less it takes for the deep packet
inspection. We found that the appropriate value for ANPI is between 1.5 and 1.8,
experimentally. MNPI has effects on the deep packet inspection time, especially for
the worst case. If the size of MNPI, let’s say M, is significantly large, the worst case
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time required for the deep packet inspection increases as the packet inspection
involves at least M times of comparison to the input packet. To summarize, an
indexing result with smaller MNPI, especially which has a close value to ANPI,
shows the best performance in the packer inspection.

Table 2 shows the experimental results of the three indexing methods, where the
length of each index is set to four bytes. The three methods, PI, RI and BI show
similar results in most cases, except the MNPI value. BI has the smallest MNPI,
whose value is also close to ANPI; therefore the indexing with BI provides a fairly
equally distributed result. Other results with bigger MNPI values mean that their
signature groupings were biased to a certain index. If the biased index is matched, a
large number of signatures should be fully examined, causing longer deep packet
inspection time. We will discuss the performance issues later in this section.

Table 2. Statistical Values of Web-1IS

Methods RI
Values PI Best  Worst Bl
Length of Index 4 4 4 4
Number of Indices (NI) 84 80 50 85
Average Number of Signatures per Index (ANPI) 1.70 1.78 2.86 1.68
Maximum Number of Signatures per Index (MNPI) 15 10 41 3

To evaluate the performance of packet examination, we estimated the total length
of strings (TLS) to be examined for an input packet since the TLS is one of the critical
factors in the deep packet inspection process, regardless of the string matching
approach being used. The smaller the TLS to be examined becomes, the shorter the
packet examination time would be taken. We estimate the performance of the index
selection algorithm, by calculating the TLS to be examined; we describe the
estimation process in the following paragraphs.

Indices Signatures
Index 1 Signature Signature | e Signature | Signature
Index 2 Signature | Signature | *** | Signature |
Index 3 Signature |
Index 4 Signature | b | Signature |
Index N-3 Signature Signatme|
Index N-2 Signature Signature | °** |Signature Signature |
Index N-1 Signature]  Signature Signature |
Index N | Signature

to be examined

Fig. 5. A Result of Index Selection

The TLS is the total length of indices (TLI) and the total length of signatures of
matched indices (TLSI), as shown in Figure 5. TLI is the number of indices times the
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length of index, as the whole indices should be examined during the inspection. TLSI
is the sum of each length of the signatures that are pointed by matched indices. To
calculate TLSI, we need to know which index was matched, because only the
signatures that are pointed by the matched indices will be examined; however, every
time the inspection proceeds, different indices will be matched according to incoming
packets. There is no way to foresee the matched indices unless the packet inspection
is actually conducted; therefore we formularized Equation 1 to estimate TLSI.

TLSI = Number of matched Indices x ANPI x Average Length of Signature. 1)

Indices Number of Signature

Index 1

Ind 2

Index 4

Index 2

Index N-1 |

Index N-3 |
Index 3
Index N

Fig. 6. Index Sorting

As mentioned above, it is hard to estimate the number of matched indices. To
overcome this difficulty, we set the number of matched indices as a variable and
conducted simulations. The simulations estimate TLS, assuming that x% of indices
have been matched to an incoming packet. If we sort the indices by the number of
signatures per index, as shown in Figure 6, we can analyze the best case and the worst
case. The best case is when x% of indices with the smallest number of signatures
were taken and the worst case is the opposite. We also calculated the average case by
measuring the average of the best and worst cases. Equation 2 shows how these
values are used for the simulation.

TLS(x) = NI x Length of Index + Number of Signatures for x% of Indices x 2)
Average Length of Signature.

To compare the performance of three index selection algorithms, we extracted a set
of indices from the Web-IIS signatures using each algorithm and estimated TLS for
each set. In the case of RI, we chose the best case and the worst case from 100 tries.
Figure 7 shows the result of the experiments for the Web-IIS: Figure 7(a) is for the
average cases and Figure 7(b) is for the worst cases. The Y axis represents TLS and
the X axis represents the percentage of matched indices for an input packet.



46 B.J. Kang et al.

2,500 2,500

€1 —s— Snort

—+— Ri(Best) 2,000 4

1,500

—=— RI(Worst)
—E- - —— Snort

—e—B8l 4 —+— Ri(Best)
1,500

g ——— Ri{Worst)
i -e-p
1,000

—e—8l

1,000

Fig. 7. The Experiment Results of Web-IIS: (a) Average cases, (b) Worst cases

As can be seen in the graphs, all three index selection algorithms show better
performance than the original Snort. RI shows unpredictable performance, showing
two different aspects: in the best case, the performance of Rl is almost equal to PI but,
in the worst case, its performance is far worse than PI. On the other hand, BI shows
the best performance amongst the three algorithms. When 10% of indices are
matched, 604 bytes of strings are to be examined, which is only 26% of strings
compared to those that original Snort uses, while 72% of strings examined using PI.
In the worst case, the amount of strings to be examined, when 10% of indices are
matched, is 736 bytes, which is 31% of the amount of using original Snort. When
more than 40% of indices are matched, PI shows the best performance; however, as it
is believed that the chance of matching more than 40% of indices is rare, BI would
show better performance than other algorithms in most cases. This improvement is a
result of having smaller MNPI as we reduced the value of MNPI by selecting
appropriate maximum value in BI. It can be said that the rules are well distributed into
groups by the BI method, which also implies that the amount of strings to be
examined is normalized.

To summarize, BI shows better performance than PI and RI. All three algorithms
have similar NI and ANPI values, but BI has the smallest MNPI value, which is an
important factor in determining the packet inspection performance. Smaller MNPI
value also implies that the signatures are well distributed into groups by our indexing
method, BI. The estimated amount of strings to be examined with BI is also less than
using the other two algorithms, achieving 13% to 28% improvements on average, and
23% to 39% improvements in the worst case. The actual performance of the packet
inspection time, however, would be improved more than the simulation results, as the
amount of strings to be examined might increase the packet inspection time
exponentially, not linearly.

Our experiments are conducted using only 143 signatures while Snort has more
than 5,000 signatures. However, our proposed method is still useful because Snort
divides the signatures into several groups using a chain structure for the efficiency.
Our proposed method can be applied to those groups in the pre-processing phase.
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5 Conclusions

The importance of accurate network intrusion detection is growing over time. The
common way of deep packet inspection is examining all signatures in signature-based
intrusion detection systems (IDS). This approach, however, is inefficient because the
majority of packets are benign. The overall performance of signature-based IDSs can
be improved if the number of signatures to be examined decreases. In this paper, we
suggested a method named Balanced Indexing (BI) that extracts indices with two
parameters, the maximum and minimum number of signatures per index, to reduce
the number of signatures to be examined. We verified our assumption with a number
of experiments, which showed that BI can achieve 13% to 39% improvements in a
view of the estimated amount of strings to be examined.

For the future work, we will design a new detection engine, optimized for BI. The
deep packet inspection process, followed by the index matching, examines the packet
payload with the candidate Snort rule signatures. For Prefix Indexing (PI), this
process is simple as each index is the first few characters of each signature. On the
other hand, the index for BI can appear in the middle of a signature; therefore the
signature examination should be for both forward and backward directions. We will
also consider an index feedback mechanism which uses the detection results to
reconstruct indices. With this mechanism, the grouping by indices can be optimized.
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Abstract. Attack—defense trees are a novel methodology for graphical
security modeling and assessment. The methodology includes intuitive
and formal components that can be used for quantitative analysis of
attack—defense scenarios. In practice, we use intuitive questions to ask
about aspects of scenarios we are interested in. Formally, a computa-
tional procedure, using a bottom-up algorithm, is applied to derive the
corresponding numerical values. This paper bridges the gap between the
intuitive and the formal way of quantitatively assessing attack—defense
scenarios. We discuss how to properly specify a question, so that it can
be answered unambiguously. Given a well-specified question, we then
show how to derive an appropriate attribute domain which constitutes
the corresponding formal model.

1 Introduction

Attack—defense trees [15] form a systematic methodology for analysis of attack—
defense scenarios. They represent a game between an attacker, whose goal is to
attack a system, and a defender who tries to protect the system. The widespread
formalism of attack trees is a subclass of attack—defense trees, where only the
actions of the attacker are considered. The attack—defense tree methodology
combines intuitive and formal components. On the one hand, the intuitive visual
attack—defense tree representation is used in practice to answer qualitative and
quantitative questions, such as “What are the minimal costs to protect a server?”,
or “Is the scenario satisfiable?” On the other hand, there exist attack—defense
terms and a precise mathematical framework for quantitative analysis using a
recursive bottom-up procedure formalized for attack trees in [21] and extended
to attack—defense trees in [14].

There exists a significant discrepancy between users focusing on the intuitive
components of the model and users working with the formal components. This
is due to the fact that intuitive models are user friendly but often ambiguous. In
contrast, formal models are rigorous and mathematically sound. This, however,
makes them difficult to understand for users without a formal background. This
discrepancy between the two worlds is especially visible in the case of quanti-
tative analysis. A proper numerical evaluation can only be performed when all
users have a precise and consistent understanding of the considered quantities,
which are also called attributes.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 49-64, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Contributions. This work aims to bridge the gap between the intuitive and the
formal components of the attack—defense tree methodology for quantitative se-
curity analysis. We elaborate which kind of intuitive questions occurring in prac-
tical security analysis can be answered with the help of the bottom-up procedure
on attack—defense trees. We empirically classify and formally analyze questions
that were collected during case studies and literature reviews. For each class we
provide detailed guidelines how the questions should be specified, so that they
are unambiguous and can be answered correctly. Simultaneously, we discuss tem-
plates of the attribute domains corresponding to each class.

Related work. An excellent historical overview on graphical security modeling,
was given by Piétre-Cambacédes and Bouissou in [22|. In [26], Schneier in-
troduced the graphical attack tree formalism and proposed how to evaluate,
amongst others, attack costs, success probability of an attack, and whether there
is a need for special equipment. Baca and Petersen [4] have extended attack trees
to countermeasure graphs and quantitatively analyzed an open-source applica-
tion development. Bistarelli et al. [6], Edge et al. [9] and Roy et al. [24] have
augmented attack trees with a notion of defense or mitigation nodes. They all
analyze specific types of risk, using particular risk formulas adjusted to their
models. Willemson and Jiirgenson [29] introduced an order on the leaves of
attack trees to be able to optimize the computation of the expected outcome
of the attacker. There also exist a number of case studies and experience re-
ports that quantitatively analyze real-life systems. Notable examples are Hen-
niger et al. [11], who have conducted a study using attack trees for vehicular
communications systems, Abdulla et al. [1], who analyzed the GSM radio net-
work using attack jungles, and Tanu and Arreymbi [27], who assessed the secu-
rity of mobile SCADA system for a tank and pump facility. Since all previously
mentioned papers focus on specific attributes, they do not address the general
problem of the relation between intuitive and formal quantitative analysis.

The formalism of attack—defense trees considered in this work was introduced
by Kordy et al. in [14]. Formal aspects of this methodology have been discussed
in [13] and [17]. In [5], Bagnato et al. provided guidelines for how to use attack—
defense trees in practice. They analyzed a DoS attack scenario on an RFID-
based goods management system by evaluating a number of relevant attributes.
An extended version of the present paper contains more technical details and
illustrative examples [16].

2 Attack—Defense Scenarios Intuitively

An attack—defense tree (ADTree) constitutes an intuitive graphical model de-
scribing the measures an attacker might take in order to attack a system and
the defenses that a defender can employ to protect the system. An ADTree is a
node-labeled rooted tree having nodes of two opposite types: attack nodes rep-
resented with circles and defense nodes represented with rectangles. The root
node of an ADTree depicts the main goal of one of the players. Each node of an
ADTree may have one or more children of the same type which refine the node’s
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goal into subgoals. The refinement relation is indicated by solid edges and can
be either disjunctive or conjunctive. The goal of a disjunctively refined node is
achieved when at least one of its children’s goals is achieved. The goal of a con-
junctively refined node is achieved when all of its children’s goals are achieved.
To distinguish between the two refinements we indicate the conjunctive refine-
ment with an arc. A node which does not have any children of the same type
is called a mon-refined node. Non-refined nodes represent basic actions, i.e., ac-
tions which can be easily understood and quantified. Every node in an ADTree
may also have one child of the opposite type, representing a countermeasure.
The countermeasure relation is indicated by dotted edges. Nodes representing
countermeasures can again be refined into subgoals and countered by a node of
the opposite type.

Ezample 1. An example of an ADTree is given in Figure 1 (left). The root of
the tree represents an attack on a server. Three ways to accomplish this attack
are depicted: insider attack, outsider attack (OA) and stealing the server (SS).
To achieve his goal, an insider needs to be internally connected (IC) and have
the correct user credentials (UC). To not be caught easily, an insider uses a
colleague’s and not his own credentials. Attack by an outsider can be prevented
if a properly configured firewall (FW) is installed.

Pruning

Outsider
Attack

Insider
Attack

Insider
Attack

Fig. 1. Left: an ADTree for how to attack a server. Right: pruned “attack on server”
scenario for questions of Class 1 owned by the attacker.

Graphical visualization of potential attacks and possible countermeasures consti-
tutes a first step towards a systematic security analysis. The next step is to assign
numerical values to ADTree models, i.e., to perform a quantitative analysis. In-
tuitively speaking, performing a quantitative security analysis means answering
questions related to specific aspects or properties influencing the security of a
system or a company. These questions may be of Boolean type, e.g., “Is the at-
tack satisfiable?”, or may concern physical or temporal aspects, e.g., “What are
the minimal costs of attacking a system?”, or “How long does it take to detect
the attack?” In order to facilitate and automate the analysis of vulnerability
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scenarios using ADTrees, the formal model of ADTerms and their quantitative
analysis have been introduced in [15]". We briefly recall necessary definitions in
Appendix A.

3 Classification of Questions

In this paper, we provide a pragmatic taxonomy of quantitative questions that
can be asked about ADTrees. The presented classification results from case stud-
ies, e.g., [5,9,27], as well as from a detailed literature overview concerning quan-
titative analysis of security. Our study allowed us to identify three main classes
of empirical questions, as described below.

Class 1: Questions referring to one player (Section 4). Most of the typ-
ical questions for ADTrees have an explicit or implicit reference to one of the
players which we call owner of the question. Examples of questions referring to
one player are “What are the minimal costs of the attacker?’ (here the owner is
the attacker) or “How much does it cost to protect the system?” (here the im-
plicitly mentioned owner is the defender). When we ask a question of Class 1, we
assume that its owner does not have extensive information concerning his adver-
sary. Thus, we always consider the worst case scenario with respect to the actions
of the other player. Most of the questions usually asked for attack trees can be
adapted so that they can be answered on ADTrees as well. Thus, questions re-
lated to attributes such as costs [26,7,27,4,25,21,30,1,24,8,2,28,9], time [11,26,28],
detectability [27,8], special skills [21,1,26], impact [26,27,11,19,25,21,3,1,23,9,28],
difficulty [8,10,27,11,21,1,3,28], penalty [7,12,28], profit [3,12,6,24], etc., all be-
long to Class 1.

Class 2: Questions where answers for both players can be deduced
from each other (Section 5). Exemplary questions belonging to Class 2 are
“Is the scenario satisfiable?’, or “How probable is it that the scenario will suc-
ceed?”. We observe that if one player succeeds with probability p, we also know
that the other player succeeds with probability 1 — p. The satisfiability attribute
is considered, either explicitly or implicitly, in all works concerning attack trees
and their extensions. The probability' attribute has been extensively studied
in [26,7,11,19,20,30,1,24,8.9,28).

Class 3: Questions referring to an outside third party (Section 6).
Questions belonging to Class 3 relate to a universal property which is influenced
by actions of both players. For instance, one could ask about “How much data
traffic is involved in the attack—defense scenario?”. In this case, we do not need
to distinguish between traffic resulting from the attacker’s and the defender’s
actions, as both players contribute to the total amount. Attributes corresponding
to questions in Class 3 have not been addressed in the attack tree literature, since
attack trees focus on a single player. The importance of those questions becomes
apparent when actions of two opposite parties are considered.

! We would like to point out that the probability attribute can only be evaluated using
the bottom-up procedure given by Equation (1) in Appendix A if the ADTree does
not contain any dependent actions.
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The following three sections set up guidelines for how to correctly specify
quantitative questions of all three classes. The guidelines’ main purpose is to en-
able us to find a corresponding attribute domain in order to correctly compute
an answer using the bottom-up procedure. Figure 2 depicts the three classes
of questions, as well as general templates for the corresponding attribute do-
mains, as introduced in Definition 3 in Appendix A. Symbols e, 0, ¢ and e serve
as placeholders for specific operators. Corresponding symbols within a tuple in-
dicate that the functions coincide. For instance, (D, o, e, e 0,8, 0) means that
VP = Ag, = ¢, and that AP, = Vo = ck. We motivate these equalities and give
possible instantiations of e,0,¢ and e in the following.

related to one player

(D’ o’ .7 .7 o’ .’ o)
where answers for both
players are deducible

from each other
related to both players (D,0,0,0,0,0,0)

b b b) b) b b)
(D,0,0,0,0,0,0)

quantitative question
(DDH Vgu /\gv \/33 /\gana Cg)

referring to external

property /party
(D7 0,0,0,0,0, .)

Fig. 2. Classification of questions and attribute domains’ templates

4 Questions Referring to One Player

4.1 Defining a Formal Model for Questions of Class 1

Questions belonging to Class 1 refer to exactly one player, which we call the
question’s owner. As we explain below, in the attack—defense tree setting, only
two situations occur for a question’s owner: either he needs to choose at least
one option or he needs to execute all options. Therefore, two operators suf-
fice to answer questions of Class 1 and the generic attribute domain is of the
form (D,o,e, e 0, 0). Furthermore, if we change a question’s owner, the at-
tribute domain changes from (D,0,e e, 0,0 0) into (D, e,0,0,e 0, e).

We illustrate the construction of the formal model for Class 1 using the ques-
tion “What are the minimal costs of the attacker?”, where the owner is the
attacker. In the case of Class 1, all values assigned to nodes and subtrees express
the property under consideration from the perspective of the question’s owner.
In the minimal costs example, this means that even subtrees rooted in defense
nodes have to be quantified from the attacker’s point of view, i.e., a value as-
signed to the root of a subtree expresses what is the minimal amount of money
that the attacker needs to invest in order to be successful in the current subtree.

Subtrees rooted in uncountered attacker’s nodes can either be disjunctively
or conjunctively refined. In the first case the attacker needs to ensure that he is
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successful in at least one of the refining nodes, in the second case he needs to be
successful in all refining nodes. The situation for subtrees rooted in uncountered
defender’s nodes is reciprocal. If a defender’s node is disjunctively refined, the
attacker needs to successfully counteract all possible defenses to ensure that he
is successful at the subtree’s root node; if the defender’s node is conjunctively re-
fined, successfully counteracting at least one of the refining nodes already suffices
for the attacker to be successful at the subtree’s root node.

This reciprocality explains that two different operators suffice to quantify all
possible uncountered trees: The operator that we use to combine attribute values
for disjunctively refined nodes of one player is the same as the operator we use
for conjunctively refined nodes of the other player.

Furthermore, the same two operators can also be used to quantify all remain-
ing subtrees. If a subtree is rooted in a countered attacker’s node, the attacker
needs to ensure that he is successful at the action represented by the root node
and that he successfully counteracts the existing defensive measure. Dually, for
the attacker to be successful in a subtree rooted in a defender’s countered node,
it is sufficient to successfully overcome the defensive action or to successfully
perform the attack represented by the countering node. This implies that we
can use the same operator as for conjunctively refined attacker’s nodes in the
first case and the same operator as for disjunctively refined attacker’s nodes in
the second case.

4.2 Pruning

For attributes in Class 1, we are only interested in one player, the owner of
a question. Therefore for this class, we should disregard subtrees that do not
lead to a successful scenario for the owner. We achieve this with the help of the
pruning procedure illustrated in the following example.

Ezample 2. Consider the ADTree in Figure 1 (left) and assume that we are in-
terested in calculating the minimal costs of the attacker. In this case, there is no
need to consider the subtree rooted in “Outsider Attack”, because it is countered
by the defense “Firewall” and thus does not lead to a successful attack. The
subtree rooted in “Outsider Attack” therefore should be removed. This simulta-
neously eliminates having to provide values for the non-refined nodes “Outsider
Attack” and ‘Firewall”. The computation of the minimal costs is then executed
on the term corresponding to the tree in the right of Figure 1.

To motivate the use of the pruning procedure, let us distinguish two situations.
If a non-refined node of the non-owner is countered, its assigned value should not
influence the result of the computation. If a non-owner’s node is not countered,
its value should indicate that the owner does not have a chance to successfully
perform this subscenario. Mathematically, it means that the value assigned to
the non-refined nodes of the non-owner needs to be neutral with respect to
one operator and simultaneously absorbing with respect to the other. Since, in
general, such an element may not exist, we use pruning to eliminate one of the
described situations, which results in elimination of the absorption condition.
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Let us consider a question of Class 1 and its owner. In order to graphically
prune an ADTree, we perform the following procedure. Starting from a leaf of
the non-owner, we traverse the tree towards the root until we reach the first
node v satisfying one of the following conditions.

— v is a node of the owner and part of a proper? disjunctive refinement;

— v is a node of the non-owner and part of a proper conjunctive refinement;
— v is a node of the owner that counteracts a refined node of the non-owner;
— v is the root of the ADTree.

The subtree rooted in node v is removed from the ADTree. The procedure is
repeated, starting from all leaves of the non-owner. We note that the order in
which we perform the procedure does not influence the final result. Also, in some
cases the pruning procedure results in the removal of the entire ADTree. This is
the case when the owner of the question does not have any way of successfully
achieving his goal.

In [16], we show how to prune in a mathematical way and prove that it is
equivalent to the presented intuitive way.

4.3 From a Question to an Attribute Domain

In this section we analyze how a question of Class 1 should look like, in order
to be able to instantiate the attribute domain template A = (D, 0,0, 0, e 0)
with specific value set and operators. To correctly instantiate A, we need a value
domain D, two operators (for all and at least one) and we need to know which
of those operators instantiates o and which e. Thus, a well-specified question of
Class 1 contains exactly four parts, as illustrated on the following question:

Modality: What are the minimal

Notion: costs

Ouwner: of the proponent

Ezxecution: assuming that all actions are executed one after another?

Each of the four parts has a specific purpose in determining the attribute domain.
Notion. The notion used by the question influences the choice of the value
domain. The notions in Class 1, identified during our study, are: time, conse-
quence, costs, detectability, difficulty level, elapsed time, impact, insider required,
mitigation success, outcome, penalty, profit, response time, resources, severity,
skill level, special equipment needed, special skill needed, survivability.

From the notion we determine the value domain, e.g., N, R, R>q, etc. The choice
of the value domain influences the basic assignments, as well as the operators
determined by the modality and the execution style. The selected value domain
needs to include all values that we want to use to quantify the owner’s actions.
It also must contain a neutral element with respect to o, if own = p, and with
respect to e, if own = o. This neutral element is assigned to all non-refined nodes
of the non-owner, as argued in Section 4.2.

2 A refinement is called proper if it contains at least two refining nodes.
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Modality. The modality of a question clarifies how options are treated. Thus, it
determines the characteristic of the at least one operator. Different notions are
accompanied with different modalities. In the case of costs, interesting modalities
are minimal, maximal and average.

Execution. The question also needs to specify an execution style. Its value de-
termines the treatment when all actions need to be executed. Thus, it describes
the characteristic of the all operator. Exemplary execution styles are: simulta-
neously /sequentially (for time) or with reuse/without reuse (for resources).
Owner. The owner of a question determines how the modality and the execution
are mapped to o and e. In case the owner is the root player, i.e., the proponent, o
is instantiated with the at least one operator and e with the all operator. In case
the root player is not the owner, the instantiations are reciprocal.

Given all four parts, we can then construct the appropriate attribute domain.
For the notion of continuous time, also called duration, possible combinations
of the modality, the execution style and the owner have been determined in
Table 1. We instantiate the attribute domain template (D, o0, e e 0 e o) with
the elements of the algebraic structure (D, o, e), and use the value indicated in
the last column of the table as the basic assignment for all non-refined nodes of
the non-owner. The table can be used in the case of other notions as well, as
shown in the next example.

Table 1. Determining an instantiation of the structure in Class 1, where e denotes the
neutral element with respect to avg

Notion Modality Owner Execution Structure Basic assignment
(D, o0,9) for own
1 duration min p sequential (R, min, +) 400
2 duration avg P sequential (R, avg, +) e
3 duration max p sequential (R,max,+) —oo
4 duration min 0 sequential (R,+,min) 0
5 duration avg o sequential (R, +,avg) 0
6 duration max o sequential (R,+,max) 0
7  duration min p parallel (R, min, max) +oo
8  duration avg P parallel (R, avg, max) e
9 duration max p parallel (R, max, max) —oo
10 duration min 0 parallel (R, max, min) —oo
11 duration avg o parallel (R, max, avg) —oo
12 duration max o parallel (R, max, max) —oo

Ezample 8. The question “What are the minimal costs of the proponent, as-
suming that reusing tools is infeasible?” can be answered using the attribute
domain A, = (R, min, 4, +, min, +, min). Here the notion is cost, which has the
same value domain as duration, i.e., R. The modality is minimum, the owner
is the proponent and the execution style is without reuse, which corresponds
to sequential. Hence, we use the structure (R, min, +), as specified in Line 1 of
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Table 1. In order to answer the question on the tree in the left of Figure 1, we first
prune it, as shown on the right of Figure 1. The only basic actions that are left
are “Internally connected”, “User Creds” and “Steal Server”. Suppose their costs
are 100€, 200€, and 400€, respectively. We use those values as basic assignment
Beo and apply the bottom-up computation to the ADTerm VP(AP(IC, UC), SS):

co(VP(AP(IC,UC),SS)) = V&, (A(Beo(IC), Beo(UC), Beo(SS)) =
min{+(100€, 200€), 400€} = 300€.

We would like to remark that if the structure (D, o, e) forms a semi-ring, it is not
necessary to prune the ADTree to correctly answer a question @) of Class 1. This
is due to the fact that in a semi-ring the neutral element? for the first operator
is at the same time absorbing for the second operator. Such element can then be
assigned to all subtrees which do not yield a successful scenario for the owner of
Q, in particular to the uncountered basic actions of the non-owner.

5 Questions Where Answers for Both Players Can Be
Deduced from Each other

We illustrate the construction of the attribute domain for Class 2 using the
question “What is the success probability of a scenario, assuming that all actions
are independent?” In case of questions of Class 2, values assigned to a subtree
quantify the considered property from the point of view of the root player of the
subtree. This means that, if a subtree rooted in an attack node is assigned the
value 0.2, the corresponding attack is successful with probability 0.2. If a subtree
rooted in a defense node is assigned the value 0.2, the corresponding defensive
measure is successful with probability 0.2. Thus, in Class 2, conjunctive and
disjunctive refinements for the proponent and the opponent have to be treated
in the same way: in both cases, they refer to the at least one option (here
modeled with o) and the all options (modeled with e), of the player whose node
is currently considered.

Questions in Class 2 have the property that, given a value for one player,
we can immediately deduce a corresponding value for the other player. For ex-
ample, if the attacker succeeds with probability 0.2 the defender succeeds with
probability 0.8. This property is modeled using a value domain with a predefined
unary negation operation . Negation allows us to express the operators for both
countermeasures using the all operator where the second argument is negated,
which we represent by e. Formally, e(z,y) = x e y. Hence attribute domains of
Class 2 follow the template (D,0,0,0,0 0 o).

Below we discuss three aspects that questions in Class 2 need to address.
Notion. Questions of Class 2 refer to notions for which the value domains
contain a unary negation operation. This allows us to transform values of one

3 Such an element is usually called zero of the semi-ring. For instance, +o0 is the zero
element of the semi-ring (R, min, +).
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player into values of the other player. Identified notions for Class 2 are: feasibility,
needs electricity, probability of occurrence, probability of success, satisfiability.
Modality. Modality specifies the operator for at least one option. For the notions
enumerated above, this will either be the logical OR (V) or the probabilistic
addition of independent events P (A, B) = P(A) + P(B) — P(A)P(B), for a
given probability distribution P and events A and B.

Ezxecution. Finally, we need to know what is the execution style, so that we
can specify the operator for all options. In the above notions, this will either
be the logical AND (A) or the probabilistic multiplication of independent events
Pr(A,B) = P(A)P(B).

Ezxample 4. We calculate the success probability of the scenario given in Figure 1
(left), assuming that all actions are independent. First we set the success prob-
ability of all basic actions to B, = 0.4 and then we use the attribute domain
Apy = ([0,1], Py, Pn, Py, Pn, Pn, Pn), where P~(A, B) = Pr(A, B) to compute

PU(PO (5pb(IC)a 5pb(UC))a 5(88), Pr (pr(OA)v 1- pr(FW))) =
Py(PA(0.4,0.4),0.4, P7(0.4,1 — 0.4)) = P,(0.16,0.4,0.24) = 0.61696.

6 Questions Relating to an Outside Third Party

Suppose an outsider is interested in the overall maximal power consumption of
the scenario. As in the previous section, disjunctive refinements of both players
should be treated with one operator and conjunctive refinements of both players
with another operator. Indeed, for a third party the important information is
whether all or at least one option need to be executed and not who performs
the actions. Also countermeasures lose their opposing aspect and their values are
aggregated in the same way as conjunctive refinements. Regarding the question,
this is plausible since both the countered and the countering action contribute
to the overall power consumption. These observations result in the following
template for an attribute domain in Class 3: (D, 0,e,0,0 e ).

We specify relevant parts of the questions in Class 3 on the following example.

Modality: What is the maximal
Notion: energy consumption
Ezecution: knowing that sharing of power is impossible?

Notion. In Class 3, we use notions that express universal properties covering
both players. Found examples are: combined execution time, energy consump-
tion, environmental costs, environmental damage, global costs, information flow,
required network traffic, social costs, third party costs.

Modality. The question should also contain enough information to allow us
to specify how to deal with at least one option. In general, modalities used in
Class 3 are the same as those in Class 1, e.g., minimal, maximal and average.
Execution. Finally, we need to know what is the execution style, so that we
can define the correct operator for all options. The choices for execution style
in Class 3 are again the same as in Class 1.
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The three parts now straightforwardly define an algebraic structure (D, o, e)
that we use to construct the attribute domain (D,0,e,0,e 0, e).

Example 5. Consider the question “What is the maximal energy consumption
for the scenario depicted in Figure 1 (left), knowing that sharing of power is im-
possible?” Both, the proponent’s as well as the opponent’s actions may require
energy. We assume that being “Internally Connected”, performing an “Outsider
Attack” and running a “Firewall” all consume 20kWh. Obtaining “User Creds”
requires 1kWh, whereas “Stealing Server” does not require any energy. These
numbers constitute the basic assignment for the considered attribute. From the
question we know that, when we have a choice, we should consider the option
which consumes the most energy. Furthermore, since sharing of power is impos-
sible, values for actions which require execution of several subactions should be
added. Thus, we use the attribute domain Aerg = (R, max, +, max, +, +, +)
and compute the maximal possible energy consumption in the scenario as

erg (VP (AP(IC, UC), SS)) =
max{+(20kWh, 1kWh), 0kWh, +(20kWh, 20kWh)} = 40kWh.

Due to similarities for modality and execution style for questions of Class 1
and Class 3, we can make use of Table 1, to choose the structure (D, o, ) that
determines an attribute domain for a question of Class 3. The table corresponds
to the case where the owner is the proponent.

7 Methodological Advancements for Attack Trees

ADTrees extend the well-known formalism of attack trees [26] by incorporating
defensive measures to the model. Hence, every attack tree is in particular an
ADTree. Underspecified questions are not a new phenomenon of ADTrees, but
already occur in the case of pure attack trees. Thus, the formalization of quanti-
tative questions, proposed in this paper, is not only useful in the attack—defense
tree methodology but, more importantly, it helps users of the more widely spread
formalism of attack trees.

Given a well-specified question on ADTrees and the corresponding attribute
domain, we can answer the question on attack trees as well. Formally, attack
trees are represented with terms involving only operators VP and AP. If A, =
(Da, VB, AR VO A P ) is an attribute domain for ADTerms, the correspond-
ing attribute domain for attack trees, as formalized in [21], is Ay = (Dq, VB, AR).
Furthermore, due to the fact that attack trees involve only one player (the at-
tacker), the notions of attacker, proponent, and question’s owner coincide in this
simplified model. This in turn implies that, in the case of attack trees, the three
classes of questions considered in this paper form in fact one class.

8 Prototype Tool

In order to automate the analysis of security scenarios using the attack—defense
methodology, we have developed a prototype software tool, called ADTool. It
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is written in Java and is compatible with multiple platforms (Windows, Linux,
MAC OS). The ADTool is publicly available [18]. Its main functionalities include
easy creation and efficient editing of ADTrees and ADTerms as well as automated
evaluation of attributes on ADTrees.

The ADTool combines the features offered by graphical tree representations
with mathematical functionalities provided by ADTerms and attributes. The
user can choose whether to work with intuitive ADTrees or with formal ADTerms.
When one of these models is created or modified, the other one is generated au-
tomatically. The possibility of modular display of ADTrees makes the ADTool
suitable for dealing with large industrial case studies which may correspond to
very complex scenarios and may require large models.

The software supports attribute evaluation on ADTrees, as presented in this
paper. A number of predefined attribute domains allow the user to answer ques-
tions of Classes 1, 2 and 3. Implemented attributes include: costs, satisfiability,
time and skill level, for various owners, modalities and execution styles; sce-
nario’s satisfiability and success probability; reachability of the root goal in less
than x minutes, where x can be customized by the user; and the maximal energy
consumption.

9 Conclusions

A useful feature of the attack—defense tree methodology is that it combines
an intuitive representation and algorithms with formal mathematical modeling.
In practice we model attack—defense scenarios in a graphical way and we ask
intuitive questions about aspects and properties that we are interested in. To
formally analyze the scenarios, we employ attack—defense terms and attribute
domains. In this paper, we have guided the user in how to properly formulate a
quantitative question on an ADTree and how to then construct the corresponding
attribute domain. Since attack trees are a subclass of attack—defense trees, our
results also advance the practical use of quantitative analysis of attack trees.
We are currently applying the approach presented in this paper to analyze
socio-technical weaknesses of real-life scenarios, such as Internet web filtering,
which involve trade offs between security and usability. In the future, we also
plan to investigate the relation between attribute domains of all three classes and
the problem of equivalent representations of a scenario, as formalized in [15].
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A Attack—Defense Scenarios Formally

In this section we recall formal definitions related to our methodology. For more
details and explanatory examples we refer the reader to [15]. To formally repre-
sent and analyze ADTrees, typed terms over a particular typed signature, called
the AD-signature, have been introduced in [14]. To be able to capture ADTrees
rooted in an attacker’s node as well as those rooted in a defender’s node, we dis-
tinguish between the proponent (denoted by p), which refers to the root player,
and the opponent (denoted by o), which is the other player. For instance, for the
ADTree in Figure 1 (left), the proponent is the attacker and the opponent is the
defender. Conversely, if the root of an ADTree is a defense node, the proponent
is the defender and the opponent is the attacker.

Furthermore, given a set S, we denote by S* the set of all finite strings over S,
and by € the empty string. For s € S, we denote by s a string composed of a
finite number of symbols s.

Definition 1. The AD-signature is a pair X = (S, F), where
— S ={p,0} is a set of types, and
— F=BPUB° U {VP,AP V° A° cP,c°} is a set of function symbols, such that
the sets BP, B® and {VP, AP, VP A° A° cP c®} are pairwise disjoint.
Every function symbol F € F is equipped with a mapping rank: F — S8* x §,
where rank(F') is defined as a pair (in(F'),out(F')). The first component of the

pair describes the type of the arguments of F' and the second component describes
the type of the values of F'. We have

rank(b) = (g,p), for b € BP, rank(b) = (g,0), for b e B°,
rank(VP) = (p™, p), rank(V°) = (o™, 0),
rank(AP) = (p™, p), rank(A°) = (o™, 0),
rank(c?) = (po,p), rank(c®) = (op,0).

Given F € F and s € S, we say that F is of type s, if out(F) = s. The
elements of BP and B° are typed constants, which represent basic actions of the
proponent’s and opponent’s type, respectively. By B we denote the union BPUB°.
The functions* VP, AP, v°, and A° represent disjunctive and conjunctive refine-
ment operators for the proponent and the opponent, respectively. We set p = o
and o = p. The binary functions c?, for s € S, represent countermeasures and are
used to connect components of type s with components of the opposite type s.

Definition 2. Typed ground terms over the AD-signature X are called attack-
defense terms (ADTerms). The set of all ADTerms is denoted by Ts.

For s € {p, o}, we denote by T%. the set of all ADTerms with the head symbol of
type s. We have T, = T%,UTS.. The elements of T%, and T$, are called ADTerms
of the proponent’s and of the opponent’s type, respectively. The ADTerms of the
proponent’s type constitute formal representations of ADTrees.

4 In fact, symbols VP, AP, V°, and A° represent unranked functions, i.e., they stand for
families of functions (V})ren, (A})ken, (V) ken, (AR)ken.
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Ezample 6. Consider the ADTree given in Figure 1 (left). The corresponding
ADTerm is t = VP(AP(IC, UC), SS, c?(OA,FW)). The entire ADTerm, and all six
subterms AP(IC, UC), ¢c?(OA,FW), IC, UC, SS, and OA, are of the proponent’s
type. Term ¢ also contains a subterm of the opponent’s type, namely FW.

In order to facilitate and automate quantitative analysis of vulnerability sce-
narios, the notion of an attribute for ADTerms has been formalized in [14]. An
attribute expresses a particular property, quality, or characteristic of a scenario,
such as the minimal costs of an attack or the expected impact of a defensive
measure. A specific bottom-up procedure for evaluation of attribute values on
ADTerms ensures that the user, for instance a security expert, only needs to
quantify the basic actions. From these, the value for the entire scenario is de-
duced automatically. Attributes are formally modeled using attribute domains.

Definition 3. The tuple Ay = (Do, VB, AR, VO AS P c2), where D, is a set

of values and, for s € {p,o}, Vi, A5 are unranked operations on D, and c® are
binary operations on Dy, is called an attribute domain for ADTerms.

Let Ay = (Do, VE,AR VO AS cB ) be an attribute domain for ADTerms.
The bottom-up computation of attribute values on ADTerms is formalized as
follows. First, a value from D, is assigned to each basic action, with the help
of function 8,: B — D,, called a basic assignment. Then, a recursively defined

function «: Tx, — D, assigns a value to every ADTerm ¢, as follows

Bal(t), ift € B,
() —  Vala(t). o a(t), =),
a /\gz(a(tl)a"'aa(tk))? ift:/\s(tla"'atk)a

C‘;(a(tl),a(tg)), ift= Cs(tl,tg),

where s € {p,o} and k& > 0. The example below illustrates the bottom-up
procedure for an attribute called satisfiability.

(1)

Ezxample 7. The question “Is the considered scenario satisfiable?” is formally
modeled using the satisfiability attribute. The corresponding attribute domain
is Asat = ({0, 1}, V, A, V, A, %, %), where x(z,y) = x Ay, for all z,y € {0,1}. The
basic assignment g, : B — {0, 1} assigns the value 1 to every basic action which
is satisfiable and the value 0 to every basic action which is not satisfiable. Us-
ing the recursive evaluation procedure defined by Equation (1), we evaluate the
satisfiability attribute on the ADTerm from Example 6. Assuming that all basic
actions are satisfied, i.e., that Ss.t(X) = 1 for X € {IC,UC, SS, OA,FW}, we ob-
tain sat(VP(AP(IC, UC), SS, cP(OA, FW))) = V(A(Bsat (IC), Bsat (UC)), Bsat (SS),
*(Bear(OA), Buat (FW))) = V(A(1,1), 1,%(1,1)) = V(1,1,0) = 1.

The satisfiability attribute, as introduced in the previous example, allows us to
define which player is the winner of the considered attack—defense scenario. If
the satisfiability value calculated for an ADTerm is equal to 1, the winner of the
corresponding scenario is the proponent, otherwise the winner is the opponent.
In Example 7, the root attack is satisfied, so the winner is the attacker.
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Abstract. Most networks are connected to the Internet through fire-
walls to block attacks from the outside and to limit communication initi-
ated from the inside. Because of the limited, supposedly safe functionality
of the Domain Name System protocol, its traffic is by and large neglected
by firewalls. The resulting possibility for setting up information channels
through DNS tunnels is already known, but all existing implementations
require help from insiders to set up the tunnels. This paper presents a
new Metasploit module for integrated penetration testing of DNS tun-
nels and uses that module to evaluate the potential of DNS tunnels as
communication channels set up through standard, existing exploits and
supporting many different command-and-control malware modules.

Keywords: domain name system, tunneling, Metasploit, network
penetration.

1 Introduction

Private computer networks are under constant attack. Sometimes attackers try
to setup so-called bind connections externally, with which they try to connect
to listening sockets in the local network [20]. In other attacks infected local
computers or malicious insiders try to set up reverse connections to an external
computer [20]. The StuxNet command-and-control (C&C) malware was injected
into a local network through a USB key, after which it set up connections to
the home network to receive further commands and to leak private data [21].
Botnets are another well known type of C&C malware.

Two common methods to protect against such attacks are firewalls [1] and
Intrusion Detection and Prevention Systems (IDPS) [8]. Firewalls permit or
block network traffic based on protocols, blacklists and whitelists. IDPS are
based on rule sets that describe suspicious network behavior. All network traffic
is scanned by an IDPS, and as soon as a sensor picks up suspicious actions, the
actions are interrupted and the network administrators are informed.

One commonly used network protocol is DNS, or Domain Name System [15,16].
The main functionality provided by DNS servers is to translate computer names
such as www.icisc.org to the [IPv4 address 164.125.70.63. This enables people and
configuration files to rely on names instead of hard to remember addresses. Most

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 65-77, 2013.
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often, a local network has one local DNS server. When some client in the local
network needs an address translation, he queries the local DNS server with a so-
called lookup request. The server knows which external DNS servers to access for
information on external addresses in different domains, and forwards the queries.
When the contacted external DNS server is authorized for the requested (domain)
name, it returns the response to the query. If that server is not authorized, it re-
turns a link to another DNS server, that is in turn queried by the local server.
This iterative process continues until an authoritative server returns the final an-
swer. An important property is that DNS servers can only respond to queries with
appropriate responses. They can, in other words, not initiate any communication
themselves, and the type of any response they provide must correspond to the type
of the lookup.

On the one hand, the DNS protocol thus provides very limited services. For
this reason, firewalls or IDPS in practice rarely check or filter DNS traffic origi-
nating from the local DNS server. On the other hand, the iterative nature of DNS
can be used to hide connections with malicious DNS servers behind connections
with the local server and with external, legitimate servers.

This potential for abuse has been exploited by so-called DNS tunnels [2,6,11,12],
in which local computers exchange information with malicious DNS servers through
a form of steganography. The local computer transmits information by embedding
it in the domain names for which it queries the malicious DNS server, and the server
transmits information by encoding it in the responses it returns, such as domain
name aliases or textual descriptions of properties. To the best of our knowledge,
all existing implementations require explicit insider cooperation to set up a DNS
tunnel, and support only limited forms of communication.

In this paper, we present a staged attack we developed in the popular Metas-
ploit Framework (MSF) for penetration testing [19]. This attack can leverage
almost all known software vulnerabilities for which exploits are present in MSF.
Furthermore, it supports the installation of C&C modules in MSF through a
DNS tunnel, as well as tunneling those modules’ traffic through the tunnel.
With this proof-of-concept attack, we demonstrate for the first time that DNS
tunnels are a threat even when all legitimate users of a network are benign.

In the remainder of the paper, Section 2 provides background information
on DNS, DNS tunneling, and MSF. Section 3 discusses the different stages of
our attack. Section 4 reports statistics on the traffic generated with our attack.
Finally, Section 5 draws conclusions.

2 Background and Related Work

2.1 Domain Name System Tunneling

DNS servers store information about computer domain names and their ad-
dresses in so-called zone files. Type A records in those files specify (32-bit IPv4)
address and name translations such as the fact that www.icisc.org corresponds
to IPv4 address 164.125.70.63. AAAA records do the same for 128-bit IPv6 ad-
dresses. Canonical Name or CNAME records specify aliases, such as the icisc.org
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alias of www.icisc.org. MX or Mail eXchange records specify which servers to
use as mail servers and what their priorities are. TXT records can specify a wide
range of properties in the form of strings. Typically, these are used to specify
constraints on the behavior of mail servers in the Sender Policy Framework [24].
Finally, NS records specify for which domain a DNS server is authorized.

Clients can issue lookup requests for any type of these records with one DNS
packet, which is typically transmitted via the UDP protocol [18]. The response
to a lookup can only consist of a packet with a record of the same type.

Besides header information, CNAME and TXT packets contain reasonably
long strings corresponding to domain names. The other types of packets contain
mainly short IP addresses or are so exotic that using them would be too suspi-
cious. So only CNAME and TXT lookups and responses can be used to achieve a
reasonable communication bandwidth through a DNS tunnel. For example, some
piece of malware installed on a client computer can leak the password qwerty123
to the malicious nameserver.evildomain.com DNS server by sending a TXT
lookup for passwd.qwerty123.evildomain.com. Being the authoritative DNS
server for evildomain. com, this DNS server is the last server in the iterative DNS
lookup process to receive the lookup. Instead of treating the lookup as a real DNS
lookup, this server extracts the communicated information passwd.qwerty123
from the query. He then sends back information, such as a reboot command em-
bedded in the TXT response v=spfl mx a:reboot.lpm.evildomain.com -all,
of which the legitimate meaning is that only local mail servers and the external
host reboot.1pm.evildomain. com are allowed to send email from senders with
email addresses from that same domain, such as m.romney@evildomain. com.

To use DNS servers and the DNS protocol as a covert, stealthy communication
tunnel, the software implementing the tunnel should exhibit similar behavior as
regular DNS traffic. Over ten periods of time, we recorded 10x500 MB of DNS
traffic data on our department’s local DNS server, which serves our administra-
tion and a wide range of research labs accros multiple campuses. We observed
that in those periods, TXT records constituted 1-2% of all traffic, CNAME
records constituted 20-30%, and A records constitute 38-48%. Furthermore,
around 25% of the traffic constituted AAAA records (most of which in support
of the Kerberos authentication protocol), and the remaining 5% was spent on
NS records. This is in line with other experiments [25].

This implies that a stealthy DNS tunnel can use some TXT records, which
can embed longer strings, but that it should mainly rely on CNAME records.
This also implies that most if not all information communicated through a DNS
tunnel must be encoded in the form of acceptable domain names. We will discuss
the practical implications in Section 3.

2.2 Prior Implementations

DNS Cat by Ron Bowes consists of a server and a client application [6]. The
client application needs to be invoked explicitly by a user with the domain name
of the malicious DNS server (on which the server application runs). The client
application is then attached to another process such as a shell, which is from
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then on controlled through the tunnel instead of locally. It obtains its standard
input from the attacker at the server side through CNAME and TXT response
packets sent through the DNS tunnel, and at the same time its standard output
is redirected through the tunnel using similar corresponding lookup packets.

DNS Cat can be used in practice to communicate through a DNS tunnel. For
example, in hotels with payed internet access, which typically do not filter or
block DNS traffic, customers can get online through DNS Cat. The customer
can do so because he has full control over a local computer such as his laptop on
which he can launch DNS Cat with the appropriate settings. In other words, the
customer is a malicious insider. Without help from insiders, however, attacking,
e.g., company networks with DNS Cat is not possible.

tep-over-dns also requires users to start a server-side and a client-side applica-
tion [2]. Unlike DNS Cat, however, tcp-over-dns enables tunneling any TCP /TP
connection through its DNS tunnel. This eases the tunneling of, e.g., browser
sessions involving HTTP packets. tcp-over-dns is hence more user-friendly for
hotel customers that want (to steal) free Internet access. It is, however, still not
useful for attacking company networks without the help from insiders. Iodine [12]
(formerly NSTX) and OzymanDNS [11] suffer from the same limitation.

Furthermore, all of these implementations run on the client side as a separate
process, which makes them visible to any user or antivirus software.

2.3 DNS Anomaly Detection

Several techniques have been proposed in the past to detect anomalies in DNS
traffic, including tunnels and symptoms of other computer network infections.
Some work focuses on relating DNS traffic to real-world events, such as the
Tiananmen Square protests [27] or network defects [22]. Detection of network
scanning worms has been based on their relatively low number of DNS re-
quests [4,28]. This is obviously not applicable for DNS tunnels, which will operate
precisely by executing numerous DNS requests. Fast-flux is a popular and rel-
atively new cyber-criminal technique to hide and protect their critical systems
behind an ever-changing network of compromised hosts acting as proxies. The
ICANN Security and Stability Advisory Committee gives a clear explanation of
the technique [10]. Jose Nazario and Thorsten Holz did some interesting measure-
ments on known fast-flux domains [17]. Fast-flux techniques are mainly orthogo-
nal to the actual launching of (DNS) tunnels and communication through them.
The approach by Villamarin-Salomon and Brustoloni focuses on abnormally high
or temporally concentrated query rates of dynamic DNS queries [26]. This does
not suffice, however, since such patterns also occur for legitimate purposes. Choi
et al. check for multiple botnet characteristics based on Dynamic DNS, fixed
group activity and a mechanism for detecting migrating C&C servers [7]. They
claim that their method works, but the computational demands and process-
ing time seem to prevent it from scaling to large networks. Born and Gustafson
propose to use character frequency and N-gram analysis for detecting covert
channels in DNS traffic [5]. Their method detects patterns that do not occur in
natural languages and are therefore considered anomalous. Master students van
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Fig. 1. Metasploit architecture

de Heide and Barendregt provide a preliminary evaluation of the aforementioned
techniques without, however, measuring actual implementations [25].

To the best of our knowledge, no existing literature discusses how difficult it
is to set up a DNS tunnel without the help of insiders.

2.4 Metasploit

In contrast with existing DNS tunnel implementations, we present an approach
that enables outsiders to set up attacks over DNS tunnels without the willing
help from insiders. We implemented this approach in MSF [19]. MSF is an open-
source framework developed for security experts to ease penetration testing. It
consists of a range of tools and modules programmed in Ruby, C and assembler
that allow different components of attacks to be reused and combined in differ-
ent ways. Fig. 1 depicts the MSF architecture. Different (server-side) interfaces
are available in the form of a console, a command-line interface (CLI), a web-
interface, and a GUI. The most important components for our purpose are the
code fragments that will be executed on the client side:

Exploits are small code fragments that can exploit vulnerabilities to take over
control of an attacked computer. These fragments can be embedded, e.g., in
PDF documents to exploit PDF reader vulnerabilities.

Payloads are the code fragments that attackers want to execute once they have
obtained a certain level of control over a machine. There are different types
of payloads: Stagers try to set up a communication channel between the
attacker and the victim as part of a bootstrap process, over which they load
stages. Stages make up the actual C&C software that gets installed and
launched by the stager, such as shell scanning accounts or a spam bot.

Encoders can convert the encoding of a payload without changing its func-
tionality. They consist of packers and unpackers that encrypt and decrypt
code to thwart antivirus software, but also of simpler transformations such
as removing null bytes from code, to avoid that those bytes are interpreted
as the end of a string when trying to exploit buffer overflow vulnerabilities.

NOPs are encoders that can increase the size of payloads to requested sizes by
inserting no-operation instructions that do not change the behavior of the
payload. This is useful for buffer overflow attacks on fixed sized buffers.
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Fig. 2. Bootstrap procedure of our attack

In March 2012, MSF support was added to transmit stages through a DNS
tunnel with TXT records [3]. However, that implementation cannot bootstrap
from existing, small exploits and does not provide a fully functional, bidirectional
DNS tunnel to the stage for later communication of commands and data.

3 Our Staged Attack

This section presents a generic, two-stage DNS-tunneling attack that attack-
ers or security researchers can set up by means of existing exploits of software
vulnerabilities, such as buffer overflows, and that can serve as a hidden commu-
nication channel for any type of C&C malware. The first stager is very small to
allow us to combine it with as many as possible existing MSF exploits. It installs
a second stager which is much larger. This stager install a generic DNS tunnel
and offers an interface for existing MSF C&C stages to the tunnel. Moreover,
the software implementing the tunnel and the interface remain resident (but
hidden!) on the attacked computer even when the originally exploited software,
such as a PDF reader, is terminated. The source code of our MSF components
is available at https://github.com/azerton/metasploit-framework. As for
integration into MSF, it still needs polishing with respect to code guidelines.
As is common for local MSF exploits, we assume that we can inject a small
exploit of a software vulnerability into the network under attack. This injection
can happen through mail attachments, web sites infected with drive-by malware,
phishing web sites, PDF documents on USB sticks, etc. Injecting this code frag-
ment is orthogonal to the remainder of the attack, and is out of scope of this
paper. In the remainder of this section, we discuss the bootstrap process that
follows the code injection, as depicted in Fig. 2. We focus on the software we
developed to run the computer under attack, i.e., the stagers, as the server side
consists mostly of standard MSF functionality adapted slightly for our purpose.

3.1 Stage 1: DNS Stager

The DNS stager is the piece of code that will be injected in a process on the
victim computer together with the exploit to hijack that process. The most
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Fig. 3. Step 4: Downloading of the DLL stager by the DNS stager
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commonly used technique to inject code is by means of buffer overflows. At the
time of writing, about 68% of all MSF exploits rely on buffer overflows.

Targeting buffer overflows constraints the stager. First, many targeted buffers
are small. Hence the stager has to be made as small as possible to fit as many as
possible buffer overflow exploits. Secondly, many buffer manipulation functions
in software treat certain characters in a special way. For example, string copying
ends on a null byte, and FTP-servers treat ampersands and newline characters
differently. So some characters should preferably not occur in the stage. Finally,
the stager’s code has to be as platform-independent as possible, and directly
executable at any address at which it is injected. In our case, we opted for
position-independent x86 assembly code (PIC) that targets Windows systems.

Starting from Ron Bowes’” DNS Cat stager implementation that was only
suitable to stage short shell scripts encoded as ASCII text [6], we have written a
stager consisting of 168 x86 assembler instructions that occupy 518 bytes. This
stager is capable of coordinating steps 3) and 4) in Fig. 2.

Some additional features our stager supports are the transmission of binary
data (e.g., the DLL stager’s code) through TXT packets by means of NetBIOS
coding and decoding, supports for ten times more TXT packets than DNS Cat
to enable the transmission of the bigger DLL stager, and allocation of much
more heap memory for storing large MSF payloads.

The actual transmission of the DLL stager under coordination of the DNS
stager is depicted in Fig. 3. All transmitted packets are numbered to compen-
sate that the UDP protocol does not guarantee delivery, ordering or duplicate
protection. While CNAME records are stealthier as discussed above, we use TXT
packets for this first stage of the attack because parsing TXT records is easier,
and hence can be done with less code than parsing CNAME records. We have
chosen to limit the packet data length to 200 bytes in our implementation, but
this can easily be adapted. This is much shorter than the theoretical upper limit
of 64K bytes per TXT packet because we observed that many software imple-
mentations in DNS servers cannot handle atypically long packets, and because
IDPSs might consider atypically long DNS packets as suspicious. Switching to
even shorter packets will increase the number of packets and hence the amount
of time needed to transfer and install the DLL stager. This can be problematic
for exploits that result in the process they hijacked being killed. If the process
is killed before the DLL stager is up and running, the attack will fail.



72 D. Raman et al.

Finally, we should note that the NetBIOS [14] coding we use is not the most
efficient way to encode binary data in ASCII strings with respect to communica-
tion bandwidth. It converts each 4-bit nibble into an ASCII character by adding
0x41 to it. So it uses only 16 of the more than 26 lowercase + 26 uppercase +
10 digits + punctuation possible values. There are two reasons for using this
encoding. NetBIOS decoding is simple enough to be supported in the very small
stager of 168 instructions. Secondly, domain names are case-insensitive. For ef-
ficiency reasons, e.g., to save space in caches, DNS server software typically use
normalized lower-case names. Hence upper-case characters risk not surviving the
passage through DNS servers not controlled by the attacker.

3.2 Stage 2: DLL Stager

The DLL stager differs significantly from the DNS stager with respect to the
way in which it is programmed, launched and executed. Whereas the first, DNS
stager was programmed in PIC assembly to be injected and executed directly
in the hijacked process, the second stager is too complex to be programmed in
assembler. And whereas the DNS stager only has to provide a tunnel for itself,
i.e., a tunnel that only supports loading the DLL stager, the DLL stager has to
set up a more generic tunnel for use by the stages, keep that tunnel alive, and
offer the stages an interface to it. For the latter two reasons, the DLL server needs
to stay alive even after the originally hijacked process is killed. But it should
stay alive in a way that is not easily detected, and hence not in a new, separate
process. In other words, the DLL stager has to be injected into and operate in
another, longer running process on the victim computer. The most convenient
way to inject code into a running process and execute it, is by means of reflective
DLLs [9,23]. Reflective DLL injection is a library injection technique in which the
concept of reflective programming is employed to perform the loading of a library
from memory into a host process. As such the library is responsible for loading
itself by implementing a minimal Portable Executable (PE) file loader [13]. We
implemented the second stager as such a reflective DLL, hence the name DLL
stager.

When the 168 instruction DNS stager has downloaded the DLL stager via
DNS, this DLL stager is launched (step 5 in Fig. 2). This stager is responsible
for downloading one or more MSF stages as shown in Fig. 4. It will do so in a
very similar way as the DNS stager, but there are some significant differences.
First, CNAME packets will be used instead of TXT records to avoid detection.
This implies that also in the responses, a considerable amount of space is spent
on repeating domain names. Secondly, besides order numbers, the communicated
domain names also includes session numbers, which allows an attacker to set up
multiple concurrent sessions from within the same network. Furthermore, both
the DNS server and the DLL stager add a third random number between 0 and
100 to the transmitted domain names to prevent the DNS servers from caching
requests [6]. This enables the DLL stager to load multiple different stages if
wanted. What remains of the 63 characters that are available in a CNAME packet
is filled with useful information, such as the GETPAYLOAD and the NetBIOS string
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DNS server DLL stager
[] 7.1) CNAME: 3.0.17.GETPAYLOAD.evildomain.com []

7.2) encodes
bytes of stage 7.3) CNAME: 3.0.23.AABBCC.evildomain.com 7:4) decodes and

stores the bytes
7.6) encodes 7.5) CNAME: 3.1.56.GETPAYLOAD.evildomain.com

next bytes E 7.7) CNAME: 3.1.87.DDEEFF.evildomain.com 7.8) decodes and
of stage :l stores the bytes

7.9) CNAME 3.<#parts>.44.EOF.evildomain.com

Fig. 4. Step 7: Downloading of the stage by the DLL stager

AABBCC that represents stage code in Fig. 4. On the server side, MSF encoders
automatically ensure that the transmitted stages (which over time may evolve
independently from the DLL stager in the MSF) are in the least vulnerable
format as chosen by and from the perspective of the attacker. This facilitates
the integration and maintenance cost of our DNS and DLL stagers in the MSF.

When the DLL stager has downloaded a stage (step 7 in Fig. 2), it injects it
as a new thread in the same application in which the DLL stager was injected
itself, as chosen by the DNS stager. This injection is step 8 in Fig. 2. From that
point on, the DLL stager becomes the bridge between the stage and the DNS
tunnel. Internally, that phase of the DLL stager is designed as two cooperating
components, as depicted in Fig. 5.

The DNS tunnel client is responsible for setting up and keeping alive the DNS
tunnel. It implements the encoding and decoding of all information transmitted
and received through CNAME packets, as was done for loading the stage(s).
The component uses session numbers and packet order numbers to overcome
reliability issues of the UDP protocol and to support multiple sessions. Further-
more, this component implements a form of polling through the DNS tunnel. In
the DNS protocol, DNS servers can only respond to queries from clients. This
means that a malicious DNS server cannot initiate any communication with a
C&C client. Many such clients are designed to wait for commands from a server,
however, without explicitly asking for such commands. In other words, stages in
Fig. 5 might simply be sleeping and waiting to be woken up by a command. To
allow the server to send commands that wake up sleeping clients, the DNS tun-
nel client sends lookups to the server of an initiated session on a regular basis.
Whenever the server wants to send a command, it does so in a response to the
polling lookup, which the DLL stager then forwards to the stage.

To facilitate the communication between client stages and servers without
having to adapt the stages to the fact that they use a DNS tunnel, a second
DLL stager component offers a TCP abstraction of the tunnel client. As a result,
stages only have to communicate with socket pairs, which is a fairly standard
method. To implement this component without having to implement all base
functionality ourselves, we relied on the standard winsock2 library.

As a whole, this stager consists of two parts: the reflective loader present
only to install the stager, and the stager itself. Like the DNS stager, the reflec-
tive loader consist of manually engineered PIC (in this case written in heavily
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DLL stager

() generic DNS tunnel )(-—) DNS.tunne] le—| TCPabstraction [€T> stages
client sockets

Fig. 5. Components of the DLL stager

constrained C code). Whenever this code wants to perform an APT call, it first
computes the address of the callee itself. These features are necessary because
the reflective loader is invoked without its binary code getting relocated by the
standard OS loader [13]. By avoiding the use of the standard OS loader, we also
avoid the need to embed full PE headers in the binary and it allows us to put the
DLL on the standard heap instead of on separate pages. Avoiding the standard
loader, full headers and separate pages make the DLL stager much stealthier
for antivirus software, which typically attaches itself to the standard loader to
monitor the binaries being loaded.

In a first attempt, we implemented the second part, i.e., the DLL stager com-
ponents, in C++. While this was very productive from a software-engineering
perspective, the compiled DLL stager proved to be too big. This posed no tech-
nical problems, but it did increase the number of TXT packets that had to be
transmitted to download the DLL stager, which increases the change of being
detected. We therefore reimplemented the DLL stager in C, which resulted in
an acceptable total binary size of 61KB.

4 FEvaluation

To evaluate our implementation, we have set up our own subdomain DNS server
with the free www.afraid.org service for static and dynamic DNS domain and
subdomain hosting. This DNS server was the authoritative server for the azerton-
tunnel.chickenkiller.com domain, a relatively long name that has to be included
in each DNS lookup. We use the Google DNS server at 8.8.8.8 as a primary DNS
server. This service is free and requires no authentication, which is perfect for
an automated attack. In an alternative experiment, we installed a server and
client locally, such that all information is sent directly from victim to server and
back, without being delayed by external DNS severs. We refer to the first and
second experiments as the global and local experiments respectively. In both
experiments, the stage consisted of a small shell that runs C&C commands to
obtain system information, of which the output is transmitted to the attacker
through the DNS tunnel.

4.1 Throughput

First, we measured the maximal throughput we obtained with the described
staged attacks, i.e., the amount of useful data an attacker can transmit. This
excludes, e.g., the overhead bytes to embed the purposely long domain name
azertontunnel.chickenkiller.comin the packets and the packet headers. To
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Table 1. Observed throughputs

phase DNS stager DLL stager shell

record type TXT CNAME CNAME

data DLL stager shell system info & polling
data size 61KB 0.23KB 40KB

local throughput 8.14 KB/s 0.80 KB/s 3.34 KB/s
global throughput 0.68 KB/s 0.68 KB/s 2.18 KB/s

100%
M Normal DNS traffic

80% [ —
DNS tunneling traffic

60%

40%

"l

0%

[1-10] [11-20] [21-30] [31-40] [41-50] [51-60] [61-70] [71-80]

Fig. 6. Histogram of CNAME packet lengths

measure the throughout of the C&C shell, we ran an automated script on the
attacker’s side. In the evaluated implementation, the TXT records were limited
to 200 bytes of useful information per DNS packet, and the CNAME records
to 16 bytes, which we estimated to result in non-suspicious packets. Table 1
presents the throughput results.

The most important observation is that TXT records used by the DNS stager
proved to give higher throughput only on the local network. It is unclear why the
DNS stager in the global experiment is slowed down to the same level as the DLL
stager. We suspect that it has to do with prioritization in DNS servers. As delays
in A records and in CNAME records are typically more noticeable to clients,
DNS servers might be handling those with higher priority. Further research is
needed to clarify this. Even when we don’t understand the cause of this behavior
completely, we can conclude from this experiment that for global attacks, the
DNS stager might as well use CNAME records. This will not slow the attack
down, while at the same time making the attack more stealthy. As discussed in
Section 3, it does increase the risk of attacks not succeeding, however.

Furthermore, we observe a shell C&C throughput of 2.18 KB/s, which is
plenty for many real-world attacks, such as for stealing passwords, credit card
numbers, and PINs by means of keyloggers.

In our experiments, the stage itself obtains a higher throughput than the DLL
stager obtains while loading the stage. The reason is that the DLL stager’s code
that handles the stage’s data handles this data more efficiently than the code in
the DLL stager that downloads the stage itself.

4.2 Packet Sizes

With interactive C&C sessions, rather than automated attack scripts, we mea-
sured the DNS packet sizes to evaluate their stealthiness. The packet sizes,
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Fig. 7. Histogram of TXT packet lengths

including the overhead of domain names but not the fixed size headers, are
depicted in Figs. 6 and 7.

It is clear that even with a limitation of 200 and 16 bytes per TXT and
CNAME record, the packet lengths of tunneled traffic are easily distinguished
from normal traffic. So IDPS could, in theory, easily detect and block our tunnel.

To prevent this, an attacker can in practice rely on CNAME packets only,
which will in practice not lower his throughput as discussed above, limit the
number of useful bytes per packet and use a shorter domain name than our pur-
posely long azertontunnel.chickenkiller.com. He might then reach a lower
throughput than 2.18 KB/s, but it will still be enough to obtain the most valu-
able, privacy-sensitive information.

5 Conclusions and Future Work

With the presented proof-of-concept Metasploit prototype, we have demon-
strated that it is possible to set up fully functional DNS tunnels to private
networks starting from small local exploits such as buffer overflows, i.e., without
the willing help from insiders, and to use those tunnels for command-and-control
attacks. This provides a strong incentive for firewalls and intrusion detection
systems to start monitoring the often neglected DNS traffic. Our current im-
plementation is probably not stealthy enough to avoid detection by adapted
protection systems, but there seems to be plenty of room (i.e., bandwidth) to
make it stealthier, so more research in this direction is needed in the future.
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Abstract. Monetary theft attacks are one of the most popular attack forms to-
wards Android system in recent years. In this paper, we present MeadDroid, a
lightweight real-time detection system atop Android, to hold back this type of
attacks. An FSM of monetary theft attacks is constructed, based on the analysis
of real-world attacks. Employing an FSM-based detection approach, with the
information obtained from dynamically monitoring the API calls and tracking
the processing flow of UI (User Interface) inputs, MeadDroid can detect mone-
tary theft attacks effectively and incurs only a small performance overhead. In
addition, realized as an extension of Dalvik VM, MeadDroid is transparent to
the user, and thus can provide a good user experience. Based on a prototype
system, experiments are conducted with 195 popular Android applications. 11
applications with monetary theft attacks are found and the detection accuracy is
almost 100% through comparing the results with the charge bill of the phone
number used in the experiments. The performance overhead on a CPU-bound
micro-benchmark is 8.97%. Experimental results demonstrate that MeadDroid
has good performance in terms of effectiveness and efficiency.

Keywords: Monetary Theft Attack, DVM, Android, API Calls Monitoring,
FSM.

1 Introduction

With the prevalence of Android applications [1] and loose management of Android
Market, Android has become the preferred target of malicious codes attacks [4].
Among all these attacks, monetary theft attacks are one of the most popular forms [3].
The target of monetary theft attacks is subtracting extra fees from users’ accounts
stealthily. In a typical monetary theft attack, the malicious codes usually subscribe to
or consume many uncalled-for paid services without notifying the users. Thus, a large
amount of monetary losses to users are caused furtively, and the adversaries can get

* This work was supported by National Natural Science Foundation of China (Grant No.
70890084/ G021102, 61003274 and 61003273) and Strategic Priority Research Program of
Chinese Academy of Sciences under Grant XDA06010702.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 78-91, 2013.
© Springer-Verlag Berlin Heidelberg 2013



MeadDroid: Detecting Monetary Theft Attacks in Android by DVM Monitoring 79

great monetary benefits from the service fees. Because of the generous returns, mone-
tary theft attacks have attracted more and more attackers. For example, on April 8§,
2012, China’s national television CCTV has reported monetary theft attacks of hand-
set with a special news program [2]. Especially, a malicious code mentioned in the
report, called ‘ShiRenYu’, subtracts 50 Million Yuan per year from the users’ ac-
counts stealthily. Several other classic monetary theft attacks in Android are shown in
[15].

Current research mainly focuses on two fields as follows: i) Android security mod-
el analysis, such as the permission-based security model and code signature mechan-
ism analysis [6-11]; ii) privacy protection [12, 13]. However, the current Android
permission and code signature mechanisms cannot hold back monetary theft attacks
effectively. The privacy protection technology is also not suitable for monetary theft
attack defense. There is also some work on detecting malicious applications on An-
droid OS [19-24]. However, these methods are usually time-consuming and are not
suitable to be deployed on the resource-constrained mobile platforms. In order to hold
back monetary theft attacks timely and effectively, a real-time and lightweight attack
detection method is needed.

In this paper, a lightweight monetary theft attack detection system called Mead-
Droid (Monetary Theft Attack Detection System) is presented. The realization of
MeadDroid faces three challenges.

Firstly, MeadDroid should be able to detect monetary theft attacks effectively and
with low overhead. We achieve this by two findings that monetary theft attacks share
some common behavior patterns which can be described as an FSM (Finite State Ma-
chine), and these behavior patterns can be detected through DVM (Dalvik Virtual
Machine) monitoring. An FSM based attack detection approach is introduced in
MeadDroid. As a behavior-based detection system, MeadDroid is more efficient than
the signature-based systems. A typical monetary theft attack is usually launched
through SMS (Short Message Service)-related operations, but with abnormal behavior
patterns. In Android, SMS-related operations are conducted by calling Java APIs, and
Java APIs are all interpreted and executed in DVM [18]. Thus, we can detect the ma-
licious API calls entirely by DVM monitoring. Meanwhile, as SMS-related APIs are
only a small portion of APIs, dynamically monitoring in MeadDroid incurs low over-
head.

Secondly, monetary theft attacks are always launched stealthily. MeadDroid must
be able to detect this stealth effectively. The stealth of a monetary theft attack can be
obtained by two features: the SMS contents being not inputted by the user or the SMS
sending operations being not initiated manually through UI operations. Two tagging
technologies are introduced in MeadDroid to detect these two features respectively.

Finally, the attack detection process should be transparent to the user, in order for
good user experience. Being implemented as an extension of DVM, MeadDroid can-
not be felt by the user, and can be compatible with Android applications well.

The main contributions of this paper are summarized as follows.

1. An FSM is designed according to the malicious behavior patterns extracted from
real-world attacks, and is used as the foundation in monetary theft attack detection.
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2. A lightweight real-time dynamic monetary theft attack detection system, MeadDro-
id, is implemented. Realized as an extension of DVM, MeadDroid can detect the
attack behaviors effectively, while the overhead to Android system incurred by the
detection system is negligible.

3. Experiments are conducted to evaluate the effectiveness and efficiency of the sys-
tem with 195 Android Applications. Experimental results demonstrate that the per-
formance of MeadDroid in effectiveness and efficiency is very good.

The rest of this paper is organized as follows: Section 2 describes the overall architec-
ture of MeadDroid in detail, Section 3 describes the implementation of MeadDroid,
Section 4 evaluates the performance of MeadDroid with a series of experiments, Sec-
tion 5 describes the related work, and Section 6 concludes this paper with a brief
summary and an outline of future work.

2 The Design of MeadDroid

We seek to design a lightweight detection system that can detect monetary theft at-
tacks effectively. So that it can be deployed on the resource constrained mobile plat-
forms in real-time. In this Section, we discuss the design of MeadDroid.

In our discussion, we assume that malwares always launch attacks from the appli-
cation level, rather than embed the malicious codes in the DVM or Linux Kernel.
Meanwhile, we assume that the SMS-related operations are all achieved by calling
Java APIs provided in Android, for realization of an SMS stack in Android is compli-
cated. Therefore, the attack behaviors can be detected entirely in DVM on the hypo-
thesis that the kernel and DVM are secure.

2.1  The Principles of MeadDroid Design
Three principles are considered during the design of MeadDroid:

1. Lightweight. Smartphone platforms are usually resource-constrained. Thus, the
overhead of MeadDroid should be minimal to make it feasible for real-world dep-
loyment. Furthermore, MeadDroid is an extension of DVM, in which all applica-
tions are interpreted and executed. High overhead will affect all of the applications.

2. Completeness & accuracy. The traces of monetary theft attacks are complex. The
number of APIs involved in monetary theft attacks is 25, and the SMS-related op-
erations can be completed by calling APIs directly or using Intents indirectly.
Therefore, the monitoring system must cover all available traces of the attacks, so
that, MeadDroid can get enough information to identify the malicious behaviors of
the attacks accurately.

3. Good User Experience. MeadDroid should preferably be transparent to App level
of Android. So, the user operations on the Android with MeadDroid deployment
will be the same as that on normal Android. Meanwhile, the Apps need not any
modification to adapt to the MeadDroid, and thus the feasibility of deployment of
MeadDroid can be enhanced significantly.
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2.2  The Architecture of MeadDroid

In order to satisfy the three design principles, MeadDroid is implemented as an exten-
sion of DVM and composed of three function modules: App behaviors monitoring,
malicious behaviors detecting and responding modules. The technical idea of Mead-
Droid is monitoring the operations in an application dynamically and detecting the
malicious behaviors based on FSM detection. The App behaviors monitoring module
can obtain enough dynamic information during the execution of an application, and
provide it to the malicious behaviors detecting module. Then, the malicious behaviors
included in an application can be detected by the detecting module based on FSM
detection. If an attack is identified, necessary corresponding actions can be taken by
responding module to hold back the attack. The dynamic information of an applica-
tion execution includes the API calls, and the processing flow of UI inputs. Both the
monitoring of API calls and tracking of UI inputs can be achieved in DVM. So, the
detection of MeadDroid is Completeness & accuracy. The FSM based detection en-
sures that MeadDroid is lightweight. Finally, the DVM level implementation makes
MeadDroid transparent to App level.

App Behaviors Monitoring
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Fig. 1. The architecture of MeadDroid

The architecture of MeadDroid is shown in Fig. 1. The core of the architecture is the
Malicious Behaviors Detecting module. This module is implemented based on an FSM
of monetary theft attacks. The details of the FSM will be described later. With the
information provided by the two monitoring sub modules and two databases on SMS-
related patterns, FSM will be transited from one state to one state. If a malicious state
is reached, the Responding module located at the right of Fig. 1 will be initiated to
hold back the attack. Because the previous comparison information can be reused fully,
the efficiency of FSM based detection is higher than the signature based detection.

UI inputs monitoring sub module is used to judge the SMS-related operations are
initiated by the user or not and the contents of the SMS messages are inputted by the
user or not. A three-level operation tagging and tracking technology is employed in
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MeadDroid to track the operations triggered by Keyboard & Touch-screen operations.
Meanwhile, a data tagging and tracking technology is introduced to track the contents
inputted through UI. The implementation of these two tagging technologies will be
described in Section 3.3. This sub module can provide enough accurate information to
the malicious behaviors detecting module to distinguish the origin of an SMS sending
operation.

Abnormal SMS API calling patterns monitoring sub module is used to monitor the
SMS-related API calls in an Android application. The API calling patterns, such as
the frequency and the sequence of the API calls, are the important foundation of the
attack detection. All API calls can be monitored by this module. However, in order to
keep MeadDroid lightweight, only the information on SMS-related API calls is pro-
vided to the core detecting module.

Based on the data provided by the above 2 monitoring modules, we can detect
stealthy SMS-related API calls in an application. Then, the malicious SMS Body and
Address databases are used to detect whether the SMS messages processed in the
APIs are abnormal. The content and address of an SMS message can be gotten by
parsing the parameters of the SMS-related APIs, the details will be described in Sec-
tion 3.2. Through comparing the content and address of an SMS message with the
Malicious SMS databases, a questionable SMS message can be identified.

2.3  FSM of Monetary Theft Attacks

FSM is the core of the MeadDroid. In this Section, the details of the FSM design will
be described.

Two malicious operations are involved in a monetary theft attack. One is SMS
sending, the other is SMS hijacking.

As for SMS sending, one can send an SMS message by calling the APIs or by
sending a specific Intent to start corresponding activity to complete the message send-
ing. The later can be detected by monitoring the APIs named ‘StartActivity()’ and
‘startActivityForResult()’. Therefore, all of the SMS sending operations can be de-
tected with API calls monitoring. Both the normal and malicious SMS sending opera-
tions are implemented by APIs calling. In order to distinguish the malicious SMS
sending operations from normal SMS sending operations, the behavior patterns of the
SMS sending operations should be extracted, which include UI tags, SMS sending
frequency, SMS body and address. A malicious SMS sending pattern is a path from
initial state to the malicious state in FSM.

As for messages hijacking, one can hijack the incoming messages in two ways:
hijacks messages with ‘BroadcastReceiver’, and hijacks messages with ‘ContentOb-
server’ and ‘ContentResolver’. In the first way, one can register a ‘BroadcastReceiv-
er’ in the Android application to receive SMS messages. By setting the priority of
the intentfilter of ‘BroadcastReceiver’ to the highest, this application can receive the
SMS messages firstly. When receiving the messages, the ‘onReceive()’ method of the
‘BroadcastReceiver’ will be invoked. Then the attacker can check the bodies and
addresses of the messages, and then discard the specific messages by calling ‘ab-
ortBroadcast ().
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In the second way, the attacker can register a ‘ContentObserver’ to monitor the
changing of the SMS database in Android. When the SMS database is changing, such
as a new incoming message is inserted, the ‘onchange()’ method of the ‘ContentOb-
server’ will be invoked. In the ‘onchange()’ method, the attacker can delete the SMS
messages from the database with the ‘ContentResolver.delete()’ method or mark them
as read-done with the ‘update()’ method, before they are pushed to the user.

According to the processes of malicious operations involved in monetary theft at-
tacks, the FSM is designed, as illustrated in Fig. 2.

“SMS Body”
Is not Inputted from UI
(Content Tag=0) “SMS Address’ € Send SMS Too Frequently
&& . Address Patterns Library or ‘SMS Body’” €
API calls are not triggered Body Patterns Library

through UI operations
(Mtag=0 && Ttag=0)

Default Default

‘SMS Address’” €
Address Patterns Library or ‘SMSBody' €
Body Patterns Library

Call SMS
Sending APIs

Get User Permission

Default

Default

Call API: abortBroadcast()

Default Super Class:  Android content BroadcastReceiver
Call API: onReceive(Context context, W
Super Class: Android content BroadeastReceiver SMS Address’ €

ent Action= android provider Telephony SMS RECEIVED Address Patterns Library or “SMS Body’ €
Body Patterns Library '

Call API: onChange() Default
super class: android database ContentObserver

“SMS Address” €
Call APT: Android content ContentResolver delete() Addhes I,,mi::mhm o ‘SMSBody' &

Body Patterns Library

Call APT: Android content ContentResolver update()

Default To Mark The SMS Message to Read Done

Fig. 2. FSM of Monetary Theft Attacks

The initial state of the FSM is 1. When an SMS sending API call is detected, the
state of the FSM will be transited to 2. If the SMS body isn’t inputted from UI (which
means the Tag of the SMS content is 0), and the calling of SMS sending APIs isn’t
triggered by UI actions (which means the Mtag of the SMS sending API and the Ttag
of the thread sending SMS are both 0, the meanings of Mtag and Ttag are described in
Section 3.3), the state will be transited to 3 further. Otherwise, the SMS sending API
call will be permitted and the state will be backed to 1. If the state 3 is reached, the
SMS sending frequency is checked, and the SMS body and address are parsed out. If
the SMS sending frequency is too high, the state will be transited to M, i.e. the
process is infected with monetary theft attack codes. If the SMS body or address is
included in the pattern databases, the state will be transited to 4. If the above two
conditions are not satisfied, the state will be also backed to 1. When the state 4 is
reached, an alarm will be popped to the user. If the permission is gotten from the user,
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the SMS sending API call is permitted as that in state 2. Otherwise, the state will be
transited to M.

If the method ‘onReceive()’ or ‘onChange()’ is called, as shown in Fig. 2, the state
of the FSM will be transited to 5 or 7. If the method ‘abortBroadcast()’ is called in
state 5, or the method ‘delete()’ or ‘update()’ is called, an SMS receiving hijack may
happen. With the SMS body and address parsing, the SMS receiving hijack can be
proved further. When an SMS receiving hijack happens, the state will be transited to
M and an attack is detected. If no abnormal actions happen, all states in the SMS re-
ceiving hijack detection path will back to initial state 1 by default.

3 System Implementation

The architecture of MeadDroid is illustrated in Fig. 1, and implementing this architec-
ture needs to address several system challenges, including: a) monitoring points
selecting, b) API calls detecting and parameters parsing, c) Ul inputs tagging and
tracking. Solutions to these challenges should guarantee that MeadDroid is
lightweight enough to be deployed on the mobile platforms. The remainder of this
section describes our solutions to these challenges.

3.1 Monitoring Points Selecting

As described in Section 2.2, there are two ways to call a Java API in Android, by
calling directly from Java codes and by calling from native codes via JNI. In both
ways, the methods are pushed into the interpreted stack before executed. Thus, the
pushing operation of the interpreted stack is a suitable point to monitor the Java API
calls of an application. In fact, the pushing operation of the interpreted stack is im-
plemented in two points. For the API calls in Java codes, the pushing-operation codes
are included in the hardware-related part of Dalvik, ie. the file ‘Andro-
id\dalvik\vm\mterp\out\InterpC-portstd.c’. As for the API calls from native codes, the
pushing operation is complete in the common part of Dalvik, i.e. the file ‘Andro-
id\dalvik\vm\Interp\Stack.c’. Thus, the monitoring codes are added to these two
points to cover all pushing operations of the interpreted stack completely.

In order to keep lightweight, only the API calls are monitored instead of all Java
codes in the application. At the same time, only the API calls related to SMS opera-
tions are checked with the FSM introduced in Section 2.3.

3.2  API Calls Detecting and Parameters Parsing

There is a hierarchical relationship among the SMS-related APIs. For example, when
the method ‘sendTextMessage()’ is called, the method ‘sendText()’ will be called
certainly to complete the SMS sending operation. According to the hierarchical rela-
tionship among these SMS-related API calls, only the low-level API calls are
processed in MeadDroid. Thus, the overhead of MeadDroid can be reduced further,
while without hurting the detection accuracy.
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Every time a method is called, a method frame is pushed into the interpreted stack.
The method name and parameters are all included in the method frame. By parsing
the method frame, the parameters of the method are gotten. As for parameters of the
class data type, only the references are stored in the interpreted stack and the real
instances are stored in the DVM heap. In this case, the reference tables are used to
access the instances to get details of the parameters. However, this process is time-
consuming. Therefore, in our system, only the necessary parameters of the SMS-
related APIs are parsed to keep lightweight.

3.3 Ul Inputs Tagging and Tracking

An event handle function will be triggered in a real UI operation. Thus, in a normal
SMS sending operations initiated by the user, we can detect that obtaining of the SMS
body or calling of the SMS sending APIs are triggered in the event handle function.

In MeadDroid, we firstly detect the UI operations by monitoring Linux Input Sub-
system; then we introduce two tagging and tracking technologies to track the contents
inputted and API calls triggered in the event handle function.

UI Operations Detecting

Detecting of the UI operations composed of following two steps:

1. Monitor the writing operations to ‘/dev/input/” in Linux kernel. The UI input event
is first written into ‘/dev/input/’ by Linux kernel. On the hypothesis that the kernel
is secure, this operation cannot be forged by the attackers.

2. Detect the event handle functions triggered by the input events. The processing
flow from the input events recorded by the Linux kernel to the handle functions
triggered involves multiple processes, and thoroughly tracking this flow is time-
consuming. Through hundreds of times experiment, we found that the time span
between the above two operations is less than 5Sms, while the time span between ei-
ther two UI operations is more than 15ms. Therefore, it is possible and convenient
to use the time information in the event to determine whether an event handle func-
tion is triggered by the specified input action. And this approach is employed in
our MeadDroid system.

Data Tagging and Tracking

For tracking of SMS content, we use a data tagging approach. After inputted by the
user, the SMS content is stored into a data structure. We add a special tag to the data
structure, and propagate it through normal SMS sending processes in Android. Final-
ly, when the inputted content is processed by SMS sending APIs as a parameter, we
check the tag to determine whether it is originated from the user manipulation. This
tagging technology just needs to track one kind of data, and a small fragment of the
processing flow of the data. Therefore, comparing with TaintDroid, our tagging tech-
nology is more lightweight.
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Operations Tagging and Tracking

For tracking the operations triggered in the event handle functions, we introduce a
three level tagging technology. In a normal SMS sending process, the SMS sending
operation will be triggered through one of the following three ways: 1) directly calling
the SMS sending APIs in the handle functions; 2) creating a new thread to launch the
SMS sending operations; 3) sending a message to tell an existing thread to call the
SMS sending APIs. As shown in Fig. 3, we introduce three tags to mark for the above
three scenarios, which are ‘Mtag’, ‘“Ttag’ and ‘Msgtag’. We add an ‘Mtag’ tag to each
method in the interpreted stack to indicated whether it is triggered by the event handle
functions. The ‘Mtag’ of a method is set to 1, if the method is an event handle func-
tion or ‘Mtag’ of the calling method is 1. In the interpreted stack, all methods in the
position between pushing and popping of one method are called by the method. We
add a ‘Ttag’ to each thread, threads created in one method will have the ‘Ttag’ being
set to 1, if the ‘Mtag’ of the method is 1, otherwise the “Ttag’ will be set to 0. We add
an ‘Msgtag’ to the message, and all messages sent in the method with ‘Mtag’ 1 or in
the thread with “Ttag’ 1, will have the ‘Msgtag’ being set to 1. Then, we will check
the message’s ‘Msgtag” when the message handle function is called, and set the func-
tion’s ‘Mtag’ to 1 if the message’s ‘Msgtag’ tag is 1. With this tagging approach, we
can track all the operations triggered by the event handle functions, either with ‘Mtag’
being set to 1, or with ‘Ttag’ being set to 1. On the contrary, if an action, including
the SMS sending action, is launched stealthily, both the ‘Mtag’ of the method and the
‘Ttag’ of the thread calling the method will have value 0.

Threadl (Ttag=0) Thread2 (Ttag=0)
Interpreted Stack Interpreted Stack
Create Thread 3
Pop Out Mtag=0 Thread Ttag=0 Mtag=0 Pop Out
“OnKeyDown” hE ssage’
' o Create Thread 4 handleMessage
Mtag=1 Thread Ttag=1 Mtag=1
Other Method Other Method
Mtag=1 Mtag=1
Method OnKeyDown” Send Message | Method “handleMessage’
Push Mtag=1 Msgtag=1 Mtag=1 < Push
“OnKeyDown” Method 1 Mothod 1 “handieMessage”
Mtag=0 Mtag=0
Mtag=0 Mtag=0
Method 2 Send Message | Method ‘handleMessage’
Mtag=0 Msgtag=0 o Mtag=0 Push

- ‘handleMessa

e’

Fig. 3. Tagging and Tracking the Operations Triggered in the Event Handle Functions

With above technologies, we can determine whether an SMS-related operation is
initiated by the user, on the hypothesis that the kernel is secure.

4 Evaluation

Experiments are conducted to evaluate the effectiveness and efficiency of the
system, on a Google Nexus S smart-phone running Android OS Version 2.3.4.
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The experimental results demonstrate that MeadDroid can effectively detect monetary
theft attacks in Android with reasonable overhead.

4.1 Experiment Sample Set Generation

We downloaded the most popular free applications of 12 categories from the App-
China [25] in August 2012 to generate the experiment sample set. In order to launch
the SMS-related operations in an application, SMS-related permissions must be ap-
plied for in an application and declared in its manifest.xml. To make the sample set
more effective, we check the manifest.xml of each application, and screen out the
applications without SMS-related permissions. 1200 applications are downloaded,
and 195 (16.25%) of them have applied for the SMS-related permissions, which are
included in the sample set.

4.2  Effectiveness Evaluation

Conducting experiments for 195 applications manually is time-consuming. Thus, a
script-based tool is constructed to conduct the experiment process automatically. The
atomic tool is composed of three parts: i) installing the applications with “adb install”
command; ii) running the applications automatically with Android monkey event
generator; iii) uninstalling the applications with “adb uninstall” command. The total
time to execute these applications is about two weeks.

11 applications with attack behaviors are found in the experiments. 7 of them just
initiate SMS sending operations, and send an SMS message every time they are
launched. 3 of them contain SMS sending and hijacking behaviors. Especially, one
application starts a background service to send SMS messages to ‘12114’ periodically
after it is fired. All the SMS bodies of these SMS operations are not inputted from UI,
and all SMS operations are initiated stealthily. 1 application is detected to contain
SMS hijacking behaviors only. This application checks all of the incoming SMS mes-
sages and aborts the messages from “10*#*#’,

In order to evaluate the detection accuracy, we modify MeadDroid to just log the
malicious behaviors detected rather than hold back them. Then, we compare the de-
tection results with the charge bill from communication service provider. The com-
paring results show that the malicious SMS sending operations detected are consistent
with the charge bill of the phone number used in the experiments, which means
MeadDroid achieves almost 100% detection accuracy and low false positive rates in
protecting the applications from monetary theft attacks.

Like most dynamic detection technology, MeadDroid may not cover the entire at-
tack paths completely. However, our system can detect and hold back the attack
behaviors effectively, whenever these behaviors are executed really.
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4.3  Efficiency Evaluation

Efficiency is another factor that should be paid enough attention, because MeadDroid
is a solution running on resource-limited platforms. Experiments are conducted to
evaluate the efficiency of MeadDroid.

MeadDroid is implemented as an extension of Dalvik VM. Therefore, we evaluate
the efficiency by comparing it with normal Android Dalvik VM. Java Microben-
chmark is a classic metric used to evaluate the performance of Java VM. Caffeine-
Mark 3.0 for Android [26] is adopted to generate the scores of Java Microbenchmark.
CaffeineMark uses an internal scoring metric only useful for relative comparisons.
The experimental results are shown in Fig. 4.
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Fig. 4. Microbenchmark of the overhead on Normal Dalvik and Dalvik with MeadDroid

The results are consistent with design expectations. The overhead incurred by
MeadDroid is almost zero for the benchmarks dominated by arithmetic and logic
operations. The string benchmark experiences more overhead, which is due to the
memory comparisons that occur in the method name and parameters detection. Be-
cause API calls monitoring is the most important task in MeadDroid, the method
benchmark experiences the greatest overhead.

The “overall” benchmark indicates cumulative score across all individual bench-
marks. CaffeineMark documentation indicates that the score of “overall” benchmark
roughly corresponds to the number of Java instructions executed per second. Here, the
normal Android system has an average score of 891, while the score of MeadDroid is
811. MeadDroid has an 8.97% overhead with respect to the normal system, which is a
reasonable efficiency.

5 Related Work

Malicious detection on Android has attracted considerable attention since 2008.

Some researchers provide permission based methods to detect the malicious beha-
viors in the Android applications [20, 28]. These methods deduced the behaviors of an
application according to the permissions requested by the application. In [20],
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Enck et al. proposes a lightweight malicious detection system Kirin. It reads applica-
tion permission requirements during installation and checks them against a black list
of malicious patterns that is in the form of permission combinations. However, this
installation inspection can be bypassed easily. Moreover, accuracy of this method is
not very perfect, because many applications often request uncalled-for permissions
and the permission mechanism can be bypassed in some case.

Some other work [5-8] analyzes the applications by statically analyzing Android
source codes, Dalvik bytecodes or Java bytecodes converted from Dalvik bytecodes.
These methods usually target for overall security analysis of Android applications,
and can’t handle the codes being confused or packed and malicious attacks based on
time or event-triggered. The detection accuracy of these methods is largely affected
when using Java reflection in the codes, and they are usually large time and resource
consuming. Therefore, these static analysis approaches are not adapted to real-time
monetary theft attack detection.

A few dynamic methods [12, 13] are proposed for malicious detection. TaintDroid
[13] uses system-wide dynamic taint tracking to identify privacy leaks in Android
applications. [12] is a further work based on TaintDroid, and also targets for privacy
disclosure detection. The proposed system, MeadDroid, is also a dynamic detection
system, but it is different from TaintDroid in the following aspects: 1) MeadDroid
targets for monetary theft attacks and can hold back this type of attacks effectively in
real-time, while TaintDroid targets for privacy protection and only tracks the private
data in system without taking any measure to hold back privacy disclosure. 2) Mead-
Droid is a behavior-based detection system, and it detects the attacks through dynami-
cally monitoring the behaviors of an application execution. TaintDroid is a data track-
ing system, which only focuses on the private data. 3) MeadDroid is a light-weight
scheme and can be deployed easily on smart-phone platforms.

There are also some methods based on monitoring events occurring on Linux-
kernel level [19, 22, 23]. These methods are often resource expensive and are not
suitable for resource-constrained environment.

6 Conclusion

Monetary theft attacks are one of the most popular attacks in Android in the recent
period. To address this, we present MeadDroid, an efficient and effective system, to
detect monetary theft attacks. A key design goal of MeadDroid is efficiency. Mead-
Droid achieves the high efficiency by dynamically monitoring the API calls of an
application and comparing them with a monetary-theft-attack FSM. We also use our
MeadDroid implementation to study the behaviors of 195 third-party applications
with SMS-related permissions. The efficiency and effectiveness of MeadDroid are
validated with experiments, and the experimental results demonstrate that MeadDroid
possesses a good performance at efficiency and effectiveness.

Many other SMS-based attack forms are emerging, such as privacy information
stealing. In our future work, we will extend MeadDroid to other SMS-related
attack detection. In addition, an attack may be implemented on native codes level
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completely and this attack cannot be detected by our current scheme. Although the
native level attacks are difficult and very rare currently, a Linux kernel based scheme
with the same technology idea has been put on our agenda.
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Abstract. Techniques have been proposed to find the semantic differ-
ences between two binary programs when the source code is not available.
Analyzing control flow, and in particular, intra-procedural control flow,
has become an attractive technique in the latest binary diffing tools since
it is more resistant to syntactic, but non-semantic, differences. However,
this makes such techniques vulnerable to simple function obfuscation
techniques (e.g., function inlining) attackers any malware writers could
use. In this paper, we first show function obfuscation as an attack to
such binary diffing techniques, and then propose iBinHunt which uses
deep taint and automatic input generation to find semantic differences
in inter-procedural control flows. Evaluation on comparing various ver-
sions of a http server and gzip shows that iBinHunt not only is capable
of comparing inter-procedural control flows of two programs, but offers
substantially better accuracy and efficiency in binary diffing.

Keywords: binary diffing, semantic difference, taint analysis.

1 Introduction

Binary diffing tools for finding semantic differences between two programs have
many security applications, e.g., automatically finding security vulnerabilities
in a binary program given its patched version [17], large-scale malware indexing
with function-call graphs [20], automatically adapting trained anomaly detectors
to software patches [24], profile reuse in application development [33], etc. How-
ever, binary diffing is difficult due to different register allocation, semantically
equivalent instruction replacement, and other program obfuscation techniques
which make semantically equivalent programs syntactically different [17].

One of the latest solutions in binary diffing for finding semantic differences
is to find similarity/difference in control flow structure rather than binary in-
structions [14,12,17,20]. Such tools have the advantage of being resistant to se-
mantically equivalent instruction replacements and other program obfuscation
techniques, and therefore are more suitable in security analysis in which pro-
grams (potentially malware) are usually intentionally produced to make analysis
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difficult. An interesting aspect we analyze in this paper is whether such analysis
should be based on inter-procedural control flow or intra-procedural control flow.

Most previous work [14,12,17,20] focus on the intra-procedural control flow.!
There is a good reason for this choice as the control flow comparison usually in-
volves maximum common subgraph isomorphism, an NP-complete problem [18].
Working with all basic blocks in an inter-procedural control flow graph (ICFG)
would require manipulation of graphs with thousands or tens of thousands of
nodes, where finding a graph isomorphism becomes impractical. Working with
basic blocks in an intra-procedural control flow graph (CFG), instead, is prac-
tical as the number of nodes does not usually go beyond hundreds. However,
comparing the control flow structure of basic blocks in each function is vulner-
able to function obfuscation techniques (e.g., function inlining) that could be
used in producing the binary programs under analysis. This is a serious problem
as applying some function obfuscation, e.g., function inlining, is extremely easy.

In this paper, we first demonstrate the attack of function obfuscation on bi-
nary diffing tools that compare intra-procedural control flow. We then propose
a new binary diffing technique called iBinHunt that is resistant to such an at-
tack. iBinHunt discards all function boundary information and compares the
inter-procedural control flow of binary programs. It uses deep taint, a novel dy-
namic taint analysis technique that assigns different taint tags to various parts
of the program input and traces the propagation of these taint tags to reduce
the number of candidates of basic block matching. With deep taint, the set of
matching candidates of each basic block changes from the set of all basic blocks
in a program (in the order of thousands or tens of thousands) to just a few basic
blocks on a particular execution trace with the same taint tag. To increase the
coverage of execution traces on basic blocks, iBinHunt automatically generates
program inputs that traverse different execute paths for the deep taint analysis.

We implemented iBinHunt and used it to compare various versions of a http
server and gzip. Results show that iBinHunt finds semantic differences by an-
alyzing the inter-procedural control flows with better accuracy, and is capable
of comparing binary programs with relatively large differences, an improvement
over previous techniques which are only shown to work on programs with small
changes. We also show that iBinHunt is more efficient and faster in finding basic
block matchings than previous techniques by a factor of two.

2 Existing Binary Diffing Tools and Function Obfuscation

We focus on binary diffing tools for finding semantic differences instead of syn-
tactic differences. Semantic differences refer to differences in functionality (i.e.,
input-output behavior), whereas syntactic differences refer to those in instruc-
tions [17]. Therefore we do not consider binary diffing tools that base its analysis
on the binary instructions (bsdiff, bspatch, xdelta, JDiff, etc.), because they are

! Some of them zoom in to do intra-procedural control flow analysis first, and subse-
quently zoom out for inter-procedural control flow analysis where each procedure is
represented as a simple node with details ignored.



94 J. Ming, M. Pan, and D. Gao

more vulnerable to different register allocation, basic block re-ordering, func-
tionally equivalent instruction(s), and other instruction obfuscation techniques.

2.1 Existing Binary Diffing Tools Based on Control-Flow Structure

To find semantic differences between two binaries, some latest binary diffing
techniques [14,12,27,17] base their comparison on intra-procedural control-flow
structure. BinDiff [14] and its extension [12] use some heuristics (e.g., graphs with
the same number of basic blocks, edges, and caller nodes) to test if two graphs
or basic blocks are similar. BinHunt [17] compares basic blocks by symbolic ex-
ecution and theorem proving, and then compares intra-procedural control-flow
graphs to find the matchings between basic blocks. Call graphs are then com-
pared to find matchings between functions. DarunGrim?2 [21,11] relies heavily on
function boundary information due to its simplicity. For basic blocks in every
function, DarunGrim2 first generates a fingerprint to abstract the instruction
sequences and then uses that as a key to a hash table, from which fingerprint
matching is performed to find differences in the two functions. Intra-procedural
control-flow graphs have also been used frequently in malware clustering and
classification [20,2,5,22] because it’s more resilient to instruction-level obfusca-
tions. SMIT [20] searches for the most similar malware samples by finding a
nearest-neighbor in malware’s function-call graph database. Kruegel et al. [22]
present an approach based on the analysis of a worm’s intra-procedural control-
flow graph to identify structural similarities between different worm mutations.

2.2 Function Obfuscation

Binary diffing tools based on control-flow structure are more resistant to different
register allocation, basic block re-ordering, functionally equivalent instruction(s),
and other instruction-level obfuscation techniques. However, most of them rely
heavily on function boundary information from the binary, i.e., they analyze the
intra-procedural control-flow structure of each function. We believe that this is
mainly due to efficiency of the graph comparison techniques used. The graph
comparison problem (and the subgraph isomorphism problem) is NP-complete.
Existing algorithms for subgraph isomorphism are efficient only in processing
small graphs [23,28,17]. Appendix A shows the number of basic blocks in dif-
ferent functions in a typical server program binary, which suggests that graph
isomorphism is practical when analyzing intra-procedural control flows.

However, function boundary information is not reliable due to well-studied
function transformation obfuscation techniques [9], which include

— Inlining functions: a function call to f is replaced with the body of f while
f itself is removed;

— Outlining functions: a new function f is created by extracting a sequence
of statements into f and replacing them with a function call to f;

— Cloning functions: copies of the same function are created (with different
names) to make them appear as different functions;
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— Interleaving functions: various function bodies are merged into one func-
tion f, while calls to these functions are replaced by calls to f.

Here we focus on function inlining and outlining because they have a large impact
on graph isomorphism as discussed in Appendix B.

3 Diffing Binary Programs with Inter-Procedural
Control-Flow Graphs

In Section 2.2, we discuss the function obfuscation attacks which existing binary
diffing tools based on intra-procedural control-flow analysis cannot deal with.
A natural solution to such attacks is to find repetitions of code sequences and
combine them into one subroutine (to combat function inlining and cloning),
and to flatten the hierarchical structure created by functions and to simply treat
function calls as execution jumps (to combat function outlining and interleaving).
After this there is only one graph left for each binary program containing all
basic blocks and the corresponding control flows, and this graph is essentially
the inter-procedural control-flow graph (ICFG).

However, such a simple solution has disadvantages in both accuracy and ef-
ficiency. Each basic block in one binary program will have a large number of
candidates of basic block matchings in the other binary program. Even if all
these candidates are examined, there could be multiple ones that are semanti-
cally similar that originally come from non-matching functions. However, since
function information is ignored, all these basic blocks are good candidates and
may make the result inaccurate. We also need to work on graph isomorphism of
two graphs with large number of nodes. We tried this with BinHunt [17], one of
the latest and most sophisticated binary diffing tools with graph isomorphism,
and found that after working for 6 hours on basic block comparison with a desk-
top computer with a Core2 Duo CPU of 3.0 GHz and RAM of 4 GB on a server
program thttpd, only 7% of the possible mappings had been compared.

3.1 Overview of iBinHunt

iBinHunt reduces the number of candidates of basic block matchings with a novel
technique called deep taint. Taint analysis is to dynamically trace data from
untrustworthy sources to monitor basic blocks in a program that process such
data [26,7,35,31,16,13]. We monitor the execution of the two binary programs
under a common input and use taint analysis to record all basic blocks involved
in the processing of the input. This reduces the number of candidates of basic
block matching from all basic blocks in the binary to those tainted.

iBinHunt goes one step further to assign different taint tags to various parts
of the input, a method we call deep taint. Deep taint differentiates various parts
of the input by assigning them different taint tags, and monitors propagation of
different taint tags to basic blocks on a dynamic trace. Only basic blocks from
two binary programs that are marked with the same taint tags are considered
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matching candidates. This further reduces the number of candidates of basic
block matchings by a factor of up to 74% in our experiments.

Deep taint and the taint tags help reduce the number of matching candidates.
However, only a small number of basic blocks are on the trace of the processing of
a single input, and we need to find the matching of a large number of basic blocks
(if not all) to make the graph isomorphism efficient. iBinHunt increases the
coverage of execution traces on tainted basic blocks by automatically generating
inputs that result in different execution traces in the binary program, a technique
inspired by recent advances in white-box fuzz testing [19]. We first record the
execution trace of a seeding input, and then symbolically replay the recorded
trace and collect constraints of the input that lead to the recorded trace. The
collected constraints are then negated and solved with a constraint solver to
generate a new input, which will result in a different execution trace due to
the negated constraint. A large number of inputs can be generated in this way,
making more and more basic blocks tainted with different taint tags.

Next, we present the details of deep taint and automatic input generation.

3.2 Deep Taint for Basic Block Comparison

Previous taint analysis treats taint sources as streams, e.g., byte streams from
keyboard, effectively tainting all input bytes with a single taint tag. Basic blocks
processing different parts of such input will therefore be tainted with the same
taint tag. In iBinHunt, we differentiate these basic blocks if they process different
parts of the input. For example, basic blocks that process the version field of
an http request should never match with basic blocks that process the host
field of the same http request. Differentiating these basic blocks will reduce the
number of candidates of basic block matchings.

Table 1 shows an example of the different taint tags assigned to various parts
of an http request. Each unique taint tag corresponds to a particular bit in
a binary number that allows disjunction manipulation. Deep taint works on
the protocol level with a finer granularity such that various protocol fields are
monitored with different taint tags. The process of locating different fields of the
program input can be automated with a protocol analyzer [10,34,4].

Table 1. Program input and its taint tags

Input Get index.html HTTP/1.1
Field Method URL Version Host
Taint tags 0001 0010 0100 1000

Multiple taint tags for a basic block. By monitoring the dynamic execution of
an input, we can see the propagation of different taint tags to basic blocks in
the program. Note that a basic block may appear multiple times on a dynamic
execution trace due to loops. Such a basic block may record the same taint tag
in the execution (when it processes the same part of the input in a loop) or
different taint tags (when it processes different parts of the input).
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Figure 1 shows an example of this in our experiment with thttpd-2.25. The
highlighted instructions in the source code is located inside a for loop, which
executes multiple times in the processing of an input and records multiple taint
tags. The dynamic execution trace we obtained recorded four different taint tags
for a basic block BB_10088, which corresponds to the highlighted instructions in
the source code. We take the disjunction of these tags to obtain the final taint
representation for the corresponding basic block.

bufgets:

for (i = hc->checked_idx; hc->checked_idx < he->read_idx; ++hc->checked_idx ){
¢ = he->read_buflhc->checked_idx];
if (¢=="\012"|| c=="015")

Dynamic Trace Basic Blocks
Mapping To ICFG
BB_364: taint tag 0001

Basic Block in ICFG
BB_10088

BB_10088:

L H 0, 0, - i
Mapping*mov  0x8(%ebp),%eax Mapping > Tags: 1111

mov  0x94(%eax),%eax
cmpb  $0xa,-0x1(%ebp)
je  0x80530e5

Fig. 1. Multiple taint tags

Basic block comparison. As mentioned in Section 3.1, basic blocks from the
two binary programs that have the same taint representation will be candidates
for matching. We compare these candidate basic blocks by applying the same
algorithm as BinHunt [17], in which symbolic execution is used to represent the
outputs of a basic block in terms of its symbolic inputs, and a theorem prover is
used to test if the outputs from the two basic blocks are semantically equivalent.
Although this basic block comparison might take relatively long time to converge
(due to the use of a theorem prover), the number of comparisons is limited to
the small number of blocks with the same taint representation, and therefore
iBinHunt is more efficient (see Section 4 for our evaluation results).

Basic block matching. There are two other groups of blocks we need to consider
for finding matched blocks. One group consists of blocks that are not semanti-
cally equivalent but have the same taint representation. They could very likely
represent the differences between the two programs that iBinHunt is trying to
locate. Another group consists of blocks that are not tainted but are on the
dynamic execution trace. These blocks are not tainted due to various reasons,
including limitations of taint analysis to avoid taint explosion [6,29], not directly
processing program inputs (e.g., signal processing), etc. However, they are also
very likely to match with one another as they are on the dynamic trace of pro-
cessing the same input. Appendix C shows an example of these two groups of
blocks in thttpd-2.19 and thttpd-2.25.
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One way of dealing with these two groups of blocks is to define a matching
strength for basic block comparison, and consider two blocks matching when the
matching strength exceeds certain threshold; an approach used in BinHunt [17].
We do not use this approach because 1) iBinHunt emphasizes using control-flow
structural information rather than comparing binary instructions in basic blocks,
and 2) the setting of such a threshold is difficult and different settings may lead
to different results. Instead, we apply a more stringent requirement that basic
blocks b1 and by are considered matched to one another if by and by have the
same taint representation (possibly both non-tainted) and

— by and by are semantically equivalent (evaluated by symbolic execution and
theorem proving as explained above); or

— a predecessor of b; and a predecessor of b, match; or

— a successor of by and a successor of by match.

We want to see how far we can go with such a stringent definition of matching.
Note that it is possible that some matching blocks are not found unless a relaxed
definition is used, which can be easily applied in iBinHunt for practical usage.

3.3 Automatic Generation of Program Inputs

Although deep taint reduces the number of matching candidates in basic block
comparison, it only helps finding the matchings for basic blocks on the corre-
sponding execution trace. Therefore, deep taint applied to more program inputs
is needed. However, random inputs are not the most desired because they may
result in the same execution paths. We need to find inputs that traverse different
paths in the binary program, which is a similar requirement to those in program
testing where test cases are needed to cover more program execution paths.

White-box exploration on binary files has been used in many previous
work [3,25,19]. We apply the same idea to generate execution traces in an it-
erative process that incrementally explores new execution paths. In each itera-
tion, we first monitor and record an execution trace. We then use a constraint
collector [30] to run symbolic execution on the recorded trace and gather the
constraints on inputs on every branching conditions. These constraints capture
how the input was processed in the corresponding dynamic execution. We then
negate one of these constraints collected to obtain the input constraints that
would result in a different execution path, and solve these constraints with the
theorem prover to obtain a corresponding real input for deep taint in the next
iteration.

There are typically many branching locations on an execution trace. We pick
one that may result in the largest number of new basic blocks explored by count-
ing all the uncovered basic blocks of the corresponding sub-tree.

4 Implementation and Evaluation

4.1 Implementation of iBinHunt

Figure 2 shows the architecture of iBinHunt. In the rest of this subsection, we
briefly describe how each component of iBinHunt was implemented.
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Fig. 2. Architecture of iBinHunt

Static analyzer. iBinHunt uses the same static analyzer as in BinHunt [17]. It
first disassembles the two binary programs to obtain the x86 instructions, and
then converts the x86 instructions into an intermediate representation (IR) for
further analysis. The IR we use is the same as in BinHunt and BitBlaze [1,30],
which consists of roughly a dozen different statements. Control flow is analyzed
on the IR of the two binary programs to obtain the inter-procedural control-flow
graph (ICFG), where nodes correspond to basic blocks in the program and edges
correspond to transitions among the basic blocks.

Protocol analyzer. We assume that the protocol specifications are known, and
therefore a protocol analyzer is not needed. In case the protocol specification is
not known, any automatic protocol analyzer [10,34,4] can be used.

Deep taint. Deep taint was based on TEMU [36] and QEMU?. TEMU uses a
shadow memory to store the taint status. We modify the shadow memory and
add a small data structure for each taint byte to store its corresponding taint
tag. Currently deep taint supports up to 64 different tags.

Basic block comparison. The dynamic traces from deep taint are first mapped
to the ICFG. This mapping is simple as the eip value recorded in deep taint
and the program counter value in ICFG differ by the length of the corresponding
instruction. Once this mapping is obtained, comparison of two basic blocks from
the two binary programs is carried out if they have the same taint representation
and are on dynamic traces recorded given the same program input.

We use the same basic block comparison technique as in BinHunt [17], i.e.,
symbolic execution is first used to represent outputs of the basic blocks with
their input symbols, and a theorem prover (STP [15]) is then used to check if
the outputs from the two basic block are semantically equivalent. Note that the
basic block comparison performed here is slightly different from BinHunt in that
here the comparison is context aware, i.e., the permutation of outputs of the
equivalent basic blocks is the permutation of inputs of the successor blocks. This
is because the basic blocks to be compared here are on a particular execution
path, where there is always a unique predecessor and a unique successor.

2 QEMU, www.qemu.org
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Graph isomorphism. iBinHunt also uses the same (customized) backtracking
technique to find the maximum isomorphic subgraph as in BinHunt [17].

Difference from BinHunt. Although some components of iBinHunt are very sim-
ilar to those in BinHunt as explained above, there is a major difference between
the two, namely iBinHunt uses a dynamic component of deep taint while Bin-
Hunt bases purely on static analysis of the binary programs.

Input generator. Path constraints are collected as in appreplay [30]. We use
STP [15] to find a new input that satisfies the negated constraints.

4.2 Evaluation

We applied iBinHunt to find semantic differences in several versions of thttpd
and gzip. We chose to work on thttpd and gzip for two main reasons. First,
they were commonly used programs for which we could find various older versions
that are substantially different from the latest one, an evaluation criteria we have
for iBinHunt. Second, both thttpd and gzip had known vulnerabilities in their
earlier versions, which is a typical application scenario of iBinHunt.

To evaluate iBinHunt in its resistance to function obfuscation, we simply use
iBinHunt to analyze the inter-procedural control-flow graphs instead of enu-
merating different obfuscation techniques. As discussed in Section 3, iBinHunt
removes repetitions and flattens function structures, which will result in the
same ICFG no matter what function obfuscation techniques are used.

There are two main aspects on which we want to evaluate. First, we want to
see how many basic blocks can be matched, how many matchings are identified
by deep taint, and how long it takes to find these matchings. Second, we want
to take a closer look at the differences found, and confirm these differences by
comparing them to the ground truth (program source code).

Table 2 and Table 3 show the simple statistics of the various versions of
thttpd and gzip, respectively. Note that in some cases, the differences account
to nearly 40% of the source code, which we consider very big changes between
the two versions. Due to the space limitation, we do not detail all these changes,
most of which are due to bug fixing and new features added.

Table 2. Different versions of thttpd (number of lines changed / total number of lines)

thttpd- 2.20  2.20c 2.21 2.25
2.19 252/6029 254/5843 1483/6641 2908/7271

We performed our experiments on two machines, one with a Core2 Duo CPU
of 2.6 GHz and RAM of 4 GB (for deep tainting) and another with a Core2 Duo
CPU of 3.0 GHz and RAM of 4 GB (for all other components).

Figure 3 and Figure 4 show the results of thttpd and gzip, respectively. Each
graph shows six different types of information.
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Table 3. Different versions of gzip (number of lines changed / total number of lines)

gzip-

1.3.12

1.3.13

1.40

1.2.4 1317/4959 1351/4929 1446/4841

Shaded areas: the three shaded areas show the number of matched blocks

according to our definition of matching in Section 3.2. The horizontal shaded
area corresponds to matched basic blocks that are semantically the same;
the 135-degree shaded area corresponds to matched ones that are not se-
mantically equivalent but have both a predecessor and a successor matched;
and the vertical shaded area corresponds to those that are not semantically
equivalent but have either a predecessor or a successor matched.

Lines: the lower slanted line indicates the time taken for input generation

and deep taint; the upper slanted line indicates the total time spent; and the
horizontal line shows the total number of basic blocks in the binary program;
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Fig. 4. Evaluation on different versions of gzip

Matching basic blocks. Although we use a relatively stringent definition of match-
ing (see Section 3.2), iBinHunt manages to find most of the matching blocks.
For example, Figure 4 shows that about 90% of the basic blocks are matched
in comparing gzip-1.2.4 and gzip-1.3.12, which have over 25% of the lines
of code changed. We also study the matchings found, and confirm that they
are correct. Most differences are reflected in these matchings, too, with some
differences not found; see Section 4.3 for more discussions.

Effectiveness of deep taint. Among successfully matched basic blocks, we count
the number of them that actually contain the same taint representation (the rest
are not tainted). Results (see Table 4 and Table 5) show that more than 34% and
67% of the matched basic blocks in thttpd and gzip, respectively, contain the
same taint representation. This shows that 1) deep taint is effective in helping
to identify basic block matchings since a large number of these matchings do
contain the same taint representation; 2) even though many basic blocks are not
tainted by our limited number of program inputs, their neighbors are tainted in
most cases and the tainted neighbors help matchings to be identified.
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Table 4. Matched basic blocks with the same taint representation (thttpd)

thttpd- 2.20 2.20c 2.21 2.25
2.19 34.8% 38.2% 39.9% 37.4%

Table 5. Matched basic blocks with the same taint representation (gzip)

gzip- 1.3.121.3.13 1.40
1.2.4 67.9% 72.2% 72.6%

Accuracy. iBinHunt has better accuracy in basic block matching because deep
taint reduces the number of matching candidates. Typically, the number of can-
didate matchings is 8% and 5% of total basic block pairs in our experiments
with thttpd and gzip. Refer to Appendix D for another example of accuracy
improvement of iBinHunt.

Handling binary programs with big differences. The results clearly show that
iBinHunt is good in handling binary programs with big differences, a property
previous tools for finding semantic differences [17] do not have. These can be seen
from the percentage of basic block matched (all shaded areas), which does not
decay significantly when dealing with binary programs with larger differences.

Time taken in the analysis. From Figure 3 and Figure 4, we see that when more
traces are used, more basic blocks are matched until a steady state is reached.
85 and 50 inputs were needed before the number of matched basic blocks stops
increasing for thttpd and gzip, respectively. These 85 or 50 input generations
and deep taint analysis are incremental and cannot be parallelized. However, the
basic block comparison can be easily parallelized to shorten the time needed. Also
note that our implementation is an un-optimized one and there are rooms for
improvements. That said, we still see more than a factor of 2 improvement when
compared to BinHunt [17] (see Table 6 and Table 7). The starting percentage
corresponds to basic blocks that are syntactically the same.

Table 6. Progress made in comparing thttpd-2.19 and thttpd-2.25

Percentage of basic blocks matched Time

Starting Ending Progress made  spent
BinHunt 31%  38% % 6 hours
iBinHunt 31%  4™% 18% 6 hours

Note that results in Table 6 and Table 7 are obtained without parallelizing
basic block comparison for a fair comparison. Parallelizing the comparison could
speed up the process a lot to make iBinHunt practical in analyzing real programs.
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Table 7. Progress made in comparing gzip-1.24 and gzip-1.40

Percentage of basic blocks matched Time

Starting Ending Progress made  spent
BinHunt 11% 16% 5% 3 hours
iBinHunt 11% 25% 14% 3 hours

4.3 Discussions

Although we focus on analyzing the inter-procedural control-flow graph in demon-
strating the advantages of iBinHunt in this paper, iBinHunt is also resistant to
other types of program obfuscations, e.g., control flow flattening [32,8], that ex-
isting binary diffing tools cannot handle. This is mainly due to the deep taint
analysis we employ, which is a dynamic analysis approach.

The power of iBinHunt is limited by the non-perfect basic block coverage.
This is mainly due to limitations of white box exploration technique [19], e.g.,
path explosion and imperfect symbolic execution to system calls.

Since iBinHunt uses deep taint, it also suffers from some limitations of taint
analysis in general, e.g., control dependence, pointer indirection, and implicit
information flow evasions [6,29].

We performed our evaluation and analysis by comparing iBinHunt with an-
other state-of-the-art binary diffing tool BinHunt [17]. We could have made
compassion with other binary diffing tools, e.g., BinDiff. However, due to the
many heuristics BinDiff and other binary diffing tools use, it is hard to have a
fair comparison with iBinHunt, in which such heuristics are not used. We leave
it as future work to compare with other binary diffing tools.

5 Conclusion

In this paper, we first introduce function obfuscation attacks in existing binary
diffing tools that analyze intra-procedural control flow of programs. We propose
a novel binary diffing tool called iBinHunt which, instead, analyzes the inter-
procedural control flow. iBinHunt makes use of a novel technique called deep
taint which assigns different taint tags to various parts of the program input
and traces the propagation of these taint tags in program execution. iBinHunt
automatically generates program inputs to improve basic block coverage. Eval-
uations on comparing various versions of thttpd and gzip show that iBinHunt
offers better accuracy and efficiency than existing binary diffing tools.
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A Size of Different Functions in Thttpd

Figure 5 shows the cumulative histogram of functions with different number of
basic blocks in thttpd, an http server. It can be seen that 96% of the 459 non-
empty functions have fewer than 30 basic blocks. Only 7 functions have more
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than 50 basic blocks. This makes the graph comparison simple, as in most cases
we only need to deal with graphs of fewer than 30 nodes. Graph isomorphism is
therefore practical in analyzing programs like thttpd.

number of functions

20 40 60 80 100
number of basic blocks

Fig. 5. Number of basic blocks in different functions (cumulative histogram)

B Function Inlining and Outlining

Figure 6 shows the basic idea of function inlining and outlining transformations.
Such simple attacks are effective in confusing existing binary diffing tools be-
cause inlining and outlining can arbitrarily increase or decrease the size of any
functions. The intra-procedural control-flow graph may contain unreliable infor-
mation, resulting in a small maximum common subgraph (as in many binary
diffing tools, e.g., [14,12,27,17]) or complete failure when the whole program
contains only a single function (as in some malware analysis tools, e.g., [20]).

Function P's

code i ‘
P1 P1
P2 P2 Function R's
call P() Inline Outline code
Pm Pm-2 5
v
_call R()
Function Q's call Q() Ql
code Q2 Q3
Qn Qn
v v

Fig. 6. Inlining and outlining transformations
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C Example of Potential Matching Blocks

Figure 7 shows an example of these two groups of blocks in thttpd-2.19 and
thttpd-2.25. In Figure 7(a), BB_13232 and BB_16184 are not semantically
equivalent, but they have the same taint representation (0011). They both origi-
nally come from function find_hash() corresponding to a difference in the hash
algorithm used in the two versions of thttpd. In Figure 7(b), the four dashed
blocks are not tainted. A closer look into the corresponding source shows that
these blocks are part of the function tmr_create(), which does some simple
time routine and therefore are not tainted.
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Fig. 7. Potential matching blocks

D Improved Accuracy of iBinHunt

Figure 8 shows an example in which iBinHunt outputs basic block matching
with improved accuracy.

In this example, BB_1371 from thttpd-2.25 should match with BB_1689 in
thttpd-2.19, both of which deal with the “-i” argument. However, BB_1687
in thttpd-2.19 also contains the same (type of) instructions, which confuses
the binary diffing tool in the matching. We tried BinHunt [17] and found that
BinHunt, in fact, finds the wrong matching in this case.

On the other hand, iBinHunt easily avoids such errors because the different
taint representation BB_1687 has, and therefore BB_1687 is not even on the list
of matching candidates of BB_1371.

Besides confirming that the differences found by iBinHunt correspond to se-
mantic differences in the source code, we also verified that these differences in-
clude many patches to vulnerabilities in the earlier version. Therefore, iBinHunt
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thttpd-2.19

parse_args:
do_vhost = 0;

argn + 1 <argc)

else if ( stremp( argv[argn], "-nov" )==0)

else if ( stremp( argv[argn], "-i" ) ==0 &&

<arge )

parse_args:

thttpd-2.25

else if ( stremp( argv[argn], "-nov" )==0)
do_vhost = 0;

else if ( stremp( argv[argn], "-g" )==0)
do_global_passwd =1;

else if ( stremp( argv[argn], "-nog" )==0)
do_global_passwd = 0;

else if ( stremp( argv[argn], "-i" ) == 0 && argn + 1

BB_1687:

Taint Tag: 00000111

Jnz short loc_804B5E0

BB_1688:

Taint Tags: 00000111

Jnz short loc_804B60E

|

BB_1689: Taint Tags: 00000011

Jnz short loc_804B651

BinHunt

inaccurate match

BB_1371:

Taint Tags: 00000011

-» mov [esp+18h+var_14],offset_s_-i;

Jnz short loc_804B023
A

iBinHunt

accurate match

Fig. 8. Accuracy improvement

can be used to automatically find vulnerabilities by comparing different ver-
sions of a program for automatic vulnerability discovery, which is an important

security application.
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Abstract. Over the last decade the Security Assertion Markup Lan-
guage (SAML) framework evolved to a versatile standard for exchanging
security statements about subjects. Most notably, SAML facilitates the
authentication of users, and is thus deployed in both Webservice (SOAP,
WS-Security) and REST-based (SAML SSO webbrowser profile, SAML
Bearer token in OAuth) services.

This paper recommends an extension to the SAML framework which
provides an easy way to transport cryptographic key material bound
to assertions issued by particular subjects. The proposal fits into exist-
ing solutions and is fully compliant with the Security Assertion Markup
Language, XML Digital Signature and XML Encryption standards.
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SAML Extension.

1 Introduction

SAML. In the world of Single Sign-On (SSO), and authentication of users in
general, the Security Assertion Markup Language (SAML) [1] evolved to be a
successful standard. Companies like Google! and Salesforce? rely on its flexi-
bility and benefits. SAML’s ability to map security statements about subjects
to XML provides an easy and human readable solution for demands concerning
authentication and authorization of data exchange.

AKE. Multiple real-world applications depend on an authenticated key exchange
(AKE), which usually consists of a key agreement protocol combined with a
corresponding authentication protocol. It is necessary to combine identity man-
agement and federation with key exchange capabilites between the participants
in a secure way.

* This work was partially funded by the Sec? project of the German Federal Ministry
of Education and Research (BMBF, FKZ: 01BY1030).
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2 http://www.salesforce.com
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(© Springer-Verlag Berlin Heidelberg 2013
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Contribution. This paper describes how to perform authenticated key trans-
port within the SAML framework. More precisely, it provides the following
contributions:

— It is shown how to embed key information into SAML Assertions, in a fully
standard compliant way. Thus key management can easily be integrated in
any SSO/IDM system.

— A proof of concept implementation of the proposed solution is available
within the Sec? project® which aims at adressing the issue of user encrypted
cloud storage by performing en- and decryption exclusively at client side
(and by using hardware enabled key stores). For this to work it is neces-
sary to exchange key material (the solution will be introduced in detail in
section 6).

2 Related Work

The idea of combining SAML and key management/distribution capabilities is
not new and has already been subject of several other publications such as the
SAML V2.0 Kerberos Web Browser SSO Profile Versionl.0 [2] specification.
The aforementioned standard aims at a seamless integration of Kerberos into
the browser world in combination with SAML usage. Thus, Kerberos already
provides a complete solution for symmetric key management and distribution.
Due to its great success and wide spread distribution, Kerberos can be seen as
the de facto standard for key distribution in the symmetric world. Technologies
like Microsoft ActiveDirectory? rely on the security of the Kerberos protocol.
Additionally, many vendors such as e.g., Oracle® or SAPS offer Kerberos sup-
port in their products - mostly for authentication purposes. However, the main
drawback of Kerberos - from this paper’s point of view - is that it is limited to
be used with symmetric keys only.

For use with asymmetric keys, there is an existing standard for key man-
agement, the XML Key Management Specification (XKMS 2.0) [3]. The main
focus of XKMS is to define a protocol for distribution and registration of public
keys. The goal is to provide a WebService for the management of public key
material so that other WebServices can obtain public keys for encryption and
verification of digital signatures. This WebService protocol can be compared to
the well known public key server functionality introduced by PGP [4]. Since this
standard is solely based on asymmetric public keys it is also not applicable for
this proposal, as this paper aims for a technology independent solution regarding
both, symmetric and asymmetric key material.

Binding keys to identities is not only a major goal of this proposal, but also the
X.509 standard [5] and PGP [4] address this topic. Keys should be undoubtedly

3 http://www.sec2.org

4 http://www.microsoft.com/en-us/server-cloud/windows-server/
active-directory.aspx

® http://www.oracle.com

5 http://www.sap.com
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connected to the corresponding entities. But one has to keep in mind that these
bindings are static and non flexible. In contrast to this kind of key binding,
STUCK is flexible since it binds keys to Assertions (which are themselves bound
to static identities, but the keys are only implicitly bound to these identities via
the Assertion). As Assertions are in general only short-lived, this can be turned
into an advantage. Binding keys to Assertions and not directly to certificates
offers much more flexibility and introduces a new kind of abstraction layer.
Another standard to mention is WS-Trust [6]. Though similar ideas of this
paper could also be realized by using the WS-Trust specification, this proposal
is based on SAML due to its wider usage and acceptance at major companies.

3 Motivation

With emerging new capabilities of servers and clients transporting keys or key
material over the internet, in a secure and reliable way, will become more and
more important in the following years. For example, the proposal of the web
crypto APIT or the suggestions made by the Web Cryptography Working Group®
will provide clients and servers with cryptographic capabilities. In these scenarios
it is often mandatory to securely exchange keys between multiple parties. There-
for standardized means for secure key transportation are necessary. Regarding
this SAML recommends itself, due to its flexibility and wide-spread deployment.

3.1 Advantages of the Proposal

This proposal offers the option to bind key material to an Assertion. Key
transportation, whether encrypted or unencrypted (as in case of asymmetric
public keys), can now easily be done in the same communication process and
same protocol as SAML. An additional step for key management or distribution
can be ommitted.

Further on, a clean standardized way may ease and facillitate identity fed-
eration beyond company borders. Not only identities could be shared, but key
material, too. It could even be possible to offer key establishment facilities as an
additional benefit on an identity provider’s side.

The practical need for key transportation, management and distribution can
be seen in the previous work that has been done, as for example the already
mentioned SAML V2.0 Kerberos Web Browser SSO Profile [2]. But proposing a
standard for only a single usage scenario is not sufficient, since it does not care
about the needs of solutions not relying on this specific scenario (in this case
Kerberos). What is really needed is a very flexible approach decoupled from
SAML profiles and existing key establishment and distribution systems. The
proposed solution in this paper is open for every possible usage scenario.

" http://html5.creation.net/webcrypto—api/
8 http://www.w3.org/2012/webcrypto/
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Binding keys to SAML Assertions as explained in the prior sections elim-
inates the necessity for additional transport media encryption since the confi-
dential parts of the key structure can be protected at application level - either
by securing the key material itself using EncryptedKey elements, or obfuscating
the whole KeyInfo structure by using EncryptedAttribute.

Also, one has to be aware that transport encryption is not equal to identity
binding since the transferred data is neither bound to an identity, nor protected
after the transport has been performed. Identities and keys obtained before or
after transportation (e.g., through malware or careless data processing) can be
used independent of corresponding identities. Channel binding approaches may
solve this issue, but add an additional server side requirement: Servers need to
support both, standard conformity concerning XML processing and means like
SSL/TLS for transport layer encryption. It should be noted that XML Encryp-
tion and XML Signature are partly necessary for SAML to work properly, thus
it remains a valid assumption that those two standards are already available at
server side.

4 Technological Foundations

The following section will introduce the major technologies utilized by the pro-
posal. Readers familiar with XML, XML Signature, XML Encryption, SAML
and key management capabilities of these standards may skip this section.

XML. The eXtensible Markup Language (XML) [7] represents a human readable
and machine processable language for data structuring. Data can be organized
in a tree-based manner and tagged with attributes. As a major benefit, XML
offers the option to be automatically validated against XML Schema Definition
(XSD) files to guarantee conformance with particular data structuring rules.
Both XML and optional XSD files are highly flexible and adjustable to fit nearly
every scenario regarding data structuring.

XML Signature. For applying the concept of digital signatures to XML docu-
ments the XML-Signature Syntax and Processing Standard (XML Signature) [8]
was created. By using XML Signature it is possible to sign parts of XML docu-
ments or even the whole document.

An XML Signature is introduced by adding a <ds:Signature> element into
an XML document. In most cases this element consists of three main subele-
ments: The <ds:SignedInfo> element specifies the necessary setup for signa-
ture creation and verification such as an optional canonicalization - a document
restructuring option -, the signature algorithm and the references - the signed
document parts which can be referenced e.g., via ID or XPath. Within the ref-
erences also the digest method and possibly transformation methods as well as
the digest value can be specified. The <ds:SignatureValue> element contains
the actual signature associated with the referenced document parts. Information
about the public key, which can be used to validate the signature, can be stored
in the <ds:KeyInfo> element.
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XML Encryption. With the capabilities provided by the XML Encryption Syn-
tax and Processing Standard (XML Encryption) [9] the security goal of confi-
dentiality can be achieved. XML Encryption includes the features of popular
encryption solutions such as DES [10] or AES [11] into the XML world. Parts of
XML documents can be encrypted and decrypted by using XML Encryption.

The <enc:EncryptedData> element introduces an encrypted part or subpart
of the XML document. Obviously, this element is not added to the XML struc-
ture as a signature would be, but it replaces the encrypted cleartext. The three
main components of an encrypted data block are the <enc:EncryptionMethod>,
which specifies the cipher algorithm used for encryption and decryption, the
<ds:KeyInfo> and the <enc:CipherData>. The latter contains the encrypted
data itself, while <ds:KeyInfo> holds information about the key which has to
be used for decryption of the ciphertext, this may also be an encrypted key.

Mostly, hybrid encryption [12] schemes are used i.e., the symmetric key is
encrypted with the recipients public key. This aims at combining the speed
advantages of symmetric encryption schemes with the absence of shared secrets
offered by asymmetric schemes.

SAML. The Security Assertion Markup Language (SAML) standard is based
on XML and defines a framework for delivery of issuer and security statements.
Authentication and authorization statements can be modeled around subjects.
Therefore the standard defines a <saml:Assertion> element which can nest se-
curity statements and additional information. Moreover SAML can be bound
to underlying transport media and ships with some predefined usage protocols
for example a protocol implementing the popular Single Sign On use case. The
SAML pre-defined protocols offer XSD files exactly defining the message struc-
ture. Message integrity and validness are achieved by using optional digital signa-
tures via the XML Signature standard, whereas confidentiality can be achieved
by using optional encryption, according to the XML Encryption standard.

5 Get STUCK - The SAML Transportation Unit
for Cryptographic Keys

After having listed and explained the existing structures and technologies in
the previous section, the following sections explain how these structures can be
utilized to enable secure key transportation in a fully SAML 2.0 compatible way.

5.1 Goals of the Contribution

The main focus while designing the STUCK solution was to provide a standard-
ized way how to transport keys securely without breaking existing technologies.
Therefore the proposal has to come with terms of XML and especially SAML
compatibility, as well as major security goals when exchanging confidential key
material.
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SAML 2.0 Compatibility. The extension proposal focuses on a solution with-
out modifications to the existing XML Schema definitions of SAML. The solu-
tion must not break existing implementations and has to be fully compatible to
the SAML 2.0 specification (Assertions and Protocols for the OASIS Security
Assertion Markup Language (SAML) V2.0 [1]).

The SAML Standard provides flexible extension points within the Assertion
element. As mentioned in chapter 4, these Assertions are one of the core features
of SAML and used for security statements about subjects. An Assertion can
be digitally signed so that integrity protection can be guaranteed. The proposed
extension puts the key information inside this element to utilize this integrity
protection. Together with the subject information and a digital signature over
the element the key information is inextricably bound to an entity identified by
the information of the Subject element.

Due to the fact that a common extension point is used, the additional key in-
formation neither breaks the SAML Schema (XSD files), nor influences
Assertion or signature processing. Existing implementations do not need to
be adjusted. The application logic behind has simply to deal with additional key
information inside of an Assertion.

Security Goals. The proposed solution addresses multiple design goals valuable
when dealing with key transportation mechanisms.

— Confidentiality - provided by utilizing XML Encryption on the key mate-
rial (EncryptedKey elements are used)

— Integrity - provided by utilizing XML Signature on the transfered Assertion

— Authentication - provided by utilizing XML Signature on the transfered
Assertion which contains Subject and Issuer elements (the information
should be equal to the one of the Issuer’s certificates)

5.2 Identification of Extension Point

In order to combine a SAML Assertion with cryptographic key information,
the necessary extension point has to be identified.

Within an Assertion there can be any amount of AttributeStatement el-
ements with an unbounded number of Attribute elements as child nodes. An
Attribute element requires the presence of an XML attribute of type Name
identifying the content and a sequence of zero to unbounded AttributeValue
elements. An AttributeValue can hold content of type anyType, which weakens
the strict schema definition and allows any well-formed XML data at this place.
This is the extension point used by STUCK to integrate key information into
an Assertion.

For clarity reasons, figure 1 provides a schematic illustration of a SAML
Assertion containing key information.
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Issuer
Signature
Subject

Conditions

Advice

Statement *

AuthnStatement *
AuthzDecisionStatement *
AttributeStatement *
Attribute * EncryptedAttribute *
AttributeValue * EncryptedData

PLACE KEY DATA HERE

EncryptedKey *

Mandatory Choice Unbounded (multiple) Occurrance *

Optional RS CEETER

Fig. 1. Schematic illustration of a SAML Assertion with highlighted extension point

5.3 XML Key Data Structure

Additional to the identified extension point for including key data into a SAML
Assertion, a suitable XML structure for holding cryptographic keys is required.
For this purpose, XML Signature already offers versatile structures for keys and
certificates. Supplemented by XML Encryption and its capabilities to define
encrypted keys, all necessary structures for key distribution, management and
transport are present yet. No additional structures have to be defined.

In the following the existing structures are briefly discussed. We mainly focus
on a single element of the XML Signature Standard, the ds:KeyInfo element.

ds:KeyInfo. The ds:KeyInfo element, taken from the XML Signature Stan-
dard (here denoted as namespace ds), can be used to carry data somehow rele-
vant for cryptographic keys. This includes several predefined data structures for
storing information regarding e.g., key data for RSA, DSA, PGP or SPKI, as
well as key related meta data like e.g., X.509 certificate data, key names, retrieval
methods for externally located keys or general management information.

The following child elements from ds:KeyInfo are important for the STUCK
proposal:

— ds:KeyName
This element may contain a key identifer string which identifies key material.
— ds:KeyValue
Originally defined to contain public keys used for signature verification, this
element may also contain symmetric key material or any data structure
defined in a namespace differnet from ds. The following child nodes are
allowed in the schema:
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e ds:DSAKeyValue
Defines how to store DSA [13] public keys.

o ds:RSAKeyValue
Defines how to store RSA [14] public keys.

e any ##other
The ds:KeyValue element offers the option to include additional ele-
ments from arbitrary namespaces (other than the one refered to by ds).
This allows to extend this element by including an enc:EncryptedKey
element from the XML Encryption Standard (see below).

enc:EncryptedKey. This approach aims for a flexible solution able to carry all
kinds of keys or key material, but the number of predefined key data structures
in the ds:KeyInfo element is limited. This can be remedied by utilizing the
extension point found in ds:KeyInfo: The element can easily be extended to
allow key data usually unsuitable for these predefined data structures by adding
elements from a differing namespace which provide a data structure for the
desired keys. In this approach, an element from the XML Encryption Standard
(here denoted by namespace enc), enc:EncryptedKey, is used.

This element offers support for transportation and storage of encrypted key
material. Since it is obviously not advantageous to transport critical keys (such as
private or secret keys) in an unencrypted manner, this element remains essential
for a complete key distribution solution (such as Kerberos [15]).

5.4 Putting the Pieces Together - Extended SAML Assertion

After having identified the required XML structures and their respective ex-
tension points, the STUCK approach combines these into a single solution for
secure key transportation in the SAML context.

The first step in the STUCK approach is to insert the key or key material
which is to be transported into a ds:KeyInfo element. For this purpose, the
previously identified extension point within ds:KeyInfo can be used to include
an enc:EncryptedKey element which can hold any type of key or key material.

Note also that in case where a key of a predefined type for ds:KeyInfo should
be transported (e.g., DSA or RSA keys as stated above), enc:EncryptedKey can
be used instead of the predefined structures to utilize its inherent encryption
features. Thus, the confidentiality of the key material itself is provided by XML
Encryption.

The next step in the STUCK approach is to insert the ds:KeyInfo element
including the enc:EncryptedKey element into a SAML Assertion. This is done
by utilizing the previously defined extension point within a SAML Assertion,
i.e., the ds:KeyInfo structure holding the key or key material is inserted into
an AttributeValue element within the Assertion.

Thus, the associated key material is explicitly secured by the same means
that protect the Assertion itself. This means integrity and authenticity of the
key or key material within this extension point are implictly protected by the
(optional) digital signature that protects the Assertion.
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If further confidentiality beyond the content of an Attribute is necessary (as
for example to obfuscate the structures behind an Attribute, so that not only
the key material itself will be confidential, but also the accompanying additional
information like e.g., key name or management data) the whole ds:KeyInfo el-
ement can be secured by applying encryption using the enc:EncryptedData
element from the XML Encryption Standard before embedding it into the
Assertion.

As an alternative, the application of EncryptedAttribute as child of Attri-
buteStatement can be used instead of Attribute. This approach, however,
does not have any benefits over the usage of XML Encryption to secure the
ds:KeyInfo structure and is not considered any further in this paper.

An example SAML Assertion including key information according to our
contribution is depicted in figure 7 in the appendix. The Assertion is extended
with an AttributeStatement which holds an Attribute with Name="desired
Key". This Attribute contains an encrypted key as AttributeValue. The whole
content (including the key element) is protected by a Signature refering to
URI="#referToMe" which targets the Assertion itself. In addition the Cipher
Data element following the KeyInfo element may contain data encrypted with
the transferred key (e.g., key confirmation/information data etc.)

Assertion ID="referToMe"
—Issuer
—Signature
Signedinfo
CanonicalizationMethod
SignatureMethod
Reference URI="#referToMe"
Transforms
DigestMethod
DigestValue
SignatureValue
Keylnfo
—Subject
—AttributeStatement
L Attribute Name="desiredKey"
AttributeValue
eylnfo
EncryptedKey
Keylnfo

KeyName recipientsPrivateKey
EncryptionMethod
arriedKeyName desiredKey
ipherData
CipherValue

Fig. 2. Proof of concept SAML Assertion

5.5 Usage in the SAML Assertion Query and Request Protocol

The modified Assertion can be used with any of the predefined SAML protocols.
Figure 3, gives a simplified example scenario on how a Key Requestor (KR) is
able to obtain key material from a Key Server (KS) using only SAML compliant
messages:

— KR sends a SAML Attribute Query to KS, authenticated with an XML
signature. This request contains a reference to the requested key.
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Key Requester Key Server

SAML Attribute Query

- Issuer

- Signature

- Subject

- Attribute: desired key

SAML Response
- Assertion

- Issuer

- Signature

- Subject

- AttributeStatement

- Attribute
- AttributeValue: encrypted key

Fig. 3. Example scenario on the usage of the proposal

— After validating signature and request at Key Server side, KS may decide to
deliver the requested key, in an encrypted form, to KR via the corresponding
SAML Response, including an Assertion. For this purpose, the encrypted
key is included in a SAML Attribute Statement within this Assertion to
provide maximum compliance with the SAML standard. The requested key
is encrypted with e.g., KR’s public key preserving confidentiality.

The detailed messages (c.f., Figures 5 and 6), as well as a detailed explanation
are listed in the appendix. We will come back to this scenario in more detail in
the Case Study (c.f., section 6) when the solution is embedded to a real world
application.

6 Case Study

A reference implementation of STUCK is implemented within a research project
where key transport capabilities in conjunction with SAML are required.

6.1 Sec? Research Project

The Sec? research project? provides a hardware supported solution for secure
mobile storage on public clouds. Therefore the user is able to define confidential
parts of data which will then be encrypted before they are stored in the cloud. An
underlying middleware handles the en-/decryption process transparently before
the data leaves the device. For reasons of convenience the key management and
distribution should be kept as automated as possible. Part of the solution is a
publicly available trusted key server as depicted in figure 4.

This key server is used for key distribution to clients. The key distribution
follows the principle of hybrid encryption - the key server wraps (encrypts) a

9 http://www.sec2.org
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Fig. 4. Sec® system architecture

symmetric secret key with a mobile device’s (client) individual public key. The
asymmetric keypair at the client side is bound to an entity (device owner) and
delivered together with a special microSD Card that has to be installed at the
mobile device. The microSD Card can be considered as a Smart Card that stores
key material in an unextractable way. All cryptographic operations that utilize
the key material have to be performed on the card. The corresponding public
key is deposited at the key server. The client is able to unwrap (decrypt) the
delivered key because she is in possession of the corresponding private key.

Since the whole communication between client and key server is SAML based
the proposal of this paper is applicable and used for key transportation from the
key server to its clients. Additionally, another major goal is to give up transport
security and render its usage optional. The (wrapped) keys should be bound to
SAML Assertions to provide integrity and authentication at the same time.
And all that has to be in line with the SAML specification(s). So to recap, the
following requirements are given:

— (encrypted) keys have to be delivered from a key server to the client

— all critical parts (such as the encrypted key or authentication information)
have to be authenticated and their integrity must be ensured

— deviations from the SAML standard have to be avoided

The solution within the project combines all requirements and integrates key
transport mechanisms seamlessly into SAML without Schema validations or
specification of extensions. The solution uses the approach introduced in sec-
tion 5. In the following an example communication procedure is outlined:
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1. The middleware fetches data from a public cloud storage and determines
necessary key(s) for decryption - Key X.

2. After a lookup the middleware is informed by the microSD Card that it is
not in possession of Key X.

3. A SAML attribute query including authorization data and identifier of the
desired key is built (c.f., figure 5) and sent to the key server.

4. The key server validates the signature and checks for the corresponding
access rights of the requesting client.

5. If all preconditions are met, the client’s public key together with the key
identifier of the desired key is passed to a Hardware Security Module (HSM)
attached to the key server - The client’s public key was deposited previously
at the key server during client registration. The HSM is not directly accessi-
ble by the client and can only be contacted in case of sufficient access rights
- only the key server can access the HSM.

6. The HSM wraps the key identified by the key identifier with the passed
public key and returns the encrypted key to the key server.

7. The wrapped key is included in a signed SAML response (c.f., figure 6) and
returned to the client.

8. The client verifies the SAML response, validates the digital signature, ex-
tracts the wrapped key and passes it to the microSD Card.

9. The microSD Card unwraps the desired key by utilizing the private key and
stores it unextractable after successful unwrapping.

10. The middleware is now in posession of the necessary key and can proceed as
if the key had been present at the beginning.

For further information you are invited to visit the project homepage and have a
look at the papers and information material. Criticism, tips and feature requests
are very welcome!

7 Conclusion

The proposed solution for identity bound key material and key information of-
fers major enhancements to the Security Assertion Markup Language. Addi-
tional means for key transport can be skipped and instead directly mapped to
the SAML level. A reference implementation is integrated within the Sec? re-
search project and will be soon available as open source. The proposal offers
key management and distribution capabilities without schema violation, thus no
adjustments to existing standards have to be made.
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Appendix

A

Using STUCK within protocols

STUCK can easily be integrated into existing SAML protocols. To demonstrate

the

usage please have a look at the corresponding messages in figures 5, 6 while

reading.

As mentioned, a requester simply queries for a key by passing the key name
as Attribute name (or as AttributeValue of a predefined Attribute for key
queries <saml:Attribute Name="requestKey"> <saml:AttributeValue>
desiredKey</saml:AttributeValue></saml:Attribute> ). The KS will re-
turn the desired key (in an encrypted from) as AttributeValue carried by an
Assertion inside a Response.
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<samlp:AttributeQuery ID="myQueryID"

Version="2.0" Issuelnstant="2012-07-11T17:05:40Z"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol">

<saml:Issuer> ... </saml:Issuer>
<ds:Signature> ... </ds:Signature>
<saml:Subject> ... </saml:Subject>

<saml:Attribute Name="requestKey">
<saml:AttributeValue>desiredKey</saml:AttributeValue>
</saml:Attribute>
</samlp:AttributeQuery>

Fig. 5. Proof of concept SAML AttributeQuery

<samlp:Response ID="myResponseID"
Version="2.0" Issuelnstant="2012-07-11T17:10:40Z"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol">
<saml:Assertion ID="referToMe"
Version="2.0" Issuelnstant="2012-07-11T17:10:40Z"
xmlns:ds="http://.../xmldsig#">

<saml:Issuer> ... </saml:Issuer>
<ds:Signature> ... </ds:Signature>
<saml:Subject> ... </saml:Subject>

<saml:AttributeStatement>
<saml:Attribute Name="desiredKey">
<saml:AttributeValue> ... </saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>
</saml:Assertion>
</samlp:Response>

Fig. 6. Proof of concept SAML Response

123
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<saml:Assertion ID="referToMe"
Version="2.0" Issuelnstant="2012-03-01T12:59:48Z"
xmlns:ds="http://.../xmldsig#" xzmlns:enc="http://.../xmlenc#">
<saml:Issuer> ... </saml:Issuer>
<ds:Signature>
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://.../xml-exc-cl4n#" />
<ds:SignatureMethod
Algorithm="http://.../xmldsig#rsa-shal" />
<ds:Reference URI="#referToMe">

<ds:Transforms> ... </ds:Transforms>
<ds:DigestMethod Algorithm="http://.../xmldsig#shal" />
<ds:DigestValue> ... </ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>

<ds:SignatureValue> ... </ds:SignatureValue>
<ds:KeyInfo> ... </ds:KeyInfo>
</ds:Signature>
<saml:Subject> ... </saml:Subject>

<saml:AttributeStatement>
<saml:Attribute Name="desiredKey">
<saml:AttributeValue>
<ds:KeyInfo>
<enc:EncryptedKey>
<ds:KeyInfo>
<ds:KeyName>recipientsPrivateKey</ds:KeyName>
</ds:KeyInfo>
<enc:EncryptionMethod Algorithm=".../xmlenc#rsa-1_5" />
<enc:CarriedKeyName>desiredKey</enc:CarriedKeyName>
<enc:CipherData>
<enc:CipherValue> ... </enc:CipherValue>
</enc:CipherData>
</enc:EncryptedKey>
</ds:KeyInfo>
</saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>
</saml:Assertion>

Fig. 7. Proof of concept SAML Assertion
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<complexType name="EncryptedElementType">
<sequence>
<element ref="xenc:EncryptedData"/>
<element ref="xenc:EncryptedKey"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>

<element name="Assertion" type="saml:AssertionType"/>
<complexType name="AssertionType">
<sequence>

<choice minOccurs="0" maxOccurs="unbounded">

<element ref="saml:AttributeStatement"/>
</choice>
</sequence>

</complexType>

<element name="AttributeStatement" type="saml:AttributeStatementType"/>
<complexType name="AttributeStatementType">
<complexContent>
<extension base="saml:StatementAbstractType">
<choice maxOccurs="unbounded">
<element ref="saml:Attribute"/>

</choice>
</extension>
</complexContent>
</complexType>

<element name="Attribute" type="saml:AttributeType"/>
<complexType name="AttributeType">
<sequence>
<element ref="saml:AttributeValue"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="Name" type="string" use="required"/>

</complexType>

<element name="AttributeValue" type="anyType" nillable="true"/>
<element name="EncryptedAttribute" type="saml:EncryptedElementType"/>

Fig. 8. (Stripped) XSD of a SAML Assertion - Source: OASIS (http://docs.oasis-
open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd)


http://docs.oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd
http://docs.oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd
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Abstract. In this paper, we present more powerful 6-round impossi-
ble differentials for large-block Rijndael-224 and Rijndael-256 than the
ones used by Zhang et al. in ISC 2008. Using those, we can improve the
previous impossible differential cryptanalysis of both 9-round Rijndael-
224 and Rijndael-256. The improvement can lead to 10-round attack on
Rijndael-256 as well. With 2'9! chosen plaintexts, an attack is demon-
strated on 9-round Rijndael-224 with 2'%5-2 encryptions and 2'*%* bytes
memory. Increasing the data complexity to 22! plaintexts, the time com-
plexity can be reduced to 2'3° encryptions and the memory requirements
to 293-% bytes. For 9-round Rijndael-256, we provide an attack requiring
22293 chosen plaintexts, 2'%* encryptions, and 2'%%-% bytes memory. Al-
ternatively, with 224°-3 plaintexts, an attack with a reduced time of 21271
encryptions and a memory complexity of 2°°-° bytes can be mounted.
With 22442 chosen plaintexts, we can attack 10-round Rijndael-256 with
2%53-9 encryptions and 2'8%-® bytes of memory.

Keywords: block cipher, impossible differential attack, Rijndael, large
block.

1 Introduction

Rijndael [11] is a block cipher designed by Joan Daemen and Vincent Rijmen
built upon a Substitution Permutation Network (SPN). A subset of Rijndael
variants has been standardized as Advanced Encryption Standard (AES) by
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the U.S. National Institute of Standards and Technology (NIST) [14] in 2002.
Rijndael follows the design principles of Square [9]. In its full version, both the
block and the key sizes can range from 128 to 256 bits in steps of 32 bits.
For AES, the block size of Rijndael is restricted to 128 bits. This paper deals
with non-AES Rijndael variants, that is, large-block Rijndael-b, with b > 128
indicating the block size and key size in bits.

AES is probably the most well-studied block cipher, having received about 15
years of extensive public scrutiny by now. Square attacks, impossible differential
attacks, boomerang attacks, rectangle attacks and meet-in-the-middle attacks in
both the single-key and related-key settings are just several prominent examples
of cryptanalysis techniques applied to AES [1,4-7,12,17,20,22-24,26-28|.

The large-block Rijndael is arguably less analyzed, being a highly relevant
cipher though. Among others, an important motivation for the study of large-
block Rijndael is the deployment of Rijndael-like permutations in the design of
hash functions, Whirlwind [2] and SHA-3 finalist Grgstl [16] constituting some
especially interesting instances. We mention here several multiset and integral
cryptanalytic results [13,15,18,21], as well as impossible differential cryptanal-
ysis [19,25]. In terms of the impossible differential cryptanalysis — the major
object of our study in this paper — the best attack has been proposed by Zhang
et al. [25] which cryptanalyzes 9-round Rijndael-224 and Rijndael-256 with 2209
and 22088 encryptions, respectively.

Impossible differential cryptanalysis, which was proposed by [3,8], is a widely
used cryptanalytic technique. The attack starts with finding a certain input dif-
ference that can never result in a certain output difference, which makes up an
impossible differential. Usually, impossible differentials have truncated input and
output differences. By adding rounds before and/or after the impossible differ-
ential, one can collect pairs with certain plaintext and ciphertext differences.
If there exists a pair that meets the input and output values of the impossible
differential under some subkey bits, these bits must be wrong. In this way, we
discard as many wrong keys as possible and exhaustively search the rest of the
keys. The early abort technique is usually used during the key recovery phase,
that is, one does not guess all the subkey bits at once, but guesses some subkey
bits instead to discard some pairs that do not satisfy certain conditions step
by step. In this case, we can discard the unwished pairs as soon as possible to
reduce the time complexity.

Our Contributions. In this paper, we present more powerful 6-round im-
possible differentials for Rijndael-224 and Rijndael-256. Using these impossible
differentials, we can improve the existing impossible differential cryptanalyses of
both Rijndael-224 and Rijndael-256. In addition, the improvement can result in
a 10-round attack on Rijndael-256.

Our impossible differentials for both Rijndael-224 and Rijndael-256 have more
active bytes in the output difference and, therefore, the number of subkey bytes
needed to be guessed during the key recovery phase can range with more options,
while the probability for a pair of plaintexts to pass the test of sieving wrong
pairs is higher compared to [25].
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Table 1. Summary of Attacks on Rijndael-224 and Rijndael-256

Cipher Number of Complexity Attack Source
Round Time (EN) Data(CP) type
7 2141 2130-5 Multiset [18]
7 2167 2138 Imp. Diff. [19]
Rijndael-224 7 gl13.4 2932 Imp. Diff. [25]
9 21965 21965 Integral [21]
9 2209 22123 Imp. Diff. [25]
9 21952 2198.1 Imp. Diff.  sect. 4
9 2162 2208 Imp. Diff.  sect. 4
9 2130 2216 Imp. Diff.  sect. 4
7 2128 _ ol19 2128 _ 219 Part. Sum [13]
7 214! 2130-5 Multiset [18]
7 244 6 x 232 Integral [15]
7 2182 2158 Imp. Diff. [19]
Rijndael-256 7 21132 293 Imp. Diff. [25]
8 2128 _ gl19 2128 _ 919 TIntegral [15]
9 2201 2128 _oM9  TIntegral [15]
9 21745 2132:5 Integral [21]
9 2088 22443 Imp. Diff. [25]
9 2194 2229.3 Imp. Diff. subsect. 3.2
9 2159-1 22373 Imp. Diff. subsect. 3.3
9 1271 92453 Imp. Diff. subsect. 3.3
10 2258.9 92442 Imp. Diff. subsect. 3.4

CP: Chosen Plaintext; EN: Number of round encryptions

For 9-round Rijndael-256, utilizing the new impossible differential and depend-
ing on the number of subkey bytes needed to be guessed in key recovery phase,
three improved attacks can be obtained. If we guess the same number of subkey
bytes as [25], an attack can be mounted with reduced data complexity of 2229-3
Chosen Ciphertexts (CP), time complexity 2194 encryptions and memory com-
plexity 21396 bytes respectively. In addition, if the number of subkey bytes need
to guess is less than [25], given 22373 CP, we can attack 9-round Rijndael-256 with
21991 encryptions and 2'°3 bytes of memory. If the data complexity are increased
to 22453 CP, the time and memory complexity can be significantly reduced to
21271 encryptions and 2999 bytes. Moreover, based on the same impossible dif-
ferential, considering 22442 CP, we can even attack 10-round Rijndael-256 with
22539 encryptions and 2868 bytes of memory accesses. As for Rijndael-224, sim-
ilarly three attacks can also be mounted on 9-round with lower complexity. With
2198:-1 CP, an attack is demonstrated on 9-round Rijndael-224 with 2952 encryp-
tions and 2494 bytes memory. Take 2298 CP, we can attack 9-round Rijndael-224
with 2162 encryptions and 2!'7 bytes memory. Increasing the data complexity to
2216 chosen plaintexts, the time complexity can be greatly reduced to 2139 encryp-
tions and the memory requirements to 2%3-6 bytes.

To the best of our knowledge, these results are the best impossible differ-
ential attacks on Rijndael-224 and Rijndael-256. We summarize our results for
Rijndael-224 and Rijndael-256, as well as the major previous results in Table 1.
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The remainder of this paper is organized as follows. Section 2 gives a brief
overview of Rijndael and introduces the notations used in this paper. In Section 3
we first derive a new 6-round impossible differential, and then present three
improved impossible differential attacks on 9-round Rijndael-256. The attack
can also be extended to 10-round Rijndael-256. Then in Section 4, after a new 6-
round impossible differential distinguisher is presented, we mount three improved
attacks on 9-round Rijndael-224. Finally, we conclude this paper in Section 5.

2 Description of Rijndael and Notations

Rijndael has NV, rounds, which can be 10, 12, or 14 depending on the key size. In
Rijndael, both the text block and the key sizes can range for 128 up to 256 bits
in steps of 32 bits. The 128-bit block version of Rijndael, with the key size 128,
192 or 256, is officially known as AES [14]. The plaintext, ciphertext, subkey,
and all the intermediate data are represented by a 4 x N, state matrix of
bytes, where N is the number of 32-bit words in the block. The byte indexing
for the state matrix is shown in the left part of Figure 1. The key schedule

0 4 8 |12 16| 20|24 (28

1 5 9 |13 17|21 |25(29

2|6 |10]|14]|18]|22(26]30 Ny Co C1 C2 Cs
5 0 1 2 3

3 7 |11 )15|19 23|27 |31

160-bit f———)

192-bit | |

6 0 1 3
7 0 1 4
8§ 0 1 4

[SUIN VR V]

224-bit |

>~

256-bit |

>~

Fig. 1. Byte Index of the State Matrix and the Shift Offsets for Each Block Length NV,

derives (N, + 1) b-bit RoundKey (RK) from the master key, denoted from RKj to
RKy,. The Expanded Key is a linear array of 4-byte words and is denoted by
WINp * (N, + 1)]. The first N words W[0]||W[1]|| - - - ||W[Ny — 1] are directly
initialised by the Ny words of the master key, while the remaining key words,
W(i] for i € {Ng,--- , Ng*(N,+1)—1} are generated by the following algorithm:

if (¢ mod N) = 0 then W[i] = W[i — Ni| @ f(W]i — 1]) @& Rcon[i/Ny]
else if ((Ny > 6) and (i mod N = 4)) then W[i] = W[i— Ng]®g(Wi—1])
else W[i]| = Wi — Ny @ Wi — 1]

where f,g:{0,1}3% — {0,1}32 are nonlinear permutations, Rcon denotes fixed
constants depending on its input. Roundkey RK; is given by the Round Key
buffer words W [Ny  i] to W[N * (i + 1)].

The round function, which is repeated (V. —1) times, involves four operations:
SubBytes (SB), ShiftRows (SR), MixColumns (MC) and AddRoundKey (ARK). The
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SubBytes operation consists of the parallel application of a fixed 8-bit to 8-bit
Sbox to each byte of the state. ShiftRows is a byte transposition that left shifts
the rows of the state over different offsets. The shift offsets C; of row ¢ which
depend on the block length N, are specified in the right part of Figure 1 for
each block length of Rijndael. MixColumns is an (4 x 4) Maximum Distance
Separable (MDS) matrix multiplication over GF(2®) for each column of the
state. Obviously the branch number of this MDS matrix is five. AddRoundKey
consists of the exclusive-or combination of the RoundKey with the intermediate
state.

These (N, — 1) rounds are surrounded by an whitening layer consisting of
AddRoundKey only, and the last round with MixColumns operation omitted. We
also assume that this is the same case for the reduced Rijndael we are focusing
on throughout this paper. Here we only give a brief description of Rijndael, for
more detailed specification of the cipher, we refer to [10,11].

We will also use the technique that the operations of MixColumns and
AddRoundKey can be interchanged under some conditions [11]. Here we introduce
some notations as well for later use in the following.

X, : the state of the i-th round;
AX; : the difference for state of the i-th round;
XiI : the input state of the i-th round;
RK; : the subkey of the i-th round;
RK; : the value of the subkey of the i-th round after the inverse of the
MixColumns operation;

XZSB : the intermediate state after the SubBytes operation in the i-th round;
XisR : the intermediate state after the ShiftRows operation in the i-th round;
XZ»MC : the intermediate state after the MixColumns operation in the i-th round;
XV . the intermediate state after the AddRoundKey operation with RK} in the

i-th round;
Xio : the intermediate state after the AddRoundKey operation in the i-th round;
? : an indeterminate difference.

Obviously, X/ = X2, hold. Note that the operation of AddRoundKey will be
represented as ARK™* throughout this paper when the Roundkey RK™ is used.

3 Improved Impossible Differential Attacks
on Rijndael-256

In this section, we first give a new 6-round impossible differential for Rijndael-256
in Section 3.1. Based on this impossible differential and depending on the number
of the subkey bytes need to guess during the key recovery phase, three improved
9-round impossible differential attacks compared to [25] will be presented in
Subsection 3.2 and 3.3 respectively. Using the same impossible differential, we
can extend it to an attack of 10-round Rijndael-256 in Subsection 3.4.
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Fig. 2. The New 6-Round Impossible Differential of Rijndael-256

3.1 New 6-Round Impossible Differential on Rijndael-256

Assume we start with round 1 (denoted as 1R in Figure 2) and the input differ-
ence AX; has one active byte whereas the other bytes are zero, one illustration
with the first byte active is depicted in Figure 2. Then request 2.5 rounds en-
cryption from the SB operation in round 1 to the SR operation in round 3 to get
the difference AX5 . Consider the output difference with three nonzero bytes in
the first column of the state, one option with the active bytes at (0,1,3) is shown
in Figure 2, the other option has the active bytes at (0,2,3). Decrypt 3.5 rounds
(as depicted from the operation ARK* in round 6 to the operation ARK in round
3) in order to get the difference AXM ¢ Note there is no AddRoundKey operation
in round 6 because the order of MixColumns and AddRoundKey operations can
be interchanged as mentioned before in Section 2. For the third column of the
state AXS® the number of nonzero bytes is one, while it is at most three for
the nonzero bytes of AX¢ (it is indeterminate at byte 9). Since the branch
number of the MDS matrix is five, there is a contradiction before and after the
MixColumns operation. By similar reasoning, there is also a contradiction in the
seventh column in the state before and after the MixColumns operation in round
3. Therefore, we make up a 6-round impossible differential for Rijndael-256.
There exist more active bytes in the output of the impossible differential
compared to [25] (they has one byte), therefore we have more options in guessing
the subkey bytes to meet the output of the impossible differential while adding
extra rounds after the impossible differential distinguisher. There are three active
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bytes in one column after MC~! at the bottom of the impossible differential,
thus the number of the subkey bytes we need to guess in order to calculate the
output after MC~! can range from two to four, therefore three attacks can be
mounted using this impossible differential.

3.2 9-Round Attack on Rijndael-256 with Lower Data Complexity

In this subsection we present the attacks on 9-round Rijndael-256 utilizing the 6-
round impossible differential in Subsection 3.1. In our attack, we guess the same
number (i.e. four) of subkey bytes of RK} as [25] in the key recovery phase. As a
result, 16 bytes of subkey RK¢g will have to be guessed to partially decrypt round
9 in order to calculate X3V (as shown in Figure 3), which will also provide a 128-
bit condition for ciphertexts in the data collection phase. The number of active
bytes at the end of the new impossible differential distinguisher will filter out
more wrong pairs during the key recovery phase. Therefore, an improved attack
with significantly reduced data complexity compared to [25] will be result in.
The detailed procedures of the attack will be described as follows.

[] |
SB SR MC ARK 1R
I I Pry

—1
6-Round Impossible Differential of Rijndael-256 i c

sB— SR—l- H ARK*. [ 1c— Y

< < 8R.
Prg

SB— SR

Fig. 3. Improved 9-Round Attack on Rijndael-256 with Lower Data Complexity

Data Collection. We first choose 2" structures of plaintexts. In each structure
the plaintexts range over all 32-bit values at bytes (0,5,14,19), while the other
bytes can take certain fixed values. Each structure includes about (232)2/2 = 263
pairs of plaintexts, therefore 27263 = 27163 pairs of plaintexts will be prepared.
Encrypt these pairs and keep the one whose ciphertext difference are zero at bytes
(1,2,4,5,8,9,11,12,14,21,23,24,26,27,30,31). The probability of such ciphertexts is
about 27816 = 27128 thus the expected number of the remaining pairs after
this phase is about 27T63-128 — gn—65

The sieving of the ciphertexts can be done by birthday attack. As a result, the
time complexity of this phase is about 2"+32, In addition, we need 2"%%.5.32 =
27577 bytes memory to store these pairs.
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Key Recovery. In order to check if the pairs generated in data collection phase
satisfy the impossible differential in Figure 3, we need to guess certain bytes
of subkey (RKy, RKy,, RK§) during the key recovery phase. The details are
described in the following:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

For all the pairs of plaintext obtained in the data collection phase, we
guess the 32-bit subkey (RKg o, RK9 29, RK9 22, RK10,19) and partially
decrypt round 9 to compute the first column of AXJ". Check if the
differences at byte (1,2,3) are zero. If it is not the case, discard the pair.
The probability of this event is 2724, After this step the expected number
of remaining pairs is about 2765724 = 2n—89,

For every guess of the 32-bit subkey (RKy 16, RK9 13, RK9 6, RKy3), we
partially decrypt round 9 to compute the fifth column of AXY . Check
if the differences at byte (0,1,2) are zero. If it is not the case, discard the
pair. The probability of this event is 2724, After this step the expected
number of remaining pairs is about 2789724 = gn—113,

For every guess of the 32-bit subkey (RKy 29, RKg 17, RK9 10, RKy 7), we
partially decrypt round 9 to compute the sixth column of AXY. Check
if the differences at byte (0,1,3) are zero. If it is not the case, discard the
pair. The probability of this event is 2724, After this step the expected
number of remaining pairs is about 27~ 113-24 = gn—-137,

For every guess of the 32-bit subkey (RKjy 2s, RKg 25, RK9 15, RKg 15),
we partially decrypt round 9 to compute the eight column of AX}.
Check if the differences at byte (0,2,3) are zero. If it is not the case,
discard the pair. The probability of this event is 2724, After this step the
expected number of remaining pairs is about 27137724 = gn—161

We need to guess the 32-bit of subkey (RKy,0, RKo,5, RKo 14, RKo,19)
for all the remaining pairs, and partially encrypt round 1 to get the first
column of AXMC. Check if the difference at byte (1,2,3) are zero. If it
is not the case, discard the pair. The probability of this event is about
4-(28 —1)/232 ~ 2722, Thus after this step the remained pairs is about
2717161722 — 2717183.

For every guess of the 16-bit subkey (RKS o, RKg 59, RK{ 99, RK 1),
partially decrypt round 8 to compute the first column of AX?. Check if
the differences at the third byte is zero. If it is correct, delete all the 32-bit
subkey guesses of RK{ since such a differential is impossible, each subkey
guess that proposes such a differential is a wrong key. After analyzing all
the 277183 remaining pairs, if there still remains value of RK, output
the 192-bit subkey guess of (RKy, RK], RKy) as the correct key. Our
experiments provide the evidence that the probability of the pairs pass
this step is about Pro =2-278 =277,

The process steps of the key recovery phase above are described in Table 2,
whereas the second column lists the bytes need to be guessed in the correspond-
ing round for each step. The third column stands for the number of remained
pairs after sieving in each step, and the time complexity of each step will be
measured in the fourth column in Table 2. Note that when evaluating the time
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complexity of the recovery, it is measured by one round encryption. Similar ta-
bles will be adopted to describe the steps of the key recovery phase throughout
this paper.

Table 2. Key Recovery Processes of the Attack on Rijndael-256 with lower Data
Complexity

Step Guessed Bytes #Pairs Kept Time Complexity
1 RK9:0,29,22,19 2"~ %721 =2n=% 292 .79, 2/8 = gn=°
2 RKy:16,13,6,3 2n—89-24 _ gn—113 964 . gn=89  9/g — gn=27
3 RKy:20,17,10,7 2711324 _ gn—137 296 . gn—113 9 /g _ gn—19
4 RKQ - 28.25.18. 15 2n—137—24 — 2n—161 2128 . 2n—137 . 2/8 — 2n—11
5 RKy:0 :,,-) 121 1(:) gn—161-22 _ 9n—183 9160 , gn-161 9 /g _ gn—3
192 o o7 _ 9=T\2
6 RK;:0,29,22/19 - 2 2-+-27)+0 n—2183)
+oe+(1=277)2 )8

Analysis of the Attack. Take n = 197.3, after analyzing all the remaining
pairs, there will be about 2192.(1—2-7)2"""* = 2-36-2 wrong subkeys of RK left,
we can get rid of the wrong subkeys by 2!87-8 trail encryptions. Therefore the data
complexity will be 27132 = 22293 the time complexity will be 2197-2/9 ~ 2194
9-round encryptions, the memory required is about 21396 bytes.

3.3 9-Round Attack on Rijndael-256 with Lower Time Complexity

We will use the same new 6-round impossible differential as the previous section,
which helps to get rid of more pairs. As mentioned in Subsection 3.1, the number
of subkey bytes need to be guessed in round 8 can be reduced compared to [25],
i.e. two or three bytes of RK{. Here we take two bytes for example. As a result,
it will be the same case for round 9, which means fewer columns need to be
decrypted. Meanwhile, 192 bits are zero for the ciphertexts, which provides an
stronger condition of ciphertexts for sieving wrong pairs compared to 128 bits
in [25]. As a result an improved attack with the time complexity greatly reduced
can be mounted on 9-round Rijndael-256. Because of the similarity of the attack
with the one in Subsection 3.2, only a brief description of this attack will be
demonstrated as follows:

In the data collection phase, we take the same structures as in Subsect 3.2,
thus 27763 pairs of plaintexts will be generated. there exists the 192-bit condition
for ciphertext to discard wrong pairs, thus the expected number of the remaining
pairs is 27T63—192 — 9n—129 5t the end of this phase.

In the key recovery phase, we only guess 8 bytes of RKg, 4 bytes of RKj
and 2 bytes of RK{ to check if the impossible differential will be satisfied for the
remaining pairs. When filtering out wrong pairs, we obtain the probabilities that
the pairs pass the tests in round 8, round 1 and round 7 are Pry = (2724)2 =
278 Pry=4.(28-1)/2%2 ~ 2722 and Pry = 2-278 ~ 277 respectively. The
expected number of remaining pairs after this phase is about 2792, The steps
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and the time complexity evaluation of this phase are given in Table 3. Take
n = 213.3, the data complexity is 27732 = 22453 CP, the time complexity will
be 2130-3/9 ~ 21271 9_round encryptions, the memory required is about 2%
bytes.

Table 3. Key Recovery Processes of the Improved Attack on Rijndael-256 with lower
Time Complexity

Step Guessed Bytes #Pairs Kept Time Complexity
1 RKy:0,29,22,19 20129724 = gn—153 2%2.2.2n7129 /8 = =99
2 RKy:28,25,18,15 2" 193724 = on=177 204.2. 277193 /g = g9t
3 RKo:0,5,14,19 2" 177722 = gn=199 2%0.2. 277177 /g — g%
112 -7 —7\2
4 RKg:0,29 - 2721+ (-2 )+(12_ng199)

4o+ (1=-2"7 1/16

Moreover, as mentioned at the beginning of this subsection, it is also possible
to guess three bytes of the subkey RK to calculate AXI in order to check
if the impossible differential can be satisfied. As a result 12 bytes of RKy have
to be guessed to partially decrypt round 9 in the key recovery phase. In this
case, the data complexity is about 22373 CP, the time complexity is about 21591
9-round encryption, and the memory is about 2153 bytes.

3.4 10-Round Impossible Differential Attack on Rijndael-256

Based on the same impossible differential as in the previous subsection, we will
extend two rounds backwards and forwards respectively, an attack on 10-round
Rijndael-256 will be led with complexity less than exhaustive search. We adopt
the 9-round attack with lower time complexity in Subsection 3.3 to act as our
internal 9-round attack, on which we make some modification. In addition, we
will take the key schedule into consideration. The brief attack will be given out
as follows.

In the data collection phase, take 2™ structures of plaintexts, in which the
plaintexts range over 128-bit values at bytes (0,3,4,5,9,12,14,16~19,21,23,26,
30,31), while the other bytes can take certain fixed values. Each structure in-
cludes about (2!2%)2/2 = 225% pairs of plaintexts, therefore 2" - 2255 = 2n+255
pairs of plaintexts are obtained. Encrypt these pairs and keep the one whose
ciphertext difference are zero at bytes (1~14,16,17,20,21,23,24,26,27,30,31). The
probability of such ciphertexts is about 27824 = 27192, thus the expected num-
ber of the remaining pairs after this phase is about 27+255-192 — gn+63,

In the key recovery phase, as in the 9-round attack in Subsection 3.3, 8 sub-
key bytes of RKig should be guessed. Because of the extra round backward
extension, 16 bytes of RKy and 4 bytes of RK; will also be guessed respectively.
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Fig. 4. 10-Round Impossible Differential Attack on Rijndael-256

At the end of this phase, the number of remaining pairs is 277193, The process
steps of this phase are described in Table 4. By the key schedule, we can calculate
RK 29 from RKy and RK; o. RKy 5 and RK; 5 determine RK; ;, then RKj 1
together with RKj 39 determine RK| ;. Therefore, in order to recover the key,
there are 14 bytes of RK left to guess. We can take n = 116.2, from the
data collection phase we know that the data complexity of the attack is 2" -
2128 — 22442 Chosen Ciphertext (CP). In the key recovery phase, after analyzing
the remaining 277193 = 2132 pairs, the expected number of wrong subkeys is
2240 (1 —2-T)2""% 21335 With about 2112 2133:5 = 22455 {14i] encryptions,
the correct key will be recovered. The time complexity is about 22572 /10 ~ 22539
10-round encryptions. The memory required to store the pairs is about 2868
bytes.

Table 4. Key Recovery Processes of the Attack on 10-Round Rijndael-256

Step Guessed Bytes #Pairs Kept Time Complexity
1 RKi0:0,29,22,19 27F63-24 = ont39 232 . Qn+63 .9 /8 = gnt93
2 RKio:28,25,18,15 2nH39-24 = gn+l15 264 gn 39 9 /8 = gnt10L
3 RKo:0,514,19  2nH1o724 = g9 2% . gnH15. 9 /8 = onH109
4 RKo:4,9,18,23  2n 972t =9on3 2128 . gn=9 . 9/8 = 117
5 RKo:12,17,26,31 2" 33724 = gn=57 2100 . gn=33 . 9/8 = o125
6 RKo:16,21,30,3 2" %724 = on-8! 2192 gn=oT . 9/8 = gn+133
7 RK;:0,5,14,19  2n 81722 = gn—103 2224 . gn=8l . 9/g = pntidl
240 -7 —7\2
8 RK::0,20 i 220 2. 1+(1-2"")+(1-277)

+ o + (1 _ 277)2n—103]/16
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4 Improved Impossible Differential Attacks
on Rijndael-224

In this section, we first give a new 6-round impossible differential of Rijndeal-224
(see Figure 5 in Appendix A). Utilizing the new 6-round impossible differential,
we extend one round at the top and two rounds at the bottom to mount 9-
round impossible differential attacks on Rijndael-224. As we can see there exist
three active bytes at the bottom of the distinguisher, as a result the number of
the subkey bytes need to guess in round 8 during the key recovery stage can
range from two to four. Therefore three 9-round attacks on Rijndael-224 can
be obtained respectively. First assume there are four bytes of subkey RK§ need
to guess in order to check if the impossible differential distinguisher is satisfied
during the key recovery phase, as depicted in Figure 6.

In the data collection phase, choose structures of 232 plaintexts, in which the
plaintexts take all possible 32-bit values at bytes (0,5,10,19) while the others
take certain fixed values. Take 21661 structures, about 222%-! pairs of plaintexts
will be generated. Filter out the pairs whose ciphertext difference are not zero at
byte (1~5,8,10,13,16,19,23,26). Because of this 96-bit condition for ciphertexts,
the expected number of remaining pairs is 233! at the end of this phase.

In the process of key recovery phase, we need to guess 16 bytes of subkey RKy,
4 bytes of subkey RKg and 4 bytes of RK( to check if the 6-round of impossible
differential is satisfied. While guessing the 4 bytes of RK{, the probability that
a pair can pass the test is about Pro = 278, The rest of the steps are similar to
Subsection 3.2. At the end of this phase, there exist about 2133:1-96-22 — 915.1
pairs.

After analyzing the remaining pairs, we can get rid of 2192.(1-2-8)2""" ~
2763 wrong pairs. With about 287 encryption trails the key can be recovered.
The data complexity of this attack is about 21981 CP, the time complexity is
about 21984 /9 ~ 21952 encryptions, and the memory we need for storing pairs
is about 21331 . 5. 32 = 21404 bytes,

As mentioned above, we can also guess three bytes of subkey RK}, given 2208
CP, a 9-round attack can be mounted with the time complexity and memory
about 292 encryptions and 27 bytes respectively. Moreover in the case that
two bytes of RK{ are guessed, the data, time and memory complexity can be
2216 CP, 2130 encryptions and 2936 bytes respectively.

215.1

5 Conclusion

More powerful 6-round impossible differentials for both Rijndael-224 and
Rijndael-256 are presented in this paper. Based on those, we significantly
improve impossible differential attacks on both Rijndael-224 and Rijndael-256.
The improvement can also result in a 10-round attack on Rijndael-256.
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A New 6-Round Impossible Differential of Rijndael-224
and 9-Round Attack with Lower Data Complexity

Assume we start with round 1 and there is only one nonzero byte of the input
difference AX; whereas the other bytes are zero. One options is depicted in
Figure 5 with nonzero byte at the first byte position. Then encrypt the input
for 2.5 rounds from the SB operation in 1R to the SR operation in 3R to get
the difference AX5T. Given the output difference with three nonzero bytes in
the first column, whereas the other bytes are zero. For Rijndael-224, the only
option exists is given in Figure 5. After 3.5 rounds decryption (as depicted from
the operation ARK* in round 6 to the operation ARK in round 3 in order to get
the difference AX2). For the first column of the state X5, the number of
nonzero bytes of AX5™ is one, while the maximum number of nonzero bytes
of AXMC is three. Since the branch number of the MDS matrix is five, there
exists an contradiction. Therefore, we make up a 6-round impossible differential
for Rijndael-224.
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Abstract. In this paper, we present some side channel cube attacks
on LBlock, a lightweight block cipher proposed at ACNS 2011. It is
shown that in the single bit leakage model, 14 bits of the secret key
can be recovered with 2'7 time and 27 chosen plaintexts, captured
the 44th state bit of the third round. In the Hamming weight leakage
model, the full 80-bit key can be retrieved with only 2'° 32-round LBlock
encryptions and 21! chosen plaintexts, given the leakage of the second
least significant bit (LSB) of the Hamming weight after the third round.
We also provide a rigorous analysis on the error tolerance probabilities
of our attacks and show that the full 80-bit key can be restored in 23°
32-round LBlock encryptions with 2%° chosen plaintexts and at most
5.5% of the noisy leaked bits in the LSB of the Hamming weight after
the second round. Many of the ideas in our attacks are applicable to
other block ciphers as well.

Keywords: Cryptanalysis, Cube attack, Side channel attack, LBlock.

1 Introduction

RFID technology has been widely used in many real life applications nowadays,
to name but a few, access control, parking management, identification, goods
tracking and so on. To assure the security in such scenarios (weak computation
ability, small storage space and strict power constraints), many lightweight block
ciphers have been designed such as SEA [24], CGEN [21], HIGHT [9], DESL
[13], PRESENT [2], KATAN/KTANTAN [4], MIBS [10], TWIS [18], LED [8],
LBlock [28], Piccolo [23] and TWINE [25]. LBlock is proposed by Wu and Zhang
at ACNS 2011. It is a 80-bit key Feistel-like block cipher with 64-bit block size
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and 32 rounds. It is efficient not only in hardware but also in software. Cur-
rent cryptanalysis [28,3,29,17,14] shows that it provides enough security margin
against known cryptanalytic techniques.

Cube attack [5] was formally proposed by Dinur and Shamir at EUROCRYPT
2009. It is a generic key recovery attack, applicable to any cryptosystem in which
at least a single bit can be represented by an unknown low degree multivariate
polynomial in the secret and public variables. Side channel attacks typically
exploit partial information leakage (time counting [19], physical probing, power
consumption [11], electro-magnetic radiation [20] et al.) to recover the secret key.
In this paper, we ignore these concrete issues and focus on the abstract leaked
information hereafter. Side channel cube attack is a combination of cube and
side channel attack. In such an attack, the adversary can obtain not only the
plaintexts and the ciphertexts but also some restricted internal state information
of the intermediate rounds. Dinur and Shamir applied side channel cube attack
to AES and Serpent[6]. Since then, PRESENT is also found to be especially
vulnerable to side channel cube attack [15,30,22].

In this paper, we present some side channel cube attacks on LBlock both
in the single bit leakage model and Hamming weight leakage model. Combin-
ing the divide and conquer strategy with the cube-searching algorithm of large
and complex algebraic systems, we can efficiently find good cubes based on the
leaked information in the first few rounds. Based on the investigation of the
mixing extent of the plaintext and key bits, we derive some important diffusion
properties of the key bits, which can be utilized by a side channel cube attack.
In real applications, the 0/1 value of the leaked information is likely to contain
errors due to the noise and quantization problems. The original cube attack is
extremely sensitive to errors. Therefore, we present a rigorous analysis of error
tolerance of all our side channel cube attacks on LBlock. It is shown that the
attacker can recover 50 key bits with 5.52% error tolerance and can obtain 56
key bits with 4.52% error tolerance in practical scenarios. Many of the ideas in
our attacks are applicable to other block ciphers as well. Our attack results are
summarized in Table 1.

Table 1. Our results on LBlock

Leakage Round Leaked bit Data Time No. of Error

model position key bits tolerance
SB leakage 3 44th 276 glo7 14 2.42%
HW leakage 2 Oth 28:5  gl5.9 50 5.52%
HW leakage 3 Oth 2100 9l7.0 67 2.40%
HW leakage 2 1st 28:9  9l64 56 4.52%
HW leakage 3 Ist il gl7:2 70 0.62%

SB:Single bit. HW:Hamming weight.

The paper is organized as follows. The description of LBlock is provided in
Section 2. We present a brief review of cube attacks in Section 3. In Section 4,
the side channel cube attacks on LBlock based on the single bit leakage model
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and the Hamming weight leakage model are given respectively. The analysis of
error tolerance on our side channel cube attacks is presented in Section 5. Finally,
some conclusions are in Section 6.

2 Description of LBlock

2.1 Encryption Algorithm

The block length of LBlock is 64-bit, and the key length is 80-bit. It employs a
variant Feistel structure and consists of 32 rounds. The encryption procedure is
depicted in Fig. 1. Let M = X;|| X denote the 64-bit plaintext, and then the
data processing procedure can be expressed as follows.

Fig. 1. Encryption procedure Fig. 2. Round Function F

1. Fort=2,3,...,33, do
X, = F(Xifl,Kifl) S5 (XZ;Q <LK 8)

2. Output C = X35|| X33 as the 64-bit ciphertext

(1) Round function F: The round function F' is defined as follows, where
S and P denote the confusion and diffusion functions which will be
defined later.

F:{0,1}32 x {0,1}%?2 — {0,1}32
(X,K;) —»U=PS(X®K;)
Fig.2 shows the structure of round function F in detail.

(2) Confusion function S: Confusion function S denotes the non-linear
layer of round function F, and it consists of eight 4-bit S-boxes s; in
parallel.

S :{0,1}3% — {0,1}32
Y = Y5 |Yo [V [Yal V3] [Ya Vi [ Yo — Z =
27| Zs|Z5 | Za|| Z5|| 22| Z1 ]| Zo
Zy = 871(Y7), Zs = 56(Ys), Z5 = 55(Y5), Zs = 54(Ya),
Z3 = 83(Y3), Z2 = 52(Y2), Z1 = 51(Y1), Zo = s0(Y0)-
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(3) Diffusion function P: Diffusion function P is defined as a permu-
tation of eight 4-bit words, and it can be expressed as the following
equations.

P:{0,1}3? — {0,1}2
Z = Zz||Z6|| Z5 || Z4|| Z3|| Z2|| 21| Zo — U =
Uz||Us||Us||U||Us||U2||U1]|Uo
U7 = Zs,Ug = Z4,Us = Z7,Uy = Zs,

2.2 Key Scheduling

The 80-bit master key K is stored in a key register and denoted as K =
krokrskrrkqe...... k1ko. Output the leftmost 32 bits of current content of regis-
ter K as round subkey K7, and then operate as follows.

1. For i =1,2,...,31, update the key register K as follows:
(a) K <<<29
(b) [krokrgkrrkre) = solkrokrskrrkze]
(krskrakrskra] = sglkrskrakrskqo]
(C) [k‘50k‘49/<248/€47k‘46} D [i]g, where [2]2 is the binary form of i.
(d) Output the leftmost 32 bits of current content of register K as round
subkey K;i1.

where sg and sg are two 4-bit S-boxes, and they are defined in Table 2.

3 Cube Attacks

Cube attack was formally introduced by Dinur and Shamir at Eurocrypt 2009
[5]. According to the comments and arguments of some researchers, cube attack
has been studied under other names such as higher order differential attack
[12] and algebraic IV differential attack [26][27] as well. Any output bit can
be represented by a multivariate master polynomial p(k1, ..., kn,v1, ..., U, ) Over
GF(2). The variables include secret variables k; (key bits) and public variables
v; (plaintext bits in block ciphers and MACs, IV bits in stream ciphers).

In the off-line phase, the attacker chooses ¢; randomly which can be in-
dexed by the subset I C {1,...,m}. The index of the subset I is defined as
cube index. The polynomial can be represented as p(ki,...,kn,v1,...,Um) =
tr-psry+q(k, ..., kn,v1, ..., Um) where pg(py is called the superpoly of I in p. The
polynomial is divided into two parts pg(ry and g by ;. We assign all the public
variables with all the possible combination of 0/1 values. Then the pg ;) becomes
a polynomial including secret variables only. A maxterm of p is a term ¢; such
that deg(pg(r)) = 1, i.e. the superpoly of I in p is a linear polynomial which is
not a constant. The pg(y) corresponding to the maxterm calls maxterm equation.
Let the degree of the polynomial be d. According to Theorem. 1 of [5], Sum p
that ¢ € {0,1}97, then 35, 1o 13a1P = 2y, coaya-1 (LrPs(r) +9) = Ps(r)- We
set other variables not involving in I to be constant (e.g. all 0s). Since the key
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can be chosen in this phase, it is easy to check whether a superpoly is linear by
linear tests [1]. We choose secret variable vectors z,y € {0,1}" randomly, and
verify the equation pg(1)[0] + ps(r)[z] + psn[y] = psnlz + y]. The test always
succeeds if pg(r) is linear. The attackers repeat the test IV times, and a non-linear
superpoly can be accepted with probability 27%. In this phase the attackers try
to find as many maxterms and their equations as possible.

In the on-line phase, the secret key is fixed. The attackers choose plaintexts
to get a system of linear equations and solve it to recover the key. The superpoly
can be evaluated by summing over every possible assignment to its maxterm. If
the degree of the maxterm is d — 1, each sum requires 2¢~! evaluations of the
derived polynomials.

4 Cube Attack on LBlock

In this section, we first analyze the diffusion properties of the key bits in the
first few rounds of LBlock, then we give the side channel cube attack on LBlock
based on the single bit leakage model and the Hamming weight leakage model
respectively.

4.1 The Attack Round and Bit Position

In general, the choice of round r plays a vital role in the side channel cube
attack on block ciphers. If  is small, e.g. r = 1 or » = 2, the complexity of
chosen plaintext is minimized, but the number of key bits which can be recovered
would be very few, the remaining key bits have to be exhaustively tested. If r
gets bigger, the mixing of plaintexts and key bits will be much thorough, it is
hard to find the maxterms with a low complexity since both the degree and the
number of monomials will grow exponentially.

140+
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120
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100

* round 1
round 2

= =round 3
== round 4
—round 5

polynomial degree
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v \/r\"'/.
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Fig. 3. Polynomial degree for the 64 bit positions of round 1,2,3,4 and 5
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Fig.3 depicts the polynomial degree for the 64 bit positions! of round 1,2,3,4
and 5 of LBlock. It is easy to see that the degree of the polynomial grows ex-
ponentially with the increasing of LBlock round number. Besides, due to the
intrinsic properties of Feistel network, only half of the state bits will be changed
each round. Considering the efficiency of cube attack in which the polynomial
degree of state bits should not be too large, we choose the right side state
bits:{33, 34, ...,64} of the third round (or equivalently the left side state bits
{1,2,...,32} of the fourth round). Experiments show that the polynomial degree
of these state bits are around 15.

4.2 Diffusion of Key Bits

In order to recover more key bits in the single bit leakage model, it is helpful
to observe the key bits diffusion of LBlock and select an appropriate leaked bit
position. For each round, we keep two types of monomials, one involving a single
key variable and the other only involving public variables. Then in the next
round we compute the terms in the polynomial of the state bit which related
to the selected terms only. And we discard other terms involving more than one
key variables. In this way, we can control the number of the monomials in the
first 3 rounds. We give an analysis of the initial key bits diffusion as follows.

I
=]
+
*

] o Bit 36
o o + o+ v *+ s Bit 40
Bit 48
Bit 52
Bit 56
Bit 60
Bit 64

frequency of occurences
11
.

o
*
emx< o0+ 0%

5 10 15 02 E) s w048
initial key bits

Fig. 4. Diffusion of key bits

Fig.4 exhibits the frequency of occurrences of the initial key bits in the mul-
tivariate polynomial of the state bits (36,36,40,44,48,52,56,60,64) in the third
round (The distributions of initial key bits in other state bits are similar). It is
easy to see that the distribution of the initial key bits is not uniform. For state
bit 44 (symbol '+’ indicates the frequency of occurrences), it only covers the
following 16 key bits. The reason is that the speed of the key bits diffusion is not

! Bit positions from 1 to 64 corresponds to the state bits from right side to left side
in each round of Fig.1.
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fast. When the diffusion of key bits is complete in the latter round, the degree
of polynomial will be much higher.

4.3 Attack in the Single Bit Leakage Model

In the single bit leakage model, we assume that only one internal state bit at
certain round is available to the cryptanalyst. We employ the same strategy
mentioned in section 4.2 to control the complexity of the multivariate polyno-
mials. In this way, we can explicitly compute the multivariate polynomials for
each state bit after the third round and treat the coeflicient of the linear terms
and constant terms as cubes. We apply the cube attack on each bit of the right
side state bits:{33,34, ...,64} of the third round. We found that at most 14 key
bits can be recovered with 276 chosen plaintexts? and 27 time (This is the
cost of Gaussian elimination [7] to solve the linear equation system). The cor-
responding leaked bit position is 44. The maxternms with linearly independent
maxterm equations are listed in Table 3.(The attack results on other state bits
are listed in Table 5 of appendix A).

Table 2. 14 maxterms and maxterm equations

Cube Indexes Linear Equations Cube Indexes Linear Equations

{37,39} 1+ kss {37, 40} kss

{39, 40} 14 ks3 {29, 30, 31} k71
{29, 30,45, 57} ks {29,30,47,57} 1+ ke1 + ko2
{29, 31, 32,57} k73 + kra {29, 45, 46, 57} 1+ koo + ks
{30, 31, 32,57} 1+ kra {30, 45,47, 58} kea
{31,46,59, 60} ko1 + koa {32,45,47, 58} ks

{46, 47,59, 60} fooa + kas  {31,45,46,57,60} 1+ ka7 + kes + kea

Therefore, this attack can recover 14 key bits. Due to the incomplete diffusion
of key bits in the third round of LBlock, the number of recovered key bits is very
limited. In the following, we will show a better attack in the Hamming weight
leakage model.

4.4 Attack in the Hamming Weight Leakage Model

In general, Hamming weight leakage model is a weaker leakage assumption, sup-
ported by many previously known practical results on side channel attacks. More
precisely, let the internal state of the cipher S = s¢...sp_1 be a binary string of
length L. The Hamming weight of S is the number of bits with value 1 in the
binary representation of S, which can be computed as HW (S) = Zf;ol s; and
has a value between 0 and L. Clearly, the Hamming weight can also be viewed
as a boolean vector mapping HW : {0, 1} — {0, 1}lte92L+1 where the LSB of

2 Since the cube index size is different in Table 3, we choose the number of plaintexts
as Nep=3-2241-2549.2% 41.25 ~ 976,
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HW (S) is the exclusive OR of all bits from S, the most significant bit(MSB) of
HW (S) is the logic AND of all bits from S and each bit in between is a boolean
function whose degree increases as the bit position gets closer to the MSB. We
consider all bits starting from the LSB position towards the MSB position.

In our attacks, we assume that only one bit of the Hamming weight at certain
round is available to the cryptanalyst. If the LSB of Hamming weight after the
second round is leaked, 50 key bits can be retrieved with 285 chosen plaintexts®
and 2159 time. All these recovered key bits can be deduced from the 50 linearly
independent maxterm equations listed in Table 3.

Table 3. 50 maxterms and maxterm equations

Cube Indexes Maxterm Equations Cube Indexes Maxterm Equations

{1,33} k50 + k51 + k52 {5, 42} k57 + k59 + k60
9,53} 14+ KkT04+kT1+ k72 {13,61} k78 + k80
{17, 49} k66 + k67 + k68 {21,57} 1+ k74 + k76
{25,37} 1+ k54 + k56 {29, 45} k62 + k63 + k64
{2,3,34} k49 + k52 {3,4,35} 1+ k49 + k50
{6,7,43} 1+ kBT + k58 {1, 34,35} k52
{2,33,34} 1+ k30 + k51 {3,33,34} 1+ k29
{3,34,35} 1+ k31 + k52 {5,41,44} k59
{5,43,44} k57 {6,41,42} k35
{6, 42,43} k34 {7,41,43} k33
{9, 54,55} k72 {9,54,56} 1+ k71
{10, 11,54} 1+k69+k72  {10,53,54} 1+ k38
{10, 54,55} 1+k39+k72  {11,53,54} 1+ k37 + k71
{13,62, 63} 1+ k80 {13,62,64} 1+ k79
{14,15,62} k77 + k80 {14,61, 62} 1+ k42 + k79
{15,61,62} 1+ k4l {17,50,51} k68
{17, 50, 52} 1+ k67 {18,19,51} 1+ k65 + k66
{21,58,59} 1+ k76 {21,58,60} k75
{22, 23,58} 1+k73+Kk76  {25,38,39} 1+ k56
{25, 38,40} 1+ k55 {26,27, 38} 1+ k53 + k56
{26, 37, 38} k22 + k55 {27,37,38} k21
{29, 46,47} k64 {29, 46, 48} k63
{30, 32,47} 1+k61+Kk62  {31,45,46} 1+ k27 + k63
{32, 45,46} 1+ k26 {32, 46,47} k25 + k64
{37,38,40} 1+ k23 {61, 62,64} 1+ k43

If the LSB of the Hamming weight after the third round is leaked, 67 key
bits can be restored with 200 chosen plaintexts and 2'70 time, reducing the
LBlock key searching space to 2'3, which is better than that of the second round.
All these recovered key bits can be deduced from the 67 linearly independent
maxterm equations listed in Table 6 of appendix A.

3 Since the cube index size is different in Table 3, we choose the number of plaintexts
as Nep = 8-2% +42- 2% ~ 285,
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We also extend the cube attack on the leakage of the second LSB of the
Hamming weight after the second round. More precisely, the second LSB of the
Hamming weight of S can be expressed as [HW (S)]2 = s;-s; (0 <i < j <L —1),
where the degree of [HW (5)]2 is 2 and suppose L to be an even number, which is
often 8 due to the implementation of a block cipher on a 8-bit microcontroller. By
utilizing this leaked bit, 56 key bits can be obtained with 28-° chosen plaintexts
and 264 time, leaving k1, ko, ..., k19 and k4, kus, ..., kag to be recovered. All those
recovered key bits can be deduced from the 56 linearly independent maxterm
equations listed in Table 7 of appendix A.

Next, we further improve the above attack by using the divide-and-conquer
strategy. If the second LSB of Hamming weight after the third round is leaked, we
find that the multivariate polynomial of [HW (S)]2 in the third round is hard to
compute explicitly, since each s; in the third round contains a lot of monomials
with relatively high degree. We divide [HW(S)]z into L different groups and
compute the explicit multivariate polynomial expression for each group. We use
the same strategy mentioned in section 4.3 to search good cubes for each group,
then apply the attack to LBlock based on all these cubes. Experimental results
show that 70 key bits can be obtained with 2'! chosen plaintexts and 2!7-2 time,
please see Table 8 of appendix A for the 70 linearly independent equations.

These results show that the speed of the key bits diffusion of a block cipher
has a great influence to the attack efficiency of the side channel cube attack.
The attack under the single bit leakage model proves to be very effective to
PRESENT [15,30] whose diffusion speed is very fast. However, it is not applicable
for a block cipher with low diffusion speed, such as LBlock. It is inferior to
the attack under the Hamming weight leakage model, which proves to be more
efficient for both PRESENT [22] and LBlock.

5 Error Tolerance Side Channel Cube Attack

In real applications, the 0/1 value of the leaked information is likely to contain
errors due to the noise and quantization problems. The original attack is ex-
tremely sensitive to errors, since it typically sums (modulo 2) lots of 0/1 values
of a cube to get a single linear equation and repeats the summation over a num-
ber of different cubes to derive all the equations. In this section, we first give a
brief introduction of Dinur-Shamir error correcting model [6] and point out its
limitations when applying in the side channel cube attacks. Then we apply a
modified version of Dinur-Shamir model to our attacks on LBlock

5.1 Dinur-Shamir Model

In the basic model, each leaked bit has three possible values: 0, 1 and 1, where L
indicates a problematic measurement which cannot be relied upon. This model
is closely related to erasure codes [16], in which the recipient of some communi-
cation knows which of the received bits are correct and which bits might have
been flipped. Such flipped bits can be set as new variables in linear equations to
overcome the uncertainty.
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More precisely, let € be the fraction of the | values among all the measure-
ments (leaked bits). Let n be the number of secret key variables. It is assumed
that the errors are uniformly distributed and the leakage function is a d-random
multivariate polynomial. The attacker chooses a big cube with k& > d + log)
public variables. In the off-line phase, the attacker compute all the coefficients
of all the ( dfl) linear equations which are determined by summing over all the
possible subcubes of dimension d — 1 in the big cube of dimension k. In the
on-line phase, the attacker obtains 2* leaked bits. Out of the 2 values, € - 2¥
values are L due to the uncertainty (noise) in the measurement of the leakage
function. The attacker assigns a new variable y; to each one of these unknown
values and sums both the known 0/1 values and the unknown y; variables over
each one of the ( dfl) overlapping subcubes of the big cube. The result of each
summation is the sum of a subset of the y;’s, plus 0 or 1. The attacker treats all
these unknown variables as the new key variables and obtains a system of ( dﬁ 1)

linear equations in the € - 2F + n variables y; and ;.
In order to solve the random looking linear system, the number of linear
equations (dfl) should be larger than € - 2¥ 4+ n. That is (dfl) > ¢- 2% +n, then
k p—
we can derive € < (‘“12 S ! . In feasible attacks k = 2(d — 1) < 50,
2 /- (d—1)

and thus is bigger than ~ 0.11. Consequently, the attacker can

1 1
VH-(d-1) VII-25
find the complete key even when 11% of the leaked bits are too noisy to measure
accurately.

However, considering the efficiency and feasibility, the side channel cube at-
tacks are often applied to the early rounds of some cipher. The number of linear
equations we can obtained is very limited. The assumption that the leakage
function is a d-random multivariate polynomial, made in the model is thus not
applicable in the real scenario. Therefore, we applied a modified version of Dinur-
Shamir model to the attacks on LBlock in the following.

5.2 Side Channel Cube Attacks on LBlock with Noisy Leakage

In our side channel cube attack on LBlock, the number of measurements can be
expressed as Nfp = 2111 n; - 2%, where n; is the number of cubes with size d;
and m is the number of different sizes of cubes. We assume that the errors are
uniformly distributed, then out of the N¢ , values, € - N§p values are L due to
the noise. We then obtained a system of L linear equations in the e - Ng&p +n
variables, where n is the number of the key variables and L is the number of
linear equations we obtained in the off-line stage, satisfying L = 2111 ;.

In order to solve the random looking linear system, it is required that L >
€ N&p + n. Considering the matrix of the linear system might not be nonsin-
gular, we add a modifying factor 6 representing the fraction of linear equations
which is linearly dependent to other equations, thus modify the inequation to
L-(1—-0)>e-Nip+n, therefore, we can derive

L-(1-6)—n

€
— *
Nép
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We can thus recover the key when at most (L - (1 —6) —n)/Ngp fraction of the
leaked bits are L. In the single bit leakage attacks on the 44th of the third round
in Section 4.3, we totally get L = 172 linear equations, which contain a lot of
linearly dependent equations. After canceled all these linearly dependent equa-
tions, we obtained 14 maxterms and the corresponding linearly independently
maxterm equations listed in Table 3. However, considering the random existence
of new variable y; when summing over the leakage bit for a cube, we can use
those linearly dependent equations to solve the new linear system. The value of
N¢p is different from that of Nop in Section 4, since it count all those cancelled
maxterms, thus Ngp = 1-214+3-2244.23450-24+73-25+41-25 = 5806. There
exists n = 14 key variables in all the 172 linear equations. Given 6 = 0.1, we can
get € < 2.42%. Consequently, the attacker can retrieve 14 key bits even when
2.42% of the leaked bits are too noisy to measure accurately. We also apply the
same model to other leakage attacks in section 4, the results are summarized in
Table 4.

Table 4. Analysis of error tolerance of our attacks

Leakage model Round Bit position L n Nép €
SB leakage 3 44th 172 14 5306 < 2.42%
HW leakage 2 Oth 188 50 2160 < 5.52%
HW leakage 3 Oth 1199 67 42200 < 2.40%
HW leakage 2 1st 868 56 16024 < 4.52%
HW leakage 3 1st 13952 70 1990904 < 0.62%

SB:Single bit. HW:Hamming weight.

From Table 4, it is easy to see that the error tolerance of attacks in the second
round is higher than that of the third round, since the cube size in the second
round is relatively smaller than that of the third round. This subtle difference
will lead to a big gap between N¢p of the second round and the third round.
The reason is that the high degree of the multivariate polynomial of the leakage
bit will lead to the exponential increase in N/ p. Consequently, in our leakage
model, it is strongly recommend that the attack should base on a polynomial
whose degree is as low as possible in order to get higher error tolerance. Another
way to increase the error tolerance is to obtain more linear equations in the
off-line stage of cube attack.

6 Conclusion

In this paper, we have presented several side channel cube attacks on LBlock
under the novel assumption of obtaining accurate leaked bits without any noise.
Based on the Hamming weight leakage model, we can obtain all the 80-bit key
with 2'0 32-round LBlock encryptions and 2'1'! chosen plaintexts with a special
leaked bit of the second LSB of Hamming weight after the third round. We also
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present an rigorous analysis on the error tolerance of all our attacks on LBlock.
Under our leakage model, we can recover all the 80-bit key with 23° 32-round
LBlock encryptions and 285 chosen plaintexts when at most 5.52% of the leaked
bits in the LSB of Hamming weight after the second round are too noisy to
measure accurately in practical scenarios. To our knowledge, this is the most
efficient cube cryptanalysis of LBlock. In order to get a higher error tolerance,
we need to get more linear equations and the corresponding cubes’ size should
be as small as possible. Our further research will focus on how to enhance the
error tolerance, how to identify the multivariate polynomial in deeper round of
block cipher and identify cipher structures against side channel cube attacks.
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Table 5. Recovered key bits on other state bits

Bit Position
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64

Recovered Key Bits
k32, k33, k34, k35, k57, k58, k59, k60, k67, kes, k77, k75 + k76
k34, k35, k57, k58, k59, k60, k67, k6s: k77, k32 + k33, ks + k66
k32, k33, k34, k35, k57, k58, k59, k60 k65, k67, k68, k77, k7g, ks + k76

k34, k35, k57, k58 k59, k60, k67, k75, k77, k32 + k33
k5, ke, k2g, k29, k30, k31, k49, k50, k51, k52, k75, k73 + k74
k3, k5, ke, k30, k31, k28, k29, k49, k50, k51, k52, k75, k76
ks, kag, k29, k30, k31, k49, k50, k51, k52, k3 + kg, k73 + k74
k5, ke, k2g, k29, k30, k31, k49, k50, k51, k52, k73, k75, k76

k24, k25, k26, k27, k55, k61, k62, K63+ k64, k73, k74, k53 + k54

k26, k27, k55, k565 k61, K62+ k63: k64, k24 + ka5, k71 + k72

k24, k25, k26, k27, k55, k56, k61, k62, K63+ k64 k73, k7a, k53 + k54, k71 + k72
k24, k25, k26, k27, k53, k

555 k56 k61, k625 k63: k64, k71, k73, k74

k1, ko, koo, k21, k22, k23, k53, k54, k55, k56, k63 k64, k79 + k8o

k1, k2, k2o, k21, k22, k23, k53, k54, k55, k56 k61, k63> k64
k1, k2, k20, k21, k22, k23, k53, k54, k55, k56, k63, k79

k22, k23, k53, k54, k55, k565 k63, keas k20 + k21, k61 + k62, k79 + kgo

k13, k14, k51, k52, k73, k74, k75, k76
k13, k14, k51, k73, k74, k75, k76, K11 + k12
k51, k52, k73, k74, k75, k76, F11 + k12, k49 + k50
k11, k13, k14, k49, k51, k52, k73, k74, k75, k76
k59, k60, k655 K66+ k675 k68, k57 + k58

k59, k60, k65 k66 k67, k68

k57, k59, k60, k655 k66, k675 ks
k59, k65 k66 k67, k68, k57 + k58
k9, k10, ka0, ka1, ka2, ka3, k71, k72, k77, k785 k79, k80

k9, k10, k40, k41, k42, ka3, k71, k72, k77, k78, k79, k80, k7 + k8, kg9 + k70
k7, kg, k10, ka0, ka1, ka2, ka3, k71, k77, K78, k79, k80, k69 + k70

ko, ka2, ka3, k69, k71, k72, k77, k78, K79, k80, k40 + ka1
k36, k37, k38, k39, k69, k70, k71, k72, k79, k77 + k78
k36 k38, k39, k69, k70, k71, k72, k79, k80
k36, k37, k38, k39, k69, k70, k71, k72, k79, k80, k77 + K78
k36, k37, k38, k39, k69 k70, k71, k72, k77, k79, K80

Table 6. 67 maxterms and maxterm equations

Cube Indexes
{2,3,4}

Maxterm Equations
k5 + k6

Cube Indexes

Maxterm Equations

{5,6,7} 14 k77
{1,2, 38} k6 {1, 2,40} 1+ k4
{2,33,37} k50 + k52 {5,42,61} k57 + k59 + k60
{9, 49, 53} 14 k70 + k71 4 k72 {13, 14, 15} 14 k9
{13,41, 61} k78 + k8O {21, 22, 23} 14 k12
{21, 22, 24} 14 k14 {21, 45, 58} k73 + k76
{25, 26, 27} 14 k80 {25, 33,37} 1+ k54 + k56
{29, 30,31} k72 {29, 30, 32} 14 k74
{29, 45, 57} k62 + k64 {5,7,8,63} 1+ k76 + k78
{1,2,33,35} 14 k52 {1,2, 33,36} 14 k51
{1,2,35,36} 14 k49 + k50 {5,7,44, 63} k59 + k76 4 k78
{6,7,43,61} 14 k57 + k58 {1,33,34, 37} k30 + k51
{3,33, 34,37} k28 {3, 33,34, 39} 1+ k6 + k29
{3, 34, 35, 39} k4 + k31 4 k52 {5,41,43,61} k60
{6,41, 42,61} k35 {6,42,43,61} k34
{7,41,43,61} 14 k33 {9, 10, 52, 53} 14 k71
{9, 10, 52,55} 14 k69 + k70 {10, 49, 53, 54} 14 k38
{10, 49, 54, 55} 14 k39 + k72 {11, 49, 53, 54} k37 + k71
{13, 15, 16, 43} 1+ k8 + k10 {13, 41,62, 64} 14 k79
{14, 15, 16, 43} k10 {14, 41, 61, 62} 14 k42 + k79
{15, 41, 61, 62} k41 {17, 18,49, 56} 14 k67
{17, 18, 50, 54} k65 + k68 {17,18, 51, 56} 1+ k65 + k66
{17, 49, 51, 53} k68 {21, 23, 24, 46} 1+ k13 + k14
{21, 45,57, 60} 14 k75 {25, 27, 28, 34} 14 k1 + k2
{25, 33, 38, 39} 14 k56 {25, 33, 38, 40} 14 k55
{26, 27, 28, 34} k2 {26, 33,37, 38} k22 + k55
{27, 33, 37, 38} 14 k21 {29, 30, 45, 58} k63
{29, 30, 47, 58} 14 k61 + k62 {29, 45, 46, 58} k26 + k73
{29, 45, 46, 60} k27 + k63 {29, 46,47, 57} 14 k64
{31, 32, 46, 57} 14 k61 + k64 {32, 46,47, 57} k25 + k64
{33, 37,38, 40} 14 k23 {41, 42,62, 64} k32 + k33 + k59
{41, 61, 62, 64} 14 k43 {11, 50, 52, 53, 54} k36
{15, 42,43, 61, 62} 1 4 k40 {27, 34, 35, 37, 38} k20
{32, 45,47, 58,59} k24
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Table 7. 56 maxterms and maxterm equations

Cube Indexes

Maxterm Equations

Cube Indexes

{32, 47} 1+ k64 {32, 48}
{1,2,34} k49 + k52 {2,4,35}
{2,4,36} 14 k51 {5,7,41}
{5,7,43} 14 k57 + k58 {5, 8,42}
{1, 33, 34} k29 + k30 4 k51 {2, 33,34}
{3, 35,39} k49 + k50 + k52 {5,41, 42}
{5, 42, 43} k34 + k60 {6, 42, 43}
{8,41, 42} 1+ k32 + k33 4+ k59 {9, 10, 54}
{9,51, 53} 14 k71 {9,51, 55}
{9,53, 54} k37 + k38 4+ k71 {10, 12, 55}
{10, 53, 54} 1+ k36 {13, 14, 62}
{13, 61, 62} k4l + k42 4 k79 {14, 16,61}
{14, 16, 63} 14 k77 + k78 {14, 61, 62}
{14, 62, 63} k43 {15, 62, 63}
{17, 18,50} k65 + k68 {18,19,51}
{18, 19, 52} 1+ k67 {18,51, 55}
{21, 23, 58} k73 + k76 {22, 23,57}
{22, 23, 59} 14 k73 + k74 {25, 27, 38}
{25,387,38} 1+ k22 + k55 4 k56 {26, 27, 37}
{26, 27,39} 14 k53 + k54 {27, 37, 38}
{27, 38,39} k21 + k23 4 k56 {29, 30, 47}
{29, 31, 46} 14 k61 + k64 {29, 45, 46}
{29, 46,47} k25 {30, 45, 47}
{33, 34,36} k31 {33, 34, 37}
{33, 37, 38} k56 {42, 61, 62}
{46, 57, 58} k76 {50, 53, 54}
{50, 54, 55} 1+ k39 {8,41, 42,61}
{27, 35, 38, 39} k23 + k56 {31, 45, 46, 60}

Maxterm Equations

k63
1+ k52
1+ k59
14 k57 + k60
k28
1+ k35
k34
14 k69 + k72
14 k69 + k70
1+ k72
k77 + k80
14 k79
k40
14 k43 + k80
1+ k68
k65 4 k66 + k68
k75
k53 + k56
1+ k55
1+ k20
14 k61 + k62
1+ k26
14 k24 + k64
14 k30 + k51
14 k42 + k79
14 k38
k32 4 k59

1+ k27 + k63 + k64

Table 8. 70 maxterms and maxterm equations

Cube Indexes
{10, 13,14}
{1, 21, 22, 23}
{5,17, 42, 64}
{10, 15, 44, 63}
{12, 13, 14, 43}
{17, 41, 42, 64}
{25, 26,27,30}
{25, 27, 28,29}
{25, 29,45, 46}
{26, 29, 35, 38}
{50, 52, 62, 63}
{1, 21,23, 24, 45}
{2, 21, 33, 34, 37}
{3,21,34, 35,37}
{3, 21, 34, 36, 38}
{5,17,42, 43, 63}
{8, 18,41, 42, 63}
{9, 14,41, 61, 62}
{10, 11, 12, 49, 62}
{10, 14, 51, 54, 55}
{10, 15, 43,61, 62}
{10, 44, 61,63, 64}
{11, 14, 51, 53, 54}
{17,41, 42,43, 63}
{18, 41, 42, 50, 54}
{21, 22, 24, 35, 36}
{25, 26, 27, 34, 46}
{25, 26, 29,37, 40}
{25, 29, 32,45, 47}
{25, 32, 46,47, 57}
{27, 29, 35, 38, 39}
{1, 2, 3,40, 59, 60}
{1, 21, 33, 34, 35,40}
{17, 18, 41,43, 51, 56}
{21, 33, 34, 35,37, 40}

Maxterm Equations
14 k9
14 k11 4+ k12
1+ k57 + k60
k77 + k78 + k80
k7
k32 + k33 + k59
14 k79 4+ k80
k1l 4 k2
14 k27 4+ k63
1+ k53 + k55 + k56
14 k67 + k80
k13 + k14
1+ k6 + k30 + k51
1+ k54 k31 4 k52
k28 + k29 + k51
1+ k34 4+ k60
14 k32 4 k59
1+ k9 4 k42 4 k79
k77 + k80
k39 + k72
1+ k40
14 k40 + k41
1+ k36 + k37 + k71
1+ k35
1+ k65 + k67 4 k68
k14 + k49
14 k61 4 k64
1+ k55
k64 + k71 + k72
1+ k24 + k25 4 k64
k23 + k56
14+ k73 4+ k74
1+ k3 + k5
14 k65 + k66
1+ k28

Cube Indexes
{10, 14, 15}
{1, 21,22, 24}
{6, 18, 41, 42}
{11, 15, 50, 53}
{13, 14, 15, 54}
{21, 22, 24, 34}
{25, 26, 28,30}
{25, 29, 31, 32}
{25, 30, 32, 48}
{26, 29, 45, 46}
{3,4,21, 33,37}
{1,22,45,47, 58}
{2, 22, 33, 35, 36}
{3, 21, 34, 35, 38}
{3,21,35,37,39}
{5,17,42, 44, 63}
{9,13,15, 16, 43}
{9, 15,16, 41, 64}
{10, 14, 51,53, 54}
{10, 14, 51, 54, 56}
{10, 15, 43, 62, 63}
{11,13,52,53, 54}
{17, 18, 19, 43, 54}
{17,41, 43, 44, 64}
{19, 41, 42, 44, 63}
{25, 26, 27,33,45}
{25, 26, 29,37, 39}
{25, 26, 29, 39, 40}
{25, 29, 35, 37, 38}
{27, 29, 35, 37, 38}
{27, 29, 36, 37, 38}
{5,7,44, 50,51, 63}
{1, 23,33, 34, 35,40}
{21, 22, 23, 33, 35, 36}
{26, 31, 45,47, 48, 59}

Maxterm Equations
1+ k10
k14
k75 + k76
14+ k70 4+ k72
14 k9 4 k69 + k72
k14 + k49 + k52
k2
14 k71 4 k72
14 k63 4 k71 4+ k72
k26 + k73
1+ k6 + k51
k73 + k75 + k76
1+ k5 + k6
1+ k31 4 k52
k49 + k50 + k52
1+ k35 4+ k59
14 k74 k8 4+ k10
14+ k9 + k79
k38
k38 + k71
k43 + k80
k36
1+ k57 + k58
k32 + k33 4 k34
k35 + k75
k62 + k64
1+ k56
1+ k53 4+ k54
1+ k22 4 k55
k20
1+ k20 4+ k21
k59 + k68 + k75 + k76 + k78
k3 + k4 + k5
1+ k11
1+ k24
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Abstract. The current paper presents an integral cryptanalysis in the
single-key setting against light-weight block-cipher LBlock reduced to
22 rounds. Our attack uses the same 15-round integral distinguisher as
the previous attacks, but many techniques are taken into consideration
in order to achieve comprehensive understanding of the attack; choosing
the best balanced-byte position, meet-in-the-middle technique to identify
right key candidates, partial-sum technique, relations among subkeys,
and combination of the exhaustive search with the integral analysis.

Keywords: LBlock, integral analysis, partial-sum, meet-in-the-middle.

1 Introduction

Block-ciphers are basic tools for secure communications which provide the con-
fidentiality of the data. Recently, block-ciphers which can be implemented in
resource constraint environment, e.g., RFID Tags for a sensor network, have re-
ceived much attention. Such block-ciphers are called light-weight block-ciphers.

Many light-weight block-ciphers were designed so far. Some examples are
HIGHT [1] proposed at CHES 2006 which were standardized by ISO as a 64-
bit block-cipher [2], and PRESENT [3] proposed at CHES 2007 and CLEFIA
[4] proposed at FSE 2007, which were standardized by ISO for the lightweight
cryptography [5]. Many other designs were proposed independently of the ISO
standards e.g., LBlock [6] proposed at ACNS 2011, Piccolo [7] proposed at CHES
2011, LED [8] proposed at CHES 2011, and TWINE [9] proposed at SAC 2012.
Different designs provide different implementation characteristics, e.g., different
tradeoff of area, throughput, and security, thus making a comparison and identi-
fying good designs is very hard. Particularly security evaluation is hard because
it takes long and usually requires evaluations by the third party.

Integral analysis is a cryptanalytic technique against symmetric-key primi-
tives, which was firstly proposed by Daemen et al. to evaluate the security of
SQUARE cipher [10], and was later unified as integral analysis by Knudsen and
Wagner [11]. The crucial part is a construction of an integral distinguisher: an
attacker prepares a set of plaintexts which contains all possible values for some
bytes and has a constant value for the other bytes. All plaintexts in the set are

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 156-169, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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passed to an encryption oracle. Then, the corresponding state after a few rounds
has a certain property, e.g. the XOR of all texts in the set becomes 0 with prob-
ability 1. Throughout the paper, this property is called balanced. A key recovery
attack can be constructed by using this property. The attacker appends a few
rounds to the end of the distinguisher. After she obtains a set of the cipher-
texts, she guesses a part of round keys and performs the partial decryption up
to the balanced state. If the guess is correct, the XOR sum of the results always
becomes 0. Hence, the key space can be reduced.

Several improved techniques are known for the integral analysis. Ferguson et
al. proposed a technique called partial-sum [12]. It reduces the complexity of
the partial decryption up to the balanced state by guessing each subkey byte
one after another. Sasaki and Wang introduced meet-in-the-middle techniques
for the key recovery phase of the integral analysis against block-ciphers with a
Feistel network [13]. It separates the partial decryption into two independent
parts, and thus the complexity can be reduced.

The integral analysis has already been applied to LBlock. Firstly, the de-
signers proposed a 15-round integral distinguisher, and constructed an 18-round
attack [6]. Then, Sasaki and Wang extended the attack up to 20 rounds [13].
Regarding other approaches, the designers proposed a 20-round impossible dif-
ferential attack [6]. This was later extended up to 21 rounds by Liu et al. [14].
This is the current best attack on LBlock in the single-key setting. Regarding
related-key attacks, Minier and Naya-Plasencia proposed a related-key impossi-
ble differential attack up to 23 rounds [15]. Liu et al. studied several related-key
differential-based attacks at ICICS 2012 [16]. An optimization of the brute-force
attack by a biclique technique was studied by Wang et al. at WISA 2012 [17]. In
this paper, we do not discuss such an optimized brute force attack with a small
advantage of a constant factor.

Very recently, we have realized that Wang et al. [17] cited an unpublished
paper written in the Chinese language which claims a 22-round integral attack
on LBlock [18]. All the information we have about [18] is obtained through
[17], and is summarized as follows. 1) It is claimed that 22 rounds of LBlock
are attacked with 2616 CPs and 27*2 encryptions. 2) The integral distinguisher
used in the attack is the same as the previous one in [6]. We emphasize that our
work is independent of [18].

Our Contributions. In this paper, we present a comprehensive study of the
integral analysis against LBlock. Our goal is extending the number of attacked
rounds and optimize the complexity as much as possible by considering all pre-
viously known techniques. Specifically, we consider the following techniques;

— There are 4 possibilities of the balanced-byte position at the output of the
integral distinguisher. We try all of them to identify the best choice.

— We optimize the complexity by using the meet-in-the-middle approach.

— We optimize the complexity by using the partial-sum technique.

— We analyze the key schedule function, and exploit subkey relations.

— We combine the exhaustive search with integral analysis. This can optimize
the data complexity.
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Table 1. Comparison of attack results

Model Approach #Rounds Data Time Memory (bytes) Reference

Single-key Imp. Diff. 20 263 9727 208 6]
Imp. Diff. 21 2625 2787 255-5 [14]
Integral 18 262 936 220 [6]
Integral 20 2036 2396 23% [13]
Integral 22 2616 9712 not given [18] T
Integral 21 2061.6 954164 95158 This paper
Integral 22 261 970.00 203 This paper

Related-key Imp. Diff. 23 210 ™ not given [15]

t: Unpublished independent work available only in Chinese.

i: The attack requires 2°*-°® memory access in order to process 2°*-58

ciphertexts.

As a result, we construct a 21-round attack with (Data, Time, Memory) =
(261-6 254.16 951.58) "which is better than the previous 21-round impossible differ-
ential attack with (Data, Time, Memory) = (262:5 2737 2555) We then extend
the attack by one more round, and obtain a 22-round attack with (Data, Time,
Memory) = (261,270:00 263) The attack results are summarized in Table 1.

The 15-round integral distinguisher discovered by the designers [6] produces
the balanced byte at 4 byte-positions, Oth, 2nd, 4th, and 6th bytes of the in-
termediate state after 15 rounds. The previous integral attacks [13,6] used the
balanced byte at the 4th byte without any reasoning. Our analysis shows that
the choice of the balanced-byte position is very sensitive when subkey relations
are considered. Interestingly, as later explained in Table 2, using the balanced
byte at the 6th byte for attacking 21 rounds and at the 2nd byte for attacking
22 rounds achieves significantly smaller complexity than the other 3 choices.

Our results indicate that the integral cryptanalysis is particularly useful for
LBlock like structures. Indeed, LBlock is the almost only case that the integral
cryptanalysis works more rounds than the impossible differential cryptanalysis.

2 Preliminaries

2.1 LBlock Specification

LBlock is a light-weight block-cipher proposed by Wu and Zhang [6]. The block
size is 64 bits and the key size is 80 bits. It adopts a modified Feistel structure
with 32 rounds, and its round function consists of the subkey addition, S-box
transformations, and a permutation of the byte positions (1 byte is 4 bits).

Let X[||Xf, where 0 < i < 32, be an internal state which is an input
to the i-th round or an output from the ¢ — 1-th round. We further denote
8 bytes inside of X/ and X' by XF = XE[7]|XE[6]| - || XE[0] and X7 =
XE[TXE[6]] - - - | X [0], respectively. The plaintext is loaded into an inter-
nal state XI'||XE. The state XZ|| X is updated with a 32-bit subkey K; =
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Fig. 1. LBlock round function Fig. 2. 15-round integral distinguisher
K [T]||K[6]]] - - - | 1 [0] by Xy = P(S(X[@Ky)) @ (X <« 8), and X}, = X,

where, S(-), P(:), and <« 8 represent an S-box layer, a permutation of the byte
positions, and the left cyclic shift by 8 bits, respectively. In the S-box layer, each
byte is updated according to the 4-bit to 4-bit S-boxes defined in the specifica-
tion. Then, P(x7||zg||xs||za]|zs||z2||z1||x0) returns (zg||zal|z7 |5 22 ||z0l|zs||21)-
These computations are described in Fig. 1. In this paper, we denote the state
after the byte-position permutation in round i by Z;. After 32 rounds, X4 | X%
are produced as the ciphertext.

Key Schedule Function. The key schedule function produces thirty-two 32-
bit subkeys from an 80-bit secret key. Let k;, where 0 < ¢ < 31, be an 80-bit
internal state for the key schedule function for round i. We denote each bit of «;
by ;[79], k4[78], ..., ki[0]. We often denote several bits of x; by x;[a,b,c,---].

The leftmost 32 bits of kg, i.e., ko[79, 78, ..., 48], are output as a 32-bit subkey
for round 0, K. Then, the following is operated for i = 1,2,...,31.

1. ki Ko K 29.

2. Update #;[79,78,77,76] and #[75,74,73,72] by So(s;]79,78,77,76]) and
Ss(k4[75,74,73,72]) respectively, where Sg and Sg are 4-bit to 4-bit S-boxes.

3. Update k,[50, 49,48, 47, 46] by k;[50,49, 48,47, 46]®[i]2, where [i]2 is a binary
representation of the round index.

4. Output the leftmost 32 bits of k; as a 32-bit subkey K.

2.2 Notations for Integral Attack
To discuss integral distinguishers, the following notations are used in this paper.

“A (Active)” : all values appear exactly the same number in the set of texts.
“B (Balanced)” : the XOR of all texts in the set is 0.
“C' (Constant)” : the value is fixed to a constant for all texts in the set.

We also use the following notations to describe the attack.

D: number of plaintexts to construct an integral distinguisher.
K,: size of subkeys (in bits) recovered during the key recovery phase.
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Kpg: size of subkeys (in bits) exhaustively guessed after the key recovery phase.
| B|: size of the balanced state (in bits) to be checked in the key recovery phase.
The key space is reduced by |B| bits with analyzing a single set.

The previous integral attack, especially for LBlock, analyzed K, /|B| plaintext
sets to identify the right key of K,. Then, Kj is recovered by the exhaustive
search. The data complexity is D - (K, /|B|) and the time complexity is a sum of
the one for the key recovery phase and 2%4. Several techniques can be applied
to reduce the time complexity of the key recovery phase. Note that if D is much
bigger than the time complexity for the key recovery phase and the exhaustive
search, D - (K,/|B|) memory access for processing obtained ciphertexts is the
bottle-neck of the time complexity.

2.3 Partial-Sum Technique

The partial-sum technique was introduced by Ferguson et al. [12]. The original
attack target was AES. In the key recovery phase of the AES, the partial de-
cryption involves 5 bytes of the key and 4 bytes of the ciphertext. Suppose that
the number of data to be analyzed, n, is 232 and the byte position b of each
ciphertext is denoted by ¢ . Then, the equation can be described as follows.

232

@ [54 (So(co,n © ko) ®S1(c1,n ® k1) D So(con Dk2) D S3(can ®kz) D k4)] ()

n=1

With a straightforward method, the analysis takes 232440 = 272 partial decryp-
tions, while the partial-sum technique requires only 2% partial decryptions. The
idea is partially computing the sum by guessing each key byte one after another.

The analysis starts from 232 texts (€o,n» C1,m, C2,m, C3.m)- First, two key bytes
ko and ky are guessed, and So(co.n @ ko) ® S1(c1,n @ k1) is computed for each
guess. Let z; ,, be EB;:O (Sp(cp.n ® kp)). Then, So(co,n ® ko) ® S1(c1,n ® k1) can

be represented by x1 ,, and Eq. (1) becomes @le {54 <961,n @ Sa(can B ko) @
S3(can @ k3) @ k‘4)]. The original set includes 232 texts, but now only 3-byte

information (z1, cg, ¢3) is needed. Hence, by only picking the values that appear
odd times, the size of the data set is compressed into 3 bytes. For the second
step, ko is guessed, and the size of the data set becomes 2 bytes (x2,c3). For
the third step, ks is guessed, and the size of the data set becomes 1 byte (x3).
Finally, k4 is guessed and Eq. (1) is computed. The complexity for the guess of
ko, k1 is 216 x 232 = 248 for the guess of ko is 2'6 x 28 x 224 = 248, Similarly,
the complexity is preserved to be 2*® until the end.

2.4 Previous Integral Analysis on LBlock

The designers showed a 15-round integral distinguisher [6], which is shown in
Fig. 2. For a set of 250 plaintexts with the form of (AAAC AAAA AAAA AAAA),
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Fig. 3. 20-round attack on LBlock Fig. 4. 22-round attack on LBlock

the state after 15 rounds, (X1 || X4%), has the form of (???? ???? ?B?B ?B?B). By
using this property, the designers showed an 18-round key recovery attack. The
attacker guesses a part of subkeys, and performs the partial decryption up to the
fourth byte of X{% and checks if its sum is 0 or not. The partial decryption up to
XE[4] involves 5 bytes of the ciphertext and 4 bytes of subkeys. The attacker first
counts how many times each 5-byte value of the ciphertext appears and only picks
the ones that appear odd times. Hence, at most 24%® = 220 values are stored in a
memory. Then, for each guess of four key bytes, she computes the corresponding
XE[4] and computes the sum. The attack complexity is 220 x 216 = 236 partial
decryptions. With the analysis of a single 20 plaintexts set, the key space is
reduced by 1 byte. Therefore, to identify the right key, 4 sets of plaintexts need
to be analyzed. Hence, the data complexity is 4 x 260 = 262,

Sasaki and Wang introduced a meet-in-the-middle technique for the key re-
covery phase, and extended the number of attacked rounds up to 20 rounds [13].
The 5-round key-recovery phase is shown in Fig. 3. Because @ X{t[4] = 0 can
be written as @ Z15[6] = @ Xi[6], the sum of Z;5[6] and X%[6] can be com-
puted independently, and right-key candidates are identified by checking their
matches. The bottle-neck of the complexity, which is the partial decryption for
P Z156], involves 8 bytes of the ciphertext and 8 bytes of subkeys, and thus re-
quires 232 x 232 = 264 partial decryptions. Moreover, they applied the partial-sum



162 Y. Sasaki and L. Wang

technique, and the complexity for @ Z15[6] was reduced to 23¢ partial decryp-
tions. In this attack, 12 key bytes are guessed, and the key space is reduced
by 1 byte with the analysis of a single 260 plaintexts set. Therefore, 12 sets of
plaintexts were analyzed, and the data complexity is 12 x 260 = 2636 which is
very close to the full code book.

3 Combining Exhaustive Search for Data-Time Trade-Off

We explain a simple technique which gives the trade-off between the data
complexity and time complexity. For example, we can convert the previous
20-round attack [13] with (Data, Time)=(2%37,236) into the one with (Data,
Time)=(2%2,2%1), and thus can avoid the marginal improvement of the data
complexity. Note that the complexity evaluation by Sasaki and Wang [13] is
only for the key recovery phase. Actually, it requires 2537 memory access to
process 2637 ciphertexts.

The approach is very simple. When we recover a part of subkeys, we stop
identifying the unique right key for K, but reduce the key space into a suffi-
ciently small size. Then, the reduced key space is exhaustively searched together
with the remaining subkey bits Kg. Note that the exhaustive search only for
K, (independently of Kg) is impossible. K, and Kg must be guessed together.
With this method, the data complexity can be reduced with an extra cost for
the exhaustive search. Let d be the number of sets to be analyzed. Then, the
data complexity is d - D. The key space for K, is reduced into K, — (d - |B]),
and the cost for the exhaustive search becomes 2/« = (¢1B)+Ks,

Let us apply this method to the previous 20-round attack [13] with (Data,
Time)=(2%3-7,236). More precisely, the parameters of this attack are D =
200 K, = 48, Kz = 32,|B| = 4. [13] chose d = 12, thus the data complex-
ity is 12 - 260 = 2636 and the time complexity for the exhaustive search is
20432 — 232 We now change the parameter d to d = 4. Then, the data com-
plexity is 4 - 269 = 262 and the time complexity for the exhaustive search is
248-16+32 _ 964 Considering that the attack requires at least 26° memory access
to process the ciphertexts, the time complexity is now almost equally distributed,
and we can avoid the marginal improvement of the data complexity.

Note that the data complexity of our attack is exactly the same as the expected
values, while the previous attack in [6] uses double of the expected value to
increase the success probability. Because our approach runs the exhaustive test,
the right key can be identified with probability 1.

4 21-Round and 22-Round Attacks on LBlock

4.1 Overview without Considering the Key Schedule Function

As was done in [13], to detect the right key candidates, the attacker computes the
sum of the target byte in Z;5 and the sum of the target byte of X% independently,
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Table 2. Key space for 21- and 22-round attacks for all balanced-byte positions

Balanced-byte 21-round attack 22-round attack

position Key space for Zi5 Ko Key space for Zi5 Ko
X{to] 50 63 62 75
X1t[2] 44 61 55 69
X1i[4) 47 63 63 75
X1t 6] 42 57 65 77

and find matches between two results. Due to the Feistel structure, the bottle-
neck of the time complexity is the one for Z;5. Hence, how many subkey bytes
relate to the computation for Zi5 is important. The number of total subkey
bytes, K, is also important to estimate the number of necessary text sets.

We firstly obtain such information for each of the balanced-byte position,
XE0], X{[2], X{[4], and X{[6]. As a result, we found that such important
factors are the same for all balanced-byte positions. In details, for 21-round
attack, the computation for Z;5 involves 13 subkey bytes and 12 ciphertext
bytes, and K, is 80 (20 bytes). For 22-round attack, the computation for Zis
involves 20 subkey bytes and 15 ciphertext bytes, and K, is 128 (32 bytes).

21- and 22-round attacks are impossible only with the techniques in the previ-
ous attacks. We then analyze the key schedule function and exploit the relation
between subkeys. If it is considered, the attack complexity is very different de-
pending on the balanced-byte position.

4.2 Analysis of Key Schedule Function

What we do here is guessing several bits of the key state, and trace the guessed
bit positions during several rounds. If the guess of several subkey bits reveals
some information about other subkeys in different rounds, the number of guessed
bits by the attacker can be reduced. We analyze the subkey relations for both of
21- and 22-rounds and for each balanced-byte position. As shown in Sect. 4.1,
the number of guessed key bytes is too many, and thus we should choose the
balanced-byte position with minimum key space. The results of the analysis is
summarized in Table 2. The columns for “Key space for Z;15” show how many
key bits must be guessed to compute the sum of the target byte in Z;5 by
considering the subkey relations, which is the bottle-neck of the time complexity.
The columns for “K,” show how many bits are guessed to analyze a single
plaintext set, i.e., K, is the number of elements of the union of the key space
for Z;5 and the key space for X{. A smaller number indicates that overlaps
of subkeys occur more frequently, and thus the number of guessed bits can be
small. From Table 2, using X# [6] and X{%[2] as the balanced-byte position would
yield the best attack for 21 rounds and 22 rounds, respectively. It is particularly
interesting that K, for 22-round attack is significantly smaller for X{§[2] than
other balanced-byte positions.



164 Y. Sasaki and L. Wang

Py

X (027,631
S 3571]
[0,2,3,4,5,6,7] Vv 13,57,
- & —{s|—{p]—¢

R L
1 X

P B X\F
K, [057.4613) Ky, 0513613)
0,1,2,3,4,56,7] v . E 12,4567,01] % 12,456,701
10, 1 & & [01,2,3,4,5,6.7] & . E & e
——

XZZL XZZR XZZL XZZR
10,1,2,4,56,7] 10,1,23,4,56,7] 10124567 10123456,7]

Fig. 5. Partial-sum with 1-byte guess Fig. 6. Partial-sum with 3-byte guess

4.3 7-Round Key-Recovery Phase for 22-Round Attack

Details of the 7-round key-recovery phase are shown in Fig. 4. We follow the
notations used in [13], where 20 key bytes and 15 ciphertext bytes related to
the computation of Z15[4] are denoted by numbers in red square brackets. Simi-
larly, 12 key bytes and 12 ciphertext bytes related to the computation of X{;[4]
are denoted by numbers in blue round brackets. The sum of Z15[4] and X{[4]
are computed independently, and the bottle-neck is the computation for Z15[4].
Hereafter, we mainly explain how to compute the sum of Z;5[4].

High-Level Description. Because the procedure is very complicated, we first
give the high-level description of the attack. The attack complexity depends on
how we apply the partial-sum technique and how we utilize the subkey relations.
In our attack, there are 2 patterns of the application of the partial-sum.

1-byte partial-sum: Suppose that we compute the sum for some byte of XJ[.
This always involves 1 byte of K; and 2 bytes of (X%, X/t,). The 1-byte
partial-sum is applied when (X{jrl, Xﬁrl) only relate to the computation of
X[ Namely, after we obtain the sum of X/¥, we can discard the information
on (X%, X ). An example is shown in Fig. 5, which we compute X4%[0] =
XE10] = (So(XE[0]@ Ka1[0]) @ X5 [2]) >> 8, and XI5[0] and X4,[2] are only
used to compute X£[0]. Suppose, the number of texts to be analyzed is 24V,
which consists of N-byte information (X45[0], X1, [2], and other N —2 bytes).
For each 4-bit guess of K»1[0], the attacker computes X4 [0] for all 24V texts.
Then she only picks N — 1 byte tuple (X£%[0] and other N — 2 bytes) which
appear odd times. The analysis requires 2*¥ 4 1-round computations, and
for each guess, the data is compressed into 2N =%, Therefore, the complexity
of 24N+4 is preserved until the end.

3-byte partial-sum: Suppose that we need to compute X7 by using 2-byte in-
formation of (X% ,, X/ ,). The 3-byte partial-sum is applied when X[, is
used not only for computing X7 but also for computing X?,. In this case,
the data cannot be compressed after we guess 4 bits of K;, and thus the
attack complexity increases. An example is shown in Fig. 6, which XZ£[1,7]
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Fig. 7. k1s for computing Z15[4] and X{4[4]. Known bits are in grey.

are used not only for computing X2 [6, 3] but also for computing X5§[7,5].
We first guess two bytes of Kol 7], and update the value of X%[0,5] to
XX [6,3]. This requires the complexity of 24N+8. Then, 1-byte partial-sum
is applied for the computation of X£[5] (and then X£[7]). In summary, the
3-byte partial-sum increases the complexity into 2(4N+8)+4,

The attack optimization also requires to consider the subkey relations, i.e., we
need to arrange the computation order so that we can reduce the number of
guessed bits by using the relations. This also makes the attack complicated.
In our attack, these techniques are considered simultaneously by hand. In high-
level, the complexity for computing the sum of Z;5[4] can be explained as follows.
The detailed procedure and and its evaluation are available in Appendix A.

- The analysis starts from 269 texts, 15-byte information of the ciphertext.

- The 1-byte partial-sum is applied several times. At this stage, the complexity
is preserved to be 260+4 = 264 1_round computations.

- The 3-byte partial-sum is applied once, but thanks to the subkey relations, we
can save the guess of 3 bits to update the value. At this stage, the complexity
increases to 2(602)+4 — 269 1_round computations.

- Thanks to the subkey relations, the 1-byte partial-sum is applied by only
guessing 2 bits. This occurs 2 times. At this stage, the complexity is
2(60+5—4)+4 — 965 1_1round computations.

- The 3-byte partial-sum is applied once again. At this stage, the complexity
increases to 2(60+5—4+8)+4 — 973 1_round computations.

- The remaining part can be computed with less complexity due to the subkey
relations. Hence, intuitively, the bottle-neck of the complexity is 273 1-round
computations.

Remaining Part of the Attack. The complexity for computing € X;[4]
must be estimated. We confirmed that @ X{4[4] is computed with at most 12 -
24848 260 1_round computations. Due to the limited space, we omit the details.
We store the result of @ X{4[4] together with the 48-bit guessed keys in a table
Lxz . After the analysis, we obtain a list Lxz with 248 entries.

After we make two lists L 7z, and L XL, We identify the right key candidates
by checking the match. By the condltlon @ Zi5/4] = @ X[4], the key space
can be reduced by 4 bits. Moreover, because the computations of Z;5[4] and
X1 [4] share some key bits in common, we can reduce the key space more. The
key state k1g for computing Z15[4] and X7;[4] are shown in Fig. 7. 25 key bits
are overlapped between x1g for computing Z15[4] and X{4[4]. Therefore, the key
space can be reduced by 4 + 25 = 29 bits in total. Note that 12 bits of kg are
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not included in both parts. Those 12 bits are exhaustively searched after the key
space for other 68 bits of k1g is sufficiently reduced.

Finally, we conclude the attack. We analyze 2 sets of 269 texts. The key
space for the guessed 68 bits of kg is reduced into 2°6+48—(29%2) — 946 Thege
246 and the other 12 bits are exhaustively searched with 246112 = 258 [.Block
computations. The data complexity is 2! plaintexts. The time complexity is
2. (27346 4 269) round functions and 2°® 22-round LBlock computations. The
cost for computing one round function is regarded as 1/22 of 22-round LBlock
computations. Hence, the total cost is 2- (27346 4-260) /22 4258 ~ 270-00 22_round
LBlock computations. The memory complexity is 296 bits, which is 263 bytes.

5 Concluding Remarks

In this paper, we presented a comprehensive study of the integral analysis against
LBlock. We showed that the choice of the balanced-byte position is very sensitive
when the subkey relations are considered. As a result, we achieved the 22-round
attack with (Data, Time, Memory) = (261,270:00 263),
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A Details of 22-Round Attack

The procedure to compute €P Z15[4] is as follows. Its summary is available in
Table 3. The key state for the last seven rounds, k15, ..., ko1 are shown in Fig. 8.

1.
2.

Query 2% plaintexts which has the form of (AAAC AAAA AAAA AAAA).
Count how many times each fifteen-byte value X5[0,1,2,4,5,6,7], X£[0, 1,2,
3,4,5,6,7] appears, and pick the values which appear odd times.

. Guess 4 bits of K2;[0], and compute X£[0] with X%[2], X£[0]. Compress

the data into 26 texts of (X15[0,1,4,5,6,7], X&[1,2,3,4,5,6,7], X2[0]).

. Guess 4 bits of Ko1[4], and compute XZ£[4] with X% [6], XZ%[4]. Compress

the data into 252 texts of (X1[0,1,4,5,7], X£[1,2,3,5,6,7], X20,4]).

. Guess 4 bits of K2;[6], and compute X£i[5] with X5[7], X£[6]. Compress

the data into 248 texts of (X1[0,1,4, 5], X1[1,2,3,5,7], X£[0, 4,5]).

. Guess 4 bits of K[0], and compute XZ[0] with X£&[2], X£[0]. Compress

the data into 24* texts of (X£[0,1,4,5], X£[1,3,5,7], X2t[4, 5], XZ[0]). The
known bits of the key state upto this step are shown in red in Fig. 8.
Guess K21[7]. From Fig. 8, this can be done by 1-bit guess of k20[47], which
is colored in yellow. Compute XZ£[3] with X1 [5], X% [7]. Update the data
into 244 texts of (X15[0,1,4], X23[1,3,5,7], X£[3,4, 5], X5[0]).

. Guess 4 bits of Ka[1], and compute X2 [6] with X5[0], XZ5[1]. Update the

data into 2** texts of (X5 [1,4], X&[1,3,5,7], X1[3,4,5,6], XE&[0]).



168 Y. Sasaki and L. Wang

9. Guess 4 bits of Ka[3], and compute XZ[7] with X&[1], X% [3]. Compress
the data into 240 texts of (X1[1,4], X£[3,5,7], X£[4,5,6], X£[0,7]). The
new known bits of the key state upto this step are shown in yellow in Fig. 8.

10. Guess Ki9[7]. From Fig. 8, this can be done by 2-bit guess of x19[78,79],
which is colored in blue. Compute X{5[3] with X2 [5], XZ&[7]. Compress the
data into 236 texts of (X&[1,4], X£[3,5,7], XL [4, 6], X5 [0], X [3]).

11. Guess 4 bits of Kag[6], and compute X£[5] with X&[7], XX [6]. Compress
the data into 232 texts of (X1[1,4], X5&[3,5], XE[4], X£[0,5], XE[3]).

12. Guess Kig[5]. From Fig. 8, this can be done by 2-bit guess of k19[68,69],
which is also colored in blue. Compute X¥§[2] with X2 [4], XJ¥[5]. Compress
the data into 228 texts of (X4[1,4], X&[3,5], X%[0], X{[2, 3]).

13. Guess 4 bits of Ko1[3], and compute X£[7] with X1[1], X5[3]. Update the
data into 228 texts of (X [4], X£[3,5], XL [7], X5 0], XF[2,3]).

14. Guess 4 bits of Ko1[5], and compute X [2] with XZ[4], XJ[5]. Update the
data into 228 texts of (XJ3[3,5], X£[2,7], X£[0], X{[2, 3]).

15. Guess 4 bits of Ka[7], and compute XZ§[3] with XZ£[5], X2 [7]. Compress
the data into 224 texts of (X25[3], X2 [2], X£[0, 3], X£[2, 3]). The new known
bits of the key state upto this step are also shown in blue in Fig. 8.

16. From Fig. 8, K;3[2] is already known. Compute X{§[1] with XZ5[3], X% [2].
Compress the data into 220 texts of (XJ5[3], X£[2], XL [0], XT§[3], X [1]).

17. Guess 4 bits of Ka0[2], and compute X45[1] with XZ[3], X [2]. Update the
data into 229 texts of (X2 [2], X£[0, 1], X{[3], XE[1).

18. From Fig. 8, K;3[3] is already known. Compute X{5[7] with X5 [1], X [3].
Compress the data into 216 texts of (X2 [2], X£[0], X{[1,7]).

19. Guess K19[0]. From Fig. 8, this can be done by 1-bit guess of £19[51], which
is colored in green. Compute X%[0] with X£[2], XJ§[0]. Compress the data
into 212 texts of (X5[0], X{4[1,7]).

20. From Fig. 8, Ki7[1] is already known. Compute X#[6] with X{§[0], XE[1].
Compress the data into 28 texts of (X7&[7], X{%[6]).

21. Guess Ki6[6]. From Fig. 8, this can be done by 2-bit guess of k1673, 74],
which is colored in green. Compute X{§[5] with X% [7], X£[6]. Compress
the data into 2% texts of X{§[5].

22. Guess 4 bits of K15[5], and compute the final sum for Z;5[4]. We store the
result together with the guessed key value in a list Lz,, The new known bits
of the key state upto this step are also shown in green in Fig. 8.

Complexity for € Zi5[4]. The complexity for each step is estimated as a
product of the previous data size and the total number of guessed bits, and is
shown in the last column of Table 3. In total, it requires 264426442644 264 4 961 4
265+269+267+267+265+265+269+273+269+269+269+266+262+260+260 ~
273-46 1_round computations. After Step 22, we obtain a list Lz,. with 2°¢ entries
which contains 60-bit information; € Z;5[4] and 56-bit key values.
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Table 3. Summary of the computation of € Z15[4] in 22-round attack
Step Guessed #guessed New Discarded  #texts Values in the set Complexity
key  bits (total) value values
2 0 260 xI10,1,2,4,5,6,7), X84 (0,1,2,3,4,5,6, 7]
3 Kg1[0] 4 x%[o] x%[z],x%[o] 256 xIo00,1,4,5,6,7], x44(1,2,3,4,5,6,7], 260+4 — 564
4 Ko1[4] 8 X%m X?[s],x%m 252 x100,1,4,5,7), x,fz[l,z,s,s,s, 7],x§1[o,4] 256+8 _ 964
5  K2116] 12 X%[S] ngm,x?m] 248 xlj0,1,4,5 X%[l 2,3,5,7], X3t (0,4, o] 252+12 _ 564
6 Kggl0] 16 X%{J[O] x3b(2), x2 0] 24 xIj0.1,4,5), x25(1,3,5,7), xLF (4, 5], 248+16 _ 564
7 Ko7 17 x It (3] XL, (5] 244 xIj0.1,4], Xégu,s, 5,71, xg [3 ,5], X 244+17 _ 561
8  Kgql[l] 21 x% [6] x;z[o] 244 x 42[1,4],)(%[1,3,5 7], X583, 4, 6] x20[0] 244+21 _ 565
9 Kggl3] 25 x%)m xi‘%[l},x%’;"/1 8] 240 xZL1,4), x%g [3,5,7], X% [4,5, 6], x20[0 7] 244+25 _ 569
10 Kig[7] 27 XH’[B] X%[SJ-,X%QW] 236 xIoq1, 4], x28 (3,5, 7, x21[4 5] x3To], x{g[s] 240+27 _ 967
11 Kog[6) 31 x%?[s] x%?m, X%[G] 232 x4, X%?[‘Z 5], X%?l %?[n 5], 236431 _ 567
12 Kig[5] 33 x}?[z] x3a), xIf5) 228 xL[1,4), x22[3 s],xzo £[2, 3] 232433 _ 565
13 Kop[3] 37 x%?1 7] x5 228 x%[q X22[3 5], X21[7] x20[o] x{12, 3] 228+37 = 965
14 Koq(5) 41 xrﬁi 2] X5, [4] 228 x| [3 5] x21[2 7] xZ0), xf}2,3] 228+41 _ 569
15 Kgol7] 15 x%?[s] x%[s},x% 7] 224 xét? %{1 %) [0, 3], X142, 3] 228+45 — 573
16 Kigl2] 45 x}:?[l] x3e), xfh) 220 xlip), X%% x3 o] xlg[a] xfi) 224+45 = 569
17 Kaol2] a0 xghn] xghs] 220 X212 x T (0, 1), X19[31 xfi 220449 _ 569
18 Kig(3] 49 x%)m xB ), xB 3 216 x‘tSL %*9 [1,7] 220+49 _ 569
19 Ki9(0] 50 xg[o] xg[z],xg[o] 212 xf;[o] x%)u 7] 216450 — 266
20 Ky7[1] 50 X]R7[61 X]FE,[O],X%;[H 28 xﬁgm x{% 6] 212450 _ 562
21 Ki6(6] 52 xfhis) xfgm, xfve) 2t x{§is 28452 _ 560
22 Ki505] 56 Z15[4] xft15] 20 @ z1504) 24456 = 260
K[71 K;[6] K;[5] K[4] K,;[3] K;[2] K,[1] K;[0]
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Fig. 8. Key state for the last

7 rounds



New Impossible Differential Attack
on SAFER, and SAFER *

Jingyuan Zhao':2, Meiqin Wang'?**, Jiazhe Chen'?, and Yuliang Zheng!2:3

! Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China
2 School of Mathematics, Shandong University, Jinan 250100, China
3 Department of Software and Information Systems, UNC Charlotte, 9201 University
City Blvd, Charlotte, NC 28223, USA

Abstract. SAFER+ was a candidate block cipher for AES with 128-
bit block size and a variable key sizes of 128, 192 or 256 bits.
Bluetooth uses customized versions of SAFER+ for security. The
numbers of rounds for SAFER+ with key sizes of 128, 192 and 256
are 8, 12 and 16, respectively. SAFER++, a variant of SAFER+,
was among the cryptographic primitives selected for the second
phase of the NESSIE project. The block size is 128 bits and the
key size can take either 128 or 256 bits. The number of rounds
for SAFER++ is 7 for keys of 128 bits, and 10 for keys of 256
bits. Both ciphers use PHT as their linear transformation. In this
paper, we take advantage of properties of PHT and S-boxes to
identify 3.75-round impossible differentials for SAFER++ and 2.75-
round impossible differentials for SAFER+, which result in impos-
sible differential attacks on 4-round SAFER+/128(256), 5-round
SAFER++/128 and 5.5-round SAFER++/256. Our attacks signifi-
cantly improve previously known impossible differential attacks on
3.75-round SAFER+/128(256) and SAFER++/128(256). Our at-
tacks on SAFER+/128(256) and SAFER++/128(256) represent the
best currently known attack in terms of the number of rounds.
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1 Introduction

SAFER+, designed by Massey, Khachatrian and Kuregian, was a candidate block
cipher for AES with 128-bit block size and a variable key sizes of 128, 192 or
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256 bits, denoted by SAFER+/128, SAFER+/192 and SAFER+/256, respec-
tively [8]. Since some weaknesses to the key schedules of SAFER+/192 and
SAFER+/256 were discovered, Massey et al. changed the key schedule algo-
rithms later. In this paper, we will use the remedied key schedule algorithms
as in [12]. Bluetooth uses custom algorithms based on SAFER+ for key deriva-
tion and authentication as MAC [4]. SAFER++ was submitted to the NESSIE
project [13] and was among the primitives selected for the second phase of this
project [9]. The block size is 128-bit and the key size can be taken as 128-bit and
256-bit. The two ciphers have common S-boxes derived from exponentiation and
discrete logarithm functions and share the Pseudo-Hadamard-like mixing trans-
forms (PHT) but have different ways to use it. They also share the methods to
perform key-mixing with two-commutative operations.

Several cryptanalytic results on SAFER+ and SAFER++ have been published.
Nakahara et al. gave the non-homomorphic linear cryptanalysis for 3.25 rounds
of SAFER+/128 and 3 rounds of SAFER++/128 and SAFER++/256 [10, 11].
Piret et al. gave the integral cryptanalysis for 4.25 rounds of SAFER++/128
and 4.75 rounds of SAFER++/256 [14]. Biryukov et al. gave the multiset attack
on 4.5 rounds of SAFER++/128 and the boomerang attack on 5.5 rounds of
SAFER++/128. For the impossible differential cryptanalysis, Nakahara et.al also
gave the impossible differential cryptanalysis for 2.75 rounds of SAFER+/128
and SAFER++/128 [11,12]. Then Behnam et al. claimed they could attack
4 rounds of SAFER++/128 with the impossible differential cryptanalysis [1],
however, their attack only worked for 4-round SAFER++/128 without the final
whitening-key layer, so their attack was a 3.75-round attack. Zheng et al. gave the
impossible differential attacks on 3.75 rounds of SAFER+/128 (SAFER+/256)
and 3.75 rounds of SAFER++/128 (SAFER++/256).

The impossible differential attack, which was independently proposed by Bi-
ham et al. [2] and Knudsen [5], is a popular cryptanalytic method. The attack
starts with finding an input difference that can never result in an output dif-
ference, which will produce an impossible differential. By adding rounds before
and/or after the impossible differential, one can collect pairs with certain plain-
text and ciphertext differences. If there exists a pair that meets the input and
output values of the impossible differential under some subkey bits, these bits
must be wrong. In this way, we discard as many wrong keys as possible and
exhaustively search the rest of the keys, this phase is called key recovery phase.
The early abort technique is usually used during the key recovery phase, that
is, one does not guess all the subkey bits at once, but guess some subkey bits
instead to discard some pairs that do not satisfy certain conditions step by step.
In this case, we can discard the unwished pairs as soon as possible to reduce the
time complexity.

Our Contributions. By delicately choosing the positions and the number
of the active S-boxes in the first round, we can identify 3.75 rounds impossible
differentials for SAFER++, which are significantly better than the previous 2.75-
round impossible differentials [1,16].
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At the same time, we also identify 2.75-round impossible differentials for
SAFER+. Although our impossible differentials work for the same number of
rounds as those in [1,16], they will result in less active S-boxes in the first round
or the last round, and then the number of guessed subkey bytes will be reduced
during the key recovery phase, so we can attack four full rounds with the final
whitening key layer; the attack is better than the 3.75-round attack in [16] and
the four-round attack without the final whitening key layer in [1]. Our attacks
on bluetooth ciphers SAFER+/128 and SAFER+/256 are the best attacks ac-
cording to the number of rounds. Specially, our attack on SAFER+/128 is the
first attack on half of the full-round SAFER+.

Our attack on SAFER++/128 can work for 5 rounds with the final whitening
key layer, which is much better than the previous impossible differential attack
for 3.75 rounds in [1, 16]. However, the best attack on SAFER++/128 is the
boomerang attack for 5.5 rounds [3]. Our attack on SAFER++ /256 can work for
5.5 rounds. Although our attack on SAFER++/128 is not as good as those in [3],
we greatly improve the impossible differential attacks in [1,16] and our attacks
are the best chosen plaintext attacks.

The only difference for the components of round functions for SAFER+ and
SAFER++ is the linear transformation; the linear transformation of SAFER++
is more complicated than that of SAFER+, so the designers use less rounds for
SAFER++ than SAFER+. It seems that the linear transformation for SAFER++
is much more secure than SAFER+, however, our attack shows that SAFER++
is less resistant to impossible differential attack than SAFER+, because the
diffusion of the inverse linear layer for SAFER++ is much weaker.

We summarize our results of SAFER+ and SAFER++, as well as the major
previous results in Table 1.

The rest of the paper is organized as follows. We give the brief descriptions
of SAFER+ and SAFER++ in Sect. 2. Section 3 identifies the impossible differ-
entials for SAFER+ and SAFER++. The impossible differential cryptanalysis of
SAFER+/128 and SAFER+/256 is presented in Sect. 4. Section 5 gives the im-
possible differential cryptanalysis of SAFER++/128 and SAFER++/256. Finally,
Sect. 6 concludes this paper.

2 Brief Descriptions of SAFER, and SAFER, ;

This section contains short descriptions of SAFER+ and SAFER++. For more
details, see [8,9]. SAFER+ (SAFER++ ) is a 128-bit SPN block ciphers with vari-
able key sizes of 128, 192 or 256 bits, denoted by SAFER+/128, SAFER+/192
and SAFER+/256 (SAFER++/128 and SAFER++/256). The round function
of SAFER+ (SAFER++ ) consists of an upper key layer, a nonlinear layer,
a lower key layer and a linear transformation. After the final round, an ad-
ditional key-addition whitening similar to the upper key layer is added. The
numbers of rounds of SAFER+/128 and SAFER+/256 are 8 and 16, respec-
tively. The numbers of rounds of SAFER++/128 and SAFER++/256 are 7 and
10, respectively. Among the components of the round functions of SAFER+
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Table 1. Summary of attacks on SAFER+ and SAFER++

Cipher Attack  #Rounds Data Time Memory Source
(Encryptions) (Bytes)
+/128 1D 2.75 261CP 258 2104 [12]
+/128 LNH 3.25 2'9'KP 21 2108 [10]
+/128 D 3.75 278CP 27 268 [16]
+/128 ID 4 2122-4Ccp 2121 2874 Sect.4
+/256 D 3.75 278CP 27 268 [16]
+/256 1D 4 2124-4Cp 2216 2894 GQect.4
++/128 LNH 3 281 KP 2105 288 [10]
++/128 D 2.75 261CP 258 2104 [12]
++/128  Integral 4 2%4CP 2117 27 [14]
++4/128  Integral 4.25 - - - 3]
++/128  Multiset 4.5 218CP 2100 258 3]
++/128 Boomerang 5.5  2'°®CP/ACC 2116 255 (3]
++/128 D 3.75 223CP 284 275 [1]
++/128 D 3.75 278CP 268 262 [16]
+4/128 ID 5 2124Cp 2121 2°7  Sect.5
++/256 LNH 3 281 KP 2105 288 [10]
++/256  Integral 4 2%4CP 2149 27 [14]
++4/256  Integral 4.75 - - - [14]
++/256 D 3.75 278 Cp 27 270 [16]
+4/256 ID 5.5 2124Cp 2246 2°7  Sect.5

CP: Chosen Plaintext; KP: Known Plaintext; ACC: Adaptive Chosen Ciphertext
ID: Impossible Differential; LNH: Linear(Non-Homomorphic).

and SAFER++, only the linear transformation is different. SAFER+ uses a 2-
point pseudo Hadamard transformation(2-PHT) while SAFER++ uses a 4-point
pseudo Hadamard transformation(4-PHT).

2.1 The Keyed Non-linear Layer

Since SAFER+ and SAFER++ are byte-oriented ciphers, the input plaintext
block is initially splited into 16 bytes to combine with the 16 bytes subkey. Bytes
0,3,4,7,8,11, 12, and 15 of the subkey are XORed to the corresponding bytes
of the block, while bytes 1, 2, 5, 6, 9, 10, 13, and 14 of the subkey are combined
with the corresponding bytes using addition modulo 256. The nonlinear layer is
based on two different 8-to-8 bit functions, X and L,

X(a) = (45* mod 257) mod 256,
L(a) = log,s" mod 257,

with the special case that L(0) = 128, making X and L mutually inverse. We
call the layer including X and L as S-box layer. In this layer, bytes 0, 3, 4, 7, 8,
11, 12, and 15 are sent through the function X, and L is applied to bytes 1, 2, 5,
6, 9, 10, 13, and 14. The lower key layer mixes a 16-byte subkey to the output
blocks from the X and L functions. Bytes 2, 3, 6, 7, 10, 11, 14 and 15 of the
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subkey are XORed to the corresponding bytes of the block and bytes 1, 4, 5, 8,
9, 12, 13 and 16 of the subkey and blocks are combined using addition modulo
256.

2.2 The Linear Layer

The linear transformation of SAFER+ (SAFER++ ) is constructed by two parts:
the first is a permutation and the second is a 2-PHT(4-PHT) to two group of
2-branch(four group of 4-branch). The 2-PHT(4-PHT) can be implemented with
two(six) modular additions. The linear layers can be expressed by matrices.

2.3 The Key Schedule

The key schedule of SAFER++ is same as that of SAFER+ for the same key size
and the key schedules of 128-bit and 256-bit master keys are different. Firstly
we introduce the 128-bit key schedule: K=(k!, k2 .-, k'0) is the 128-bit master
key. From the 16 bytes of master key we get the 17-th byte:

16
kP =P
=1

The 256-bit mater key is K=(k',---, k16, k'7,... k32). Different from 128-bit
key schedule, the 256-bit master key is splitted into two 128-bit blocks. The
first one is used to produce the upper key layer of each round and the final
key addition, and the second one is used to produce the lower key layer of each
round. k°P! is computed as in SAFER+/128 and SAFER++/128. In addition,
another subkey byte k%P2 can be computed with

32
kP = P K.
i=17
The recovered master key was marked in the Fig.2 and Fig.4. We do not depict
them here in detail.

3 Impossible Differentials of SAFER, and SAFER,

In this section, we will show how to identify 2.75 rounds impossible differentials
for SAFER+ and 3.75 rounds impossible differentials for SAFER++ .

3.1 Notations

In this paper we use the following notations: 7 denotes the input of the r-th
round, TV, T/?, TF and T/ denote the output values of the upper key layer,
the S-boxes, the lower key layer and the linear layer in round r, respectively.
So T! = T4, for r > 2. A represents the modular subtraction difference in
Fos. x means the undetermined value. (ATY); stands for the j-th byte of ATY,
0 < j <15. C; means the j-th byte of the ciphertext, 0 < j < 15.
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3.2 Impossible Differentials of SAFER, and SAFER,

Firstly, we will introduce three propositions related with S-boxes, XOR and the
modular addition.

Proposition 1 (see [7]). For any byte pair (p,p'), if (p—p") = 0280 (mod 256),
then the output difference X (p) B X (p') is always odd.

Proposition 2 (see [6]). For any byte pair (p,p’), p®p’ = 0280 always means
(p—p') = 0280 (mod 256), and vice versa.

Proposition 3 (see [16]). For any given byte pair (p,p’), if p®p’ is odd, then
(pBEk)® (pBE) is odd. Also, if pBp' is odd, (p® k) B (p' © k) is odd. Here, k
can take any value in Zaose.

Based on the propositions, we can get 2.75-round impossible differentials for
SAFER+ and 3.75-round impossible differentials for SAFER++.

Theorem 1. For SAFER+, if the output difference of the S-bozes in the first
round ATY is (0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,,0) and the output difference of
the upper key layer in the fourth round AT is (0, a, 0, 0, 0, b, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0), where a and b are any non-zero values. Such 2.75-round differential

in Fig. 1 is impossible if a and b satisfy one of the three following conditions:
a+b=0,8a+b=0,a+8 =0.

Theorem 2. For SAFER++, if the output difference of the S-boxes in the first
round AT{ is (0,80,0,0,0,0,0,0,0,0,0,0,0,0,80,,0), and the output difference
of the upper key layer in the fifth round is

ATY = (0,a,—a,0,0,0,0,0,0,0,0,0,0,0,0,0),
where a is any non-zero value, such 3.75-round differential is impossible in Fig. 3.

The proof of the above theorems is available in the full version of this paper [17].

4 Impossible Differential Attacks on SAFER

In this section, we will use our 2.75-round impossible differential to recover the
keys for four rounds of SAFER+/128 in Fig.2 and four rounds of SAFER+/256.
First of all, in order to filter out the pairs as soon as possible, we derive the
relation between the ciphertext bytes difference in Proposition 4.

Proposition 4. For four full-round of SAFER+/128 or SAFER+/256, if the
pairs have the difference ATY =(0, a, —a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), the
differences for their corresponding ciphertext pairs have the following relations,

AC) — ACy = 0,2AC,) — ACs =0, ACs — ACp =0, (1)

ACs+ ACy —5AC13 = 0, ACe +2AC14 —6AC13 = 0, ACt1 4+ ACs+ ACs —TAC13 = 0.
(2)
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4.1 Impossible Differential Attack on SAFER /128

By placing the 2.75-round impossible differential on round 0.5-3.25, we can attack
from round 1 to round 4. This is described in Fig.2. In order to show the effect
of the key schedule, we denote our guessed subkey bits with their related master
key bytes instead of themselves in Fig.2.

Data Collection. We first construct 2144 structures of plaintexts, where in

each structure the plaintext byte P4 takes all values, whereas the other bytes
are fixed. For each structure, ask for the encryption of the plaintexts to get the
corresponding ciphertexts. In order to filter out the wrong pairs with Equation
(1) in Proposition 4, we construct a hash table indexed by (C; — C3|2C; —
Cs|C5 — C1o) and put 2% corresponding ciphertexts into the hash table. Then
we combine the ciphertext pairs in the same entity in the hash table which can
satisfy Equation (1) in Proposition 4. On average there are about 2'° /224 = 279
remaining pairs for each structure. Then we will further filter out the wrong pairs
with Equation (2) in Proposition 4, so we construct another hash table indexed
by (C5+ Cy —5013|Cs +2C14 — 6C13|Cy + Cs + Cs — 7C13) and put the 272 pairs
into the hash table. There will remain pairs in the same entity in the hash table
which can satisfy Equation (2) in Proposition 4. Now we can easily get the value
of A and B in Fig.2 from the ciphertext difference for each remaining ciphertext
pair. On average, there are 279/22* = 2733 remaining pairs for each structure.

Key Recovery. In order to find if there are pairs obtained from the data
collection phase that may follow the differential in Fig.2, we need to guess the
key bits and sieve the pairs in round 1 and round 4. From Fig.2, in round 1,
we need to guess the 15-th subkey byte in the upper key layer which is related
to the master key byte k'°. In round 4, 16 subkey bytes of the lower key layer
which are related to the master key bytes (k°, k19, k11 ... k16 ksPl okl k2.
k") and we will guess partial bits for these 16 key bytes. We also need to guess
the second and the sixth subkey bytes of the upper key layer which are related
to the master key bytes (k?,k'3). We proceed the key recovery phase for the
remaining pairs as follows:

— Step 1. For all 28 possible values for the 15-th subkey byte of the upper key
layer of the first round which depends on k'°, encrypt each plaintext of 2733

remaining pairs for ; round to get the output differences of the S-boxes in
the first round, which should satisfy (AT7)14 = 80,. Then the number of
remaining pairs is about 274'. The total number of guessed subkey bits in
this step is 8.

— Step 2.

e Step 2.1 In the final whitening key layer, there are eight XOR op-
erations. As we get the ciphertext differences for the eight bytes, we
can directly get the value for the least significant bit of (AT{');,7 €
{0,3,4,7,8,11,12,15} without guessing the corresponding subkey value.
Because we have known the value for A and B in the data collection
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phase, we can derive the difference values for the eight least significant
bits from A and B. Then we can sieve the pairs with the eight conditions,
as a result, 2741 /2% = 2749 pairs remain for each structure.

e Step 2.2 For all 2% values of the least significant bits of the eight sub-
key bytes which depend on k°, k2, k'3, k16, k5Pl k3 k%, and k7, re-
spectively, compute the second least significant bits for (AT, f)j, j €
{0,3,4,7,8,11,12,15} for all remaining pairs and verify if they equal
to the corresponding values obtained from A and B. If not, we discard
the pair. In a similar way, we guess the eight subkey bytes from the sec-
ond least significant bit to the seventh least significant bit one by one
and sieve the pairs according the conditions derived from A and B. As
a result, about 2749 /287 = 27105 pairs are obtained. The total number
of new guessed subkey bits in this step is 56.

— Step 3. In this step, we will compute the value for a and b corresponding to
(AT), and (AT )s.
so in order to calculate the values of them the bits depending on the following
keys should be guessed:
(T)1: k'3, kY, k5Pt kL kS| k°; the seven least significant bits of k', k2, k3,
k" the six least significant bits of k', k2, k15, k'6; the five least significant
bits of k*; the four least significant bits of k°.
(TY)s5: k2, k'3, k', ksPL Ek'; the seven least significant bits of k10, k1%, k16
k%, kS; the six least significant bits of k', k'2, k°, k7; the five least significant
bits of k2; the four least significant bits of k3.
Here some subkey bits have been guessed in the previous steps, so the total
number of the new involved subkey bits in this step is 54.
For each pair obtained from Step 2.2, compute a and b to verify if they
satisfy any one of the three relations for the three impossible differentials. If
so, the 54-bit subkey should be discarded. After processing all the pairs, if
any values for the 54-bit subkey remain, we output them with the guessed 64-
bit subkey, and exhaustively search them with the remaining 10 bits subkey
by trial encryption. Otherwise, we try another guess for 64-bit subkey from
Step 1 and Step 2.

The data complexity of the attack is 2224 chosen plaintexts. In the data collec-

tion phase, the time complexity is about 2!2?4 x 3 = 2'?* modular subtraction
operations which is equivalent to 2! encryptions and the memory complexity
is about 2814 x 2 x 32 = 2874 bytes for the remaining pairs. In Step 1, the time
complexity is about 2 x 28 x 2114:4=33 ; X 116 X 411 = 2834 encryptions and the
memory complexity for remaining pairs is less than that in the data collection
phase. In Step 2, the time complexity is about 2 x 28 x 21144741 » 8 x § a2 2884
XOR operations and 2874 modular subtraction operations. The memory com-
plexity for remaining pairs is less than that in Step 1. In Step 3, The expected
number of remaining 118-bit subkey guesses is about 2118 x (1 — 3 )2114 N
2108 "Since each of the remaining key guesses has to be exhaustively searched
with the other 20 key values so the time comgplemty of thls step is about

2><2118>< [1+(1 ) (17 ) +. +(17 28) } % = % +2108+1O 21207
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encryptions. Thus the total time complexity is about 2'2! encryptions and the
memory complexity is about 2874 bytes.

4.2 Impossible Differential Attack on SAFER, /256

The only difference between the attacks on SAFER+/256 and SAFER+/128 is
the difference in the key schedule. The detailed attack procedure is available in
the full version of this paper [17].

The data complexity of the attack is chosen plaintexts. The total time
complexity is 2216 encryptions and the memory complexity is about 2374 bytes.

2124.4

5 Impossible Differential Attacks on SAFER, |

In this section, we will use the 3.75-round impossible differentials for SAFER++
in Section 3 to recover the keys for SAFER++/128 and SAFER ++/256. First of
all, in order to filter out the pairs as soon as possible, we derive the relations
between the ciphertext bytes difference in Proposition 5.

Proposition 5. For five full rounds of SAFER++/128 or SAFER++/256, if
the pairs have the difference ATY =(0, a, b, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
their corresponding output difference has the following relations,

(AT)5 = (AT )10 = 0, (AT )1 — (AT )e = 0, (AT )6 — (AT )14 = 0, (3)

(AT )1 + (AT )6 — 3(ATY )5 = 0,
(AT ) + (ATY )13 — 5(ATY )5 = 0, (4)
3(ATY )1 + (ATY )15 — T(ATY )5 = 0.

5.1 Impossible Differential Attack on SAFER /128

By placing the 3.75-round impossible differential on round 0.5-4.25, we can attack
SAFER++/128 from round 1 to round 5. This is described in Fig.4.

Data Collection. We first construct 2'%® structures of plaintexts, where in each
structure the plaintext bytes P; and P4 take all values, whereas the other bytes
are fixed. For each structure, ask for the encryption of the plaintexts to get the
corresponding ciphertexts. In order to filter out the wrong pairs with Equation
(3) and Equation (4) in Proposition 5, we construct two hash tables indexed by
(C5 — C10]C1 — Cy|Cs — Cra) and (C1 4 Cs —3C5|Ca+ C13 —5C5|3C1 + Ci3 — 7C5)
and put the pairs into the hash tables. Now we can easily get the value of A and
B in Fig.4 from the ciphertext difference for any remaining ciphertext pair. On
average, there are 2717 remaining pairs for each structure.
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Key Recovery. In order to find if there are pairs obtained from the data col-
lection phase that may follow the differential in Fig.4, we need to guess the
key bits and sieve the pairs in round 1 and round 5. From Fig.4, in round
1, we need to guess the second and 15-th subkey bytes in the upper key
layer which are related to the master key bytes k? and k'°, respectively. In
round 5, 16 final whitening subkey bytes are related to the master key bytes
(/{211, k,12’ /{213, o k‘lﬁ, kspl’ /{21, /{22,

..., k%) and we will guess partial bits for the 16 subkey bytes. We also need to
guess the second and the third subkey bytes of the lower key layer in round 5
which are related to the master key bytes (k'!,k12), respectively. We proceed
the key recovery phase for the remaining pairs as follows:

— Step 1. For all 2'6 possible values for the second and the 15-th bytes of upper
key layer of the first round which depend on k? and k'°, for each structure
encrypt each plaintext pair of the 27'7 remaining pairs for ; round to get
the output differences of the S-boxes in the first round, which should satisfy
(AT?); = (ATY)14 = 80,. Then the number of remaining pairs is about
2733, The total number of guessed subkey bits in this step is 16.

— Step 2.

e Step 2.1 In the final whitening key layer, there are eight XOR op-
erations. As we get the ciphertext differences for the eight bytes, we
can directly get the value for the least significant bit of (AT{);,7 €
{0,3,4,7,8,11, 12,15} without guessing the corresponding subkey value.
Because we have known the value for A and B in the data collection
phase, we can derive the 8 bits difference for the least significant bits
from A and B. Then we can sieve the pairs with the eight conditions, as
a result, 2733 /2% = 274! pairs remain for each structure.

e Step 2.2 For all 28 values for the least significant key bit of eight
subkey bytes which depend on k'!, k4, k', k', k2, K5, kS, K%, re-
spectively, compute the second least significant bits for (ATZ),,7 €
{0,3,4,7,8,11,12,15} for all remaining pairs and verify if they equal
to the corresponding value derived from A and B. If not, we discard
the pair. In a similar way, we guess eight subkey bytes from the second
least significant bits to the seventh least significant bits one by one which
depend on k', k', k1% k', k2, K5, kS, K%, respectively, then we sieve
the pairs according to the conditions derived from A and B. As a result,
about 2741 /287 = 2797 pairs are obtained. The total number of new
guessed subkey bits in this step is 42.

— Step 3. In this step, we will compute the value for a and —a corresponding to
(ATY); and (ATY),. Similar to the attack on SAFER+, we only guess the
subkey bits that are necessary, the total number of the new involved subkey
bits in this step is 52.

For each pair obtained from Step 2.2, compute the value for (ATY); and
(ATY )5 to verify if (ATY )1 = —(ATY)s. If so, the 52-bit subkey should be
discarded. After processing all the pairs, if any values for the 52-bit subkey
remain, we output them with the guessed 58-bit subkey, and exhaustively
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search them with the remaining 18 bits key by trial encryption. Otherwise,
we try another guess for 58-bit subkey from Step 1 and Step 2.

The data complexity of the attack is 2'2* chosen plaintexts. In the data collec-
tion phase, the time complexity is about 224 x 3 = 21256 modular subtraction
operations, which is equivalent to 2'2%'6 times of encryptions and the memory
complexity is about 2%' x 2 x 32 = 297 bytes for the remaining pairs. In Step
1, the time complexity is about 2 x 216 x 290 x J x L x 14 = 210 encryp-
tions. In Step 2, the time complexity is about 2 x 210 x 27° x 8 x 8 ~ 298
XOR operations and 297 modular subtraction operations. In Step 3, the ex-

pected number of remaining 110-bit key guesses is about 2110 x (1 — .} )2108797 ~

8
2100 Gine each of the remaining key guesses has to be exhaustiveQIy searched
with the other 2'® key values, so the time complexity of this step is about
2 % 2110 X [1 + (1 _ 218) + (1 o 218)2 o+ (1 - 218)211] « 126 % ‘11 +2118 ~ 2118
encryptions. Thus the total time complexity is about 2''® encryptions and the
memory complexity is about 2°7 bytes.

5.2 Impossible Differential Attack on SAFER++4 /256

Put the 3.75-round impossible differential from round 0.5 to round 4.25 and we
will recover the key for 5.5-round SAFER++/256. The detailed attack procedure
is available in the full version of this paper [17]. The data complexity of the attack
is 2124 chosen plaintexts. The memory complexity is about 297 bytes. The time
complexity is 2246 encryptions.

6 Conclusion

This paper introduces impossible differential attacks on SAFER+ and SAFER++
block ciphers. We first derive 2.75-round and 3.75-round impossible differentials
for SAFER+ and SAFER++, which improves the previous 2.75-round impossible
differentials for SAFER++. With the impossible differentials, attacks on 4-round
SAFER+/128(256), 5-round SAFER++/128 and 5.5-round SAFER++/256 can
be achieved. Our method can also be applied to other ciphers that have similar
structures to SAFER~+.
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Abstract. The unconditionally secure Distributed Oblivious Transfer
(DOT) protocol presented by Blundo, D’Arco, De Santis, and Stinson at
SAC 2002 allows a receiver to contact k servers and obtain one out of n
secrets held by a sender.

Once the protocol has been executed, the sender does not know which
secret was selected by the receiver and the receiver knows nothing of the
secrets she did not choose. In addition, the receiver’s privacy is guar-
anteed against a coalition of k — 1 servers and similarly, the sender’s
security is guaranteed against a coalition of k — 1 servers. However, after
the receiver has obtained a secret, she is able to learn all secrets by cor-
rupting one server only. In addition, an external mechanism is required
to prevent the receiver from contacting more than k servers.

The one-round DOT protocol we propose is information-theoretically
secure, allows the receiver to contact k servers or more, and guarantees
the sender’s security, even if the receiver corrupts k — 1 servers after
having obtained a secret.

Keywords: Cryptographic Protocol, Distributed Oblivious Transfer,
Commodity Based Model, Information-Theoretic Security.

1 Introduction

Oblivious Transfer (OT) protocols allow two parties to exchange, in total privacy,
one or more secret messages. The first OT protocol, introduced by Rabin [13],
enables a sender to transmit a message to a receiver in such a way that the
receiver gets the message with probability é while the sender does not know
whether the message was received. Even, Goldreich and Lempel [8] introduced
a variant of the original OT for a contract signature application. This OT, iden-
tified as OT- @), is an exchange protocol between a receiver and a sender who
has two secret messages; the receiver chooses one of the two messages and the
sender transmits the chosen message to the receiver. At the end of the protocol,
the sender does not know which message was selected and the receiver knows
nothing of the other message.

A major drawback with OT- (f) and with the more general OT- (7{) proposed
by Brassard, Crépeau and Roberts [6] is the restriction in the availability of the
secret messages, because if the unique sender is unavailable, the receiver cannot

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 184-201, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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execute the protocol. To increase the availability of messages, the sender may
distribute them to m servers, like in the first unconditionally secure Distributed
Oblivious Transfer (DOT) protocol introduced by Gertner and Malkin [10] in
1997. However, Gertner and Malkin’s protocol does not guarantee the messages’
confidentiality against curious or corrupted servers.

In 2000, Naor and Pinkas [11] proposed an unconditionally secure DOT proto-
col which takes non-fully trusted servers into account: servers are only provided
with parts — called shares — of the original messages. This DOT protocol was
generalized to n secrets by Blundo, D’Arco, De Santis and Stinson [4,5]. Both
protocols are composed of two phases: (i) the set-up phase and (ii) the transfer
phase. During the set-up phase, the sender generates and sends shares of his
secrets to all the servers. In the transfer phase, the receiver chooses the index
of a secret, selects k servers (1 < k < m) and sends them requests. From the &
responses the receiver is able to determine the chosen secret.

Blundo et al. also defined a security model composed of four fundamental
conditions that every DOT protocol should satisfy:

(. Correctness — The receiver is able to determine the chosen secret once she
has received information from the k contacted servers.

C5. Receiver's privacy — A coalition of up to k — 1 servers cannot obtain any
information on the choice of the receiver.

C5. Sender's privacy with respect to k — 1 servers and the receiver — A coalition of
up to k — 1 servers with the receiver does not obtain any information about
the secrets.

Cy. Sender's privacy with respect to a “greedy” receiver — Given the transcript
of the interaction with k servers, a coalition of up to k — 1 dishonest servers
and the receiver does not obtain any information about secrets which were
not chosen by the receiver.

As it has been pointed out by Blundo et al. in [4,5], the protocol introduced by
Naor and Pinkas only satisfies conditions C; and C5. Their own protocol satisfies
conditions C7, C5 and C3 only. Actually, they have proven that condition Cy4
cannot be guaranteed with a one-round DOT protocol — a round being defined
as a set of consistent requests/responses exchanged between the receiver and k
servers.

Besides, Nikov, Nikova, Preneel and Vanderwalle have demonstrated [12] that
more generally, if the receiver’s privacy is guaranteed against a coalition of kg
servers and the sender’s security against a coalition of kg servers, including when
a secret had already been obtained, then the parameters ks and kxr must satisfy
the inequality (ks 4+ 1) + (kr + 1) < k.

Recently, Beimel, Chee, Wang and Zhang [2] introduced communication-
efficient DOT protocols. These protocols, based on information-theoretic pri-
vate information retrieval (PIR) protocols, require that the number of servers
contacted by the receiver is pre-determined.

In this paper, we introduce an information-theoretically secure threshold DOT
protocol. That is, the number of servers the receiver needs to contact to obtain
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a secret is not limited to k. Moreover, unlike other unconditionally secure DOT
protocols, our protocol satisfies security conditions C7, Cs for a coalition of any
size, C3 and Cy. Actually, to circumvent the impossibility result established by
Blundo et al., we use the commodity-based model introduced by Beaver [1]. More
precisely, our protocol is based on Rivest’s trusted initializer OT protocol [15].
In this protocol, an additional party — the trusted initializer — is involved in the
set-up phase; he generates and distributes random values, but receives nothing
from other parties (in particular, he obtains neither the sender’s secrets, nor
the receiver’s choice). In addition, our protocol has an efficiency similar to the
efficiency of the full protocol presented by Blundo et al. [4,5].

This paper is organized as follows: in Sect. 2, we give an overview of the OT
protocol proposed by Rivest [15]. In Sect. 3, we introduce some definitions and
notations, as well as our security model. The protocol is described in Sect. 4 and
the security is analysed in Sect. 5. The last section is devoted to the performance
of the protocol.

2 Background

The OT- @) protocol presented by Rivest [15] is based on the protocol introduced
by Bennett, Brassard, Crépeau and Skubiszewska [3], adapted to the trusted
initializer model.

We assume that a sender S holds two secrets wo,w; € {0,1}¢ (£ € IN* =
{1,2,...}) and that a receiver R wishes to learn the secret w, (¢ =0 or e = 1).

In the set-up phase, the trusted initializer T gives to S two random /-bit
strings 7o and r1. Then, 7 selects a random bit d and sends the pair (d,rq)
to R.

In the transfer phase, R selects the index e of one secret and transmits ¢ = e®d
to S. S replies with two values fo = wo ® 7. and f; = wy; & r1—_.. To obtain
we, R calculates f. & ry.

Clearly, the receiver obtains one secret only and the sender cannot determine
which secret was chosen by the receiver.

3 Preliminaries

3.1 Notations and Definitions

The setting of the DOT protocol described in this paper encompasses a sender
S who owns n secrets wy,...,w, (n > 1) in a finite field IK = IF,, (p prime),
a receiver R who wishes to learn a secret w, (1 < e < n), a trusted initializer
T who generates random elements of IK and m servers S1,...,S;,. We assume
that p > max(n,ws, ..., w,,m) and that all operations are executed in IK.

Our protocol is composed of three phases: a set-up phase, a commodity acqui-
sition phase and a transfer phase. In the set-up phase, for each secret the sender
generates shares thanks to Shamir’s (k, m)-threshold secret sharing schemes [16]
(I < k < m). Then, the sender distributes the shares to the m servers and does
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not intervene in the rest of the protocol. In the commodity acquisition phase, the
receiver contacts the trusted initializer who generates and distributes consistent
masks to the m servers and to the receiver. The trusted initializer’s presence is
only required in this phase. In the transfer phase, the receiver has to contact ¢
servers (k <t < m) to collect enough shares to construct we.

The protocol requires the availability of private communication channels be-
tween the trusted initializer and the servers, between the trusted initializer and
the receiver and between the sender and the servers. The receiver sends requests
to the servers thanks to a private broadcast channel and collects responses thanks
to private channels between servers and herself. We assume that private channels
are secure, i.e., any party is unable to eavesdrop on them and that all channels
guarantee that communications cannot be tampered with.

The set {1,...,n} of natural numbers is denoted [n]. The additive group
of univariate polynomials of degree at most k with coefficients in IK is denoted
K [X]. In addition, by an abuse of language, a polynomial and its corresponding
polynomial function will not be differentiated.

Since security conditions are linked to the quantity of information received by
parties, it seems appropriate to use Shannon’s entropy function [17], and more
generally information theory, to demonstrate the security of our protocol. The
following definitions and properties will be used in the paper (for more details
on information theory, see for example [7]).

An element v of a finite field V' is described by a discrete random variable V'
over a finite set V. The probability distribution Pr(V') is associated with V.

Let X and Y be two random variables.

— The entropy of X is H(X) = = ., Pr(X = z)log, Pr(X = z).
— The joint entropy H(X,Y) of X and Y (joint distribution Pr(X,Y)) is

HX,Y)==> Y Pr(X =2Y =y)log, Pr(X =2,Y =y).
zeX yey
— The conditional entropy H(X |Y) of X given Y is defined as

HX|Y)=Y Pr(Y =y)H(X | Y =y),
yey

where the entropy H(X | Y =y) is

HX|Y =y = ZPr =z|Y =y)log, Pr(X =2 |Y =y).
rEX

Note that if Pr(X = xz) = 0, then we adopt the convention that
Pr(X = x)log, Pr(X = z) = 0.

Let X,Y, Z and X; (i € [n]) be random variables. We use the following
properties in the security demonstrations:
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H(X)>H(X|Y) (1)
HX,Y)=H(X)+HY | X)=HY)+HX|Y) (2)
0 < H(X) < logy| | (3)
It H(Y | Z) =0 then H(X |Y) > H(X | Z) (4)
I H(Y | Z)=0then H(X |Y,Z) = H(X | Z) (5)
H(Z|X,Y)=H(Z|X)if HY | X,Z)= HY | X) (6)
I H(Z|X,Y)=H(Z) then HX |Y,Z)= HX | Y) (7)

and

IfH(X|Y,Z)=H(X) then HX |Y)=H(X | Z)=H(X) (8

3.2 Security Model

The point of the paper is not to propose a verifiable DOT protocol. This is why
we assume that all parties wish to complete the protocol to allow the receiver to
obtain the chosen secret. In particular, the trusted initializer and the sender are
honest. However, even if they are not malicious, servers may actively collaborate
to determine the receiver’s choice (C3) or the sender’s secrets (C3). The receiver
may also actively cheat, either while cooperating with a coalition of active cheat-
ing servers (C3), or by corrupting servers after having obtained a secret (Cy). In
this latter case, the receiver has access to all data held by the corrupted servers.

4 Protocol Description

The key idea underlying our t-out-of-n DOT protocol is to extend Rivest’s OT
protocol in two directions:

1. Generalization to n secrets
2. Introduction of a distributed model with m servers

Furthermore, to prevent the servers from learning the sender’s secrets, they
receive shares of the secrets held by the sender. These shares are generated
thanks to Shamir’s secret sharing schemes [16].

In addition, to guarantee that the contacted servers do not receive requests
related to different secrets, they all receive the same request and this request is
broadcast.

The full protocol is described in Fig. 1.

5 Security of the Protocol

5.1 Formal Model

To prove the security of our protocol we use a formal model similar to the
model introduced by Blundo et al. [4,5]. In this model, we assume that the
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Input The sender S contributes with n secrets w1, ..., w, € IK
The trusted initializer 7 generates m sets of n random masks
and randomly chooses one of the n sets
The receiver R chooses an index e € [n], and contributes
with a cyclic permutation 7 € &,,

Output R receives we, while S and T receive nothing.

Set-up Phase

1 - Preparation of shares. For each secret w; (i € [n]), the sender S generates,
thanks to Shamir’s (k, m)-threshold secret sharing scheme, a sharing polynomial
F; of degree at most k — 1, such that F;(0) = w;.

2 - Distribution of shares. To each server S; (j € [m]), S transmits the n shares
Fi(5), - Fa(j).

Commodity Acquisition Phase

1 - Preparation of masks. The trusted initializer 7 generates mn random masks
rji € IK (j € [m], i € [n]) and one random index s € [n].

2 - Distribution of masks. T distributes the n masks 7;,1,...,7j» to the server S;
(j € [m]) and the index s as well as the m masks 71 ,...,7m,s to the receiver R.

Transfer Phase

1 - Selection of the secret index and generation of the corresponding request. The
receiver R chooses a secret index e and generates the cyclic permutation m € &,
which satisfies w(e) = s.

2 - Selection of servers and broadcast of a query. R selects a subset Z C [m] of
t > k indices and broadcasts a query containing the first cyclic permutation item,
(1), as well as the list Z.

3 - Responses of the servers. Each server S, such that £ € 7 returns pe,; = F;(€) +
Tex(s) (4 € [n]) to R.

4 - Construction of the requested secret. For each of the t responses pi,., R calcu-
lates the share pg.e — 1,5 = Fe(£), interpolates F. and obtains we = F.(0).

Fig. 1. Protocol Overview

parties execute publicly known programs whose data are private. These data are
described by the following discrete random variables shown on Fig. 2.

By extension, if X; is a random variable which describes a datum x; held
by a server S; (j € [m]) and G = {j1,...,5:} (t € [m]), we denote X =
(Xj,,...,Xj,) the random variable describing the sequence (xj,,...,x;, ). By
simplification, X[, is denoted X.

— Each secret w; € IK (i € [n]) is described by a variable W* and the sequence
of secrets wy,...,w, by the variable W = (W' ..., W™). Moreover, if
e € [n], we denote W€ the sequence (W*', ... Wt wett W),

— The secret index e € [n] chosen by R is described by the random
variable E.
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Beusted
Initializer T

Ré&€&iver R

Fig. 2. Random Variables

— The random variable M ; (j € [m], i € [n]) corresponds to the mask r;; and
the random variable M; (j € [m]) to the n ordered masks (7j1,...,7jn)
distributed by T to the server S;. Similarly, the random variable F; (i €
[n], j € [m]) corresponds to the share F;(j) and the random variable Fj
(j € [m]) to the n shares (F1(j),..., Fn(j)) distributed by S to the server
S;. By simplification Mg-n] = (Mjl, ..., M7 ) is denoted M; and an] =
(F}, ..., F7) is denoted F;.

— In addition, the random index s € [n] chosen by T is described by the random

variable S. The notation M; corresponds to the random variable describing
rj.s and MP is a shorthand for (Mj,..., M, ).

— The cyclic permutation 7 € &,, is describednllay the random variable Q:
H(@Q|E,S)=0. 9)

— The transcript T; = (Q, 4;) is composed of a query Q = 7 described by
the random variable @ and of an answer A; = (Fj(1) +7j 1), .., Fj(n) +
Tjx(n) ) described by the random variable A;. The random variable describ-
ing the answer F; (i) + 7 ;) (j € [m], i € [n]) is denoted A;

— A few uniform random variables are held by the parties involved in the
protocol to allow them to produce private data:
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e The trusted initialiser 7 holds two uniform random inputs, Rmy, to
generate the random masks r;,; (i € [n],j € [m]),

H(M} | Rmy) =0, (10)
and Rs7, to determine the secret index s,
H(S | Rst)=0. (11)
Note that since H(M® | M, S) =0 then
H(M° | R, Rst) = 0. (12)

e The sender S holds a uniform random input Rs to generate the shares
F(i) (i € [n],j € [m]):

H(F: | W' Rs)=0. (13)

To show properties Cq, Cy, C3 and Cy is equivalent to show properties listed in
Table 1.

Table 1. Security Conditions from an Information Theory Viewpoint

Security Number of

Condition Servers Property
Ci k<|Gl<m H(W®|E=e S8 M,Q Ac) =0
02 ‘G| S m H(E | FG,MG,Q) (E)
Cs |G|<k—1 HW | Fg,Mq,E,S,M’)=H(W)
C4 k§|G\§m H(W6|Fg/ Mgl —e,S—S,Q:TF,AG,M:
IG'|<k—=1 (71,6, Tm,s)) = H(W?®)

5.2 Correctness

Theorem 1. The protocol is correct (condition C is satisfied), i.e. if all parties
follow the protocol, the receiver obtains the chosen secret w. by contacting t
servers S; where j € G =T ={j1,...,5:} (k<t<m).

Proof.

To demonstrate that HW*® | E = e, S, M*,Q,Ag) = 0 is equivalent to
demonstrate that once the protocol has been executed, Pr(W° = w, | E =
e,S,M° Q,Aq) = 1.

Once R has chosen e, the cyclic permutation # € &,, such that 7(e) = s is
determined. The response sent by the server Sy (¢ € Z) then contains the value
pee = Fe(l) + 70 5(e) = Fe(f) + 1ys. Since R knows 7¢,s, she is able to calculate
the ¢ shares F,(¢), to interpolate F, (degree at most k — 1 < t) and to determine
we = Fe(0). Tt follows that Pr(W° =w,. | E =¢,S,M*,Q, Ag) = 1. O
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5.3 Receiver’s Privacy against a Coalition of Servers

Theorem 2. The protocol guarantees the receiver’s privacy against a coalition

of h servers S; where j € G = {j1,...
satisfied.

,in} (0 < h < m), ie. condition Co is

Proof.
To show that H(E | Fg, Mg, Q) = H(E), first we demonstrate that
H(E | Fg,Mg,Q) = H(E | Q)
and second that
H(E|Q)=H(E).

For the first part of the demonstration, we adapt a technique applied by Beimel,
Chee, Wang and Zhang [2] in a similar context.

1. First, we show that the conditional entropy of E given Fg, Mg and Q

satisfies

H(E | Fg, Mg, Q) =

H(E|Q).

For this purpose, thanks to property (6), we show that

H(Fg,Mc | E,Q) = H(Fg, Mc | Q).

The choice of the receiver is independent from the data held by the trusted
initializer, by the sender, by the servers and by herself at the end of the
commodity acquisition phase, so

H(E | Rmr,Rst,W,Rs,F,M,S,M") = H(E). (14)
If we apply property (8), we obtain the particular case
H(E | Fo, Mg, Rsy) = H(E). (15)

Similarly, the uniform random variable Rs7 held by the trusted initializer
is independent from the uniform random variable Rmy, from the sender’s
data and from the data held by the servers at the end of the commodity

acquisition phase. It follows

H(RST ‘ .RIIIT7 W, Rs, F, M) = H(RST).
Once more, if we apply property (8), we obtain the particular case
H(Rst | Fg, M) = H(RsT).
The joint entropy between Fg and Mg is

H(Fg,Mg) > H(Fg,MG ‘ Q) (from (
H(Fg, Mg | Q,E) (from (
H(Fg,Mg | Rst, E) (from (9), (11) and (
= H(Fg, Mg | Rst) (from (15) and (
= H(Fg, Mg). (from (17) and (

(16)

(17)
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Therefore, H(Fg, Mg | Q) = H(Fg, Mg | Q, E) and from property (6),
H(E | Q, Fu, Mc) = H(E | Q).

2. To prove that H(E | Q) = H(E), thanks to property (6), it is sufficient to
show that H(Q | E) = H(Q).
First, we observe that given a secret index e and a cyclic permutation 7,
the random index s is uniquely determined: s = m(e). Therefore, in terms of
entropy, it follows that

H(S|Q,E)=0. (18)
Second, the conditional joint entropy between @ and S given E is
H(Q,S|E)=H@Q|E)+H(S|Q,E) (from (2))
— H(Q|F) (from (18))
and also
H(Q,S|E)=H(S|E)+HQ|E,S) (from (2))
=H(S|E) (from (9))

It follows that H(Q | E) = H(S | E).
If we apply property (8) to equality (14), we obtain the particular case
H(E | S) = H(E) which, combined with property (6) gives H(S | E) =
H(S). Therefore, H(Q | E) = H(S). Moreover, because the random variable
S is uniform, it holds H(S) = log,n and because the number of cyclic
permutations of G,, is n, we can write:

logon > H(Q) > HQ | E) = H(S) = log,n.
It follows that H(Q | E) = H(Q) and from (6) that H(E | Q) = H(E).

We have shown that H(E | Q,Fg,Mg) = H(E | Q) and H(E | Q) = H(E).
We conclude H(E | Fo, Mg, Q) = H(E). O

5.4 Sender’s Security against a Coalition of the Receiver and
Servers

Theorem 3. The protocol guarantees the sender’s security against a coalition
of the receiver and h servers S; where j € G = {j1,...,jn} (0 < h <k-—1),
before the protocol is executed (condition Cs is satisfied).

Proof.

The demonstration is symmetrical to the previous demonstration. First, we
demonstrate that H(W | Fg, Mg, E, S, M*) = H(W | Fg) and second that
the secrets are independent from the shares received by any set of h servers (h <
k—1) in the set-up phase, i.e., H(W | Fg) = H(W). These two demonstrations
will allow us to show that the secrets are independent from the data held by a
coalition between the receiver and h servers.
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1. The uniform random variable Rms held by the trusted initializer is inde-
pendent from the data held by the sender, by the servers and by herself at
the end of the commodity acquisition phase, except masks. It follows

H(Rm7 | Rs7,W,Rs,F) = H(Rmr). (19)
If we apply property (8), we obtain the particular case
H(Rwmy | Rs7,W Fg) = H(Rmry). (20)
Likewise, from (14) and (8) we can write
H(E| W, Fg, Rsy, Rmy) = H(E), (21)
and from (16) and (8) we can write
H(Rst | W,Fg) = H(RsT). (22)

The conditional entropy of W given Fi is

H(W |Fg) > HW | Fg,Mg, E, S, M) (from (1))
> H(W | Fg, E, Rm7, Rst) (from (10), (11), (12) and (4))
= H(W | Fg). (from (21), (22), (20) and (7))

We conclude that H(W | Fg, Mg, E, S, M) = HW | Fg).

2. It is well-known that Shamir’s secret sharing scheme [16] is perfect, i.e, for
i € [n], we have HW' | F&) = H(W"). The n secrets wi,...,w, are
shared thanks to independent schemes; Therefore, the previous equality may
casily be generalized to a vector of secrets (W', ..., W™). It follows that
HW | Fg,...,Fg) = HW).

Since FL, ..., F% = F' = Fg, we obtain H(W | Fg) = H(W).

We have demonstrated that H(W | Fo, Mg, E, S, M?) = H(W | Fg) and that
H(W | Fg) = H(W). We conclude

H(W | Fg, Mg, E, S, M°) = HW).

5.5 Sender’s Security against a “Greedy” Receiver

Theorem 4. The protocol guarantees the sender’s security against a coalition
of the receiver and h servers Sy where j' € G' ={ji,...,j, } (0<h<k-1),
after the protocol has been executed (condition Cy is satisfied).

Proof.
We assume that in the transfer phase of the protocol, ¢ servers S; are contacted
by the receiver, where j € G = {j1,...,j: } (1 <t < m). We introduce a random

variable K = (E, S, M®) describing the data K = (e, s, (r1,s,--,7m,s) ). The
theorem is demonstrated in four steps:
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First, we demonstrate that,

HW?®| Fo',Mc, Ag, K = K,Q =)
:H(Wé|Fé/, E,Mé/,AE\G/,K:K).

— Second, we show that

H(W?® | Fg, Fg, M, AG\ i, K = K)
:H(Wé|Fé’a 87 gG’vI{:I()
— Third, we show that
HW€® | F,,Fg, Mg, K =K)=H(W°® | F;, F,,K = K).

Lastly, we show that H(W® | F&,, F¢, K = K) = H(W¥®).

1. The random variable Ag may be decomposed under the form
Ag = (Ag\¢»Agr ). Since H(Ag: | For,Mg,Q = m) = 0, we apply
property (5) which yields

H(Wé ‘ FG'vMG’vAGaK:KaQ :T()
:H(Wé ‘ FG’aMG’aAG\G’aK:KaQ :ﬂ—)'
The random variable Ag\g' may be decomposed under the form Ag\gr =
( E\G,,AE\G, ). Since for j € [m], we have F.(j) = (Fe(j) + 7j,r(e)) +
Time) = (Fe(d) +7jx(e)) + 75,5, it holds that
H(FE\G/ ‘ 14%\G/7 MSG\G/) =0 and H(AE'\G’ | I‘_16G\G/7 MSG\G/) =0.
Applying (5) we obtain

H(Wé ‘ FG’aMG’aAG\G’aK:KaQ:ﬂ-)
:H(Wé ‘ FG’vFg\G'vMG’aA%\GHK:KaQ:ﬂ-)'

From properties (9) and (5), we obtain
H(Wé ‘ FG'vFE‘\G’aMG’aAg\G'vK =K, Q= 77)

= H(W? | For, F& o, Mo, AG o K = K).

Because Mg = (M, M{, ) and Fgr = (F%,, FS, ), we can apply (5). It
follows
H(Wé | FG/,FE\GI’MG/?A%\GUK = K)
= H(W*® | F%,, FS, M5, g\G,,K = K).
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2. To prove that
HW® | F& ,FG, Mg, Ag\o, K =K)=H(W°® | F& ,F&, M, K = K),

thanks to property (7) and Lemma 1, it is enough to show that
H(Ag\qr | For F&, Mg, K, W) = H(AG o)

We have:
H(AG\g Mg\ | FS, Fg, Mg, K = K, W)
=H(Mg\a | F*, Fg, Mg K = K, W*)
+ H( EG\G/ | FS, Fg, Mg, K = K, W°, f;\G/)
=H(AG\o | F* FG, Mg, K = K, W¥)
+ H( Z‘\G’ | FS, Fg, MG, K = K,W°, %\G’)'

For i € [n],i # e and j € [m], we have F;(j) = (Fi(J) + 7)) + Tjn(i)-
Using property (9), it holds that

H(AG\ o | FS Fg, Mg, K = K,W, Mg, g/) =0
and symetrically
H(M¢\ o | F¢, Fg, Mg, K = K,W® Ag o) = 0.
It follows that
H(Mg\ o | FS,FG, Mg, K = K, W*)
=H(AG\ | F*, FG, Mg K = K, W°).

Each mask r;; (i € [n], j € [m]) is randomly generated by the trusted
initializer and is independent from the other variables held by the different
parties at the beginning of the transfer phase. More precisely, if G; C [m],
G2 C [m], Hy C [n] and Hy C [n] are four subsets such that G; NGy = 0 or
H, N Hy =0, we have

HMJ |E,S,W,F, M) =HMZ"). (23)

If we apply property (8) and Lemma 1 (See Appendix A), we obtain the
particular case

H(M | F*Fe, M, K = K,W°) = H(M{, o).

Therefore, H(AE\G, | F¢,Fg, MY, K=K, We) = H(MZ\G,).
Furthermore, the random variable M SC;\G, is uniform, so

H(M ) = log, p X1\,
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Thus,

H(AG\q) > H(AG\/ | F*,FG, M, K = K, W°) (from (1))

— log, pn—DXIG\E” \,

By property (3), H(Ag\ /) < log, p(n=DXIG\G|,

It follows that H(Ag\ ) = logy pn=DXIGNGT — H( &\¢)- We conclude
H(AG\q | F©FG, Mg, K = K,W°) = HMgo) = H(Aga)-
Applying property (8), we obtain H(AG\G, | FS, F, ML, K = K,W°) =

H (AE\G,) and consequently
H(W® | F&, Fg, Mg, Ag\o, K =K)=H(W*® | F& Fg, Mg, K = K).

3. Once again, we apply property (8) and Lemma 1 to (23) and obtain the
particular case

H(MY, |WE FE FG K = K) = HME,).
It follows, from property (7), that
H(W€® | Fg, Fo, M, K =K)=H(W°®|F, Fi, K = K).

4. Thanks to Lagrange’s interpolation theorem, we can write H(F¢., W° |
F¢)=0and H(Fg | Fén,W°) =0 where G” is a set of k — 1 distinct non-
null indices. In particular, if G’ = G’ (|G’| = h < k), we obtain H(Fg,, W€ |
F¢)=0and H(F¢ | F¢, W¢) = 0. Using property (5), it follows that

H(W?® | F%, FS, K) = HW?®| For, W¢, K).
In Sect. 5.4, we have demonstrated that if |G| < k then
HW | Fg,Mq,E,S, M) = HW).
Applying this property to G’ and combining it with property (8) gives
HW | Fg',K) = H(W).

From property (6), HW | Fg,K) = H(W) involves H(Fg, K |
W) = H(Fg/, K) and from property (7), H(Fo', K | W) = H(Fg, K |
W W€ = H(Fg:, K) involves HW*® | For, K, W°) = HW?® | W¢). We
assume that the secrets are independent; consequently, H(W*® | W¢) =
H(Wé)7 which allows us to conclude H(W*® | Fg,W° K) = H(W°),
(We \ FE, ¢, K) = H(WF®). Using Lemma 1, it follows that
(W6|Fe, K S K) = HW®),

The demonstrations of the four steps above yield that H (W€ | Fe',Mg,E =
e,S=s,M = (r14...,Tms),Q=mAg) = HW?®). O
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6 Efficiency Consideration

Clearly, the number of shares returned by the servers to the receiver is higher with
the proposed protocol (linear communication complexity in n) than with Beimel,
Chee, Wang and Zhang’s DOT protocols [2] (sublinear communication complexity
in n for some PIR protocols). However, in this section, we show that the perfor-
mance of Blundo et al.’s DOT protocol [4,5] and of our protocol are similar.

In Table 2, we list the main computations performed by each party, for Blundo
et al.’s DOT protocol and for our DOT protocol.

Table 2. Computation Efficiency of DOT protocols

Blundo et al.’s DOT Protocol Our DOT Protocol
Set-up Phase
S 2(n — 1) random masks in IK*, n sharing polynomials and mn
2n sharing polynomials and 2mn  shares
shares

Commodity Acquisition Phase
T mn random masks in IK
1 random number in [n]
Transfer Phase
R (n — 1) sharing polynomials and 1 cyclic permutation of &,,,
k(n — 1) shares, 1 polynomial interpolation
4 polynomial interpolations

Sj 2 (n — 1)-tuple scalar products n additions
(j€ZI) and 2 additions

Similarly, in Table 3, we list for each protocol the number of shares exchanged
between the sender and the servers, the receiver and the servers, and between
the trusted initializer and (1) the sender and (2) the receiver in the case of
our protocol. We assume that in both protocols, k servers are contacted by the
receiver, i.e., t = k in our protocol.

The operations performed off-line (set-up and commodity acquisition phases)
for both protocols are close, but in our protocol these operations are distributed
between the sender and the trusted initializer. As for the on-line operations, our
protocol is more efficient than Blundo et al.’s one: on the receiver’s side, only
one cyclic permutation and one interpolation are required (vs. the generation of
k(n — 1) shares from (n — 1) sharing polynomials and four interpolations in the
case of Blundo et al.’s protocol), whereas on the servers’ side, only n additions
are required (vs. 2(n — 1)-tuple scalar products and two additions in the case of
Blundo et al.’s protocol).

The number of shares distributed by the sender in the set-up phase is around
3n in Blundo et al.’s protocol and 2n in our protocol. However, our protocol
requires an additional distribution of m(n + 1) shares by the trusted initializer
in the commodity acquisition phase. In the transfer phase, the request sent to
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Table 3. Communication Efficiency of DOT protocols (shares)

Blundo et al.’s DOT Our DOT Protocol
Protocol
Set-up Phase
S — S; (j€[m]) 2nshares, n—1 n shares
elements of IK
Commodity Acquisition Phase
T—S;, (€l n masks
T—=R 1 index, m masks
Transfer Phase
R—S; (eI n — 1 shares t = k server indices,
1 number in [n] (nota:
broadcast data)

S; =R (eI 2n shares n shares

a server contains n — 1 shares (Blundo et al.’s protocol) whereas the broadcast
request contains k + 1 integers (our protocol). The receiver collects two times
more shares in Blundo et al.’s protocol than in our protocol.

We also note that our DOT protocol can easily be extended to a DOT- (?);
instead of choosing one set of random masks, the trusted initializer randomly se-
lects ¢ sets of random masks and distributes them to the receiver in the commod-

ity acquisition phase, with the corresponding indices s1, ..., s¢. In this scenario,
the receiver selects £ indices eq,...,e; and generates a random permutation 7,
instead of a cyclic permutation, such that w(e;) = s1,...,7(es) = sp. The op-

erations executed by the servers are the same as in the case where the receiver
wishes to obtain one secret only. On reception of the responses, the receiver has
to interpolate ¢ polynomials to determine the ¢ chosen secrets. Therefore, in our
protocol, due to the constant number of operations performed by the servers and
to the constant number of data exchanged between the servers and the receiver,
the communication and computation performance, relative to ¢, improves when
¢ increases. Blundo et al.’s DOT protocol would need to be executed ¢ times for
¢ secrets, which would be less efficient than our protocol.

In a similar vein, the protocol may easily be extended to a verifiable DOT,
with the simple requirement that enough shares are collected by the receiver to
identify — and discard — incorrect shares returned by malicious servers. Thus,
a Reed-Solomon codes [14] decoding algorithm like the algorithm introduced
by Gao [9] would allow the receiver to determine the chosen secret in spite of
u < tgk malicious servers.

Acknowledgements. We would like to thank the anonymous reviewers of
ICISC 2012 for their helpful comments.



200

C.L.F. Corniaux and H. Ghodosi

References

10.

11.

12.

13.

14.

15.

16.

17.

Beaver, D.: Commodity-based cryptography. In: Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, pp. 446-455. ACM (1997)
Beimel, A., Chee, Y.M., Wang, H., Zhang, L.F.: Communication-efficient dis-
tributed oblivious transfer. Journal of Computer and System Sciences 78(4),
1142-1157 (2012)

Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical Quantum
Oblivious Transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351-366. Springer, Heidelberg (1992)

Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New Results on Uncondition-
ally Secure Distributed Oblivious Transfer. In: Nyberg, K., Heys, H.M. (eds.) SAC
2002. LNCS, vol. 2595, pp. 291-309. Springer, Heidelberg (2003)

Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: On Unconditionally Secure
Distributed Oblivious Transfer. Journal of Cryptology 20(3), 323-373 (2007)
Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234-238. Springer,
Heidelberg (1987)

Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley
& Sons, Inc., Hoboken (2006)

Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Communications of the ACM 28, 637647 (1985)

Gao, S.: A new algorithm for decoding Reed-Solomon codes. In: Bhargava, V.K.,
Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network
Security, pp. 55-68. Kluwer Academic Publishers (2003)

Gertner, Y., Malkin, T.: Efficient Distributed (n choose 1) Oblivious Transfer.
Tech. rep., MIT Lab of Computer Science (1997)

Naor, M., Pinkas, B.: Distributed Oblivious Transfer. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 205-219. Springer, Heidelberg (2000)
Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On Unconditionally Secure Dis-
tributed Oblivious Transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002.
LNCS, vol. 2551, pp. 395-408. Springer, Heidelberg (2002)

Rabin, M.O.: How to Exchange Secrets with Oblivious Transfer. Tech. rep., Aiken
Computation Lab, Harvard University (1981)

Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics 8(2), 300-304 (1960)

Rivest, R.L.: Unconditionally Secure Commitment and Oblivious Transfer Schemes
Using Private Channels and a Trusted Initializer (1999) (unpublished manuscript)
Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612613
(1979)

Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technol-
ogy Journal 27, 379-423, 623-656 (1948)



An Information-Theoretically Secure Threshold DOT Protocol 201

A Conditional Entropy with Fixed Condition

Let X, Y and Z be three random variables.

Lemma 1. If H(X |Y,Z) = H(X) then for z; € Z we have H X |Y,Z =
z;) = H(X).

Proof.

Because H(X | Y, Z) = H(X), the variables X and (Y, Z ) are independent.
Their corresponding probabilities satisfy the relation Pr(X = z,Y = y,Z =
2)=Pr(X =x2)Pr(Y =y,Z =z) for (z,y,2) € XxYxZ. Thatis, Pr(X =z |
Y=yZ=2)=Pr(X=2Y=yZ=2)/Pr(Y =y,Z =z2) =Pr(X =)
Hence

=Y Pr(Y=y) x HX|Y =y, Z =2z)

yeyY
= (Pr(Y =vy)
yeyY
X — ZPr(X:x |Y =y, Z = z;)logy, Pr(X =z | Yzy,Z:Z,’))
TeEX
:Z(Pr( =y) foPr 7x10g2Pr(X:x))
yey TEX
=) Pr(Y =y) x H(X)
yeY
= H(X)



Practically Efficient Multi-party Sorting Protocols
from Comparison Sort Algorithms

Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi

NTT Secure Platform Laboratories, NTT Corporation
3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585 Japan
{hamada.koki,kikuchi.ryo,ikarashi.dai,chida.koji,
takahashi.katsumi}j@lab.ntt.co.jp

Abstract. Sorting is one of the most important primitives in various systems, for
example, database systems, since it is often the dominant operation in the running
time of an entire system. Therefore, there is a long list of work on improving its
efficiency. It is also true in the context of secure multi-party computation (MPC),
and several MPC sorting protocols have been proposed. However, all existing
MPC sorting protocols are based on less efficient sorting algorithms, and the re-
sultant protocols are also inefficient. This is because only a method for converting
data-oblivious algorithms to corresponding MPC protocols is known, despite the
fact that most efficient sorting algorithms such as quicksort and merge sort are
not data-oblivious. We propose a simple and general approach of converting non-
data-oblivious comparison sort algorithms, which include the above algorithms,
into corresponding MPC protocols. We then construct an MPC sorting protocol
from the well known efficient sorting algorithm, quicksort, with our approach.
The resultant protocol is practically efficient since it significantly improved the
running time compared to existing protocols in experiments.

Keywords: Multi-party protocol, sorting, comparison sort, secret sharing,
unconditional security.

1 Introduction

With the growth in information technology, the use of personal data is also increasing.
Therefore, awareness concerning privacy issues has been growing, and systems that use
sensitive data without breaching privacy are needed. Secure multi-party computation
(MPC) is a technique that enables the creation of such secure systems, and frame-
works, such as FairplayMP [3], Sharemind [6], SEPIA [7], TASTY [17], and VIFF
[13], have been implemented. MPC protocols allow a set of participants (parties) to
compute a function privately. That is, when a function is represented as (yy,...,V,) =
f(x1,...,x,), each party with its private input x; obtains only the output y; and noth-
ing else. In a typical MPC framework, input and output values are in secret-shared
form. Namely, x; and y; are the shares of input and output values, respectively. Al-
though any function can be computed securely by using a circuit representation of the
function [4,15], it is not easy to design practically efficient MPC protocols for com-
plex algorithms, such as database operations. Therefore, proposals have been made to

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 202-216, 2013.
© Springer-Verlag Berlin Heidelberg 2013



Multi-party Sorting Protocols from Comparison Sort Algorithms 203

construct specific and efficient MPC protocols as building blocks, e.g., computing bit-
decomposition and comparison [10,25], and modulo reduction [24].

Sorting is one of the most important primitives in various systems, for example,
database systems, since it is frequently conducted and comparatively time-consuming.
The importance of a sorting algorithm is known, and there is a long list of work on
improving its efficiency. To obtain a practically efficient sorting algorithm, researchers
not only investigated computational complexity but also experimental performance. Al-
though computational complexity is a good asymptotic metric of efficiency, sometimes
an inferior (in the sense of computational complexity) sorting algorithm exceeds the ex-
perimental performance of superior ones. For example, quicksort is more popular than
merge sort since quicksort often performs better even though its computational com-
plexity is worse than that of the merge sort algorithm. One of the most famous classes
of sorting is comparison sorts. A comparison sort determines the sorted order based
only on comparisons between the input elements. Comparison sorts include a number
of well-known and efficient sorting algorithms, such as quicksort, shell sort, heapsort,
and merge sort.

In the context of MPC protocols, sorting is also a very important primitive. MPC
sorting protocols are often required in various database operations and have many appli-
cations such as cooperative IDS [20], oblivious RAM [12] and private set intersection
[19]. Therefore, a number of MPC sorting protocols has been proposed [16,3,20,32].
However, they are based on less efficient sorting algorithms, and the resultant proto-
cols are also inefficient. One of the main causes is the obstacle in constructing MPC
protocols.

1.1 Obstacle for Using Well-known Algorithms

We say that an algorithm is data-dependent if the control flow of the algorithm depends
on data values, and an algorithm that is not data-dependent is said to be data-oblivious.
Generally speaking, there is a large obstacle when one constructs a practically efficient
MPC protocol from a well-known algorithm. That is, MPC protocols should be data-
oblivious while most efficient algorithms are not. Furthermore, how to convert data-
dependent algorithms to data-oblivious algorithms is not known.

To illustrate this obstacle during the conversion from data-dependent algorithms to
MPC protocols, let us consider the following two algorithms. Both algorithms receive

a sequence of values ay,...,a, € Z, = {0,1,..., p — 1}, where p is a prime, as input,
and the output is the number of non-zero values in ay, . . ., a;,. 1
CountNonZero1(ay, .. .,ay): CountNonZero2(ay, . . ., a,):

1: ¢=0. 1: ¢=0.

2: fori=1tomdo 2: fori=1tomdo

33 c=c+ (@)’ mod p). 3. if a; # 0 then

4: return c. 4 c=c+ 1.

5: return c.

0ifa; =0

. holds by Fermat’s little theorem.
1 otherwise

(@)’ mod p = {
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Fig. 1. Running time of four compared sorting implementations. Number of elements on x-axis
is on log-scale.

The running time of the first algorithm is O(mlog p) since (a;)?~' mod p is com-
puted with O(log p) multiplications over Z, by using the exponentiation by squaring
technique, and that of the second algorithm is O(m). Therefore, the second algorithm
seems more efficient than the first one.

Next, let us consider the case when we convert these algorithms to MPC proto-
cols. For the first algorithm, we need only minor modifications: We replace the values
ai,...,an and c with secret-shared values (or values in other forms depending on the
MPC environment), and replace operations applied to these values, such as additions
and multiplications, with corresponding MPC subprotocols. 2

The resulting protocol requires only O(m log p) invocations of subprotocols. For the
second algorithm, it is not enough to apply the same modifications as the first one since
the second algorithm has an if condition, and the result of the if condition discloses the
information that a; = 0 or not. Even if the result is hidden, the branch of subsequent
processes discloses the information. To avoid these disclosures naively, we have to ex-
ecute both cases of the if condition. Therefore, the resulting protocol requires £(2")
invocations of subprotocols.

This significant difference between the complexities of the converted protocols is
due to the fact that the first algorithm is data-oblivious while the second algorithm is
data-dependent. Thus, the naive method used to convert data-oblivious algorithms to
MPC protocols does not work when the algorithm is data-dependent.

Above obstacle also occurs in the area of sorting. Therefore, all existing MPC sorting
protocols are based on specific sorting algorithms, which are data-oblivious but less
efficient. This is one of the main causes of the large gap on efficiency between MPC
sorting protocols and well known sorting algorithms.

1.2 Contributions

In this paper we show that in the areas of comparison sort one can efficiently convert
data-dependent algorithms to MPC protocols with a simple approach. Furthermore, we

2 We have no need for applying expensive exponentiation protocols since p is a public constant
value.
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propose a practically efficient MPC sorting protocol from the well known sorting algo-
rithm quicksort. Note that we discriminate protocol and algorithm such that the former
is used in a multi-party sense and the other is in an ordinal one, and say an algorithm or
protocol is practically efficient if it not only has less computational complexity but also
delivers good experimental results.

When trying to convert comparison sort algorithms to MPC protocols, an obstacle to
conversion for data-dependent algorithms occurs: The next pair of elements to be com-
pared depends on the outcome of previous comparisons in sorting algorithms. There-
fore, well known and practically efficient comparison sort algorithms, such as quicksort,
have not been applied to MPC protocols.

To overcome the above obstacle, we use a simple approach of shuffling before sort-
ing. That is, the parties first shuffle the input (in an MPC sense) and then use a com-
parison sort algorithm, e.g., quicksort or merge sort, with minor modifications on the
shuffled secret-shared values. Roughly speaking, although the data-dependent compar-
ison leaks the order of compared elements, the order is randomized by the shuffling
and has no relation to the inputs of the protocol. Therefore, we can straightforwardly
construct MPC sorting protocols from comparison sort algorithms after shuffling.

We next show that our approach can construct a practically efficient MPC sorting
protocol. We concretely construct an MPC sorting protocol from the quicksort algo-
rithm with our approach. Our protocol uses O(m log m) comparisons in O(log m) rounds
on average, which are comparable to other existing protocols. We describe a precise
complexity comparison in Sect. 4. Furthermore, we implement the proposed quicksort
protocol and other existing sorting protocols [2,31,32] on (2, 3)-Shamir’s secret-sharing
scheme with corruption tolerance ¢t = 1. This setting is reasonable since our aim is to
produce a practically efficient sorting protocol and the performance of MPC protocols
does not scale well based on the number of parties. As a result, our proposed quick-
sort protocol sorts 32-bit words and 1, 000, 000 secret-shared values in 1,227 seconds,
while existing sorting protocols cannot sort within 3, 600 seconds. We describe an intu-
itive graph in Fig. 1 and precise experimental results in Sect. 4.

1.3 Related Work

Some circuit-based sorting algorithms are known as sorting networks. Since sorting net-
works are constructed in a circuit style and circuit-based algorithms are data-oblivious,
they can be efficiently applied to MPC protocols. Ajtai et al. proposed an asymptotically
optimal sorting network known as the AKS sorting network, which exhibits a complex-
ity of O(mlogm) comparisons, where m is the number of input shares [1]. However,
this algorithm is not practical since its constant factor is very high. On the other hand,
Batcher’s merge sort [2] is more efficient unless m is quite large [21]. This algorithm
exhibits a complexity of O(m log® n) comparisons with a lower constant factor.

Goodrich proposed a data-oblivious sort called randomized shell sort [16]. Similar
to sorting networks, data-oblivious sorts are also efficiently applied to MPC protocols.
Although randomized shell sort returns a wrong output with low probability, it exhibits
a complexity of O(m) rounds and O(m log m) comparisons.

Wang et al. reported experimental results of some sorting algorithms [31]. Their im-
plementation is based on the MPC system Fairplay [23]. The running times of Batcher’s
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merge sort [2] and randomized shell sort [16] for 256 input values are approximately
3,000 and 6,200 seconds, respectively.

Jonsson et al. studied a general technique to hide the number of input values for sort-
ing protocols [20]. They also implemented Batcher’s merge sort [2] and other sorting
protocols on the MPC system Sharemind [6]. Their implementation is optimized using
a technique called vectorization, and the vectorized Batcher’s merge sort sorts 16, 384
secret shared values in 210 seconds.

Zhang proposed data-oblivious sorting algorithms [32] based on bead sort. All of
Zhang’s algorithms exhibit complexities of constant rounds and O(Rm) or O(m?) com-
parisons depending on the algorithm, where R represents the range of input values.
Since these algorithms are data-oblivious, we can convert them to multi-party sorting
protocols by using a circuit-based technique while keeping their complexities.

2 Preliminaries

2.1 Assumptions and Notations

We focus on secret-sharing-based MPC. For simplicity, n parties Py, ..., P, are con-
nected by secure channels. All values used in secret-sharing schemes belong to a field
K. We use [s]lp, to denote a share for P; where a secret value is s € K. Let Q be a coali-
tion of parties and [[s]lo denote a set of shares {[s]lp, | P; € Q}. When U represents all
parties, we simply denote [[s]ly as [s] and call it shared values. We call some elements
related to secret-sharing scheme as follows;

— s: secret value,
— [s]p,: share (for a party P,),
— [s1 = [sllv = {ls1lp,, ..., [s]lp,}: shared value.

We use [i] to denote a set {1,2,...,i}.

2.2 Security Model

We consider unconditional, perfect security against a semi-honest adversary with static
corruption of at most ¢. This means that the adversary can execute unbounded computa-
tion, must follow a protocol, and can corrupt at most ¢ parties only before the protocol
is conducted. More technically, we say that a protocol is secure if there is a simulator
that simulates the view of corrupted parties from the inputs and outputs of the protocol.
Weusel = {P;, Pi,...,P;} C U to denote the parties that are corrupted. Due to space
limitation, the formal definition of the security against a semi-honest adversary with
static corruption appears in Appendix A.

2.3 Complexity Metrics in MPC

We use two metrics, round complexity and the number invocations of the comparison
protocol, to evaluate the overall running time of protocols. The round complexity of a
protocol is the number of rounds of parallel invocations of the communication. Because
the comparison protocol is a dominant factor of the complexity of communications, we
measure the amount of data transmitted by the parties with the number of invocations
of the comparison protocol.
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2.4 Secret-Sharing Scheme

We focus on a class of secret-sharing schemes called (k, n)-threshold. This means that
the shares are shared by the n parties in such a way that any coalition of k or more parties
can together reconstruct the secret, but no coalition fewer than k parties can. Shamir’s
secret-sharing scheme [28] belongs to this class. We assume that the corruption toler-
ance ¢ satisfies ¢t < min(k,n — k). We say [s] is uniformly random if it is uniformly
randomly chosen from the set of possible shared values whose secret value is s.

A secret-sharing scheme Ilgg is a pair of algorithms, dealing and revealing. The
dealing algorithm takes a secret value s as input and outputs a uniformly random shared
value. The revealing algorithm takes at least k shares and outputs the secret value s.

2.5 Shuffling, Comparison, and Reveal Protocols

We introduce some existing MPC protocols used as building blocks of our protocol.

Our protocols are designed to be used as building blocks in the paradigm of comput-
ing on shared values, which is one of the most common paradigms for MPC protocols
[8]. In this paradigm, secret values are preliminary shared with a secret-sharing scheme
to all parties that participate in MPC protocols. Then MPC protocols take secret-shared
values as inputs from each party and output the result in secret-shared form. The result
is finally recovered by the revealing algorithm of the secret-sharing scheme.

Comparison protocol. The comparison protocol [10,25] receives two shared values
and outputs a shared value of the comparison result of the inputs. More precisely, the
comparison protocol accepts [allp,, [b]lp, from each P; € U as input and outputs [c]lp,
to each P; € U such that c = 1 if ¢ < b and ¢ = 0 otherwise. We assume that K is
totally ordered and denote this protocol as “[c]] < [[a < b]”. We formally define the
comparison protocol with the following function fr?s'\gp.

fl%\gpz On inputting [ x]lp, and [yllp, from each P; € U, it reveals x and y with the
revealing algorithm of llss, sets z = 1 if x <y and z = 0 otherwise, and generates [[z]]
with the dealing algorithm of Tlss. Finally, it outputs [z]lp, to each P; € U.

The comparison protocol proposed by Nishide and Ohta [25] exhibits the complexity
of O(1) rounds and O(¢) invocations of multiplication protocols where £ is the bit-length
of K.

Shuffling protocol. The shuffie protocol receives some shared values and outputs re-
newed shared values where their secret values are uniformly randomly permuted. More
precisely, the shuffle protocol accepts [aillp,, ..., [anllp, from each P; € U and out-
puts [b11lp,, ..., [buwllp, to each P; € U such that b; = ag; for a uniformly random
permutation x : [m] — [m] and every j € [m]. A run of this protocol is denoted as

(D11, ..., [bn] < Shuffle([aill, ..., [anlD.

We formally define the shuffling protocol with the following function f3"°.

fﬁ:sume: On inputting ([aillp,, - - ., Lamnlp,) from each P; € U, it reveals ay,...,ay

with the revealing algorithm of Tlss, selects a permutation n . [m] — [m] uniformly
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at random, sets b; = ay) for i € [m], and generates [b1], ..., [[bnll with the dealing
algorithm of llss. Finally, it outputs ([b11lp,, . .., [bmllp,) to each P; € U.

Laura et al. proposed efficient shuffling protocols [22]. One of their protocols exhibits
the complexity of O(2"/ \/n) rounds and O(2"n*>mlog m) communications. When the
number of parties is constant, it exhibits O(1) rounds and O(m log m) communications.
We use this protocol as the shuffling protocol.

Reveal protocol. The reveal protocol accepts [x]lp, from each P; € U and outputs x
to each P; € U. This protocol just has a role of the reveal algorithm in a multi-party
setting. A run of this protocol is denoted as

x « Reveal([x]).

We formally define the reveal protocol with the following function frﬁ‘;"ea'.

fnR:;"ea': On inputting [x]lp, from each P; € U, it reveals x with the revealing algo-
rithm of llss and outputs x to each P; € U.

The reveal protocol can be easily constructed in a semi-honest model by distributing
all shares among all parties. Even in the malicious model it can be constructed by using
secret-sharing schemes secure against cheating [27,26].

3 MPC Sorting Protocols

In this section, we propose an approach of constructing efficient sorting protocols, and
then we apply our approach to the quicksort algorithm. For simplicity, we split the
construction of our quicksort protocol with two steps: we begin by describing the con-
struction with restricted inputs and later show how to remove this restriction. We also
discuss further extensions of our approach.

We assume that the following protocols can be executed on Ilss; shuffling, compar-
ison, and reveal. For example, Shamir’s secret-sharing scheme satisfies this condition.

3.1 Our Approach of Constructing Efficient Sorting Protocols

To construct an efficient sorting protocol, it is natural to try to construct an MPC sorting
protocol that emulates practically efficient sorting algorithms. However, this approach
has to solve a certain problem; When trying to convert well-known sorting algorithms
to MPC protocols, the problem with most practically efficient sorting algorithms is that
they are data-dependent. On the other hand, if an MPC protocol changes its behavior
according to the input, it might violate privacy. Therefore, all existing sorting protocols
use less efficient data-oblivious sorting algorithms. Consequently, we have to fill the gap
between data-dependency and data-obliviousness to construct MPC sorting protocols
from well-known sorting algorithms.

Sorting algorithms which determine the sorted order based only on comparisons
between the input elements are called comparison sorts. Comparison sorts include a
number of practically efficient sorting algorithms, such as quicksort, shell sort, heap-
sort, insertion sort, and merge sort. However, comparison sorts are essentially data-
dependent since the next pair of elements to be compared depends on the outcome of
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previous comparisons. Therefore no comparison sort, including well known quicksort
algorithm, has been applied to MPC protocols.

To solve the above problem, we use a simple approach of shuffling before sorting.
Our approach consists of the following modifications to the original comparison sort
algorithm.

1. We apply the shuffling protocol to the inputs at the first step.

2. We execute as the same to the original (data-dependent) comparison sort algorithm,
except to replace the comparison operation with a continuous execution of compar-
ison and reveal protocols.

In the execution of the protocol, the revealed result of comparison seems to leak ordinal
information. However, the ordinal information is randomized by the shuffling at the
first step, so it leaks no information about true inputs. This approach is quite simple
and effective for constructing practically efficient sorting protocols. Our approach is
also quite general since, to our knowledge, all of practically efficient comparison sort
algorithms can be converted to MPC protocols with our approach.

3.2 Quicksort Protocol

Now, we concretely construct an MPC sorting protocol, which we call quicksort pro-
tocol, from the quicksort algorithm with our approach. Note that we assume that the
secret values of inputs are distinct here and discuss the unrestricted input case in the
following subsection.

The sorting function is defined as follows.

fﬁ:smng: On inputting ([aillp,, ..., [anllp,) from each P; € U, it reveals ay,...,an
with the reveal algorithm of Tlss, sorts (ai,...,ay) to (by,...,by) such that b; < by

fori e [m—1], and generates [b]), . . ., [bn] with the dealing algorithm of Tlss. Finally,
it outputs ([b11lp;, - - -, [bmllp,) to each P; € U.

We describe our quicksort protocol constructed by applying our approach in Proto-
col 1. Next we discuss the property of our quicksort protocol.

Correctness. Our quicksort protocol has two differences compared to the original quick-
sort algorithm. The first difference is comparison; however, this has no effect on execu-
tion since the replicated protocols simply emulate the original. The second difference
is an additional shuffling step inserted at the beginning of our quicksort protocol. Since
the secret values of the input shared values are distinct, the order of the secret values of
the output is unique. Therefore, the first shuffling step does not affect the results.

Security. Roughly speaking, the shuffling and comparison protocols are secure, and
the swapping operation is just a local computation. Therefore, the only possible infor-
mation leakage is the revealed results from the comparisons. However, the results of
each comparison have no relation to the input. This is because the input shared values
are shuffled in the first step by the shuffling protocol. We formally claim the following
theorem.

. ti
Theorem 1. Protocol 1 t-privately reduces f;’:sr "9 1o fl.ihsume, gs'\gp, and fl.'?;"ea'.

The proof of the theorem appears in Appendix B.
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Protocol 1. Quicksort protocol

Notation: [b]], ..., [b,] < Quicksort([a1,...,[a,l)

Input: Shared values [[a], ..., [a.].

Output: Shared values [b],..., [b,] where by < --- < b,,.
1: Unless this is a recursively called execution, apply the shuffling protocol to [a:], ..., [a.]-
2: if 1 < m then
3. pleld,...,[en] « Partition([a].,..., [a.]).

D11, ..., [bp-11 < Quicksort([e], ..., Ie,—11D).
Let [b,11 = [e, 1.
[6peill;. .., [by]l < Quicksort([ep.il, ..., [enl).
else
Let ([611, ..., 061D = ([a1 1, - - -, [@nID-
return [b(],...,[b,1.

LR R

Notation: p, [[e(], ..., [e,] « Partition([a1,..., [a.])
Input: Shared values [a], ..., [a.l.
Output: Position p and shared values [[e, ], ..., [e.].

1: Leti=0.

2: for j=1tom—1do

3 [cll < lla; < aull.
4 ¢ « Reveal([c]).
5: if ¢ = 1 then
6 Leti=i+1.

7 Swap [[a;]] and [[a;]].

8 Letp=i+1.
9: Swap [[a,] and [[a,].

0: Let ([e(,...,Me.D) = (lai,. .., [a.).
1: retarn p,[e(],....[e.l.

Complexity. There are only two subprotocols that matter in terms of complexity. One is
the shuffling protocol and the other is the comparison protocol. As described previously,
we use the shuffling protocol proposed by Laura et al. [22], which exhibits a complexity
of O(1) rounds and O(m logm) communications when the number of parties n is con-
stant. Since the quicksort algorithm requires Q(m log m) invocations of comparison, we
have no need to take into account the complexity of the shuffling protocol.

The number of invocations of the comparison protocol is exactly the same as that of
comparisons in the original quicksort algorithm. With a naive implementation, there-
fore, our quicksort protocol exhibits a complexity of O(m log m) rounds and O(m log m)
comparisons.

We can improve the round complexity of the main part of the proposed quicksort
protocol to O(log m) by setting the invocations of the comparison protocols to be par-
allel. First, we claim that the depth of the recursive calls is @(log m) on average. Since
our quicksort protocol shuffles the input in the first step, the input to the main part of
the quicksort protocol is uniformly randomized. When the input is assumed to be uni-
formly randomized, the depth of the recursive calls for the quicksort algorithm is known
to be @(log m) on average [9]. Additionally, we can easily confirm that we can make the
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invocations of the subprotocol Partition parallel at each depth. Thus, through parallel
implementation, our quicksort protocol exhibits a complexity of O(logm) rounds and
O(mlogm) comparisons on average.

3.3 Sorting Duplicated Values

When there are duplicate inputs in its secret values, our quicksort protocol may leak
information regarding the input. For example, if the protocol invokes two comparison
protocols [[a < b] and [[b < a] s.t. a = b, the results of the comparisons reveal the
existence of a pair of shared values with identical secret values. Another example is the
case when all the values are same. In this case, the results of comparisons are all true,
and this implies many values are same with high probability.

We can easily address this problem, for example, by the following steps. Let m be
the number of input shares and add [log, m] bits, which we call a tie breaker, to every
input share in the least significant positions. Then, we execute the protocol treating the
modified input as the input. The above modification gives the identical shared values
strict order; therefore, solving the problem. Furthermore, depending on how we make
the tie breaker, we can give the proposed quicksort protocol certain features. If we
shuffle the tie breaker, the duplicated values are uniformly and randomly ordered. To
generate a sorting protocol while retaining the original order of the duplicated items
(such a sorting operation is called stable), we arrange the tie breakers in ascending
order.

3.4 Further Extensions

Beyond sorting, our approach must be applied to many other data-dependent algo-
rithms. We illustrate a selection algorithm which is for finding the k-th smallest number
in a list. This includes finding the minimum, maximum, and median elements often
executed in the database operation. For example, we can obtain the median MPC pro-
tocol that exhibits O(logm) rounds and O(m) comparisons in the average case from
Hoare’s algorithm [18] and also obtain the protocol that exhibits the same rounds and
comparisons even in the worst case from Blum’s algorithm [5].

Our approach seems to be secure even in the malicious model if the shuffling, reveal,
and comparison protocols are also secure in the malicious model. However, we are
interested in constructing a practically efficient MPC protocol, and to our knowledge,
there is no secret-sharing scheme providing practically efficient shuffling, reveal, and
comparison protocols simultaneously. Therefore, we only give the proof in the semi-
honest model in this paper.

4 Evaluation

In this section, we evaluate our quicksort protocol. We compare this protocol with other
existing sorting protocols both asymptotically and experimentally. As a result, we show
that our quicksort protocol exhibits a comparable computational complexity and signif-
icantly improved the running time in an experiment.
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Table 1. Complexities of sorting protocols. m and R represent the number of the input values and
the range of input values, respectively.

Rounds Invocations of comparison
Sorting protocol Average Worst Average Worst
AKS sorting network [1] O(logm) O(logm) O(mlogm) O(mlogm)
Randomized shell sort [16] O(m) O(m) O(mlogm) O(mlogm)
Batcher’s merge sort [2] 0(10g2 m) 0(10g2 m) O(m log2 m) O(m 10g2 m)
Oblivious arrayless bead sort [32] o(1) o(1) O(Rm) O(Rm)
Oblivious keyword sort [32] o(1) o(1) o@m?) om?)
Quicksort (proposed) O(log m) O(m) O(mlogm) om?)

Table 2. Performance of sorting protocols. m represents the number of the input values. The
“N/A” means that the execution did not finish in 3, 600 seconds.

Sorting protocol m=10 m=10> m=10> m=10* m=10° m=10°
Randomized shell sort [16]  6.356(s] 86.355[s] 911.376[s] N/A N/A N/A
Oblivious keyword sort [32] 0.335[s] 3.392[s] 387.128[s] N/A N/A N/A
Batcher’s merge sort [2] 1.331[s] 4.139[s] 14.285[s] 152.168[s] 2070.890([s] N/A
Quicksort (proposed) 0.247[s] 0.488[s] 1.410[s] 9.859[s] 93.674[s] 1226.267[s]

4.1 Complexity Analysis

We first evaluated our quicksort protocol from an asymptotic perspective. As described
in Sect. 3, this protocol exhibits a complexity of O(log m) rounds and O(m log m) com-
parisons on average, where m is the number of the input values. We summarize the
complexities of ours and existing sorting protocols in Table 1 by taking into account
parallelism.

As mentioned repeatedly, we are interested in practically efficient protocols; there-
fore, we stress the average case rather than the worst case. Our quicksort protocol re-
quires O(mlogm) comparisons on average, which is asymptotically optimal for
comparison sorts. Our quicksort protocol is superior to randomized shell sort [16] and
Batcher’s merge sort [2] in either rounds or comparisons. The AKS sorting network
[1] has the same complexity on average. The oblivious arrayless bead sort [32] exhibits
O(1) rounds and O(Rm) comparisons where R is the range of secret values. This algo-
rithm is quite efficient when R is small, e.g., the secret value belongs to {0, 1}. However,
when R is large, e.g., R = 2%, it becomes quite inefficient. The oblivious keyword sort
[32] has a comparable complexity to ours. This exhibits a complexity of constant rounds
that is superior to ours but O(m?) comparisons that is inferior on average.

4.2 Experimental Results

As the quicksort often outperforms other sorting algorithms with O(mlogm) compar-
isons in practice [30], the experiment results are very important for practical use. We
implemented our quicksort protocol and existing sorting protocols, such as the random-
ized shell sort [16], the oblivious keyword sort [32] and Batcher’s merge sort [2], for
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comparison. The AKS sorting network [1] was not implemented since this algorithm
is not of practical interest. We also did not implement the oblivious arrayless bead sort
[32]. This is because in many applications such as Oblivious RAM the range of num-
bers, R, is large; therefore, this sort protocol becomes quite inefficient.

We implemented sorting protocols on (2, 3)-Shamir’s secret-sharing scheme with cor-
ruption tolerance ¢t = 1. This is because MPC protocols generally do not scale well as
the number of participants increases, and such MPC protocols executed by a few par-
ticipants can be building blocks of ones executed by many participants [11]. For better
performance, we implemented component protocols secure against a semi-honest adver-
sary. This implies all the implemented sorting protocols are also secure against such an
adversary. We implemented the comparison protocol proposed by Damgard et al. [10]
as a building block of all sorting protocols. The quicksort protocol additionally uses the
shuflling protocol proposed by Laura et al. [22]. Our implementation of the randomized
shell sort and Batcher’s merge sort protocols are based on circuit representations. That
is, we replaced the comparators in the original algorithms to comparator protocols con-
structed by comparisons, multiplications, and additions. We implemented all of them on
C++ and compiled by g++ 4.6.1. All values are in Z, = {0,1,...,p— 1}, where pis a
prime number 4294967291 and satisfies 23! < p < 232, that is, 32-bit words.

We then timed how long the running time of these protocols is. All the experiments
were conducted on three laptop machines with an Intel Core i5 2540M 2.6-GHz CPU
and 8 GB of physical memory. These three machines were connected to a 1-Gbps LAN.
The running times of the sorting protocols are shown in Fig. 1, and detailed times in
some cases are summarized in Table 2 where m is the number of input shared values.

As expected, our quicksort protocol allowed us to consider large inputs size. The
results show that our quicksort protocol is much faster than randomized shell sort and
oblivious keyword sort, and about ten to twenty times faster than Batcher’s merge sort.
Consequently, the proposed quicksort protocol significantly improved the running time
of the existing sorting protocols. In other words, our quicksort protocol is practically
efficient.

5 Conclusion

We proposed a simple and general approach, shuffling before sorting, for converting
data-dependent but efficient comparison sort algorithms to MPC sorting protocols. We
then constructed a quicksort protocol from the quicksort algorithm with our approach.
The resultant protocol is practically efficient since it has comparable computational
complexity and significantly improved the running time compared to existing protocols
in experiments.
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A Formal Definition of the Security

We give the formal definition of the security against a semi-honest adversary with static

corruption. Let X = (x1,..., x,), Xt = (%3, ..., X;,), fi(X) be the i-th output of f(x), and
fix) = (fi,(%), ..., fi,(x)). We denote the view of P; during the protocol execution of p
on inputs X as VIEW[[;(X) = (x;, i3 M1, - . ., d¢) Where r; is P;’s random tape, and p; is the

Jj-th message that P; received in the protocol execution. We also denote the output of P;
as OUTPUT, (X).

We are now ready to define the security notion in the presence of semi-honest
adversaries.

Definition 1 ([14]). Ler f : ({0, 1}*)" — ({0, 1}*)" be a probabilistic n-ary functionality,

p be a protocol, ViEw{ (X) = (VIEW‘;,” x),..., Vle‘;,ir (x)), and

OUTPUT(X) = (OUTPUT‘;,1 (x),..., OUTPUT‘;,n (x)).

We say that p t-privately computes f if there exists S such that for all 1 C U of cardi-
nality of at most t and all X, it holds that

(S x5, (%)), f(X))} = {(VEW! (%), oUTPUT (X))} .

It is well known that a protocol satisfying the above security notions can be securely
composed with other protocols in a semi-honest setting. To explain this composition
property, we introduce the security notion for a protocol that computes a function with
the help of an oracle.
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Definition 2 ([14]). Let f : ({0, 1}*)" — ({0, 1}*)" be a probabilistic n-ary functionality,
g ({0, 1})" — ({0, 1}*)™ be a probabilistic m-ary functionality, and p be a protocol.
We say that p t-privately reduces g to f if p privately computes g with an oracle access
of the functionality of f.

We introduce an informal description of the composition theorem. Suppose that a pro-
tocol I7¢ privately reduces g to f and a protocol I7/ privately computes f. Then the
protocol 778/, which is the same as I7¢ except that all oracle calls are substituted by
the executions of 71/, privately computes g. This implies that we can treat a constitutive
protocol as a black box to prove the security of a high-level protocol.

B Proof of Theorem 1

Let [b1],...,[b;,]l be the shuffled (and renewed) shared values in the Step 1 of
Quicksort(). The view of adversaries consists of their inputs [a ], - . . , [an 1, random
tapes, [b11lr, . . ., [5},]1, [c]l;, and c. The output consists of [b1]ly, .. ., [, ]1. Note that
the adversaries have no view of the subprotocols Shuffle(-), [- < -]|, and Reveal(-) since
the execution of these protocols are substituted with the oracle invocation of function-
alities fl.ihsume, fl.(fs'\gp, and fl.'?;"ea', respectively.

We construct the simulator S as follows. Inputs and outputs are the same as those of
adversaries, and S selects random tapes uniformly at random.

As for [D{1ly, ..., [b,,]I and c, let 7" : [m] — [m] be a permutation that satisfies
[0 = [[b;r,(l.)]] (i € [m]). There exists exactly one such permutation since {by, ..., b}
is distinct and ([b1]], . . ., [, ])) is a permutated sequence from ([2}], . .., [b;,]) by the
swap operations executed in Step 7 or Step 9 of Partition(-). Once 7’ is perfectly simu-
lated, [[b7]l; is also perfectly simulated by setting [[b,.-1;)]l; as the simulated shares and

c is also perfectly simulated by setting the value

o e {1 it 7771 () <771 (j)
0 otherwise
when [[b] < b}]] is executed. Now we claim that S perfectly simulates 7’ by selecting
just a uniformly random permutation. By the correctness of the shuffling and quicksort
protocols, b = ar,;) and b; = ar;) (i € [m]) hold for a fixed (according to ai, ..., @)
permutation 7r; : [m] — [m] and a uniformly random permutation 7, : [m] — [m].
7y = m, o ' holds and this implies 7" = 7.~ o 7. Therefore, 7’ is uniformly random.
As for [[c]l;, S picks [I| uniformly random numbers and sets them as the simulated
values for [c];. Since [c]|; is the output shares of Reveal(-), the above simulation is
perfect.
Thus, S perfectly simulates the view of adversaries. O
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Abstract. Key agreement protocols are one of the fundamental prim-
itives in cryptography. In this paper, we formalize the security model
for certificateless one-way and two-party authenticated key agreement
protocols and propose a concrete certificateless one-way and two-party
authenticated key agreement protocol. The security of our protocol is
proven under the computational Diffie-Hellman, square computational
Diffie-Hellman and gap bilinear Diffie-Hellman assumptions. As for effi-
ciency, the protocol requires only one pass and has low communication
overhead.
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1 Introduction

Key agreement (KA) is one of the fundamental cryptographic primitives in cryp-
tography. It allows two or more parties agree on a session key in such a way that
both influence the outcome. One of the most famous protocol for KA was pro-
posed by Diffie and Hellman [7]. However, the basic Diffie-Hellman protocol does
not authenticate the two communication entities. Therefore, an active adversary
who has control over the communication channel can mount a man-in-the-middle
attack [11]. Authenticated KA [19,20] enables two or more parties to establish a
shared session key over an insecure channel.

Two party KA protocols can be classified into three types [15], i.e., non-
interactive, one-way and one-round. In a non-interactive KA protocol, no in-
formation needs to be transmitted between two entities. However, the session
key generated in a non-interactive KA is derived only from long-term private
keys. Hence, they cannot offer any form of forward secrecy. In a one-round KA
protocol, both entities require to transmit information to each other during the
protocol. It usually offers better security properties than other two types of key
agreement protocols. In a one-way KA protocol, only one entity is required to
transmit information to the other during the protocol. One-way KA protocols are

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 217-230, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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very useful in the condition when the trade-off between security and efficiency
is considered. When a message needs to be encrypted with a shared session key,
they require two less message flows than the one-round protocols and at the
same time provide better security properties than the non-interactive ones.

Authenticated KA protocols can be designed in different public key cryptosys-
tems. In traditional public key cryptosystem, the management of certificates is
usually a big problem. To eliminate such cost, Shamir [17] introduced identity-
based public key cryptosystem (ID-PKC). In ID-PKC, the public key of an entity
is just its identity (such as its IP address). However, key escrow problem comes
with ID-PKC. That is the PKG (who helps an entity to generate its private key)
knows the private keys of all the entities in the system. Therefore, in an identity-
based one-way and two-party authenticated KA protocol [8,15], the PKG can
always compute the session key. Certificateless public key cryptography (CL-
PKC) may successfully solve this drawback. In CL-PKC, the KGC (who is used
to help an entity to generate its private key) only has access to the partial private
key of an entity. An entity’s full private key is composed of the partial private
key comes from the KGC and a secret information chosen by itself. Since the
KGC does not hold the full private key of the entity in the system, it cannot
represent any entity to do cryptographical operations without being detected.

The first certificateless authenticated KA protocol was proposed by Al-Riyami
and Paterson [1]. Later, several certificateless two-party authenticated KA proto-
cols [9,10,12,13,16,20] have been presented. Among them, the authors in [10,16,20]
defined the security models for certificateless authenticated KA protocols respec-
tively. These protocols require both entities to transmit information to the other.
Therefore, they are one-round KA protocols. The first certificateless one-way and
two-party authenticated KA protocol is presented in [5]. However, no formal se-
curity analysis is provided for the protocol in [5].

Our contribution: In this paper, we propose a formal security model for certifi-
cateless one-way and two-party authenticated KA protocols and propose a con-
crete certificateless one-way and two-party authenticated KA protocol based on
bilinear maps. Our protocol captures the common security requirements of one-
way and two-party authenticated AK protocols [15], i.e., known-key security, un-
known key-share, random number compromise security, sender’s key-compromise
impersonation, sender’s forward security and no key control (See Section3.1).
Our protocol is efficient and has low communication cost. The security of our
protocol is proven under the assumptions that the computational Diffie-Hellman,
square computational Diffie-Hellman and gap bilinear Diffie-Hellman problems
are hard.

Paper organization: The rest of the paper is organized as follows: Section 2 gives
some preliminaries. In Section 3, we introduce the security model for certificate-
less one-way and two-party authenticated KA protocols. Our efficient certificate-
less one-way and two-party authenticated KA protocol is proposed in Section 4.
In Section 5, we prove the security of our protocol. Section 6 concludes our paper.



Secure Certificateless One-Way and Two-Party Authenticated KA Protocol 219

2 Preliminaries

2.1 Bilinear Maps

Let G; be an additive group of prime order ¢ and G2 be a multiplicative group
of the same order. Let P denote a generator of G;. A map é : G; x G; — G>
is called a bilinear map if it satisfies the following properties: 1) Bilinearity:
é(aP,bQ) = é(P, Q) for all P,Q € G1,a,b € Zy; 2) Non-degeneracy: There
exists P, € G such that é(P, Q) # 1 3)Computability: There exists an efficient
algorithm to compute é(P, Q) for any P,Q € G.

2.2 Mathematical Problems

Here we present some mathematical problems, which are related to the security
of our key agreement protocol.

Let G1, G2, and é : G; X G; — G2 be groups and bilinear map as specified
in Section 2.1.
Computational Diffie-Hellman (CDH) Problem: Given a generator P of
Gy and (aP,bP) for unknown a,b € Zy, compute abP.

When a = b, the above CDH problem degenerate to the following square
computational Diffie-Hellman problem.

Square Computational Diffie-Hellman (SCDH) Problem: Given a gen-
erator P of Gy and aP for unknown a € Zj, compute a’P.

It was shown that the CDH problem and the SCDH problem are polynomial
time equivalent [18].
Bilinear Diffie-Hellman (BDH) Problem: Given a randomly chosen P €
G1, as well as aP, bP, cP (for random unknown a, b, c € Z;), compute é(P, p)abe,

When a = ¢, the above BDH problem degenerate to the following bilinear
square Diffie-Hellman problem.
Bilinear Square Diffie-Hellman (BSDH) Problem: Given a randomly cho-
sen P € Gy, as well as aP,bP (for random unknown a,b € Z;‘), compute
é(pP,P)a’t.

The BDH problem and the BSDH problem are proved to be polynomial time
equivalent [18].
Decisional Bilinear Diffie-Hellman (DBDH) Problem: Given a randomly
chosen P € Gy, as well as aP,bP,cP (for random unknown a,b,c € Zr) and
v € G, decide whether v = é(P, P)ab¢.

When a = ¢, the above DBDH problem degenerate to the following decision
bilinear square Diffie-Hellman problem.
Decisional Bilinear Square Diffie-Hellman (DBSDH) Problem: Given
a randomly chosen P € G, as well as aP,bP (for random unknown a,b € Z)

and v € G2, decide whether v = é(P, P)a2b.

Gap Bilinear Diffie-Hellman (GBDH) Problem [2,14]: Given a randomly
chosen P € Gy, as well as aP,bP and c¢P (for random unknown a,b,c € Z;),
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compute é(P,P)®¢ with the help of the DBDH oracle D(aP,bP,cP|v). If
é(P, P)®¢ = v, D(aP, bP, cP|v) output 1; otherwise, it outputs 0, where v € Gs.

The intractability of the GBDH problem means that it is hard to solve the
BDH problem although one has access to a DBDH oracle. When a = ¢, the above
GBDH problem degenerate to the following gap bilinear square Diffie-Hellman
problem.

Gap Bilinear Square Diffie-Hellman (GBSDH) Problem: Given a ran-
domly chosen P € G, as well as aP,bP (for random unknown a,b € Z;), com-
pute é(P, P)?°® with the help of the DBSDH oracle DS(aP,bPv). If é(P, P)2’t =
v, DS(aP,bPv) output 1; otherwise, it outputs 0, where v € Gs.

The GBSDH problem is a special case of the GBDH problem. For simplicity,
in this paper, the GBSDH problem is included in the GBDH problem.

2.3 Certificateless One-Way and Two-Party Authenticated Key
Agreement Protocol

A certificateless one-way and two-party authenticated KA protocol is defined by
following six algorithms:

— Setup: This algorithm is run by the KGC. It takes as input a security pa-
rameter k and returns a master-key and a list of system parameters params.

— Partial-Private-Key-Extract: This algorithm is run by the KGC. It takes as
input an entity’s identity I D;, a parameter list params and a master-key to
produce the entity’s partial private key D;.

— Set-Secret-Value: This algorithm is run by an entity. On input a parameter
list params, an entity’s identity ID;, this algorithm produces the entity’s
secret value x;.

— Set-Private-Key: It is run by an entity that accepts a parameter list params,
the entity’s identity I D;, partial private key D; and secret value z; to produce
a private key S; for that entity.

— Set-Public-Key: It is run by an entity that takes as input a parameter list
params, an entity’s identity ID; and secret value z; to produce a public key
P; for the entity.

— Key-Agreement: This algorithm accepts a parameter list params,
(Sa,ID 4, Pa) for sender A, (Sp,IDpg, Pg) for receiver B to produce a ses-
sion key K.

3 Security Model

In this section, we define the security model for certificateless one-way and two-
party authenticated KA protocols. Our model is based on the security models
in [10,16,20] derived from [3,4,6].
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3.1 Desirable Attributes
Our security model intends to capture the following security attributes [15]:

1. Known-key security: Each run of the KA protocol have to result in a unique
session key. The compromise of one session key should not compromise other
session keys.

2. Unknown key-share: An entity A must not be coerced into sharing a key
with any entity C' if A thinks that it is sharing the key with another
entity B.

3. Random mumber compromise security: The compromise of a random input
of sender A should not compromise A’s private key or the established session
keys.

4. Sender’s key-compromise impersonation: If an adversary compromises the
sender A’s private key. He can impersonate A, but he cannot impersonate
other entities in the presence of A.

5. Sender’s forward security: If private keys of senders are compromised, the
secrecy of previously established session keys should not be affected.

6. No key control: Neither entity should be able to force the session key to be
a preselected value. In other words, for a preselected session key, none of
the protocol participants can find the corresponding random input. We note
that the definition of no key control in this paper is the same as that in [15].

3.2 The Model

Two types of adversaries with different capabilities are generally considered in
certificateless key agreement protocols [1]. They are known as type I adversary
and type II adversary:

— Type I adversary. This type of adversary does not have access to the
master-key, but has the ability to replace the public key of any entity with a
value of his choice.

— Type II adversary. This type of adversary has access to the master-key
but cannot perform public key replacement.

In [20], the ability of type II adversary is strengthened. A type II adversary is
also allowed to replace the public key of any entity except the target one. Our
model is designed to capture the properties described in Section 3.1 as well as
the ability of Type I and strengthened type II adversaries.

Our model is specified via the following two games between a challenger C
and an adversary A. Both games include a set of protocol participants, each
participant has a public/private key pair. These participants are modeled by
oracles. We use the notation HZL ;» Meaning a participant believing that it is
communicating with another participant j for the n-th time. A is either a type
I or type II adversary. A is modeled by a probabilistic polynomial time Turing
Machine and has access to all the oracles in the game. A can relay, modify, delay,
interleave and delete messages. All communications go through A. Participant
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oracles only respond to queries by A and do not communicate directly amongst
themselves. We call A is benign, if he is deterministic and restricts its action to
choosing a pair of oracles H:L j and H; ;, and then faithfully conveying each flow
from one oracle to the other.

Before defining the games, we first define the following oracles:

— Create: The input of this oracle is an identity ID; of a participant i. On
receiving such a oracle query, C generates the public and private keys for
this participant.

— Public-Key: The input of this oracle is an identity I D; of a participant 7. The
output of this oracle is the public key P; of i.

— Partial-Private-Key: The input of this oracle is an identity I D; of a participant
1. The output of this oracle is the partial private key D; of 1.

— Secret-Value: The input of this oracle is an identity ID; of a participant .
The output of this oracle is the secret value x; of 7.

— Corrupt: The input of this oracle is an identity ID; of a participant i. The
output of this oracle is the private key S; of 4.

— Public-Key-Replacement: The input of this oracle is (ID;, P/). On receiving
such a oracle query, C sets P/ as the new public key of the participant i.
C will record this replacement which will be used later.

— Send: The input of this oracle (I T M). In this case, participant ¢ assumes
the message M has been sent by participant j. A may also make a special
Send query A to an oracle []} i) which instructs ¢ to initiate a protocol run
with j. An oracle is an initiator oracle if the first message it has received is
A. If an oracle does not receive a message \ as its first message, then it is a
responder oracle.

— Session-Key-Reveal: On receiving the Session-Key-Reveal query on HZ], this
oracle outputs the session key held by H i

— Random-Number-Reveal: On receiving the Random-Number-Reveal query on
HZ T this oracle outputs the random number held by H . Since, only the
sender will choose a random number, we require that Hl’ j is an initiator
oracle.

An oracle []} ; exists in one of the following several possible states:

— Accepted: An oracle is in an accepted state, if it decides to accept, holding
a session key, after receipt of properly formulated messages.

— Rejected: An oracle is in a rejected state, if it decides not to establish a
session key and to abort the protocol.

— State *: An oracle is in state *, if it has not made any decision to accept or
reject.

— Opened: An oracle is in an opened state, if it has answered a session key
reveal query.

— Corrupted: An oracle is in a corrupted state, if it has answered a corrupt
query.
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Definition 1 (Matching conversation). Let the session ID be the concatena-
tion of the identities and public keys of the protocol participants and, the other
messages transmitted in a session. Two oracles H;L and H . are said to have
a matching conversation with each other if they have the same session ID.

Game 1

At the beginning of this game, C runs the Setup algorithm to obtain the master-
key and the system parameter list params. If A is a Type I adversary, C sends
params to A and keeps the master-key secret; otherwise, A is a Type II adversary,
C sends params with master-key to A.

A is allowed to access Create, Public-Key, Partial-Private-Key, Secret-Value, Cor-
rupt, Public-Key-Replacement, Send, Session-Key-Reveal and Random-Number-
Reveal oracles.

Test: At some point in A’s attack, he may choose one of the oracles, say []; i)
to ask a single Test query. This oracle must be fresh (See Deﬁmtlon 2). To
answer the query, the oracle flips a fair coin § € {0,1}, and returns the
session key held by HZL j if # = 0, or else a random session key if § = 1.

Definition 2 (Freshness). An oracle HZLJ is fresh if (1) HZLJ is in the state
Accepted; (2) Hﬁ. is not in the state Opened; (3) party i and j are not corrupted;
(4) there is no oracle H;Z in the state Opened having a matching conversation
with H”, (5) if A is a Type I adversary, A has never requested the partial
private key of participants i and j; if A is a Type II adversary, A has never
replaced the public key of participants © and j, and has never requested the secret
value of participants i and j.

After the Test query, A can continue querying the oracles except that he cannot
reveal the test oracle []}'; or H;Z which is matching conversation with [}, (if
it exists); and he cannot corrupt party ¢ and j; and if A is a Type I adversary,
he cannot request the partial private key of participants ¢ and j; and if A is a
Type II adversary, he cannot replace the public key of participants ¢ and 7, and
cannot request the secret value of participants ¢ and j. At the end of A’s attack,
he must output a bit 6 as his guess for §. A’s advantage, denoted ¢, is defined
as:
e=|Prl0 =6]—1/2]

is the probability that A can distinguish the session key held by the tested oracle
from a random string.

Definition 3. A protocol is a secure certificateless one-way and two-party au-
thenticated AK protocol if:

1. In the presence of the benign adversary on H - and H , both oracles always
accept holding the same session key, and this key 18 dzstmbuted uniformly at
random;
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2. For any adversary A whether of type I or type II, € is negligible in the above
game.

The above model captures the known-key security, unknown key-share and ran-
dom number compromise security properties of certificateless one-way and two-
party authenticated KA protocols. However, it does not allow A to get the private
key of the sender. Therefore, it does not capture the sender’s key-compromise
impersonation and sender’s forward security properties.

Game 2
To capture the sender’s key-compromise impersonation and sender’s forward

security properties, we define the second game. In this game, A is allowed to
access Create, Public-Key, Partial-Private-Key, Secret-Value, Corrupt, Public-Key-
Replacement, Send, Session-Key-Reveal and Random-Number-Reveal oracles.

Test: At some point in his attack, A may choose one of the oracles, say []; i)
to ask a single Test query. It requires that H . is an initiator. Further, this
oracle must be fresh (See Definition 4). To answer the query, the oracle flips
a fair coin 6 € {0, 1}, and returns the session key held by sz it =0, or
else a random key sampled from H?] ifg=1.

Definition 4 (Freshness). An oracle [[}; is fresh if (1) [[}; is in the state
Accepted; (2) H?a is not in the state Opened; (3) party j is not corrupted; (4)
there is no oracle H;Z in the state Opened having a matching conversation with
H”, (5) if A is a Type I adversary, A has never requested the partial private
key of participant j; if A is a Type II adversary, A has never replaced the public
key of participant j, and has never requested the secret value of participant j;
(6) H?] has not answered a random number reveal query.

After the Test query the adversary can continue querying the oracles except
that he cannot reveal the test oracle H?] or its partner H;z (if it exists); and
he cannot corrupt party j; and if A is a Type I adversary, he cannot request the
partial private key of participant j; if A is a Type II adversary, he cannot replace
the public key of participant 7, and cannot request the secret value of participant
7; and he cannot request the Random-Number-Reveal query on H:L] At the end
of A’s attack, he must output a bit 6’ as his guess for 6. A’s advantage, denoted
€, is defined as:
e=|Prl0 =6]—1/2]

is the probability that A can distinguish the session key held by the tested oracle
from a random string.

Definition 5. A certificateless one-way and two-party authenticated KA proto-
col holds sender’s key-compromise impersonation and sender’s forward security
if:
1. In the presence of the benign adversary on H - and H , both oracles always
accept holding the same session key, and this key 18 dzstmbuted uniformly at

random;
2. € is negligible for any adversary A whether of type I or type II in Game 2.
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4 Our Protocol

In this section, we propose our concrete protocol. It comes as follows:

— Setup: On input a security parameter k, the KGC selects a cyclic additive
group G; with prime order ¢, a cyclic multiplicative group G2 of the same
order, a generator P € (G; and a bilinear map é : G; X G; — G4; chooses
a random master-key s € Z; and set Py = sP; chooses cryptographic hash
functions H; : {0,1}* — Gy, Hy : {0,1}* — {0,1}". The system parame-
ters params=(q, G1, G, é, P, Py, H1, H2).

— Partial-Private-Key-Extract: This algorithm accepts params, an entity’s iden-
tity I D; and generates the partial private key for the entity as follows:

1. Compute Q; = H(ID;).
2. Output the partial private key D; = sQ);.

— Set-Secret-Value: This algorithm accepts params and an entity’s identity 1.D;,
and selects a random z; € Z;. It outputs z; as the entity’s secret value.

— Set-Private-Key: This algorithm takes as input params, an entity’s partial
private key D; and secret value z;. The output of the algorithm is the private
key Sz = (xZ,Dz)

— Set-Public-Key: This algorithm accepts params and an entity’s secret value
z; € Z,; to produce the entity’s public key P; = x; P.

— Key-Agreement: Assume a sender A with identity 1D 4, private key Sa4 =
(xa,Da) and public key P4 = x4 P, and, a receiver B with identity IDp,
private key Sp = (xp,Dp) and public key Pg = zpP want to establish
a session key. A picks a random r € Z;, computes U = 7P, and sends
(IDa,Pa,U) to B. A and B can establish their session key as follows:

A computes:

KAB = HQ(I-DAajDBaPAaPBaUa TPBa:EAPBaé(DAaQB)aé(TPOaQB))~
B computes:
Kpa = Hy(IDa,IDp,Pa,Pp,U,xU,x5Pa,é(Qa, Dp),é(U, Dp)).

The session key is K = Kap = Kpa.

5 Security Analysis

In this section, we prove that our protocol captures the security attributes in
Section 3.1.

Lemma 1. In the presence of the benign adversary on H . and HJ ;» both ora-
cles always agree on the same session key, and this key is dzstmbuted uniformly
at random.
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Proof. Suppose that the two oracles follow the protocol and the adversary is be-
nign. In this case, since K 45 = Kpa by the bilinearity of the bilinear map, both
oracles agree on the same session key. Since r is random, based on the properties
of cryptographic hash functions, the session key is uniformly distributed over

{0,1}".

Lemma 2. Our protocol is a secure certificateless ony-way and two-party au-
thenticated KA protocol against type I adversary in the random oracle model
assuming the GBDH problem is intractable. Specifically, suppose in the attack,
a type I adversary A who makes at most qm, times Hyi queries, qm, times Hs
queries, q. times Corrupt queries, qs, times Session-Key-Reveal queries, wins the
game with advantage €. Then there exists an algorithm C to solve the GBDH

- ! 1 3 3
problem with advantage €' > giry€? (gotani3) €.

Proof. See Appendix A.

Lemma 3. Our protocol is a secure certificateless ony-way and two-party au-
thenticated KA protocol against type II adversary in the random oracle model
assuming the SCDH problem is intractable. Specifically, suppose in the attack, a
type I adversary A who makes at most qm, times Hy queries, q. times Corrupt
queries, qs- times Session-Key-Reveal queries, wins the game with advantage €.
Then there exists an algorithm C to solve the SCDH problem with advantage
1 3 3

¢ > qH263(qc+qs7-+3) €

Proof. Due to the page limitation, it will be presented in this full version of this
paper.

Theorem 1. Our protocol is a secure certificateless ony-way and two-party au-
thenticated KA protocol.

Proof. The theorem follows directly from Lemma 1, 2 and 3.

Lemma 4. Our protocol has sender’s key-compromise impersonation and
sender’s forward security against type I adversary in the random oracle model
provided the GBDH problem is intractable. Specifically, suppose in the at-
tack, an adversary A who makes at most qm, times Hy queries, qm, times
Hy queries, q. times Corrupt queries, qs times Session-Key-Reveal gqueries,
qrr times Random-Number-Reveal queries, wins the game with advantage €.
Then there exists an algorithm C to solve the GBDH problem with advantage

! 1 2 2
€2 2qH2€2(qc+qsr+qM+3) €
Proof. It will be presented in this full version of this paper.

Lemma 5. Our protocol has sender’s key-compromise impersonation and
sender’s forward security against type II adversary in the random oracle model
provided the CDH problem is intractable. Specifically, suppose in the attack, an
adversary A who makes at most qu, times Hy queries, q. times Corrupt queries,
qsr times Session-Key-Reveal queries, ¢, times Random-Number-Reveal queries,
wins the game with advantage €. Then there exists an algorithm C to solve the

CDH problem with advantage € > 2q1112 o3 (qc+qs7.2+q”+2)26.



Secure Certificateless One-Way and Two-Party Authenticated KA Protocol 227

Proof. Tt will be presented in this full version of this paper.

Theorem 2. Qur protocol has sender’s key-compromise impersonation and
sender’s forward security.

Proof. The theorem follows directly from Lemma 1, 4 and 5.
Theorem 3. Our protocol captures no key control.

Proof. Since the value r is selected by A, it is easy to see that B cannot control
the session key. A cannot do this either comes from the fact that for a predeter-
mined session key K to find r such that Ho(IDa,IDpg, Pa, Pg,U,rPp,x4Pp,
é(Da,Qp),é(rPy,Qp)) = K is computationally impossible.

6 Conclusion

One-way and two-party authenticated KA protocols are important tools in cer-
tificateless cryptography. In this paper, we have presented an efficient certificate-
less one-way and two-party authenticated KA protocol. To generate a session key,
our protocol only requires one pass and has low communication overhead. The
security of our protocol is based on the hardness of the CDH, SCDH and GBDH
problems.
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A  Proof of Lemma 2

Proof. Suppose C is given an arbitrary input (P, aP,bP,cP), where a = c. We
show how can C use A to solve GBDH problem, i.e. to compute é(P, P)?¢ with
the help of the DBDH oracle. All queries by the adversary A now pass through C.
Firstly, C sets Py = bP, then selects the system parameter params=(q, G1, G2, é,
P, Py, Hy, Hs), and gives params to A.

H; queries: C maintains a list Hjlist which is initially empty. On input ID;,
C first checks whether this query has been queried. If so, C finds the tuple
(coin;, ID;,m;, Q;) on Hylist and returns @Q; as the answer; otherwise, he flips a
coin coin; € {0,1} that yields 1 with probability § and 0 with probability 1—4. If
coin; = 1, C selects m; € Z at random, sets Q; = m;aP, adds (coin;, I D;, m;, Q;)
to Hilist and returns @Q; as the answer; else, selects m; € Z;‘ at random, sets
Q; = m; P, adds (coin,;, ID;, m;,Q;) to Hylist and returns @; as the answer.

Hy queries: C maintains a list Halist which is initially empty. On input (1D, I D%,
PY, PL Ui, X, Y, u,v;), C checks whether this query has been queried. If so, C
finds the tuple (ID%, ID%, Py, Pk, U;, X;,Y;, u;, vi, h;) on Hplist and returns h;
as the answer; otherwise, C does the following:

— If there’s a tuple (coinj,n,IDr,ID;, Pr, Py, U; ;,7; ;, K; ;) on SList (See Send
queries) such that ID; = IDY,ID; = ID% P = Py, P; = Py, U; =

U%J’é(XhP) = é(Ui,jaPJ)aé(Y;aP) = é(PI,PJ), D(P(),Hl(IDI),
Hl(IDJ)|uZ) : 1,?D(U@J,P0,H1(IDJ)|’UZ‘) = 1,Ki7j 7’5 L, set hi = i,
add (IDYy,IDY, P}, Py, U;, X;,Yi, u;, vi, hy) to Halist and return h; as the
answer.

— Else, set h; to be arandom value in {0, 1}, add (IDY, ID%, Py, Pk, U;, X;, Y,
U, Vi, hi) to Halist and return h; as the answer.

Create queries: C maintains an initially empty list CList. On input an identity I D;,
if I D; has been submitted previously, C does nothing; otherwise, C chooses a ran-
dom z; € Z;, computes the public key P; = x; P, submits ID; to Hy and recovers
the tuple (coin;, ID;, m;, Q;) from Hilist. If coin; = 0, C computes D; = m; P,
adds (ID;,z;, D;, P;) to Clist; else, sets D; = L, adds (ID;,x;, D;, P;) to CList.
Public-Key queries: On input an identity ID;, C first submits 1D, to the Create
oracle, then recovers the tuple (ID;,z;, D;, P;) from CList and then returns P
as the answer.

Secret-Value queries: On input an identity I D;, C first submits I D; to the Create
oracle and then recovers the tuple (ID;, z;, D;, P;) from Clist. If P; # x;P, C
returns L ; else he returns x; as the answer. Note that if A has made a Public-
Key-Replacement query on ID;, then P; # x;P.

Corrupt queries: On input ID;, C submits ID; to the Create oracle and recovers
(ID;,x;,D;, P;) from Clist. If D, = 1, C aborts (Event 1); else if P; # x;P,
returns (L, D;) as the answer; else returns (z;, D;) as the answer.
Partial-Private-Key queries: On input an identity ID;, C submits ID; to the
Corrupt oracle. If C does not abort, he returns D; as the answer.
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Public-Key-Replacement queries: On input (I.D;, P/), C submits ID; to the Create
oracle, then recovers (ID;, z;, D;, P;) from Clist, and then sets P; = P).

Send queries: C keeps a list SList which is initially empty. One receiving
a Send query HZL](M), C submits ID; and ID; to the Create oracle, re-
covers the tuples (ID;,x;,D;, P;) and (IDj,x;,Dj,P;) from CList, flips a
coin coin; € {0,1} that yields 1 with probability § and 0 with probabil-
ity 1 — 4. If M = A, C randomly chooses r;,; € Z;, computes U;; =
Ti’jP, sets Ki’j = J_,IDI = I.DZ,IDJ = IDj,P] = PZ‘,PJ = .Pj, adds
(coin},n,IDr,IDy, Pr,Py,U; j, 75 ;,K; ;) to SList and returns U, ; as the an-
swer. Else, C sets r;; = L,U;j = M,K; ; = L,IDy = ID;,IDy = ID;, Pf =
P;,P; = P;, adds (coin},n,IDy,ID;, Pr,P;,U; j,7i j, K; ;) to SList and returns
U;,; as the answer.

Session-Key-Reveal queries: On receiving a Session-Key-Reveal query on HZ]., C
finds the tuple (coin},n,ID;, 1Dy, Pr, Py, U; ;,7; j, K; ;) on SList, then does the
following:

— If coin = 1, abort (Event 2).

— Else if K; ; # L, return K; ; as the answer.

— Else if there’s a tuple (ID%, ID%, P}, Ph,U;, X;,Yi, u;, vi, h;) on Halist such
that ID; = IDY,ID; = IDY, P = Py,P; = Py, U; = U, ;,é6(X;,P) =
é(Us;, Py),é(Y;, P) = é(Pr, Py), D(Py, HH(ID;),Hi(IDy)|u;) = 1, D(U; ;,
Py,Hi(IDy)|v;) =1, set K; ; = h; and return K; ; as the answer.

— Else, set K; ; to be a random value in {0, 1}' and return K ; as the answer.

Random-Number-Reveal queries: On receiving a Random-Number-Reveal query
on sz, C finds the tuple (coin),n,ID;, 1Dy, Pr, Py,U; ;,7; ;, K; ;) on SlList and
returns 7; ; as the answer. As denoted in Section 3.2, it requires that []} ;s an
initiator oracle.

Test query: At some point in the simulation, A asks a Test query on H? ;e C
recovers the tuple (coin},n,IDr, 1Dy, Pr, Py, U; j, 75, K; ;) from SList, submits
ID; and ID; to Hy, finds the tuples (coin;, ID;, m;, Q;) and (coin;, ID;, m;, Q;)
on Hylist. If coin; # 1 or coinj # 1 or coin’ # 1, C aborts (Event 3). Otherwise,
C simply outputs a random value h € {0, 1}".

Once A finishes his queries and returns his guess bit, C randomly chooses u,
from Hylist and returns (up)(””ﬂ'r1 as the response to the GBDH challenge.

In the above simulation, all the responses of the oracles are uniformly dis-
tributed in the message space. Hence, if C does not abort, A cannot find any
inconsistency between the simulation and the real world. Therefore, A can win
the game with probability Pr[f = €'] = e. It remains to determine the probability
that C outputs the required u,.

In our simulation, C will abort if Event 1 or Event 2 or Event 3 happens. We
must calculate Pr[-Event 1 A —Event 2 A —Event 3]. By our setting, it is easy
to get
1 ( 3 3

QC + qS'I” + 3
It is now easy to see that C solves the GBDH problem with probability ¢ >

qu e (g +q3 +3)36. This concludes the proof.
2% \dotqer

Pr[-Event 1 A —Event 2 A —Event 3] >
e
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Abstract. Although a few unidirectional single-hop Identity-Based
Proxy Re-Encryption (IBPRE) systems are available in the literature,
none of them is CCA secure in the standard model. Besides, they can
not support conditional re-encryption property, which allows a delegator
to specify a condition for ciphertexts so that the proxy can re-encrypt
ciphertexts only if the re-encryption key corresponding to the same condi-
tion is given. This paper, for the first time, proposes a new unidirectional
single-hop Identity-Based Conditional Proxy Re-Encryption (IBCPRE)
scheme that not only captures the property of IBPRE (i.e. identity-based
re-encryption), but also supports conditional re-encryption. Moreover,
the scheme can be proved secure against adaptive condition and adap-
tive identity chosen-ciphertext attacks in the standard model.

Keywords: Unidirectional Conditional Proxy Re-encryption, Identity-
Based Encryption, Single Hop, Standard Model.

1 Introduction

First defined by Blaze, Bleumer and Strauss [3], Proxy Re-Encryption (PRE)
extends the traditional Public Key Encryption (PKE) to support the decryption
rights delegation, in which a semi-trusted prozy is allowed to transform a cipher-
text under Alice’s public key into a ciphertext under Bob’s public key using a
re-encryption key given by Alice. The proxy, however, learns nothing about the
plaintext. If ciphertexts can be transformed from Alice to Bob and to Carol,
and so on, then the scheme is multi-hop. If ciphertexts can be transformed to
Bob only, then the scheme is a single-hop PRE. PRE can be further catego-
rized into bidirectional PRE and unidirectional PRE. In bidirectional PRE, a
re-encryption key allows ciphertexts to be transformed from Alice to Bob and
vise versa. In the unidirectional setting, a re-encryption key only allows cipher-
texts to be transformed from Alice to Bob or from Bob to Alice.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 231-246, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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PRE can offer practical solutions to many network applications where the
delegation of decryption rights is required, such as secure e-mail forwarding,
secure files systems [1] and cloud storage systems. In many cloud storage systems,
to protect the confidentiality of the data, a system user (say Alice) often encrypts
her data with a content key before uploading to the cloud server. When sharing
the data with multiple system users, Alice may directly deliver the content key
to the users or alternatively, she may first encrypt the content key under each
user’s public key and then upload the ciphertexts to the cloud so that the users
can recover the content key using their respective secret key. The inconvenience
with the two strategies above is that Alice has to be responsible for either the
delivery of the content key or the generation of the ciphertexts of the content key
(which are intended for multiple users), and meanwhile, Alice has to be on-line.

Using traditional PRE, Alice is able to utilize the proxy’s (i.e. the cloud’s)
abundant computational power to re-encrypt the ciphertext of the content key
so that her encryption workload is lessened. Meanwhile, PRE allows Alice to
share the data when she is off-line. Specifically, Alice encrypts the content key
using her public key and uploads the ciphertext to the cloud. And before being
off-line, Alice (i.e. the delegator) first specifies the delegatees, next generates
and sends the re-encryption keys to the cloud server (i.e. the proxy). The cloud
server then uses the re-encryption keys to re-encrypt the ciphertext of Alice’s
content key and forwards the resulting ciphertexts to the delegatees, so that the
delegatees can access the data using the content key. Indeed, the server is kept
from knowing either the content key or the content (of the data).

To employ traditional PRE in the identity-based cryptographic setting,
Green and Ateniese [13] proposed the first Identity-Based Proxy Re-Encryption
(IBPRE), which allows the proxy to transform an encryption under Alice’s iden-
tity (e.g., email address) to a new ciphertext computed under Bob’s identity.
This is similar to identity-based encryption (IBE) but a major difference is
that IBPRE in addition supports the delegation of decryption rights, i.e. al-
lowing identity-based re-encryption. This paper deals with the case of unidi-
rectional single-hop IBPRE. Despite there are some unidirectional single-hop
IBPRE schemes in the literature, how to construct one that is secure against
chosen-ciphertext attacks (CCA) in the standard model still remains open. In
this paper, we focus on such an open problem.

A problem incurred by employing either traditional PRE or IBPRE in cloud
storage systems is that the re-encryption power of the cloud server cannot be
controlled. More specifically, the server can re-encrypt all ciphertexts of Alice’s
content keys to Bob as long as the corresponding re-encryption key is given. It
might be a potential risk for access control as Alice might want to share the data
labeled “Monday” but not the one tagged with “Thursday” with Bob.

To solve the problem above in the PRE setting, Conditional Proxy Re-
Encryption (CPRE) (e.g., [20,25,26]) is proposed. A CPRE is a type of PRE
providing conditional re-encryption to capture a fine-grained control over the
delegation. That is, Alice is allowed to specify a condition for a ciphertext so that
the cloud server can re-encrypt the ciphertext to Bob only if the re-encryption
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key corresponding to the same condition is given. However, as far as we know,
there is no solution for IBPRE to capture conditional re-encryption property in
the standard model. This paper also focuses on filling such a gap.

1.1 Owur Contributions

In this paper we first formalize the definition and security models for IBCPRE.
Specifically, in our definition a condition is required as an auxiliary input to the
re-encryption key, encryption and decryption algorithms. Regarding the secu-
rity models, we first define the adaptive condition and adaptive identity chosen-
ciphertext security (IND-aCon-aID-CCA) at original ciphertext. We next define
the IND-aCon-alD-CCA security at re-encrypted ciphertext, which can be re-
garded as a weaker notion when compared with the one defined in [15].

There are two open problems in the literature of IBPRE: one is how to con-
struct a CCA-secure unidirectional single-hop IBPRE without random oracles,
and the other is how to extend IBPRE to support conditional re-encryption.
This paper, for the first time, answers the problems affirmatively by proposing a
new unidirectional single-hop IBPRE scheme with conditional re-encryption (i.e.
IBCPRE). Moreover, the new scheme can be proved IND-aCon-aID-CCA secure
in the standard model. Besides, our scheme also captures collusion resistance
(that is, the proxy cannot compromise the entire secret key of the delegator
even if the proxy colludes with the corresponding delegatee).

Here we further describe the difficulty of constructing a CCA-secure unidirec-
tional single-hop IBPRE scheme in the standard model. The construction is not
trivial even if an IBE scheme (e.g., [5]) is given as a building block. In Green
and Ateniese’s IBPRE [13], an eligible decryptor who has either the secret key
sk;q of the delegator or the secret key sk;qs of the delegatee can recover o and
the plaintext m so that he/she can verify the validity of the decryption of the

Hy(o,m)

original ciphertext (resp. re-encrypted ciphertext) by checking A Z g and

D= Hs(id||(A, B, C))H4(@™) (resp. A L gH+(@m)) (for more details, the reader
is referred to [13]). Using such a verifying technique in the random oracle model,
the scheme can capture CCA security.

The technique above, however, is not suitable for constructing IBPRE in the
standard model. Intuitively, the CHK transformation [7] might be a possible ap-
proach to make a unidirectional single-hop IBPRE scheme secure against CCA in
the standard model. Nevertheless, we show that the manner cannot be trivially
employed in IBPRE. Suppose an IBPRE scheme without random oracles is se-
cure against chosen-plaintext attacks (CPA) based on an IBE scheme (e.g., [24]),
and its original ciphertext is (4, B, C). In re-encryption, suppose the proxy can
generate (at least) a new component A’ and output (A’, B, C) as the re-encrypted
ciphertext so that the delegatee can recover the plaintext from A’, B, C using
his secret key. Can we simply apply the CHK transformation to achieve CCA
security? Unfortunately, the above manner seems unwieldy. Note that for sim-
plicity we omit the transformation details and only discuss the signature part. If
we sign (A, B, C') by the CHK transformation, then the proxy cannot output the
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re-encrypted ciphertext (A, B, C') without invalidating the signature. To keep
the validity of the signature, the proxy might choose to output (A, B,C), the
corresponding signature (for A, B, C') and A’ as re-encrypted ciphertext. Despite
the validity of (A, B, C') can be verified by the signature, the validity of A’ can-
not be guaranteed. But if we only sign (B, C), then A can be arbitrarily mutated
which leads to the invalidity of the decryption value. In Section 3, we propose a
solution to overcome the above difficulty.

1.2 Related Work

Following the concept of decryption rights delegation introduced by Mambo and
Okamoto [17], Blaze, Bleumer and Strauss [3] formalized proxy re-encryption
and proposed the first CPA-secure PRE scheme. Later on, many classical PRE
schemes, such as [1,8,14,15], have been proposed.

Employing traditional PRE in the identity-based cryptographic setting, Green
and Ateniese [13] defined the notion of IBPRE and proposed two unidirec-
tional IBPRE schemes in the random oracle model: one is CPA-secure multi-hop
IBPRE and the other is CCA-secure single-hop IBPRE. The schemes,
however, are not collusion resistant. Note that Ivan and Dodis [14] also proposed
an IBPRE in which a trusted private key generator (PKG) delegates decryption
rights for all system users. Their construction differs from that of Green and
Ateniese. In this paper we mainly focus on the previous works of unidirectional
single-hop IBPRE.

In 2007, two CPA-secure IBPRE schemes without random oracles were pro-
posed by Matsuo [18]. Later on, Wang et al. [22,23] proposed two IBPRE schemes
in the random oracle model: one is CPA secure and supports the revocability
of proxy’s re-encryption rights, and the other is CCA secure and allows the
proxy to be malicious (rather than being semi-trusted). In [22], Wang et al.
claimed that their scheme could achieve CCA security by combining the 2-level
HIBE of Waters with the CHK transformation. However, the manner cannot be
trivially used to convert a CPA-secure IBPRE to a CCA-secure one in the stan-
dard model. Please refer to the discussion in Section 1.1. In 2011, Minzuno and
Doi [19] proposed an IBPRE scheme in the standard model with CPA security.
Previous IBPRE schemes require PKG to participate into the generation of the
re-encryption key (i.e. the re-encryption key generation is interactive).

Following the first IBPRE scheme [13] without any interaction (i.e. non-
interactive) in the re-encryption key generation, Tang et al. [21] proposed a
CPA-secure IBPRE scheme with random oracles, in which the delegator and the
delegatee can come from different domains. Recently, two CPA-secure IBPRE
schemes without random oracles were proposed by Luo et al. [16]: one is single-
hop and the other is multi-hop.

Both traditional PRE and IBPRE have a potential risk for access control in
the sense that they allow the proxy to re-encrypt all ciphertexts of the delega-
tor without any discrimination. To solve the problem, Type-Based PRE [20] (in
2008) and Conditional PRE (CPRE) [25,26] (in 2009) were proposed to guaran-
tee that the proxy can re-encrypt a ciphertext tagged with a specific condition
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only if a re-encryption key corresponding to the same condition is generated by
the delegator.

The aforementioned unidirectional single-hop IBPRE schemes neither achieve
CCA security in the standard model nor support conditional re-encryption. We
choose some previous unidirectional single-hop IBPRE schemes which are related
to our work, and summarize the comparison of properties in Table 1. To the best
of our knowledge, our scheme is the first CCA-secure unidirectional single-hop
IBPRE scheme without random oracles supporting conditional re-encryption.

Table 1. Property Comparison

Schemes  Security Without Collusion Conditional Non-Interactivity
ROM Resistance Re-Encryption

IBPRE [19] CPA v v X X
IBPRE [16]  CPA v v X v
IBPRE [13] CCA X X X v
IBPRE [23] CCA X v X X
IBPRE [11] CCA X X X v
Our IBCPRE ~ CCA v v v v

2 Definition and Security Models

As of [13], we refer to the original ciphertext and the re-encrypted ciphertext
as the second-level ciphertext and the first-level ciphertext, respectively. Unless
stated otherwise, by an IBCPRE we mean a unidirectional single-hop IBCPRE.

2.1 Definition of Identity-Based Conditional Proxy Re-Encryption

Definition 1. (IBCPRE) An Identity-Based Conditional Prozy Re-
Encryption (IBCPRE) scheme consists of the following algorithms:

1. (mpk,msk) < Setup(1}): on input a security parameter A € N, output a
master public key mpk and a master secret key msk.

2. skip + KeyGen(mpk, msk,1D): on input mpk, msk, and an identity ID €
{0,1}*, output a secret key skip.

8. rky|rp, 1D, < ReKeyGen(mpk,skrp,, ID;j,w): on input mpk, the secret
key skip, of an identity ID;, an identity ID;, and a condition w € {0, 1}*,
output a re-encryption key rky|1p,s1p; from ID; to ID; under w.

4. C’((?)Di’w) «— Enc(mpk,ID;,w,m): on input mpk, an identity ID;, a condi-
2)

tion w and a plaintext m € {0,1}*, output a second-level ciphertext C’((ID,, w)*

1 2 )
5. C’((I)Dj’w) < ReEnc(mpk,rky|ip,~1D;, 1 Di,w, C((Izji’w)): on input mpk, a
re-encryption key rkyrp,—1p,, an identity I1D;, a condition w and a second-

level ciphertext C’((?}jhw), output a first-level ciphertext C’((thw).
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6. m « Decz(mpk:,IDi,sk:IDi,w,C((?jji w)): on input mpk, an identity ID;
and the corresponding secret key skrp,, a condition w and a second-level

ciphertext c® w)r output a plaintext m or L for failure.

(ID;,
7. m <+ Decl(mpk:,ID,',IDj,sk:IDj,w,C’((;zj_ w)): on input mpk, an identity
I
ID;, an identity 1D; and the corresponding secret key skip,, a condition w

1

1D, w)’ output a plaintext m or L for failure.
J

and a first-level ciphertext C’((

For simplicity, we omit mpk in the expression of the algorithms in the rest of
the paper.

Correctness: For any A € N, any identities ID;,ID; € {0,1}*, where i # j,
i,7 € {1,...,poly(\)}, any condition w € {0,1}* and any message m € {0, 1}*, if
(mpk, msk) < Setup(1*), skip < KeyGen(msk, D), for all I D used in the sys-

tem, rky|1p,1p, < ReKeyGen(skrp,, IDj,w), C((?zj w) & Enc(ID;,w,m),

and C’((})Dj’w) < ReEnc(rky|ip,~1p,, IDi, w, C((?)Di,’w))’ we have Decy(ID;,

skrp,, w, C((?zji’w)) =m; Deci(ID;, I1Dj, skip,, w, C’((})Dj’w)) =m.

2.2 Security Models

We start with the formalization of IND-aCon-alD-CCA security at second-level
ciphertext as follows.

Definition 2. An IBCPRE scheme is IND-aCon-alD-CCA-secure at second-
level ciphertext if no probabilistic polynomial time (PPT) adversary A can win
the game below with non-negligible advantage. In the game, B is the game chal-
lenger and X\ is the security parameter.

1. Setup. B runs Setup(1*) and sends mpk to A.
2. Query Phase I. A is given access to the following oracles.
(a) Extract(ID): given an identity ID, return skip < KeyGen(msk, ID),
and ID is considered as corrupted.
(b) ReKeyEuxtract(ID;,ID;,w): given two distinct identities ID; and ID;,
and a condition w, return rky|rp,—rp, + ReKeyGen(skip,, 1D, w),
where skrp, <+ KeyGen(msk,I1D;).

(c) ReEnc(IDZ-,IDj,w,C’((?jjhw)): given two distinct identities 1D; and

ID;, a condition w and a second-level ciphertext C’((?)D,w), return
a first-level ciphertext C((;Bjj’w) < ReEnc(rkyrp,—»1p;, IDi, w,
C((?)Di,w))’ where Tky|1p, 1D, + ReKeyGen(skrp,, IDj,w), skip, <+
KeyGen(msk,ID;).

(d) Decz(IDi,w,C((?zjhw)): gwen an identity ID;, a condition w and a
second-level ciphertext C’((?}j‘w), return m < Deco(ID;, skip,, w,

C(% w)), where skip, < KeyGen(msk,ID;).
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(e) Deci(ID;,ID;,w, C’(ID w)) given two distinct identities ID; and 1Dy,
a condition w, and a first-level ciphertexrt C'(ID w)? return m <

Dec,(ID;, IDj, skip,, w, C((Ilzj w)) where skrp, <+ KeyGen(msk,
ID;).
3. Challenge. A outputs two equal-length plaintexts mqg, m1, a target identity
ID* and a target condition w* to B. If the following queries
— Extract(ID*), and
— ReKeyExtract(ID*,I1D;, w*) and Extract(ID;) for any identity ID;
are mever made, B outputs C((?B;’w*) = Enc(ID*,w*,my), where b €r
{0,1}.
4. Query Phase II. A makes further queries as in Query Phase I except the
following:
(a) Extract(ID) if ID = ID*;
(b) ReKeyEuxtract(ID*,1D;, w*) and Extract(ID;) for any identity ID;;
(¢) ReEnc(ID*,ID;, w* C((?BD** . )) and Extract(ID;) for any identity
ID;;
(d) Decy(ID*, w* C’ID* w*)

(e) Deci(ID*,ID;,w*, c!

); and

ID ) ) for any ID; and C((;zjj’w*), if (ID;, w*,
c)

(1D, w*)) is a deriwative of (ID*, w* C’(ID* ) As of [8], the deriva-
tive of (ID*, w* C((?BD* *)) is defined as follows.

i. If A has issued a re-encryption key query on (ID*, IDj,
w*) to obtain the re-encryption key rkw+|1D*~1D;, and com-

puted oM ) ReEnc(rky«1p-—1p;, ID*,w”, @ ), then

(IDj,w* (ID*,w*)
(IDj,w*, C’(})D ) ) is a derivative of (ID*, w* C(?)[; w*))

ii. If A has issued a re-encryption query on (ID*,ID;, w*, c® ID* w*))
and obtained C’(ID weys then (IDj;,w*, C’(ID - )) is a deriative of

* * (2)*
(1D, w, €3y ).

5. Guess. A outputs a guess bit b’ € {0,1}. If b’ = b, A wins.

The advantage of A is defined as € = Advi‘BCPRE_Q"d(l)‘) = |Pr[t/ =b] — 1.

The definition of IND-aCon-alD-CCA security at first-level ciphertext for
IBCPRE can be defined in an identical method. Due to limited space, the defi-
nition is provided in the full paper.

3 Constructions

Our IBCPRE scheme is constructed based on Waters IBE [24], a strongly ex-
istential unforgeable one-time signature scheme [2], a pseudorandom function
family [12] and a Target Collision Resistant (TCR) hash function .
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3.1 Preliminaries

Bilinear Pairings. Let BSetup be an algorithm that on input the security pa-
rameter A, outputs the parameters of a bilinear map as (¢, g, G1, G2, ), where
G1 and G2 are multiplicative cyclic groups of prime order ¢, |¢| = A, and g is
a random generator of G;. The mapping e : G; X G; — G2 has three proper-
ties: (1) Bilinearity: for all a,b €g Z, e(g%, g°) = elg, 9)%; (2) Non-degeneracy:
e(g,9) # lg,, where 1g, is the unit of Go; (3) Computability: e can be efficiently
computed.

The Decisional Bilinear Diffie-Hellman Assumption. We review the Deci-
sional Bilinear Diffie-Hellman (DBDH) problem (symmetric case) [4] as follows.
Let g be a random generator of group Gj.

Definition 3. Given the tuple (g,9% g°, 9¢,T) € G} x Ga, the DBDH problem
is to decide whether T = e(g, )™, where a,b,c €g Zy. Define AdvBBPH =
|Pr[A(g,9%, 9", 9 e(g,9)*) = 1] — PrlA(g,9% ¢°,9°,T) = 1]| as the advantage
of A in winning the DBDH problem. We say that the DBDH assumption holds
in Gy if no PPT algorithm has non-negligible advantage.

Strongly Existential Unforgeable One-Time Signatures. A strongly
existential unforgeable one-time signature (OTS) [2] consists of the following
algorithms:

1. (Ks, Kvy) < Sign.KeyGen(1}): on input a security parameter A € N, the
algorithm outputs a signing/verification key pair (Kg, Kv).

2. 0 « Sign(Ks, M): on input the signing key Kg and a message M € I,
the algorithm outputs a signature o, where I's;4 is the message space of a
signature scheme.

3. 1/0 « Verify(Kvy,o,M): on input the verification key Ky, a signature o
and a message M, the algorithm outputs 1 when o is a valid signature of
M, and output 0 otherwise.

Remark. In this paper we assume the verification key Ky is n-bit length.

Definition 4. A signature scheme is one-time strongly unforgeable chosen mes-
sage attack secure if the advantage AdngS(l)‘) is negligible for any PPT adver-
sary A in the following experiment.
AdvQT5 (1Y) = Pr(Verify(Ky, o, M*) = 1: (Kg, Ky) + Sign.KeyGen(1%);
(M, State) + A(Ky); o < Sign(Ks, M); (M*,0%) + A(Ky, g, State);
(M*,0%) # (M, 0)],

where X is the security parameter, State is the state information, M, M* € I's;g.

3.2 Identity-Based Encryption Scheme

We first review the construction of Waters IBE scheme [24]. The details of defi-
nition and security model of IBE can be found in [24].
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1. Setup(1*): run (q, g, G1, Ga, €) + BSetup(1*), choose a €r Zy, g2, u' s u, ey
un €r G1, set g1 = ¢* and U = {u;|1 < i < n}. The master public key is
mpk = (X, 9,91, 92,u',U) and the master secret key is msk = ¢5.

2. KeyGen(mpk,msk,ID): output a secret key skrp=(skrp,, skrp,)=(g% -
(u' [Liey ui)", "), where r €g Z7, ID is an n-bit string and V is the set of
all ¢ for which the i-th bit of ID is set to 1.

3. Enc(mpk, ID,m): compute the ciphertext C' = (Cy, Ca, C3) = (m-e(g1, g2)?,
g (W Tliey ui)t), where t €g Zj, m € Ga.

C1-e(skrp,,C3)

4. Dec(mpk, skip,C): recover a message m = e(skrp, .Ca)
1

By Theorem 1 stated in [24], we have the following theorem.

Theorem 1. Waters IBE scheme is CPA secure assuming the DBDH assump-
tion holds.

We next extend Waters IBE scheme to support hybrid encryption without losing
CPA security. Specifically, we modify the system to admit m to be encoded as
a A-bit string, and to employ a pseudorandom function, which takes a function
key (in G2) and a ciphertext component (in Gi) as input and outputs a A-bit
pseudorandom string, to hide m symmetrically. Below is the extension.

1. Setup(1*): choose a pseudorandom function PRF : Gy x G; — {0,1}* and
add PRF to mpk.

2. KeyGen(mpk, msk,ID): same as that of Waters IBE scheme.

3. Enc(mpk,ID,m): compute C = (Cy,Cy,C2,C3) = ([PRF(0,C3)] ® m,o -
e(g1,92)" 9" (' TT;cy ui)'), where t €g Z;, 0 €r G2, m € {0,1}*.

4. Dec(mpk, skip,C): recover o = C;'(Z(IQIZDZCZS” and m = Cy ® [PRF (0, Cy)].
.

We refer to Waters IBE scheme with the extension above as Type-I modified

Waters IBE (Type-I mWIBE). The CPA security of the above scheme depends
on the DBDH assumption and the pseudorandomness of PRF'.

Theorem 2. The Type-I mWIBE scheme is CPA secure assuming the DBDH
assumption holds and PRF is a pseudorandom function family.

Due to limited space, the proof of Theorem 2 is provided in the full paper.
Employing the technique introduced in [9], we can transform the Type-I
mWIBE scheme to capture CCA security. Below is the transformation.

1. Setup(1*): run (¢, 9, G1,Ga,e) < BSetup(1?), choose a €r Ly, go,ui,us,
UL 1y eeey Wlimy U2,0, U215 -, U2, €ER G1, @ pseudorandom function PRE : Gg X
Gy — {0,1}*, set g1 = g%, Uy = {u1,4]1 <i <n}and Uz = {ug,|l <i <
n}. The master public key is mpk = (A, g, g1, g2, v}, uh, ua,0, U1, Uz, PRF,
(Sign.KeyGen, Sign, Verify)), and the master secret key is msk = g3.

2. KeyGen(mpk,msk,ID): output a secret key skrp=(skrp,,skrp,)=(95 -
(u' [Liey ui)", g"), where r €g Z;.

3. Enc(mpk, ID,m): tun (Kg, Ky) + Sign.KeyGen(1?), generate the cipher-
text C' = (KV, Cy, C1, Cs, C3, Cy, C5) = (KV,[PRF(O', Cg)}@m, 0’~6(gl,gg)t,
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gt’ (ull HiEV ’u’lvi)ta (U/2U270 Hie}C u27i)t7 SZgn(st (Co, 017 CQa C?n 04)))7
where t €g Z;, 0 €r G2, m € {0, 1}*, and K is the set of all i for which the
i-th bit of K+ is set to 1.

4. Dec(mpk, skip,C): check e(g,Cy) . e(Cs, uhusg o HieIC uzq), Verify(Ky,
Cs, (Co, C1,C4,C5,Cy)) L 1. If the equations do not hold, output L. Oth-

Ci-e(skip,,Cs) and m = Cy & [PRF (0, Cs)).

erwise, compute o = e(skrp, ,C2)

As stated in [9], Waters IBE scheme can be transformed to capture CCA security
in the same manner above. We refer to the transformed Waters IBE scheme as
Type-II mWIBE. By the security argument in [6], Theorem 1 and 2, we have
the following theorem.

Theorem 3. Suppose the Type-I mWIBE scheme (resp. Waters IBE scheme)
is secure against CPA and the wunderlying one-time signature scheme
(Sign.KeyGen, Sign, Verify) is strongly existential unforgeable, the trans-
formed Type-I mWIBE scheme (resp. the Type-II mWIBE scheme) is CCA
secure.

We further modify the transformed Type-I mWIBE scheme as follows. In algo-
rithm Ene, we notice that (Cy, C1, Ca, Cs3, Cy) have to be signed so that they can
be fixed by C5 and Ky. However, it is unnecessary to sign all of them to capture
CCA security. We utilize PRF to verify the validity of C; so that the signature
C5 can be only made for (Cy,Cs,Cs,Cy). Specifically, we first modify Cy as
Co = [PRF(0,Cy)|"+*||[PRF (0,C3)]x ® m, where )\; is a security parameter
and PRF is now required to output a A;-bit pseudorandom string. Then, we
only sign (Cy, Co, Cs3, Cy) with Kg. In algorithm Dec, a decryptor can check the
integrity of (Cy, Cs, Cs,Cy) by verifying C5 with Kvy. Meanwhile, the integrity
of C; can be verified by [PRF(c, Cy)]* B [Co]M~*. Hence, the scheme still
captures CCA security even if Cy and Cj are modified as above.

Besides, the transformed Type-I mWIBE scheme (which is a 2-level HIBE)
can be naturally extended to a 3-level HIBE without losing CCA security as
follows. Note that the additional level is for an n-bit condition w. We first define
new parameters uy €g Gy and Us = (u3;) €g G} and add them to mpk, and
next add a new component Cg = (uj Hz’e&,, ug,;)! to ciphertext C, where &, is
the set of all 7 for which the i-bit of w is set to 1. Finally, we sign Cg as well as
Co, CQ, 03 and 04, ie. 05 = Sign(Ks, (Co, CQ, 03, 04, Cﬁ))

It is not difficult to see that the two modifications above do not affect the CCA
security of the transformed Type-I mWIBE scheme. We refer to the transformed
Type-I mWIBE scheme with the two modifications as Type-1II mWIBE. By the
security argument in [6] and Theorem 3, we have the following theorem.

Theorem 4. Suppose the transformed Type-I mWIBE scheme is secure against
CCA, the Type-III mWIBE scheme is CCA secure.
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3.3 A New Unidirectional Single-Hop IBCPRE Scheme

We now start describing our IBCPRE scheme. Note that we allow identities and
conditions to be arbitrary length bit-string, but they have to be hashed by a
TCR hash function Hy : {0,1}* — {0,1}" beforehand.

1.

Setup(1*). Run (q,9,G1,Ga,e) + BSetup(1}). Let w € {0,1}" be an
n-bit condition string. Choose o €r Zj, ga,uy,up, us,uzo €r Gi, three
random n-length sets Uy = {u1;|1 < i < n}, Uy = {ug4|l < i < n},
Us = {us;|l < i < n}, ui,g, u2y, us; €r Gy, a pseudorandom function
PRF : Gy x Gy — {0,1}*, and a TCR hash function H; : Go — G1, where
A1 is a security parameter. The master secret key is msk = g5, the master
public key is mpk = (A, M1, g, g1, g2, u}, uh, us, uso, U1, U, Us, PRF, Hy,
(Sign.KeyGen, Sign, Verify)), where g; = g“.

. KeyGen(msk, ID). Output skrp = (skip,,skip,) = (95 - (ui [L;ey,,, v1.1)"

g"), where r €g Zj, ID € {0,1}", and let V;p be the set of all i for which
the 4-bit of ID is set to 1.

. Enc(IDj,w,m). Run (Ks, Ky) < Sign.KeyGen(1*), choose t €r Z},0 €r

Gy, generate the ciphertext: Cq = [PRF(c,Cy)|M ~*||[[PRF (0,C2)]x ® m,
C1 =ce(g1,92)" -0, C2 = g", Cs = (u1 [ Ly, ,,, v1.0)"s Ca = (up [ Liee, v2:)",
Cs = (ujus Hz‘eXKV us;)t, Cs = Sign(Ks, (Co, Ca,C3,C4,C5)), and out-

put C{7), .y = (Kv,Co,C1,Ca, Cs,Cy, Cs,Cs), where ID; € {0,1}", m €
{0,1}*, let &y, Xy, Vip, be the sets of all i for which the i-bit of w, Kv,

ID; is set to 1, respectively.

. ReKeyGen(skrp,,ID;,w). Choose p,t' €r Ly, 8 €r Gz, compute rky =

)

skrp;, - (us [Lice, u2,4)?s k1 = g7, rka = skip,, - H1(0), rks = (g1, g2)t -
rky = g¥, ks = (u) HiEVIDj ul’i)t/, rke = (uhus,o HieXK, uS,i)t/, rk; =
Sign(Kg, (rks, rka, rks,rke)), and output rkyrp, s1p; = (K‘{f,,rko,rkl, rka,
rks, vk, vks, vk, k7), where ID; € {0,1}", (K§, K{;) <+ Sign.KeyGen(1?).

. ReEnc(rkqui_ﬂpj 5 IDZ, w, C((?)D“w))

(a) Verify

e(9,Cy) L e(Cority [ wii)selg, Ca) £ e(Coyuty T uzi),

iEVIDi 1€&w
?
e(g,Cs) = e(C2, uzus o H u3,:), (1)
i€ XKy

V@Tify(Kv, Cﬁa (COa CQa CSa C4> 05))

?

1.

If Eq. (1) does not hold, output L. Otherwise, proceed.

(b) Compute C] = e(rk?'ce;)r /k;(ﬁi) Ca) and output the first-level ciphertext
Clib, ) = (v, Co,CY, Cs, Cs, Ca, Cs, Co, K, vk, rha, s, Thi, k7).

. DGCQ(I.DZ‘, Sk[Di,’w, C((?)D“w))
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(a) Verify Eq. (1). If Eq. (1) does not hold, output L. Otherwise, proceed.

e(skrp, ,C
(b) Compute o = Cj - eiski’? ’Cz;, and output m = [Cy|r & [PRF (o, C2)]x
iy

if [PRF (0, C3)]*~* = [Co]**~* holds. Otherwise, output L.
7. Decy(ID;, 1D, skrp,,w, Clrly )
(a) Verity

? ?
e(g,rks) = e(rka, u} H uy), (g, rke) = e(rka, uzuz o H u3,;),
i€VrIp; iEXK{/

2

Verify(Ky,rky, (rks, vk, ks, rke)) = 1.
(2)

If Eq. (2) does not hold, output L. Otherwise, proceed.
(b) COmpute 9 — rhes - e(sksz2 ;rks)

e(slmrpj1 ,rka)”

(c) Verify Eq. (1). If Eq. (1) does not hold, output L. Otherwise, proceed.

(d) Compute o = C7/e(H1(0),C3), and output m = [Co|r & [PRF (0, C2)]a
if [PRF (0, Cs)]*~* = [Cp]** ~* holds. Otherwise, output L.

Correctness: It is easy to verify that the plaintexts of the first-level and second-
level ciphertexts can be recovered correctly if the ciphertexts are computed via
the description above. We hence skip the details.

Theorem 5. Suppose the DBDH assumption holds, PRF is a pseudorandom
function family, (Sign.KeyGen, Sign,Verify) is a strongly existential unforge-
able one-time signature scheme and Hy is a TCR hash function, our IBCPRE
scheme is IND-aCon-alD-CCA secure at second-level ciphertext.

The proof of Theorem 5 is provided in Appendix A.

Remark. Despite a malicious proxy can collude with the delegatee to recover the
second component of the delegator’s secret key and obtain the decryption rights
of the ciphertexts which are only encrypted under the delegator’s identity and
condition w, the proxy cannot compromise the entire secret key of the delegator.

4 Concluding Remarks

In this paper, we tackled the open problems of the existing IBPRE schemes
by proposing a new unidirectional single-hop IBCPRE scheme which achieves
identity-based re-encryption and conditional re-encryption. We also showed that
our scheme can be proved IND-aCon-alD-CCA secure in the standard model.
To the best of our knowledge, our scheme is the first CCA-secure unidirectional
single-hop IBCPRE without random oracles.

This paper also motivates some open problems, for example, how to construct
CCA-secure IBCPRE in the standard model supporting OR gates on conditions.
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A Proof of Theorem 5

Proof. Suppose there is an adversary A who can break the IND-aCon-aIlD-CCA
security at second-level ciphertext of our IBCPRE scheme with non-negligible
probability €. We then construct a reduction algorithm B to break the CCA-
secure Type-IIT mWIBE scheme using A. Let B; be the challenger of the Type-
IIT mWIBE in the CCA experiment. Note that B maintains the following tables
which are initially empty.

1. SKT: records the tuples (coin;, ID;,skrp,), which are the information of
the secret keys.

2. RKT: records the tuples (coin., ID;, IDj, w, rky|ip, 1D, 0, tag:, tags),
which are the results of the queries to ReKeyFExtract(ID;,1D;, w), where
tagi, tags denote that the re-encryption key is a valid/random key.

3. RET: records the tuples (ID;, ID;, w, C((;zj,_ w)r tag1, tags), which are the

results of the queries to ReEnc(ID;, ID;, w, C((?jl w)), where tagi,tago
denote that the first-level ciphertext is generated under either a valid re-
encryption key or a random one.

1. Setup’ Bl sends mpk = (>‘a )‘1a g, 91, g2, ulla u/2a ul3a 3,0, Ula U2a USa PRFa
(Sign.KeyGen, Sign,Verify)) to B. Then B chooses a TCR hash function
H, : Gy — Gy, adds H; to mpk and forwards mpk to A.
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2. Query Phase I. A issues a series of queries to which B responds as follows.

(a)

Extract(ID): B first uses the Coron’s technique [10] to flip a biased
coin; € {0,1} such that Pr{coin, = 1] = 9 and Pr|coin; = 0] = 1 — 9,
where 9 will be determined later.

— If coin; = 0, B outputs a random bit in {0, 1} and aborts.

— Otherwise, B forwards the query to the secret key extraction oracle
of Type-III mWIBE, obtains the secret key sk;p, returns sk;p to A
and adds (1,1D, sk;p) to SKT.

ReKeyEuxtract(ID;, ID;, w): B first checks whether there is a tuple
(*,1D;,ID;,w, Tkw|ID;—1D;> 0, %, x) in RKT. If yes, B directly responds
Tkw|rD,—1D,; to A, where x is the wildcard. Otherwise, B first flips a
biased coin, € {0,1} for w and next generates the re-encryption key for
A as follows.

— If there is no tuple (1,ID;, skip,) in SKT, B flips a biased coin;
for ID;. If coin; = 1, B queries the secret key extraction oracle
of Type-III mWIBE to obtain skrp,, generates the re-encryption
key rky|rp,—s1p,; via algorithm ReKeyGen as in the real scheme,
returns rk,|;p,—1p, to Aand adds (1, 1D;, skrp,) and (x, [ D;, IDj,
w, Tky|1p;~1D;5 05 1, 0) to SKT and RKT, respectively, where
0 €r Go. If coin; = 0, B first sets rkg = 01,17k = 02, r7ks = 03 and
constructs ks, rky, ks, rke, Tk7 to encrypt a 8 €r Go as in the real
scheme, where §1,02,d03 €r G1. B next forwards the re-encryption
key to A and adds (x, ID;, ID;, w, rky|1p,—1p;, 0, 0,1) to RKT.

— Otherwise, B uses skrp, to generate the re-encryption key via algo-
rithm ReKeyGen as in the real scheme, returns the re-encryption key
to A and adds (x, ID;, IDj, w,rky|1p,1p,,0,1,0) to RKT, where
0 €r Go.

ReEnc(IDi,IDj,w,C’((?}jhw)): B first checks whether there is a tuple

(%, ID;, IDj,w, Tky|1D, 1D, 0, %, %) in RKT.1f yes, B generates C((Ilzjj w)
1)

D) 1O A and
adds (ID;, ID;, w, C’((}g_ w)? x,%) to RET. Otherwise, B first issues
ReKeyExtract(ID;,ID;, w) to obtain the re-encryption key, next gen-
1)

IDj,w

Deco(ID;, w, C((?zj w)): B first verifies Eq. (1). If the equation does not

hold, B output L. Otherwise, BB proceeds. If (1, ID;, skip,) € SKT, B re-
covers m using skrp,. Otherwise, BB forwards the query to the decryption
oracle of Type-IIT mWIBE to obtain m.

Decl(IDi,IDj,w,C((I%j’w)): B first verifies Eq. (1) and Eq. (2). If the

equations do not hold, B output L. Otherwise, B proceeds.

i If (ID,»,IDj,w,C((}BDij),O, 1) € RETV (%, ID;, ID;j,w,7ky(1 D, 1D,

0, 0,1) € RKT holds, B recovers Tkw 1D, —1p; from RKT and com-
putes C; = C} - 6(51’5(%)3/535)2’C4). Then B issues (ID;,w, C((?jji,w)) to
the decryption oracle of Type-III mWIBE to obtain m.

using 7ky|1p,»1p; as in the real scheme, returns C’((

erates C’(( ) and adds the corresponding tuple to RET as above.
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ii. Otherwise, B checks whether there is a tuple (1, ID;, sk;p;) in SKT.
If yes, B recovers m using skyp,. Otherwise, B issues (I D;,C’) to the
decryption oracle of Type-IIIl mWIBE!, obtains # and then recovers

m as in the real scheme, where C' = (K3, rks, rka, rks, rke, rk7).
3. Challenge. When A decides that Query Phase I is over, it outputs mg, m1,
ID* and w* to B. If either the case that there is a tuple (1, 1D*, skrp-) in
SKT or the case that the coin, for w* is equivalent to 1 holds, B outputs a
random bit in {0, 1} and aborts. Otherwise, B sends the challenge message

(mg, m1, ID*, w*) to By, obtains the challenge ciphertext C((?E*Vw*) from B;

and returns C’((Izgﬁw*) to A.

4. Query Phase II. A makes further queries as in Query Phase I with the
constraints defined in Definition 2, and B responds as in Query Phase I
except that in ReKeyFEaxtract, if ID; # ID*, B responds as in Query Phase
I, otherwise, B generates a random re-encryption key as in Query Phase 1.

5. Guess. When A outputs a guess bit ' € {0,1}, B outputs b'.

If B does not abort, A’s view is identical to the real scheme except for the case
that B outputs the random re-encryption keys in step (b) of the simulation.
Let us consider the indistinguishability of the random re-encryption key and
the valid one. It is not difficult to see that d1, d2 and 5 (which are randomly
chosen by B) must be able to take the form of rkg, rk; and rke (which are
the components of the valid re-encryption key), respectively. Hence, the above
indistinguishability relies on the indistinguishability between the encryption of
0 €r G2 (which is chosen by B) and the encryption of the 6 (which is used to hide
skrp,, in the real scheme). If there exists an adversary A; who can distinguish
the two encryptions, then we can construct a reduction algorithm By to break
the CCA security of the Type-Il mWIBE scheme via using Aj;.

Now we analyze the advantage of B using the same manner introduced in [11].
We have that B does not abort in the simulation with the probability 99+ - (1 —
)2, which is maximized at Popt = 2(1?2%)’ where ¢g is the total number of
secret key extraction queries. Using 1901,;, B dose not abort with probability

at least 2é(141rq,k)’ where ¢é is the base of the natural logarithm. Therefore, the
advantage of B is at least zé(ljrq e
This completes the proof of Theorem 5. a

! We cannot issue (ID;,C’) to the decryption oracle of Type-IITl mWIBE directly.
But we can modify the CCA-secure Type-III mWIBE scheme (by removing the
PRF and the condition parts) to achieve the Type-II mWIBE scheme which is
used to encrypt 0 as in algorithm ReKeyGen. From Theorem 1 and 3, we can see
that the Type-II mWIBE scheme is CCA secure assuming the DBDH assumption
holds and (Sign.KeyGen, Sign,Verify) is a strongly existential unforgeable one-
time signature scheme.
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Abstract. There are many applications in which services are provided
only if some values associated with some confidential (encrypted) data
are within a specific range. In this paper, we propose the notion of
(ciphertext-policy) range encryption (RE) that can be used in many of
such applications. RE is a type of public key encryption with additional
functionality where an encryptor can freely specify a range to a cipher-
text so that it can be decrypted only if the values associated with the
key belong to the range. We propose a concrete RE scheme based on the
time-specific encryption scheme by Kasamatsu et al. (SCN2012). Our
RE scheme is selectively secure under the weak bilinear Diffie-Hellman
inversion assumption.

1 Introduction

There are many applications in which services are provided only if some values
associated with a user’s encrypted data are within a certain range, while pre-
serving the data confidential. For example, an Internet advertising company may
want to distribute information only for those who are adult and whose income
is greater than some threshold. In such a case, it will be useful if we have an
encryption scheme with the following property: a decryption key is associated
with values, and an encryptor can freely specify a range to a ciphertext so that it
can be decrypted only if the values associated with the key belong to the range.

In this paper, we propose the notion of (ciphertext-policy) multi-dimensional
range encryption (RE) that realizes such a requirement. More specifically, in
RE, a user’s information (attribute) is encoded as a point (p1, p2,...) in a multi-
dimensional space, and an authority distributes to each user a decryption key
that corresponds to the point. An encryptor specifies a (multi-dimensional) range
([x1,91], [x2,92],...), and sends a ciphertext that corresponds the range. A re-
ceiver of the ciphertext can decrypt it only if the point associated with his/her
decryption key belongs to the range associated with the ciphertext, i.e. if it holds
that p; € [z;,y;] for all i. In fact, we actually consider a more flexible “thresh-
old” version of such an encryption scheme. That is, an encryption scheme has

* The second author is supported by a JSPS Fellowship for Young Scientists.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 247-261, 2013.
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a threshold K such that the ciphertext can be decrypted only if the number of
indices 7 satisfying p; € [x;,y;] is greater than or equal to the threshold K. We
refer to an encryption scheme in which the total number of dimensions treated
in the scheme is L and the threshold is K as K-out-of-L dimensional RE. In
this paper, we propose a concrete RE scheme by extending the time-specific
encryption (TSE) scheme by Kasamatsu et al. [14].

1.1 Background

Time-Specific Encryption and the Construction in [14]. Paterson and Quaglia
[17] proposed the notion of time-specific encryption (TSE), and several instan-
tiations of it. In TSE, there is a trusted agent that periodically issues the in-
formation sk; that is associated with each time slot ¢, and a ciphertext c is
generated in such a way that it is associated with a time interval [y, tg] (called
decryption time interval). The ciphertext ¢ can be decrypted by using sk; only
if t € [tp,tgr].} By regarding time as a point in one dimensional space, TSE can
be viewed as a 1-out-of-1 dimensional RE scheme.

As mentioned earlier, our construction of a RE scheme is based on the TSE
scheme by Kasamatsu et al. [14]. [14] constructed a TSE scheme based on a
forward-secure encryption (FSE) scheme [1,8] which is obtained from a hierar-
chical identity-based encryption (HIBE) scheme by Boneh, Boyen, and Goh [5]
(we call it BBG-HIBE). The Kasamatsu et al.’s TSE construction is based on
the similarity of the functionalities of FSE and TSE. In fact, FSE can be viewed
as a special case of TSE in which the “starting point” of an interval is fixed, by
the following simple observation: In FSE, a ciphertext and a decryption key are
associated with a time, and a decryption key can be updated periodically (with-
out updating a corresponding public key). If a ciphertext is associated with time
t, the ciphertext can be decrypted using any decryption key sk; corresponding
to time ¢’ satisfying ¢ < t by updating the decryption key sk into sk; corre-
sponding to time ¢ and using it for decryption. Therefore a ciphertext of FSE for
time ¢ can be considered as a ciphertext of TSE for the decryption time interval
of [1,t]. By reversing the role of time in a trivial manner, from a FSE scheme
one can realize a TSE scheme in which the “end point” of a decryption time
interval is fixed. The basic idea behind the TSE scheme in [14] is to combine
these “restrictive” TSE schemes to obtain a TSE scheme in which we can specify
an arbitrary decryption time interval of a ciphertext. However, a naive combina-
tion by multiple encryption [21,9] of these two “restrictive” TSE schemes does
not work, because a decryption key of such a naive combination consists of two
independently generated decryption keys of the underlying two restrictive TSE
schemes, but an adversary who obtains several different decryption keys can de-
compose them to re-construct a new decryption key that allows the adversary

! We note that in [17], Paterson and Quaglia proposed three different settings of TSE:
the plain setting, the public-key setting, and the identity-based setting. In the latter
two settings, a ciphertext is additionally associated with a public-key or an identity
of a receiver, and to decrypt the ciphertext the receiver’s secret key is also required.
The explanation of TSE here is about the plain setting.
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to decrypt a challenge ciphertext. In [14], Kasamatsu et al. solved the above
technical problem by using a specific instantiation of FSE obtained from the
BBG-HIBE scheme [4]. More specifically, they combined two keys from the re-
strictive TSE schemes (obtained from the FSE scheme based on the BBG-HIBE
scheme) in an inseparable manner, by relying on an algebraic structure of the
BBG-HIBE scheme.

1.2 Owur Contribution

In this paper, we propose the notion of RE and its efficient construction. Our
construction of a concrete RE scheme is based on the time-specific encryption
scheme by Kasamatsu et al. [14], and we show its selective security under the
weak bilinear Diffie-Hellman inversion assumption [5, Sect. 2.3].

Here, we explain a basic idea for our proposed RE scheme. As mentioned in the
previous subsection, TSE can be viewed as 1-out-of-1 dimensional RE. One might
intuitively think that a K-out-of-L dimensional RE scheme can be obtained
by combining this 1-out-of-1 dimensional RE with a K-out-of-L secret sharing
scheme by a naive multiple encryption methodology. That is, a plaintext is split
into shares using a K-out-of-L secret sharing scheme, each share is encrypted by
an independent 1-out-of-1 dimensional RE scheme, and a ciphertext of a K-out-
of-L dimensional RE scheme consists of ciphertexts of the underlying 1-out-of-1
dimensional RE schemes.

Unfortunately, this naive approach does not work, because it is vulnerable for
collusion attacks, with a similar reason to the case of constructing TSE from
FSE as we explained in the previous section. More specifically, a decryption
key of such a RE scheme must consist of independently generated decryption
keys of the underlying 1-out-of-1 dimensional RE scheme, but an adversary who
obtains several different decryption keys can decompose them and re-construct
a decryption key that allows the adversary to decrypt a challenge ciphertext. We
solve this technical problem by using a splitting of not a plaintext, but a master
secret key. More specifically, we split the master secret key of the TSE scheme
by Kasamatsu et al. [14] using a K-out-of-L secret sharing so that each share of
the master secret key can be used as the master secret key of the TSE scheme
n [14]. Such an approach will not work in general, but we show that it works
for the particular TSE scheme (i.e. 1-out-of-1 dimensional RE) of [14].

1.3 Related Work

The functionality of RE (i.e. the conditions for decryption via range member-
ship) can be generally realized by functional encryption [16,3] which includes
ciphertext-policy attribute-based encryption (CP-ABE) [2] and inner-product
encryption [10] as special cases. However, the data size of RE schemes obtained
from this general methodology are at least linear in N - L where the RE schemes
support the maximal size of the range N, and thus will not be practical.

As mentioned in Sect. 1.1, TSE treats an interval as a condition for decryp-
tion, and can be viewed as l-out-of-1 dimensional RE. TSE is introduced by
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Paterson and Quaglia [17], and they constructed generic constructions of TSE
schemes from identity-based encryption [18,6] and broadcast encryption [12,7].
Kasamatsu et al. [14] showed a concrete TSE scheme based on the BBG-HIBE
scheme [5] and a generic construction of a TSE scheme from any FSE scheme.
Shi, Bethencourt, Chan, Song, and Perrig [11] proposed multi-dimensional
range query over encrypted data (MRQED). In MRQED, as opposed to RE, a
ciphertext is associated with a point in a multi-dimensional space, and a de-
cryption key is associated with a (multi-dimensional) range. The ciphertext can
be decrypted only if each coordinate of the point is within the range for all di-
mensions. (Therefore, by our terminology, MRQED could be called key-policy
L-out-of-L RE.) By using MRQED, we can realize applications in which an ad-
ministrator allows controlled access of data to a user of the applications, such
as audit log systems for network and finance. For example, in the case of a net-
work audit log system, an auditor can request, to a system administrator, for a
decryption key so that it allows him/her to decrypt an encrypted log for port
numbers, IP addresses, and time stamps that belong to a certain range.

2 Preliminaries

In this section, we formally introduce the definition of FSE and bilinear groups,
and describe the decisional ¢(-weak Bilinear Diffie-Hellman Inversion (~-wBDHI)
assumption.

Notation. For integers x,y with 0 < z < y, we denote by [z,y] the interval
containing all time periods from z to y inclusive for representing discrete L-
dimensional space. Furthermore, for a positive integer n € N, we define [n] =

{1,...,n}. x & y denotes that x is chosen uniformly at random from y. z < y
denotes x is output from y if y is an algorithm, or y is assigned to = otherwise.
“PPT” denotes probabilistic polynomial time. We say that a function f(k) is neg-
ligible (in k) if f(k) < 1/p(k) for any positive polynomial p(k) and all sufficiently
large k

2.1 Forward-Secure Encryption

FSE [1,8] has the property that the threat of key exposure is confined to some
span by updating the secret key at each time unit. This scheme realizes the
property by using the functionality that a receiver can update the previous
secret key d;_1 to the next secret key d; without interacting with any outside
entity and without updating the corresponding public key. Here, we provide a
formal definition of FSE by following [8] but slightly customized for our purpose.

An FSE scheme is defined by the four algorithms (Gen, Upd, Enc, Dec), which
has the associated message space M S P. The key generation algorithm Gen(1*, N)
takes a security parameter 1* and the total number of time periods N as input,
and outputs a public key pk and an initial secret key dy. The key update al-
gorithm Upd(pk, i, j,d;) takes pk, an index i < N of a previous time period, an
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Gengge (1%, N) : Updy, (PK, di, j,0): (where j > 1)
a(iZq;giG;uiG Parse PK as (g,u, h, R); r(iZq
R e(9%,9); do < g° If i = 0 then
hi ﬁ G for all 7 € [O,N} dj — (dO : HU(j7 h» u)r7gr7 {hZ}EE[j-H,N])
Let h := (ho,...,hy) Else (i.e. i #0)
PK « (g,u, h, R) Parse d; as (ao, a1, bit1,...,bn).
Return (PK, do) Dy < ao - (H?c:iJrl bZ) . Ha(jv h» U)T
Encege(PK,i,0,M;s € Zgq) : dj < (D1,a1-g", {bv - by }oepi+1,N7)
Parse PK as (g,u,h,R).  EndIf
Ci+ R M Return d;.
Cy + g° Decgec (ds, C) :
Cs « H, (i, h,u)* Parse C as (C1,C3,C3).; Parse d; as (D1, Do, .. .).

Return C « (C1,Cz, Cs).  Return M « “1e(%D2)

Fig.1. Basic BBG-FSE: The FSE scheme obtained from the BBG HIBE scheme,
where Ho (i, h = (ho,...,hn),u) = ho - (IT;_, %) - u

index j > 4 for the current time period, and a secret key d; (corresponding to
the period ¢) as input, and outputs a secret key d; for the time period j. The
encryption algorithm Enc(pk,i, M) takes pk, i < N, and a message M € MSP
as input, and outputs a ciphertext c¢. The decryption algorithm Dec(pk, d;, c)
takes pk, d;, and ¢ as input, and outputs either M or a failure symbol L.
We require, for all A € N, all N € N, all (pk,dy) + Gen(1*, N), all indices
1 € [0, N — 1] (for specifying time periods), and all messages M € M SP, that
Dec(pk, Upd(pk, 0,1, dy), Enc(pk,i, M)) = M. The security of FSE guarantees
that even if an adversary learns SK; for some i, messages encrypted during all
time periods prior to ¢ remain secret. We omit the explanation of security of
FSE. For details, we would like to refer the reader to [8].

We note that Canetti et al. [8] defined only the “sequential update” algo-
rithm for FSE. That is, in their syntax, the key update algorithm only allows
an update from a secret key d; for the time period i to a key d;11 for the next
time period. However, for the sake of simplicity, we use the syntax in which
the update algorithm allows the “direct update”, so that Upd takes a key d; for
the time period ¢ as input and outputs the secret key d; as long as i < j. It
is straightforward to see that the direct update functionality can be generally
achieved by the sequential update algorithm of [8]. In addition, there are FSE
schemes which support an efficient direct update algorithm (compared to run-
ning the “sequential update” algorithm many times), such as the FSE scheme
instantiated with the HIBE scheme by Boneh et al. [5] via the HIBE-to-FSE
transformation shown in [8].

Basic Forward-Secure Encryption from the Boneh-Boyen-Goh HIBE Scheme.
In Fig. 1, we show the instantiation of an FSE scheme, which we call the basic
BBG-FSE scheme, using the HIBE scheme by Boneh, Boyen, Goh (BBG-HIBE)
[5] via the “chain”-style HIBE-to-FSE transformation. The basic version of our
RE scheme in Sect. 4.2 is obtained from the TSE scheme based on the above
basic BBG-FSE scheme.
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In the chain-style HIBE-to-FSE transformation, we realize an FSE scheme
which supports N time periods by interpreting a time period ¢ in FSE as an
identity-vector (1,...,1) in HIBE whose length is i. To update a secret key for
time period ¢ to time period j > i, one can run the key derivation algorithm of
the HIBE scheme to obtain a decryption key for the identity-vector (1,...,1) of
length j. In this section, we use this transformation.

Another more sophisticated HIBE-to-FSE transformation is the binary tree-
based construction due to Canetti, Halevi, and Katz [8]. This construction has
the advantage in that to instantiate an FSE scheme with N time periods, a
building block HIBE only needs to support a hierarchy with depth log N. In
Appendix A, we use this binary tree-based transformation to obtain our full
construction.

The common feature of these HIBE-to-FSE transformations is that multi-
ple instances of FSE can virtually be instantiated so that they all share the
same public parameters, by regarding the top-level identities as the indices for
specifying an independent HIBE scheme, and then applying the HIBE-to-FSE
transformations to each HIBE scheme instantiated in the second (and lower)
level identity space. This trick will be used in our basic and main constructions.

For notational convenience, in Fig. 1, we describe the scheme so that the
encryption and the update algorithms take an additional input ¢ € N. This
value o is used to instantiate the o-th BBG-FSE schemes with N time periods
under the same public parameter, in such a way that each time period of the
instantiation does not cover others’ time periods. An identity-vector used in the
chain HIBE-to-FSE transformation is represented as (1,0, ...0), where the first
“1” is the common prefix of the chains, obtained by using the above trick of
sharing public parameter.

2.2 Decisional ¢~-wBDHI Assumption

We first recall bilinear groups. Let G and G be groups of order p for some large
prime ¢ (we assume that the size of ¢ is implicitly determined by the security
parameter \), and let e : G x G — G be an efficiently computable mapping.
We call a tuple (G, Gr,e) bilinear groups, and e a bilinear map, if the following
two conditions hold: (Bilinear:) for all generators (g,h) € G x G and a,b € Zj,
we have e(g?, h®) = e(g, h)?. (Non-degenerate:) for all generators g, h € G, we
have e(g, h) # 1.

Now we recall the decisional ¢~-wBDHI assumption (which is defined via the
so-called decisional ¢~-wBDHI* problem [5, Sect. 2.3]). Let ¢ € N. We say that
the decisional /~-wBDHI assumption holds in (G, Gy, e) if for any PPT algorithm
A the following difference is negligible in the security parameter 1*:

£+1

| Pr[A(g, h,t1,...,te,e(g,h)* ) =0] — Pr[A(g, h,t1,...,te, W) =0]]

where g, h & G, o & Lq, t; < g(“i), and W & Gr.
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3 Our Basic Idea

In this section, we give an intuitive explanation of our strategy of the proposed
construction and review an efficient construction of TSE due to [14].

Underlying Technique of Our Construction. As explained in Sect. 1.2, a TSE
scheme is already a l-out-of-1 dimensional RE scheme, and thus, it seems also
possible to obtain a K-out-of-L dimensional RE scheme by extending TSE. A
naive idea for such extension is to split a plaintext into L shares by using a
K-out-of-L secret sharing, and individually encrypt these shares by using L
different copies of the underlying 1-out-of-1 dimensional RE scheme. However,
this construction is not secure as collusion attacks are quite effective. Namely,
for example, assuming that there are two users who possess different decryption
keys, even if any one of these keys can recover at most K — 1 shares, they could
reconstruct the plaintext as they may obtain K shares in total by the collusion
attack.

In this work, for constructing K-out-of-L dimensional RE, we basically follow
the above (insecure) method but also introduce a countermeasure which prevents
the above collusion attack. More specifically, we do not straightforwardly com-
bine TSE and a secret sharing (as above) but modify TSE to have the resplittable
threshold property [13]. Roughly speaking, we say that threshold encryption sat-
isfies resplittability if for a given fixed public and decryption keys, it is possible
to repeatedly generate shares of the decryption keys for multiple times. Fur-
thermore, a common “label” is given to all the shares which are generated in
the same share generation process, and the decryption algorithm correctly re-
covers the plaintext only when using the threshold number of shares with the
same label. In our proposed scheme, each user is implicitly given a unique label,
and therefore, even though two (or more) malicious users collude, they cannot
recover the plaintext from their shares since their labels are different.

From the above discussion, we see that a promising approach for achieving our
goal is to extend a basic TSE scheme to have the resplittable threshold property.
As such a basic TSE scheme, we choose Kasamatsu et al.’s scheme [14] which
is one of the most efficient constructions of TSE. In the remaining part of this
section, we give a brief review and an overview of our idea to extend it to have
the resplittable threshold property.

Kasamatsu et al.’s Time-Specific Encryption. Here, we review a TSE scheme
which was proposed in [14]. In [14], Kasamatsu et al. pointed out the similarity
between FSE and TSE, and showed that it is possible to efficiently construct
TSE via a simple modification of FSE. Based on this observation, they actu-
ally construct a fairly practical TSE scheme from an FSE scheme which can be
straightforwardly obtained from the BBG-HIBE scheme [4]. More specifically,
Kasamatsu et al.’s scheme is essentially a double encryption by the BBG-HIBE
scheme, and the algebraic structure of Kasamatsu et al.’s scheme is almost the
same as that of the BBG-HIBE scheme. Furthermore, as pointed out in [13],



254 K. Kasamatsu et al.

natural constructions of threshold encryption from pairings usually have resplit-
tability as it is. Thus, we can expect that it is not difficult to construct a resplit-
table threshold version of Kasamatsu et al.’s TSE (if thresholding Kasamatsu
et al.’s TSE is not difficult), and that by using it, K-out-of-L dimensional RE
can be obtained. Actually, our proposed K-out-of-L dimensional RE scheme is
constructed in this way.

4 Our Basic Construction of Range Encryption

In this section, we give the definition of RE and our proposed construction of
RE.

4.1 Definition of Ciphertext-Policy Multi-dimensional Range
Encryption

In RE, secret keys are associated with a point P = (p1,...,pr) in an L-
dimensional space and ciphertexts are associated with a multi-dimensional range
F = ([z1,11],.--,[xL,yL]). A receiver can decrypt a ciphertext only if the num-
ber of indices satisfying p; € [z, y;] is greater than or equal to the threshold K.
For notational convenience, for a point P = (p1,...,pr) and an L dimensional
range F = ([z1,y1],..., [zr,yr]), we define Ipr = {i € [L] [p; € [z;,y]} as the
set consisting of indices i for which the coordinate p; of the point P lies in the
corresponding range [x;, y;] of F.
Now, we give the formal definition of RE as follows.

Definition 1. Ciphertext-policy K -out-of-L dimensional range encryption is de-
fined by the four algorithms (Setup,KeyGen, Enc,Dec):

Setup(1*, L, N, K): The setup algorithm takes a security parameter 1*, the total
number of dimensions L, the maximal size of the range N, and a threshold
K as input, and outputs a public parameter PP and a master secret key
MSK.

KeyGen(PP, MSK,P = (p1,...,pr)): The key generation algorithm takes PP,
MSK, and a point P as input, and outputs a secret key SKp.

Enc(PP,F = ([z1,v1],.--,[2L,yL]), M): The encryption algorithm takes PP, an
L dimensional range F, and a plaintext M as input, and outputs a ciphertext
CF.

Dec(PP,SKp,Cr): The decryption algorithm takes PP, SKp, and Cr as input,
and outputs M or L.

We require that for all A € N, all N € N, all points P = (p1,...,pr) € [N]¥,
all L dimensional ranges F = ([z1,11],...,[®r,yr]) where 1 < x; < y; < N
(for all 4 € [L]), all (PP,MSK) < Setup(1*, L, N, K), and all plaintexts M:
if |Ipr| > K, then it holds that Dec(PP,KeyGen(PP, M SK,P),Enc(PP,F,M))
=M.
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Definition 2. We say that a K-out-of-L dimensional RE scheme is selective
IND-CPA secure if for any polynomial N, for any PPT adversary A, the advan-

tage function Advgﬁ\f‘()\) is negligible in the following game between a challenger

C and A:

Init. A chooses a challenge L-dimensional range F* = ([x},vi],..., [}, y}1])
and sends it to C.

Setup. C runs Setup(1*, L, N, K) to generate (PP, MSK), and gives PP to A.

Phase 1. A can adaptively issue the key generation query P;. If |Ip, z«| > K,
then C returns L to A. Otherwise, C responds to the query by running
KeyGen(PP, MSK,P;) to generate SKp, and sending SKp, to A.

Challenge. A selects two challenge messages My, My, and sends them to C. C
chooses a random bit 8, and runs Enc(PP,F*, Mg) to generate a challenge
ciphertext Cg.. Then C gives Cg. to A.

Phase 2. A can adaptively issue key generation queries P; satisfying |Ip, g~

Guess. A outputs its guess 3’ for 3.

< K.

A’s advantage in the above game is defined by Advgﬁ\f‘()\) = |Pr[p' = 5] —1/2|.

As usual, adaptive security is defined by allowing an adversary to choose a
challenge L-dimensional range F* in the challenge phase, instead of forcing the
adversary to choose it in the initial phase.

4.2 Basic Construction

For the sake of simplicity, in this section, we give the basic version of our proposed
construction whose public parameter size is O(N) 4+ O(L) and secret key size is
O(NL). Our full scheme, in which the public parameter size is O(L) + O(log N)
and the secret key size is O(L log® N ) by using binary tree structures inspired by
the HIBE-to-FSE transformation of Canetti et al. [8], is given in Appendix A.
We stress that those proposed schemes share the same idea as explained in
Sect. 3, and we believe that the basic version of our proposed scheme is helpful
for understanding the full construction.

Description of Our Basic Construction. We give the basic version of our pro-
posed RE scheme. Let (G, Gr, e) be bilinear groups, let N € N be the size of the
space, let L € N be the number of the dimension, and let (Genggg, Updgg, Encese,
Decggg) be the BBG-FSE scheme given in Fig. 1. Then we construct the basic
version of our RE scheme as in Fig 2.

As explained in Sect. 3, we consider L “related” instantiations of the 1-out-of-1
dimensional RE (i.e. TSE) scheme of [14] each of whose master secret key is a share
obtained from a K-out-of-L secret-sharing of a top level master secret g, using
the specific algebraic property of the TSE scheme. Furthermore, each 1-out-of-1 di-
mensional RE scheme is constructed by connecting two “restrictive” TSE schemes
derived from the basic BBG-FSE scheme described in Fig. 1 in the same way as is
done in [14]. More specifically, the secret key of the n-th 1-out-of-1 dimensional RE

scheme consists of two secret keys (dg(,ln’n), d%f; +1) of the basic BBG-FSE schemes,
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Setup(lA,L,N, K):
(PK,do) + Gengge(1¥, N); MSK <+ do = g*
Parse PK as (g,u,h = (ho,...,hn), R).

w4 & G and ug,; E Grlorallic [L]
PP + (g,{u1,i,u2,i}iciz): by R, K).
Return (PP, MSK).

KeyGen(PP, MSK,P = (p1,...,pL))
Parse PP as (g, {u1,i, u2,i}ie[L]7 h,R,K).
& <& 7, for all i € [L]
aj <& 7, for all j € [K — 1]

(@) = o+ S aga®
For all n € [L]:
PKi,n « (9,u1,n, h, R)
PK2,T:, <~ (97 U2, n, h, R)
n +—2n-1)+1

Dec(PP, SKp, Cy) :
Parse PP as (g, {u1,i,uz, 1}16[L]’h R, K).
Parse SKp as ({d(1 D d 7,; 1Yieln] P)-
Parse Cr as (Cl,CQ,{Cgl,C31}7E[L F).
Parse P as (p1,...,pL)-
Parse F as ([z1,v1],---, [zL,yL]).
If |Ip r| < K then return L.
Let I’ be any set s.t. I' C g A|I'| = K
Let Theanysetst. I CI'A|T|=K —1
Let 71 := I'\T
Forallm e I':
PKl,n <~ (97 Ul,nvhv R)
PK2,T:, <~ (97 u2,n7h7 R)
n +—2n-1)+1
d(tm) < Updgge (PK1m, dS™  yn, n')

2,n)
d(1 n) Updyp (PK1 ) gf(n)+£n pn,n’) dN—(l‘,n+1 @)
an
dg\? "13"+1 <_Upd(B§GT(L§DK2 "7dN p"_H,N—x,,, +1,27L)
 Updygg(PK2.n, 9" N = pp + 1,2n)  Parsedyi™has (din dlans o).
End For W o Parse dN_Zn_H(z;)s (da,nsd'2my--.).
Return SKp ({dpi, vy -p; +1}i€[L]’P)' D1 pn <*(dl,:i’ﬂ ) (dll,n)A"’ﬂ(O)a e )
EDC(PP’F:([:Ifl,yl]’-u’[l’L,yL]) M) : a, g A0
Parse PP as (g, {u1,i,u2,i bicr], b, R, K). D3 <*(dg,n' y(d2n) T ,>
s(iZq If n = n then
For all n € [L]: (& <— (Cu, 03703,71,)
PKL" — (Q,'Ufl,n, h, R) Else (1.e. n ;ﬁ n)
PKan < (g9,u2,n, h, R) Cn = (lep,C2, Cs,n)
End If

n «—2n-1)+1
(C1,C2,C3,n) < Encese(PK1,n,Yn,n', M;s)
(C1,C2,C'3.n)

My, < Decgpg(D1,n, Cr)
C/ <~ (1“’T’CQ’C3 n)

< Encppe(PK2,n, N — xy, + 1,2n, M; s)
End For
Return Cr < (C1,C2,{C3,:,C'3,i }icir), F)-

M2 n < Decppe(D2,n, C),)
End For
Return M’ « [T, ;s M1,n - M2 n.

Fig.2. The basic version of our proposed K- out of-I. dimensional RE scheme. Let
the Lagrange coefficient A; s(x) = Hjesﬁél i for i € Zg and a set S, of elements in
Zgq, and let 1lg, be an identity element in Gr. For K — 1 degree polynomial f and I
which is sets of K elements of Z; , we have f(z) = YnerAn 1(x)f(n). For the notation
regarding the Lagrange coefficients, we follow [19].

which are connected via a 2-out-of-2 secret sharing (using the “blinding factor” &,,),
where d,(,w ) indicates a secret key for the time period p of the i-th FSE scheme in
the j-th 1-out-of-1 dimensional RE scheme. The secret key of our basic version of
the K-out-of-L dimensional RE scheme consists of L secret keys of 1-out-of-1 di-
mensional RE schemes connected by shares f(n) of a K-out-of-L secret sharing.

We would like the reader to notice that in Fig. 2, the scheme is described at
the cost of efficiency, so that it is easy to see that the TSE scheme is extended to
have the resplittable threshold property, as we explained above. For example, in
the encryption scheme, the ciphertext components C; and Cy are computed 2L
times by running Encppg from the common randomness s. However, in practice,
{Cs,i,C"3,i}icir) can be computed without calculating C and Cy. The security
is guaranteed by the following theorem.

Theorem 1. If the decisional (N + 1)-wBDHI assumption holds in (G,Gr,e),
then the K-out-of-L dimensional RE scheme constructed as in Fig 2 is selective
IND-CPA secure.
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In the proof of the theorem 1, as usual, we will build an algorithm B that solves
the decisional (N +1)-wBDHI problem in (G, Gr, e) by using any selective IND-
CPA adversary A that attacks our proposed scheme in Fig. 2. Intuitively, we
simulate the IND-CPA game of 4 by combining the proof methodology of [14]
and that of [19]. We can simulate a secret key of l-out-of-1 dimensional RE
by using the approach of [14]. Due to the technique of [19] by using Lagrange
interpolation, we can also apply the approach of [14] to the way of simulating
secret keys corresponding to each dimension for the proposed K-out-of-L RE
scheme (recall that a secret key of the K-out-of-L RE scheme consists of the
underlying L secret keys of 1-out-of-1 RE scheme). The detail of the proof is
given in the full version of this paper.

Flexible Choice of Threshold. In Fig. 2, a threshold K is common to all secret keys.
However, in fact our RE scheme can allow the choice of a threshold K for each secret
key by setting a random K — 1 degree polynomial f for each key generation, (We
have to change the security game slightly so that an adversary can choose not only
a point, but also a threshold.) We can straightforwardly prove the security of this
flexible variant in essentially the same way as we did for our RE scheme in Fig. 2.
A RE scheme which allows flexible choice of a threshold is useful in the cases in
which available conditions need to be changed depending on users.

5 Discussion
In this section, we discuss applications of RE and the efficiency of our RE scheme.

5.1 Immediate Applications

We introduce some applications realized straightforwardly by using our RE. Our
RE scheme is useful for services managed based on information of a membership
card, e.g. expiration date, age, birth date, and utility time. For example, a shop
does not want to sell products for customers who are minor or who have the
out-of-date membership card. The shop can easily make such a management
based on a secret key of a RE scheme stored in the membership card.

There are also needs to control available services based on information of a
user in e-commerce. For example, an on-line rental video company could provide
rental videos only for customers with age 15 or elder, and within the limited
number of lent goods, and expiration date. Our RE scheme allows a seller to
easily manage the privileges of users. The available services of a user are decided
by a secret key based on information provided when registering the user.

5.2 Comparison with Functional Encryption

RE can be seen as a special case of functional encryption (FE) [16,3] for a
class of policies which express range membership and attributes which express
points in each dimension. Hence, we could construct RE by using CP-ABE [2]
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or Predicate Encryption (PE) [10] which are special cases of FE. However, RE
schemes obtained straightforwardly by using FE tend to become less efficient. For
example, Okamoto and Takashima’s scheme in [15] is known as one of the most
sophisticated and powerful CP-ABE schemes, but it has a linearly-increasing
ciphertext overhead and the size of public parameter in N - L where L is the total
number of dimensions and N is the maximum size of the range. Furthermore,
to our knowledge, an RE scheme which allows flexible choice of threshold could
not be constructed from existing schemes. 2

On the other hand, parameter sizes of our full RE scheme in Appendix A
depend on at most not O(L-N) but O(L-log?® N), since our scheme can efficiently
express the range membership. More specifically, our full scheme has the public
parameter size of O(L) 4+ O(log N) group elements, the ciphertext overhead of
O(L) group elements, and the secret key size of O(Llog? N).
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A Our Main Construction of Range Encryption

Here, we describe our main RE scheme obtained by using the binary tree struc-
tures for the basic version of our scheme presented in Sect. 4. As noted earlier,
this construction is obtained by applying the technique from the HIBE-to-FSE
transformation by Canetti et al. [8] to the basic version of the proposed scheme
for reducing the sizes of the public parameter and decryption keys.

Let ¢ € N. Consider a complete binary tree B with N = 2¢ — 1 nodes, where
N will be the maximal size of values in one dimension supported by our pro-
posed RE scheme. The nodes in the binary tree B are numbered according to
a pre-order traversal in an incremental order, with the root node of B being 1.
Intuitively, the binary tree corresponds to one instantiation of FSE obtained via
the HIBE-to-FSE transformation of Canetti et al. [8] to the BBG-HIBE scheme.
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We need to introduce point vectors PV, and point vectors set PV Set,. PV,
is the vector consisting of the indices corresponding to the nodes included in
the path from the node p to the root node (of B), where PVj is empty set.
Intuitively, the point vector PV; shows an identity-vector corresponding to the
time period i of the BBG-FSE scheme. (Recall that a time period is interpreted
as an identity-vector in HIBE-to-FSE transformation of Canetti et al. [8].) For
an index p € [N] (of a node in the tree B), the set PV Set,, is defined as follows:
PV Sety = {PV1}. Recursively, for p € [2, N], PV Sety,y1 is defined depending
on PV Set, as follows: Let s = min{j | PV; € PV Set,}. If PV, is a leaf node,
then PV Set,41 is obtained by removing the vector PV; from the set PV Set,.
Otherwise, let sz (resp. sg) be the index of the left (resp. right) node of the
node s. PV Set,; is the set obtained by removing PV, from and adding PV,
and PV, to the set PV Set,.

Our proposed scheme is constructed from multiple BBG-FSE schemes. We
virtually instantiate multiple BBG-FSE schemes by using a map H;, which
takes as input point vector PV, as well as additional inputs 7 € [2] and o € [L].
The map H; , generates a point vector corresponding to the time period p of a
first or second BBG-FSE scheme of the o-th dimension. (Recall that the 1-out-
of-1 dimensional RE scheme is constructed from two BBG-FSE schemes.)

In the basic construction of RE given in Sect. 4.2, we implicitly use PV, =
(1,2(c = 1) +4,...,2(c — 1) + 1) s.t. |[PV,| = p as a point vector corresponding
to the time period p of the i-th BBG-FSE scheme of the o-th dimension. This
is the difference between the main and the basic constructions of RE.

Description of Our Full Scheme. Let (G, Gr, e) be bilinear groups (where G and
Gr are of prime order ¢), let £ € N, let N = 2¢ — 1 be the size of the space, and
let L € N be the number of the dimension. Then we construct the main version
of our RE scheme as in Fig. 3.

As explained Sect. 4.2, this construction is obtained by applying the technique
from the HIBE-to-FSE transformation by Canetti et al. [8] to the basic version
of the proposed scheme. In the technique, a secret key of FSE corresponding to
time j consists of a set of the secret keys of basic FSE for PV, € PV Set;. In
Fig. 3, KeyDerive is used as the update algorithm of FSE.

Similarly to the basic version of our RE in Fig. 2, the secret key of the i-
th 1-out-of-1 dimensional RE scheme consists of two secret keys d, PVSet,, »
dg,pvsemﬂ,ﬁrl of basic BBG-FSE connected by the shares &;, —&; of a 2-out-of-2
secret sharing. The secret key of a K-out-of-L dimensional RE scheme consists
of L secret keys of 1-out-of-1 dimensional RE schemes connected by the share
f@@) of a K-out-of-L secret sharing.

The security is guaranteed by the following theorem (the proof is given in the
full version of this paper).

Theorem 2. If the decisional (£ + 1)-wBDHI assumption holds in (G,Gr,e),
then the K-out-of-L constructed as in Fig. 3 is selective IND-CPA secure.
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Setup(1*, L, N =2° —1,K) :
ad Zq; R <+ e(g9%,9); MSK < g%; w1 & G and U2 E Grorallic 4
hj < G for all j € [0, N]
2(o—1)+i} N+pv;
Define Hi, o (PV = (pvi, ..., pv|py)) i= kN LIV (p 2077000y
PP <+ (g,{u1,i,u2,i }icir)s {hj}jeo,0, R, H, K)
Return (PP, MSK).
KeyGen(PP, MSK,P = (p1,...,pL)) :
Parse PP as (g, {u1,i,u2,i}ie[L]> {Pj}je[0,0, B H, K).; & & Zq for all i € [L]
b; i ZZ for all j € [K —1]; Let f(z):=a+biz+ boz? + -+ b1t
For all n € [L]:
For all PV, € PV Sety,,,:

) cUj,o

(1.n)

rm &z Dy gf Ot 7y PV
(,n) O

dpy.,) + (D1,g™ {h] Forel|Pvy 1 +1,81)

End For
For all PV, € PVSetn_p, +1:

2,n) ,$ -« —& #(2m)
T’u” — Zq; D3 < g~ 5" - Hy n(PV,) v’
(2,n)  p(2m)
2.n r !
dﬁavfj — (D29 {h) Yuregpv,,41,87)
End For
d1,Pvsety, {dg{/:)}}?vve}?vsetpn
2,n
d2,PVSetn _p, 41 {dﬁjvvf }PVU, EPVSetn_po 11
End For
Return SKp + ({dl,PVSetpi7d2,PVSetN_pi+1}i€[L]vP)~
Enc(PP,F = ([z1,91], ..., [zL,yL]), M) :
$ s s s
8¢ Zq; Cr + (R°-M,g% {H1,:(PVy;)*, H2,i (PVN_—2;4+1)"}ie(z], F)
Return Cr.

Dec(PP, SKp,Cr) :
Parse PP as (g, {u1,i,u2,i}ie(r]> {Pj}ico,e, R H, K).
Parse SKp as ({dl,PVSetpi7d2,PVSetN_pi+1}i€[L]vP)-
Parse Cr as (C1,C2,{Cs,i,C4,i}tic(r),F)-
Parse P as (p1,...,pr).; Parse F as ([z1,y1],...,[zL,yL]).
If |Ipr| < K then return L.
Let I’ be any set s.t. I' C g A|I'| = K
For all j € I':
A5yl € dipvse,, st. PV, C PV,

A, € dopysery_, 1y S8 PVor © PVN—s1

(1,5) ; (1,5) . q(2,9) ; (2,5)
deJyj < KeyDerive(PP, deJv , PVyj ); dPV}N*Pj‘Fl < KeyDerive(PP, dPVJU/ R PVN—zj+1)
Parse di)) as (D1,j, D'1,...) Parse diy/) op1 85 (D25, D250,

Fi —Pj
End For
o RO B
e(C3,i:D7 4 elCa i gy
Return M’ + C1 - [T;¢ s A, /0 A, ,1(0) .
(cy © Dy ;)e(Cy © D)
KeyDerive(PP, dg;ﬁ.), PV’ = (pv1,... ,pU‘Pvl‘)): where PV C PV’
Parse dg’;ﬁ) as (D,D/’,D|PV|+1, ...,DNn)s 7 & Zq
i,j PV j—1)+i vy r
d;\;z <_((D ’ H‘U:\Pl\/\+1 DSRU—DFINTPY oy, 0y H; (PV)T,

. D’ g", {D, 'hz}v’e[|Pv’\+1,N])
V)
Return de"

Fig.3. The main version of our proposed K-out-of-L multi-dimensional RE. Let the
Lagrange coefficient A s(z) = [];cq 4 f:j for i € Zg and a set S, of elements in
Zq. For K — 1 degree polynomial f and I which is sets of K elements of Z , we have
f(z) = XnerAn,r(z)f(n). For the notation regarding the Lagrange coefficients, we
follow [19].
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Abstract. At Pairing 2010, Lauter et al’s analysis showed that Ate pair-
ing computation in affine coordinates may be much faster than projective
coordinates at high security levels. In this paper, we further investigate
techniques to speed up Ate pairing computation in affine coordinates.
We first analyze Ate pairing computation using 4-ary Miller algorithm
in affine coordinates. This technique allows us to trade one multiplication
in the full extension field and one field inversion for several multiplica-
tions in a smaller field. Then, we focus on pairing computations over
elliptic curves admitting a twist of degree 3. We propose new fast ex-
plicit formulas for Miller function that are comparable to formulas over
even twisted curves. We further analyze pairing computation on cubic
twisted curves by proposing efficient subfamilies of pairing-friendly el-
liptic curves with embedding degrees k = 9, and 15. These subfamilies
allow us not only to obtain a very simple form of curve, but also lead to
an efficient arithmetic and final exponentiation.

Keywords: Ate pairing, Pairing computation, final exponentiation,
affine coordinates, cubic twisted curves, pairing-friendly elliptic curves.

1 Introduction

In recent years, the pairings have become extremely useful in public-key cryp-
tography. Pairings used in cryptography are efficiently computable bilinear maps
on torsion subgroups of points on a (hyper-)elliptic curve that map into the mul-
tiplicative group of a finite field. We call such a map a cryptographic pairing. Let
G1, G2 be finite abelian groups written additively, and let G3 be a finite abelian
group written multiplicatively. A cryptographic pairing is a map:

€ZG1XG2*>G3.

The first pairing application to cryptography was introduced in Joux’ seminal
paper [17] describing a one-round tripartite Diffie-Hellman key exchange protocol
in 2000. Since then, the use of cryptographic protocols based on pairings has had
a huge success with some notable breakthroughs such as practical Identity-based
Encryption (IBE) schemes [7], and many other new cryptographic primitives.
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Due to the high cost of pairing operations, the efficiency of pairing computa-
tion and the construction of pairing-friendly curves have become an active field
of research. The former concerns many techniques having been exploited to dra-
matically improve the performance of the Miller algorithm, see [2][3][20][8][24].
The later focuses on constructing curves that are suitable for pairing-based cryp-
tosystems. Whereas standard elliptic curve cryptography can be implemented
using randomly generated elliptic curves, the elliptic curves required to imple-
ment pairing-based protocols must have a small embedding degree such that
pairings can be efficiently computed in extension finite fields. Many works on
constructing pairing-friendly elliptic curves have been presented in [27][9][4] and
this research is collected and extended in the recent paper [13].

Projective coordinates are usually preferred than affine coordinates for imple-
menting pairings. That is because point addition or doubling operations in affine
coordinates involve a field modular inversion that is much expensive than one
field multiplication in the base field F,,. However, recent analysis in [22] showed
that over IF,q, for larger d, the inversion-to-multiplication ratio is significant re-
duced. Ate pairing computation in affine coordinates is thus much faster than
that in projective coordinates at high security levels.

This work presents our optimizations to Miller loop using a 4-ary algorithm
with direct formulas to compute quadrupling of points and a multiplication of
two line functions in affine coordinates. Our techniques make a trade-off between
one multiplication in the full extension field F,«, one inversion in the subfield
Fp. for some multiplications in [Fpe, where k is the embedding degree of the
elliptic curve E over the finite field F,, e = k/d, and d is the degree of the twist
admitted during pairing computation.

This work also focuses on pairing computations over pairing-friendly elliptic
curves admitting a cubic twist. Although, such a curve doesn’t provide a full
denominators elimination technique, but it allows a shorter Miller loop. We first
present new fast formulas in affine coordinates for doubling/addition steps of
Miller’s algorithm over cubic twisted curves. Then, we give a finer choice for
curves of embedding degrees k = 9,15. By carefully choosing parameters, we
point out that the desired curve is always of form y? = 3 + 1. Finally, we
present improvements for the hard part in final exponentiation for such curves.

The rest of the paper is organized as follows: Section 2 briefly recalls some
basic knowledges about Ate pairing and its computation. Section 3 presents our
improvements for the curves with even twisted degree. Section 4 presents new
explicit formulas to speed up pairing computation on curves with cubic twisted
degree. We conclude in Section 5.

2 Background on Pairings

For p prime and p > 3, an elliptic curve defined over a finite field F, in short
Weierstrass form is the set of solutions (x,y) to the equation

E:y’=a234+ax+b,
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where a, b € F,, such that the discriminant A = 4a® +27b? is non-zero. We denote
by O the point at infinity on E, and by #E(F),) the number of points on E defined
over F,,. We have n = #E(F,) = p+1—t, where ¢ is the trace of Frobenius, which
satisfies [t| < 2,/p (Hasse’s theorem). Let r be a prime number that divides the
number of points n and is co-prime to the characteristic p. Let k be the embedding
degree of the elliptic curve E with respect to r, i.e., k the smallest positive integer
such that 7|p* — 1. By this setting, we can define subgroups of points of prime order
ron E and a multiplicative group of order r in the extension field F7, = F,«\{0},
ie., IF‘;k contains the group ., of r-roots of unity.

2.1 The Ate Pairing

We denote subgroups of points of prime order r on E(F,x) by E[r]. Let m €
Z, P € E[r] and f,, p be a rational function on E with divisor div(fm, p) =
m(P) — (mP) — (m — 1)(O). Let m, be the p-power Frobenius endomorphism
on E, m, : E — E given by m,(z,y) = (2P,y?). Let T = ¢t — 1. We denote by
Gy = Elr|nKer(m,—(1]) = E(Fy)[r], G2 = Elr|nKer(m, —[p]) € E(F)[r]. For
Q € Go and P € Gq, the Ate pairing is defined as [16] (so with the arguments
swapped in comparison to Tate pairing):

ar =Go x Gy =, (Q,P) = fro(P)W /", (1)

The length of Miller loop during Ate pairing computation is determined by the
trace of Frobenius ¢t. The Ate pairing is thus particularly suitable for pairing-
friendly elliptic curves with small values of ¢. Usually, when implementing Tate
pairing and its variants, instead of inputing the point @ on the curve Gy C
E(F,x)[r], one can take Q" € G C E'(F,u/a)[r], where E' is a twist of F, and
d|k is the degree of the twist. Points on the twisted curve are defined over a
smaller field, and are thus obviously much faster for computation.

Let ¢ : B/ — E,Q’ — @ be an isomorphism mapping points of the twisted
curve to that of the original curve. The computation of ar(¢¥(Q’), P) consists
of two parts: evaluation of the function fr g at P and final exponentiation en-
suring a unique result of the pairing. The first part is computed using Miller’s
algorithm [26] that is described in Algorithm 1.

Input: T = Y'"1 ;2% (radix 2), t; € {0,1}, Q' € G} not a multiple of P € G.
Output: fr (g )(P) representing a class in F,. /()"
R+ Q, f«1,;
fori=1—-2to 0do
f e ey (P), R« 2R ;
if r;, =1 then
[ fapmnwa)(P), R« R +Q;

end
return f

Algorithm 1. Miller’s algorithm for Ate-like pairings
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3 Improvements for the Even Twisted Curves

Pairing-friendly elliptic curves with an even embedding degree k are preferred in
implementing Tate pairing and its variants. That is because the denominators
elimination techniques can be used (see [2][14]) on such curves. Furthermore,
such curves can admit a high-degree twist, e.g., twists of degree 4 or 6 such that
the points on the twisted curve E’ can be represented in a smaller finite field.
Lauter et al. analyzed the costs of Miller’s algorithm in affine coordinates over
curves with even embedding degrees [22, Table 1, 2]. They pointed out that when
implementing one of the optimal Ate pairings [34] in high security levels, affine
coordinates could be much faster than projective coordinates. This is because
the ratio of the computational costs of inversions to multiplications for point
doubling/addition operations is drastically reduced in extension fields.

3.1 4-ary Miller Algorithm

In this subsection, we present our optimizations of Miller loop using a 4-ary
algorithm with direct formulas in affine coordinates. Usually, Miller’s algorithm
computes pairings using the double-and-add method. In [6], Blake et al. present
the idea to compute the pairing using a 4-ary algorithm for the purpose of elim-
ination vertical lines (i.e., denominators) in Miller’s algorithm. Their algorithm
can be applied on any curves (i.e., curves don’t admit a twist and thus there
isn’t any denominators elimination technique), and has advantage if the binary
expansion of the trace ¢ has many zeros. Costello et al. [10] also addressed this
problem by introducing a new algorithm so-called the Miller 2™-tuple-and-add
algorithm. They also presented explicit formulas in projective coordinates for
cases of n =2, 3.

Direct computation of g r X {|2)r, 2jr° We assume that E’, twisted curve of £
defined in § 2, is given by an equation E’ : y? = 23 + (a/a*)z + (b/a®) for some
o € F,r with an isomorphism ¢ : E' — E, (z,y) — (a®z,a’y). Furthermore,
we assume that F,r = Fpe (), and we have a? = w € Fye, where d is the degree
of the twist. Each element in [F,x is given by a polynomial of degree d — 1 in «
with coeflicients in Fe.

Let P € E(F,), R’ € E'(Fpe) and R = ¢(R'). Let Rs = [2]R = (TR, YR,)-
Let ¢4 = £g r(P), and l5 = {g, g,(P). In the following computation, we use the
abscissas of the point —Rj3 instead of that of the point R in the line function
{1 passing points R and —R3. We also compute mp’iffRs instead of £; - £5. Note
that, for even twisted curves, the factor xp — xg, is in the proper subfield, thus
we can make this division without changing the final result of Tate pairing. Two
consecutive doubling steps are performed as follows:

g bl (yp+yrs — (2P — TRy))(YP — YRy — A2(TP — TRy))
Tp — TRy Tp — TRy
2 2
Yp — YRy

= —M(yr —yry) — A2(yp +yry) + Mda(xp — xR,)
Tp — TRy

=% +zprRrs + 96?33 +a— X i(yp —yrs) — A2(yp + Yrs) + Mid2(zp — xR;,),
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where A1, A2 are slopes when computing [2]R and [4]R. Let R = [2]R' =
(z Ré’yR's)' The details of computations is as follows:

0= b = Ly(rry p(r) (P) Ly w2 (P) = @p + a’e g op + o'agy
+a—aN(yp —a’yp,) — aXy(yp + a’ypy) + XXy (zp — a’zpy)

=ab+a—a(\ +X)yp + o’ (wry + N A2)zp + ot (@ + (N + Ao)yry + N Aoz gy),

where A; = a\], and A2 = a\}. Since P is fixed throughout the computation, we
assume that value z% is precomputed, the costs of updating ¢ are summarized
in the following table. Note that, we use the same notations for field arithmetic
costs as in [22]. Notations Ipe, Mye, Spe, addye, subpe, neg,e denote the costs
for inversion, multiplication, squaring, addition, subtraction, and negation in the
field IFpe, where e = k/d. The cost for a multiplication by a constant w is denoted
by M(w).

Table 1. Number of operations for updating two consecutive line function values

Mp Mpe Spe M(w) addpe negye
2 k3 1 2 6 1
4 k/2 3 1 1 5 1
6 k/3 3 1 - 4 1

d
d
d

Fast quadrupling. Let R} = [4|R" = (zg;,yr, ). Traditionally, R} can be obtained
using two repeated doublings that require 2 field inversions. In [23], Le introduced
fast algorithms for quadrupling a point on elliptic curves in affine coordinates.
His algorithm requires 1L,e + 8Spe + 8M,e, and is better than two repeated
doublings whenever I,e > 4Mye 4+ 4S,.. It performs even better for curves that
allow “a = 0” speedup (found in pairing-friendly elliptic curves admitting twists
of degrees 2, 3, or 6) as [4]R’ in affine coordinates can be computed just using
only 1I,e + 5S,e + 6M,e. This section presents the revised formula for point
quadrupling that requires fewer additions in comparison to that in [23] for pairing
3z2,
2yRR:d’
and £ is the product of two consecutive line function values as described above.
One also can precompute and cache values s = 18b and t = 27b2.

This quadrupling formula only requires 1I,e +6Mpe +5S,c +eM,, +8addpe +
9sub,e. If an inversion in Fpe is more than 2Mp. + 1S, + eM,, + 1suby., then
the new quadrupling formula is faster than two repeated doublings. In the case
of curves with a twist of degree 4 (i.e., y?> = 2% + ax), a similar quadrupling can
be performed by 1I,c + 9Mpe + 5S,e + 14addpe + 10subye.

Table 2 summarizes and compares the costs of our technique to those from [22]
in affine coordinates and [10] in projective coordinates. Again, we assume that
all values that depend only on fixed parameters, are precomputed and cached,
and small multiples are computed by additions.

computation over curves with a = 0. Let d = y&, + 18by%, — 2762, I =
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M=T-d, Xo=I(ys—9b)?%/2
wry =M — 2xr, Yry = M(TR — TRy) — YR,
TRy = A3 — 2xpry,  Yr, = A2(Try — Tr,) — YRy,
Z = Zl . £2 = gw(R’),w(R’)(P) . ew(Ré),w(Ré (P),

A=y%, B=A% C=322%, d=B+sA+t,
D=2dyg, E=D"' I=C-E, M=1I-d,
"ER;, = )\% — ZxR,’2 yRé = Al(xR/ ,xRé) —yrr, Ao = (3*5134'315)[
Tr, = A2 —2zRr;,, Yr, = X2(Tr, — Tr,) — Yy,
=1ty by = Ly(rry,pr) (P) 'Zw(R's),w(R's)(P)

)

Table 2. Operation counts for two doubling steps in the Ate-like Miller loop

d  Technique M, M,k Ipe Mye Spe M) addpe subye negpe
2 Ours 5k/2 1 1 9 6 2 14 9 1
(a = 0) Lauter et al. [22] k2 2 6 4 2 8 12 -
Costello et al. [10] 2k 1 - 14 16 4 60 24 2
4 Ours k 1 1 12 6 1 19 10 1
(b=0) Lauter et al. [22] k/2 2 2 6 4 - 8 10 2
Costello et al. 10] k 1 - 11 20 3 55 27 2
6 Ours 5k/6 1 1 9 6 - 12 9 1
(a=0) Lauter et al. [22] k/3 2 2 6 4 - 8 10 2
Costello et al. [10] 2k/3 1 - 14 16 4 60 24 2

As showed in Table 2, the costs of two doubling steps on curves having a twist
of degree d = 2 requires 52kMp + 1Mk + 1Lk/2 + 9OMpk/2 + 6S k72 + 2My,) +
14add /2 + 9sub,r/> + 1neg, 2, while analysis in [22] require kM, + 2M,» +
Qka/z + 6Mpk/2 + 4Spk/2 + QM(w) + 8addpk/2 + 125ubpk/2. If 1Mpk + 1ka/2 >
3M,k/2 + 28 k/2 + 3addk/2 + neg 2, then our technique is better.

4 Improvements for the Cubic Twisted Curves

4.1 TUpdating Miller Function

Pairing computation over cubic twisted curves with embedding degrees 9 or 15
were investigated in papers [25][12][11]. Although such curves only admit a cubic
twist d = 3, and there exists no full denominators elimination technique, but they
provide a shorter Miller loop. In [30], Scott pointed out that in the contexts
of multi-pairings in conjunction with fixed arguments, these curves have more
advantages than curves admitting a higher twist (i.e., 4 or 6). This section gives
the first analysis about the costs of Miller’s algorithm in such curves in affine
coordinates.

Recall that cubic twisted curves have the form y? = 23 + b. In [25], Lin et al.
proposed a denominators elimination trick during Ate pairing computation on a
k =9 curve due to the following observation about the factor 1/vpyq(P):
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1 1 .’E%a+l'pl'R+Q er%H_Q

vr+Q(P)  zp —tryq  (Yp — YR+Q) (WP + YR+Q)

Since (yp — Yr+Q)(Yp + Yr+o) lies in a subfield when the curve admits a cubic
twist, f function can be updated by multiplying by =% +zprr+q +x%+Q instead
of dividing it by vr+g(P). The updated factor is :

lro(P) = (yp — AN@p — r1Q) — YrR+Q) - (Tp + TPTR1Q + Thyg) (2)

where X is the slope of the line function passing points R and @. This formula
needs one full extension field multiplication than the full denominators elimina-
tion technique of Barreto et al [2]. The following lemma allows us to save one
multiplication in the full extension field in comparison to the analysis in [25].

Lemma 1. For elliptic curves admitting a cubic twist, the rational function
gr.Q(P) in Miller’s algorithm can be rewritten as follows:

onolP) (ro(P)  Thig+TriQrr + 2% — Mypr + YriQ)
R, = =
@ Vr+Q(P) YP — YR+Q

3)

Proof. For the line function ¢ o (P), using the coordinates of the point —(R+Q)
instead of that of R, we have:

lrQ(P) _yp—ANzp —TR1Q) +YR+Q

vRrtQ(P) Tp — TRtQ
9 2 3 3
_ Yp — YRr+Q _ Tp —Thig
— At — At
(zp — 2r+Q)(YP — YR+Q) (xp —2r+Q)(YP — YR+Q)
_ —AMyp —yYr+Q) + Th, o+ TryQTP + TP
YrP — YR+Q

The factor (yp — yr4+q) lying in a proper subfield of F,. can be cancelled out.
The actual updated factor is x%t—s—Q +2p+orp + 7% — ANyp — Yr+o). The com-
putation of this updated factor doesn’t require one more multiplication in the
full extension field and it is much faster than that given in [25].

Doubling step. Let the notations be described in Section 3. Let e = k/3, and let
v € Fx be not a cubic residue but a quadratic residue over Fy., and 2 =we
Fpe. Furthermore, we assume that F« = Fpe (11/6), i.e., each element in F,x can
be represented by a polynomial A + Bv'/¢ + Cv'/3, where A, B,C € Z,.. Let
the twisted curve is of the form E’ : y? = 2%+ b/v. There exists an isomorphism
Y E'(Fpe) — E(F,), (z,y) = W32,0Y2y). Let P € G1, R',Q' € G, and
let R=v¢(R), Q =¢(Q), where G1, G2, G are defined as in Section 2.1.

As showed in Lemma 1, the computation of the line functions need squarings
of x-coordinates. This implies that a new coordinate (z,y,z), where z = 22
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matches the computation. Let Ry = [2]R’. Doubling steps can be computed as
follows:

trr(P) = v*Pafy + v Pap ap + 2% — Myp — v ?ym,)
=z2p — Ny, + v Bap ap + V3 (2p, + Nyr,)

=2p+ V1/6(w(zRg +Nyry) = Nyp) + Vl/SxRéxp,

where xg; = N2 — 2R, yr, = N(Tr — TRry) — Yyr and zg, = x%’/é' We have
N =3z%, /2yr = 32r/ /2yr and A = 32%/2yr = v1/ON.

The double of R’ needs I, + 2Mpe + 2S,. + 3add,e + 4sub,., where the
computation of the slope X need I, + Mpe + 3addpe. Assume that the multi-
plication of elements in Fpe with a small constant (e.g., 3zr/, 2yr’) is computed
by additions. Then, we need 2eM,, + My + M) + addpe + subye to compute
the line function value. In total, our new formula requires 2eM, + I,c +3M,e +
28, + My, + 4addye + 5subye for each doubling step.

Addition step. The line function is computed similarly as in doubling steps.
tr,r(P) = zp + v"/(w(zry + Nyry) — Nyp) + v Pzpyzp,

where Ry = R' + @', and zg, = N2 — xp — 20y, yr, = N(zr — TRy) — yr/
and zp, = x%,s. The slope N = (yrr — yo')/(xr — xg/). We have A = (yr —
vQ)/ (xR —3q) = V/OX.

Computation of the line function in addition steps has the same cost as in
the doubling steps. It needs I,e + Mpe + 2sub,. for computing the slope A" and
M,e + 2Spe + 4sub,e for computing the addition of R" and @’ from the slope
M. In total, we need 2eM,, + I, + 3Mpe + 28, + My, + addye + 7sub,e for
each addition step.

We summarize the number of operations required by the Miller loop over
cubic twisted curves in Table 3. We also make a comparison on the number of
operations between affine coordinates and projective coordinates taken from [11].

Table 3. Number of operations in the Ate-like Miller loop over cubic twisted curves

coord. M, Ipe Mpe Spe M,y add,e subpe negype

affine 2k/3 1 3 2 My, 4 5

DBL i1 & - 6 7 Mg 11 10 1

affine 2k/3 1 3 2 My, 1 7 -
ADDproj. 11 £ - 13 3 - 6 8 3

The above analysis showed that the number of operations in doubling steps
over cubic twisted curves is similar to that over even twisted curves as analyzed
n [22]. Addition steps require only 1S, + 1M(,) more than that for even
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twisted curves. Table 3 also showed that the doubling steps in affine coordinates
are better than that in projective coordinates [11] if:

Ie <eM,+ 3Mje + 55, + 7addpe + 5subye + neg,., (4)
where e = k/3.

Example 1. In the case of k = 9, we can obtain pairing-friendly elliptic curves of
form y? = 23 + b admitting a cubic twist [25]. During Ate pairing computation,
point operations are performed over s (i.e., e = 3). Analysis in [21, §5.1] showed
that inversion over F,s needs 12 multiplications and one inversion over F,,. If the
inversion-to-multiplication ratio is around 13 as benchmarks in [22] and is used in
this analysis, the cost of one inversion over s is around 25 multiplications over
[F,. Obviously, this cost is much less than 3M,, + 3M,;s + 5S35 ~ 21M,, + 30S,,
(from Eq. 4). Note that using Karatsuba algorithm, M,s ~ 6M,, and S, =~ 6S,,.

4.2 Choice of Curves

In this section, we present efficient subfamilies of pairing-friendly elliptic curves
with embedding degrees k = 9, 15 presented in [25] and [12].
The family of curves with k = 9 is described by the following polynomials:

(@ +1)” + ((z = 1)*(22° + 1)%)/3)/4,

%) =
z) = (ac + 28 +1)/3,
)=
)=

p(
r(
n(z (a:—l 2% + 2% +1)/3, (5)
t(x 1,

where t(x) is the trace of Frobenius, p(z) represents the field size and r(x)
represents the pairing-friendly subgroup. In comparison to BN curves at 128-bit
security level [4], this family supports a shorter Miller loop. But, BN curves
provide a much more efficient tower extension field arithmetic.

El Mrabet et al. [12] introduced a family of pairing-friendly elliptic curve of
embedding degree k = 15 and compared its performance with KSS curves [18§]
at 192-bit security level. Their family of curves is described as follows:

p(x)= (2" —22" + 2% + 2" — 225 + 2+ 2® + 2 4+1)/3,

r(z) =% — a:7+a:5—a:4+a:3—a:+1 (6)
nz)=(x -1 +z+ 1)@ —a"+2° — 2" +2° —24+1)/3,
tz)=z+1

For both families of curves, the p-value is equal to 4/3 and the elliptic curves are
of the form y? = 23 + b. By using the above parameters when z¢o = 1 (mod 3),
one is able to get all involved parameters being integers and construct a curve.
The following theorem show that by choosing =1 (mod 6), we always choose
the curve constant b equal to 1. That means that the multiplications with b is
free.
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Lemma 2. Let E : y> = 23 + b be an elliptic curve defined over F, where p
prime and p =1 (mod 6). Let #E(F,) =n. If 2 | n and 3 | n, then b is both a
square and a cube in IFp.

Proof. The proof of Lemma 2 can be found in Appendix A.

Theorem 1. By choosing xo =1 (mod 6) for both above families of curves with
embedding degrees k =9 or 15, the desired curve is always of form E(F,) : y? =

3+ 1.

Proof. In [33, §X.5], Silverman showed that an curve defined over F,, with the j
invariant j(E) = 0 (i.e. the curves of the form y? = 2® + b) will only have six
possible curve orders. More precisely, the CM construction only ensures that the
order of a curve satisfying the norm equation 3y? = 4p — ¢? has one of the six
forms {p+ 1=+t p+ 1+ (t£3y)/2}. Moreover, assume that v be both quadratic
and cubic non-residue modulo p, these possible group orders occur as the order
of one of the 6 twists with b € {1,~,72,v3,v*, 7}

For g =1 (mod 6) in (5) (and (6), resp.), is is easy to see that ng = (2o —
1)?(af+ 23 +1)/3 (no = (zo — 1)? (2§ + o +1) (25 — 2§ + 2§ — x5 + 2§ — 20 +1)/3,
resp.) is congruent to 0 modulo 6, i.e., 2|ng and 3|ng. It is also easy to verify
that p(zo) =1 (mod 6). From Lemma 2, b must be both a square and a cube in
I, it follows that b = 1 is the only option.

4.3 Final Exponentiation

After the main Miller loop, the Tate pairing (and its variants) must carry out
the final exponentiation to ensure a unique result of the pairing. The output of
the Miller loop f must be raised to be power of (p* — 1)/r to obtain a result
of order 7. Scott et al. [32] introduced an efficient algorithm to compute such a
computation. Their algorithm splits the final exponentiation into two parts: the
first part is “easy” as raising to the power of p is an almost free application of the
Frobenius operator; the second so-called “hard” is to power of &y (p)/r € F,[x].
The exponent of the hard part can be expanded to the base p as an_1p" " +
-+ 4 a1p + ag, where n = ¢(k), the Euler-phi function. We refer readers to [32]
for more details about this computation.

In this section, we give an efficient version of the hard part in final exponen-
tiation for curves of embedding degrees k = 9. In the case of k = 15, readers can
see in Appendix B.

In the case of k = 9. By setting x = 6u + 1, we obtain the new explicit polyno-
mials as follows :

t(u) = 6u+ 2,
p(u) = 559872u® + 559872u" + 233280u’® + 54432u® + 7776u* + 648u> + 36u? + 6u + 1,
r(u) = 15552u8 + 15552u5 4 6480u? + 15120 + 21612 + 18z + 1.
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The cost of the final exponentiation for the Ate pairing on curves with k = 9 was

6 3 .
analyzed by Lin et al. [25]. Let the hard part *(*) -:(;;(;) = Z?:o a;(u)p(u)’,
where a;(u) are following explicit polynomials (see in [25, §6.1]):

a5 = 36uz7

as = 216u3 + 36u? = as(6u + 1),

az = 1296u* + 432u® + 36u? = a4 (6u + 1), (7)
az = T776u® + 3888u? 4 648u> + 72u? = a3(6u + 1) + as,

a1 = 46656u’ + 31104u5 + 7776u* + 1080u> + 72u? = a2 (6u + 1),

ap = 279936u” 4 233280u’ + 77760u® 4 14256u* + 1512u® + 72u? 4+ 3 = a1 (6u + 1) + 3.

Their calculation requires 65M,,0 + 37580 +45M,, for computing this hard part
(see [25, Section 6.2]). The following computation allows us to save 15Mo +
66Sp0 + 45M,,.

Let T =1t — 1, where t = 6u + 2 is the trace of Frobenius. Furthermore, let f
be the output of Miller algorithm, and m = fp3_1 (i.e., easy part). We compute
the hard part as follows:

p(w)8+p(u)d+1 2 3 4 5
N Y N S R
m ) el R N R SR /R

where p; can be computed as follows:

ps = (m" T g = (us)", s = (pa)”,
B2 = (M3)T THs, H1 = (M2)T, Mo = (Ml)T -m®.
This part requires 7 exponentiations by 7" or 7' — 1, 8 multiplications and one
squaring in IFe, and 5 p-power Frobenius operations. Let 7' be a number of 44
bits length and Hamming weight of T is 7 (as the example given in [25]). This part
requires 2(44Sp9 + 6Mp9) + 5(44Sp9 + 6Mp9) + 8Mp9 + 1Sp9 = 309Sp9 + 50Mp9.
We save 66S,0 + 15M,,0 + 45M,, in comparison to computations in [25].

4.4 Discussion

At 128-bit security level, the current public-key security recommendations,
Barreto-Naehrig curves [4] lead a very efficient implementation. Many results
have been reported in papers [28][5][29][1]. That is because BN curves can exploit
a sextic twist and there exist efficient algorithms for squarings in 2 [15][19].
The former allows us to work on points of the twisted curve whose coordinates
are in IF> instead of IF12 during Miller loop computation. The later provides an
efficient speedup for the final exponentiation step.

In [25] the authors consider curves with k£ = 9 at 128-bit security level. One
advantage of such a curve compared with BN curve is that it will have an Ate
pairing with 2/3 Miller loop length compared with the BN equivalent. With
many optimizations in both Miller loop and the final exponentiation, BN curves
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are perfectly suited for implementing a single pairing. However, when we need to
compute several pairings in parallel, where only one final exponentiation required
to compute, curves with shorter Miller loop may offer a good choice. Our above
analysis allowing to speed up pairing computation over cubic twisted curves in
affine coordinates for both Miller loop and final exponentiation, are helpful for
this case.

5 Conclusion

In this paper we further analyzed techniques to speed up Ate pairing computa-
tion in affine coordinates using 4-ary Miller algorithm. We focused on pairing
computations over pairing-friendly elliptic curves admitting a cubic twist and
presented the first and fast explicit formulas in affine coordinates for such curves.
We also gave a finer choice for curves of embedding degrees k = 9, 15, and show
that this choice leads to an efficient arithmetic and final exponentiation.

Acknowledgement. The authors thank the anonymous referees for their useful
comments and suggestions.
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A  Proof of Lemma 2

Proof. Assume that 2 | n, then the elliptic curve E : 3?2 = 23 + b contains points
of order 2. Let P = (z1,41) € E be a point having order 2. The tangent at P

meets O and hence (22)13 = oo or y; = 0. We have y? = 23 + b, and hence

b= —x3 or b is a cube in F,.

When 3 | n, E contains points of order 3. Assume that P = (z1,y1) has order
3, that means 3P = O or 2P = —P. Let Q = [2]P = (x2,y2). Then we have
29 = x1 which implies A2 — 2z, = 1, where A = 3x%/2y1. Therefore, we obtain
921 (y? — b) = 122193, so that x1 = 0 or y? = —3b.

In the former case x1 = 0, it is easy to verify that the point 0,4 has order 3
for some 4, and b = §2 or b is a square in F,. For the later case —3b = y7, to
prove b square in IF,, we need to show that —3 is a square in IF,,. We consider the
Legendre symbol:

(_pg) - (;1) (2) = (-1)"7 x (-t

— If p=1 (mod 12), we have

— If p=7 (mod 12), we have

(_p?’> =(-1)x (-=1)=1.

In the other words, —3 is a square in [F,.
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B Final Exponentiation for Curves with k£ = 15

We present the first analysis for the hard part during Tate pairing computation
over elliptic curves with embedding degree k = 15. By setting x = 6u + 1, we
obtain the new explicit polynomials as follows :

t(u) = 6u+ 2,

p(u) = 725594112612 + 1209323520ut! + 906992640110 + 403107840u° + 11757312018
+ 23607936u” + 3343680u’® + 336960u’ + 23760u? + 1080u> + 36u? + 6u + 1,

r(u) = 1679616u® + 1959552u7 4 979776u’ + 279936u° + 50544u* + 6048u>

+504u? + 24z + 1.

(u) ' +p(u)®+1
r(u)

can be expanded as Z?:o a;(u)p(u)t. Tt is easy to verify a;(u) to be following

explicit polynomials.

Once again, assume that the hard part ? of the final exponentiation

ag = 432u* + 216w + 3602,

ag = 2592u® + 1728u? + 432u3 4 36u? = a9 T,

a7 = 15552u8 + 12960u5 + 4320u* 4 648u> + 36u? = agT,

a6 = 93312u” + 933128 + 38880u’ + 8208u* + 864u® + 36u? = a7 T,

as = 559872u8 + 653184u7 + 326592u’ + 88128u° + 13392u* + 1080u> + 36u? = ag7T,

as = 3359232u° 4 4478976ud 4 2612736u” + 855360u’ + 168480u® + 20304u? 4 1512u>
+ 720 = asT + ag,

az = 20155392u'0 + 30233088u° + 20155392u® + 7744896u” + 1866240u’ + 290304u°
+29376u’ + 1944u® + 720 = a4T, 8)

az = 120932352u! 4 201553920610 + 151165440u° + 66624768u® + 18942336u”
+ 3608064u’ + 466560u° + 41040u* + 2376u> + 72u® + 1 = a3T + 1,

a1 = 120932352u! 4 201553920610 + 147806208u® + 62705664u® + 16982784u” + 3063744u°
+ 375840u® + 31536u* 4+ 1728u® + 36u? +1 = az — aq + a5 — a7 + as,

ap = 120932352u'! + 181398528u'0 + 1209323521 + 47029248u® + 117573127 + 1975104u°
+ 228096u® + 18144u? + 864u® + 1 = a1 — a3 + a4 — ag + a7 — ag,

where T' = 6$u + 1. Similarly, we assume that f is the output of Miller algorithm,
and m = fP"~!. The hard part can be performed as follows:

9
p(u)104p(u)® 41 P
m r(u) — H/‘i ,
=0

where p; can be computed as follows:

2
po = ((mT =) T=D/3 . T=1m)(T=D7 "y = (uiya)” for i € {3,5,6,7,8}, pa = (us)” - po,

po = (u3)" -m, 1 = pg - ps - ps - (pa - pr) T po = pa - pa - pr - (3 - pe - po)
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This part requires 11 exponentiations by T', T'—1 or (T'—1)/3, 22 multiplications,
two inversions in 15, and 9 p-power Frobenius operations. Note that inversions
in Fp 15 can be computed for free using a simple conjugation [31]. Assume that
we apply this family of curves for pairing computation at 192-bit security level.
The sizes in bits of r, and T are 384 and 64, respectively. By carefully choosing
parameters, we can get a value of T' with low Hamming weight (e.g., H(T) = 7).
This final exponentiation will require 88M 15 + 528S,,15.
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Abstract. We study efficient high-throughput hardware implementa-
tions of the Grain-128a family of stream ciphers. To increase the through-
put compared to the standard design, we apply five different techniques in
combination: isolation of the authentication section, Fibonacci-to-Galois
transformation of the feedback shift registers, multi-frequency implemen-
tation, simplification of the pre-outputs functions and internal pipelin-
ing. The combined effect of all these techniques enables an average 56%
higher keystream generation throughput among all the ciphers, at the
expense of an average 8% area penalty, an average 4% power overhead
and a 21% slower keystream initialization phase. An alternative combi-
nation of techniques allows an average 23% throughput improvement in
all phases.

1 Introduction

Feedback Shift Registers (FSR)-based stream ciphers, characterized by a low
hardware footprint, are one of the most promising candidates for deployment
in low-cost authentication devices [1]. Since FSR-based stream ciphers target
highly-constrained environments, designing them efficiently is important. Hard-
ware efficiency was one of the main parameters used for grading the ciphers
during the eSTREAM project [2], that in 2008 identified a portfolio of three
promising FSR-based stream ciphers: Grain [3], Mickey [4] and Trivium [5]. Un-
til recently, however, only straightforward implementations of the ciphers were
considered (standard syntheses of RTL models that are direct translation of the
cipher algorithm) [6].

In 2010, special techniques to improve the hardware figures-of-merit of FSR-
based stream ciphers were introduced in [7] and [8], and it was shown that the
throughput of FSR-based stream ciphers can be considerably improved.

In 2011, Agren and co-workers introduced a new family of Grain ciphers that
natively supports authentication, with a maximal tag length of 32 bits, called
Grain-128a [9] (described in Section 2). To our best knowledge, no study on
the hardware implementation of the Grain-128a ciphers has been conducted. In
this work we aim on finding the best implementation of Grain-128a in terms of
throughput. In Section 4 we implement the original Grain-128a ciphers using a
straightforward design flow. Then, we apply five different techniques to improve
their throughput: in Section 5 we isolate the authentication section of the ciphers,

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 278-292, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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in Section 6 we transform the Fibonacci FSRs of the ciphers to Galois FSRs,
in Section 7 we introduce dual-frequency implementations of the ciphers and we
simplify and pipeline their pre-outputs functions.

The final results, reported in Section 8, show that among the six versions of the
cipher we obtain an average 56% higher keystream generation throughput at the
expense of an average 8% area penalty, a 4% power overhead and a 21% slower
keystream initialization phase. We also introduce an alternative combination
of techniques that improves throughput in both initialization and keystream
generation phases, well suited for ciphers that process short bursts of data and
spend a lot of time in the keystream initialization phase: in this case, the average
throughput improvement is 23%.

2 The Grain-128a Cipher

The Grain-128a family of ciphers [9] are extensions of the Grain-128 stream
cipher, that natively supports authentication with a variable tag size up to 32
bits. The non-linear functions of the Grain-128a ciphers are also slightly different
compared to those of Grain-128.

The Grain-128a family of ciphers is constituted by one unparallelized cipher
and five parallelized versions of the same cipher, which can have degree of par-
allelization 2, 4, 8, 16 or 32. We refer to a version of Grain-128a parallelized k
times as Grain-128aXk (we refer to the unparallelized cipher as Grain-128a or
Grain-128aX1). All members of the family are functionally equivalent, i.e. they
have the same output when fed by the same input. In Grain-128Xk the FSR
feedback functions and the pre-output functions, as well as some parts of the
authentication section, are replicated k times compared to the unparallelized
cipher. Grain-128aXk outputs ’; keystream bits per cycle.

A complete schematic of the grain-128a cipher is shown in Figure 1. The cipher
is divided into two parts: the keystream generator, which generates a pre-output
stream, and the authentication section.

3 29 6 3
I [ _NLPsR S LFSR ﬂ;

1 ‘7 \__?._12 (A J17 ‘1

keystream generator authentication section
|

v

(splitter)

Fig. 1. The Grain-128a cipher

2.1 Keystream Generator

The keystream generator contains a 128-bit Linear FSR (LFSR) and a 128-bits
Non-Linear FSR (NLFSR). The contents of the 128-bits LFSR are denoted as
80, 81, .-+, S127; the contents of the 128-bits NLFSR are denoted as bg, b1, ..., b127.
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All memory elements of the LFSR and the NLFSR are updated simultaneously.
s; is updated to s;41 for 0 < i < 126; s127 is updated to f(s), where f(s) is:

f(s) = so + s7+ s38 + S70 + Ss1 + S96

b; is updated to b;11 for 0 < i < 126; bya7 is updated to g(b, so), where g(b, s9)
is:

g(b,s0) = so + bo + bag + bsg + bg1 + bos + bsbgr + b11b13 + b17b1s + barbsg
+baobag + be1bes + begbsa + bsgboabgzbys + bazbaabas + brobrsbs:

The function h(b, s) is:
h(b, s) = bi2ss + s13520 + bossa2 + 860579 + b12b95594
The pre-output function y(b, s) is:
y(b,s) = h(b,s) + s93 + b2 + b15 + bz + bas + bea + br3 + bso

The sequence of pre-output bits output by the y function are denoted as yo, ..., y;.
The output function z(b, s) = yea+2; outputs all pre-output bits of even index
except the first 64. The first 64 pre-output bits and all bits of odd index are
instead passed to the authentication section.

2.2 Authentication Section

Two authentication registers, the accumulator and the authentication shift reg-
ister, both of size 32, are used. The content of the accumulator is denoted as
ao, ..., a31. The content of the authentication shift register is denoted as rq, ..., 731.
During an initial 64-cycles authentication initialization phase, the first 32 pre-
output elements o, ..., y31 of y; are stored in the authentication shift register
(r; = y;) while the following 32 elements ysa, ..., ys3 of y; are stored in the accu-
mulator (a; = yz2+4)-

In every cycle i, r3; is updated to the new pre-output bit ygst2i+1 while all
the other 31 elements r; are updated to rjy1. All bits a; in the accumulator are
updated to a;+m;r;, where m; is the bit of the message m = my, ..., mp—1 that is
being encrypted in cycle i. The final content of the accumulator once encryption
is concluded is denoted as the tag t and can be used for authentication (¢; = a;).

If the tag size is w < 32, only the part of the tag ¢ with the w highest indexes
is used as a tag; the other parts are discarded.

2.3 Cipher Phases

When the cipher starts operating, the 128-bit key ky, ..., k127 is loaded in the
128 NLFSR memory elements by, ..., b127; the 96-bit Initial Value I'Vj, ..., IVys is
loaded in the first 96 LFSR memory elements sq, ..., sg5; the last 32 bits of the
LFSR are loaded with sgg, ..., S126 = 1 and s127 = 0. After having been loaded



An Improved Hardware Implementation of the Grain-128a Stream Cipher 281

with the key and the initial value, the cipher goes through the following phases:
(1) keystream initialization phase, 256 clock cycles in which the cipher does not
produce any output bit and the output of the y function is fed back to the LFSR
and the NLFSR (red lines in Figure 1); (2) authentication initialization phase,
64 clock cycles in which all the pre-output bits are stored in the accumulator
and the authentication shift register; (3) operational phase in which half the
pre-output bits are output as keystream and half are fed to the authentication
section of the cipher. The keystream generation phase includes both phases (2)
and (3). The phases of the cipher are summarized in Figure 2.

keystream generation

keystream  initialization authentication initialization |operational

256 cycles 64 cycles

Fig. 2. Cipher phases

3 Implementation and Analysis Methodology

All timing, area and power figures reported in this paper are obtained by design-
ing the ciphers at Register Transfer Level (RTL) in Verilog, and then synthesizing
the code for best performances using Cadence RTL Compiler for the TSMC 90
nm ASIC technology.

To keep track of the phases of the cipher and decide when to change phase,
the cipher uses an LFSR counter [10], the smallest and fastest type of counter.
The FSRs are initialized serially with the key and the initial value.

Timing and area figures are obtained from the synthesis tool; power figures
are obtained using the following procedure: the post-synthesis gate-level netlist
is exported by the synthesis tool; a gate-level simulation is performed using the
Cadence Incisive logic simulator with a set of random test vectors and a clock
frequency of 10M H z; the switching activity of all nets in the system is saved to
a VCD file and read back by Cadence RTL Compiler, which then estimates the
power consumption of the system.

4 Straightforward Implementation

We first implement Grain-128aXk using a standard design flow (applied to an
RTL model that directly tranlates the algorithms), and optimizing the system
for the highest throughput.

To improve the throughput of the different versions of the Grain-128a cipher,
we study the location of the critical paths in the synthesized ciphers, i.e. the
longest combinational propagation delays, which determine their throughput.
We define the following delays:

— D,: maximal propagation delay from any NLFSR flip-flop to any other
NLFSR flip-flop. D is the LFSR counterpart.
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Table 1. Timing in the original versions of Grain-128a

X1 X2 X4 X8 X16 X32
Min,, (ps), CP 472, Dpyn 493, Dhyn 499, Dhyn 521, Dpyn 588, Dhya 665, Dhya

— Dpy: maximal propagation delay from any NLFSR or LFSR flip-flop through
the h and y functions to the output of the cipher.

— Dpyq: maximal propagation delay from any NLFSR or LFSR flip-flop through
the h and y functions to any accumulator flip-flop.

— D,: maximal propagation delay from any flip-flop in the authentication sec-
tion of the cipher to any accumulator flip-flop.

Two additional delays, active only during the keystream initialization phase, are
defined:

— Dpyn: maximal propagation delay from a flip-flop of the NLFSR or LFSR
through the h and y functions to the first flip-flop of the NLFSR. Dy, is
the LFSR counterpart.

Table 1 reports the minimal clock period and the critical paths for all the versions
of the cipher. The first observation is that Grain-128aX16 and Grain-128aX32
can benefit from breaking the h-y-accumulator path. This is discussed in the
next section.

5 Isolating the Authentication Section

In a parallelized cipher Grain-128aXk with k > 4, the value of a; must be
updated to

u< 12”

a; + Z Mt * Tjtu

u=0
in every cycle i. The implementation is straightforward for j < 31 — g However,
for j > 31 — ’2“, the accumulator logic would need to access values of r; with
j > 31. These values can be seen as ”future values” of the r bits. Since r shifts
its elements by ’2“ positions every clock cycle and loads ’; new elements from ’2“
outputs of the k parallel h/y functions, g future values of the r elements can
always be found on the output lines of the h/y functions, and can be accessed
by the accumulator logic to implement the authentication functionality.

For high degrees of parallelism, this straightforward solution, used in Section 4,
involves a long combinational path Dy, through the h/y functions and the
accumulator logic that limits the performances of Grain-128aX16 and Grain-
128aX32.

To break the Dy, path, flip-flops are inserted in the authentication section
of the cipher on the outputs of the h/y functions, as shown in Figure 3. This
solution adds one cycle latency in the production of the tag, but has no effect
on cipher security.
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Fig. 3. Isolation of the authentication section for Grain-128aX8

Table 2. Timing in the versions of Grain-128a after the isolation of the authentication
section

X1 X2 X4 X8 X16 X32
Min,, (ps),CP 440, Dpyn 490, Dhyn 483, Dpyn 517, Diyn 545, Dhyn 580, Dpyn

After applying this solution to all versions of Grain-128a, the minimal clock
periods (Miny,) and critical paths (CPs) of the ciphers improve, as reported in
Table 2. Timing improves for all versions of the cipher.

The critical paths of all versions of the cipher are now determined by Dpyy,.
Since h, y and g are optimized together by the synthesis tool, Dy, depends on
both the h/y functions (19 literals in total) and on the g(b, so) feedback function
of the NFLSR (30 literals).

In the next section we try to reduce Dy, by reducing the maximal propaga-
tion delay of the paths going from the NLFSR bits to the first bit of the NLFSR
through Fibonacci to Galois transformation [11].

6 Fibonacci to Galois Transformation

A Feedback Shift Register (FSR) consists of n binary storage elements, called
bits [12]. Each bit ¢ has an associated state variable z; which represents the
current value of bit ¢ and a feedback function f;(xo,...,xn—1) which determines
how the value of i is updated. All updates take place simultaneously.

The FSRs can be implemented in two configurations, Fibonacci or Galois. An
FSR is in Fibonacci configuration if all feedback functions f; except f,—1 take
the form f; = x;41. If some functions f; with ¢ # n—1 are not in this form, then
the FSR is in Galois configuration. For LFSRs, this definition is more general
than the traditional definition of Galois LFSRs, which corresponds to that of
fully-shifted Galois LFSRs [11]. However, to keep the presentation simple, in
this paper we use this definition for both NLFSRs and LFSRs.

As discussed in [11] a serially-initialized Fibonacci n-bit FSR can be trans-
formed into an equivalent Galois FSR having the same output stream (i.e. the
values of z¢ in the two FSRs are always identical). The transformation can be
done by moving a set of product terms P from f; to f; while changing the in-
dexes of each variable xj, of each product term in P to zx—;+;. To guarantee



284 S.S. Mansouri and E. Dubrova

the equivalence of a Fibonacci NLFSR to a Galois NLFSR, product terms can-
not be shifted to positions lower that the minimum terminal bit 7,,;,, which is
calculated as:

Tmin = max (mazx index (p;) — min index (p;))
pi€Pr

where min index(p;) and maz index(p;) denote respectively the minimum and
maximum index of the variables in product term p; and pr is the set of all
product terms. Proof of equivalence between the Fibonacci and the Galois FSRs
can be found in [11].

When this transformation is applied to stream cipher’s FSRs, as discussed
in [7], the feedback functions in which a product term p; can be moved are also
limited by:

— minimal index in the product term: no product term p; can be moved to a
feedback function of grade lower than n — 1 — min index(p;).

— combinational functions inputs: to preserve the original encryption algo-
rithm, no product term can be moved to a feedback function of grade lower
than the highest state bit used as input of any combinational function.

— degree of parallelization: in an FSR parallelized k times, all feedback func-
tions f; except n —j-k—1, V5 ={0,1,...,|(n —1)/k| — 1} should have
feedback functions of type f; = x;11.

6.1 Throughput Optimization

Tranformation from Fibonacci to Galois for a single FSR can generally result into
many different configurations. To choose the best design in terms of throughput,
a heuristic algorithm was developed in [8]. This algorithm tries to find the fastest
Galois FSR equivalent to a given Fibonacci FSR, i.e. the Galois FSR with the
shortest critical path [8].

The algorithm associates every FSR to a cost, which is an estimation of its
critical path, and tries to find the minimal-cost Galois FSR. Normally, given a
Fibonacci FSR, the algorithm can choose among more than one minimal-cost
Galois FSR. Although all of them have in principle similar throughput, they
have slightly different area overheads.

In this paper we use the same algorithm suggested in [8] to find the best
Fibonacci-to-Galois transformation; however, since the original algorithm does
not consider area, we have introduced a final area optimization stage to it.

6.2 Area Optimization

The main idea of the area optimization stage is that area savings occur when
two or more products in different feedback functions can be implemented using
shared gates.

Once the algorithm in [8] has identified a minimal-cost FSR, its feedback func-
tions are scanned to search for product terms in the form x;x;... and @i, jqp ...
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These product terms will be encountered if the original Fibonacci FSR also
contained product terms in the form z;«zj«... and @« {2 = 44+..., & common
occurrence for cryptographic FSRs.

The algorithm removes the two product terms from the feedback functions and
tries to place them exactly at distance k from each other, with the first above
the second. All available positions are scanned to find a suitable placement. The
product-term movement takes place only if it does not increase the cost of the
FSR, i.e. its estimated critical path. If a suitable placement for the two product
terms is found, the products z;z; and x;4r%;4r are transformed to the same
product -z, and both products can be implemented using a single shared
AND gate. The main idea of this optimization is shown in Figure 4: the Galois
configuration allows to implement the two product terms of the Fibonacci FSR
using a single AND gate. The algorithm continues until all suitable product
terms have been placed and no further area optimization is possible.

5 (XD 14 X4 113 | X3 12 X2 £f1 [ X1} ¢10 X0
eprtliopineppin;

N A=

Fig. 4. Area savings obtained through shared AND gates

7 Final Optimization

By transforming the FSRs of Grain-128aXk from a Fibonacci to a Galois con-
figuration, Galois FSRs (both LFSR and NLFSR) run faster compared to the
original Fibonacci FSRs. The highest improvement in timing is 67% for Grain-
128aX1’s NLFSR; the average timing improvement is 34%.

However, after implementing the Grainl128a ciphers with Galois FSRs, the
minimal clock periods of the complete ciphers improve only by 9% on average
(compare Tables 3 and 2). The reason is that for all versions of Grain-128a, the
critical path is given by Dpyn, i.e. performances are limited by the initialization
path from the FSRs bits through the h, y and g functions to the first NLFSR
bit. To increase further the throughput of the cipher, we suggest two alternative
approaches: the first improves cipher performance during the keystream genera-
tion phase but sacrifices performances during the keystream initialization phase;
the second tries to optimize throughput during both phases.

Table 3. Timing in the versions of Grain-128a after the Fibonacci to Galois transfor-
mation

X1 X2 X4 X8 X16 X32
Min, (ps), CP 440, Dyyn 445, Dhyn 472, Dpyn 482, Diyn 573, Dhyn 580, Dpyn
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7.1 First Approach: Dual Frequency Implementation

Similarly to the work in [7], to increase throughput during the keystream gen-
eration phase we realize a dual-frequency implementation of Grain-80 in which
the cipher works with a slower clock clky; during the keystream initialization
phase (the only phase in which the path Dy, is active) and with a faster clock
clkyg during the keystream generation phase. The clock clky; can be generated
externally or generated locally from clky, by a clock divider block.

We synthesize the ciphers optimizing them for operation during the keystream
generation phase by defining the paths from the outputs of the y functions to
the inputs of the LFSR and NLFSR as false paths during synthesis, i.e. we
instruct the synthesis tool not to optimize any combinational path going from
the outputs of the y functions to the inputs of the LFSR and NLFSR. This makes
Dp,yr larger, but reduces D,,, D, and Dy, because it pushes the tool to optimize
them as much as possible. Timing figures are reported in Table 4, row N/A, for
both keystream initialization and keystream generation phases. Based on the
results in Table 4, to ensure correct operation for all degrees of parallelization,
it is sufficient that clk; be twice slower than clksg, i.e. clock division by a factor
two is sufficient to guarantee correct operation if the keystream generation clock
period is defined by the keystream generation critical path.

For high-parallelism versions of the cipher, the critical path during the op-
erational phase is given by one of the feedback functions of the NLFSR, which
are hard to optimize further. However, for k& < 8, the performances of the cipher
are limited by the propagation delay through the h and y functions. To keep the
presentation simple, we consider the cascade of the h and y functions as a sin-
gle non-linear function hy. To improve throughput, this hy function is pipelined
using a 2-levels or 3-levels pipeline (see Figure 5-A).

Fig. 5. Pipelined hy function in Section 7.1 (left) and Section 7.2 (right)

During the keystream generation phase, the output of the hy function goes to
the output and the authentication section of the cipher. There is no feedback to
the keystream generator; therefore pipelining the hy function does not alter the
functionality of the cipher but only introduces a latency delay in the generation
of the output stream and the authentication tag, which does not have any effect
on the security of the cipher.



An Improved Hardware Implementation of the Grain-128a Stream Cipher 287

Table 4. Timing (Min, (ps), CP) in the versions of Grain-128a during the keystream
initialization (K.I.) and generation (K.G.) phases without pipelining (N/A) and with
pipelining (P.L.) of the hy function (2 or 3 pipeline levels considered)

PL. Phase X1 X2 X4 X8 X16 X32
N/A K.I 561, Dpyn 598, Dpyn 607, Dpyn 639, Dpyn T51, Dy 840, Diyr
K.G. 389, Dy, 372, Du, 389, Dn, 403, Dn, 446, D, 498, D,
2 K.I 579, Dpyn 604, Dyyn 629, Dyyn 657, Dpyn 830, Dpyn 904, Diyn
K.G. 303, Dy, 286, Dy, 328, Dy, 350, D, 417, D, 488, D,
3 K.I 569, Dpyn 623, Dhyn 668, Dhyn 685, Dhyn 827, Dhyn 881, Dhyn
K.G. 283, Dy, 280, Dy, 305, Dy, 350, D, 410, D, 475, Dq

During the keystream initialization phase, the output of the hy function is
fed back to the first bits of the NLFSR and the LFSR; if the hy function is
pipelined during this phase, the functionality of the cipher is altered. Therefore,
multiplexers are implemented in the pipeline to bypass the flip-flops and deac-
tivate them during the keystream initialization phase. The initialization path
through the multiplexers is defined as a false path during synthesis to push the
tool to optimize for the keystream generation phase.

Pipelining the hy function has no effect on cipher security but has some draw-
backs: flip-flops have to be inserted to implement the pipeline; An L level pipeline
adds a latency of L cycles in the production of the tag. In general. the drawbacks
increase with the number of pipeline levels.

Table 4 shows timing figures and critical paths for versions of the cipher with
and without (N/A) pipelined hy function. Pipelining the hy function improves
the timing of all versions of Grain-128a. The best improvement is obtained for
Grain-128aX2.

7.2 Second Approach: Transformed hy Function

The solution presented in Section 7.1 is not well-suited for ciphers that spend a
lot of time in keystream initialization phase because it makes this phase slower.
In this section we introduce a new approach which decreases the delay of the
path Dpyy by breaking down the hy function into several smaller functions. The
approach is based on the idea that it is possible to ”move product terms” of the
hy function similarly to a FSR Fibonacci-to-Galois transformation.

The hy function is indicated as hyi27 because it is fed to state bits s127 and
b127. The transformation is done by moving a set of product terms P of hyi27 to
hy127—; while changing the index of each variable x; of each product term p; € P
to xj_;. Similarly to the Fibonacci-to-Galois transformation in Section 6, 127 —+¢
can not be smaller that the minimum terminal bit 7,,;, for the hy function, i.e.
the maximal difference between variable indexes across all the product terms of
hy. As an example, the hy function can be broken into three parts with:
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Table 5. Timing (Min, (ps), CP) in the versions of Grain-128a with transformed hy
function

X1 X2 X4 X8 X16 X32
382, Dhyn 389, Dhyn 397, Dhyn 439, Dpyn 468, Dpyn 580, Dpyn

hy127(b, 8) = bi2ss + 13820 + bgsSa2
hy126(b, 8) = b11bgaSes + br2 + b1 + s59578
hy125(b, $) = sg91 + bg7 + b1g + bsa + bag + be2

As shown in Figure 5-B, during the keystream initialization phase all hyjo7—;
functions are fed back to states bits bio7_; and sio7_; of the NLFSR and the
LFSR. During the keystream generation phase, the feedback loop is disconnected
and the hy; functions form a 3 levels pipeline.

To preserve functional equivalence with the original cipher, care should be
taken in determining the moment in which the hy feedback loop is activated and
removed: before feeding the FSRs, the output of each hyi27_; function is ANDed
with a signal enja7—; (enia7 = run). This guarantees that each hyi27_; feedback
becomes activated/de-activated i cycles after the hy;o7 feedback at the start/end
of the keystream initialization phase. The eni27_; signals can be generated by
delaying the run signal using flipflops (as shown in Figure 5) or can alternatively
be driven by the internal counter.

Table 5 reports the minimal clock period and the critical paths for all the
versions of the Grain-128aXk with a three-stage hy function when k& < 4 and for
a two-stage hy function when k = 8, 16.

8 Final Comparison

In this Section, we report the final throughputs of Grain-128a after applying
all the techniques introduced in Sections 5, 6, 7.1 and 7.2. For every value, we
report also the improvement over the original cipher. We denote as (ORG) the
original ciphers (see Section 4); as (F2G) the original ciphers after the isolation
of the authentication section and the Fibonacci to Galois transformation of the
FSRs (see Sections 5 and 6); as (2F) the F2G ciphers modified with the im-
plementation of the dual frequency solution (see Section 7.1) and 2-levels (for
degree of parallelism k& > 4) or 3-levels (for k& < 4) internal pipelining; (1F)
are the F2G ciphers with transformed hy function introduced in Section 7.2.
For Grain-128aXk with & < 4, the hy function is divided into three functions
(hy127, hya26, hys); for k > 4, it is divided into two functions (hyi27, hy126)-
The results are reported in terms of maximal frequency, throughput (fynaz- ’2“),
area and power. for 2F designs, the frequency reported in Table 6 is the frequency
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Table 6. Implementation results

k data Freq. (GHz) Through.(Gb/s) Area(um?) Power (uW)
imp. ORG 2F 1F ORG 2F 1F ORG 2F 1IF ORG 2F 1F

X1 d. 21 3526 1.1 1.5 1.3 5876 5856 5884 96.9 94.1 93.9

% - 6724 - 67 24 - 0 0 - 3 3
X2 d. 2 3626 2 36 26 6972 7314 7345 106.1 113.1 102.6
% - 8 30 - 80 30 - 0 0 - -7 3
X4 d. 2 3325 4 6.6 25 8299 9145 8614 120.6 136.1 125.1
% - 6525 - 65 25 - -10 -4 - -13 4
X8 d. 19 2923 76 11.6 9.2 10778 11087 10729 176.4 174.6 164.8
% - 5321 - 53 21 - -3 0 - 1 6
X16 d. 1.7 2421 13.6 19.2 17.1 15709 17653 14585 247.8 275.4 205.4
% - 4124 - 41 24 - -12 7 - -11 17
X32 d. 15 2 1.7 24 32 27.2 23430 28917 25554 417.9 415.1 403.5
% - 3313 - 33 13 - -23 -9 - 1 3

during the keystream generation phase. The keystream initialization frequency
is twice lower than this frequency.

As shown in Table 6, the highest improvement in keystream generation through-
put is achieved by the 2F implementation of Grain-128a, with an average 56%
improvement in throughput among all the versions of the cipher. The highest im-
provement is 80% for Grain-128aX2 and the minimal improvement is 33% for
Grain-128aX32. The 2F implementation can be used in applications which en-
code/decode large data sets. On the other hand, with the 1F implementation we
achieve on average a 23% throughput improvement in all phases. Although the 1F
implementation has a lower throughput improvement compared to the 2F imple-
mentation, it does not use a double clock and is therefore simpler and with a lower
area overhead. It is well-suited for applications which encode/decode short data
sets and switch often between operational phases.

9 Conclusion

In conclusion, we have shown that it is possible to considerably improve the
hardware timing figures of merit of the different versions of the Grain-128a ci-
pher by applying a combination of different techniques. With a two-frequencies
implementation, the keystream generation throughput improved on average 56%
at the expense of a 21% slowing of the keystream initialization phase an rea-
sonable overheads. An alternative single-clock solution allowed us to obtain an
average 23% higher throughput in all phases.

Acknowledgment. This work was supported in part by a project No 621-2010-
4388 from Swedish Research Council.
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Appendix A: Fibonacci to Galois Transformation of FSRs
in Grain-128a

NLFSR Fibonacci to Galois Transformation

We use the algorithm described in [8] and the area optimization algorithm from
Subsection 6.2 to transform the NLFSRs of Grain-128aXk from a Fibonacci to
a Galois configuration.

For Grain-128a, the product term with the maximal difference in variable
indexes is b3bgr, i.€. Tmin = 64 (see Section 6). Product terms cannot be allocated
to feedback functions g; of grade i < 95 because bit bgs is used in function h
(see Section 6).

The area optimization algorithm (see Subsection 6.2) places the Fibonacci
product terms bggbgabgsbgs, baobasbas and brobrgbss respectively 27, 11 and 30
feedback functions downer than the product terms bgibgs, b11b13 and bygbss.
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For Grain-128aX1, the following Galois NLFSR is obtained:

g127 = 50 D bo

g126 = b127 © b3gbay
g125 = b126 ® bsgbes
g124 = b125 ® bobes
g123 = b124 ® bs2
g116 = b117 ® bob2
g105 = b1 © bob2b3
g110 = b111 ® bob1
g102 = b103 @ b7y
g101 = b1o2 @ bo

g100 = b101 ® bobaz
999 = b1oo D be3

gos = bgg @ bs9bssbsabss
go7 = bgg ® bzgbsa
996 = bo7 ® b3gbarbsi

Here and in the remainder of the paper, unspecified feedback functions are in
the form g; = ;4.

For Grain-128aX2 the Fibonacci product terms of the original NLFSR can
be moved only to feedback functions gi27, g125, 9123, 9121, 9119, 9117, 9115, G113,
g111, 9109, 91075 9105, 9103, gio1 and ggg. The following Galois NLFSR is obtained
after application of the timing and area optimization algorithms:

g127 = by D s

9125 = b126 ® b1bes
g123 = b124 @ bs7be1
g121 = b122 ® bsbr

g119 = b120 ® bgb1o
9115 = b116 ® b15bs7
9113 = b114 ® b12

g111 = b112 ® bebgbg
g109 = b110 ® br3

g107 = b1os @ be2bssbso
9105 = b1os @ b1gbag
9103 = b104 ® br2

g101 = b1o2 ® b3

999 = b1oo ® baobse

gor = bog ® bsgbe2be3bes

The area optimization algorithm places the Fibonacci product terms bggbgabg3bgs
and bryobrgbgs respectively 26 and 16 feedback functions downer than the Fi-
bonacci product term bg1bgs. Also, the baosbasbos product term is placed 10 feed-
back functions downer than the by1b13 product term. This allows sharing gates
among some of the parallelized feedback functions.

For Grain-128aX4 the Fibonacci product terms of the original NLFSR can be
moved only to feedback functions gi27, g123, 9119, 9115, 9111, 9107, 9103 and gog.
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The NLFSR is transformed to:

g127 = So @ bo @ bsber

9123 = b124 @ b22 @ bs2 P bagbss
9119 = b120 ® bob1o & b3bs

g115 = bi16 @ brobesbss

g111 = bi12 ® bebsby

g107 = b1og @ begbrabrsbrs

9103 = b104 ® b2 @ b37bay

999 = b1oo D baobse @ bez @ b12bag

The area optimization algorithm places the Fibonacci bggbgabgzbgs product term
8 feedback functions downer than the product term b7gbygbge; the product term
baobogbos is placed 8 feedback functions downer than the product term by1b13.

For Grain-128aX8 the Fibonacci product terms of the original NLFSR can
be moved only to feedback functions gi127, 9119, g111 and gi03. The NLFSR is
transformed to:

g127 = 80 D by @ bzber D bggbgabyzbys

g119 = b120 ® bob1o D bsbs @ bsabao ® bgobrs
g111 = b112 @ b10 ® bao B b11ba3 D brs B bebsbg
9103 = D104 D br2 D b37bar D bagbsabss

For Grain-128aX16 the Fibonacci product terms of the original NLFSR can be
moved only to feedback functions g127 and g111.- The NLFSR is transformed to:

g127 = S0 D by @ bse D b3bs7 @ b11b13 D bagbag D baoboaabas @ brobrabaz
g111 = b112 @ b1 @ b7s D bgo D b1ba B b11bas D basbag & br2brebrrbre ® besbsa

For Grain-128aX32 the Fibonacci product terms of the original NLFSR can be
moved only to feedback functions gi27, i.e. the NLFSR cannot be transformed
into a Galois NLFSR.
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Abstract. The ease of programming offered by the CUDA programming
model attracted a lot of programmers to try the platform for acceleration
of many non-graphics applications. Cryptography, being no exception,
also found its share of exploration efforts, especially block ciphers. In
this contribution we present a detailed walk-through of effective map-
ping of HC-128 and HC-256 stream ciphers on GPUs. Due to inherent
inter-S-Box dependencies, intra-S-Box dependencies and a high number
of memory accesses per keystream word generation, parallelization of
HC series of stream ciphers remains challenging. For the first time, we
present various optimization strategies for HC-128 and HC-256 speedup
in tune with CUDA device architecture. The peak performance achieved
with a single data-stream for HC-128 and HC-256 is 0.95 Gbps and 0.41
Gbps respectively. Although these throughput figures do not beat the
CPU performance (10.9 Gbps for HC-128 and 7.5 Gbps for HC-256), our
multiple parallel data-stream implementation is benchmarked to reach
approximately 31 Gbps for HC-128 and 14 Gbps for HC-256 (with 32768
parallel data-streams). To the best of our knowledge, this is the first
reported effort of mapping HC-Series of stream ciphers on GPUs.

Keywords: CUDA, eSTREAM, GPU, HC-128, HC-256, stream cipher.

1 Introduction

The eSTREAM [12] Portfolio (revision 1 in September 2008) contains the stream
cipher HC-128 [21] in Profile 1 (SW) which is a lighter version of HC-256 [22]
stream cipher born as an outcome of 128-bit key limitation imposed in the
competition. Several research contributions exist on the cryptanalysis of HC-
128 [14,15,13,18,20]. However, HC-256 has undergone fewer cryptanalytic at-
tempts [16,19]. For algorithmic details of HC-128 and HC-256, the reader may
refer to Appendix A.
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After NVIDIA introduced a general purpose parallel computing platform
namely Compute Unified Device Architecture (CUDA) in November 2006 [24],
many cryptographers harnessed GPUs for acceleration. The earliest successful
effort of AES acceleration on GPUs, that outperformed CPU in throughput, was
presented by Manavski [1] who reported a throughput of 8.28 Gbps for AES-128
encryption on NVIDIA GeForce 8800. His work was later criticized for having
half of the throughput rates that it could achieve by using shared memory in-
stead of constant memory for T-boxes [2]. A more recent work by Iwai et al. [3]
reported 35 Gbps of throughput for AES encoding on NVIDIA GeForce GTX285
by exploiting memory granularity for independent threads.

Several endeavors undertook more than one cipher to present a suite of CUDA
based crypto accelerator application. Liu et al. [4] studied the effect of number of
parallel threads, size of shared memory for lookup tables and data coalescing in
device memories for several block encryption algorithms (AES, TRI-DES, RC5,
TWOFISH) processing on GPU using CUDA. Nishikawa et al. [5] targeted five
128-bit symmetric block ciphers from an e-government recommended ciphers list
by CRYPTREC in Japan and achieved substantial speedup.

The block ciphers, when subjected to parallelism offered by CUDA, gener-
ally show high speedups compared to CPUs because of the absence of data
dependency between the consecutive data blocks. Generally, the plaintext is
broken into n-many blocks of same size and subjected to independent threads of
GPUs. Higher sizes of plaintext give more data blocks and hence result in better
throughput by achieving more data parallelism, till the device limit is reached.

Unlike block ciphers, stream ciphers in general cannot be subjected to this ‘di-
vide and rule’ strategy. The reason is the dependencies in the states/S-boxes that
are used for keystream generation. The only endeavor of mapping eSTREAM (in-
cluding HC-128) and SHA-3 cryptographic algorithms on GPUs was presented by
D. Stefan in his masters thesis [7]. He reported a throughput of 2.26 Gbps (4.39
cycles/byte) for HC-128 implementation using multiple parallel data-streams on
NVIDIA GTX 295 GPU device[7]. This effort, however, lacks any optimization
opportunity exploiting the structure of the algorithm and is, therefore, easily
surpassed by our implementation in throughput.

This work presents a novel implementation of HC series of stream ciphers
on recent graphics hardware. To the best of our knowledge, this is the first
publication employing CUDA framework for GPU acceleration of any stream
cipher.

2 Limitations in Parallelization of HC Ciphers

The keystream generation for HC series of stream ciphers has two steps, we name
them as self-update step (SUS) of P/Q array and keystream word generation step
(KWGS). In a serial implementation, each 32-bit word of P array SUS is followed
by one KWGS. This goes on for 512 iterations in HC-128 and 1024 iterations for
HC-256. The same follows for ) array for exactly the same number of iterations.
Ideally, a fast GPU-based implementation would be able to run all these steps
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in parallel by independent threads as long as the device capacity is not over-
budgeted. However, ciphers like HC have highly iterative structures, prohibiting
parallelization beyond a limit.

2.1 Intra-S-Box Dependency in Self Update Step of S-Boxes

The gain of parallelization offered by CUDA programming model can be ex-
ploited easily if each iteration of a given iterative code block is independent of
its past execution. Such loops can be converted to parallel kernels by complete
unrolling where each loop iteration is executed by an independent thread. If an
array value being computed by a loop iteration has an intra-array-dependency,
such parallelism cannot be harnessed.

The SUS of HC-128 has a data dependency, the update of element P[j] de-
pends on its current and past values, i.e., P[j]|, P[jB3], P[jE10] and P[jB511].
Since the nearest dependency in the SUS of P[j] is on P[jHB3], one cannot unroll
the loop more than 3 times.

//Three times unrolled version of P array SUS

for(j =05 <512;j =j+3)

{
P[j] = Plj] + g1(P[j B3], P[j B10], P[j B 511]);
Plj+1] = Pj +1] +g1(P[j B2], P[j B9, P[j B 510));
Plj+2] = P[j + 2]+ g1(P[j B1], P[j B8], P[j B 509));

Fig. 1 describes the data dependencies for calculating the values at the %",
(i + 1) and (i + 2)™" indices of P array pictorially. Calculation of (i + 3)t"
index value requires the value at i*® index of the array, making a simultaneous
update of values at indices 7 and (i + 3) impossible. This dependency limits
the number of threads carrying out the SUS of P/Q array to no more than 3.
The same arguments can be extended for HC-256 SUS. Moreover, due to similar
limitations, we cannot harness more than 2 and 3 simultaneous threads for Step
1 and 3 respectively of initialization phase in HC series of stream ciphers.

2.2 Inter-S-Box Dependency in Keystream Generation

For exploiting parallelism we try to investigate if it is possible to carry out SUS
P and @ arrays simultaneously (no spatial data dependency) or their current
and future copies simultaneously (no temporal data dependency).

Inter-S-Box Spatial Data Dependency. Consider the keystream generation
phase of HC-128 as given in Appendix A. The SUS of P and @ arrays does not
require values from each other. However, KWGS after SUS of P array has a
dependency on ) array and vice versa. Hence a naive implementation with si-
multaneous update of P and ) arrays will not bear correct results for KWGS. In
HC-256, even the SUS of the two S-Boxes is dependent on each other. Moreover,
the KWGS dependency after SUS in HC-256 is the same as in HC-128.
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Fig. 1. Dependency in SUS at indices ¢, i + 1 and 7 + 2 in S-Boxes

Inter-S-Box Temporal Data Dependency. Temporal data dependency be-
tween the current instance of S-Boxes and their future instance is investigated
to exploit the possibility of simultaneous keystream generation from these ar-
rays for multiple data blocks. Consider two temporal instances of P array. Let
Peyrrent contain the expanded values after initialization phase and Prytyre be
the one that will have the future values of P array after SUS. Note that SUS of
Prfuture has a dependency on P.yrrent, hence making it impossible to simultane-
ously update multiple temporal instances of P/Q arrays. Arguing along the same
lines, its evident to see data dependency of P/Q arrays on their past instances
in HC-256 too.

2.3 Data-Intensiveness

When comparing the computational nature of stream ciphers with block ciphers,
a striking trend can be seen. Stream ciphers are predominantly data intensive
while block ciphers are computation intensive. HC series of stream ciphers are
no exception. Appendix B gives the list and frequency of various 32-bit binary
operations required by the SUS and KWGS of HC-128 and HC-256. The high
ratio of memory accesses to the arithmetic operations can be seen to be quite
high.

3 Optimization Strategies for GPU Implementation of
HC Series of Stream Ciphers

Kernels in CUDA compatible devices are assigned a small budget of thread-local
registers. Shared memory is local to a block of threads and is comparatively
bigger. The biggest memory in size is the grid-local global memory whose access
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incurs a 100x penalty as compared to register access [9]. Our device NVIDIA
GeForce GTX 590 has 3 GB of global memory, 48 KB of shared memory per MP
and a maximum of 64 registers per thread. Considering the memory hierarchy,
the fastest single data-stream implementation of the algorithm should use the
fastest memory, i.e., the registers. However, the S-boxes of HC-128 (4 KB) and
HC-256 (8 KB) are far too big to fit in them. The next best possibility is to put
the P and @ arrays in the shared memory and let the registers hold their smaller
16-element snapshot as suggested for the optimized implementation in [21,22].
However, this single thread implementation of keystream generation does not
lead to significant throughput. For example, HC-128 on our device yielded a
throughput of only 0.24 Gbps.

For exploiting parallelism, we strive to launch multiple threads simultane-
ously. As registers are local to one kernel, we use shared memory instead and
discuss various optimization strategies for single data-stream implementation in
Section 3.1. For multiple data-streams implementation, the use of on-chip block-
local shared memory instead of off-chip grid-local global memory can boost the
speedup significantly. However, each data-stream requires a memory budget m
for P and @ arrays, where m = 4 KB for HC-128 and m = 8 KB for HC-256
and hence the number of parallel data-streams per MP is restricted to s/m,
where s = 48 KB is the shared memory size. Therefore, we perform the multiple
data-streams implementation using global memory, as discussed in detail in Sec-
tion 3.2. A brief overview of the CUDA programming model for GPUs is given
in Appendix C.

3.1 Single Data-Stream Optimizations

Program listing of a simple implementation of keystream generation code for HC-
128 with the degree of parallelism that is straightforward to manipulate is given
in Table 1. Since the initialization phase is similar and simpler, its explanation
is skipped. The intra-dependency of S-Box arrays does not allow more than 3
parallel threads to update P/Q arrays as described in Section 2.1. The CUDA
kernel is called with 1 block of 512 threads. The code is divided into four parts.
The first and third parts give SUS for P and @ arrays respectively while part
two and four perform KWGS. Only 3 out of 512 threads update P array in part
one, requiring 171 (512/3) times execution for completely updating P array. In
part 2, the S-Boxes are employed to generate 512 words of keystream using 512
threads simultaneously. Part 3 updates the @ array followed by 512 words of
KWGS in part 4. This implementation yields a throughput of 0.37 Gbps for
keystream generation in HC-128.

Next we discuss the optimization strategies undertaken to improve the par-
allelism and consequently the throughput of this simple parallel CUDA based
implementation of HC-128. In case the strategies are applicable only to one of
the ciphers in HC series of stream ciphers, it has been explicitly mentioned.

Parallelization of P/Q Array SUS with Key Generation(512 words).
One way of increasing the degree of parallelism in HC-128 algorithm was
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Table 1. Keystream generation implementation of HC-128 using three threads

if(threadldz.x <= 2)
for(i = threadldz.x;1 < 512;4 = i + 3)
P s[i] = P s[i] + g1(P s[« B3], P s[i B10], P s[¢ B511];
i = threadldz.zx;
s[i) = h1(Q s, P s[i B 12]) & P s[i;
if (threadldz.x <= 2)
for(i = threadldx.x;i < 512;4 = ¢ + 3)
Q sli] = Q sli] +92(Q s[i B3],Q s[(:B10)], Q s[i B511]);
i = threadldx.x;
s[i +512] = h2(P s,Q s[i B 12]) ® Q slil;

suggested by Chattopadhyay et al. [23]. The authors proposed carrying out SUS
of either of the S-Boxes along with a simultaneous KWGS from the other S-Box.
The parallelism can be employed ensuring correct results by keeping multiple
temporal copies of S-Boxes (say P0, Q0, P1, Q1). If the shared memory of the
GPU device used for S-Box instances is not over-budgeted, this strategy can
be employed for achieving parallelism. As seen from Appendix A, each round
of HC-128 keystream generation for 1024 words has a P-SUS and P-KWGS for
512 words, followed by a similar Q-SUS and Q-KWGS for 512 words. With two
copies of S-Boxes, we can parallelize the P-SUS with Q-KWGS and vice versa.
The series of steps as proposed in [23] are summarized in Table 2. After ini-
tialization routine, arrays PO, Q0 contain the expanded key and IV. SUS of P
array starts by reading values from PO (past values) and updating P1 (current
values). No more than 3 parallel threads (due to intra-data-dependency) execute
iteratively updating the entire 512 words array. In step 1 the @ array is updated
reading values from QO (past values) and updating @1 (current values). KWGS
using P1 and QO is done by 512 parallel threads simultaneously - we denote this
by Keygen(QO0,P1). Similar notations describe the other steps.

Table 2. Parallelizing one SUS warp with one KWGS block

Step # KWGS SUS Comments
Step 0 - P1 3 threads for SUS
Step 1 Keygen(QO0,P1) Q1

Step 2 Keygen(Q1,P1) PO
Step 3 Keygen(Q1,P0) QO
Step 4 Keygen(QO0,P0) P1 + 512 threads for KWGS

3 active threads (out of a warp) for SUS

After the initial step, Q1, PO, Q0, P1 are updated in successive steps, each
time simultaneously generating keystream words from the S-Box updated in the
previous step. This goes on by repetition of step 1 till 4 for as many keystream
values as required. CUDA framework for HC-128 parallel implementation em-
ploys 544 threads for keystream generation in total. Out of these, 512 threads
carry out KWGS from an entire array of S-Box words simultaneously. One thread
warp with three active threads carry out the SUS of the S-Box. Here parallelism
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is achieved at the cost of extra resources, since only multiple copies of the S-
Boxes guarantee correct results for parallel implementation. This strategy is
applied to HC-256 as well. Similarly, one warp with 3 active threads remains
under-utilized; however KWGS is carried out by 1024 parallel threads for larger
S-Boxes in HC-256.

Parallelization of P and Q SUS with Key Generation (1024 words).
Further parallelization of HC-128 is possible by simultaneous P-SUS and P-
KWGS of 512 words as well as the @Q-SUS and Q-KWGS of 512 words in
keystream generation phase as described in Appendix A. Thus both the S-Boxes
can be updated in parallel along with simultaneous generation of 1024 words
of keystream. However, step 1 and 3 of keystream generation in Table 2 reveal
a data dependency. Q0 is needed for generating key from P1, and Q1 for gen-
erating key from P0O. Hence, update of PO, Q0 and generating 1024 keystream
words using Keygen(QO0, P1) and Keygen(P1, Q1) gives rise to a race condition,
commonly called a Read After Write (RAW) hazard where the keystream values
would depend upon which statement gets executed first. This can be success-
fully avoided by using 2 more copies of @) arrays, namely Qpufro and Qpuss1
for keeping backups of Q0 and Q1 respectively. For preserving correctness, these
buffers need to be updated at every alternate step. All arrays are stored in the
shared memory for fast access.

Table 3 describes a step by step execution. After initialization, the expanded
key and IV reside in P0, Q0. All other temporal S-Box copiesi.e., P1, @1, Qpuf o
and @ gy fy1 are left un-initialized. Simultaneous SUS of P and () arrays is carried
out by reading values from PO, Q0 (past values) and updating P1, Q1 (current
values) respectively. A copy of QO is backed up in Q gy fso simultaneously. In this
step, 6 threads of 2 warps carry out the SUS for P1 and Q1. For Q0 backup,
512 parallel threads make a copy.

Table 3. Parallelizing 2 S-Box SUS warps with 2 KWGS blocks

QBuyf cOpy KWGS SUS Comments
QBuffo - - P1 Q1 3 + 3 threads for SUS, 512
copy threads for copying Q0 to Qpuyyfo
QBusf1 Keygen Keygen PO QO 3 + 3 threads for SUS,
copy (Q1,P1) (QBuysso,P1) 512 threads for Keygen(Q1,P1),

512 threads for copying Q1 to
QBuyrys1 and Keygen(Qpuyso,P1)
QBufrfo Keygen Keygen Pl Q1 3 + 3 threads for SUS,
copy (Q0,P0) (QpBufs1,P0) 512 threads for Keygen(QO0,P0),
512 threads for copying QO to
QBurfo and Keygen(Qpuys1,P0)

In step 1, we employ a block of 1024 threads for generating 1024 words of
keystream, each thread generates one word of keystream. Out of these, 512
threads are used to execute the extra step of copying values to the buffers. Al-
ternate updates of PO, Q0 and P1, Q1 follows, simultaneously generating 1024
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words of keystream. Hence step 1 and 2 are repeated as long as the keystream
generation is required.

A single kernel cannot be invoked with more than 1024 threads in a block. We
break the thread budget in two blocks, each having 544 threads. The two blocks
run concurrently, one warp in each carrying out SUS and 512 threads generating
keystream. GPUs with compute capability 2.0 or more have the capability of
calling concurrent kernels at the same time as well.

This strategy of achieving parallelism cannot be extended for HC-256 since
its SUS of the S-Boxes is dependent on each other.

3.2 Multiple Data-Streams Optimization

The GPU clock is slower than the CPU clock speed. Thus speedup in GPU
devices can be achieved in two ways. One way is by employing parallel threads
respecting data dependencies in a single stream of data as investigated in Sec-
tion 3.1. A better alternative in terms of resource utilization and throughput is
to employ all the SPs (stream processors) of the CUDA device by employing
ciphers of multiple data-streams in parallel. Due to the limited size of shared
memory, we employ the larger albeit slower global memory for ciphering multiple
parallel streams of data.

Performance tuning on the GPU requires understanding device specifications
and accordingly finding and exposing enough parallelism to populate all the
multiprocessors (MPs). NVIDIA GeForce GTX 590 can accommodate up to 8
blocks (or 48 warps) per MP. Since each warp can have 32 homogeneous threads,
an MP can process up to 1536 threads (48 x 32). To fully utilize each MP, the
number of threads it should get assigned should be no more than 192 per block
(1536/8). This limit is kept in mind when assigning the thread budget to each
MP for HC series of stream ciphers.

For HC-128, the 3 threads for SUS of each of the S-Boxes constitute one warp.
Since these threads execute a total of 171 times (512/3) for complete update of
either of the S-Boxes, the number of parallel threads employed for KWGS can
be adjusted so that the budget of total number of 192 threads per block is never
exceeded. We employ 128 threads for KWGS and 2 warps for S-Box update in
case of HC-128. Hence 2 warps of S-Box SUS and 4 warps of KWGS are kept in
the same block of 192 threads. For HC-256, however, only one warp is used for
SUS and 4 for KWGS, making the total thread budget equal to 160 per block.
This strategy ensures maximum number of parallel data-streams the device can
encrypt simultaneously, showing noticeable increase in the throughput of both
HC-128 and HC-256.

4 Experimental Results

Throughput performances of HC ciphers for single and multiple parallel data-
streams were benchmarked on NVIDIA GeForce GTX 590. We used an AMD
Phenom™TI X6 1100T Processor with 8 GBs of RAM as host CPU. Each test
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was conducted 1000 times and the results were averaged. Appendix D summa-
rizes the hardware specifications of the two computation platforms.

4.1 Encryption of Single Data-Stream

Initialization phase of HC ciphers has been implemented using shared memory
and global memory in two separate experiments. The last step of initialization
phase is similar to SUS phase, consequently 3 parallel threads are employed for it.
In the second step of initialization phase, intra-dependency for W is even more
severe, limiting the number of simultaneous threads to 2. Using faster shared
memory instead of global memory accelerates initialization phase as shown in
Table 4. It however, incorporates the overhead of copying P, Q and W arrays
on shared memory that can be done simultaneously using 512 and 1024 parallel
threads in case of HC-128 and HC-256 respectively.

Table 4. Duration and throughput of initialization phase of HC series of stream ciphers

NVIDIA GeForce GTX 590  AMD Phenom™TII

Global memory Shared memory X6 1100T

HC-128 1.386 ms 1.078 ms 27 us
22.53 Mbps 28.98 Mbps 1.15 Gbps

HC-256 1.930 ms 1.666 ms 60 us
32.35 Mbps 53.56 Mbps 1.04 Gbps

The performance results of keystream generation phase are presented in Fig. 2
and Fig. 3 for HC-128 and HC-256 respectively. The throughput shows an in-
creasing trend, till it saturates for higher data sizes considered. The maximum
throughput when using the global memory for storing S-Boxes of HC-128 is 0.41
Gbps. Using shared memory gives a boost to performance because of its smaller
access time. A similar trend is observed for HC-256. The size of the S-Boxes is
double compared to that of HC-128, the amount of shared memory used by the
optimized version of our algorithm is 16 KB (two copies of each S-Box). A GPU

—B— global memory —#— shared memory

Throughput (Gbps)

1K 2 ax 8 16k 32 6ak 128k 256k 512k 1024k 2048k 4096k

Number of words

Fig. 2. HC-128 keystream generation throughput using shared and global memory
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device with lower compute capability has no more than 16 KB of shared memory
per MP. Hence, this optimized implementation of HC-256 on one thread block of
such devices is not possible. The maximum throughput from the global memory
implementation of HC-256 is 0.15 Gbps and for shared memory implementation
is 0.41 Gbps.

—B— global memory —#— shared memory

Throughput (Gbps)

1K 2% a 8 16k 32k 6ak 128k 256k 512k 1024k 2048k 4096k

Number of words

Fig. 3. HC-256 keystream generation throughput using shared and global memory

4.2 Encryption of Multiple Data-Streams in Parallel

The parallelism offered by the CUDA device can be well exploited using multiple
parallel streams of data. For simulation purposes we start with a single stream
of data and double them up to 32K parallel streams. Fig. 4 gives the throughput
of HC-128 and HC-256 for increasing number of parallel data-streams on our
CUDA device. The trend of throughput rise shown by the two ciphers is similar,
having an apparent peak for 64 parallel streams. The CUDA device used has a
total of 16 MPs and each MP can accommodate 8 blocks at most. Maximum
utilization of MPs is achieved for 128 parallel streams of data (16 x 8). Further
increase in the number of parallel data-streams shows a slight improvement in
the throughput. The reason is that the parallel streams in excess of 128 are
waiting in instruction queue and are launched with negligible context switch
time. The maximum throughput achieved is 31 Gbps for HC-128 and 14 Gbps
for HC-256 employing 32768 parallel streams.

4.3 Throughput Comparison of HC Series of Stream Ciphers on
Various Platforms

We compare our acceleration results with the only available figures for HC-128
acceleration on GPUs by D. Stefan in his masters thesis [7]. Without employing
parallelism within a single data-stream for HC-128, he assigned one thread to one
data-stream. For supporting multiple data-streams, he employed global memory
for S-boxes. The highest throughput achieved is reported and compared with
our implementation in Table 5. For the same number of blocks, our throughput
is approximately 14 times higher. Comparing the cycles/byte performance also
shows a significant decrease. Results for initialization phase are not available for
comparison.
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—B-HC-128 ——HC-256

Throughput (Gbps)

1 2 4 8 16 22 64 128 256 512 1024 2048 4096 8192 16384 32768

Number of parallel data streams

Fig. 4. Keystream generation throughput for varying number of multiple data-streams

Table 5. Comparison of our HC-128 acceleration with D. Stefan [7]

Implementation by D. Stefan[7] Our Implementation

NVIDIA device GeForce GTX 295 GeForce GTX 590
Release date January 8, 2009 March 24, 2011
Compute Capability 1.3 2.0
Memory Used Global Memory Global Memory
Threads / data-stream 1 192
data-stream / Block 256 1
Total blocks used 680 680
Total data-streams 680 %256 680
Total threads used 680%256 192x 680
Performance(Cycles/byte) 4.39 0.279
Throughput(Gbps) 2.26 31

The HC-128 performance evaluation on CPU was done using the eSTREAM
testing framework [6]. The C implementation of the testing framework was in-
stalled in the CPU machine (specs given in Appendix D) on CentOs 5.8 (Linux
version 2.6.18-308.11.1.el5xen). For the benchmark implementation of HC-128
and HC-256 the highest keystream generation speeds were found to be 2.36
cycles/byte and 3.63 cycles/byte respectively. Table 6 gives a comparison of
throughput of HC series of stream ciphers on various platform. The throughput
obtained on an AMD Phenom™ II X6 1100T Processor is 10.94 Gbps and 7.5
Gbps for keystream generation phase of HC-128 and HC-256 respectively. The
high speed rendered by CPU is primarily because it has to incur no memory
overhead for RAM located contents unlike the GPU memory accesses. More-
over, the limitation of SIMD architecture of GPUs requires homogeneity of warp
threads which is not a limitation in CPUs. Consequently the CUDA mapping of
the HC family of ciphers is 11-18 times slower. The ASIC based implementation
proposed by Chattopadhyay et al. is so far the fastest reported implementation
of HC-128 claiming a throughput of 22.88 Gbps [23]. The throughput results of
HC-256 are however not reported.
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Table 6. Throughput (Gbps), Cycles/Byte (C/B) of a single data-stream HC ciphers

AMD Phenom™ NVIDIA GeForce ASIC [23]
11 X6 1100T GTX 590 (65nm Technology)
HC-128 10.9 Gbps 2.36 C/B 0.95 Gbps 9.27 C/B  22.88 Gbps 0.5 C/B
HC-256 7.5 Gbps 3.63 C/B 0.41 Gbps 21.82 C/B Not reported Not reported

For multiple data-streams we get promising results which for CPUs is not
straightforward to implement. For 32768 parallel data-streams, our GPU gives a
throughput of 31 Gbps for HC-128 and 14 Gbps for HC-256. Hence we conclude
that HC-series of stream ciphers is unfit to be off-loaded to GPUs in case of
a single data-stream application. In contrast, an application exploiting multiple
parallel data-streams can achieve GPU acceleration up to 2.8 times faster in case
of HC-128 and 1.87 times faster for HC-256 (with 32768 parallel data-streams).

5 Conclusion and Future Work

This work presents the first detailed study of algorithmic acceleration limitations
in HC series of stream ciphers for mapping on a GPU device. The high degree
of data dependency in their S-box update procedures puts strict limitations
on exploiting the inherent parallelism that a graphics device offers. Moreover
these ciphers are primarily data intensive in nature. These limitations explain
the absence of relevant scientific publications in this arena. We present various
strategies to improve the throughput of the HC-128 and HC-256 ciphers at the
cost of replicated copies of S-Boxes. However, for a single data-stream accelera-
tion, our throughput does not go beyond 0.95 Gbps and 0.41 Gbps for HC-128
and HC-256 respectively on a GeForce GTX 590 (leaving it 11-18 times slower
than a standard CPU in throughput).

For multiple data-streams, however, we beat the CPU performance. We did
a thorough tuning on the GPU for optimizing all the architectural features that
the device could offer. Thread and warp grouping is done so as to expose enough
parallelism to the device to keep all the MP cores busy all the time. Our GPU
based acceleration resulted in being 2.8 times faster than CPU in case of HC-128
and 1.87 times faster for HC-256 (with 32,768 parallel data-streams). Hence we
conclude that GPUs can successfully be employed as a co-processor with a CPU
host to accelerate HC series of stream ciphers using multiple parallel streams of
data. As future work, we plan to investigate the parallelism opportunities offered
by the entire eSTREAM portfolio [12] of software stream ciphers and compare
the performance against today’s CPUs.
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Appendix A: Description of HC-128 and HC-256
Keystream Generation

HC-t uses t-bit secret key and IV, and 32-bit element internal arrays P and Q
each of length 4t, where ¢ is either 128 or 256. We briefly sketch the keystream
generation phase of the algorithms here. For details of key and IV setup, one may
refer to [21,22]. The operators used are + (addition modulo 232), B (subtraction
modulo 512), @ (bit-wise exclusive OR), >, < (32-bit shifts) and >>, < (32-
bit rotations). Let s, denote the keystream word generated at the r-th step,
r =0,1,2,.... The functions ¢g; and g5 (3 inputs for HC-128 and 2 inputs for
HC-256) are used for self-update of P and @ and functions h; and hs are used
in the keystream generation, as follows.

HC-128 HC-256
t 128 256
g1 ((z>>10) & (2 >>23)) + (y >>8)  ((z>>10) @ (y > 23)) + Q[(z & y) mod 4¢]
g2 (K108 (zK23)+(yK8) ((=z>10)® (y>> 23)) + Pz & y) mod 4]

h1 Qlz(o)] + Q[2t + (2] Qlz(oy] + Qt + = (1)] + Q[2t + x(2)] + Q[3t + x(3)]

ho P[m(o)]JrP[QtJrI(Q)] P[I(o)]JrP[tJr{L’(l)]+P[2t+m(z)]+P[3t+I(3)]
PUlY = 1(PL B3], P8 10], Pl B511) PLiB10] 4 91(Plj B3], Pj B 1023])
QU+ = 9¢2(Qli B3], QL B 10], Q[ B 511]) Qi B 10] + ¢2(Q[i B 3], Q[5 B 1023])

The last two rows of the above table show the self-update steps (SUS) for the
arrays P and Q. Here x = x(3)||z(2)[|[2(1)[|2(0) is a 32-bit word, with z(qy, (1), 7(2)
and z(3) being the four bytes from right to left. The keystream generation phase
happens in cycles of 8¢ rounds, in the first 4¢ of which the array P is updated
followed by a keystream word generation step (KWGS) s; = hy(P[j812])® P[j].
In the next 4t rounds, the array @ is updated and the corresponding KWGS is
given by s; = ho(Q[j B12]) & Q[j].


http://www.ecrypt.eu.org/stream/hcp3.html
http://eprint.iacr.org/2004/092.pdf
http://developer.NVidia.com/object/CUDA.html
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Appendix B: List of Operations for Keystream Generation
in HC-128 and HC-256

HC-128 HC-128 HC-256 HC-256
SUS KWGS SUS KWGS

Modulo Additions 2 2 3 7
Xor 1 2 1

Modulo Subtractions 3 1 3 1
Rotations 3 0 2 0

Shifts 0 1 0 3

Total operations 9 5 10 12
Memory Reads 4 4 5 6
Memory Writes 1 1 1 1
Total memory accesses 5 5 6 7

Appendix C: Overview of CUDA Programming Model

CUDA exposes the device as a repository of thousands of parallely executable
threads as shown in Fig. 5. The GPU chip is organized as a collection of mul-
tiprocessors (MPs). Each MP has a number of Stream Processors (SPs), each
handling one thread. Each MP is responsible for handling one or more thread
blocks. Since thread blocks have no dependencies among themselves, their as-
signment is independent of MPs allowing transparent scaling of programs across
different GPUs. Here are some technical terms relevant to the CUDA execution
model.

Host Device T Grid

ST T Block (0,0) Block (1,0)

‘ Shared Memory ‘ ‘ Shared Memory ‘
Block Block Block ‘Reg\slers‘ ‘Regls(evs‘ ‘Regls(evs‘ ‘Reg\s{ers‘
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Fig.5. CUDA GPU execution model

1. Thread: the smallest unit of execution in CUDA.

2. Warp: the threads are forwarded to the CUDA MPs in groups (warps) of
32 for execution. If all thread kernels in a warp are homogeneous, all the SPs
in an MP execute the same instruction in a true SIMD fashion.

3. Block: a group of threads each with exclusive local memories and registers
and a single shared memory as shown in Fig. 5.
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4. Grid: one or more thread blocks being executed by a kernel in memory form
a grid. Each MP handles one or more blocks in a grid. Threads in a block
are not divided across multiple MPs.

5. Kernel: a block of code called from the host CPU, and then sent to the
device with a grid of thread blocks. CUDA gives the freedom of choosing the
threads and block structure and dimension to the coder.

Appendix D: Hardware Specifications of CPU and GPU
used for Throughput Comparison

AMD Phenom™1II X6 1100T NVIDIA GeForce TX 590

Transistors 904 million 6 billion
Processor Frequency (GHz) 3.31 1.2
Cores/SPs 6 1024
Cache/shared Memory L2-512 KB, L3-6 MBx6 48 KBx32
Threads executed per cycle 6 1024

Active Hardware threads [§ 49152 (maximum)
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Abstract. Cloud computing and Infrastructure-as-a-Service (IaaS) are
emerging and promising technologies, however their adoption is ham-
pered by data security concerns. At the same time, Trusted Computing
(TC) is experiencing an increasing interest as a security mechanism for
TaaS. In this paper we present a protocol to ensure the launch of a virtual
machine (VM) instance on a trusted remote compute host. Relying on
Trusted Platform Module operations such as binding and sealing to pro-
vide integrity guarantees for clients that require a trusted VM launch, we
have designed a trusted launch protocol for VM instances in public TaaS
environments. We also present a proof-of-concept implementation of the
protocol based on OpenStack, an open-source laaS platform. The results
provide a basis for the use of TC mechanisms within IaaS platforms and
pave the way for a wider applicability of TC to laaS security.

Keywords: IaaS, security, trusted computing, trusted virtual machine
launch, OpenStack.

1 Introduction

One of the distinguished trends in IT operations today is the consolidation of
IT systems onto common platforms. A key technology in realizing this is sys-
tem virtualization [1]. System virtualization makes it possible to streamline IT
operations, save energy and obtain better utilization of hardware resources. A
virtualized computing infrastructure allows clients to run own services in form of
Virtual Machines (VM) on shared computing resources. This approach however
introduces new challenges, as it means that information previously controlled by
one administrative domain and organization, is now under the control of a third
party provider and that the information owner loses direct control over how data
and services are used and protected. IaaS [2] is one of the business models based
on system virtualization and security aspects are among the main identified ob-
stacles for its adoption!. The problems with securing IaaS are evident not least

! AFCEA Cyber Committee — October, 2011, http://www.afcea.org/mission/intel/
documents/cloudcomputingsecuritylessonslearned final.pdf

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 309-323, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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through the fact that widely known platforms such as Amazon EC2, Microsoft
Azure, services provided by RackSpace and other TaaS services are plagued by
vulnerabilities at several levels of the software stack, from the web based cloud
management console [3] to VM side-channel attacks, to information leakage, to
collocation with malicious virtual machine instances [4].

A promising approach towards handling IaaS security threats and a mean
to provide service confidence is the use of Trusted Computing technologies as
defined by the Trusted Computing Group (TCG) [5]. The core component in
the TCG-defined security architecture is the Trusted Platform Module (TPM),
a hardware module that can be used as a trust anchor for software integrity
verification in open platforms that also offers protected storage for sensitive pa-
rameters. TPM usage and deployment models for IaaS clouds are currently an
active research area [6,7,8,9,10,11]. Earlier research has introduced principles of
a trusted IaaS platform [9], later extended to cover both trusted VM launch [10]
and VM migration [11]. These research results demonstrate principles of combin-
ing basic TPM attestation mechanisms with standard cryptographic techniques
to design an infrastructure for VM protection. However, such solutions have lim-
itations with respect to security, complexity and target compute host selection
procedures.

In this paper we describe a trusted VM launch process that addresses these
limitations and present a trusted launch protocol that does not require secure
pre-packaging of the VM image on the client side. Furthermore, in order to be
usable in a significant proportion of IaaS deployment scenarios and to provide
full scheduling flexibility on the IaaS side, the protocol allows the IaaS provider
to select a target trusted compute host without directly involving the client. The
main contributions of this paper are:

1. Description of a trusted launch protocol for VM instances in public TaaS
environments.

2. Implementation of the proposed protocol based on a widely-known TaaS plat-
form.

The paper is further organized as follows: In section 2 we define the trust and at-
tack models, formulate the problem area and define requirements for a scheme to
address the identified issues; section 3 presents the main contribution of the pa-
per, namely a platform-agnostic protocol for trusted virtual machine launching.
In section 4 we perform a security analysis of the proposed protocol and continue
with a description of the prototype implementation based on the OpenStack IaaS
platform in section 5. In section 6 we provide summaries of significant related
work within trusted computing in IaaS environments. We conclude in section 7
and provide a set of further research suggestions.

2 Trust and Attack Models, Problem Description and
Requirements

Next we describe the trust and attack models we assume in this paper, list the
top security and general design requirements applicable given the defined trust
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and attack models and revisit virtual machine images in the context of a trusted
VM instance launch. We also discuss the characteristics that can be expected
from a well-designed VM instance launch.

2.1 Trust and Attack Models

In the trust model and consequently the attack model used in this paper, the
client does not implicitly trust any aspect of the IaaS provider. Although poten-
tially true for many IaaS environment types, this trust model should be partic-
ularly relevant to public IaaS environments (according to the definition in [12]),
where the relationship between the client and the IaaS provider is often formal
and lacks prerequisites for implicit trust.

We share the attack model with [9,10,11] which assume that privileged access
rights can be maliciously used by IaaS provider remote system administrators
(A;). This scenario assumes that A, can log in remotely to any host maintained
by the IaaS provider and obtain root access. However, in this model A, does
not have physical access to the hosts. The only possibility for A, to circumvent
this constraint is by succeeding to force a client to launch their VM instance
on an A,-controlled compute host outside the physically secured TaaS provider
perimeter. Furthermore, we assume that an A, obtaining remote root access to
the compute host will not be able to access the volatile memory of any VM
residing on the compute host at that time, i.e. the compute host offers VMs
a closed box execution environment?. This assumption is required in order to
ensure that A, can not access the nonce provided by C and its implementation
is out of the scope of this paper.

In a trusted VM launch context this means that we consider both the attack
where A, attempts to launch a VM instance on a non-trusted compute host
instead of on a trusted one and the attack where A, attempts to substitute the
VM image requested by the client with a maliciously modified VM image.

In the current attack model, a VM instance is considered trusted if and only
if it fulfils the following criteria:

1. The VM image used for the instance is itself trusted;

2. The VM instance is started on a trusted compute host;

3. The VM instance has the client-generated verification token injected (see
section 3.1)

2.2 Virtual Machine Images

As an implication of the above trust and attack models, we consider the following
two properties of virtual machines in the context of trusted computing:

— No VM instance, or any entity communicating with the VM instance, can
determine whether the hypervisor the VM instance is running on is trusted
or not.

2 This does not include any VMs which are part of the hosting infrastructrure, such
as Xen dom0 VM).



312 N. Paladi et al.

— A VM instance cannot be trusted to reliably determine if it has the config-
uration originally requested by the client.

To overcome these issues, we suggest a launch protocol where we use standard
TPM v1.2 functionality to first ensure that the client can detect the situation
when it is communicating with a VM instance that is not launched on a trusted
platform and subsequently utilize the trusted platform to verify the integrity of
the VM image prior to VM launch.

It is essential, in the scope of the protocol, that no modifications or cus-
tomizations of the VM image to be launched are performed by the TaaS provider
without the client’s knowledge.

2.3 Requirements for a Trusted VM Launch Protocol

Considering the trust and attack models above, it is important for the client to
be able to obtain reasonable security guarantees from the IaaS provider. These
include both trustworthiness of the computing resources, as well as guarantees
regarding VM integrity and confidentiality. In order to also be cost and imple-
mentation efficient, the underlying infrastructure should provide such guarantees
with a minimal operational overhead without increasing structural complexity.
The expectations can be summarized as a set of basic requirements towards a
trustworthy VM launch process:

— R1: The client shall have the mechanisms to ensure that the VM instance
has been launched on a trusted compute host.

— R2: The client should have the possibility to reliably determine that it is
communicating with a VM instance launched on a trusted compute host,
and not with a different VM instance.

— R3: The integrity of the VM image scheduled to be launched must be veri-
fiable by the target trusted compute host.

— R4: The trusted VM launch procedure should be scalable and have a mini-
mum impact on the performance of the TaaS platform.

— R5: Clients should have a transparent view of the trusted launch procedure.

3 A Trusted Launch Protocol for Virtual Machine Images
in TaaS Environments

Based on the above requirements for a trusted launch protocol for VM instances
in TaaS environments, we present a platform-agnostic protocol that shows prin-
ciples of using TPM functionality to ensure the integrity of the compute host
and of the VM image requested to be launched by the client. The below protocol
addresses the security concerns presented above by focusing on simplicity, trans-
parency, scalability and minimal interference with the currently known setup of
the TaaS implementations. Furthermore, the protocol is based on widely-used
and verified techniques, such as hashing and asymmetric cryptography in com-
bination with TPM functionality.
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The protocol requires the participation of four entities, three of which are
typically involved in VM launch procedures in IaaS architectures:

1. Client (C) is a IaaS user and intends to launch a VM instance. In this paper, C
is considered to be a non-expert, i.e. one not capable of assessing the security
of platform configurations based on values contained in the measurement list.
C requires a VM instance to be launched on a trusted platform. Furthermore,
it is important for C to be able to either verify or trust the security of VM
images provided for launch.

2. Scheduler (S) is responsible for receiving requests for VM instance launches
from C, as well as scheduling and rescheduling of VM instances on avail-
able compute hosts at the TaaS provider. S should be able to function with
minimal involvement in the security-specific message passing.

3. The compute host (CH) is the target resource that will be chosen by S to
run the particular VM instance. CH represents a physical or virtual server
that is able to host one or more VM instances (however, this paper considers
exclusively the case when the CH is a physical server). For the purposes of
the proposed protocol, a CH must also be equipped with a TCG-compliant
TPM as well as be immune to modification attempts when in a trusted state.

4. The Trusted third party (TTP) is, as the name implies, trusted by both
the Client and the IaaS provider and can not be controlled or manipulated
by the TaaS provider. The recent breaches of Certificate Authorities have
emphasized the drawbacks of centralized security models and their suscep-
tibility to attacks [13]. The more complex the operations performed by the
TTP, the higher the probability of it having exploitable vulnerabilities. It
is therefore important to keep the implementation of the 77 P as simple as
possible. The main task of the 77T P is to attest the configuration of the CH
that will host the VM instance and assess its security profile according to
predefined policies. Within the current trust model, 77 Ps could be imple-
mented by an expert C, as long as the TaaS provider agrees to that and C has
the capability to set up and operate an attestation and evaluation engine.

For the purpose of the protocol, we also introduce the concept ‘security profile
of a CH":

Definition 1. A security profile (SP) is a verified setup of an OS including
underlying libraries and configuration files, which is considered to be trusted by
all parties. SP can range on an ascending integer scale which reflects the level
of verification, from least to most strict (and hence more restrictive).

The information needed to calculate the SP and also to compare the setup of two
CHs is stored in the integrity measurement log (IML), as the IML contains hashes
of the components that were loaded or used during the boot sequence of the CH.
The validity of the IML is confirmed through a signature using the attestation
identity keys (AIK) of a TPM. The AIK are persistent, non-migratable keys that
are used to sign and authenticate by the means of an AIK certificate (denoted
by AIK — cert) the validity of the information provided by the TPM in case of
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an external attestation [14]. We thus assume that the SP of any given CH can
be deterministically calculated by each of the parties involved in the protocol.?

3.1 Platform-Agnostic Protocol Description

The following steps are required in order to perform a trusted VM launch (Fig.
1, the steps of the protocol correspond to the steps in the figure*).

1. Before initiating the launch procedure, C generates a sufficiently long nonce
N, to be used as a proof token in communications between C and the VM
instance and must be kept confidential to untrusted parties throughout the
launch process.

2. C creates a token which we denote by 7, representing a data structure
with information necessary for the trusted VM launch. 7 contains N, the
minimum SP and the hash of the VM image used for launch, denoted by
Hv pfimage” - Finally, the token is encrypted with the public key of TTP, rep-
resented by PKprp, while the encrypted token is represented by Tpk,,p-

3. C provides the scheduler (S) the following parameters:

— VM image identifier and optionally the VM image to be launched;

- SP;

— URL of the TTP;

— Encrypted token Tpk,,, generated in step (2);
SP will determine the lower bound of trust level required from CH on which
the VM will run, with stricter security profiles accepted.

4. § schedules a VM on the appropriate CH, depending on its membership in
the respective security profile group and sends the CH a request to generate
a bind key PK ginq, also providing the URL of the TT7P.

5. Once the destination CH receives the bind key request, it retrieves a PCR-
locked non-migratable TPM-based bind key PKpg;,q. This key can be pe-
riodically regenerated by CH according to a administrator-defined policy,
using the current platform state represented by the TPM PCRs. It is im-
portant to note that the values of the PCRs should not necessarily be in a
trusted state in order to create a trusted state bind key.

6. In order to prove that the bind key is a non-migratable, PCR-locked, asym-
metric TPM key, CH uses the TPM CERTIFY KEY TPM command in order to
retrieve the TPM CERTIFY INFO structure signed with the TPM attestation
indentity key [14], which we denote by PK arx; we also denote the signed
structure by
Hrpy CERTIFY INFO 1. The TPM CERTIFY INFO data structure contains
the hash of the bind key and the PCR value required for the key usage.

3 The methodology for calculating the SP of a CH is out of the scope of this paper.

4 Due to space limitations, ” Attestation data” was chosen as the condensed notation
for: Tpx;rp, PKBind, TPM CERTIFY INFO, HTpM CERTIFY INFUAIK, IML,AIK —
cert

5 If non-repudiation of VM launch is required, the client should also sign the VM
image hash and include the signature and corresponding client certificate into the
token.
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7. CH sends an attestation request to the 77T P through an HTTPS session
using the URL supplied by C. The following arguments are sent in the request
to TTP:

— Client-provided token Tpr . p

— Attestation data, which includes the public bind key, the TPM CERTIFY INFO
structure, the hash of TPM CERTIFY INFO signed with the AIK®, the IML
and the AIK-certificate collectively represented as:
PKpgina, TPM CERTIFY INFO, HTpM CERTIFY INFDAIK, IML, AIK-cert .

8. TT P uses its private key PrKppp, which corresponds to the public PKrrp
to attempt to decrypt the token Tpr .y p-

9. TTP validates the attestation information obtained from CH as follows:

— Validates the AIK certificate;

— Validates the structure of the AIK-signed TPM CERTIFY INFOQ;

— Validates the key PKp;nq by comparing its digest with the digest re-
ceived in TPM CERTIFY INFO;

— Calculates the hash of the PCR values Hpcgr based on the informa-
tion in the IML and compares it with the hash of PCR INFO, which is a
component of TPM CERTIFY INFO

10. TTP examines the entries in the IML in order to determine the trustwor-
thiness of the CH and decides whether SP is satisfied.

11. If step 10 is true, 77T P encrypts N and the hash Hy arimage With the bind
key PKpinq obtained from CH, to ensure that N is only available to CH in
a trusted state. By sending N and Hy aimage encrypted with the public key
PKpinq available to the trusted configuration of CH, the security perime-
ter expands to include three parties: C itself, T7TP and CH in its trusted
configuration. This implies that all actions performed by CH in its trusted
configuration are trusted by default.

12. Prior to launching the VM, CH decrypts N and Hy pfimage using the TPM-
issued PrK pi,q, which is available to it in its trusted configuration but
stored in the TPM; next, CH compares Hy primage Obtained from the 77TP
with the hash of the VM image to be used for launch and accepts the image
only in case the values are equal.

13. CH injects NV into the VM image prior to launching the VM instance.

14. CH returns an acknowledgement to S to confirm a successful launch.

15. To verify that the VM instance has been launched on a trusted platform, C
challenges the VM instance to prove its knowledge of A

The fact that A is kept confidential allows it to be used as an authentication
token while establishing a secure communication channel between C and the
launched VM instance. N' can be used as the pre-shared secret in order to
add protection against man-in-the-middle attacks when using Diffie-Hellman key
exchange, as specified in the password-authenticated key-exchange protocol [15].

Some of the operations can be optimized taking into account the operational
environment. For example, the validity period of PKp;nq created in step (5)

6 AIK
Expressed as HTpM CERTIFY INFO
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can be adjusted. In a similar way, 77 P can have a cache of the PKp;,q keys
created by CHs with verified trusted configurations. In this case, steps (9) and
(10) can be skipped for a certain number of cases, which can also be regulated
by an administrative policy. However, it is important to remember that the use
of such a cache introduces further complexity to 77 P, the analysis of which is
out of the scope of this paper.

4 Protocol Security Analysis

In this section we present a critical review of the protocol and highlight improve-
ment areas that were left as future work. We begin with a security analysis of
the protocol, in order to outline its strengths and weaknesses.

Returning to the security concerns expressed in the requirements on the
trusted launch protocol formulated in section 2.3, they are addressed as follows.
Let ¢ be the guest VM instance launched on CH, then:

— R1: Following above protocol, C and ¢ have a shared secret /. The fact that
@ is running on a trusted platform is ensured by the properties of the bind
key used to seal the shared secret N to the trusted configuration of CH;

— R2: The fact that C is communicating with ¢ and not any other unexpected
VM instance ¢’ is ensured through the combination of: a. verification of CH
by the TTP, b. presence of the token N injected into ¢ where A is only
available to CH in a trusted state; c. the VM image integrity verification
performed by the CH prior to the launch. A failure at any of the steps of the
above sequence would prevent the trusted VM launch, a fact that would be
verifiable by C.

— R3: Integrity of the VM image is ensured through the verification performed
by CH in a trusted state, prior to the trusted VM launch. Thus, the VM
image is verified using the hash value obtained from the TTP. By comparing
the hash of the VM image with the expected Hy primage provided by C, CH
ensures a one-to-one correspondence between the VM image to be used for
launch and the VM image expected by C. The chain is completed once C
verifies the presence of A injected into . The presence of the correct token
N guarantees the integrity of ¢ requested by C.

— R4: Scalability of the protocol is ensured by the lightweight nature of op-
erations that must be performed by both 77 P and CH and the flexibility
in the choice of TTP. While a challenging topic, especially in the case of
high-availability and heavy load IaaS setups, the design of a scalable TTP
architecture is out of the scope of this paper.

— Rb5: Transparency of the trusted VM launch procedure is ensured by the
introduction of client parameters, such as the URL of the 77 P, the trust
level of CH and the secret token generated by C. The ability to choose 7T P
opens the possibility for C to ensure the trustworthiness of the CH attestation
procedure, either through audit controls of the 77 P or by itself serving the
role of TTP.



Trusted Launch of Virtual Machine Instances in Public IaaS Environments

CH

317

1. Generate nonce

N
2. EW,SP,Hy Mimg)
1 TPKprp

3. VM type. SP.
" URL TpKppp

J
4 URL Teprp
* “Gen. bind key_

bind key

TTP

15. Challenge N

5. Create TPM Bind Key

i

. _ _1PKpBina

6. Sign PKging

7. Attestation data

v I AIK
« - -1 "TPM_CERTIFY_INFO

Return challenge N

».
8. D(Tpkppp:PrErTPp)
[i i, -
. NLSPHy Mimg
9. Validate attestation
[i i, __
.~ _ _1Valid vV Invalid
10.Eval(IML)SSP
[i i, __
. _ _1True vV False
11, Return encrypted token
L WvaimgtPKgig ||
12. Unseal N’HVMlmg
-
T Eval(Hy Mimg = HraaSvm)
13. Inject N, launch VM
J )
(11 A
_10K
14. Confirm launch to S
(11 N
_10K

Fig. 1. Trusted VM launch protocol: C: Client; S: Scheduler; CH: Compute Host;

TTP: Trusted Third Party



318 N. Paladi et al.

4.1 T TP Verification Model

The stateless architecture of the 77 P implies that it does not maintain knowl-
edge of A except for at the moment of sealing it to CH and does not maintain
any session state at any point of the protocol. As a result, an A, can only obtain
N from TTP if they obtain 77T P’s private key PrKrrp. Furthermore, assess-
ment of the trust level of a CH according to a deterministic algorithm which
only takes two inputs (in the form of static set of reference measurement data
and dynamic attestation calls from any CH) will be easily traceable and repro-
ducible based on the original input data, without the need to recreate or rely
on a certain state of the TPP’s internal data. Finally, a stateless architecture of
the TTP contributes indirectly towards requirement R4.

4.2 Protocol Caveats

One aspect that requires more attention is the possibility of a post-launch mod-
ification of the software stack of CH. The runtime process infection method,
which is a method for infecting binaries during runtime” is one of the malicious
approaches that could be used to this end. This scenario is in fact a common
threat to all TCG-based systems, also touched upon in [16], described in detail
in [17] and should thus be prevented using means within the platform which is
part of the trusted computing base verified at boot time, the presence of which
is verified by the above protocol.

5 Protocol Implementation

In order to validate the assumptions made during the protocol design phase, we
have implemented it as an extension to OpenStack, an open source IaaS platform
chosen given the open access to its codebase, its large community and the traction
it has gained. This section briefly introduces the OpenStack architectural model
and changes made for the prototype implementation.

5.1 OpenStack IaaS Platform

The Essex release of OpenStack comprises five core components (projects),
namely Compute (Nova), Image Service (Glance), Object Storage (Swift),
Identity Service (Keystone) and Dashboard (Horizon). Nova has several
sub-components: nova-api, nova-compute, nova-schedule, nova-network, nova-
volume, plus an SQL database and message queue functionality to pass mes-
sages between sub-components. OpenStack components affected by the protocol
implementation are mentioned here in more detail:

" Runtime process infection, http://www.phrack.org/
issues.html?issue=59&id=8&mode=txt
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— Nova-api is the interface for nova- compute and volume API calls. It is
through this interface most of the cloud orchestration operations are per-
formed. The interface supports both the OpenStack and Amazon EC2 API.

— Nova-compute handles VM instance life cycle tasks through hypervisor API
calls. Notably the libvirt and XenAPI hypervisor APIs are supported.

— Nova-schedule is responsible for selecting CH(s) to run VM instances on. The
CH selection process is determined by which scheduling policy/algorithm is
employed.

— The nova SQL database holds tables and relations to describe the state of
nova, such as launched instances and network configurations.

— The Dashboard is a web based GUI for OpenStack operation and adminis-
tration. It interfaces nova-api.

5.2 Prototype Implementation

Below are the main additions to OpenStack required for the prototype imple-
mentation.

Nova SQL database The nova SQL database has been extended to include tables
to hold the available CHs and their SPs:

— An SP is an integer in the range 1-10, with a higher number being more
trusted than a lower number.
— The security profile of a CH is global, rather than specific per e.g. tenant.

Dashboard and nova-api The Dashboard web based GUI has been extended
to include the option to request CH attestation, minimum SP selection, token
Tpirrp entry and 77 P URL provision (3) into the “Launch Instance” dialog.
This information is included in the OpenStack APT HTTP payload to nova-api,
which propagates the information to the scheduler.

In the prototype implementation, steps (1) and (2) are performed by a script
which outputs Tpk,,p, which then can be manually input into the Dashboard
dialog. Note that it is not an option to let Dashboard provide functionality for
generating Tpx,..p, since Dashboard is not trusted by C.

Scheduler, compute host and wvirtualization driver The nova scheduler S is a
central component as it decides on which CH a certain VM instance will be
launched. Each S works according to a specific configurable algorithm and several
S implementations are available in OpenStack by default. In the SimpleScheduler
implementation, S identifies the least loaded CH and schedules the VM instance
to be launched on that CH.

We extend the behaviour of the SimpleScheduler to include the policy that a
CH must belong to a certain SP or stricter in order to be acceptable for hosting
the VM instance. This policy is realized as follows: first S looks up the recorded
SP of CH in the nova database and proceeds if SP is sufficient compared to
the requirements of C (corresponds to (4)). The second step is to request CH to
attest itself with 7T P. If SP was not sufficient, the next eligible CH is selected.
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Steps (5)-(7) are perfomed by CH, followed by 7T P in steps (8)-(11).
Token Tey = {N, Hy Mimage } PK 1,4 18 returned from 77 P to CH after which
CH includes the token in the return message to S . If the attestation was suc-
cessful, S requests the now trusted CH to launch the VM instance and includes
Tom in the request.

Next, CH decrypts Tom and obtains N and Hy arimage. To verify the integrity
of the VM image, Hv pmimage is included in the call to the virtualization driver
(1ibvirt is used by the prototype), which fetches the VM image from Glance
and caches it locally on CH. The hash of the cached image is calculated and
compared to Hy pfimage. If the hashes do not match, an exception is raised.
Otherwise, the launch procedure continues (12) and the file injection capability
of Nova is used to inject N into the file system of the VM image (13). The VM
image is then used to launch the VM instance on CH and steps (14) and (15)
are completed.

6 Related Work

Application of trusted computing principles within IaaS environments has been
the focus of several research papers examined below.

Santos et al propose the design of a “trusted cloud compute platform” (TCCP)
that ensures VMs are running on a trusted hardware and software stack with a
remote and initially untrusted CH [9]. The authors propose a remote attestation
process where a trusted coordinator (7C) stores the list of attested CHs that
run a “trusted virtual machine monitor” which can securely run the client’s VM.
A trusted CH maintains in its memory an individual trusted key (TK) used for
identification each time the client C instantiates a VM on the trusted CH. The
paper presents a good initial set of ideas for trusted VM launch and migration,
in particular the use of a 7C. A limitation of this solution is that the TK re-
sides in the memory of the trusted CH, which leaves the solution vulnerable
to cold boot attacks [18] with keys extractable from memory. Furthermore, the
authors require that the 7C maintains information about all CH deployed on
the TaaS platform, but do not mention mechanisms for anonymizing this infor-
mation, making it valuable to an attacker and unacceptable for a public TaaS
provider. Finally, the solution lacks both mechanisms for revocation of the TK
and considerations for the re-generation of TK outside of CH reboot.

A decentralized approach to integrity attestation is adopted by Schiffman et al
n [19]. The primary concerns addressed by this approach are the limited trans-
parency of IaaS platforms and the limits to scalability imposed by third party
integrity attestation mechanisms, as described in [9]. The authors examine a
trusted cloud architecture where the integrity of the TaaS CH is verified by the
Taa$ client through a “cloud verifier” (CV) proxy that resides in the application
domain of the TaaS platform provider and is accessible by the client. Thus, in
the first step of the protocol the client evaluates the integrity of the CV in order
to include the CV into its trust perimeter if the integrity level of the CV is con-
sidered satisfactory. Next, the CV sends attestation requests from CH, i.e. the
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CH where the guest VM instance can potentially be deployed, thus extending
the trust chain to the CH. Finally, CH verifies the integrity of the VM image,
which is countersigned by the CV and returned to the client which evaluates the
VM image integrity data and allows or disallows the VM launch on the CH.
While the idea of increasing the transparency of the IaaS platform for the client
is indeed supported in industry [20,21], the authors do not clarify how the in-
troduction of an additional integrity attestation component in the architecture
of the TaaS platform has positive effects on the transparency of the IaaS plat-
form. Furthermore, the proposed protocol increases the complexity model for the
Taa$S client both by introducing the evaluation of integrity attestation reports of
the CV and CH and introduction of additional steps in the trusted VM launch,
where the client has to take actions based on the data returned from the CV.
This requires either human interaction or a fairly complex integrity attestation
evaluation component (or a combination thereof) on the client side, making a
wide-scale adoption of the solution difficult.

In [10], Aslam et al proposed principles for trusted VM launch on public
cloud platforms using trusted computing techniques. In order to ensure that
the requested VM instance is launched on a CH with verifiable integrity, the
client encrypts the VM image (along with all injected data) with a symmetric
key sealed to a particular configuration of CH, which is reflected through the
values in the platform configuration registers (PCR) of the TPM deployed on
the CH. The solution proposed by Aslam et al presents a suitable model in the
case of trusted VM launch scenarios for enterprise clients. It requires that the
VM image is pre-packaged and encrypted by C prior to IaaS launch. However
the proposed model does not cover the very common scenario of launching an
unmodified VM image made available by the TaaS provider or uploaded by C.
Furthermore, we believe that reducing the number of steps required from C will
facilitate the adoption of the trusted IaaS model. Likewise, direct communication
between C and CH, as well as significant changes to the existing VM launch
implementations in IaaS platforms hamper the implementation of this protocol.
This paper reuses some of the ideas proposed in [10] and directly addresses the
above limitations, namely actions to be performed by C, also touching upon the
requirements towards the launched VM instance and required changes to the
TaaS platform.

7 Conclusion

In this paper we have presented a detailed trusted launch protocol for VM in-
stance launch in public TaaS environments. Furthermore, we have provided a
prototype implementation of the launch protocol in OpenStack. Detailed per-
formance measurement and evaluation, as well as alternative implementation
choices have been left for future work.

The presented results make a case for broadening the range of use cases for
trusted computing by applying it to IaaS environments, especially within the
security model of an untrusted IaaS provider. Trusted computing offers capa-
bilities to securely perform data manipulations on remote hardware owned and
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maintained by another party by potentially preventing the use of untrusted soft-
ware on that hardware for such manipulations. The presented design is directly
applicable to the process of developing a trusted virtualized environment, e.g. a
public TaaS service.

Future research recommendations can be grouped into three categories:

First is the extension of the trust chain to other operations on VM instances
(migration, suspension, updates, etc.), as well as data storage and virtual net-
work communication security.

The second category includes addressing certain assumptions of the proposed
launch protocol, e.g. the assumption that the CH configuration is not changed
after the trusted launch of the VM instance, since even in the case of a bona fide
TaaS provider the CH can be compromised through runtime process infection. A
technique to enable C to either directly or through mediated access discover such
events and protect the data used by the VM instance is a promising research
topic.

The third category focuses on the design and implementation of the evaluation
policies of the TTP. The current assumption is that the TTP has access to
information regarding “secure” configurations and the PCR values, something
which needs to be directly addressed as evaluating exactly how secure a certain
software stack is, is a challenge. Furthermore, taking into account the diversity
of available libraries as well as the different combinations in which they can be
loaded during the boot process, verification of PCR values (such as values stored
in PCR10 and reference values in binary runtime measurements) becomes a less
trivial task.
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Abstract. Measuring the integrity of critical operating system compo-
nents and securely storing these measurements in a hardware-protected
Trusted Platform Module (TPM) is a well-known approach for improving
system security. However, currently it is not possible to securely extend
this approach to TPMs used in virtualized environments. In this paper, we
show how to multiplex integrity measurements of arbitrarily many Virtual
Machines (VMs) with just a single standard TPM. In contrast to existing
approaches such as vI'PM, our approach achieves a higher level of security
since measurements will never be held in software but are fully hardware-
protected by the TPM at all times. We establish an integrity-protected
mapping between each measurement and its respective VM such that it is
not possible for an attacker to alter this mapping during remote attesta-
tion without being detected. Furthermore, all measurements will be stored
in the TPM in a concealed manner in order to prevent information leakage
of other VMs during remote attestation. The experimental results of our
proof of concept implementation show the feasibility of our approach.

Keywords: Integrity Measurement, Attestation, Trusted Platform Mod-
ule, Trusted Computing, Virtualization.

1 Introduction

Virtualization and the utilization of a Hardware Security Module (HSM) are
two well-known approaches for improving system security. Virtualization can be
used to partition a system into several Virtual Machines (VMs) such that critical
system components are isolated from one another and to allow for a reduced
Trusted Computing Base (TCB) of the overall system. Virtualization is also
heavily used in the context of cloud computing where multiple VMs of different
customers run concurrently on the same system platform. In this context, it is
crucial that one VM cannot access or manipulate data of another VM.

An HSM is a hardware device usually capable of securely managing cryp-
tographic keys and storing data such that it is not possible for an attacker to
extract or manipulate these keys and data. A very prominent and widespread
HSM is the Trusted Platform Module (TPM) [1] as specified by the Trusted Com-
puting Group (TCG) [2]. In particular, the TPM can be used to securely store
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integrity measurements in special Platform Configuration Registers (PCRs) that
reflect a system’s configuration. An authenticated boot is used to establish a chain
of trust by measuring each component in the booting sequence, starting with an
inherently trusted component called the Core Root of Trust for Measurement
(CRTM). Developments such as the Integrity Measurement Architecture (IMA)
[3] extend this chain of trust to the application layer by measuring programs
executed in the OS and storing the measurements in a PCR, of the TPM. Fi-
nally, the integrity measurements are used in the course of a remote attestation
to prove to a remote party that the system platform is in a trusted state.

Unfortunately, the TPM was not designed to be used in virtualized environ-
ments and thus the advantages of virtualization and HSMs cannot be easily com-
bined. In particular, the TPM was not designed to store integrity measurements
on a per-VM basis. Furthermore, it is impossible to perform remote attesta-
tions only for particular VMs. Researchers have proposed several ideas to tackle
these problems. The emulation of PCRs in software for each VM was proposed
in [4,5]. However, on a compromised system these PCRs can be manipulated
by an attacker, allowing him to forge remote attestations. There also exist pro-
posals that describe next-generation TPMs with hardware-based virtualization
support that do not suffer from the aforementioned security vulnerability [6,7,8].
However, such TPMs are not available yet.

In this paper, we show how to multiplex integrity measurements of arbitrarily
many VMs with just a single standard TPM and only requiring one PCR. In con-
trast to [4,5], which emulate PCRs in software, our approach achieves a higher level
of security since measurements are always stored in the hardware-protected PCRs
of the TPM. We show how to establish an integrity-protected mapping between
each measurement and its respective VM such that it is not possible for an attacker
to alter this mapping (e.g., hiding malicious programs by mapping their measure-
ments to other VMs) without being detected. Furthermore, we develop a remote
attestation protocol for attesting the integrity of individual VMs. A crucial prob-
lem we have to solve in the context of remote attestation is that our approach of
sharing PCRs among VMs, inherently requires the disclosure of all measurements
of all VMs. This entails security and privacy issues as even a legitimate challenger
in the remote attestation protocol is then able to determine exactly which software
is running in all other VMs. This information might be used to exploit (known)
vulnerabilities of that software. We overcome this problem by storing all measure-
ments in the multiplexed PCR in a concealed manner. This enables us to fully dis-
close the (concealed) contents of the PCR and to selectively reveal non-concealed
measurements on a per-VM basis. Finally, the experimental results of our proof of
concept implementation show the feasibility of our approach.

The rest of this paper is organized as follows. Sect. 2 first gives an overview
of our concept, states our assumptions, describes the threat model, and then
explains in detail the multiplexing technique used for storing measurements and
attesting individual VMs. Sect. 3 gives the security analysis. Sect. 4 describes
our proof of concept implementation. Sect. 5 presents our evaluation results.
Sect. 6 discusses related work. Sect. 7 concludes this paper.
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2 Concept

Our concept is based on a virtualized platform consisting of a single hardware
TPM, a hypervisor, and arbitrarily many VMs. A multiplezing agent (MPA) is
located in the hypervisor (or in a privileged VM) and processes integrity mea-
surements received from the VMs and stores them in the TPM. In each VM runs
a measurement agent (MA) (e.g., IMA [3]) that monitors the execution of super-
vised files, calculates integrity measurements, and forwards them to the MPA. Al-
ternatively, the files could be monitored by using passive monitoring techniques
where the monitoring is implemented in the hypervisor (e.g., HIMA [9] or Patago-
nix [10]). Our proposed multiplexing concept is compatible with either approach.

2.1 Overview of Multiplexed Storage and Attestation

The MPA stores integrity measurements in a single shared PCR of the TPM.
Each of the 24 PCRs of a TPM may (conceptually) hold arbitrarily many mea-
surements by extending them as a hash chain, i.e., PCRJ[i] - SHA1(PCR[i]||m),
for a measurement m and PCR 4 (where || denotes concatenation). However, to
retain the (integrity-protected) information in which VM a measurement m took
place, the MPA not only extends m but also the corresponding VM’s unique vir-
tual machine identifier (VM-ID) in the PCR (cf. Sect. 2.3).

Furthermore, the MPA is able to attest the integrity of individual VMs to a
verifier (cf. Sect. 2.4). However, without further precautions, this requires the
disclosure of all measurements of all VMs sharing the PCR. This entails security
and privacy related problems as described in the introduction. Therefore, before
extending the PCR, the MPA first conceals each measurement with a special
value called concealment. A concealment is a non-predictable random or pseudo-
random value that is at least the size of the output of the SHA1 hash function
in which we will use it (cf. Sect 2.3). The reason for this size is to adequately
protect against lookup attacks trying to extract the plain measurements. Note
that the concept of a concealment is related to the concept of a salt. However,
in contrast, a concealment is unknown to a verifier and will only be disclosed to
him when attesting a particular VM. The MPA maintains one base concealment
for each VM and derives further concealments from it. In addition to concealing
measurements, we also conceal the measurement’s associated VM-ID to prevent
a verifier from gathering information about how many measurements have been
conducted in other VMs. This information might otherwise be misused to detect
usage patterns (e.g., activity level of VMs of competitors).

Finally, this enables the MPA to disclose all measurements of all VMs in a
concealed manner to a verifier. For the attested VM, the non-concealed measure-
ments, along with the attested VM’s base concealment, are additionally revealed.
The base concealment is used by the verifier to derive the same concealments as
the MPA, which are then used to link the non-concealed measurements to their
corresponding concealed measurements. This, in turn, allows the verifier to re-
calculate the proper hash chain (consisting of concealed measurements only) and
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to match it against the (signed) PCR value, thus ensuring the measurements’
integrity and authenticity (cf. Sect. 2.5).

2.2 Assumptions and Threat Model

Assumptions. In the remote attestation protocol, we focus on the measure-
ment data of the multiplexed PCR as we assume the rest of the system can be
attested with general remote attestation techniques. We assume the MPA utilizes
some form of VM-based (one-way) authentication of parties requesting a remote
attestation for a particular VM. Note that even for authenticated parties, we
still need to privacy-protect the measurement data of other (non-authenticated)
VMs as done by our approach.

Threat Model. We consider all man-in-the-middle (MITM) attacks on the
remote attestation protocol. The MITM is located between the prover and the
verifier and is able to intercept and manipulate the transmitted data (e.g., dis-
carding or forging measurements). We also consider attacks on the attesting
platform in which an attacker tampers with software (e.g., by forging remote
code updates). The malicious software (or the attacker) may try to hide its ex-
ecution by removing or manipulating its respective integrity measurement. We
do not consider direct physical attacks on the TPM.

2.3 Integrity Measurement Transformation and Storage

We let idym,, - - ., idym, denote unique and publicly known VM-IDs w.r.t. the
set of all n VMs on a particular system. The MPA maintains for each VM
idym one non-predictable base concealment c,,, € {0,1}*, with k > 160 (i.e., at
least the size of the output of SHA1). For the i’th measurement transformation
(counting from zero) of a VM id,,, the MPA derives a new concealment ¢, by
incrementing c,,, i times, that is, ¢!, := cym + 1, i > 0. Note that ¢!, denotes
the base concealment c,,,. For brevity, we define H := SHA1 in the remainder
of this document.

Each time MA measures (the content of) a monitored file f executed in VM
idym by calculating m := H(f) and forwards it to the MPA, the MPA associates
m with id,,,, conceals both m and 4d,,,, and extends the result to the shared
PCR p. In particular, for the i’th measurement of VM id,,,,, the MPA does the
following five steps (called a round in the following):

Derive new VM-specific concealment ¢!, from base concealment c,,
Conceal measurement m by hashing it with ¢;,,,, i.e., p:= H(m||c},,)
Conceal VM-ID id,, with same concealment ¢, i.e., dym := H (idym||c%,)
Hash over the concealed measurement value p combined with the concealed
VM-ID by, i.e., @ := H(p||0pm)

5. Extend the TPM’s shared PCR p with ¢

Ll
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Note that it is not possible to defer this measurement transformation (e.g., to the
point in time where a remote attestation is requested) because the measurement
must immediately be stored in the TPM in order to prevent an attacker from
removing or manipulating previous integrity measurements once the system gets
compromised.

Step one guarantees that we use a new concealment for each round. It is im-
portant that a verifier is able to produce the exact same sequence of concealments
ct . c2... ... from the base concealment c,,, = ¢J, (cf. Sect. 2.5). Note that sim-
ple incrementation is sufficient for deriving the concealments (in terms of confi-
dentiality of the concealed values in steps two and three) since two consecutive
(and thus similar) concealments ¢! . and cifl result in two completely different
hash values H(c!,,) and H(cit1) due to the avalanche effect [11]. Step two makes
sure that it is sufficient to only disclose concealed measurements to a verifier V in
order to reconstruct the hash chain represented by the shared PCR p. V can eas-
ily verify that a measurement m of the attested VM corresponds to the concealed
hash value p by checking whether u = H(m/|ci,,) holds. Note that it is infeasible
to find some other preimage x # m/|ci,, such that H(z) = H(m]||c!,,) because of
the second-preimage resistance property of H. In step three, we conceal the VM-
ID to prevent V from gathering usage patterns of other VMs. Note that the usage
of a static (VM-based) concealment ¢, would always map a VM-ID id,,,, to the
same concealed VM-ID 6,,, = H (idym||com), thus allowing to link (concealed)
VM-IDs and measurements. We use different concealments for each round in or-
der to prevent this. Step four establishes the mapping between p and 6,,,, and thus
implicitly also between m and id,,,. In step five, the concealed hash value ¢ gets
finally extended to the PCR p by using ¢ as the incoming operand TPM DIGEST of
the TPM Extend command [1]. Note that it is sufficient to use the standard, non-
modified TPM Extend operation. Also note that storing the just described map-
ping between measurement and VM-ID directly in the integrity protected PCR
(PCR Quote may be used to sign the value of the PCR) makes it redundant to
maintain an external integrity protected mapping.

Multiplexed Measurement List (MML). The final hash chain value con-
tained in PCR p is not sufficient to reconstruct the actual measurement data.
Therefore, the MPA separately stores all measurement data in chronological
order w.r.t. their corresponding TPM Extend operations in the multiplexed mea-
surement list (MML). The MML is an ordered list of pairs of the form (m, idym ),
where m is a (non-concealed) measurement and id,., the corresponding (non-
concealed) VM-ID id,,, denoting the VM in which the measurement took place,
that is:

MML = <(m0, idym,, )s (M1, idym,, )y - - (M, idpm,, )>

2.4 Integrity Reporting

Fig. 1 shows our adapted remote attestation protocol enabling the integrity
reporting of individual VMs. Note that the remote attestation process actually
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TPM |I|

| create 160bit nonce n |

request PCR p for VM idym, n

load AIK

quote PCR p with n

=:q
~

- ~
sig{perp, n}ark,,

| retrieve MML and cym
I
| construct CMMLuy,, from MML |

=CMMLym
-

- ~
q, Coms (Mo, idvm), (141, Spm? )y - )

| retrieve cert(AIKyy) |
I
| verify ¢ with AIK,; and validate n |
I
| validate CMMLy., using cym and perp |

—— — -

Fig. 1. Multiplexed remote attestation protocol

consists of the integrity reporting phase as explained in the following as well as
of the integrity validation phase as explained in Sect. 2.5.

First, the verifier V requests integrity measurement data for a particular VM
and PCR p by providing the VM’s unique and publicly known VM-ID id,.,.
The prover P (the MPA in our case) then signs the content per, of the requested
PCR p with a special key of the TPM, a so-called Attestation Identity Key
(AIK). This proves to V the content of the requested PCR. In the next step,
the VM-specific concealed multiplexed measurement list (CMML) CMML,,, is
constructed from the MML. Recall that all pairs of the MML are non-concealed.

The construction is done by sequentially processing all pairs of the MML
from left to right. Pairs not belonging to the attested VM 4id,,,, are substituted
with their concealed counterparts. In particular, the 7’th occurrence (counting
from zero) of a pair (m,idym) € MML, for some measurement m and some
VM-ID idy # idym, gets substituted with (H(m||c, ), H(idym||c!,,,/)). Pairs
belonging to the attested VM remain non-concealed. Finally, P sends CMML,,,,,
the base concealment c,,,, and the signature data ¢ of content pcr, to V. Note
that the MPA may cache the concealed pairs to avoid recalculating them for
each remote attestation.
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Algorithm 1. Validation of CMML

1: procedure VALIDATE CMMUL (idym, cmmlym, Com, pcr)
2: per’ =0

3: used. := false
4: for (a,b) in emmlym do
5: if b = idy,, then > does pair belong to attested VM?
6: w < H(al|lcom) > construct concealed measurement value
7 0 < H(b||com) > construct concealed VM-ID
8: Com 4+ Com + 1 > set concealment for next round
9: used. < true > exhaustive blinding attack not possible anymore
10: else
11: na > measurement already concealed
12: 6+ b > VM-ID already concealed
13: if 6 = H(idvm||com) V 6 = H(idvm||com — 1) then
14: return false > blinding attack
15: end if
16: end if
17: @« H(pl|6)
18: per’ < H(per'||p) > simulate PCR Extend
19: end for
20: if pcr’ = per A used. = true then
21: return true > confirm integrity of cmmlym
22: else
23: return false > integrity violation detected
24: end if

25: end procedure

2.5 Integrity Validation

In the following, we will describe how to validate the CMML and its contained
measurements which were transmitted in an attestation protocol run as described
before. We will show that a validation always fails if a MITM manipulates com-
binations of CMMULy,, cym, and q. The verification process done by V is twofold.

In the first phase, the CMML is validated to make sure that a MITM did not
tamper with it and that consequently all contained measurements are correct.
The validation process is shown in Algorithm 1 and will be explained in the
following. In the second phase, V inspects these measurements to determine the
trustworthiness of the attested VM. This might be done by a whitelist or blacklist
approach that checks for good measurements (e.g., legitimate programs) or bad
measurements (e.g., known malware), respectively. However, the second phase
is outside the scope of this paper.

V first uses AIKp, on ¢q to verify the authenticity and integrity of content
pery, of the requested PCR p. This detects all manipulations of ¢ by a MITM as
well as replay attacks due to the included nonce n. V then validates the CMML
with the help of ¢, and pery,. The validation process is shown in Algorithm 1.
It simulates all PCR Extend operations that have (allegedly) been done by P
and compares the result with the signed PCR value per, =: pcr. This is done
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by inspecting each pair (a,b) of the CMML. Each pair (a,b) with b = idypn,
contains non-concealed measurement data a for the attested VM id,,,,. However,
since all measurements have been extended to the PCR by P in a concealed
manner (cf. Sect. 2.3), V needs to reconstruct the corresponding concealed value
¢ := H(u||6), where p := H(al|¢!,,) and § := H(b||c¢,,) (for round 4), in order to
correctly simulate all PCR Extend operations. All other pairs (a, b) with b # id,m,
do not belong to the attested VM id,,, and have already been concealed by P,
that is, @ = p and b = §. Thus, the concealed values p and § can be directly
used to construct ¢ := H(p||d). Finally, ¢ is used to simulate the PCR Extend
operation. These steps are repeated for each pair of the CMML. If the final
simulated PCR value pcer’ matches the signed PCR value per, the measurements
of the CMML correctly reflect the actual measurements of the attested VM.

The check in line 13 of Algorithm 1 detects blinding attacks where a MITM
tries to hide non-concealed pairs (a,b) = (a, idym,) belonging to the attested VM
idym. The blinding is done by substituting pairs (a, id,,) with their correspond-
ing concealed pairs (i,0) := (H(al|c},,), H(idym||c!,,)), with the intention of
misleading V into thinking that the concealed pairs (i, d) do not belong to VM
idym. Note that in this case the recalculated per’ would still match per since (p, 0)
has indeed been extended to the TPM. Note also that in our concept we inten-
tionally conceal a measurement m and its corresponding VM-ID id,,,, separately
instead of concealing m and id,,, combined, e.g., ¢ := H(m||idym||c.,,). In the
latter case, it would be impossible for V to check whether a non-concealed pair
(m, idy,) has been blinded (i.e., checking whether ¢ = H (m/||idym||ct,,) holds)
because the measurement m is unknown to V. We will come back to blinding
attacks in the security analysis in Sect. 3.

A special case of the described blinding attack is to blind all non-concealed
pairs and to additionally substitute the base concealment c,,, = ¢, with some
e # QN #cl . Note that in this case the check for blinding attacks in
line 13 fails since the original base concealment ¢, used for the (first) blinding
operation now differs from the concealment ¢,,,,, used in the check. Furthermore,
the substitution of ¢, with ¢, will not be detected since ¢, is never used to
calculate a concealed pair out of a non-concealed one (because there are no non-
concealed pairs left) and thus per’ matches per. Therefore, in order to detect such
exhaustive blinding attacks, we explicitly check in lines 9 and 20 of Algorithm 1
that V used the base concealment in the calculation of per’.

3 Security Analysis

An attacker might try to remove or manipulate previous measurements on a
compromised system. However, all measurements, along with the mapping to
their respective VM-IDs, are stored in the hardware-protected PCR of the TPM
and thus it is impossible to remove or manipulate them.

In the context of a remote attestation, a MITM might try to simply discard or
substitute measurements (e.g., malicious programs) contained in the transmitted
CMML or to manipulate a measurement’s associated VM-ID. However, in each case
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the hash chain value per’ calculated by V from the CMML (cf. Algorithm 1) will
not match the TPM’s quoted PCR, value per anymore and the attestation will fail.

In a blinding attack, a MITM substitutes measurements and VM-IDs with
their corresponding concealed pairs. There exist four types of blinding attacks
(and combinations thereof) w.r.t. the position of the blinded pairs within the
CMML. In the following, we will show that our concept protects against each
type. Note that since concealed pairs in the CMML do not influence the state
of the concealment c,,, in Algorithm 1, we consider, w.l.o.g., only pairs of the
attested VM. In particular, we consider the following CMML (along with signa-
ture data ¢ and base concealment c¢,,,) is sent from P to V in the course of a
remote attestation protocol run as described in Sect. 2.4:

CMMLyy, = <(m07 idvm)a (mla idvm)v (m27 idvm))

Intermediate Blinded Pairs. In this attack, a MITM blinds a pair (or several
consecutive pairs) which is neither the first pair nor the last pair of the CMML.
In other words, there exists at least one pair before and after the blinded pair,
respectively:

q, Cgm’ <(m0’ idvm)v (H(ml | ‘czl)m)v H(idvac})m)), (va idvm)>

In this case, even without the explicit check for blinded pairs in line 13 of Algo-
rithm 1, the attestation fails because the wrong concealment ¢, is used by the
algorithm to conceal the third pair (since the concealment will not be incremented
when processing the intermediate blinded pair (cf. Algorithm 1, lines 11 to 15)).

Trailing Blinded Pairs. In this attack, a MITM blinds one or more consecutive
trailing pairs:

4y s { (oo ), (H (maleby) H (idum b)), (H(mall,), Hidum],)) )

Note that in contrast to the previous scenario, in this case the attestation would
actually succeed if there was not the explicit check for blinded pairs. The reason
is that the “out of sync” concealment will not be used anymore after concealing
the first pair (as was the case above). With the explicit check, the algorithm
detects H (idym||cl,,) in the second pair and the attestation fails. In general, the
check always matches the leftmost trailing blinded pair.

Leading Blinded Pairs. In this attack, a MITM blinds one or more consecu-
tive leading pairs:
0y s { CH (0 165,), H (i), (HE (b, ), H (il b)) (2 idunm) )

Note that in this type of attack, the MITM needs to manipulate the transferred
base concealment such that it correctly blinds the first non-concealed pair in the
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CMML. In particular, since the base concealment is now c2,,, the explicit check

for the first pair on whether ¢ equals H (idym||c2,,) V H (idym||cl,,) fails because
), was used for the blinding by the MITM. However, the check matches the
second pair and the attestation fails. In general, the check always matches the

rightmost leading blinded pair.

Exhaustively Blinded Pairs. In this attack, a MITM blinds all pairs and
substitutes the base concealment ¢%,, with some ¢, # ¢, Ac,. #ck . Since
in this case the above checks fail (as explained in Sect. 2.5), we enforce the
usage of the base concealment in the calculation of per’ in order to detect the

base concealment’s manipulation, thus preventing such attacks.

4 Implementation

We have implemented a proof of concept using the QEMU emulator [12] (version
1.0.50) with enabled KVM [13] full virtualization support. The host system runs
the Ubuntu OS (version 11.04). Each guest VM runs Ubuntu 10.04 with an
IMA-enabled Linux kernel (2.6.35). We patched the IMA kernel code so that
measurements are not directly extended to the TPM but instead are forwarded
to the MPA running in the host system. The MPA has exclusive access to the
TPM (using TrouSerS [14], version 0.3.5-2) and implements the multiplexing
concept as described in Sect. 2.

The communication between the MPA and the VMs is done over Virtual
LAN (VLAN). The MPA listens on a dedicated range of ports for incoming
connections. Whenever a new VM is started, QEMU connects the VM to a
free port in that range with a guest forward (guestfwd) rule. The so established
socket is then used by our patched IMA to forward measurements to the MPA;
all communication over other ports is blocked. Furthermore, the MPA uses this
port number to derive the unique VM-ID of the connected VM. This mapping
cannot be changed from within the VM in an attempt to forge the VM-ID since
it is maintained solely by QEMU and the MPA.

Note that our patched IMA does not block until the measurements have ac-
tually been extended to the TPM. It rather just forwards them to the MPA and
is immediately ready for further tasks. The MPA asynchronously processes and
extends the measurements in a round-robin fashion as soon as they arrive. This
significantly increases response times and overall performance in the VMs.

5 Evaluation

We use our implementation to determine whether the MPA might constitute
a possible performance bottleneck since it represents the centralized location
where all measurements from all VMs are collected, processed, and extended to
the TPM. The testing hardware consists of a PC with an Intel Core2 Duo 3 GHz
CPU, 4,096 MB RAM, and a TPM 1.2.7.40 from STM. Each VM gets assigned
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Table 1. Average processing time for 10,000 measured files in each VM (in seconds)

Patched IMA

VMs No IMA VM only Total Ratio VM Ratio total
1 48.87 86.73 200.84 1.77 4.11
2 50.91 104.96 400.29 2.06 7.86
3 79.61 171.85 601.02 2.16 7.55
4 108.73 229.32 825.06 2.11 7.59
5 146.32 295.27 1318.17 2.02 9.01

512 MB RAM and contains 10,000 distinct testing binaries which, on execution,
just return. Furthermore, each VM runs our patched IMA that we additionally
modified for the evaluation such that only the testing binaries get processed.
To start the testing, we simultaneously trigger in all VMs the execution of the
testing binaries in successive order.

Table 1 shows the testing results. Column four lists the total time needed from
measuring all files to extending the measurements in the TPM. Note that the
TPM requires most of the computation time. It takes about 200ms for 10,000
operations. Column three shows the fraction spent in a VM (on average) for mea-
suring and forwarding. Column two lists the time needed by a VM (on average)
running no IMA at all. The latter system allows us to better compare how the
parallel execution of multiple VMs naturally slows down program execution time
in the VMs because of shared hardware resources. In fact, the parallel execution
of more than three VMs exhibits such behavior for both our approach and the
system running no IMA at all, as indicated by our results. The time ratio in
column five indicates an overhead of factor & 2 for our approach considering the
time spent in the VMs. This is due to forwarding the measurements over VLAN
to the MPA. Techniques like shared memory may be used to further reduce this
overhead. The total ratio in column six reflects mainly the time needed for the
TPM extend operations as noted above. We can see that our approach scales
roughly linearly with the number of VMs. The increased slowdown with more
than three VMs is mainly due to the rather limited hardware resources of our
testing system as it occurs also with the system running no IMA at all. Hence,
the results indicate that the MPA does not constitute a performance bottleneck.

For the remote attestation, in order to attest a single VM, we need to send
the measurement data (CMML) of all VMs (cf. Sect. 2.4). Thus, the size of the
transferred data increases linearly with the number of VMs. This is a disadvan-
tage compared to other approaches that emulate a set of PCRs for each VM in
software [4,5] or maintain them in hardware [6,8,7], where it is sufficient to only
send measurement data of the attested VM.

6 Related Work

Berger et al. describe a virtualized TPM emulating TPM functionality in soft-
ware, called vIPM [4]. In particular, each VM is provided its own vIPM with
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its own instance of (upper) PCRs. All upper PCRs are held in software and their
contents may be signed by the hardware TPM. However, this does not provide
the same level of security as storing measurements in hardware-protected PCRs
since measurements held in software can be manipulated by an attacker once
the system is compromised.

In [5], England et al. try to reduce the complexity of approaches such as vIPM
by not emulating the entire TPM interface in software. They utilize a para-
virtualized approach that will pass through most of the functionality of a real
TPM, but changes some aspects of the device interface. However, this approach
suffers from the same problem as vITPM since (upper) PCRs are emulated in
software and thus can be manipulated on a compromised system.

Feller et al. propose dcTPM [8], an architecture to multiplex several software-
based TPMs, hardware TPMs, or a combination thereof. By multiplexing only
hardware TPMs, the above issue of software-emulated PCRs can be solved. How-
ever, their approach does not scale very well. In fact, multiplexing cloud systems
consisting of hundreds of VMs becomes infeasible in terms of technology (e.g.,
limited number of FPGA pins needed for multiplexing TPMs) and in terms of
economy (e.g., hardware must be especially built with as many hardware TPMs
as the (maximum) number of associated VMs).

In [6], Stumpf et al. propose a concept for enhancing a TPM to support
hardware-based virtualization without the above scaling issues. This is achieved
by employing a root-data structure that is only accessible by the hypervisor
and a TPM-control structure that is used to dynamically swap TPM-context
information of each VM in and out in an encrypted manner. Unfortunately, such
a TPM is not available for production use.

The TCG also defines a specification for a virtualized trusted platform archi-
tecture [7]. However, such an envisioned TPM 2.0 is not available yet.

7 Conclusion

We have shown that it is possible to multiplex integrity measurements of arbi-
trarily many VMs with just a single standard TPM and only requiring one PCR.
In contrast to existing approaches that emulate PCRs in software, our approach
achieves a higher level of security since measurements, along with the mapping
to their respective VMs, will always be stored in the hardware-protected PCRs of
the TPM. We presented a remote attestation protocol for attesting the integrity
of individual VMs. A crucial problem we had to solve in this context, was that
our approach of sharing PCRs among VMs, inherently requires the disclosure of
all measurements of all VMs. We overcame this by storing measurements in the
PCR in a concealed manner. We additionally conceal a measurement’s associ-
ated VM-ID, so as to prevent the collection of usage patterns. This enables us to
fully disclose the (concealed) contents of the PCR and to selectively reveal non-
concealed measurements of individual VMs. Finally, the experimental results of
our proof of concept implementation show the practicality of our approach.
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Abstract. Salsa20 is a stream cipher designed by Bernstein in 2005 and
Salsa20/12 has been selected into the final portfolio of the eSTREAM
Project. ChaCha is a variant of Salsa20 with faster diffusion for similar
performance. The previous best results on Salsa20 and ChaCha proposed
by Aumasson et al. exploits the differential properties combined with the
probabilistic neutral bits (PNB). In this paper, we extend their approach
by considering a new type of distinguishers, named (column and row)
chaining distinguishers. Besides, we exhibit new high probability second-
order differential trails not covered by the previous methods, generalize
the notion of PNB to probabilistic neutral vectors (PNV) and show that
the set of PNV is no smaller than that of PNB. Based on these findings,
we present improved key recovery attacks on reduced-round Salsa20 and
ChaCha. Both time and data complexities of our attacks are smaller than
those of the best former results.

Keywords: Stream ciphers, Salsa20, ChaCha, Neutral bits, Distinguisher.

1 Introduction

Salsa20 [1] is a stream cipher designed by Bernstein in 2005 for the eSTREAM
project [2]. The 8- and 12-round variants, Salsa20/8 and Salsa20/12 [3], were
also published. ChaCha [4] is a variant of Salsa20 with faster diffusion in the
core function for similar performance. After three evaluation phases, Salsa20/12
was selected into the final portfolio of the eSSTREAM Project in 2008.

Since their publication, Salsa20 and ChaCha have undergone significant cryp-
tographic analysis. In 2006, Crowley presented a truncated differential crypt-
analysis on Salsa20/5 [5]. The result revealed that the diffusion of Salsa20 was
not ideal, though it did not threaten the full round security of Salsa20. For the
same variant, V. Velichkov et al. mounted a key recovery attack using UNAF [6]
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Table 1. Comparisons of our attacks with other well known attacks on Salsa20 and
ChaCha

Cipher Round/Key length Time Data  Reference

2165 26 [5]

5/256 2167 o7 [6]
2% 219 This work

2177 216 7

6/256 s 16 (7]
Salsa20 2 2 This work

2151 226

7/256 148 24 [9]
2 2 This work

8/256 2251 231 [9]
2250 927 This work

2111 221 9

7/128 109 19 [ ]
2 2 This work

2139 230 9

6/256 136 28 o)
2 2 This work

2248 227 [9]

ChaCha 7/256
/ 2246:5 927 This work
107 30
6/128 2 2 (9]

2105 928 This work

at FSE 2012. At Indocrypt 2006, Fischer et al. described some non-randomness
properties of Salsa20/5 and used this observation to construct a key-recovery at-
tack on Salsa20/6 [7]. At SASC 2007, Tsunoo et al. exploited a bias of Salsa20/4
to construct an attack on Salsa20/7 [8]. So far, the best key recovery attacks on
variants of Salsa20 and ChaCha were proposed by Aumasson et al [9] at FSE
2008, exploiting first-order differential properties combined with the probabilistic
neutral bits (PNB) technique.

In this paper, we extend the approach of Aumasson et al. by considering a
new type of distinguishers, named (column and row) chaining distinguishers,
which can efficiently make use of the biases of multiple differential trails and the
matrix structure of the cipher. Besides, we find new high probability second-
order differential trails that are not covered by the previous results, some of
which are employed in our attack. The notion of PNB is generalized to that
of probabilistic neutral vectors (PNV), which investigate the properties of the
underlying function when more than one input bit are flipped simultaneously and
include the PNB as a special case. It is shown that the set of PNV is no smaller
than that of PNB. Based on these findings, we construct improved key recovery
attacks on reduced-round Salsa20 and ChaCha, repectively. Both time and data
complexities of our new attacks are smaller than those of the best former results.
Table 1 presents our results together with comparisons with other well known
attacks.

The rest of the paper is organized as follows. A brief description of Salsa20 and
ChaCha is presented in Section 2. The attacks of Aumasson et al. are recalled
in Section 3. In Section 4, our new attacks are described in details with the
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introduction of the (column and row) chaining distinguishers, high probability
differential trails and the notion of PNV. Finally, we conclude the paper in
Section 5.

2 Description of Salsa20 and ChaCha

2.1 Salsa20

Salsa20 operates on 32-bit words and supports keys of 128 bits and 256 bits.
During its operation, the key, a 64-bit nonce (unique message number), a 64-bit
counter and four 32-bit constants are used to construct the 512-bit initial state.

Denote the 256-bit key by k = (ko, k1, ..., k7), the 64-bit nonce by v = (v, v1)
and the 64-bit counter corresponding to the integer i by ¢ = (o, t1). The Salsa20
function acts on the following 4 x 4 matrix of 32-bit words.

rog 1 X2 T3 Co k‘o /{21 /{22
X = Ty 5 Tg T _ k‘g C1 Vg V1
T§ T9 T10 T11 to t1 co Ky
T12 T13 T14 T15 ks ke k7 c3

The ¢;’s are predefined constants. For the 128-bit key &/, just fill the 256 key bits
in the matrix as k = k'||k’. If not mentioned otherwise, we focus on the 256-bit
version. A keystream block Z is then defined as Z = X + X?°, where + is the
wordwise integer addition and X" = Round” (X) with the round function Round
of Salsa20. This round function is based on the following nonlinear operation
(also called the quarterround function), which transforms a vector (zo, 1, 2, 3)
to (2o, 71, 22, 23) by sequentially computing

21 = 71 ® (w3 + 1) K 7]
2o = x2 @ [(xo + 21) K 9]
z3 = 3@ [(z1 + 22) K 13]
20 = 2o ® [(z2 + 23) K 18].

In odd numbers of rounds (which are called columnrounds in the original
specification of Salsa20), the nonlinear operation is applied to the columns
(.Z‘o, T4,T8, $12), (.1‘5, X9, x13, .Z‘l), ($10, T14,T2, xﬁ), (.2',‘157 xr3, X7, .1‘11). In even
numbers of rounds (which are also called the rowrounds), the nonlinear op-
eration is applied to the rows (xg,x1,x2,23), (x5, %6, T7,24), (10,211, 28, T9),
(z15, 12, 13, 214). We write Salsa20/R for R-round variants, i.e., with Z =
X + X . After R iterations of the Salsa20/R round function, the updated state
is used as a 512-bit keystream output. Each such output block is an independent
combination of the key, nonce, and counter.

2.2 ChaCha

ChaCha is similar to Salsa20 except the following three differences: the compo-
sition of the initial matrix, the composition of the quarterround function and
the round function. See [4] for details.
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3 Aumasson et al’s Attacks on Salsa20 and ChaCha

In this section, we briefly recall the first-order differential attacks of Aumasson
et al. These attacks are based on the concept of probabilistic neutral bits (PNB).
Let us first list some notations used hereafter.

- Let x; be the i-th word of the initial matrix X and the j-th least significant
bit of z; is denoted by [z;];.

- Let «} be an associated word with the difference A? = z; @ 2.

- The first-order differential for the input X, with a single-bit input-difference
[A?]; = 1 and a single-bit output-difference [A7], after r rounds, is denoted

by ([43]al[A71)-

3.1 First-Order Differential Analysis of Salsa20 and ChaCha

First note that the round function of Salsa20 and ChaCha is invertible. Define
the r-round inverse X ~" = Round™ " (X), which is different depending on whether
it inverts after an odd or an even number of rounds.

For a fixed differential ([A7],|[A];), the corresponding output Z and Z’ can
be observed for nonce v, counter t and key k. Based on Z = X + X &, if we have
v, t and k, we can get X" = (Z — X)""F and (X')" = (Z' — X")""B(r < R).
Then [A] = X" @ (X)" = (Z— X)) " @ (Z'— X')"~ ! can be observed. Define
the Boolean function f(k,v,t, 7, Z") = [A}],. Then, for a fixed key, the bias ¢4
of f is defined by Pr{f(k,v,t,Z,2") = 1} = Pr{[Al], = 1|[A?];} = (1 + ca),
where the probability holds over all nonces and counters.

Given enough output block pairs with the presumed differential, we have
Pr{f(k,v,t,Z,Z') =1} = }(1 + £4) conditioned on k = k, whereas for (almost
all) k # k we expect f be unbiased, i.e., Pr{f(k,v,t,Z,72') = 1} = ; Note
that the complexity of the above way is 22°6. Instead, Aumasson et al. pro-
posed to find some approximation g of f which effectively depends on s key bits
(s < 256). Let f be correlated to g with the bias g,, i.e., Pr{g(k',v,t,Z,7Z") =
f(k,v,t,2,2")} = j(14€4), where K’ is the s bits subkey of k and the probability
holds over all nonces and counters. Assume Pr{g(k’,v,t,Z,Z') =1} = }(1+¢),
then under some reasonable independency assumptions, we have ¢ = g4 - &4.
Hence, given enough output block pairs with the presumed differential, we can
verify the correctness of a guessed candidate subkey &’ for the subkey &’ by eval-
uating the bias of the function g. More precisely, we have Pr{g(k’,v,t,Z,Z") =
1} = 1(1+¢) if K = k', whereas for (almost all) &’ # k" we expect g be unbiased,
ie. Prig(k',v,t,2,7') = 1} = é In this way, the complexity is reduced from
2256 to 2. Next, we will give a concise description of how the approximation g
of f is found.

3.2 Key Recovery Attacks on Salsa20 and ChaCha

In [9], Aumasson et al. gave an efficient way of finding suitable approximations
g(k' v, t, Z,Z") of the function f(k,v,t, Z, Z') using the concept of PNB.
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Definition 1. The neutrality measure of the key bit k; with respect to the func-
tion f(k,v,t,Z,7") is defined as v;, where Pr = é(l—&—'yi) is the probability (over
all k, v and t) that complementing the key bit k; does not change the output of
flkyut,Z,27).

When the threshold « is set, all the key bits can be divided into two sets: signif-
icant key bits with neutrality measure v; < « (size of s) and non-significant
key bits with neutrality measure ; > ~ (size of ns). Then we can define
g(k',v,t,Z,Z") as an approximation of f(k,v,t,Z,Z’) just simply making k'
be the significant key bits and the non-significant key bits be set to fixed values
(e.g. all zero). More details of the construction of the distinguisher g can be
found in [9]. Then, the whole attack can be carried out as follows:

Attack Online

Parameters: N, s,

1: Collect N pairs of keystream blocks where each pair is produced by states
with a random nonce and counter (satisfying the relevant input-difference).

2: For each choice of the subkey (i.e. the s significant key bits) do:

(2.1) Compute the bias of g using the N keystream block pairs.

(2.2) If the optimal distinguisher legitimates the subkeys candidate as a
(possibly) correct one, perform an additional exhaustive search over
the ns non-significant key bits in order to check the correctness of this
filtered subkey and to find the non-significant key bits.

(2.3) Stop if the right key is found and output the recovered key.

In this attack, there is a set of 2% sequences of random variables by guessing s
significant key bits. Actually, 2° — 1 of them should verify the null hypothesis
Hy, and a single one verify the alternative hypothesis H;. For a realization a of
the corresponding random variable A, the decision rule D(a) = i to accept H;
can lead to two types of errors:

1. Non-detection: D(a) = 0 and A € H;. The probability of this event is pyq.
2. False alarm: D(a) = 1 and A € Hy. The probability of this event is py,.

The Neyman-Pearson decision theory gives results to estimate the number of
samples N required to get some bounds on the probabilities. It can be shown
that

N~ <\/alog4—|—3\/1—62)2 )

3

samples suffices to achieve p,q = 1.3 x 1072 and ps, = 27%. Calculus details
and the construction of the optimal distinguisher can be found in [10].

The time complexity of this attack can be estimated as follows. Step 2 is
repeated 2° times. For each subkey, step (2.1) is always executed which has
complexity of N. The search part of step (2.2) is performed only with probability
Pfa = 27% which brings an additional cost of 2"%(= 2256=%) in case a subkey
passes the optimal distinguisher’s filter. Therefore, the complexity of step (2.2)
is 225675, ¢, showing a total complexity of 2°(N +22°075.p,) = 25. N 42256~
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4 Our Attacks

In the above attack, a (and hence N) is chosen such that it minimizes 2% - N +
2256-a haged on the single distinguisher g. In this section, our new attacks are
described in details with the introduction of the (column and row) chaining
distinguishers, high probability differential trails and the notion of PNV.

4.1 Chaining Distinguishers

For a subkey K’, define the set S(K') = {k;|k; is involved in the subkey K'}.
Note that, all the single distinguishers we mentioned below are constructed with
the method in Section 3.

Definition 2. Column Chaining Distinguishers(CCD for short): For a collec-
tion of subkey {K;}ica with S(K]) C S(K}) (Vi,j € A and i < j), if there exists
a collection of distinguishers {D;}ica, and Vi € A the distinguisher D; effectively
depends on the subkey K, we call {D;}ica the Column Chaining Distinguishers
of {K'}ica.

What’s the advantage of CCD? Here is an example: Suppose A = {1,2, 3}, and
{D;}ica are CCD of {K/}ica with S(K}) C S(K}) C S(K}). For each i € A,
there is a relation between the data N; and (pfq); = 27 with the (pnaq); fixed
(see Eq. 1). Let s; = |S(K7)|, so we have s; < sy < s3. Then the execution of
CCD is described as follows:

Execution of CCD

Parameters: {N;}, {s;}

1: For each subkey candidate K| by guessing the s, key bits of set S(K7),
verify K 1 with the distinguisher Dy of Ny pairs of keystream blocks, if this
step succeeds, do Step 2;

2: Guess the sy —s; key bits of set S(K5)—S(K7]), then for the subkey candidate
Kb (K| plus so — 51 guessed key bits), verify K} with the distinguisher Dy
of Ny pairs of keystream blocks, if this step succeeds, do Step 3;

3: Guess the s3—sg key bits of set S(K%)—S(K7%), then for the subkey candidate
K4 (Kb plus s3 — s guessed key bits), verify K4 with the distinguisher Dy
of N3 pairs of keystream blocks, if this step succeeds, do Step 4;

4: Perform an additional exhaustive search over the 256 — s3 key bits (i.e. not
in the set S(K3)) in order to check the correctness of this filtered subkey
and to find the remaining key bits.

Let us discuss the time complexity of such an attack. Step 1 is repeated for
all 2°1 subkey candidates, and each incorrect subkey candidate passes the test
of distinguisher D; with probability (psq)1 = 27 (according to N pairs of
keystream blocks). Step 2 needs to search over s — 1 key bits of set S(K}) —
S(K7), and each incorrect subkey candidate passes the test of distinguisher Dy
with probability (pfa)2 = 27** (according to Na pairs of keystream blocks).
Step 3 needs to search over ss — so key bits of set S(K}%) — S(K}), and each
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incorrect subkey candidate passes the test of distinguisher D3 with probability
(pfa)s = 27 (according to N3 pairs of keystream blocks). And step 4 needs to
search over the remaining 256 — s3 key bits. So the total complexity is

29 Ny 4 2% - (pga)1 - 227" - Ny +
251 . (pfa)l . 282*81 . (pfa)Z . 253752 A N3 _|_
9251, (pfa)l . 982781, (pfa)2 .983=82 (pfa)3 . 9256—s3
— 951 'Nl + 9s2—a 'N2 + 983 -1~z 'NS + 2256713417&27&3

If we use single distinguisher D; to recover the key, the time complexity is
251 . N 4 225621 Fyurthermore, we can easily get:

min{211.N1+225670¢1} 2 min {2l1.N1+2127a1.N2+2l370¢170¢2 .N3+225670¢170¢270¢3}‘
Ny N1,N2,N3

Two ordinary methods of constructing CCD are as follows:

First method of constructing CCD

1: (a) Find a highly biased differential and set a threshold );
(b) Estimate the measure «; of all the key bits and put all those key bits
with ~; > 'y(l) into the set Si;
(¢) Construct a single distinguisher Dy with the key bits in S; being set to
a fixed value, if the bias of D; is non-negligible, do Step 2;
2: (a) Find another highly biased differential and set a threshold (?);
(b) Estimate the measure 7; of all the key bits in set S; and put all those
key bits in set S; with ~; > 7(2) into the set So;
(¢) Construct a single distinguisher Dy with the key bits in Ss being set to
a fixed value(the same as in Stepl), if the bias of Dy is non-negligible,
do Step 3;
3: (a) Find another highly biased differential and set a threshold v();
(b) Estimate the measure 7; of all the key bits in set Sz and put all those
key bits in set Sy with v; > 7 into the set Ss;
(¢) Construct a single distinguisher D3 with the key bits in S3 being set to
a fixed value(the same as in Stepl), if the bias of D3 is non-negligible,
do Step 4;
4: Continue the work until only a few key bits are left to be guessed.

Second method of constructing CCD

1: Find a highly biased differential and set a threshold ~;

2: Construct a distinguisher g, (K”,v,t,Z,Z') based on the subkey K =
{kilvi <7}

3: If the bias of g, (K, v,t, 7, Z’) is non-negligible, set a series of thresholds
71 < 42 < < 4 with 4() > 5, and for each (!, construct the dis-

tinguisher g, ) (K;(i),v, t,Z,7") effectively depending on the subkey K;(i).
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The first method is feasible for lower rounds of Salsa20 and ChaCha because of
sufficient numbers of PNB’s (usually more than half of the key bits with high ;).
And the second method of constructing CCD is based on a single distinguisher,
which is more feasible when the numbers of PNB’s are insufficient.

Definition 3. Row Chaining Distinguishers(RCD for short): For a fized subkey
K', if there exists a collection of distinguishers {D;}ica which effectively depend
on the subkey K', we call the {D;};ca the Row Chaining Distinguishers for K'.

The advantage of RCD is obvious: firstly, some incorrect subkey candidate K’
may verify the alternative hypothesis of distinguisher D;, while the probability
that it verifies all the alternative hypothesis of distinguishers {D,};c4 is much
lower; secondly, RCD can be used as a CCD! . We will show how to construct
RCD based on a second-order differential in the next subsection.

4.2 Second-Order Differential Analysis on Salsa20 and ChaCha

First, we recall the second-order differential: let X be the initial matrix, X1, X5
and X3 be associated initial matrices with a single-bit input-difference [A9]; =
1, a single-bit input-difference [AY ], = 1 and the double-bit input-differences
[A%; = 1 and [A%],, = 1 respectively. Note that (i — m)? + (j —n)? = 0
should not hold. We consider a single-bit output-difference [A7], = [X]], ®
[(X1)ply © [(X2)p]q @ [(X3),]q after 7 rounds. Then the second-order differential
for the input X is denoted by ([A7],|[AV];, [A%,]n). The bias e4 of the output-
difference is defined by Pr{([A}], = 1|[Af];,[A%].)} = 5(1 4 £4), where the
probability holds over all keys, nonces and counters. We found many highly
biased differentials for Salsa20 and ChaCha (see Table 2).

For a fixed differential ([A7]4|[A?];,[AY,],) with bias g4, let Z = X+ X7, 7, =
Xl—‘r(Xl)R, Z2 = XQ—‘r(XQ)R, and Z3 = X3—|—(X3)R, SO Z7 Z1, ZQ, and Z3 can be
observed for nonce v, counter ¢ and key k. As mentioned in section 3, the round
functions of Salsa20 and ChaCha is invertible, i.e. X" = (Z — X)"~®(r < R), so
[Ary = [((Z = X)" "R (2, — X1)" R (Zy— Xa)' R (Zs— X)7~F),],. Define
Fyq,ijmmn(k,v,t, 2, 21, Za, Z3) = [A}]4. For short, we define F}, i jmn(k, W) =
[AV]y where W = (v,t, Z, Z1, Za, Z3). The next work is finding suitable approx-
imations Gp.q.i jm.n(k', W) of the function F, 4 ; j.m.n(k, W). Here, we also use
the PNB’s mentioned in Section 3.

After all the neutrality measure ~;’s of each key bit k; be estimated, we
set a threshold v and put all the key bits with 7; < ~ into a set denoted by
Kpqiimn(y) = {kilv < ~}. Having found the set K g jmn(7), we sim-
ply let k' be subkey with the key bits in the set K 4 jm.n(y) and define
Gy pogigimn (B, W) as Fp g.i5.mn(k, W) with the remaining key bits (i.e. not in
the set K q.i,j,m.n (7)) with a fixed value. The bias ¢, of the correlation between
F and G is defined by Pr{G p.q.i.jmn(k',W) = Fp qijmn(k, W)} = J(1+&4),
where the probability holds over all keys, nonces and counters. Denote the bias

! Actually, RCD are special CCD with the subkey unchanged.
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Table 2. Some highly biased differentials for Salsa20/4 and ChaCha3

Type [A%)5, A% [43e  ed

[A%24, (A7 [AY]r 0.67

[A%)24, [A%l1s  [Al)r  0.64

Salsa20/4  [A9]2s, [A%1e  [Af]lr  0.62
[A9)24,[A8l20  [AY)7 058

[A9)2s, (A7 [Af]: 0.59

[A?ﬂls, [4(1)3]20 [A%}o 0.43

[A%]20, [A%5]15 [A3]o  0.43

ChaCha3 [Ad]is, [AY4]20  [Ad]o  0.43
[AY%)15, [A%5]20  [A3]o  0.43

[A%]16, [Ad]20  [Ad]0  0.41

of G by e, i.e. Pr{G pq.ijmn(k',W) =1} = }(1 +¢). Under some reasonable
independency assumptions, the equality € = ¢4 - €, holds. Hence, given enough
output block pairs with the presumed differential, we can verify the correctness
of a guessed candidate subkey k' for the subkey k' by evaluating the bias of the
function G. More precisely, we have Pr{G.p ¢ jmn(K, W) =1} = J(1 +¢)
conditioned on k' = k', whereas for (almost all) &’ # k' we expect G be un-
biased, i.e. Pr{Gy p g jmn(k’,W) = 1} = 1. The way for searching such a
distinguisher is similar to that of the first-order differentials.

Now, we show how to use the second-order differentials to construct RCD. For
a second-order differential ([A7],|[A?];, [A9,]n), we choose a threshold y empiri-
cally and construct a single distinguisher G-, p, q.i.j.m.n(k’, W) using the method
above, where k' is the subkey of all key bits in the set K, i jmn(7). In order
to construct RCD, the subkey should stay the same, i.e. the set Kp 4 j,m.n(7)
should stay the same. Now, we consider the factors of the set K 4 jm.n(7):
D, q,1, j,m,n,v. By tests, we find: if the value of p changes, the set K} i j.m,n(7)
will change with a high probability, so do the factors ¢, i, m,y; while, if only the
factor j changes, Kp q.i.j,mn(y) will stay the same with a high probability, so
does the factor n. Hence, for the distinguisher G qi jmn(k', W), we search
over all j’s only or all m’s only to construct a new distinguisher with subkey
unchanged. Here we give an example of the RCD on 256-bit ChaCha7. We con-
struct 4-Step RCD {G,9,0,14,5,15,12(k, W)} ecf0,1,2,28}- Let v = 0.3, and we get
Ko 0.14,51512(7) ={ 3, 7, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 63, 67, 79,
80, 95, 99, 159, 160, 184, 185, 186, 187, 188, 189, 190, 191, 200, 255} for any
j€40,1,2,28}.
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Actually, we can easily find RCD for Salsa20 and ChaCha using the method
above. However, we did not find enough PNB’s to improve our attacks? on
Salsa20 and ChaCha. And such a reality limits us to display the use of RCD.
We believe the concept of RCD can be used in other ciphers.

4.3 Probabilistic Neutral Vectors

Note that, contrary to the mutual interaction between neutral bits, we have
directly combined several PNB’s without altering their probabilistic quality, so
do J. Aumasson et al. In order to justify the reasonableness, we introduce a
generalized concept of PNB’s called probabilistic neutral vectors(PNV’s).

Definition 4. The neutrality measure of the two-dimension key bit vector (k;, k;)
with respect to the function f(k,v,t,Z,Z') is defined as v ), where Pr =
a1+ Y@i,j5)) 8 the probability (over all k, v and t) that complementing the key
bit k; and k; does not change the output of f(k,v,t,Z,2").

Simulations shows that: for key bit vector (k;, k;), we have v; - v; < 7,5 <
maxz{~;,7;}. Furthermore, for a fixed differential, denote the set Hy () ={ki|v: >
v} and Ha(y) = {kily,5 > 7 for at least one k;}. Then we have the following

lemma:

Lemma 1. For a fized differential of Salsa20 or ChaCha, Hi(y) C Ha(y), and
hence | Hi () |<| H2() |-

For Salsa 20/7 with the differential ([A7]14][A%]31), we have H2(0.4) — H1(0.4) =
{k1,k7s}. So it’s reasonable to combine several PNB’s directly in our attacks.
Actually, if we want to construct a distinguisher with s key bits fixed, we should
use the concept of s-dimension PNV’s. However, when s is too big, the cost of
finding the most significant PNV’s is too high to search over all C354 cases.

4.4 Experimental Results with CCD

We present attacks on 256-bit Salsa20/5 and Salsa20/6 with the CCD con-
structed by the first method. And the rest improved attacks are based on the
CCD constructed by the second method. In order to compare our method with
that in [9], we use the same differentials and the same threshold v as used in [9].
And we believe there exists other choices that lead better results.

Attack on 256-bit Salsa20/5. The output differential is observed after working
two rounds backward from a 5-rounds keystream block. We use five differentials:
(143)151[4%00), (143]o11A%00), ([A2)1111A%%:), ([A%)20/[AY0) and ([Ad)as][A%]1).
We set the threshold v = 0.9 and the subkeys for each distinguisher are listed
in the Appendix A. The parameters of our attacks are listed in Table 3 (see

2 We only test the second-order differential with single bit input and single bit(and
double bits) output, and for other second-order differential, there maybe exist enough
PNB’s to improve the attacks.



Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha 347

Appendix B). And the total attack runs in time 25° and data 21°.

Attack on 256-bit Salsa20/6. The output differential is observed after work-
ing two rounds backward from a 6-rounds keystream block. We construct a
CCD using four differentials: ([Ag]26][A%31), ([A1]3][A%29), ([A%]26/[AY]13) and
([Af]12][A%13). For each difference, we use the same threshold v = 0.9 and the
subkeys for each distinguisher are listed in the Appendix A. The parameters of
our attacks are listed in Table 4 (see Appendix B). And the total attack runs in
time 273 and data 216.

Attack on 256-bit Salsa20/7. We use the differential ([A}]14|[AY]31) with |e4] =
0.131. The parameters and results of Aumasson’s attacks are listed in Table 5
(see Appendix B). We construct 2-step CCD using 71 = 0.5 and v(®) = 0.6 with
M =0.0022 and £® = 0.0050 respectively. Note that, e = 0.0050 < 0.0064.
That because we test and find that such a value leads a result: if the correct
key passes the distinguisher of v(!) = 0.5 (with success probability 50%3), then
it can pass the distinguisher of 4(?) = 0.6 with success probability more than
90% (we define this probability by step success probability). The time complex-
ity is 2125 . Ny + 21321 . [, 4 9256—a1—a2 We choose a1 = 10 and ap = 104,
then get N1 = 223 and N, = 223 respectively by Eq.1. So the time complexity is
2125. Ny 4-2132—01. N, 4 9256—a1—az o 9148 the data complexity is 2234223 = 224,
and the success probability is 50% x 90% = 45%.

Attack on 256-bit Salsa20/8. For the differential ([A]14|[A%31) with |e4| =
0.131, we construct 2-step CCD. using v = 0.15 * and v¥ = 0.20 with
e = 0.00047 and € = 0.00102 respectively. For the threshold v(!) = 0.15,
we find ns; = 33 non-significant key bits, and for the threshold v(2) = 0.20, we
find nsy = 30 non-significant key bits. Note that, the value 2 = 0.00102 is
chosen with the step success probability 90%. The time complexity is 2223 - Ny +
2226—ar . N, 4 9256—a1—a2 We choose a; = 2 and ay = 7, then get N; = 226
and Ny = 22° respectively by Eq.1. So the ti