
Taekyoung Kwon
Mun-Kyu Lee
Daesung Kwon (Eds.)

 123

LN
CS

 7
83

9

15th International Conference
Seoul, Korea, November 2012
Revised Selected Papers

Information Security
and Cryptology – ICISC 2012

Lecture Notes in Computer Science 7839
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Taekyoung Kwon Mun-Kyu Lee
Daesung Kwon (Eds.)

Information Security
and Cryptology – ICISC 2012

15th International Conference
Seoul, Korea, November 28-30, 2012
Revised Selected Papers

13

Volume Editors

Taekyoung Kwon
Sejong University
Department of Computer Engineering
Seoul 143-747, Korea
E-mail: tkwon@sejong.edu

Mun-Kyu Lee
Inha University
School of Computer and Information Engineering
Incheon 402-751, Korea
E-mail: mklee@inha.ac.kr

Daesung Kwon
National Security Research Institute
Daejeon 306-600, Korea
E-mail: ds_kwon@ensec.re.kr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37681-8 e-ISBN 978-3-642-37682-5
DOI 10.1007/978-3-642-37682-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013935780

CR Subject Classification (1998): E.3, K.6.5, C.2, D.4.6, G.2.1, E.4, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

ICISC 2012, the 15th International Conference on Information Security and
Cryptology, was held in Seoul, Korea, during November 28–30, 2012. This year
the conference was hosted by the KIISC (Korea Institute of Information Security
and Cryptology) jointly with the NSRI (National Security Research Institute), in
cooperation with the Ministry of Public Administration and Security (MOPAS).

The aim of this conference is to provide an international forum for the latest
results of research, development, and applications in the field of information
security and cryptology. This year we received 120 submissions from more than
20 countries and were able to accept 32 papers from 13 countries, with the
acceptance rate of 26.7%. The review and selection processes were carried out
by the Program Committee (PC) members, 88 prominent experts world-wide, via
Springer’s OCS system. First, each paper was blind reviewed by at least three PC
members. Second, to resolve conflicts in the reviewer’s decisions, the individual
review reports were open to all PC members, and detailed interactive discussions
on each paper ensued. For the LNCS post-proceedings, the authors of selected
papers had a few weeks to prepare their final versions based on the comments
received from the reviewers. We also recommended that authors should revise
their papers based on the comments and recommendations they might have
received from attendees upon their presentations at the conference.

The conference featured three invited talks: “Machine Learning on Encrypted
Data”delivered by Kristin Lauter, Microsoft Research;“Another Look at Affine-
Padding RSA Signatures” by David Naccache, Ecole Normale Superieure; and
“New Meet-in-the-Middle Attacks in Symmetric Cryptanalysis” by Christian
Rechberger, Technical University of Denmark. We thank the invited speakers
for their kind acceptance and nice presentations.

We would like to thank all the authors who submitted their papers to ICISC
2012 and all 88 PC members. It was a truly nice experience to work with such
talented and hard-working researchers. We also appreciate the external reviewers
for assisting the PC members in their particular areas of expertise. Finally, we
would like to thank all attendees for their active participation and the Organizing
Committee Members, who nicely managed this conference. We look forward to
next year’s ICISC.

January 2013 Taekyoung Kwon
Mun-Kyu Lee

Daesung Kwon

ICISC 2012

The 15th Annual International Conference
on Information Security

November 28–30, 2012
Konkuk University, Seoul, Korea

Hosted by
Korea Institute of Information Security and Cryptology (KIISC)

National Security Research Institute (NSRI)

Supported by
Ministry of Public Administration and Security (MOPAS)

Electronics and Telecommunications Research Institute (ETRI)
Korea Internet & Security Agency (KISA)

The Korean Federation of Science and Technology Societies (KOFST)

General Chairs

Chang-Seop Park KIISC and Dankook University, Korea
Seokyoul Kang NSRI, Korea

Program Co-chairs

Taekyoung Kwon Sejong University, Korea
Mun-Kyu Lee Inha University, Korea
Daesung Kwon NSRI, Korea

Program Committee

Frederik Armknecht University of Mannheim, Germany
Joonsang Baek KUSTAR, UAE
Alex Biryukov University of Luxembourg, Luxembourg
Zhenfu Cao Shanghai Jiao Tong University, China
Aldar C-F. Chan Institute for Infocomm Research, Singapore
Ku-Young Chang ETRI, Korea
Kefei Chen Shanghai Jiaotong University, China
Jung Hee Cheon Seoul National University, Korea
Yongwha Chung Korea University, Korea
Nora Cuppens-Boulahia TELECOM Bretagne, France

VIII ICISC 2012

Paolo D’Arco University of Salerno, Italy
Bart De Decker IBBT-DistriNet, KU Leuven, Belgium
Rafael Dowsley University of California, San Diego, USA
Shaojing Fu National University of Defense Technology,

China
David Galindo University of Luxembourg, Luxembourg
Dieter Gollmann Security in Distributed Applications
Louis Granboulan EADS Innovation Works, France
Johann Groszschaed University of Luxembourg, Luxembourg
JaeCheol Ha Hoseo University, Korea
Dong-Guk Han Kookmin University, Korea
Martin Hell Lund University, Sweden
Swee-Huay Heng Multimedia University, Malaysia
Deukjo Hong NSRI, Korea
Dowon Hong Kongju National University, Korea
Jin Hong Seoul National University, Korea
Seokhie Hong Korea University, Korea
Jiankun Hu UNSW, Australia
Jung Yeon Hwang ETRI, Korea
Eul Gyu Im Hanyang University, Korea
David Jao University of Waterloo, Canada
Hiroaki Kikuchi Tokai University, Japan
Ji Hye Kim Kookmin University, Korea
Howon Kim Pusan National University, Korea
Huy Kang Kim Korea University, Korea
Shinsaku Kiyomoto KDDI R&D Laboratories Inc., Japan
Hyang-Sook Lee Ewha Womans University, Korea
JongHyup Lee Korea National University of Transportation,

Korea
Jooyoung Lee Sejong University, Korea
Pil Joong Lee POSTECH, Korea
Su Mi Lee Financial Security Agency, Korea
Dongdai Lin Institute of Software, ISCAS, China
Mark Manulis University of Surrey, UK
Sjouke Mauw University of Luxembourg, Luxembourg
Atsuko Miyaji JAIST, Japan
Yutaka Miyake KDDI R&D Laboratories Inc., Japan
Abedelaziz Mohaisen Verisign labs, USA
Jose A. Montenegro Universidad de Malaga, Spain
Fidel Nemenzo University of the Philippines, Philippines
DaeHun Nyang Inha University, Korea
Heekuck Oh Hanyang University, Korea
Tae (Tom) Oh Rochester Institute of Technology, USA
Rolf Oppliger eSECURITY Technologies, Switzerland
Daniel Page University of Bristol, UK

ICISC 2012 IX

Susan Pancho-Festin University of the Philippines, Philippines
Omkant Pandey Microsoft Research India, India / University of

Texas, Austin, USA
Raphael C.-W. Phan Multimedia University, Malaysia
Christian Platzer Automation Systems Group at the Technical

University of Vienna, Austria
Carla Ráfols Ruhr-Universität Bochum, Germany
C. Pandu Rangan Indian Institute of Technology Madras, India
Christian Rechberger DTU, Denmark
Vincent Rijmen Katholieke Universiteit Leuven, Belgium
Bimal Roy Indian Statistical Institute, India
Kouichi Sakurai Kyushu University, Japan
Palash Sarkar Indian Statistical Institute, India
Nitesh Saxena University of Alabama, Birmingham, USA
Ji Sun Shin Sejong University, Korea
Sang Uk Shin Pukyong National University, Korea
Hong-Yeop Song Yonsei University, Korea
Rainer Steinwandt Florida Atlantic University, USA
Hung-Min Sun National Tsing Hua University, Taiwan
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Yukiyasu Tsunoo NEC Corporation, Japan
Marion Videau University of Lorraine / LORIA, France
Jorge Villar Universitat Politecnica de Catalunya, Spain
Yongzhuang Wei Guilin University of Electronic Technology,

China
Wenling Wu SKLOIS, Chinese Academy of Sciences, China
Toshihiro Yamauchi Okayama University, Japan
Wei-Chuen Yau Multimedia University, Malaysia
Ching-Hung Yeh Far East University, Taiwan
Sung-Ming Yen National Central University, Taiwan
Yongjin Yeom Kookmin University, Korea
Jeong Hyun Yi Soongsil University, Korea
Kazuki Yoneyama NTT, Japan
Myungkeun Yoon Kookmin University, Korea
Dae Hyun Yum Myongji University, Korea
Aaram Yun UNIST, Korea
Fangguo Zhang Sun Yat-sen University, China

Organizing Chair

Dong Il Seo ETRI, Korea

X ICISC 2012

Organizing Committee

Heuisu Ryu Gyeongin National University of Education,
Korea

Hokun Moon KT, Korea
Howon Kim Pusan National University, Korea
Jason Kim Korea Internet & Security Agency, Korea
Keecheon Kim Konkuk University, Korea
Soohyun Oh Hoseo University, Korea
Tae-Hoon Kim SYWORKS, Korea
Young-Ho Park Sejong Cyber University, Korea

Table of Contents

Invited Papers

ML Confidential: Machine Learning on Encrypted Data 1
Thore Graepel, Kristin Lauter, and Michael Naehrig

Another Look at Affine-Padding RSA Signatures . 22
Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi

On Bruteforce-Like Cryptanalysis: New Meet-in-the-Middle Attacks
in Symmetric Cryptanalysis . 33

Christian Rechberger

Attack and Defense

Balanced Indexing Method for Efficient Intrusion Detection Systems 37
BooJoong Kang, Hye Seon Kim, Ji Su Yang, and Eul Gyu Im

Quantitative Questions on Attack–Defense Trees . 49
Barbara Kordy, Sjouke Mauw, and Patrick Schweitzer

DNS Tunneling for Network Penetration . 65
Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert,
Koen De Bosschere, Pieter Danhieux, and Erik Van Buggenhout

MeadDroid: Detecting Monetary Theft Attacks in Android by DVM
Monitoring . 78

Lingguang Lei, Yuewu Wang, Jiwu Jing, Zhongwen Zhang, and
Xingjie Yu

Software and Web Security

iBinHunt: Binary Hunting with Inter-procedural Control Flow 92
Jiang Ming, Meng Pan, and Debin Gao

Sometimes It’s Better to Be STUCK! SAML Transportation Unit for
Cryptographic Keys . 110

Christopher Meyer, Florian Feldmann, and Jörg Schwenk

Cryptanalysis I

Improved Impossible Differential Attacks on Large-Block Rijndael 126
Qingju Wang, Dawu Gu, Vincent Rijmen, Ya Liu,
Jiazhe Chen, and Andrey Bogdanov

XII Table of Contents

Cube Cryptanalysis of LBlock with Noisy Leakage 141
Zhenqi Li, Bin Zhang, Yuan Yao, and Dongdai Lin

Comprehensive Study of Integral Analysis on 22-Round LBlock 156
Yu Sasaki and Lei Wang

New Impossible Differential Attack on SAFER+ and SAFER++ 170
Jingyuan Zhao, Meiqin Wang, Jiazhe Chen, and Yuliang Zheng

Cryptographic Protocol

An Information-Theoretically Secure Threshold Distributed Oblivious
Transfer Protocol . 184

Christian L.F. Corniaux and Hossein Ghodosi

Practically Efficient Multi-party Sorting Protocols from Comparison
Sort Algorithms . 202

Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and
Katsumi Takahashi

Provably Secure Certificateless One-Way and Two-Party Authenticated
Key Agreement Protocol . 217

Lei Zhang

Identity-Based Encryption

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption
without Random Oracles . 231

Kaitai Liang, Zhen Liu, Xiao Tan, Duncan S. Wong, and
Chunming Tang

Ciphertext Policy Multi-dimensional Range Encryption 247
Kohei Kasamatsu, Takahiro Matsuda, Goichiro Hanaoka, and
Hideki Imai

Efficient Implementation

Speeding Up Ate Pairing Computation in Affine Coordinates 262
Duc-Phong Le and Chik How Tan

An Improved Hardware Implementation of the Grain-128a Stream
Cipher . 278

Shohreh Sharif Mansouri and Elena Dubrova

Optimized GPU Implementation and Performance Analysis of HC
Series of Stream Ciphers . 293

Ayesha Khalid, Deblin Bagchi, Goutam Paul, and
Anupam Chattopadhyay

Table of Contents XIII

Cloud Computing Security

Trusted Launch of Virtual Machine Instances in Public IaaS
Environments . 309

Nicolae Paladi, Christian Gehrmann, Mudassar Aslam, and
Fredric Morenius

Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM
Integrity Measurements among Virtual Machines . 324

Michael Velten and Frederic Stumpf

Cryptanalysis II

Improved Key Recovery Attacks on Reduced-Round Salsa20
and ChaCha . 337

Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80:
Collisions and Other Differential Properties . 352

Takuma Koyama, Yu Sasaki, and Noboru Kunihiro

Estimating the Probabilities of Low-Weight Differential and Linear
Approximations on PRESENT-Like Ciphers . 368

Mohamed Ahmed Abdelraheem

Side Channel Analysis

Security Evaluation of Cryptographic Modules against Profiling
Attacks . 383

Yongdae Kim, Naofumi Homma, Takafumi Aoki, and Heebong Choi

Key-Dependent Weakness of AES-Based Ciphers under Clockwise
Collision Distinguisher . 395

Toshiki Nakasone, Yang Li, Yu Sasaki, Mitsugu Iwamoto,
Kazuo Ohta, and Kazuo Sakiyama

Digital Signature

Efficient Group Signatures in the Standard Model . 410
Laila El Aimani and Olivier Sanders

Batch Verification Suitable for Efficiently Verifying a Limited Number
of Signatures . 425

Keisuke Hakuta, Yosuke Katoh, Hisayoshi Sato, and Tsuyoshi Takagi

Linear Recurring Sequences for the UOV Key Generation Revisited 441
Albrecht Petzoldt and Stanislav Bulygin

XIV Table of Contents

Galindo-Garcia Identity-Based Signature Revisited 456
Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Privacy Enhancement

Private Over-Threshold Aggregation Protocols . 472
Myungsun Kim, Abedelaziz Mohaisen, Jung Hee Cheon, and
Yongdae Kim

Using Smartcard . 487
Kyung-kug Kim and Myung-Hwan Kim

Efficient Proofs for CNF Formulas on Attributes in Pairing-Based
Anonymous Credential System . 495

Nasima Begum, Toru Nakanishi, and Nobuo Funabiki

Author Index . 511

Err tum

An Enhanced Anonymous Authentication and Key Exchange Scheme
Using Smartcard .

Kyung-kug Kim and Myung-Hwan Kim
E1

S S S
Retracted: An Enhanced Anonymous Authentication and Key Exchange
Scheme

a

ML Confidential:

Machine Learning on Encrypted Data

Thore Graepel1, Kristin Lauter1, and Michael Naehrig1,2

1 Microsoft Research
{thoreg,klauter,mnaehrig}@microsoft.com

2 Eindhoven University of Technology
michael@cryptojedi.org

Abstract. We demonstrate that, by using a recently proposed leveled
homomorphic encryption scheme, it is possible to delegate the execution
of a machine learning algorithm to a computing service while retain-
ing confidentiality of the training and test data. Since the computational
complexity of the homomorphic encryption scheme depends primarily on
the number of levels of multiplications to be carried out on the encrypted
data, we define a new class of machine learning algorithms in which the
algorithm’s predictions, viewed as functions of the input data, can be
expressed as polynomials of bounded degree. We propose confidential al-
gorithms for binary classification based on polynomial approximations to
least-squares solutions obtained by a small number of gradient descent
steps. We present experimental validation of the confidential machine
learning pipeline and discuss the trade-offs regarding computational com-
plexity, prediction accuracy and cryptographic security.

1 Introduction

Cloud service providers leverage their large investments in data centers to offer
services which help smaller companies cut their costs. But one of the barriers to
adoption of cloud services is concern over the privacy and confidentiality of the
data being handled by the cloud, and the commercial value of that data or the
regulations protecting the handling of sensitive data. In this work we propose a
cloud service which provides confidential handling of machine learning tasks for
various applications. Machine learning (ML) consists of two stages, the training
stage and the classification stage, either or both of which can be outsourced
to the cloud. In addition, when both stages are outsourced to the cloud, we
propose an intermediate probabilistic verification stage to test and validate the
learned model which has been computed by the cloud service. In the protocols
we describe here, we identify three parties: the Data Owner, the Cloud Service
Provider, and the Content Providers.

The Data Owner is the customer for the Cloud Service, and owns or is responsi-
ble for the data being processed. Content Providers upload data to the cloud, data
which belongs to or is intended for the Data Owner. Content Providers could be
remote devices, sensors or monitors which belong to the Data Owner, and which

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 1–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 T. Graepel, K. Lauter, and M. Naehrig

may have been authorized by the Data Owner, for providing data on the Data
Owner’s behalf. A typical scenario might be a patient who is the Data Owner,
and Content Providers which consist of multiple health monitoring devices pro-
visioned to monitor the patient’s health and upload data to the Cloud Service.
Alternatively, the Data Owner could be some large company with many lab tech-
nicians, partners, or contractedContent Providers which upload data to the Cloud
Service on behalf of the company, for example in the financial, pharmaceutical, or
social media industry. The Cloud Service may be run by a third party, a partner
company, or even the company itself, off-premises or in some stand-alone facility.

Our rationale for proposing these protocols is that there are some scenarios
where outsourcing computation to a Cloud Service makes sense from a practical
and rational economic point of view. Namely, when data is collected or uploaded
frommany diverse sources or parties, an online service can host the collection, stor-
age, and computation of and on this data without requiring interaction with the
data owner. This service allows the data owner to access and query their potentially
large amount of data at any time from a device with little computational or storage
capacity. The Data Owner may subsequently designate privileges to other parties
(such as a health care provider) to access the data or to receive alerts or updates
concerning some other processed form of the data. When outsourcing computa-
tion to a service makes sense, and confidentiality of the data is an issue, then our
protocols for providing confidential processing of sensitive data are relevant.

One way to preserve confidentiality of data when outsourcing computation is
to encrypt the data before uploading it to the cloud. This may limit the utility
of the data, but recent advances in cryptography allow searching on encrypted
data and performing operations on encrypted data, all without decrypting it.
An encryption scheme which allows arbitrary operations on ciphertexts is called
a Fully Homomorphic Encryption (FHE) scheme. The first FHE scheme was
constructed by Gentry [9], and subsequent schemes [20,4,3,10,11] have rapidly
become more practical, with improved performance and parameters. Gentry’s
scheme and several of the subsequent FHE schemes have a so-called Somewhat
Homomorphic Encryption (SHE) scheme as an underlying building block, and
use a technique called bootstrapping to extend it to an FHE scheme. An SHE
scheme performs additions and multiplications on encrypted data, but is limited
in the amount of such computations it can perform, because encryption involves
the addition of small noise terms into ciphertexts. Operating homomorphically
on ciphertexts causes the inherent noise terms to grow, and correct decryption is
only possible as long as these noise terms do not exceed a certain bound. Noise
growth is much larger in homomorphic multiplications than in additions. This
means that an SHE scheme can only evaluate polynomial functions of the data
up to a bounded degree before the inherent noise grows too large. Bootstrap-
ping, a very costly procedure, is then necessary to reduce the noise to its initial
level, enabling fully homomorphic computation. While noise grows exponentially
in SHE schemes, recent improvements have provided homomorphic schemes in
which noise grows only polynomial in the number of levels of multiplications per-
formed [3,2]. Such schemes are called Leveled Homomorphic Encryption (LHE)

ML Confidential: Machine Learning on Encrypted Data 3

schemes, and they allow evaluation of polynomial functions of a higher, bounded
degree without resorting to the bootstrapping component.

Recent schemes are based on computational hardness assumptions for prob-
lems related to well known lattice problems such as the Shortest Vector Problem
(SVP). Specifically, schemes based on the Ring Learning With Errors (RLWE)
assumption operate in polynomial rings, where polynomials can alternatively
be viewed as vectors in a lattice. It was shown in [16] how the hardness of the
RLWE problem is related to SVP.

In practice, as was observed in [14], many useful computational services only
require evaluation of low-degree polynomials, so they can be deployed on en-
crypted data using only an LHE or SHE scheme. In this paper, we propose a
confidential protocol for machine learning tasks, calledML Confidential, based
on Homomorphic Encryption (HE), and we design confidential machine learning
algorithms based on low-degree polynomial versions of classification algorithms.
Section 2 describes the general ML Confidential protocol and discusses its secu-
rity. Section 3 is devoted to explaining basic classification algorithms that can
be expressed as low-degree polynomials, including the derivation of division-free,
integer (DFI) versions of these algorithms. Section 4 describes the homomor-
phic encryption scheme we use in our proof-of-concept implementation of the
division-free, integer classification algorithms. Our implementation is discussed
in Section 5 together with some initial performance numbers and analysis.

Our experiments implement a Linear Means (LM) Classifier and Fisher’s Lin-
ear Discriminant (FLD) Classifier on a publicly available data set, the Wisconsin
Breast Cancer Data set from [8]. Using up to 100 training and test vectors with
up to 30 features each for the training and classification stages, our experiments
show that (LM) classification can be accomplished in roughly 6 seconds using
an unoptimized mathematics software package running on a standard modern
laptop. The FLD classifier runs in roughly 20 seconds for vectors with only 10
features. Across all experiments, we observe a slow-down of roughly 6− 7 orders
of magnitude for operating on encrypted data at these parameter and data sizes.
This compares favorably with other recent benchmarks for HE (see [11]).

Connections between cryptography and machine learning have been consid-
ered for a long time (see, e.g., [19]), mostly with the view that they are inverses
of one another in the sense that cryptography aims to prevent access to informa-
tion whereas machine learning attempts to extract information from data. Note
that the Confidential ML problem discussed in this paper is also loosely related
to doing inference on differentially private data (see [21] and references therein),
the difference being that in our case the Cloud Service performing the inference
calculations is not even able to interpret the results of its analysis.

2 The ML Confidential Protocol and Security
Considerations

This section proposes the ML Confidential protocol based on a homomorphic
encryption scheme that provides algorithms HE.Keygen,HE.Enc,HE.Dec, and

4 T. Graepel, K. Lauter, and M. Naehrig

HE.Eval for key generation, encryption, decryption, and homomorphic function
evaluation. The scheme can be either a symmetric, secret key scheme or an asym-
metric, public key scheme. It can be a fully-homomorphic scheme, in which case
arbitrary machine learning algorithms can be carried out on the encrypted data
by evaluating them with HE.Eval. In a more practical case, it can be a somewhat
or leveled homomorphic scheme, where the function HE.Eval can only evaluate
polynomial functions of the input data with a bounded degree comprised of ho-
momorphic addition HE.Add and multiplication HE.Mult on the message space.
Therefore, in that case, machine learning algorithms are restricted to algorithms
that can be expressed as polynomials with bounded degree. In either case, let
ML.Train and ML.Classify be the training and classification algorithms of the
machine learning task which can be homomorphically carried out on encrypted
data with the function HE.Eval.

Three types of parties interact in the protocol: the Data Owner, the Cloud
Service Provider, and Content Providers. The protocol comprises the following
main components.

Key Generation. The Data Owner executes the HE.Keygen algorithm for either
a private key or a public key version of the homomorphic encryption scheme.
For the private key version, the Data Owner shares the private encryption key
with the Content Providers and they all securely store the key locally. For the
public key version, the Data Owner publishes the public key and securely stores
the private key locally.

Encryption and Upload of Training Data. Content Providers encrypt con-
fidential, labeled data to upload to the Cloud. For all classes of training vectors,
and for all training vectors x in each class, the Content Providers encrypt x and
send HE.Enc(ek,x) to the Cloud Service Provider along with the unencrypted
label of the class. Here ek is the encryption key that is known to the Content
Providers, i.e. it is equal to the secret key in the symmetric version and to the
public key in the asymmetric version of the scheme. Alternatively, the Con-
tent Providers may encrypt preprocessed versions of the training set data, e.g.
synthetic data such as class sums or class-conditional covariance matrices (i.e.
sufficient statistics) for each class of training vectors.

Training. The Cloud Service Provider computes an encrypted Learned Model.
Training vectors consisting of encrypted, labeled content, HE.Enc(ek,x), are pro-
cessed by the Cloud Service Provider. This means that the algorithm HE.Eval
of the homomorphic encryption scheme evaluates the machine learning train-
ing phase ML.Train homomorphically on the encrypted training vectors. An en-
crypted form of the Learned Model is stored by the Cloud Service Provider and
can be returned to the Data Owner on request.

Classification. An encryption HE.Enc(ek,x) of a test vector x, which usually
has not been used in the training stage, is sent to the Cloud Service Provider by
the Data Owner or the Content Providers. The Cloud Service Provider evaluates
the classification phaseML.Classify of the machine learning task on the encrypted
test vector using the encrypted learned model, and encrypted classifications are

ML Confidential: Machine Learning on Encrypted Data 5

returned to the Data Owner. The Data Owner decrypts the results to obtain the
classifications.

Verification of the Learned Model. The Data Owner probabilistically tests
the Learned Model. The Data Owner encrypts test vectors with known classi-
fications and sends the ciphertexts to the Cloud Service Provider. The Cloud
Service Provider classifies the encrypted vectors homomorphically and returns
encrypted classification results to the Data Owner. The Data Owner decrypts
the results and compares with the known classification labels to assess the test
error of the Learned Model in the Cloud.

Security Considerations. The protocol assumes a model in which the Cloud
is an Honest but Curious party, i.e. the Cloud will follow the stated protocol
to provide the desired functionality, and will not deviate nor fail to provide the
service or return results, but that it is Curious in the sense that it would look
at available information. This assumption is reasonable to model a rational, eco-
nomically motivated Cloud Service Provider: the Cloud is motivated to provide
excellent service, and yet would be motivated to take advantage of extra avail-
able information. A Malicious Cloud is a much stronger adversary, who would
potentially mishandle calculations, delete data, refuse to return results, collude
with other parties, etc. In most of these malicious behaviors, the Cloud would be
likely to get caught, and thus damage its reputation if trying to run a successful
business.

The verification step we propose is analogous to a naive version of Proof-of-
Storage (PoS) protocols. Verification requires the Data Owner to store a certain
number of labeled samples locally in order to be able to test correctness (and
determine test errors) of the Cloud’s computations. After the training stage,
the Data Owner encrypts the test vectors and queries the cloud to provide en-
crypted classifications of the test vectors, and then the Data Owner decrypts
and compares to the correct label. Since we are assuming an Honest but Curious
model for the Cloud, the Data Owner only needs to store enough test vectors to
determine the test error of the Cloud (or detect any accidental error). We are
also implicitly assuming that the Content Providers do not behave maliciously,
and correctly encrypt and upload data.

The Cloud must necessarily learn a certain amount of information in order to
provide the functionality required. The Cloud computes an encrypted Learned
Model from a collection of encrypted and labeled training vectors in Stage 1
and provides encrypted classifications of encrypted test vectors in Stage 2. This
includes knowing the number of vectors used in the training phase, and the num-
ber of test vectors submitted for classification. In addition, our scheme discloses
the number of vectors within each class, and also an upper bound on the entries
in the test vectors can be deduced once the parameters for the HE scheme and
the number of test vectors are known.

The underlying HE schemes are assumed to be randomized and have semantic
security against passive adversaries, a property which ensures that an adversary
cannot distinguish an encryption of one message from another. The Cloud han-
dles encrypted data and performs HE operations, and in the public key setting,

6 T. Graepel, K. Lauter, and M. Naehrig

can encrypt messages of its choice. However, the Cloud does not obtain decryp-
tions of the ciphertexts that it handles.

3 Polynomial Machine Learning

As discussed in Section 2, a homomorphic encryption scheme can be used to
implement the ML Confidential protocol to run machine learning algorithms
on encrypted training and test data. An FHE scheme theoretically supports
arbitrary computations and thus imposes no restrictions on the ML algorithms
used in the protocol. However, implementing a scheme that is fully homomorphic
and does not require fixing a specific bound on the complexity of the computation
to be done is very costly due to the necessity of bootstrapping.

Useful and flexible as it may be, a fully homomorphic scheme is rarely neces-
sary for most applications, see for example [14]. Instead, if the computation is
simple and of low complexity, it is possible to use an SHE or LHE scheme. This
not only avoids the expensive bootstrapping procedure, but might also result in
smaller parameters to instantiate the scheme, leading to a more practical instan-
tiation of homomorphic encryption. Vice versa, fixing an SHE or LHE scheme in
advance raises the question of which applications are possible under the restric-
tions imposed by the homomorphic capability of the scheme. In practice, we can
assume that an SHE or LHE scheme with fixed parameters can homomorphically
evaluate polynomials of a fixed limited degree D in the encrypted elements of the
message space. This means it can homomorphically evaluate and still correctly
decrypt a product of D message elements, while a product of D + 1 elements
can not necessarily be decrypted correctly. This section shows that even when
using a scheme that is restricted to evaluating polynomials for which the degree
bound D is relatively small, it is still possible to perform meaningful machine
learning tasks confidentially.

Let us assume that we are given an HE scheme that is able to homomorphically
evaluate polynomial functions of encrypted messages of degree at most D, and
that we aim at performing a machine learning algorithm on encrypted data. This
means that the predictions viewed as functions of the training and test data must
be polynomials of limited degree D. Note that, when the classification stage is
included, this restriction does not only refer to the actual input-output mapping
learned by the algorithm but to the dependency of the predictions on the training
and test data. To capture this limitation, we define a class of machine learning
algorithms which are represented by polynomial functions of bounded degree.

Definition 1 (Polynomial learning/prediction algorithm). Let A : (Rn×
Y)m × Rn → Y be a learning/prediction algorithm that takes a training sample
(Rn × Y)m of size m and a test input x ∈ Rn and returns a prediction y ∈ Y.
If the function A is at most a polynomial of degree D in its arguments, then we
call the learning/prediction algorithm D-polynomial.

Straightforward implementation of many machine learning algorithms requires
operations which are not necessarily represented by a low-degree polynomial,
ruling out certain algorithms, namely:

ML Confidential: Machine Learning on Encrypted Data 7

Comparison. A comparison x > y for x, y ∈ R is not D-polynomial, unless the
inputs are encrypted bit-wise and a very deep circuit for comparison is imple-
mented. This rules out learning algorithms like the perceptron or the support
vector machine because they derive their class labels from thresholding real num-
bers. It also rules out the k-nearest neighbors classifier, which requires ordering
neighbors according to distance, and decision trees, which threshold features at
the nodes of the tree.

Division. A division x/y for x ∈ R and y ∈ R \ {0} is not D-polynomial.
This rules out algorithms that rely on matrix inversion such as exact Fisher’s
linear discriminant for classification and the standard rule for determining the
coefficients in regression.

Other Non-polynomial Functions. Other functions such as trigonometric
functions or the exponential function are not D-polynomial, which rules out
methods like exact logistic or probit regression and non-linear neural networks
which rely on the evaluation of sigmoidal functions, in particular bounded sig-
moid functions which are hard to approximate with polynomials.

Given the restrictions imposed by a homomorphic encryption scheme that can
only guarantee correct evaluation of polynomial functions of bounded degree,
we are still able to design non-trivial machine learning algorithms. Often, it
is even possible to sufficiently approximate the above mentioned functions by
polynomials of a bounded degree, for example by means of truncated Taylor
series. The exponential function can be approximated by a truncation of its
Taylor series, so approximate versions of logistic regression can be implemented
with HE as was suggested in [14].

The above definition can be applied directly to regression learning algorithms
where Y = Rn′

, and tells us that exact least-squares linear regression is not
D-polynomial due to the required matrix inversion. Note that classification
algorithms cannot be D-polynomial by definition because they have discrete
outputs y ∈ Y. However, in this case we can still use the above definition as
guidance if we decompose a classification algorithm as A = g◦f , with a mapping
f : (Rn×Y)m×Rn → Rn′

to a vector of real-valued scores, and a discretization
operation g : Rn′ → Y. This decomposition is possible for a large class of al-
gorithms including Linear Discriminant Analysis and Support Vector Machines,
and allows the Cloud Service to evaluate the function f under D-polynomial
HE, and the Data Provider to evaluate the function g. In the following, we focus
on the task of binary classification to deduce examples of D-polynomial ma-
chine learning algorithms, but note that tasks like regression and dimensionality
reduction could be cast in a similar framework.

3.1 Classification

Let us consider the case of binary classification with inputs in Rn and binary
target outputs from Y = {+1,−1}. We consider a linear classifier of the form
A(x;w, c) := sign(f(x;w, c)) with the score function f(x;w, c) := wTx − c.
We assume in the Confidential ML protocol that it is known for two encrypted

8 T. Graepel, K. Lauter, and M. Naehrig

training examples, whether they are labeled with the same classification (without
revealing which one it is). We therefore consider the cardinalities of the positive
and negative training sets to be known as well as which ciphertexts encrypt
data vectors that belong to the same class. Hence we can carry out operations
on these two sets separately. This leads us to consider the simple Linear Means
and Fisher’s Linear Discriminant classifiers, both of which require only class-
conditional statistics to be evaluated.

Linear Means Classifier. The Linear Means (LM) classifier determines w and
c such that f(x;w, c) = 0 defines a hyper-plane midway on and orthogonal to
the line through the two class-conditional means. It can be derived as the Bayes
optimal decision boundary in the case that the two class-conditional distributions
have identical isotropic Gaussian distributions [5].

Let Iy := {i ∈ {1, . . . ,m}|yi = y} be the index set of training examples
with label y and let my := ‖Iy‖. Calculate the class-conditional mean vectors as
my := m−1

y sy with sy :=
∑

i∈Iy
xi, from which we obtain the weight vector as

the difference vector between the two class-conditional meansw∗ := m+1−m−1.
The value of the threshold c is calculated using the condition w∗Tx0 − c = 0
for the mid-point, x0 := (m+1 + m−1)/2, between the two class means, which
gives for the threshold: c∗ = (m+1 −m−1)

T (m+1 + m−1)/2. For a given test
example x the score f∗(x;w∗, c∗) := w∗Tx − c∗ is a quadratic function in the
training data and a linear function in the test example and the LM classifier is
hence 2-polynomial.

Fisher’s Linear Discriminant Classifier. Now let us move on to a more
demanding example, Fisher’s linear discriminant (FLD) classifier [7]. This algo-
rithm is similar to the Linear Means classifier, but does take into account the
class-conditional covariances. It aims at finding a projection that maximizes the
separation between classes as the ratio S between the variance σ2

inter between
classes and the variance σ2

intra within classes,

S :=
σ2
inter

σ2
intra

=
wTDw

wTCw
(1)

with D := ddT and d := m+1 − m−1 and C := C+1 + C−1. Here, Cy :=
1

my

∑
i∈Iy

(xi −my)(xi −my)
T is the class-conditional covariance matrix of the

data. Taking the gradient w.r.t. w and setting it to zero shows that w∗ is the
solution of a generalized eigenvalue problem Dw = λCw. Since D = ddT

has rank one, we can write Dw = ad for some a ∈ R and hence Cw∗ ∝ d.
Determining w∗ requires solving a linear system of equations, i.e. it can be
determined by calculating the inverse C−1 exactly. This requires division, which
is not D-polynomial. In what follows, we refer to this approach as the exact FLD
algorithm.

In a second approach, we aim at solving the linear system approximately using
a least-squares approach so as to obtain a D-polynomial learning/prediction
algorithm. The straight-forward cost function is E (w) := 1

2 ||Cw − d||2, but
instead of the standard Euclidean norm, we choose ||v||2 := vTC−1v for better

ML Confidential: Machine Learning on Encrypted Data 9

conditioning. Then the gradient is ∇wE(w) = Cw−d and we can use gradient
descent to find the solution w∗. Once w has been found the threshold can be
chosen as c∗ := w∗T (m+1 +m−1)/2.

The challenge then is to approximately solve a linear system using as few
multiplications as possible. For the sake of illustration, let us consider standard
gradient descent with a fixed learning rate η. If we define R := I − ηC and
a := ηd, we obtain the well-known recursion wj+1 = Rwj+a. Defining w0 = 0,
we can express the rth order approximation wr of w∗ as

wr :=

⎛⎝r−1∑
j=0

Rj

⎞⎠a = η

⎛⎝r−1∑
j=0

(I− ηC)j

⎞⎠d . (2)

This series converges if the spectral radius of R is less than one, i.e., if the
absolute value of its largest eigenvalue is less than one, which can be ensured
by choosing η sufficiently small. Depending on the order of approximation r, we
obtain a D-polynomial FLD algorithm with D = 2(r − 1) + 1. Note that the
sufficient statistics for the FLD algorithm are the class-conditional means my

and covariance matricesCy. If it is desired to reduce the required communication
overhead at the cost of increasing the Data Provider workload, then instead of
transmitting the raw training data to the Cloud Provider, the Data Provider
can calculate and transmit the sufficient statistics for the training data instead.

3.2 Division-Free Integer Algorithms for Classification

In all of the above, the data input to a machine learning algorithm has been
treated as being comprised of vectors of real numbers. Using standard represen-
tations for floating point numbers, one could encrypt approximations to such
numbers bitwise and then operate on single bit encryptions, mimicking the un-
encrypted computations. For the sake of efficiency, it is necessary to deviate from
this bitwise encryption paradigm. Instead, we consider messages being integers
or polynomials with integer coefficients. In most of the recent, more practical ho-
momorphic encryption schemes, it can be assumed that integers up to a certain
size can be embedded into the scheme’s message space, and that the homomor-
phic operations correspond to the same operations on integers, respectively. In
such a setting, it is not possible to perform non-polynomial operations, leaving
only polynomial functions on integers as the only practical possibility. To encode
a real number by an integer, it can first be approximated to a certain precision
by a rational number. Multiplying all such approximations through with a fixed
denominator and rounding to the nearest integer provides an integer approxima-
tion to the original real numbers. We assume from now on that approximations
to real numbers are represented by integers and that we homomorphically embed
such representations into the message space of the HE scheme.

In particular, this means that we must avoid divisions since there is no corre-
sponding operation for encoded integers. Below, we describe division-free integer
(DFI) versions of the LM classifier and the FLD classifier described in Section 3.

10 T. Graepel, K. Lauter, and M. Naehrig

The DFI versions of these algorithms are obtained by multiplying with all pos-
sible denominators occurring in the computations and adjusting the formulas
to exactly compute multiples with the same sign of all magnitudes involved. In
detail, computations for both classifiers are as follows.

Linear Means Classifier. For the LM Classifier we compute m−1s+1 and
m+1s−1 instead of m+1 and m−1, and replace the weight vector by

w̃∗ := m−1s+1 −m+1s−1 = m+1m−1(m+1 −m−1) = m+1m−1w
∗. (3)

Similarly, the threshold is replaced by c̃∗ = 2m2
+1m

2
−1c

∗ using x̃0 := m−1s+1 +

m+1s−1 = 2m+1m−1x0.Given a test vectorx, we use the classifier f̃∗(x; w̃∗, c̃∗) :=
2m+1m−1w̃

∗Tx− c̃∗, which simply computes a multiple of the original LM score
function f∗(x;w∗, c∗) with the same sign. The algorithm can be made confiden-
tial by encoding all real vector coefficients as integers (as described above). Then
one encrypts the input vectors coefficient-wise and carries out the linear algebra
operations with vectors of ciphertexts using HE.Add and HE.Mult. Note, that the
server only returns the result of the score function for each test example, and that
the client takes the sign to obtain the class label, because we assume that our HE
scheme does not enable comparison.

Fisher’s Linear Discriminant Classifier. A similar procedure is done for
the approximate version of the FLD classifier using gradient descent. We use
the same classifying function f̃∗ as for the LM classifier, but with a different
weight vector w̃∗. As above, to avoid divisions, we compute multiples of the
class-conditional covariance matrices as C̃+1 = m3

+1C+1 and C̃−1 = m3
−1C−1.

In general, we compute C̃ = m3
+1C̃−1+m

3
−1C̃+1 = m3

+1m
3
−1C, but whenever we

can use equal size training classes, i.e.m+1 = m−1, we can reduce the coefficients
by a factor m3

+1.
The gradient descent iteration is done with fixed step size η. When η < 1, we

also have to multiply through by its inverse to avoid divisions, which means we
need to choose it such that η−1 ∈ Z. Taking good care of all denominators that
need to be multiplied by, we can deduce that the division free integer gradient
descent computes the r-th weight vector w̃r, which is w̃r = (m3

+1m
3
−1η

−1)rwr,
where wr is the result of the r-th iteration described in Section 3.1. In this
way, the DFI version computes multiples of the exact same magnitudes as in
the standard gradient descent approach described earlier, resulting in the score
function being a multiple of the original score function.

3.3 Other Machine Learning Tasks and Generalization Properties

While we focus on binary classification in this paper, it is certainly possible to
extend our methodology to other machine learning tasks including regression,
dimensionality reduction, and clustering. In particular, the case of multivariate
linear regression is quite similar to FLD in that the exact solution requires a
matrix inverse, which can be approximated using gradient descent. Also, princi-
pal component analysis (PCA) [12], which is probably the most popular method

ML Confidential: Machine Learning on Encrypted Data 11

for dimensionality reduction, can be expressed as a least squares problem the
solution of which can be approximated by gradient descent. Clustering may well
be the most difficult task in this context, but it would appear that spectral
clustering solutions [17] could be approximated in a similar way.

Another interesting aspect of polynomial machine learning is its generaliza-
tion properties. Although in Confidential ML algorithms the hypothesis class
(e.g., linear classifiers) remains the same with respect to the exact algorithm,
the restrictions imposed by D-polynomial HE require us to produce predictions
which are polynomials of limited degree in the input data. As a consequence, the
set of hypotheses that can be reached by a D-polynomial learning algorithm is
very limited. One would expect that this limited capacity would have a positive
effect on the generalization ability. While we do not have any formal results on
this, we believe it may be possible to formalize this idea based on the stability
bounds on the generalization error in [18], because the approximations required
by SHE can be viewed as a specific form of “early stopping”.

4 A Homomorphic Encryption Scheme

In this section, we describe a homomorphic public-key encryption scheme based
on the Ring LearningWith Errors (RLWE) problem [16]. It can be used to realize
low degree confidential machine learning algorithms as described in Section 3. It
extends the encryption scheme in [16] and resembles the LHE scheme from [2]
in the RLWE case, as recently described in [6].

For simplicity and later reference in the description of our experiments, we
discuss a special case of the scheme, for more details see [16,2,6]. Ciphertexts
consist of polynomials in the ring R = Z[x]/(f(x)), where f(x) = xd + 1 and
d = 2k, i.e. integer polynomials of degree at most d− 1. Note that f is the 2d-th
cyclotomic polynomial. Computations in R are done by the usual polynomial
addition and multiplication with results reduced modulo f(x). We fix an integer
modulus q > 1 and denote by Rq the set of polynomials in R with coefficients
in (−q/2, q/2]. For z ∈ Z denote by [z]q the unique integer in (−q/2, q/2] with
[z]q ≡ z (mod q). The message space is the set Rt for another integer modulus
t > 1 (t < q). We use the same notation with q replaced by t. Thus, messages to
be encrypted under the SHE scheme are polynomials of degree at most d−1 with
integer coefficients in (−t/2, t/2]. Let Δ = 	q/t
 be the largest integer less than
or equal to q/t. When applied to a polynomial g ∈ R, 	g
 means rounding down
coefficient-wise. We also use the notation 	·� for rounding to the nearest integer.
As error distribution we take the discrete Gaussian distribution χ = DZd,σ with
standard deviation σ over R. The parameters d, q, t and σ need to be chosen in
a way to guarantee correctness, i.e. such that decryption works correctly, and
security. Section 5 below gives such concrete parameters. Given the above setting
(following notation in [6]), we now describe the SHE scheme with algorithms for
key generation, encryption, addition, multiplication, and decryption.

12 T. Graepel, K. Lauter, and M. Naehrig

SH.Keygen. The key generation algorithm samples s ← χ and sets the secret
key sk := s. It samples a uniformly random ring element a1 ← Rq and an error
e← χ and computes the public key pk := (a0 = [−(a1s+ e)]q, a1).

SH.Enc(pk,m). Given the public key pk = (a0, a1) and a message m ∈ Rt,
encryption samples u ← χ, and f, g ← χ, and computes the ciphertext ct =
(c0, c1) := ([a0 · u+ g +Δ ·m]q, [a1 · u+ f]q).

Note that a homomorphic multiplication (as described below) increases the
length of a ciphertext. Using relinearization techniques, it can be reduced to
a two-element ciphertext again (see e.g. [14,6]). For the purpose of this paper,
we do not consider relinearization, thus ciphertexts can have more than two
elements and we describe decryption and homomorphic operations for general
ciphertexts.

SH.Dec(sk, ct = (c0, c1, . . . , ck)). Decryption computes [t · [c0+sk ·c1+ . . .+
skk · ck]q/q�]t.

In general, the homomorphic operations SH.Add and SH.Mult get as input two
ciphertexts ct = (c0, c1, . . . , ck) and ct′ = (c′0, c

′
1, . . . , c

′
l), where w.l.o.g. k ≥ l.

The output of SH.Add contains k+1 ring elements, whereas the output of SH.Mult
contains k + l + 1 ring elements.

SH.Add(pk, ct0, ct1). Let ct1 = (c0, c1, . . . , ck) and ct2 = (d0, d1, . . . , dl). Ho-
momorphic addition is done by component-wise addition ctadd = (c0 + d0, c1 +
d1, . . . , cl + dl, cl+1, . . . , ck).

SH.Mult(pk, ct0, ct1). Let ct1 = (c0, c1, . . . , ck), ct2 = (d0, d1, . . . , dl) and con-
sider the polynomials ct1(X) = c0 + c1X + . . .+ ckX

k and ct2(X) = d0 + d1X +
. . . + dlX

l over R. The homomorphic multiplication algorithm computes the
polynomial product

ct1(X) · ct2(X) = e0 + e1X + . . .+ ek+l+1X
k+l+1 (4)

in the polynomial ring R[X] over R. The output ciphertext is ctmlt = (t ·
e0/q�, . . . , 	t · ek+l+1/q�).

This scheme has been recently described and analysed in [6] and is closely re-
lated to the scheme in [4] and [14]. We refer to these papers for correctness and
security under the RLWE assumption. However note that the evaluation of the
ciphertext polynomial at the secret key (as computed during decryption) can be
written as [ct(sk)]q = [Δ · m + v]q, where v is a noise term that grows during
homomorphic operations. Only if v is small enough, the ciphertext still decrypts
correctly. How quickly v grows with each multiplication and addition determines
the capabilities of the SHE scheme. An advantage of the present scheme is that the
factor by which v grows is independent of the input ciphertext noise (see [2,6]).

Encoding Real Numbers. In order to do meaningful computations for ML,
we would ideally like to do computations on real numbers, i.e. we need to encode
real numbers as elements of Rt. Homomorphic operations under HE correspond

ML Confidential: Machine Learning on Encrypted Data 13

to polynomial operations in R with coefficients modulo t. To reflect addition and
multiplication of given numbers by the corresponding polynomial operations, we
resort to the method in [14, Section 4] for encoding integers. We first represent a
real number by an integer value. Since any real number can be approximated by
rational numbers to arbitrary precision, we can fix a desired precision, multiply
through by a fixed denominator, and round to the nearest integer.

An integer value z is encoded as an element mz ∈ Rt by using the bits in its
binary representation as the coefficients of mz. This means we use the following
encoding function:

encode : Z → Rt, z = sign(z)(zs, zs−1, . . . , z1, z0)2 �→ mz = sign(z)(z0 + z1x+ . . .+ zsx
s).

To get back a number encoded in a polynomial, we evaluate it at x = 2. For the
polynomial operations inRt to reflect integer additionormultiplication, it is impor-
tant that no reductions modulo t or modulo f occur. A multiplication after which
a reduction modulo f is done does not correspond to integer multiplication of the
encoded numbers any more. The same holds for reductions modulo t. The value
t must therefore be large enough that all coefficients of polynomials representing
values in the ML algorithm do not grow out of (−t/2, t/2]. Also the initial polyno-
mial degree of encoded integers (i.e. their bit size)must be small enough so that the
resulting polynomials after all multiplications still have degree less than d.

5 Proof of Concept and Experimental Results

In this section, we provide experimental results at a small scale to show how
confidential machine learning works in principle. Due to the rather high com-
putational cost of HE, we restrict ourselves to binary classification on a stan-
dard data set: the Wisconsin Breast Cancer data set with 569 records obtained
from [8]. Data vectors in this set have 30 features and whenever we restrict the
number of features in our experiments to some n < 30, we take the subset of the
first n features.

With our experimental data we attempt to demonstrate the following claims:
on small data sets, basic Machine Learning algorithms on encrypted data are
practical. We give performance numbers for both Linear Means (LM) classi-
fier and Fisher’s Linear Discriminant (FLD) classifier, varying both the number
of features and the number of vectors used in the training stage to estimate
how performance and accuracy scales as these parameters vary. We compare
timings for these two classifiers on encrypted and unencrypted data, to show
the magnitude of the computational cost for operating on encrypted data. For
these experiments, we fix the security parameters of the system, to model the
real-world setting where a cloud system deploys an implementation based on
parameters chosen to optimize for performance. In addition, we demonstrate the
difference in accuracy when using the DFI version of the FLD algorithm using
gradient descent instead of the exact linear algebra version that includes a ma-
trix inversion (in the case of LM the DFI version is exact and does not require
an approximation).

14 T. Graepel, K. Lauter, and M. Naehrig

This section is organized as follows: Section 5.1 describes how the security
parameters are chosen and how they scale with the operations to be performed.
Section 5.2 gives timings for basic HE operations for two different choices of
system parameters, (P1) and (P2). Section 5.3 gives performance numbers for
the LM classifier on both unencrypted and encrypted data. On encrypted data,
with fixed security parameters (P1), we vary the number of training vectors
and the number of features. Section 5.4 gives performance numbers for the FLD
classifier on both unencrypted and encrypted data. On encrypted data, with
fixed security parameters (P2), we vary the number of training vectors and the
number of test vectors. In Section 5.5, on unencrypted data, we compare the
accuracy of the models computed with the exact and DFI versions of the FLD
algorithm with varying number of steps in the gradient descent approximation.

5.1 Choice of Parameters

In this subsection, we discuss the specific parameters chosen for our implementa-
tion. It has been recently shown in [13] that the hardness of the RLWE problem
is independent of the form of the modulus. This means that security is not
compromised by choosing q with a special structure. Using a power of 2 for q
dramatically speeds up modular reduction when compared to an implementation
where q is prime. Therefore, as in [6] we choose both q and t to be powers of 2,
i.e. Δ = 	q/t
 = q/t is also a power of 2. We also use the optimization proposed
in [6] to choose the secret key sk = s randomly with binary coefficients in {0, 1}.

To determine parameters that guarantee a certain level of security, one has to
consider the best known algorithms to attack the scheme. Its security is assessed
by the logarithm of the running time of such algorithms. A security level of �
bits means that the best known attacks take about 2� basic operations. We chose
parameters considered secure under the distinguishing attack in [15], using the
method described in [14, Section 5.1] and [6, Section 6]. For the exact details of
the security evaluation, we refer to [15,14,6]. Security depends on the size of q,
σ, and d, and for a given pair q, σ one can determine a lower bound for d.

Additional conditions follow from ensuring correctness of decryption. As long
as the inherent noise in ciphertexts is bounded by Δ/2 = q/2t, decryption works
correctly. Since homomorphic computations increase the noise level, this bounds
the number of computations from above. In the division free integer algorithms
the encrypted numbers tend to grow with the number of operations due to mul-
tiplications by denominators. To ensure meaningful results, t needs to be greater
than all the coefficients of message polynomials that are held and operated on
in encrypted form. The size of the standard deviation for the error terms and
the desired number of homomorphic operations bound Δ and therefore q from
below. For our implementation, we determined these quantities experimentally
and then chose the degree d according to the security requirements.

5.2 Timings for Basic HE Operations

We implemented the HE scheme described in Section 4 and the division-free
integer ML algorithms under HE in the computer algebra package Magma [1],

ML Confidential: Machine Learning on Encrypted Data 15

using internal functions for polynomial arithmetic and modular reductions.
Table 1 summarizes timings for the HE operations. The confidential version
of the DFI-LM classifier uses the first parameter set (P1) to encode and encrypt
data. Parameters (P2) were chosen for encoding and encryption for the confi-
dential version of the 3-step FLD method. Due to its higher complexity and the
higher value for t it requires a much larger value for q.

Table 1. Timing in seconds for HE operations: key generation, encryption, decryption
of 2- or 3-element ciphertexts, homomorphic addition and multiplication

HE.Keygen HE.Enc HE.Dec(2) HE.Dec(3) HE.Add HE.Mult

(P1)
q = 2128, t = 215

0.279 0.659 0.055 0.105 0.001 0.208
σ = 16, d = 4096

(P2)
q = 2340, t = 240

0.749 1.56 0.227 0.442 0.005 0.853
σ = 8, d = 8192

All timings in this and the remaining subsections and tables were obtained
running Magma on an Intel Core i7 running 64-bit Windows 8 at 2.8 GHz with
8GB of memory. Timings are given in seconds (s). No communication costs
are included in these experiments since the computations are all done on one
machine. Parameters (P1) have 128 bits of security with distinguishing advantage
2−64. Security for (P2) is around 80 bits due to small σ compared to q.

5.3 Linear Means Classifier

For the Linear Means Classifier, the exact and the DFI versions of the algorithm
coincide, so there is no difference in the quality of the output. We compare in
this section the timings for the encrypted and unencrypted DFI versions of the
algorithm. The Linear Means Classifier experiments in this section were run with
security parameters (P1),

q = 2128, t = 215, σ = 16, f = X4096 + 1.

The data was preprocessed by shifting the mean to 0 and scaling by the standard
deviation. Also, precision of computation was set at 2 digits, which means real
numbers are multiplied by 100 and rounded to integers.

Timings on Unencrypted Data for DFI-LM. Each line in the tables reports
the number of features used, the number of training vectors used in the training
stage to build the classifier, the number of test vectors used to test the model,
the time spent in the training stage, the time per test vector to classify, and the
number of errors in the classification of test vectors.

Remarks. Note that the time for classifying vectors is relatively constant, which
is as expected. The number of classsification errors varies, but tends to decrease
as the size of the training set increases.

16 T. Graepel, K. Lauter, and M. Naehrig

Table 2. DFI-LM Unencrypted Data

features # training # test train (s) classify (s) # errors

2 20 100 2.3500E-6 2.0620E-5 11
5 20 100 3.1500E-6 2.0620E-5 8
10 20 100 3.9000E-6 2.0940E-5 12
20 20 100 5.4500E-6 2.1250E-5 16
30 20 100 6.2500E-6 2.1560E-5 12

2 60 100 3.9000E-6 2.0620E-5 8
5 60 100 6.2500E-6 2.0940E-5 10
10 60 100 7.0500E-6 2.1410E-5 8
20 60 100 1.1700E-5 2.2030E-5 12
30 60 100 1.4850E-5 2.2970E-5 11

2 100 100 6.2500E-6 2.0780E-5 9
5 100 100 8.5999E-6 2.0940E-5 8
10 100 100 1.0900E-5 2.1410E-5 9
20 100 100 1.8000E-5 2.2030E-5 13
30 100 100 2.3450E-5 2.2650E-5 8

Timings on Encrypted Data for DFI-LM. In the tables reporting timings
for operations on encrypted data, we also include the total time spent on en-
crypting and encoding the training vectors for the training stage, and the total
time spent on encrypting and encoding the test vectors for the testing stage.
The “ee-train” and “ee-test” columns in Table 3 are for the total time including
the time to encode and encrypt the training and test vectors, respectively. For
the encrypted and unencrypted versions of the the DFI algorithms, there is no
need to list the number of classification errors twice, since the algorithm is the
same and has the same output on encrypted and unencrypted data.

Remark 5.3

1. The time for classifying a test vector and for encoding and encrypting the test
vectors stays relatively constant as the number of training vectors increases,
as expected.

2. The time for computing the classifier in the training stage grows roughly
linearly with the number of training vectors. This is expected as long as the
security parameters are fixed, as is the case here.

3. The time for encoding and encrypting data in the training stage grows
roughly linearly with the number of training vectors. Again, this is expected
as long as the security parameters are fixed, as we have modeled here.

4. For a fixed training set size, the time for computing the classifier grows
approximately linearly with the number of features. Similarly, the time for
classifying a test vector, and the time for encoding and encrypting the train-
ing and the test vectors each grow approximately linearly with the number
of features.

5. The approximate order of magnitude of the slow-down due to operating on
encrypted data is 6 or 7 orders of magnitude. This compares favorably with

ML Confidential: Machine Learning on Encrypted Data 17

Table 3. DFI-LM Encrypted Data

features # training # test train (s) ee-train (s) classify (s) ee-test (s)

2 20 100 0.095 19.953 0.327 133.843
5 20 100 0.156 50.172 0.899 343.250
10 20 100 0.391 101.141 1.938 708.969
20 20 100 0.831 201.578 3.880 1405.875
30 20 100 1.374 303.937 5.961 2122.719

2 60 100 0.127 59.641 0.325 133.703
5 60 100 0.484 148.125 0.879 337.953
10 60 100 0.996 309.078 1.864 688.531
20 60 100 2.504 601.688 3.841 1400.266
30 60 100 3.346 899.953 5.838 2106.453

2 100 100 0.565 98.938 0.417 143.719
5 100 100 0.835 249.359 0.998 351.078
10 100 100 2.629 499.063 1.971 699.531
20 100 100 4.034 999.156 3.989 1403.172
30 100 100 6.221 1504.297 6.038 2110.000

the slow-down for performing an AES encryption operation on encrypted
data reported in [11].

6. Note that even with this preliminary unoptimized implementation, both the
training stage and the classification of a test vector can be performed on
encrypted data in roughly 6 seconds using a Linear Means Classifier on 100
training vectors with 30 attributes.

5.4 Fisher’s Linear Discriminant Classifier

The experiments in this section were run with security parameters (P2),

q = 2340, t = 240, σ = 8, f = X8192 + 1.

The data was preprocessed by shifting the mean to 0 and scaling by the standard
deviation. Also, precision of computation was set at 2 digits, which means real
numbers are multiplied by 100 and rounded to integers. The DFI version of the
FLD algorithm was run using 3 steps in the gradient descent method with step
size η = 0.1.

Timings on Unencrypted Data for 3-Step DFI-FLD. Each line in the
table reports the number of features, the number of training vectors used in
the training stage to build the classifier, the number of test vectors used to
test the model, the time spent in the training stage, the time per test vector to
classify, and the number of errors in the classification of test vectors.

Timings on Encrypted Data for 3-step DFI-FLD. Each line in the ta-
ble reports the number of features, the number of training vectors used in the
training stage to build the classifier, the number of test vectors used to test the

18 T. Graepel, K. Lauter, and M. Naehrig

Table 4. 3-step DFI-FLD Unencrypted Data

features # training # test train (s) classify (s) # errors

2 20 100 2.6600E-4 1.7200E-6 11
5 20 100 7.5000E-4 1.8800E-6 7
10 20 100 2.4690E-3 2.1800E-6 9
20 20 100 9.2030E-3 2.9700E-6 6
30 20 100 0.020390 3.9100E-6 8

2 60 100 4.0700E-4 1.5700E-6 8
5 60 100 1.7030E-3 1.7200E-6 7
10 60 100 6.2190E-3 2.1800E-6 8
20 60 100 0.024125 2.9700E-6 9
30 60 100 0.054250 3.9000E-6 8

2 100 100 5.7800E-4 1.5600E-6 10
5 100 100 2.6410E-3 1.7200E-6 7
10 100 100 0.0100 2.1900E-6 8
20 100 100 0.039282 2.9700E-6 6
30 100 100 0.087594 3.9000E-6 3

model, the time spent in the training stage, the time per test vector to classify,
the total time spent on encrypting and encoding the test vectors (in the “ee”
column in Table 5), and the number of errors in the classification of test vectors.

Table 5. 3-step DFI-FLD Encrypted Data

features # training # test train (s) classify (s) ee (s) errors

2 20 20 299.437 3.836 46.562 2
5 20 20 1309.578 10.049 117.033 1
10 20 20 4472.922 20.857 236.514 1

2 60 20 939.156 6.488 51.280 1
5 60 20 3612.953 9.707 117.158 1
10 60 20 12211.719 20.465 235.236 1

2 100 100 1420.781 3.850 619.828 10
5 100 100 6017.688 10.364 1636.265 8
10 100 100 20222.515 21.572 3351.718 35

Remark 5.4

1. The timings in the last line for 10 features and 100 training vectors should
be disregarded, because the 35 classification errors indicate that the compu-
tation exceeded the allowable bounds for the amount of computation which
could be correctly done with these security parameter sizes. This compu-
tation most likely resulted in decryption errors and should be redone with
larger system parameters.

2. Note that for both the LM and the FLD algorithms, the time spent in
computing on encrypted vectors is dominated by the time spent to encrypt

ML Confidential: Machine Learning on Encrypted Data 19

the data. That is due to the fact that each entry to be encrypted requires
a multiplication of two polynomials of degree d, where d is either 4096 or
8192 in these experiments. Although Magma does have fast multiplication
techniques implemented, this is an aspect of the system where performance
can be significantly improved in a robust high-performance implementation.

3. The time spent in the training stage grows roughly quadratically with the
number of features. This is expected because the algorithm operates on an
n× n matrix, where n is the number of features.

4. The time spent in the training stage grows roughly linearly with the number
of training vectors. Also the time spent on encoding and encryption grows
linearly with the number of features.

5. Time spent on classifying test vectors is relatively constant as the number
of training vectors increases, as expected.

6. The time spent on classifying test vectors grows roughly linearly with the
number of features.

7. As for the confidential LM algorithms, we observe a slow-down of roughly
6− 7 orders of magnitude when executing the 3-step DFI-FLD algorithm on
encrypted data under HE.

8. Despite the significant performance penalty for operating on encrypted data,
note that classification of test vectors with 10 features is accomplished in 20
seconds with an unoptimized implementation of HE. This time is relatively
independent of the number of training vectors used in the training stage for
fixed system parameters. However, it is dependent on the amount and size of
the data to be processed in the sense that the system parameter sizes must
be increased once the bounds on the amount of computation which can be
properly handled for a given parameter size are exceeded.

5.5 Comparing the Accuracy of Exact and DFI Versions
of Gradient Descent

In Section 5.4 above, we gave performance numbers for the DFI version of the
gradient descent method for Fisher’s Linear Discriminant Classifier. The gradient
descent method for minimizing the cost function is an approximation algorithm,
whereas there is an exact algorithm for minimizing the cost function which re-
quires matrix inversion. In this section, we compare the accuracy of the models
obtained when using the exact version of FLD versus using the gradient descent
approximation method with a varying number of steps. In Table 6 we give the
number of classification errors for the exact version of FLD and the gradient
descent method with 1 − 5 steps. These experiments were performed on unen-
crypted data, with step size η = 0.1. Based on these results, three steps seemed
to be sufficient in the gradient descent method for these data set sizes, so we used
3 steps in all experiments in Section 5.4 to produce encrypted and unencrypted
timings for FLD.

20 T. Graepel, K. Lauter, and M. Naehrig

Table 6. # errors in exact and DFI-FLD classification on unencrypted data

features # training # test exact 1-step 2-step 3-step 4-step 5-step

2 100 100 10 10 10 10 10 11
5 100 100 7 7 7 7 7 7
10 100 100 8 8 9 8 8 8
20 100 100 6 19 5 6 5 6
30 100 100 2 29 6 3 2 1

6 Conclusions and Future Work

With advances in machine learning and cloud computing the enormous value of
data for commerce, society, and people’s personal lives is becoming more and
more evident. In order to realize this value it will be crucial to make data avail-
able for analysis while at the same time protect it from unwanted access. In this
paper, we pointed out a way to reconcile these two conflicting goals: Confiden-
tial Machine Learning. We formalize the problem in terms of a multi-party data
machine learning scenario involving a Data Owner, Data Providers, and a Cloud
Service Provider and describe the desired functionality and security properties.
We showed that it is possible to implement Confidential ML based on a recently
proposed Homomorphic Encryption scheme, using polynomial approximations
to known ML algorithms.

Homomorphic encryption is a rapidly advancing field and so we expect that
more complex ML algorithms applied to larger data sets requiring fewer com-
putational resources may soon be possible. For example, it should soon be pos-
sible to use kernel methods to derive low-degree polynomial machine learning
algorithms implementing non-linear mappings. Other open problems include the
question, which protocols will be useful in practical data analysis scenarios, and
how the computational burden can be optimally distributed between cloud and
client taking into account the cost of communication. Furthermore, one can
imagine even more complex multi-party scenarios in which multiple data-owners
(e.g., Amazon, Netflix, Google, Facebook) would like to provide inputs for a sin-
gle machine learning problem (e.g., product recommendation) without disclosing
their data.

References

1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1993); Computational algebra
and number theory, London (1993)

2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp.
868–886. Springer, Heidelberg (2012)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V. (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) Innovations in Theoretical
Computer Science – ITCS 2012, pp. 309–325. ACM (2012)

ML Confidential: Machine Learning on Encrypted Data 21

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley
and Sons (2000)

6. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/

7. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annual
Eugenics 7(2), 179–188 (1936)

8. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

10. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

11. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer,
Heidelberg (2012)

12. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)
13. Langlois, A., Stehlé, D.: Hardness of decision (R)LWE for any modulus. Cryptology

ePrint Archive, Report 2012/091 (2012), http://eprint.iacr.org/
14. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be

practical? In: Proceedings of the 3rd ACM Cloud Computing Security Workshop,
CCSW 2011, pp. 113–124. ACM, New York (2011)

15. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

16. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010), http://eprint.iacr.org/2012/230

17. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In: Advances in Neural Information Processing Systems 14, pp. 849–856.
MIT Press (2002)

18. Poggio, T., Rifkin, R., Mukherjee, S., Niyogi, P.: General conditions for predictivity
in learning theory. Nature 428, 419–422 (2004)

19. Rivest, R.L.: Cryptography and machine learning. In: Matsumoto, T., Imai, H.,
Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer,
Heidelberg (1993)

20. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

21. Williams, O., McSherry, F.: Probabilistic inference and differential privacy. In:
Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.)
Advances in Neural Information Processing Systems 23, pp. 2451–2459 (2010)

http://eprint.iacr.org/
http://archive.ics.uci.edu/ml
http://eprint.iacr.org/
http://eprint.iacr.org/2012/230

Another Look at Affine-Padding RSA Signatures

Jean-Sébastien Coron1, David Naccache2, and Mehdi Tibouchi3

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi, l-1359 Luxembourg, Luxembourg

jean-sebastien.coron@uni.lu
2 École normale supérieure, Département d’informatique

45, rue d’Ulm, f-75230, Paris Cedex 05, France
david.naccache@ens.fr

3
ntt Secure Platform Laboratories – Okamoto Research Laboratory
3-9-11 Midori-cho, Musashino-shi, Tokyo, jp-180-8585, Japan

tibouchi.mehdi@lab.ntt.co.jp

Abstract. Affine-padding rsa signatures consist in signing ω · m + α
instead of the message m for some fixed constants ω,α. A thread of pub-
lications progressively reduced the size of m for which affine signatures
can be forged in polynomial time. The current bound is logm ∼ N

3
where

N is the rsa modulus’ bit-size. Improving this bound to N
4

has been an
elusive open problem for the past decade.

In this invited talk we consider a slightly different problem: instead
of minimizing m’s size we try to minimize its entropy. We show that
affine-padding signatures on N

4
entropy-bit messages can be forged in

polynomial time. This problem has no direct cryptographic impact but
allows to better understand how malleable the rsa function is. In addi-
tion, the techniques presented in this talk might constitute some progress
towards a solution to the longstanding N

4
forgery open problem.

We also exhibit a sub-exponential time technique (faster than fac-
toring) for creating affine modular relations between strings containing
three messages of size N

4
and a fourth message of size 3N

8
.

Finally, we show than N
4
-relations can be obtained in specific scenar-

ios, e.g. when one can pad messages with two independent patterns or
when the modulus’ most significant bits can be chosen by the opponent.

1 Introduction

To prevent forgers from exploiting rsa’s multiplicative homomorphism [6], it is
a common practice not to sign raw messages m but to first apply to them a
padding function μ(m).

This paper considers one of the simplest padding functions called affine padding
(or fixed-pattern padding):

σ = μ(m)d mod n = (ω ·m+ α)d mod n

Here d denotes the rsa private exponent and n the public modulus. Throughout
this paper |x| will denote the bit-size of x. Let N = |n|.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 22–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Another Look at Affine-Padding RSA Signatures 23

Following [1], we use the following notations:

μ(m) = ω ·m+ α where

{
w is the multiplicative redundancy
α is the additive redundancy

(1)

Since no proof of security is known for rsa signatures using such a μ, those
signatures should not be used in practice. Nonetheless, the study of such simple
padding formats is useful for understanding how malleable the rsa function is.

In 1985, [2] exhibited forgeries for ω = 1 when m ∼ 3
√
n2. This attack was

extended by [3] in 1997 to any values of ω, α and for m ∼ √
n. Finally, [1]

exhibited in 2001 forgeries whenm ∼ 3
√
n. This remains the best polynomial-time

result to date. Relaxing the polynomial time constraint [4] showed that smaller
message sizes can be tackled in complexity lower than that of all currently known
factorization algorithms.

It was conjectured that a polynomial time forgery should exist for m ∼ 4
√
n,

but this remained an elusive open problem for the past decade.

Our Contribution. This paper does not directly address the m ∼ 4
√
n con-

jecture, but presents several new results in that general direction. Rather than
minimizing logm we try to minimize m’s entropy. Using a variant of [1], we show
(§3) how to craft N

4 entropy signatures instead of N
3 ones. This has no specific

cryptographic impact but allows to further explore rsa’s malleability.
§4 shows how to obtain1 a relation between four padded messages, three of

which are of size N
4 and the fourth of size 3N

8 .

Finally, §5, investigates special scenarios in which we obtain N
4 -relations by al-

lowing the use of two independent padding patterns or by allowing the opponent
to select the most significant bits of n.

2 Brier-Clavier-Coron-Naccache’s Algorithm

In this section we briefly recall the attack of Brier et alii [1] using a slightly
different exposition. [1] will serve as a building block in most of the results to
come.

The goal is to find four distinct messages x, y, z, t ∈ Z each of size N
3 , such

that:

(ω · x+ α) · (ω · y + α) = (ω · z + α) · (ω · t+ α) mod n (2)

which enables to forge the signature of x using:

(ω · x+ α)
d
=

(ω · z + α)d · (ω · t+ α)d

(ω · y + α)
d

mod n

Denoting Δ = α/ω mod n, from (2) it is sufficient to solve the following
equation:

(Δ+ x)(Δ + y) = (Δ+ z)(Δ+ t) mod n

1 in a time equivalent to that needed to factor a 3N
8
-bit number.

24 J.-S. Coron, D. Naccache, and M. Tibouchi

Theorem 1 (Brier et alii). Given n,Δ ∈ Z with Δ �= 1, the equation:

(Δ+ x)(Δ + y) = (Δ+ z)(Δ+ t) mod n

has a solution x, y, z, t ∈ Z computable in polynomial time, with 0 ≤ x, y, z, t ≤
8 · 3
√
n and with y �= z and y �= t.

Proof. The previous equation gives:

Δ · (x+ y − z − t) = z · t− x · y mod n

By developingΔ/n as a continued fraction, we find U, V ∈ Z such that Δ·U = V

mod n where− 3
√
n ≤ U < 3

√
n and 0 < V < 2· 3

√
n2 and gcd(U, V) = 1. Therefore

it suffices to solve the following system:{
x · y − z · t = V
x+ y − z − t = −U (3)

A solution can be found using the following lemma:

Lemma 1. Let A,B,C ∈ Z with gcd(B,C) = 1. The system of equations:⎧⎨⎩
x · y − z · t = A
x− z = B
y − t = C

has a solution given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t = y − C = A−C·(A·C−1 mod B)
B − C

x = B + z = B + (A · C−1 mod B)

y = A−C·z
B = A−C·(A·C−1 mod B)

B

z = A · C−1 mod B

Proof. Letting x = B + z and t = y − C, the first equation can be replaced by:

(B + z) · y − z · (y − C) = A

which gives:
B · y + C · z = A (4)

Since gcd(B,C) = 1 we get:

z = A · C−1 mod B

Moreover from equation (4) we obtain:

y =
A− C · z

B
(5)

which is an integer since A − C · z = 0 mod B. This concludes the lemma’s
proof. ��

Another Look at Affine-Padding RSA Signatures 25

We return now to the proof of Theorem 1.

Let A = V and choose B such that 3
√
n < B < 2 · 3

√
n and gcd(B,U) = 1. Let

C = −U −B which gives B + C = −U ; therefore from system (3) it suffices to
solve the system: ⎧⎨⎩

x · y − z · t = A
x− z = B
y − t = C

Since gcd(B,C) = gcd(B,−U−B) = gcd(B,U) = 1, the previous system can be
solved using Lemma 1. Moreover we have 0 ≤ z < B ≤ 2· 3

√
n and 0 ≤ x ≤ 3· 3

√
n.

From C = −U −B we have:

1 ≤ −C ≤ 3 · 3
√
n

which gives 0 ≤ y ≤ 5 · 3
√
n, and eventually 0 ≤ t ≤ 8 · 3

√
n.

Finally since C �= 0 we have y �= t. Moreover if y = z from equation (5) we
get A = (B + C) · z = −U · z = −V which gives V = U · z;

– if z �= 1 this gives gcd(U, V) �= 1, a contradiction;
– if z = 1 this gives U = V and therefore Δ = 1, a contradiction.

therefore y �= z, which concludes the proof of the theorem. ��

3 Minimal Entropy Forgeries

We now consider a slightly different equation. Let λ = 2�
N
4 � and consider the

equation:

(Δ+ x) · (Δ+ λy) = (Δ+ z) · (Δ+ λt) mod n (6)

The following explains how to find in polynomial time four distinct solutions
x, y, z, t of size ∼ N

4 . Therefore this gives a relation between four messages m1 =

x, m2 = λy, m3 = z and m4 = λt of size ∼ N
2 but an entropy of ∼ N

4 bits only.

By expanding equation (6) we get:

Δ (x− z + λ(y − t)) = λ(z · t− x · y) mod n

As previously, by developing Δ′/n as a continued fraction with Δ′ = Δ/λ
mod n, we can find U, V such that Δ · U = λV mod n where this time we
take −

√
n ≤ U ≤

√
n and 0 ≤ V ≤ 2

√
n. Then it suffices to solve the system:{

x− z + λ(y − t) = −U
x · y − z · t = V

Using Euclidean division we write U = Hλ+ L with 0 ≤ L < λ; then it suffices
to solve the system: ⎧⎨⎩

x · y − z · t = V
x− z = −L
y − t = −H

26 J.-S. Coron, D. Naccache, and M. Tibouchi

which can be solved thanks to Lemma 1. Since V ∼ √
n and the size of both

L and H is roughly N
4 , one obtains four solutions x, y, z and t of size N

4 in
polynomial time.

However, for the lemma to apply, we must assume that gcd(L,H) = 1; this
makes the algorithm heuristic. If we assume that L and H are uniformly dis-
tributed, we have:

Pr[gcd(L,H) = 1] ∼=
6

π2

We illustrate the process in Appendix B using rsa Laboratories’ official 1024-bit
challenge modulus rsa-309.

Note that one can improve the algorithm’s success probability by considering:

(L′, H ′) = (L+ rλ,H − r)

instead of (L,H), for small values of r ∈ Z. Assuming independent probabilities,
after � trials the failure probability drops to (1− 6/π2)�, which is negligible even
for small values of � (and experiments suggest that in practice failure probability
decreases even faster than this rough estimate).

The idea lends itself to many variants. For instance 5N
4 entropy bit relations

can be found by solving (mod n)

(Δ+ tλ+x)(Δ+ tλ+ y) = (Δ+ tλ+ z)(Δ+ tλ+w) ⇒ Δ+ tλ =
xy − wz

w − x− y + z

Letting Δ = A
B mod n with |A| = 3N

4 and |B| = N
4 we get Δ+ tλ = A+tλ·B

B and

fixing t = −	 A
λB
 ⇒ Δ+ tλ = C

B for some |C| = N
2 .

We can hence solve this equation using Lemma 1 by identifying:⎧⎨⎩C = xy − wz

B = w − x− y + z

3.1 Message Entropy

We now define more precisely message entropy in the context of affine-padding
rsa forgery.

Let Δ be a fixed pattern2 and n a random variable denoting the rsa modu-
lus. We denote by GenKey the rsa key generation algorithm. Let F be a forging
algorithm making q signature queries for messages M = {m1, . . . ,mq} and pro-
ducing a forgery mq+1. We regard M and mq+1 as random variables induced by
n (and possibly by the random tape of F). We consider the entropy of individual
messages separately and take the maximum entropy over all messages:

2 i.e. the integer Δ appearing in the padding function μ(m) = (Δ+m).

Another Look at Affine-Padding RSA Signatures 27

HΔ := max{H(mi) | (M,mq+1)← F(n, e,Δ), (n, e)← GenKey(1k)}

We define the forgery’s entropy as the maximum over all possible values of the
pattern Δ:

H := max{HΔ | Δ ∈ Z}

We see that in the described algorithm, the message entropy is roughly N
4 ,

whereas it was N
3 in [1].

Note that in the previous definition we consider the maximum entropy of all
messages required for the forgery and not only the entropy of the message whose
signature is forged. For example [3] is selective, which means that the attacker
can forge a signature for a message of his choosing; therefore the forged message
can have zero entropy; however the remaining messages in [3] are half the size
of n and their entropy is roughly N

2 .

4 Sub-exponential Strategies

We start by noting that for N
4 forgeries of the form

(Δ+ x)(Δ+ y) = (Δ+ z)(Δ+ w) mod n ⇒ Δ =
z + w − x− y

xy − wz
mod n

This means that Δ can be written as a modular ratio of two integers (namely
z +w − x− y and xy −wz) that are respectively N

4 and N
2 bits long. As this is

expected to occur with probability ∼ 2−N/4 we infer that for arbitrary Δ values,
such forgeries shouldn’t exist in general.

Consider a forgery of the form:

(Δ+ x)(Δ+ y) = Δ(Δ+ x+ y + z) mod n

Hence, if x, y, z exist, they are such that:

Δ =
xy

z
mod n

Write:

Δ =
A

B
mod n where |A| = 5N

8
and |B| = 3N

8

Then

∀u, Δ+ u =
A+ uB

B
mod n

Thus, if we fix:

u′ = −	A
B

28 J.-S. Coron, D. Naccache, and M. Tibouchi

we get

Δ+ u′ =
A+ u′B

B
=
A′

B
mod n

where |A′| = |B| = 3N
8 . We can attempt to factor A′ = x × y into two factors

smaller than N
4 bits each. If this factorization fails add one to u′ and start over

again.

The result is a N
4 ,

N
4 ,

N
4 ,

3N
8 forgery such as the one given in Appendix C.

Again, the idea lends itself to a number of variants. For instance, relations of
the form

(Δ+ tx)(Δ + ty) = (Δ+ tz)(Δ+ tw)⇒ Δ =
t(xy − wz)

w − x− y + z

can be found by writing Δ = A
B mod n with |A| = |B| = N

2 , factoring A to find
t and continuing with Lemma 1.

5 Further Research

While computing N
4 forgeries remains an open problem, neighboring problems

may lead to surprising algorithms. We give here two such variants as departure
points for future research.

5.1 The Case of Two Interchangeable Padding Patterns

Let Δ and Δ′ be two independently generated padding patterns and assume
that the signer can sign messages using either Δ or Δ′. We have:

(Δ+ x)(Δ′ + y) = (Δ+ z)(Δ′ + t) mod n
⇓

Δ(y − t) +Δ′(x− z) + xy − zt = 0 mod n

Find A,B,C of respective sizes N
2 ,

N
4 ,

N
4 such that ΔC + Δ′B + A = 0 mod n

and solve the system ⎧⎨⎩
x · y − z · t = A
x− z = B
y − t = C

as before. Note that this yields an N
4 forgery only if Δ and Δ′ are ”independent”.

If Δ = Δ′ + α for a small α then a N
3 forgery is found.

5.2 Allowing the Attacker To Influence n

Assume that the attacker can select the most significant half of n (e.g. [5] and [7]
report that such a practice does not seem to weaken n). Let Δ be an arbitrary
padding pattern and:

Another Look at Affine-Padding RSA Signatures 29

(Δ+ x)(Δ + y) = (Δ+ x′)(Δ+ y′) mod n
⇓

Δ(x+ y − x′ − y′) + xy − x′y′ = 0 mod n

where x, y, x′, y′ are all of size N
4 . This is solved by writing:⎧⎨⎩

Δ · a+ b = 0 mod n
x+ y − x′ − y′ = a
xy − x′y′ = b

Hence, for a given Δ we need to find an n for which a and b are of respective
sizes N

4 and N
2 . We then find x, y, x′, y′ exactly as previously but of size N

4 (to
do so define x − x′ = α for an arbitrary α and solve the two equations). Write
Δa + b = kn as we can select the most significant bits of n, let n = n1 + n0

where n1 (of size 1) is chosen by the attacker and where n0 (of size N
2) is not

under the attacker’s control.

This boils-down to Δa+ b = k(n1 + n0). Selecting n1 = 2Δ the attacker gets
Δa+ b = k(2Δ+ n0). Hence k = 1, a = 2 and b = n0 is a satisfactory choice for
which a and b are of respective sizes N

4 and N
2 (as a matter of fact a is much

smaller but this is not an issue).

The attack’s Sage code is given in Appendix A.

References

1. Brier, E., Clavier, C., Coron, J.S., Naccache, D.: Cryptanalysis of RSA signatures
with fixed-pattern padding. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 433–439. Springer, Heidelberg (2001)

2. De Jonge, W., Chaum, D.: Attacks on some RSA signatures. In: Williams, H.C.
(ed.) CRYPTO 1985. LNCS, vol. 218, pp. 18–27. Springer, Heidelberg (1986)

3. Girault, M., Misarsky, J.-F.: Selective forgery of RSA signatures using redundancy.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 495–507. Springer,
Heidelberg (1997)

4. Joux, A., Naccache, D., Thomé, E.: When e-th Roots Become Easier Than Factoring.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 13–28. Springer,
Heidelberg (2007)

5. Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg
(1998)

6. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. CACM 21(2), 120–126 (1978)

7. Shamir, A.: RSA for paranoids. CryptoBytes (The Technical Newsletter of RSA
Laboratories) 1(3) (1995)

8. http://sites.google.com/site/bbuhrow/home

http://sites.google.com/site/bbuhrow/home

30 J.-S. Coron, D. Naccache, and M. Tibouchi

A Allowing The Attacker to Influence n (Sage code)

def hex(x):
s=x.digits(base=16,digits=’0123456789abcdef’)
s.reverse()
return "".join(s)

def invmod(a,b):
g,c,d=xgcd(a,b)
return c

def testattack(n=512):
P=ZZ.random_element(2^n)
N1=2*P
q=random_prime(2^(n//2))
p=N1//q
NN=p*q
print "N=",NN
print "N/2=",NN//2
print "P=",P

a=2
b=NN-N1

al=ZZ.random_element(2^(n//4))
while gcd(al,a)!=1:

al=ZZ.random_element(2^(n//4))

xp=ZZ(mod(b*invmod(a-al,al),al))
y=(b-xp*(a-al))/al
x=xp+al
yp=y-(a-al)

print "x=",x
print "y=",y
print "x\’=",xp
print "y\’=",yp

print "(delta+x)(delta+y)=(delta+x\’)(delta+y\’) mod N ",mod((P+x)*(P+y)-(P+xp)*(P+yp),NN)==0

Another Look at Affine-Padding RSA Signatures 31

B Minimum Entropy Forgery

μ(m1) ·μ(m2) = μ(m3) ·μ(m4) mod n309 with ω = 1 and α = Δ = 21023− 2516.

n309 is rsa Laboratories’ unfactored challenge modulus RSA-309.

The entropy of messages m1, m2, m3 and m4 is ∼= |n309|
4 .

n309 = RSA-309
= bdd14965 645e9e42 e7f658c6 fc3e4c73 c69dc246 451c714e b182305b 0fd6ed47

d84bc9a6 10172fb5 6dae2f89 fa40e7c9 521ec3f9 7ea12ff7 c3248181 ceba33b5
5212378b 579ae662 7bcc0821 30955234 e5b26a3e 425bc125 4326173d 5f4e25a6
d2e172fe 62d81ced 2c9f362b 982f3065 0881ce46 b7d52f14 885eecf9 03076ca5

μ(m1) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffff0
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
0a22096c f25655f4 104b2971 bc8b4f4f 817e6f4c d0ca8b25 ac5e8377 819e9d23

μ(m2) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffff0
e1bdb579 4ad9e45a 7b17ee62 bf736d1c 8d897862 ce2c3349 72600b8b 44a8d4fb
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

μ(m3) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffff0
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
113271f6 527c0815 fbf55d24 4883207b 827b9fb9 dd3ba8a6 2af1b776 d550a12d

μ(m4) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffff1
0c9ca82a 80d6e82a e84d12a7 6415e27e d6d909da c2331285 aca27f4e 632d1556
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

32 J.-S. Coron, D. Naccache, and M. Tibouchi

C Fast Sub-Exponential Forgery

μ(m′
1) · μ(m′

2) = μ(m′
3) · μ(m′

4) mod n309. Factorization for obtaining this re-
lation was done with yafu [8] using fast mpqs and siqs implementations for
Core2 processors.

Δ′ = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008 ← note the 8
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

μ(m′
1) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008
78dfd16f afa9c95b 2fecb797 21eae4a7 5217f260 0a9b852a 01dee0cf 315aea20

μ(m′
2) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008
78dfd16f afaa4c53 011c40cf ce5ff1d9 f9d2f822 3bf3b3ad c770bdd4 4644e869

μ(m′
3) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008
78dfd16f afa9c95b 2fefcd95 a1f55dd7 1f55b73a b29e0570 f72a86d2 940f34d1

μ(m′
4) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
00000000 00000000 00000000 00000000 98fb10e4 ef8f2456 b2ab14a2 236dadea
6b28b31b 1bfb2493 8f74d85e eceb7450 2d848353 fe9f1dec b40f041b bbb2a1f8

On Bruteforce-Like Cryptanalysis:

New Meet-in-the-Middle Attacks
in Symmetric Cryptanalysis

Christian Rechberger

Technical University of Denmark, Denmark

Abstract. This extended abstract briefly summarizes a talk with the
same title and gives literature pointers. In particular, we coin the term
bruteforce-like cryptanalysis.

Keywords: block ciphers, hash functions, bicliques, meet-in-the-middle,
key recovery, preimages, cryptanalysis.

1 Overview

The basic idea of meet-in-the-middle attacks is to split an invertible transforma-
tion into two parts and separate parameters, or chunks, that are involved in only
one part. Then these chunks can be searched independently with a match in the
middle as a filter indicating a right combination. One of the first applications
is the cryptanalysis of DoubleDES EK2(EK1(·)), which demonstrated that the
total security level is not the sum of key lengths [4]. The reason is that given a
plaintext/ciphertext pair, an adversary is able to compute the internal middle
state of a cipher trying all possible values ofK1 and K2 independently. The same
principle applies at the round level as well. If there is a sequence of rounds in a
block cipher that do not depend on a particular key bit, the meet-in-the-middle
attack might work.

A basic meet-in-the-middle attack requires only the information-theoretical
minimum of plaintext-ciphertext pairs. The limited use of these attacks can be
attributed to the requirement for large parts of the cipher to be independent of
particular key bits. We also mention that a number of variations of the basic
meet-in-the-middle attack theme were used in the literature, including combina-
tions with slide and integral attacks.

Though there has been a great deal of meet-in-the-middle attacks on block ci-
phers recently, overall they received less attention from cryptanalysts than other
standard attack vectors. In fact, it seems this attack vector was overshadowed
by the success of statistical attacks like linear and differential attacks.

Recently a number of conceptual improvements to this attack vector have been
proposed. A concept called bicliques was first introduced for hash cryptanaly-
sis, by Savelieva et al. [8]. It originates from the splice-and-cut framework [1] in
hash function cryptanalysis, and more specifically its aspect called initial struc-
ture [5,13]. The biclique approach led to the best preimage attacks on the SHA

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 33–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 C. Rechberger

family of hash functions so far, when measured in terms of numbers of rounds,
including the attack on 50 rounds of SHA-512, and the first attack on the round-
reduced SHA-3 finalist Skein [8]. The concept of bicliques for block ciphers and
biclique cryptanalysis for block ciphers was introduced in [2], and a predecessor,
the splice-and-cut framework applied to block ciphers is found in [14]. In the
following we briefly sketch some of the concepts and ideas in this context.

The Concept of a Biclique. A biclique (a complete bipartite graph) connects
2d pairs of intermediate states with 22d keys. This is the main source of com-
putational advantage in the key recovery — by constructing a biclique on 2d

vertices only, one covers quadratically many keys 22d. d is called the dimension
of the biclique.

A biclique is characterized by its length (number of rounds covered) and di-
mension d. The dimension is related to the cardinality of the biclique elements
and is one of the factors that determines the advantage over brute force. We now
briefly describe four cryptanalytic techniques that appear in all known applica-
tions of the biclique concept.

(1) Bicliques from Independent Related-Key Differentials. Often the
easiest way to construct a biclique in a cipher is to consider two related-key
differentials holding with probability one – one with forward key modification
and one with backward key modification. If those differentials are truncated, this
can result in a higher dimensional biclique. A key requirement here is that the
characteristics describing the biclique are all independent.

(2) Narrow-Bicliques. A variant of the above mentioned bicliques from
independent related-key differentials [7]. The conceptual addition is that instead
of probability 1 (truncated) differentials, much smaller probabilities are allowed.
the degrees of freedom in the choice of the internal states for each biclique are
used to efficiently enumerate enough bicliques of a special property that limit
diffusion, and hence the data complexity of the resulting attacks.

(3) Bicliques from Interleaving Related-Key Differentials. This is a
more involved approach, and is also based on related-key differentials. However,
they can interleave (that is, intersect in active nonlinear components such as S-
boxes). The propagation in those differentials can also be of probabilistic nature.
This removes the constraint on the biclique length natural for bicliques from
independent related-key differentials. This however also makes is very difficult to
construct bicliques of higher dimension though. For the only known examples for
biclique attacks of this type, d = 1 in key recoveries on round-reduced AES in [2].
The construction of such bicliques follows the rebound strategy [10] borrowed
from the domain of hash function cryptanalysis.

2 Bruteforce-Like Cryptanalysis

Most published applications of bicliques use them as a means to improve the
bruteforce-like cryptanalysis of a certain cipher or hash function, i.e. they allow

On Bruteforce-Like Cryptanalysis: New Meet-in-the-Middle Attacks 35

to include, but also minimize partial brute-force computations 1. This is based
on another technique that was introduced together with the biclique idea:

(4) Precomputation Technique for the Matching Part of a Meet-in-
the-Middle Attack. The starting observation is that, in case no matching is
possible to merge the independent computations of the two chunks in a meet-in-
the-middle attack because too many rounds are covered, a computation looping
over all combinations can still give the information required to filter key candi-
dates. Note that this is equivalent to test all keys for a particular part of the
cipher or hash function. [2] shows that its combination with biclique cryptanal-
ysis allows for larger savings of computations.

We note here that partial brute-force computations have been considered be-
fore for cryptanalytically improved preimage search methods for hash functions,
e.g. in [1,12]. Even earlier examples that may be considered more implementation-
rather than cryptanalytic-centric are [9,11]. In order to distinguish between these
earlier implementation-centric optimizations of brute force with those that use
more advanced cryptanalytic ideas, we coin the term bruteforce-like cryptanaly-
sis.

Bruteforce-like cryptanalysis is not able to conclude that a particular tar-
get has a cryptanalytic weakness, as in principle any number of rounds can be
“attacked”. However it can help to better understand the real security offered
against attacks in the absence of other shortcuts. Most recently reported appli-
cations of bruteforce-like biclique cryptanalysis have an advantage that is much
smaller than a factor of 2. For ciphers like AES with key sizes of 128 bits or more
this is merely of academic interest, we argue however that for ciphers with key
sizes of 80 bits or less, this is very useful to know, especially when cost savings
compared to optimized bruteforce implementations are a factor 2 or more [6].

3 Conclusions

Summarizing, the novel biclique meet-in-the-middle cryptanalysis is a promising
cryptanalytic technique for the security evaluation of modern block ciphers and
hash functions. It’s combination with bruteforce-like cryptanalysis can, by its
very nature, not be used to argue that a particular design has a cryptanalytic
weakness. However, it seems advisable to include an assessment with respect to
it into any new design of a symmetric primitives, as e.g. done for the recently
proposed PRINCE [3].

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

1 Exceptions to this are e.g. the key recoveries on 8-round AES-182 in [2], or on 5 and
7.5 round IDEA [7].

36 C. Rechberger

2. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

3. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M.,
Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P.,
Thomsen, S.S., Yalçın, T.: PRINCE – A Low-Latency Block Cipher for Pervasive
Computing Applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 208–225. Springer, Heidelberg (2012)

4. Diffie, W., Hellman, M.: Special feature exhaustive cryptanalysis of the NBS Data
Encryption Standard. Computer 10, 74–84 (1977)

5. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-
2. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer,
Heidelberg (2010)

6. Jia, K., Rechberger, C., Wang, X.: Green Cryptanalysis: Meet-in-the-Middle
Key-Recovery for the Full KASUMI Cipher. Cryptology ePrint Archive, Report
2011/466 (2011), http://eprint.iacr.org/

7. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-Bicliques: Cryptanalysis of
Full IDEA. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 392–410. Springer, Heidelberg (2012)

8. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 Family. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 244–263. Springer, Heidelberg (2012)

9. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers
with COPACOBANA - A Cost-Optimized Parallel Code Breaker. In: Goubin, L.,
Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg
(2006)

10. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

11. Osvig, D.A.: Efficient Implementation of the Data Encryption Standard. Master
thesis (2003)

12. Rechberger, C.: Preimage Search for a Class of Block Cipher based Hash Functions
with Less Computation (2008) (unpublished manuscript)

13. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

14. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved Meet-in-
the-Middle Cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011)

http://eprint.iacr.org/

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 37–48, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Balanced Indexing Method
for Efficient Intrusion Detection Systems

BooJoong Kang1, Hye Seon Kim1, Ji Su Yang1, and Eul Gyu Im2

1 Department of Electronics and Computer Engineering,
Hanyang University, Seoul, 133-791, Korea

2 Division of Computer Science and Engineering,
Hanyang University, Seoul, 133-791, Korea

{deviri,danzun,yjisu,imeg}@hanyang.ac.kr

Abstract. To protect a network from malicious activities, intrusion detection
systems can be used. Most of intrusion detection systems examine incoming
packets with detection signatures to detect potential malicious packets. Because
the portion of malicious packets is usually very small, it is not efficient to
examine incoming packets with all signatures. In this paper, we propose a
method that reduces the number of signatures to be examined and show the
experimental results of our proposed method.

Keywords: Network Security, Pattern Matching, Intrusion Detection System,
Indexing.

1 Introduction

Uses of the Internet have increased tremendously in various applications and so has
the volume of network traffic. Although most of network traffic is generated for
benign purposes such as web browsing, video streaming and peer-to-peer file sharing,
some portions of the network traffic are malicious, and malicious traffic might cause
degradation of network performance or network based services. Examples of
malicious network activities include phishing, sending spam emails, spreading
malware and launching distributed denial of service (DDoS) attacks. With the
increased volume of general network traffic, intrusion detection systems based on
network traffic analysis need to have very high performance to examine a high
volume of bypassing packets; moreover, the attacks are getting more sophisticated
over time, making the detection of attack traffics on the Internet difficult. It is very
import to detect attacks and block the attack traffic as fast as possible to maintain a
certain level of network quality of service.

To detect and classify network-based attacks, network packets are examined to
determine whether the packets contain malicious contents or not. To inspect network
packets, there are two main approaches; packet header inspection and packet payload
inspection. Packet header inspection allows fast detection by collecting the
information in the packet header such as port numbers and IP addresses. On the other
hand, packet payload inspection conducts deeper analysis on the contents of each

38 B.J. Kang et al.

packet and looks for specific keywords that are related to malicious activities. To
maximize the effectiveness, the detection should be accurate as well as fast. Packet
header inspection is fairly easy to implement and is able to provide fast detection if
the information is used appropriately; however, this method is not suitable for
accurate detection schemes because of high false positive rates. Packet payload
inspection, on the other hand, does provide highly accurate detection but there are
issues to be solved such as storage overheads, computational complexity and delays
caused by the payload analysis.

In this paper we propose a method to enhance the performance of network packet
inspection. Our proposed method groups a number of signatures together by indexing
the signatures in a simple way. The experimental results of our proposed method
show the efficiency of signature grouping.

The rest of the paper is organized as follows: Section 2 contains related work. In
Section 3, we explain our indexing method for signature grouping. Experimental
results with our proposed method are shown in Section 4 and Section 5 summarizes
the paper.

2 Related Work

There have been many researches that tried to improve the performance of intrusion
detection systems, including string matching algorithms for memory-efficiency, finite
automata-based approaches, and signature indexing. In this section, we summarized
and explained these researches and their approaches.

2.1 Aho-Corasick Based Approaches

The Aho-Corasick algorithm is one of the most common algorithms for string
matching, and the algorithm forms graphs for signatures to be examined. For the 8-bit
characters sets, the algorithm requires 256 pointers to keep the information of next
states for all possible characters, which eventually causes waste of memory. A
memory-efficient implementation of the Aho-Corasick algorithm was presented by N.
Tuck et al. [1], to overcome this problem. They used a 256-bit bitmap instead of 256
pointers, and if a state can be a next state, the corresponding bit inside the bitmap is
set to one. For the nodes that are close to terminal nodes of the graph, flags are used
instead of bitmaps since most of the bits in the bitmap will be set to zero due to very
few possible transitions. Their experimental results show that the method reduced the
memory utilization down to just 2%, compared to the original approach.

Another approach that aims to improve the performance of the Aho-Corasick
algorithm is presented by L. Tan T Sherwood [2]. Their approach is based on a
specialized hardware architecture consisted of multiple Rule Modules and Tiles. Their
hardware architecture enables Aho-Corasick matching in bit vectors, not in strings.
The bit-level matching has only two possible next states, resulting in significant
performance improvement.

 Balanced Indexing Method for Efficient Intrusion Detection Systems 39

Many efforts to improve the performance of the Aho-Corasick algorithm, including
the above two approaches, are successful to enhance the performance of intrusion
detection systems because string matching is one of the expensive processes in the
deep packet inspection. However, the number of signature keeps increasing and it is
hard to believe that the improvement of string matching algorithm will clear up the
signature growth.

2.2 DFA or NFA Based Approaches

Deterministic Finite Automaton (DFA) and Nondeterministic Finite Automaton
(NFA) are finite state machine-based models that consist of a number of states and
transitions. Since both DFA and NFA can be represented with regular expressions,
they are widely used for string matching. Although DFA requires more states than
NFA, DFA shows better performance than NFA; therefore making DFA memory-
efficient and improving the performance of NFA are the main issues of these two
schemes. Memory-efficient DFAs can be achieved in various ways, for example, by
introducing cache memory to DFA structure [3], by rewriting the regular expressions
to reduce the number of states [4], and by using perfect hash function for faster
transition table look-up [5]. While DFA implementation is more suitable in software,
NFA implementation shows better performance in hardware environment. J. Bispo et
al. [6] suggested a regular expression matching engine with reconfigurable hardware.
However, these approaches are also hard to solve the same problem as the string
matching approaches are.

2.3 Signature Grouping

Baker et al. proposed a method to avoid redundant comparison of the same characters
by partitioning the whole patterns into several smaller groups [7]. The partitioning is
done by: (1) maximizing the number of repeated characters within a group, (2)
minimizing the number of characters repeated between different groups. Sourdis et al.
[8] introduced a packet pre-filtering approach which used an 8-character prefix for
each signature. In the pre-filtering step, a subset of signatures is selected by the partial
matches, based on the 8-character prefix. If there are matched prefixes during the pre-
filtering step, the full-match engine is activated to inspect the candidate set of
signatures. In this paper, the authors claimed that the packet pre-filtering significantly
reduces the number of signatures matched per packet. Chen et al. proposed a method
to decompose the Snort signature patterns into primary patterns [9]. In the Snort
pattern set, there are two properties: (1) the repetition which is just the same amongst
rules, (2) the composition that each signature is considered as a combination of
smaller pattern fragments. The authors decomposed this pattern with the delimiters,
such as hyphen (‘-’) and period (‘.’). To distinguish text characters and binary data,
any binary data with a ‘|’ in-between, is considered as an individual pattern. Although
these signature grouping methods would solve the signature growth problem, the
criterion of signature grouping is still questionable since the result of signature
grouping is controlled by the criterion.

40 B.J. Kang et al.

Among these various approaches to improve intrusion detection systems, there is
no silver bullet that can solve the signature growth problem. To improve the
performance of intrusion detection systems, various techniques should be explored
and multiple techniques should be combined together. Therefore, we argue that our
proposed indexing method can contribute to improve the performance of intrusion
detection systems.

3 Our Proposed Method

Chen et al. presented the relationship between the number of primary patterns and the
number of Snort rules [9]. A primary pattern is a set of strings that appear repeatedly
within Snort rule signatures. The result of their experiments shows that the number of
primary patterns saturates at some points even though the number of signatures keeps
increasing. This implies that classifying signatures with grouping methods can
increase the efficiency and speed of packet inspection greatly because the size of
primary patterns can be much smaller than that of entire signatures.

We focused on this observation and grouped signatures by applying our indexing
method. Indexing is a method which is commonly used to find a certain item from a
large set of data. In our proposed method, an index is a substring which is part of a
signature. Each index points to a subset of signatures contain the index; therefore the
signatures are arranged into several groups according to indices. Before the packet
inspection stage, the signatures are pre-processed to create indices and the signatures
are grouped together according to the indices.

Fig. 1. Indexing

During the packet inspection, if an input packet has turned out to have some
indices within its payload, it is highly likely that the packet is related to some types of
attacks. In this case, further inspection should be carried on by examining the packet
with the signatures that the indices point. On the other hand, if the payload of the
packet does not include any indices, the packet is harmless; therefore, the inspection
goes on for the next packet. Fig. 1 shows an example of the inspection with the
indexing method, with three indices extracted from signatures: ‘/log’, ‘scri’ and ‘/iis’.

 Balanced Indexing Method for Efficient Intrusion Detection Systems 41

As the index ‘/iis’ appears in the payload of the incoming packet, only the signatures
(9) and (10) will be used for the further inspection. The signatures from (1) to (8)
would not be examined for this packet, since the indices ‘/log’ and ‘scri’ are not
matched. In this way, the inspection overhead can be significantly reduced by
inspecting only two signatures.

One of the main issues on indexing is how to choose substrings from signatures
when building indices. We will address our index selection algorithm, called
Balanced Indexing. Sourdis et al. [8] proposed an index selection algorithm, called
Prefix Indexing (PI). The indices for PI are selected by extracting the first N-byte
string from each signature. This algorithm is efficient in cases that the beginning of
signatures shares a number of common strings such as the case shown in Fig. 2.

Fig. 2. Prefix Indexing

While PI is a simple way to group signatures with indices, grouping with other
substrings that appear in the middle of signatures could be more appropriate in some
cases. Based on this intuition, Random Indexing (RI) which selects indices randomly
from signatures is proposed [10]. RI extracts an N-byte substring from an arbitrary
point of signatures. Fig. 3 shows an example of RI.

Fig. 3. Random Indexing

RI, however, exhibits poor grouping results than PI in many cases because RI is
highly dependent on the order of selected indices. Fig. 4 shows a worse-case example
of RI with the same indices in Fig. 3. In this example, 40% of signatures are grouped
together; as a result, performance improvement can be reduced, compared with the
case of Fig. 3.

42 B.J. Kang et al.

Fig. 4. A Worse-case Example of Random Indexing

To compensate the disadvantages of RI stated above, we propose a method that
extracts indices with some restrictions. We applied the maximum and minimum
number of signatures per index as restrictions. These restrictions prevent indices from
pointing to too many signatures or too few signatures, generating more balanced
results than RI. We called this approach as Balanced Indexing (BI). By experimenting
various indexing cases, we derived minimum and maximum values as one and three,
respectively, but these values can be set differently when applying to other sets of
signatures. During the experiments we realized that both minimum and maximum
values have limits, depending on the property of the signatures. The limit for the
minimum value takes effect when there is a unique substring from a signature, which
is not shared with any other signatures. In this case the index that contains the
substring will have only one signature. On the other hand, when there is a substring
that appears in many other signatures, the maximum number cannot be smaller than a
certain value because many signatures share a part of signatures.

 Algorithm 1. Balanced Indexing Algorithm

Input: All signatures S
Length of an index L
Minimum number of signatures per index Min
Maximum number of signatures per index Max

Output: Extracted indices I
1: I ←Ø
2: while S ≠ Ø do
3: subsigs ← Ø
4: sig ← a randomly selected signature from S
5: index ← a L-byte substring of sig (random)
6: for ∀s ∈ S do
7: subsigs ← subsigs + s that includes index
8: end for
9: if |subsigs| ≥ Min and |subsigs| ≤ Max then

10: I ← I + index
11: S ← S – subsigs
12: end if
13: end while

 Balanced Indexing Method for Efficient Intrusion Detection Systems 43

Algorithm 1 shows the pseudo code of the BI algorithm. BI randomly selects a
signature and extracts a substring from an arbitrary point of the chosen signature and
searches for other signatures that contain the substring. All found signatures are added
to the list of the corresponding substring. So far, it is the same as RI. After finding all
signatures which contain the substring, the substring will be accepted as an index only
when the number of signatures is within the boundary; Max and Min. The accepted
index and the signatures are stored in the index list, indices, and the signatures are
excluded from further process. BI repeats the above processes until all signatures are
exhausted. To avoid infinite loops, Max and Min are selected appropriately.

4 Experiments

In this section, we present experimental results of our indexing method, BI. We used
Snort 2.9.0.0 to evaluate the effectiveness of our proposed method. Snort has a
number of signature files which are divided into several categories by the types of
attacks and a signature consists of multiple strings to be examined with the incoming
packet. We experimented with three index selection algorithms; PI, RI and BI.

Table 1 shows the information of Web-IIS signatures which are used in our
experiments. Web-IIS contains 143 signatures which are related to attacks against
Windows IIS servers. The total length of signatures within the Web-IIS is 2,363 bytes
and the average length of signatures is 16.52 bytes. With these signatures, we applied
the three indexing methods and analyzed the results. PI always generates the same
result, but RI generates different results in every experiment due to random selection
of substrings; for this reason we analyzed both the best result and the worst result of
RI. BI also generates different result each time; but we only analyzed the best result
for BI because the results of the other cases do not show a big difference.

Table 1. Web-IIS Signatures

 Web-IIS

Number of Signatures 143
Total Length of Signatures 2,363
Average Length of Signatures 16.52
Maximum Length of Signatures 65

Indexing results were analyzed with three statistical values: the number of indices

(NI), the average number of signatures per index (ANPI) and the maximum number
of signatures per index (MNPI). NI refers to the size of the entire indices, which is
related to the total length of index to be examined with an input packet; therefore if
NI decreases, the packet inspection process can have better performance. ANPI is
another important factor of performance as it has a close relationship with the amount
of strings to be inspected; the fewer the strings, the less it takes for the deep packet
inspection. We found that the appropriate value for ANPI is between 1.5 and 1.8,
experimentally. MNPI has effects on the deep packet inspection time, especially for
the worst case. If the size of MNPI, let’s say M, is significantly large, the worst case

44 B.J. Kang et al.

time required for the deep packet inspection increases as the packet inspection
involves at least M times of comparison to the input packet. To summarize, an
indexing result with smaller MNPI, especially which has a close value to ANPI,
shows the best performance in the packer inspection.

Table 2 shows the experimental results of the three indexing methods, where the
length of each index is set to four bytes. The three methods, PI, RI and BI show
similar results in most cases, except the MNPI value. BI has the smallest MNPI,
whose value is also close to ANPI; therefore the indexing with BI provides a fairly
equally distributed result. Other results with bigger MNPI values mean that their
signature groupings were biased to a certain index. If the biased index is matched, a
large number of signatures should be fully examined, causing longer deep packet
inspection time. We will discuss the performance issues later in this section.

Table 2. Statistical Values of Web-IIS

Methods
Values

PI
RI

BI
Best Worst

Length of Index 4 4 4 4
Number of Indices (NI) 84 80 50 85
Average Number of Signatures per Index (ANPI) 1.70 1.78 2.86 1.68
Maximum Number of Signatures per Index (MNPI) 15 10 41 3

To evaluate the performance of packet examination, we estimated the total length

of strings (TLS) to be examined for an input packet since the TLS is one of the critical
factors in the deep packet inspection process, regardless of the string matching
approach being used. The smaller the TLS to be examined becomes, the shorter the
packet examination time would be taken. We estimate the performance of the index
selection algorithm, by calculating the TLS to be examined; we describe the
estimation process in the following paragraphs.

Fig. 5. A Result of Index Selection

The TLS is the total length of indices (TLI) and the total length of signatures of
matched indices (TLSI), as shown in Figure 5. TLI is the number of indices times the

 Balanced Indexing Method for Efficient Intrusion Detection Systems 45

length of index, as the whole indices should be examined during the inspection. TLSI
is the sum of each length of the signatures that are pointed by matched indices. To
calculate TLSI, we need to know which index was matched, because only the
signatures that are pointed by the matched indices will be examined; however, every
time the inspection proceeds, different indices will be matched according to incoming
packets. There is no way to foresee the matched indices unless the packet inspection
is actually conducted; therefore we formularized Equation 1 to estimate TLSI.

TLSI = Number of matched Indices × ANPI × Average Length of Signature. (1)

Fig. 6. Index Sorting

As mentioned above, it is hard to estimate the number of matched indices. To
overcome this difficulty, we set the number of matched indices as a variable and
conducted simulations. The simulations estimate TLS, assuming that x% of indices
have been matched to an incoming packet. If we sort the indices by the number of
signatures per index, as shown in Figure 6, we can analyze the best case and the worst
case. The best case is when x% of indices with the smallest number of signatures
were taken and the worst case is the opposite. We also calculated the average case by
measuring the average of the best and worst cases. Equation 2 shows how these
values are used for the simulation.

TLS(x) = NI × Length of Index + Number of Signatures for x% of Indices ×
Average Length of Signature.

(2)

To compare the performance of three index selection algorithms, we extracted a set

of indices from the Web-IIS signatures using each algorithm and estimated TLS for
each set. In the case of RI, we chose the best case and the worst case from 100 tries.
Figure 7 shows the result of the experiments for the Web-IIS: Figure 7(a) is for the
average cases and Figure 7(b) is for the worst cases. The Y axis represents TLS and
the X axis represents the percentage of matched indices for an input packet.

46 B.J. Kang et al.

Fig. 7. The Experiment Results of Web-IIS: (a) Average cases, (b) Worst cases

As can be seen in the graphs, all three index selection algorithms show better
performance than the original Snort. RI shows unpredictable performance, showing
two different aspects: in the best case, the performance of RI is almost equal to PI but,
in the worst case, its performance is far worse than PI. On the other hand, BI shows
the best performance amongst the three algorithms. When 10% of indices are
matched, 604 bytes of strings are to be examined, which is only 26% of strings
compared to those that original Snort uses, while 72% of strings examined using PI.
In the worst case, the amount of strings to be examined, when 10% of indices are
matched, is 736 bytes, which is 31% of the amount of using original Snort. When
more than 40% of indices are matched, PI shows the best performance; however, as it
is believed that the chance of matching more than 40% of indices is rare, BI would
show better performance than other algorithms in most cases. This improvement is a
result of having smaller MNPI as we reduced the value of MNPI by selecting
appropriate maximum value in BI. It can be said that the rules are well distributed into
groups by the BI method, which also implies that the amount of strings to be
examined is normalized.

To summarize, BI shows better performance than PI and RI. All three algorithms
have similar NI and ANPI values, but BI has the smallest MNPI value, which is an
important factor in determining the packet inspection performance. Smaller MNPI
value also implies that the signatures are well distributed into groups by our indexing
method, BI. The estimated amount of strings to be examined with BI is also less than
using the other two algorithms, achieving 13% to 28% improvements on average, and
23% to 39% improvements in the worst case. The actual performance of the packet
inspection time, however, would be improved more than the simulation results, as the
amount of strings to be examined might increase the packet inspection time
exponentially, not linearly.

Our experiments are conducted using only 143 signatures while Snort has more
than 5,000 signatures. However, our proposed method is still useful because Snort
divides the signatures into several groups using a chain structure for the efficiency.
Our proposed method can be applied to those groups in the pre-processing phase.

 Balanced Indexing Method for Efficient Intrusion Detection Systems 47

5 Conclusions

The importance of accurate network intrusion detection is growing over time. The
common way of deep packet inspection is examining all signatures in signature-based
intrusion detection systems (IDS). This approach, however, is inefficient because the
majority of packets are benign. The overall performance of signature-based IDSs can
be improved if the number of signatures to be examined decreases. In this paper, we
suggested a method named Balanced Indexing (BI) that extracts indices with two
parameters, the maximum and minimum number of signatures per index, to reduce
the number of signatures to be examined. We verified our assumption with a number
of experiments, which showed that BI can achieve 13% to 39% improvements in a
view of the estimated amount of strings to be examined.

For the future work, we will design a new detection engine, optimized for BI. The
deep packet inspection process, followed by the index matching, examines the packet
payload with the candidate Snort rule signatures. For Prefix Indexing (PI), this
process is simple as each index is the first few characters of each signature. On the
other hand, the index for BI can appear in the middle of a signature; therefore the
signature examination should be for both forward and backward directions. We will
also consider an index feedback mechanism which uses the detection results to
reconstruct indices. With this mechanism, the grouping by indices can be optimized.

Acknowledgment. This research was supported by the MKE(The Ministry of
Knowledge Economy), Korea, under the HNRC(Home Network Research Center)
ITRC(Information Technology Research Center) support program supervised by the
NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-1002).

References

1. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic Memory-Efficient String
Matching Algorithms for Intrusion Detection. In: IEEE INFOCOM (2004)

2. Tan, L., Sherwood, T.: A High Throughput String Matching Architecture for Intrusion
Detection and Prevention. In: Proceedings of the 32nd Annual International Symposium on
Computer Architecture (2005)

3. Song, T., Zhang, W., Wang, D., Xue, Y.: A Memory Efficient Multiple Pattern Matching
Architecture for Network Security. In: IEEE INFOCOM (2008)

4. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and Memory-Efficient
Regular Expression Matching for Deep Packet Inspection. In: 2nd ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS) (2006)

5. Kastil, J., Korenek, J., Lengal, O.: Methodology for Fast Pattern Matching by
Deterministic Finite Automaton with perfect Hashing. In: IEEE 12th Euromicro
Conference on Digital System Design, Architectures, Methods and Tools (2009)

6. Bispo, J., Sourdis, I., Cardoso, J.M.P., Vassiliadis, S.: Regular Expression Matching for
Reconfigurable Packet Inspection. In: IEEE International Conference on Field
Programmable Technology (2006)

48 B.J. Kang et al.

7. Baker, Z.K., Prasanna, V.K.: A Methodology for Synthesis of Efficient Intrusion Detection
System on FPGAs. In: IEEE FCCM (2004)

8. Sourdis, I., Dimopoulos, V., Pnevmatikatos, D., Vassiliadis, S.: Packet pre-filtering for
network intrusion detection. In: 2nd ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), pp. 183–192 (2006)

9. Chen, H., Summerville, D.H., Chen, Y.: Two-stage Decomposition of SNORT Rules
towards Efficient Hardware Implementation. In: Design of Reliable Communication
Networks (DRCN), pp. 359–366 (2009)

10. Kang, B., Kim, H.S., Yang, J.S., Im, E.G.: Rule Indexing for Efficient Intrusion Detection
Systems. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 136–141.
Springer, Heidelberg (2012)

Quantitative Questions on Attack–Defense Trees

Barbara Kordy, Sjouke Mauw, and Patrick Schweitzer

University of Luxembourg, SnT
{barbara.kordy,sjouke.mauw,patrick.schweitzer}@uni.lu

Abstract. Attack–defense trees are a novel methodology for graphical
security modeling and assessment. The methodology includes intuitive
and formal components that can be used for quantitative analysis of
attack–defense scenarios. In practice, we use intuitive questions to ask
about aspects of scenarios we are interested in. Formally, a computa-
tional procedure, using a bottom-up algorithm, is applied to derive the
corresponding numerical values. This paper bridges the gap between the
intuitive and the formal way of quantitatively assessing attack–defense
scenarios. We discuss how to properly specify a question, so that it can
be answered unambiguously. Given a well-specified question, we then
show how to derive an appropriate attribute domain which constitutes
the corresponding formal model.

1 Introduction

Attack–defense trees [15] form a systematic methodology for analysis of attack–
defense scenarios. They represent a game between an attacker, whose goal is to
attack a system, and a defender who tries to protect the system. The widespread
formalism of attack trees is a subclass of attack–defense trees, where only the
actions of the attacker are considered. The attack–defense tree methodology
combines intuitive and formal components. On the one hand, the intuitive visual
attack–defense tree representation is used in practice to answer qualitative and
quantitative questions, such as “What are the minimal costs to protect a server?”,
or “Is the scenario satisfiable?” On the other hand, there exist attack–defense
terms and a precise mathematical framework for quantitative analysis using a
recursive bottom-up procedure formalized for attack trees in [21] and extended
to attack–defense trees in [14].

There exists a significant discrepancy between users focusing on the intuitive
components of the model and users working with the formal components. This
is due to the fact that intuitive models are user friendly but often ambiguous. In
contrast, formal models are rigorous and mathematically sound. This, however,
makes them difficult to understand for users without a formal background. This
discrepancy between the two worlds is especially visible in the case of quanti-
tative analysis. A proper numerical evaluation can only be performed when all
users have a precise and consistent understanding of the considered quantities,
which are also called attributes.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 49–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

50 B. Kordy, S. Mauw, and P. Schweitzer

Contributions. This work aims to bridge the gap between the intuitive and the
formal components of the attack–defense tree methodology for quantitative se-
curity analysis. We elaborate which kind of intuitive questions occurring in prac-
tical security analysis can be answered with the help of the bottom-up procedure
on attack–defense trees. We empirically classify and formally analyze questions
that were collected during case studies and literature reviews. For each class we
provide detailed guidelines how the questions should be specified, so that they
are unambiguous and can be answered correctly. Simultaneously, we discuss tem-
plates of the attribute domains corresponding to each class.

Related work. An excellent historical overview on graphical security modeling,
was given by Piètre-Cambacédès and Bouissou in [22]. In [26], Schneier in-
troduced the graphical attack tree formalism and proposed how to evaluate,
amongst others, attack costs, success probability of an attack, and whether there
is a need for special equipment. Baca and Petersen [4] have extended attack trees
to countermeasure graphs and quantitatively analyzed an open-source applica-
tion development. Bistarelli et al. [6], Edge et al. [9] and Roy et al. [24] have
augmented attack trees with a notion of defense or mitigation nodes. They all
analyze specific types of risk, using particular risk formulas adjusted to their
models. Willemson and Jürgenson [29] introduced an order on the leaves of
attack trees to be able to optimize the computation of the expected outcome
of the attacker. There also exist a number of case studies and experience re-
ports that quantitatively analyze real-life systems. Notable examples are Hen-
niger et al. [11], who have conducted a study using attack trees for vehicular
communications systems, Abdulla et al. [1], who analyzed the GSM radio net-
work using attack jungles, and Tanu and Arreymbi [27], who assessed the secu-
rity of mobile SCADA system for a tank and pump facility. Since all previously
mentioned papers focus on specific attributes, they do not address the general
problem of the relation between intuitive and formal quantitative analysis.

The formalism of attack–defense trees considered in this work was introduced
by Kordy et al. in [14]. Formal aspects of this methodology have been discussed
in [13] and [17]. In [5], Bagnato et al. provided guidelines for how to use attack–
defense trees in practice. They analyzed a DoS attack scenario on an RFID-
based goods management system by evaluating a number of relevant attributes.
An extended version of the present paper contains more technical details and
illustrative examples [16].

2 Attack–Defense Scenarios Intuitively

An attack–defense tree (ADTree) constitutes an intuitive graphical model de-
scribing the measures an attacker might take in order to attack a system and
the defenses that a defender can employ to protect the system. An ADTree is a
node-labeled rooted tree having nodes of two opposite types: attack nodes rep-
resented with circles and defense nodes represented with rectangles. The root
node of an ADTree depicts the main goal of one of the players. Each node of an
ADTree may have one or more children of the same type which refine the node’s

Quantitative Questions on Attack–Defense Trees 51

goal into subgoals. The refinement relation is indicated by solid edges and can
be either disjunctive or conjunctive. The goal of a disjunctively refined node is
achieved when at least one of its children’s goals is achieved. The goal of a con-
junctively refined node is achieved when all of its children’s goals are achieved.
To distinguish between the two refinements we indicate the conjunctive refine-
ment with an arc. A node which does not have any children of the same type
is called a non-refined node. Non-refined nodes represent basic actions, i.e., ac-
tions which can be easily understood and quantified. Every node in an ADTree
may also have one child of the opposite type, representing a countermeasure.
The countermeasure relation is indicated by dotted edges. Nodes representing
countermeasures can again be refined into subgoals and countered by a node of
the opposite type.

Example 1. An example of an ADTree is given in Figure 1 (left). The root of
the tree represents an attack on a server. Three ways to accomplish this attack
are depicted: insider attack, outsider attack (OA) and stealing the server (SS).
To achieve his goal, an insider needs to be internally connected (IC) and have
the correct user credentials (UC). To not be caught easily, an insider uses a
colleague’s and not his own credentials. Attack by an outsider can be prevented
if a properly configured firewall (FW) is installed.

Attack
Server

Insider
Attack

Internally
Connected

User
Creds

Steal
Server

Outsider
Attack

Firewall

Pruning−−−−−→

Attack
Server

Insider
Attack

Internally
Connected

User
Creds

Steal
Server

Outsider
Attack

Firewall

Fig. 1. Left: an ADTree for how to attack a server. Right: pruned “attack on server”
scenario for questions of Class 1 owned by the attacker.

Graphical visualization of potential attacks and possible countermeasures consti-
tutes a first step towards a systematic security analysis. The next step is to assign
numerical values to ADTree models, i.e., to perform a quantitative analysis. In-
tuitively speaking, performing a quantitative security analysis means answering
questions related to specific aspects or properties influencing the security of a
system or a company. These questions may be of Boolean type, e.g., “Is the at-
tack satisfiable?”, or may concern physical or temporal aspects, e.g., “What are
the minimal costs of attacking a system?”, or “How long does it take to detect
the attack?” In order to facilitate and automate the analysis of vulnerability

52 B. Kordy, S. Mauw, and P. Schweitzer

scenarios using ADTrees, the formal model of ADTerms and their quantitative
analysis have been introduced in [15]". We briefly recall necessary definitions in
Appendix A.

3 Classification of Questions

In this paper, we provide a pragmatic taxonomy of quantitative questions that
can be asked about ADTrees. The presented classification results from case stud-
ies, e.g., [5,9,27], as well as from a detailed literature overview concerning quan-
titative analysis of security. Our study allowed us to identify three main classes
of empirical questions, as described below.
Class 1: Questions referring to one player (Section 4). Most of the typ-
ical questions for ADTrees have an explicit or implicit reference to one of the
players which we call owner of the question. Examples of questions referring to
one player are “What are the minimal costs of the attacker?” (here the owner is
the attacker) or “How much does it cost to protect the system?” (here the im-
plicitly mentioned owner is the defender). When we ask a question of Class 1, we
assume that its owner does not have extensive information concerning his adver-
sary. Thus, we always consider the worst case scenario with respect to the actions
of the other player. Most of the questions usually asked for attack trees can be
adapted so that they can be answered on ADTrees as well. Thus, questions re-
lated to attributes such as costs [26,7,27,4,25,21,30,1,24,8,2,28,9], time [11,26,28],
detectability [27,8], special skills [21,1,26], impact [26,27,11,19,25,21,3,1,23,9,28],
difficulty [8,10,27,11,21,1,3,28], penalty [7,12,28], profit [3,12,6,24], etc., all be-
long to Class 1.
Class 2: Questions where answers for both players can be deduced
from each other (Section 5). Exemplary questions belonging to Class 2 are
“Is the scenario satisfiable?”, or “How probable is it that the scenario will suc-
ceed?”. We observe that if one player succeeds with probability p, we also know
that the other player succeeds with probability 1−p. The satisfiability attribute
is considered, either explicitly or implicitly, in all works concerning attack trees
and their extensions. The probability1 attribute has been extensively studied
in [26,7,11,19,20,30,1,24,8,9,28].
Class 3: Questions referring to an outside third party (Section 6).
Questions belonging to Class 3 relate to a universal property which is influenced
by actions of both players. For instance, one could ask about “How much data
traffic is involved in the attack–defense scenario?”. In this case, we do not need
to distinguish between traffic resulting from the attacker’s and the defender’s
actions, as both players contribute to the total amount. Attributes corresponding
to questions in Class 3 have not been addressed in the attack tree literature, since
attack trees focus on a single player. The importance of those questions becomes
apparent when actions of two opposite parties are considered.
1 We would like to point out that the probability attribute can only be evaluated using

the bottom-up procedure given by Equation (1) in Appendix A if the ADTree does
not contain any dependent actions.

Quantitative Questions on Attack–Defense Trees 53

The following three sections set up guidelines for how to correctly specify
quantitative questions of all three classes. The guidelines’ main purpose is to en-
able us to find a corresponding attribute domain in order to correctly compute
an answer using the bottom-up procedure. Figure 2 depicts the three classes
of questions, as well as general templates for the corresponding attribute do-
mains, as introduced in Definition 3 in Appendix A. Symbols •, ◦, � and • serve
as placeholders for specific operators. Corresponding symbols within a tuple in-
dicate that the functions coincide. For instance, (D, ◦, •, •, ◦, •, ◦) means that
∨p
α = ∧o

α = coα and that ∧p
α = ∨o

α = cpα. We motivate these equalities and give
possible instantiations of •, ◦, � and • in the following.

quantitative question
(Dα,∨p

α,∧p
α,∨o

α,∧o
α, c

p
α, c

o
α)

related to one player
(D, ◦, •, •, ◦, •, ◦)

related to both players
(D, ◦, •, ◦, •, �, �)

where answers for both
players are deducible
from each other
(D, ◦, •, ◦, •, •, •)

referring to external
property/party
(D, ◦, •, ◦, •, •, •)

Fig. 2. Classification of questions and attribute domains’ templates

4 Questions Referring to One Player

4.1 Defining a Formal Model for Questions of Class 1

Questions belonging to Class 1 refer to exactly one player, which we call the
question’s owner. As we explain below, in the attack–defense tree setting, only
two situations occur for a question’s owner: either he needs to choose at least
one option or he needs to execute all options. Therefore, two operators suf-
fice to answer questions of Class 1 and the generic attribute domain is of the
form (D, ◦, •, •, ◦, •, ◦). Furthermore, if we change a question’s owner, the at-
tribute domain changes from (D, ◦, •, •, ◦, •, ◦) into (D, •, ◦, ◦, •, ◦, •).

We illustrate the construction of the formal model for Class 1 using the ques-
tion “What are the minimal costs of the attacker?”, where the owner is the
attacker. In the case of Class 1, all values assigned to nodes and subtrees express
the property under consideration from the perspective of the question’s owner.
In the minimal costs example, this means that even subtrees rooted in defense
nodes have to be quantified from the attacker’s point of view, i.e., a value as-
signed to the root of a subtree expresses what is the minimal amount of money
that the attacker needs to invest in order to be successful in the current subtree.

Subtrees rooted in uncountered attacker’s nodes can either be disjunctively
or conjunctively refined. In the first case the attacker needs to ensure that he is

54 B. Kordy, S. Mauw, and P. Schweitzer

successful in at least one of the refining nodes, in the second case he needs to be
successful in all refining nodes. The situation for subtrees rooted in uncountered
defender’s nodes is reciprocal. If a defender’s node is disjunctively refined, the
attacker needs to successfully counteract all possible defenses to ensure that he
is successful at the subtree’s root node; if the defender’s node is conjunctively re-
fined, successfully counteracting at least one of the refining nodes already suffices
for the attacker to be successful at the subtree’s root node.

This reciprocality explains that two different operators suffice to quantify all
possible uncountered trees: The operator that we use to combine attribute values
for disjunctively refined nodes of one player is the same as the operator we use
for conjunctively refined nodes of the other player.

Furthermore, the same two operators can also be used to quantify all remain-
ing subtrees. If a subtree is rooted in a countered attacker’s node, the attacker
needs to ensure that he is successful at the action represented by the root node
and that he successfully counteracts the existing defensive measure. Dually, for
the attacker to be successful in a subtree rooted in a defender’s countered node,
it is sufficient to successfully overcome the defensive action or to successfully
perform the attack represented by the countering node. This implies that we
can use the same operator as for conjunctively refined attacker’s nodes in the
first case and the same operator as for disjunctively refined attacker’s nodes in
the second case.

4.2 Pruning

For attributes in Class 1, we are only interested in one player, the owner of
a question. Therefore for this class, we should disregard subtrees that do not
lead to a successful scenario for the owner. We achieve this with the help of the
pruning procedure illustrated in the following example.

Example 2. Consider the ADTree in Figure 1 (left) and assume that we are in-
terested in calculating the minimal costs of the attacker. In this case, there is no
need to consider the subtree rooted in “Outsider Attack”, because it is countered
by the defense “Firewall” and thus does not lead to a successful attack. The
subtree rooted in “Outsider Attack” therefore should be removed. This simulta-
neously eliminates having to provide values for the non-refined nodes “Outsider
Attack” and ‘Firewall”. The computation of the minimal costs is then executed
on the term corresponding to the tree in the right of Figure 1.

To motivate the use of the pruning procedure, let us distinguish two situations.
If a non-refined node of the non-owner is countered, its assigned value should not
influence the result of the computation. If a non-owner’s node is not countered,
its value should indicate that the owner does not have a chance to successfully
perform this subscenario. Mathematically, it means that the value assigned to
the non-refined nodes of the non-owner needs to be neutral with respect to
one operator and simultaneously absorbing with respect to the other. Since, in
general, such an element may not exist, we use pruning to eliminate one of the
described situations, which results in elimination of the absorption condition.

Quantitative Questions on Attack–Defense Trees 55

Let us consider a question of Class 1 and its owner. In order to graphically
prune an ADTree, we perform the following procedure. Starting from a leaf of
the non-owner, we traverse the tree towards the root until we reach the first
node v satisfying one of the following conditions.

– v is a node of the owner and part of a proper2 disjunctive refinement;
– v is a node of the non-owner and part of a proper conjunctive refinement;
– v is a node of the owner that counteracts a refined node of the non-owner;
– v is the root of the ADTree.

The subtree rooted in node v is removed from the ADTree. The procedure is
repeated, starting from all leaves of the non-owner. We note that the order in
which we perform the procedure does not influence the final result. Also, in some
cases the pruning procedure results in the removal of the entire ADTree. This is
the case when the owner of the question does not have any way of successfully
achieving his goal.

In [16], we show how to prune in a mathematical way and prove that it is
equivalent to the presented intuitive way.

4.3 From a Question to an Attribute Domain

In this section we analyze how a question of Class 1 should look like, in order
to be able to instantiate the attribute domain template A = (D, ◦, •, •, ◦, •, ◦)
with specific value set and operators. To correctly instantiate A, we need a value
domain D, two operators (for all and at least one) and we need to know which
of those operators instantiates ◦ and which •. Thus, a well-specified question of
Class 1 contains exactly four parts, as illustrated on the following question:

Modality: What are the minimal
Notion: costs
Owner: of the proponent
Execution: assuming that all actions are executed one after another?

Each of the four parts has a specific purpose in determining the attribute domain.
Notion. The notion used by the question influences the choice of the value
domain. The notions in Class 1, identified during our study, are: time, conse-
quence, costs, detectability, difficulty level, elapsed time, impact, insider required,
mitigation success, outcome, penalty, profit, response time, resources, severity,
skill level, special equipment needed, special skill needed, survivability.
From the notion we determine the value domain, e.g., N, R, R≥0, etc. The choice
of the value domain influences the basic assignments, as well as the operators
determined by the modality and the execution style. The selected value domain
needs to include all values that we want to use to quantify the owner’s actions.
It also must contain a neutral element with respect to ◦, if own = p, and with
respect to •, if own = o. This neutral element is assigned to all non-refined nodes
of the non-owner, as argued in Section 4.2.
2 A refinement is called proper if it contains at least two refining nodes.

56 B. Kordy, S. Mauw, and P. Schweitzer

Modality. The modality of a question clarifies how options are treated. Thus, it
determines the characteristic of the at least one operator. Different notions are
accompanied with different modalities. In the case of costs, interesting modalities
are minimal, maximal and average.
Execution. The question also needs to specify an execution style. Its value de-
termines the treatment when all actions need to be executed. Thus, it describes
the characteristic of the all operator. Exemplary execution styles are: simulta-
neously/sequentially (for time) or with reuse/without reuse (for resources).
Owner. The owner of a question determines how the modality and the execution
are mapped to ◦ and •. In case the owner is the root player, i.e., the proponent, ◦
is instantiated with the at least one operator and • with the all operator. In case
the root player is not the owner, the instantiations are reciprocal.

Given all four parts, we can then construct the appropriate attribute domain.
For the notion of continuous time, also called duration, possible combinations
of the modality, the execution style and the owner have been determined in
Table 1. We instantiate the attribute domain template (D, ◦, •, •, ◦, •, ◦) with
the elements of the algebraic structure (D, ◦, •), and use the value indicated in
the last column of the table as the basic assignment for all non-refined nodes of
the non-owner. The table can be used in the case of other notions as well, as
shown in the next example.

Table 1. Determining an instantiation of the structure in Class 1, where e denotes the
neutral element with respect to avg

Notion Modality Owner Execution Structure
(D, ◦, •)

Basic assignment
for own

1 duration min p sequential (R,min,+) +∞
2 duration avg p sequential (R, avg,+) e

3 duration max p sequential (R,max,+) −∞
4 duration min o sequential (R,+,min) 0

5 duration avg o sequential (R,+, avg) 0

6 duration max o sequential (R,+,max) 0

7 duration min p parallel (R,min,max) +∞
8 duration avg p parallel (R, avg,max) e

9 duration max p parallel (R,max,max) −∞
10 duration min o parallel (R,max,min) −∞
11 duration avg o parallel (R,max, avg) −∞
12 duration max o parallel (R,max,max) −∞

Example 3. The question “What are the minimal costs of the proponent, as-
suming that reusing tools is infeasible?” can be answered using the attribute
domain Aco = (R,min,+,+,min,+,min). Here the notion is cost, which has the
same value domain as duration, i.e., R. The modality is minimum, the owner
is the proponent and the execution style is without reuse, which corresponds
to sequential. Hence, we use the structure (R,min,+), as specified in Line 1 of

Quantitative Questions on Attack–Defense Trees 57

Table 1. In order to answer the question on the tree in the left of Figure 1, we first
prune it, as shown on the right of Figure 1. The only basic actions that are left
are “Internally connected”, “User Creds” and “Steal Server”. Suppose their costs
are 100e, 200e, and 400e, respectively. We use those values as basic assignment
βco and apply the bottom-up computation to the ADTerm ∨p(∧p(IC,UC), SS):

co(∨p(∧p(IC,UC), SS)) = ∨p
co (∧p

co(βco(IC), βco(UC), βco(SS)) =
min{+(100e, 200e), 400e} = 300e.

We would like to remark that if the structure (D, ◦, •) forms a semi-ring, it is not
necessary to prune the ADTree to correctly answer a question Q of Class 1. This
is due to the fact that in a semi-ring the neutral element3 for the first operator
is at the same time absorbing for the second operator. Such element can then be
assigned to all subtrees which do not yield a successful scenario for the owner of
Q, in particular to the uncountered basic actions of the non-owner.

5 Questions Where Answers for Both Players Can Be
Deduced from Each other

We illustrate the construction of the attribute domain for Class 2 using the
question “What is the success probability of a scenario, assuming that all actions
are independent?” In case of questions of Class 2, values assigned to a subtree
quantify the considered property from the point of view of the root player of the
subtree. This means that, if a subtree rooted in an attack node is assigned the
value 0.2, the corresponding attack is successful with probability 0.2. If a subtree
rooted in a defense node is assigned the value 0.2, the corresponding defensive
measure is successful with probability 0.2. Thus, in Class 2, conjunctive and
disjunctive refinements for the proponent and the opponent have to be treated
in the same way: in both cases, they refer to the at least one option (here
modeled with ◦) and the all options (modeled with •), of the player whose node
is currently considered.

Questions in Class 2 have the property that, given a value for one player,
we can immediately deduce a corresponding value for the other player. For ex-
ample, if the attacker succeeds with probability 0.2 the defender succeeds with
probability 0.8. This property is modeled using a value domain with a predefined
unary negation operation . Negation allows us to express the operators for both
countermeasures using the all operator where the second argument is negated,
which we represent by •. Formally, •(x, y) = x • y. Hence attribute domains of
Class 2 follow the template (D, ◦, •, ◦, •, •, •).

Below we discuss three aspects that questions in Class 2 need to address.
Notion. Questions of Class 2 refer to notions for which the value domains
contain a unary negation operation. This allows us to transform values of one

3 Such an element is usually called zero of the semi-ring. For instance, +∞ is the zero
element of the semi-ring (R,min,+).

58 B. Kordy, S. Mauw, and P. Schweitzer

player into values of the other player. Identified notions for Class 2 are: feasibility,
needs electricity, probability of occurrence, probability of success, satisfiability.
Modality. Modality specifies the operator for at least one option. For the notions
enumerated above, this will either be the logical OR (∨) or the probabilistic
addition of independent events P∪(A,B) = P (A) + P (B) − P (A)P (B), for a
given probability distribution P and events A and B.
Execution. Finally, we need to know what is the execution style, so that we
can specify the operator for all options. In the above notions, this will either
be the logical AND (∧) or the probabilistic multiplication of independent events
P∩(A,B) = P (A)P (B).

Example 4. We calculate the success probability of the scenario given in Figure 1
(left), assuming that all actions are independent. First we set the success prob-
ability of all basic actions to βpb = 0.4 and then we use the attribute domain
Apb = ([0, 1], P∪, P∩, P∪, P∩, P∩, P∩), where P∩(A,B) = P∩(A,B) to compute

P∪(P∩(βpb(IC), βpb(UC)), β(SS), P∩(βpb(OA), 1− βpb(FW))) =

P∪(P∩(0.4, 0.4), 0.4, P∩(0.4, 1− 0.4)) = P∪(0.16, 0.4, 0.24) = 0.61696.

6 Questions Relating to an Outside Third Party

Suppose an outsider is interested in the overall maximal power consumption of
the scenario. As in the previous section, disjunctive refinements of both players
should be treated with one operator and conjunctive refinements of both players
with another operator. Indeed, for a third party the important information is
whether all or at least one option need to be executed and not who performs
the actions. Also countermeasures lose their opposing aspect and their values are
aggregated in the same way as conjunctive refinements. Regarding the question,
this is plausible since both the countered and the countering action contribute
to the overall power consumption. These observations result in the following
template for an attribute domain in Class 3: (D, ◦, •, ◦, •, •, •).

We specify relevant parts of the questions in Class 3 on the following example.

Modality: What is the maximal
Notion: energy consumption
Execution: knowing that sharing of power is impossible?

Notion. In Class 3, we use notions that express universal properties covering
both players. Found examples are: combined execution time, energy consump-
tion, environmental costs, environmental damage, global costs, information flow,
required network traffic, social costs, third party costs.
Modality. The question should also contain enough information to allow us
to specify how to deal with at least one option. In general, modalities used in
Class 3 are the same as those in Class 1, e.g., minimal, maximal and average.
Execution. Finally, we need to know what is the execution style, so that we
can define the correct operator for all options. The choices for execution style
in Class 3 are again the same as in Class 1.

Quantitative Questions on Attack–Defense Trees 59

The three parts now straightforwardly define an algebraic structure (D, ◦, •)
that we use to construct the attribute domain (D, ◦, •, ◦, •, •, •).
Example 5. Consider the question “What is the maximal energy consumption
for the scenario depicted in Figure 1 (left), knowing that sharing of power is im-
possible?” Both, the proponent’s as well as the opponent’s actions may require
energy. We assume that being “Internally Connected”, performing an “Outsider
Attack” and running a “Firewall” all consume 20kWh. Obtaining “User Creds”
requires 1kWh, whereas “Stealing Server” does not require any energy. These
numbers constitute the basic assignment for the considered attribute. From the
question we know that, when we have a choice, we should consider the option
which consumes the most energy. Furthermore, since sharing of power is impos-
sible, values for actions which require execution of several subactions should be
added. Thus, we use the attribute domain Aergmax

= (R,max,+,max,+,+,+)
and compute the maximal possible energy consumption in the scenario as

ergmax((∨p(∧p(IC,UC), SS)) =
max{+(20kWh, 1kWh), 0kWh,+(20kWh, 20kWh)} = 40kWh.

Due to similarities for modality and execution style for questions of Class 1
and Class 3, we can make use of Table 1, to choose the structure (D, ◦, •) that
determines an attribute domain for a question of Class 3. The table corresponds
to the case where the owner is the proponent.

7 Methodological Advancements for Attack Trees

ADTrees extend the well-known formalism of attack trees [26] by incorporating
defensive measures to the model. Hence, every attack tree is in particular an
ADTree. Underspecified questions are not a new phenomenon of ADTrees, but
already occur in the case of pure attack trees. Thus, the formalization of quanti-
tative questions, proposed in this paper, is not only useful in the attack–defense
tree methodology but, more importantly, it helps users of the more widely spread
formalism of attack trees.

Given a well-specified question on ADTrees and the corresponding attribute
domain, we can answer the question on attack trees as well. Formally, attack
trees are represented with terms involving only operators ∨p and ∧p. If Aα =
(Dα,∨p

α,∧p
α,∨o

α,∧o
α, c

p
α, c

o
α) is an attribute domain for ADTerms, the correspond-

ing attribute domain for attack trees, as formalized in [21], is Aα = (Dα,∨p
α,∧p

α).
Furthermore, due to the fact that attack trees involve only one player (the at-
tacker), the notions of attacker, proponent, and question’s owner coincide in this
simplified model. This in turn implies that, in the case of attack trees, the three
classes of questions considered in this paper form in fact one class.

8 Prototype Tool

In order to automate the analysis of security scenarios using the attack–defense
methodology, we have developed a prototype software tool, called ADTool. It

60 B. Kordy, S. Mauw, and P. Schweitzer

is written in Java and is compatible with multiple platforms (Windows, Linux,
MAC OS). The ADTool is publicly available [18]. Its main functionalities include
easy creation and efficient editing of ADTrees and ADTerms as well as automated
evaluation of attributes on ADTrees.

The ADTool combines the features offered by graphical tree representations
with mathematical functionalities provided by ADTerms and attributes. The
user can choose whether to work with intuitive ADTrees or with formal ADTerms.
When one of these models is created or modified, the other one is generated au-
tomatically. The possibility of modular display of ADTrees makes the ADTool
suitable for dealing with large industrial case studies which may correspond to
very complex scenarios and may require large models.

The software supports attribute evaluation on ADTrees, as presented in this
paper. A number of predefined attribute domains allow the user to answer ques-
tions of Classes 1, 2 and 3. Implemented attributes include: costs, satisfiability,
time and skill level, for various owners, modalities and execution styles; sce-
nario’s satisfiability and success probability; reachability of the root goal in less
than x minutes, where x can be customized by the user; and the maximal energy
consumption.

9 Conclusions

A useful feature of the attack–defense tree methodology is that it combines
an intuitive representation and algorithms with formal mathematical modeling.
In practice we model attack–defense scenarios in a graphical way and we ask
intuitive questions about aspects and properties that we are interested in. To
formally analyze the scenarios, we employ attack–defense terms and attribute
domains. In this paper, we have guided the user in how to properly formulate a
quantitative question on an ADTree and how to then construct the corresponding
attribute domain. Since attack trees are a subclass of attack–defense trees, our
results also advance the practical use of quantitative analysis of attack trees.

We are currently applying the approach presented in this paper to analyze
socio-technical weaknesses of real-life scenarios, such as Internet web filtering,
which involve trade offs between security and usability. In the future, we also
plan to investigate the relation between attribute domains of all three classes and
the problem of equivalent representations of a scenario, as formalized in [15].

Acknowledgments. We would like to thank Piotr Kordy for his contribution
to the development of the ADTool. The authors were supported by the Fonds
National de la Recherche Luxembourg under the grants C08/IS/26 and PHD-
09-167.

References

1. Abdulla, P.A., Cederberg, J., Kaati, L.: Analyzing the Security in the GSM Radio
Network Using Attack Jungles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010,
Part I. LNCS, vol. 6415, pp. 60–74. Springer, Heidelberg (2010)

Quantitative Questions on Attack–Defense Trees 61

2. Amenaza: SecurITree, http://www.amenaza.com/ (accessed October 5, 2012)
3. Amoroso, E.G.: Fundamentals of Computer Security Technology. Prentice-

Hall, Inc., Upper Saddle River (1994), http://portal.acm.org/citation.cfm?
id=179237#

4. Baca, D., Petersen, K.: Prioritizing Countermeasures through the Countermeasure
Method for Software Security (CM-Sec). In: Ali Babar, M., Vierimaa, M., Oivo, M.
(eds.) PROFES 2010. LNCS, vol. 6156, pp. 176–190. Springer, Heidelberg (2010)

5. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute Decoration
of Attack–Defense Trees. International Journal of Secure Software Engineering
(IJSSE) 3(2), 1–35 (2012)

6. Bistarelli, S., Dall’Aglio, M., Peretti, P.: Strategic Games on Defense
Trees. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.)
FAST 2006. LNCS, vol. 4691, pp. 1–15. Springer, Heidelberg (2007), http://www.
springerlink.com/content/83115122h9007685/

7. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational Choice
of Security Measures Via Multi-parameter Attack Trees. In: López, J. (ed.)
CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006)

8. Byres, E.J., Franz, M., Miller, D.: The Use of Attack Trees in Assessing Vulnerabil-
ities in SCADA Systems. In: International Infrastructure Survivability Workshop
(IISW 2004). Institute of Electrical and Electronics Engineers, Lisbon (2004)

9. Edge, K.S., Dalton II, G.C., Raines, R.A., Mills, R.F.: Using Attack and Protection
Trees to Analyze Threats and Defenses to Homeland Security. In: MILCOM, pp.
1–7. IEEE (2006)

10. Fung, C., Chen, Y.L., Wang, X., Lee, J., Tarquini, R., Anderson, M., Linger, R.:
Survivability analysis of distributed systems using attack tree methodology. In:
Proceedings of the 2005 IEEE Military Communications Conference, vol. 1, pp.
583–589 (October 2005)

11. Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y., Ruddle, A., Weyl, B.: Secu-
rity requirements for automotive on-board networks. In: 9th International Confer-
ence on Intelligent Transport Systems Telecommunications (ITST 2009), Lille, pp.
641–646 (October 2009)

12. Jürgenson, A., Willemson, J.: Computing Exact Outcomes of Multi-parameter At-
tack Trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332,
pp. 1036–1051. Springer, Heidelberg (2008)

13. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–Defense Trees and Two-
Player Binary Zero-Sum Extensive Form Games Are Equivalent. In: Alpcan, T.,
Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256.
Springer, Heidelberg (2010)

14. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of Attack–
Defense Trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011)

15. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–Defense Trees. Jour-
nal of Logic and Computation, 1–33 (2012), http://logcom.oxfordjournals.org/
content/early/2012/06/21/logcom.exs029.short?rss=1

16. Kordy, B., Mauw, S., Schweitzer, P.: Quantitative Questions on Attack–Defense
Trees. arXiv (2012), http://arxiv.org/abs/1210.8092

17. Kordy, B., Pouly, M., Schweitzer, P.: Computational Aspects of Attack–Defense
Trees. In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka,
A., Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 103–116. Springer,
Heidelberg (2012)

http://www.amenaza.com/
http://portal.acm.org/citation.cfm?id=179237#
http://portal.acm.org/citation.cfm?id=179237#
http://www.springerlink.com/content/83115122h9007685/
http://www.springerlink.com/content/83115122h9007685/
http://logcom.oxfordjournals.org/content/early/2012/06/21/logcom.exs029.short?rss=1
http://logcom.oxfordjournals.org/content/early/2012/06/21/logcom.exs029.short?rss=1
http://arxiv.org/abs/1210.8092

62 B. Kordy, S. Mauw, and P. Schweitzer

18. Kordy, P., Schweitzer, P.: The ADTool, http://satoss.uni.lu/members/piotr/
adtool/index.php (accessed October 12, 2012)

19. Li, X., Liu, R., Feng, Z., He, K.: Threat modeling-oriented attack path evaluating
algorithm. Transactions of Tianjin University 15(3), 162–167 (2009), http://www.
springerlink.com/content/v76g872558787214/

20. Manikas, T.W., Thornton, M.A., Feinstein, D.Y.: Using Multiple-Valued Logic De-
cision Diagrams to Model System Threat Probabilities. In: 41st IEEE International
Symposium on Multiple-Valued Logic (ISMVL 2011), pp. 263–267 (2011)

21. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006), http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.1056

22. Piètre-Cambacédès, L., Bouissou, M.: Beyond Attack Trees: Dynamic Security
Modeling with Boolean Logic Driven Markov Processes (BDMP). In: European
Dependable Computing Conference, pp. 199–208. IEEE Computer Society, Los
Alamitos (2010)

23. Roy, A., Kim, D.S., Trivedi, K.S.: Cyber security analysis using attack counter-
measure trees. In: Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research (CSIIRW 2010), pp. 28:1–28:4. ACM, New
York (2010), http://doi.acm.org.proxy.bnl.lu/10.1145/1852666.1852698

24. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): towards
unifying the constructs of attack and defense trees. Security and Communication
Networks 5(8), 929–943 (2012), http://dx.doi.org/10.1002/sec.299

25. Saini, V., Duan, Q., Paruchuri, V.: Threat Modeling Using Attack Trees. J. Com-
puting Small Colleges 23(4), 124–131 (2008), http://portal.acm.org/citation.
cfm?id=1352100

26. Schneier, B.: Attack Trees. Dr. Dobb’s Journal of Software Tools 24(12), 21–29
(1999), http://www.ddj.com/security/184414879

27. Tanu, E., Arreymbi, J.: An examination of the security implications of the super-
visory control and data acquisition (SCADA) system in a mobile networked envi-
ronment: An augmented vulnerability tree approach. In: Proceedings of Advances
in Computing and Technology (AC&T) The School of Computing and Technology
5th Annual Conference. pp. 228–242. University of East London, School of Com-
puting, Information Technology and Engineering (2010), http://hdl.handle.net/
10552/994

28. Wang, J., Whitley, J.N., Phan, R.C.W., Parish, D.J.: Unified Parametriz-
able Attack Tree. International Journal for Information Security Re-
search 1(1), 20–26 (2011), http://www.infonomics-society.org/IJISR/Unified
%20Parametrizable%20Attack%20Tree.pdf

29. Jürgenson, A., Willemson, J.: Serial Model for Attack Tree Computations. In:
Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 118–128. Springer,
Heidelberg (2010), http://research.cyber.ee/~jan/publ/serialattack.pdf

30. Yager, R.R.: OWA trees and their role in security modeling using attack trees. Inf.
Sci. 176(20), 2933–2959 (2006)

http://satoss.uni.lu/members/piotr/adtool/index.php
http://satoss.uni.lu/members/piotr/adtool/index.php
http://www.springerlink.com/content/v76g872558787214/
http://www.springerlink.com/content/v76g872558787214/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.1056
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.1056
http://doi.acm.org.proxy.bnl.lu/10.1145/1852666.1852698
http://dx.doi.org/10.1002/sec.299
http://portal.acm.org/citation.cfm?id=1352100
http://portal.acm.org/citation.cfm?id=1352100
http://www.ddj.com/security/184414879
http://hdl.handle.net/10552/994
http://hdl.handle.net/10552/994
http://www.infonomics-society.org/IJISR/Unified%20Parametrizable%20Attack%20Tree.pdf
http://www.infonomics-society.org/IJISR/Unified%20Parametrizable%20Attack%20Tree.pdf
http://research.cyber.ee/~jan/publ/serialattack.pdf

Quantitative Questions on Attack–Defense Trees 63

A Attack–Defense Scenarios Formally

In this section we recall formal definitions related to our methodology. For more
details and explanatory examples we refer the reader to [15]. To formally repre-
sent and analyze ADTrees, typed terms over a particular typed signature, called
the AD–signature, have been introduced in [14]. To be able to capture ADTrees
rooted in an attacker’s node as well as those rooted in a defender’s node, we dis-
tinguish between the proponent (denoted by p), which refers to the root player,
and the opponent (denoted by o), which is the other player. For instance, for the
ADTree in Figure 1 (left), the proponent is the attacker and the opponent is the
defender. Conversely, if the root of an ADTree is a defense node, the proponent
is the defender and the opponent is the attacker.

Furthermore, given a set S, we denote by S∗ the set of all finite strings over S,
and by ε the empty string. For s ∈ S, we denote by s+ a string composed of a
finite number of symbols s.

Definition 1. The AD–signature is a pair Σ = (S,F), where

– S = {p, o} is a set of types, and
– F = Bp ∪ Bo ∪ {∨p,∧p,∨o,∧o, cp, co} is a set of function symbols, such that

the sets Bp, Bo and {∨p,∧p,∨p,∧o,∧o, cp, co} are pairwise disjoint.

Every function symbol F ∈ F is equipped with a mapping rank: F → S∗ × S,
where rank(F) is defined as a pair (in(F), out(F)). The first component of the
pair describes the type of the arguments of F and the second component describes
the type of the values of F . We have

rank(b) = (ε, p), for b ∈ Bp, rank(b) = (ε, o), for b ∈ Bo,

rank(∨p) = (p+, p), rank(∨o) = (o+, o),

rank(∧p) = (p+, p), rank(∧o) = (o+, o),

rank(cp) = (p o, p), rank(co) = (o p, o).

Given F ∈ F and s ∈ S, we say that F is of type s, if out(F) = s. The
elements of Bp and Bo are typed constants, which represent basic actions of the
proponent’s and opponent’s type, respectively. By B we denote the union Bp∪Bo.
The functions4 ∨p,∧p,∨o, and ∧o represent disjunctive and conjunctive refine-
ment operators for the proponent and the opponent, respectively. We set p = o
and o = p. The binary functions cs, for s ∈ S, represent countermeasures and are
used to connect components of type s with components of the opposite type s.

Definition 2. Typed ground terms over the AD–signature Σ are called attack–
defense terms (ADTerms). The set of all ADTerms is denoted by TΣ .

For s ∈ {p, o}, we denote by Ts
Σ the set of all ADTerms with the head symbol of

type s. We have TΣ = Tp
Σ∪To

Σ . The elements of Tp
Σ and To

Σ are called ADTerms
of the proponent’s and of the opponent’s type, respectively. The ADTerms of the
proponent’s type constitute formal representations of ADTrees.
4 In fact, symbols ∨p,∧p,∨o, and ∧o represent unranked functions, i.e., they stand for

families of functions (∨p
k)k∈N, (∧p

k)k∈N, (∨o
k)k∈N, (∧o

k)k∈N.

64 B. Kordy, S. Mauw, and P. Schweitzer

Example 6. Consider the ADTree given in Figure 1 (left). The corresponding
ADTerm is t = ∨p(∧p(IC,UC), SS, cp(OA,FW)). The entire ADTerm, and all six
subterms ∧p(IC,UC), cp(OA,FW), IC, UC, SS, and OA, are of the proponent’s
type. Term t also contains a subterm of the opponent’s type, namely FW.

In order to facilitate and automate quantitative analysis of vulnerability sce-
narios, the notion of an attribute for ADTerms has been formalized in [14]. An
attribute expresses a particular property, quality, or characteristic of a scenario,
such as the minimal costs of an attack or the expected impact of a defensive
measure. A specific bottom-up procedure for evaluation of attribute values on
ADTerms ensures that the user, for instance a security expert, only needs to
quantify the basic actions. From these, the value for the entire scenario is de-
duced automatically. Attributes are formally modeled using attribute domains.

Definition 3. The tuple Aα = (Dα,∨p
α,∧p

α,∨o
α,∧o

α, c
p
α, c

o
α), where Dα is a set

of values and, for s ∈ {p, o}, ∨s
α, ∧s

α are unranked operations on Dα, and cs are
binary operations on Dα, is called an attribute domain for ADTerms.

Let Aα = (Dα,∨p
α,∧p

α,∨o
α,∧o

α, c
p
α, c

o
α) be an attribute domain for ADTerms.

The bottom-up computation of attribute values on ADTerms is formalized as
follows. First, a value from Dα is assigned to each basic action, with the help
of function βα : B→ Dα, called a basic assignment. Then, a recursively defined
function α : TΣ → Dα assigns a value to every ADTerm t, as follows

α(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βα(t), if t ∈ B,
∨s
α(α(t1), . . . , α(tk)), if t = ∨s(t1, . . . , tk),

∧s
α(α(t1), . . . , α(tk)), if t = ∧s(t1, . . . , tk),

csα(α(t1), α(t2)), if t = cs(t1, t2),

(1)

where s ∈ {p, o} and k > 0. The example below illustrates the bottom-up
procedure for an attribute called satisfiability.

Example 7. The question “Is the considered scenario satisfiable?” is formally
modeled using the satisfiability attribute. The corresponding attribute domain
is Asat = ({0, 1},∨,∧,∨,∧, �, �), where �(x, y) = x∧¬y, for all x, y ∈ {0, 1}. The
basic assignment βsat : B→ {0, 1} assigns the value 1 to every basic action which
is satisfiable and the value 0 to every basic action which is not satisfiable. Us-
ing the recursive evaluation procedure defined by Equation (1), we evaluate the
satisfiability attribute on the ADTerm from Example 6. Assuming that all basic
actions are satisfied, i.e., that βsat(X) = 1 for X ∈ {IC,UC, SS,OA,FW}, we ob-
tain sat(∨p(∧p(IC,UC), SS, cp(OA,FW))) = ∨(∧(βsat(IC), βsat(UC)), βsat(SS),
�(βsat(OA), βsat(FW))) = ∨(∧(1, 1), 1, �(1, 1)) = ∨(1, 1, 0) = 1.

The satisfiability attribute, as introduced in the previous example, allows us to
define which player is the winner of the considered attack–defense scenario. If
the satisfiability value calculated for an ADTerm is equal to 1, the winner of the
corresponding scenario is the proponent, otherwise the winner is the opponent.
In Example 7, the root attack is satisfied, so the winner is the attacker.

DNS Tunneling for Network Penetration

Daan Raman1, Bjorn De Sutter1, Bart Coppens1, Stijn Volckaert1,
Koen De Bosschere1, Pieter Danhieux2, and Erik Van Buggenhout2

1 Computer Systems Lab, Ghent University, Belgium
bjorn.desutter@elis.ugent.be

2 Ernst & Young, ITRA FSO, Belgium

Abstract. Most networks are connected to the Internet through fire-
walls to block attacks from the outside and to limit communication initi-
ated from the inside. Because of the limited, supposedly safe functionality
of the Domain Name System protocol, its traffic is by and large neglected
by firewalls. The resulting possibility for setting up information channels
through DNS tunnels is already known, but all existing implementations
require help from insiders to set up the tunnels. This paper presents a
new Metasploit module for integrated penetration testing of DNS tun-
nels and uses that module to evaluate the potential of DNS tunnels as
communication channels set up through standard, existing exploits and
supporting many different command-and-control malware modules.

Keywords: domain name system, tunneling, Metasploit, network
penetration.

1 Introduction

Private computer networks are under constant attack. Sometimes attackers try
to setup so-called bind connections externally, with which they try to connect
to listening sockets in the local network [20]. In other attacks infected local
computers or malicious insiders try to set up reverse connections to an external
computer [20]. The StuxNet command-and-control (C&C) malware was injected
into a local network through a USB key, after which it set up connections to
the home network to receive further commands and to leak private data [21].
Botnets are another well known type of C&C malware.

Two common methods to protect against such attacks are firewalls [1] and
Intrusion Detection and Prevention Systems (IDPS) [8]. Firewalls permit or
block network traffic based on protocols, blacklists and whitelists. IDPS are
based on rule sets that describe suspicious network behavior. All network traffic
is scanned by an IDPS, and as soon as a sensor picks up suspicious actions, the
actions are interrupted and the network administrators are informed.

One commonly used network protocol is DNS, or Domain Name System [15,16].
The main functionality provided by DNS servers is to translate computer names
such as www.icisc.org to the IPv4 address 164.125.70.63. This enables people and
configuration files to rely on names instead of hard to remember addresses. Most

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 65–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

66 D. Raman et al.

often, a local network has one local DNS server. When some client in the local
network needs an address translation, he queries the local DNS server with a so-
called lookup request. The server knows which external DNS servers to access for
information on external addresses in different domains, and forwards the queries.
When the contacted external DNS server is authorized for the requested (domain)
name, it returns the response to the query. If that server is not authorized, it re-
turns a link to another DNS server, that is in turn queried by the local server.
This iterative process continues until an authoritative server returns the final an-
swer. An important property is that DNS servers can only respond to queries with
appropriate responses. They can, in other words, not initiate any communication
themselves, and the type of any response they providemust correspond to the type
of the lookup.

On the one hand, the DNS protocol thus provides very limited services. For
this reason, firewalls or IDPS in practice rarely check or filter DNS traffic origi-
nating from the local DNS server. On the other hand, the iterative nature of DNS
can be used to hide connections with malicious DNS servers behind connections
with the local server and with external, legitimate servers.

This potential for abuse has been exploited by so-calledDNS tunnels [2,6,11,12],
inwhich local computers exchange informationwithmaliciousDNSservers through
a form of steganography.The local computer transmits information by embedding
it in the domain names for which it queries themaliciousDNS server, and the server
transmits information by encoding it in the responses it returns, such as domain
name aliases or textual descriptions of properties. To the best of our knowledge,
all existing implementations require explicit insider cooperation to set up a DNS
tunnel, and support only limited forms of communication.

In this paper, we present a staged attack we developed in the popular Metas-
ploit Framework (MSF) for penetration testing [19]. This attack can leverage
almost all known software vulnerabilities for which exploits are present in MSF.
Furthermore, it supports the installation of C&C modules in MSF through a
DNS tunnel, as well as tunneling those modules’ traffic through the tunnel.
With this proof-of-concept attack, we demonstrate for the first time that DNS
tunnels are a threat even when all legitimate users of a network are benign.

In the remainder of the paper, Section 2 provides background information
on DNS, DNS tunneling, and MSF. Section 3 discusses the different stages of
our attack. Section 4 reports statistics on the traffic generated with our attack.
Finally, Section 5 draws conclusions.

2 Background and Related Work

2.1 Domain Name System Tunneling

DNS servers store information about computer domain names and their ad-
dresses in so-called zone files. Type A records in those files specify (32-bit IPv4)
address and name translations such as the fact that www.icisc.org corresponds
to IPv4 address 164.125.70.63. AAAA records do the same for 128-bit IPv6 ad-
dresses. Canonical Name or CNAME records specify aliases, such as the icisc.org

DNS Tunneling for Network Penetration 67

alias of www.icisc.org. MX or Mail eXchange records specify which servers to
use as mail servers and what their priorities are. TXT records can specify a wide
range of properties in the form of strings. Typically, these are used to specify
constraints on the behavior of mail servers in the Sender Policy Framework [24].
Finally, NS records specify for which domain a DNS server is authorized.

Clients can issue lookup requests for any type of these records with one DNS
packet, which is typically transmitted via the UDP protocol [18]. The response
to a lookup can only consist of a packet with a record of the same type.

Besides header information, CNAME and TXT packets contain reasonably
long strings corresponding to domain names. The other types of packets contain
mainly short IP addresses or are so exotic that using them would be too suspi-
cious. So only CNAME and TXT lookups and responses can be used to achieve a
reasonable communication bandwidth through a DNS tunnel. For example, some
piece of malware installed on a client computer can leak the password qwerty123

to the malicious nameserver.evildomain.com DNS server by sending a TXT
lookup for passwd.qwerty123.evildomain.com. Being the authoritative DNS
server for evildomain.com, this DNS server is the last server in the iterative DNS
lookup process to receive the lookup. Instead of treating the lookup as a real DNS
lookup, this server extracts the communicated information passwd.qwerty123

from the query. He then sends back information, such as a reboot command em-
bedded in the TXT response v=spf1 mx a:reboot.1pm.evildomain.com -all,
of which the legitimate meaning is that only local mail servers and the external
host reboot.1pm.evildomain.com are allowed to send email from senders with
email addresses from that same domain, such as m.romney@evildomain.com.

To use DNS servers and the DNS protocol as a covert, stealthy communication
tunnel, the software implementing the tunnel should exhibit similar behavior as
regular DNS traffic. Over ten periods of time, we recorded 10x500 MB of DNS
traffic data on our department’s local DNS server, which serves our administra-
tion and a wide range of research labs accros multiple campuses. We observed
that in those periods, TXT records constituted 1–2% of all traffic, CNAME
records constituted 20–30%, and A records constitute 38–48%. Furthermore,
around 25% of the traffic constituted AAAA records (most of which in support
of the Kerberos authentication protocol), and the remaining 5% was spent on
NS records. This is in line with other experiments [25].

This implies that a stealthy DNS tunnel can use some TXT records, which
can embed longer strings, but that it should mainly rely on CNAME records.
This also implies that most if not all information communicated through a DNS
tunnel must be encoded in the form of acceptable domain names. We will discuss
the practical implications in Section 3.

2.2 Prior Implementations

DNS Cat by Ron Bowes consists of a server and a client application [6]. The
client application needs to be invoked explicitly by a user with the domain name
of the malicious DNS server (on which the server application runs). The client
application is then attached to another process such as a shell, which is from

68 D. Raman et al.

then on controlled through the tunnel instead of locally. It obtains its standard
input from the attacker at the server side through CNAME and TXT response
packets sent through the DNS tunnel, and at the same time its standard output
is redirected through the tunnel using similar corresponding lookup packets.

DNS Cat can be used in practice to communicate through a DNS tunnel. For
example, in hotels with payed internet access, which typically do not filter or
block DNS traffic, customers can get online through DNS Cat. The customer
can do so because he has full control over a local computer such as his laptop on
which he can launch DNS Cat with the appropriate settings. In other words, the
customer is a malicious insider. Without help from insiders, however, attacking,
e.g., company networks with DNS Cat is not possible.

tcp-over-dns also requires users to start a server-side and a client-side applica-
tion [2]. Unlike DNS Cat, however, tcp-over-dns enables tunneling any TCP/IP
connection through its DNS tunnel. This eases the tunneling of, e.g., browser
sessions involving HTTP packets. tcp-over-dns is hence more user-friendly for
hotel customers that want (to steal) free Internet access. It is, however, still not
useful for attacking company networks without the help from insiders. Iodine [12]
(formerly NSTX) and OzymanDNS [11] suffer from the same limitation.

Furthermore, all of these implementations run on the client side as a separate
process, which makes them visible to any user or antivirus software.

2.3 DNS Anomaly Detection

Several techniques have been proposed in the past to detect anomalies in DNS
traffic, including tunnels and symptoms of other computer network infections.

Some work focuses on relating DNS traffic to real-world events, such as the
Tiananmen Square protests [27] or network defects [22]. Detection of network
scanning worms has been based on their relatively low number of DNS re-
quests [4,28]. This is obviously not applicable for DNS tunnels, which will operate
precisely by executing numerous DNS requests. Fast-flux is a popular and rel-
atively new cyber-criminal technique to hide and protect their critical systems
behind an ever-changing network of compromised hosts acting as proxies. The
ICANN Security and Stability Advisory Committee gives a clear explanation of
the technique [10]. Jose Nazario and Thorsten Holz did some interesting measure-
ments on known fast-flux domains [17]. Fast-flux techniques are mainly orthogo-
nal to the actual launching of (DNS) tunnels and communication through them.
The approach by Villamarin-Salomon and Brustoloni focuses on abnormally high
or temporally concentrated query rates of dynamic DNS queries [26]. This does
not suffice, however, since such patterns also occur for legitimate purposes. Choi
et al. check for multiple botnet characteristics based on Dynamic DNS, fixed
group activity and a mechanism for detecting migrating C&C servers [7]. They
claim that their method works, but the computational demands and process-
ing time seem to prevent it from scaling to large networks. Born and Gustafson
propose to use character frequency and N-gram analysis for detecting covert
channels in DNS traffic [5]. Their method detects patterns that do not occur in
natural languages and are therefore considered anomalous. Master students van

DNS Tunneling for Network Penetration 69

Fig. 1. Metasploit architecture

de Heide and Barendregt provide a preliminary evaluation of the aforementioned
techniques without, however, measuring actual implementations [25].

To the best of our knowledge, no existing literature discusses how difficult it
is to set up a DNS tunnel without the help of insiders.

2.4 Metasploit

In contrast with existing DNS tunnel implementations, we present an approach
that enables outsiders to set up attacks over DNS tunnels without the willing
help from insiders. We implemented this approach in MSF [19]. MSF is an open-
source framework developed for security experts to ease penetration testing. It
consists of a range of tools and modules programmed in Ruby, C and assembler
that allow different components of attacks to be reused and combined in differ-
ent ways. Fig. 1 depicts the MSF architecture. Different (server-side) interfaces
are available in the form of a console, a command-line interface (CLI), a web-
interface, and a GUI. The most important components for our purpose are the
code fragments that will be executed on the client side:

Exploits are small code fragments that can exploit vulnerabilities to take over
control of an attacked computer. These fragments can be embedded, e.g., in
PDF documents to exploit PDF reader vulnerabilities.

Payloads are the code fragments that attackers want to execute once they have
obtained a certain level of control over a machine. There are different types
of payloads: Stagers try to set up a communication channel between the
attacker and the victim as part of a bootstrap process, over which they load
stages. Stages make up the actual C&C software that gets installed and
launched by the stager, such as shell scanning accounts or a spam bot.

Encoders can convert the encoding of a payload without changing its func-
tionality. They consist of packers and unpackers that encrypt and decrypt
code to thwart antivirus software, but also of simpler transformations such
as removing null bytes from code, to avoid that those bytes are interpreted
as the end of a string when trying to exploit buffer overflow vulnerabilities.

NOPs are encoders that can increase the size of payloads to requested sizes by
inserting no-operation instructions that do not change the behavior of the
payload. This is useful for buffer overflow attacks on fixed sized buffers.

70 D. Raman et al.

Fig. 2. Bootstrap procedure of our attack

In March 2012, MSF support was added to transmit stages through a DNS
tunnel with TXT records [3]. However, that implementation cannot bootstrap
from existing, small exploits and does not provide a fully functional, bidirectional
DNS tunnel to the stage for later communication of commands and data.

3 Our Staged Attack

This section presents a generic, two-stage DNS-tunneling attack that attack-
ers or security researchers can set up by means of existing exploits of software
vulnerabilities, such as buffer overflows, and that can serve as a hidden commu-
nication channel for any type of C&C malware. The first stager is very small to
allow us to combine it with as many as possible existing MSF exploits. It installs
a second stager which is much larger. This stager install a generic DNS tunnel
and offers an interface for existing MSF C&C stages to the tunnel. Moreover,
the software implementing the tunnel and the interface remain resident (but
hidden!) on the attacked computer even when the originally exploited software,
such as a PDF reader, is terminated. The source code of our MSF components
is available at https://github.com/azerton/metasploit-framework. As for
integration into MSF, it still needs polishing with respect to code guidelines.

As is common for local MSF exploits, we assume that we can inject a small
exploit of a software vulnerability into the network under attack. This injection
can happen through mail attachments, web sites infected with drive-by malware,
phishing web sites, PDF documents on USB sticks, etc. Injecting this code frag-
ment is orthogonal to the remainder of the attack, and is out of scope of this
paper. In the remainder of this section, we discuss the bootstrap process that
follows the code injection, as depicted in Fig. 2. We focus on the software we
developed to run the computer under attack, i.e., the stagers, as the server side
consists mostly of standard MSF functionality adapted slightly for our purpose.

3.1 Stage 1: DNS Stager

The DNS stager is the piece of code that will be injected in a process on the
victim computer together with the exploit to hijack that process. The most

DNS Tunneling for Network Penetration 71

Fig. 3. Step 4: Downloading of the DLL stager by the DNS stager

commonly used technique to inject code is by means of buffer overflows. At the
time of writing, about 68% of all MSF exploits rely on buffer overflows.

Targeting buffer overflows constraints the stager. First, many targeted buffers
are small. Hence the stager has to be made as small as possible to fit as many as
possible buffer overflow exploits. Secondly, many buffer manipulation functions
in software treat certain characters in a special way. For example, string copying
ends on a null byte, and FTP-servers treat ampersands and newline characters
differently. So some characters should preferably not occur in the stage. Finally,
the stager’s code has to be as platform-independent as possible, and directly
executable at any address at which it is injected. In our case, we opted for
position-independent x86 assembly code (PIC) that targets Windows systems.

Starting from Ron Bowes’ DNS Cat stager implementation that was only
suitable to stage short shell scripts encoded as ASCII text [6], we have written a
stager consisting of 168 x86 assembler instructions that occupy 518 bytes. This
stager is capable of coordinating steps 3) and 4) in Fig. 2.

Some additional features our stager supports are the transmission of binary
data (e.g., the DLL stager’s code) through TXT packets by means of NetBIOS
coding and decoding, supports for ten times more TXT packets than DNS Cat
to enable the transmission of the bigger DLL stager, and allocation of much
more heap memory for storing large MSF payloads.

The actual transmission of the DLL stager under coordination of the DNS
stager is depicted in Fig. 3. All transmitted packets are numbered to compen-
sate that the UDP protocol does not guarantee delivery, ordering or duplicate
protection. While CNAME records are stealthier as discussed above, we use TXT
packets for this first stage of the attack because parsing TXT records is easier,
and hence can be done with less code than parsing CNAME records. We have
chosen to limit the packet data length to 200 bytes in our implementation, but
this can easily be adapted. This is much shorter than the theoretical upper limit
of 64K bytes per TXT packet because we observed that many software imple-
mentations in DNS servers cannot handle atypically long packets, and because
IDPSs might consider atypically long DNS packets as suspicious. Switching to
even shorter packets will increase the number of packets and hence the amount
of time needed to transfer and install the DLL stager. This can be problematic
for exploits that result in the process they hijacked being killed. If the process
is killed before the DLL stager is up and running, the attack will fail.

72 D. Raman et al.

Finally, we should note that the NetBIOS [14] coding we use is not the most
efficient way to encode binary data in ASCII strings with respect to communica-
tion bandwidth. It converts each 4-bit nibble into an ASCII character by adding
0x41 to it. So it uses only 16 of the more than 26 lowercase + 26 uppercase +
10 digits + punctuation possible values. There are two reasons for using this
encoding. NetBIOS decoding is simple enough to be supported in the very small
stager of 168 instructions. Secondly, domain names are case-insensitive. For ef-
ficiency reasons, e.g., to save space in caches, DNS server software typically use
normalized lower-case names. Hence upper-case characters risk not surviving the
passage through DNS servers not controlled by the attacker.

3.2 Stage 2: DLL Stager

The DLL stager differs significantly from the DNS stager with respect to the
way in which it is programmed, launched and executed. Whereas the first, DNS
stager was programmed in PIC assembly to be injected and executed directly
in the hijacked process, the second stager is too complex to be programmed in
assembler. And whereas the DNS stager only has to provide a tunnel for itself,
i.e., a tunnel that only supports loading the DLL stager, the DLL stager has to
set up a more generic tunnel for use by the stages, keep that tunnel alive, and
offer the stages an interface to it. For the latter two reasons, the DLL server needs
to stay alive even after the originally hijacked process is killed. But it should
stay alive in a way that is not easily detected, and hence not in a new, separate
process. In other words, the DLL stager has to be injected into and operate in
another, longer running process on the victim computer. The most convenient
way to inject code into a running process and execute it, is by means of reflective
DLLs [9,23]. Reflective DLL injection is a library injection technique in which the
concept of reflective programming is employed to perform the loading of a library
from memory into a host process. As such the library is responsible for loading
itself by implementing a minimal Portable Executable (PE) file loader [13]. We
implemented the second stager as such a reflective DLL, hence the name DLL
stager.

When the 168 instruction DNS stager has downloaded the DLL stager via
DNS, this DLL stager is launched (step 5 in Fig. 2). This stager is responsible
for downloading one or more MSF stages as shown in Fig. 4. It will do so in a
very similar way as the DNS stager, but there are some significant differences.
First, CNAME packets will be used instead of TXT records to avoid detection.
This implies that also in the responses, a considerable amount of space is spent
on repeating domain names. Secondly, besides order numbers, the communicated
domain names also includes session numbers, which allows an attacker to set up
multiple concurrent sessions from within the same network. Furthermore, both
the DNS server and the DLL stager add a third random number between 0 and
100 to the transmitted domain names to prevent the DNS servers from caching
requests [6]. This enables the DLL stager to load multiple different stages if
wanted. What remains of the 63 characters that are available in a CNAME packet
is filled with useful information, such as the GETPAYLOAD and the NetBIOS string

DNS Tunneling for Network Penetration 73

Fig. 4. Step 7: Downloading of the stage by the DLL stager

AABBCC that represents stage code in Fig. 4. On the server side, MSF encoders
automatically ensure that the transmitted stages (which over time may evolve
independently from the DLL stager in the MSF) are in the least vulnerable
format as chosen by and from the perspective of the attacker. This facilitates
the integration and maintenance cost of our DNS and DLL stagers in the MSF.

When the DLL stager has downloaded a stage (step 7 in Fig. 2), it injects it
as a new thread in the same application in which the DLL stager was injected
itself, as chosen by the DNS stager. This injection is step 8 in Fig. 2. From that
point on, the DLL stager becomes the bridge between the stage and the DNS
tunnel. Internally, that phase of the DLL stager is designed as two cooperating
components, as depicted in Fig. 5.

The DNS tunnel client is responsible for setting up and keeping alive the DNS
tunnel. It implements the encoding and decoding of all information transmitted
and received through CNAME packets, as was done for loading the stage(s).
The component uses session numbers and packet order numbers to overcome
reliability issues of the UDP protocol and to support multiple sessions. Further-
more, this component implements a form of polling through the DNS tunnel. In
the DNS protocol, DNS servers can only respond to queries from clients. This
means that a malicious DNS server cannot initiate any communication with a
C&C client. Many such clients are designed to wait for commands from a server,
however, without explicitly asking for such commands. In other words, stages in
Fig. 5 might simply be sleeping and waiting to be woken up by a command. To
allow the server to send commands that wake up sleeping clients, the DNS tun-
nel client sends lookups to the server of an initiated session on a regular basis.
Whenever the server wants to send a command, it does so in a response to the
polling lookup, which the DLL stager then forwards to the stage.

To facilitate the communication between client stages and servers without
having to adapt the stages to the fact that they use a DNS tunnel, a second
DLL stager component offers a TCP abstraction of the tunnel client. As a result,
stages only have to communicate with socket pairs, which is a fairly standard
method. To implement this component without having to implement all base
functionality ourselves, we relied on the standard winsock2 library.

As a whole, this stager consists of two parts: the reflective loader present
only to install the stager, and the stager itself. Like the DNS stager, the reflec-
tive loader consist of manually engineered PIC (in this case written in heavily

74 D. Raman et al.

Fig. 5. Components of the DLL stager

constrained C code). Whenever this code wants to perform an API call, it first
computes the address of the callee itself. These features are necessary because
the reflective loader is invoked without its binary code getting relocated by the
standard OS loader [13]. By avoiding the use of the standard OS loader, we also
avoid the need to embed full PE headers in the binary and it allows us to put the
DLL on the standard heap instead of on separate pages. Avoiding the standard
loader, full headers and separate pages make the DLL stager much stealthier
for antivirus software, which typically attaches itself to the standard loader to
monitor the binaries being loaded.

In a first attempt, we implemented the second part, i.e., the DLL stager com-
ponents, in C++. While this was very productive from a software-engineering
perspective, the compiled DLL stager proved to be too big. This posed no tech-
nical problems, but it did increase the number of TXT packets that had to be
transmitted to download the DLL stager, which increases the change of being
detected. We therefore reimplemented the DLL stager in C, which resulted in
an acceptable total binary size of 61KB.

4 Evaluation

To evaluate our implementation, we have set up our own subdomain DNS server
with the free www.afraid.org service for static and dynamic DNS domain and
subdomain hosting. This DNS server was the authoritative server for the azerton-
tunnel.chickenkiller.com domain, a relatively long name that has to be included
in each DNS lookup. We use the Google DNS server at 8.8.8.8 as a primary DNS
server. This service is free and requires no authentication, which is perfect for
an automated attack. In an alternative experiment, we installed a server and
client locally, such that all information is sent directly from victim to server and
back, without being delayed by external DNS severs. We refer to the first and
second experiments as the global and local experiments respectively. In both
experiments, the stage consisted of a small shell that runs C&C commands to
obtain system information, of which the output is transmitted to the attacker
through the DNS tunnel.

4.1 Throughput

First, we measured the maximal throughput we obtained with the described
staged attacks, i.e., the amount of useful data an attacker can transmit. This
excludes, e.g., the overhead bytes to embed the purposely long domain name
azertontunnel.chickenkiller.com in the packets and the packet headers. To

DNS Tunneling for Network Penetration 75

Table 1. Observed throughputs

phase DNS stager DLL stager shell

record type TXT CNAME CNAME

data DLL stager shell system info & polling
data size 61KB 0.23KB 40KB

local throughput 8.14 KB/s 0.80 KB/s 3.34 KB/s

global throughput 0.68 KB/s 0.68 KB/s 2.18 KB/s

Fig. 6. Histogram of CNAME packet lengths

measure the throughout of the C&C shell, we ran an automated script on the
attacker’s side. In the evaluated implementation, the TXT records were limited
to 200 bytes of useful information per DNS packet, and the CNAME records
to 16 bytes, which we estimated to result in non-suspicious packets. Table 1
presents the throughput results.

The most important observation is that TXT records used by the DNS stager
proved to give higher throughput only on the local network. It is unclear why the
DNS stager in the global experiment is slowed down to the same level as the DLL
stager. We suspect that it has to do with prioritization in DNS servers. As delays
in A records and in CNAME records are typically more noticeable to clients,
DNS servers might be handling those with higher priority. Further research is
needed to clarify this. Even when we don’t understand the cause of this behavior
completely, we can conclude from this experiment that for global attacks, the
DNS stager might as well use CNAME records. This will not slow the attack
down, while at the same time making the attack more stealthy. As discussed in
Section 3, it does increase the risk of attacks not succeeding, however.

Furthermore, we observe a shell C&C throughput of 2.18 KB/s, which is
plenty for many real-world attacks, such as for stealing passwords, credit card
numbers, and PINs by means of keyloggers.

In our experiments, the stage itself obtains a higher throughput than the DLL
stager obtains while loading the stage. The reason is that the DLL stager’s code
that handles the stage’s data handles this data more efficiently than the code in
the DLL stager that downloads the stage itself.

4.2 Packet Sizes

With interactive C&C sessions, rather than automated attack scripts, we mea-
sured the DNS packet sizes to evaluate their stealthiness. The packet sizes,

76 D. Raman et al.

Fig. 7. Histogram of TXT packet lengths

including the overhead of domain names but not the fixed size headers, are
depicted in Figs. 6 and 7.

It is clear that even with a limitation of 200 and 16 bytes per TXT and
CNAME record, the packet lengths of tunneled traffic are easily distinguished
from normal traffic. So IDPS could, in theory, easily detect and block our tunnel.

To prevent this, an attacker can in practice rely on CNAME packets only,
which will in practice not lower his throughput as discussed above, limit the
number of useful bytes per packet and use a shorter domain name than our pur-
posely long azertontunnel.chickenkiller.com. He might then reach a lower
throughput than 2.18 KB/s, but it will still be enough to obtain the most valu-
able, privacy-sensitive information.

5 Conclusions and Future Work

With the presented proof-of-concept Metasploit prototype, we have demon-
strated that it is possible to set up fully functional DNS tunnels to private
networks starting from small local exploits such as buffer overflows, i.e., without
the willing help from insiders, and to use those tunnels for command-and-control
attacks. This provides a strong incentive for firewalls and intrusion detection
systems to start monitoring the often neglected DNS traffic. Our current im-
plementation is probably not stealthy enough to avoid detection by adapted
protection systems, but there seems to be plenty of room (i.e., bandwidth) to
make it stealthier, so more research in this direction is needed in the future.

References

1. Amon, C., Shinder, T.W., Carasik-Henmi, A.: The Best Damn Firewall Book Pe-
riod, 2nd edn. Syngress Publishing (2007)

2. AnalogBit: tcp-over-dns, http://analogbit.com/software/tcp-over-dns
3. Beardsley, T.: Weekly Metasploit Update: DNS payloads, Exploit-DB, and More.

Rapid7 Blog Post (March 2012), https://community.rapid7.com/community/

metasploit/blog/2012/03/28/metasploit-update

http://analogbit.com/software/tcp-over-dns
https://community.rapid7.com/community/metasploit/blog/2012/03/28/metasploit-update
https://community.rapid7.com/community/metasploit/blog/2012/03/28/metasploit-update

DNS Tunneling for Network Penetration 77

4. Binsalleeh, H., Youssef, A.: An implementation for a worm detection and mitigation
system. In: Proc. 24th Biennial Symposium on Communications, pp. 54–57 (June
2008)

5. Born, K., Gustafson, D.: Detecting DNS tunnels using character frequency analysis.
In: Proceedings of the 9th Annual Security Conference (April 2010)

6. Bowes, R.: DNS Cat, http://www.skullsecurity.org/wiki/index.php/Dnscat
7. Choi, H., Lee, H., Lee, H., Kim, H.: Botnet detection by monitoring group activ-

ities in DNS traffic. In: Proc. 7th IEEE Int. Conf. on Computer and Information
Technology, pp. 715–720 (2007)

8. Di Pietro, R., Mancini, L.V.: Intrusion Detection Systems, 1st edn. Springer Pub-
lishing Company, Incorporated (2008)

9. Fewer, S.: Reflective DLL injection. Technical Report, Harmony Security (2008)
10. ICANN Security and Stability Advisory Committee: SSAC advisory on fast flux

hosting and DNS (2008)
11. Kaminsky, D.: OzymanDNS, http://en.cship.org/wiki/OzymanDNS
12. Kryo: iodine, http://code.kryo.se/iodine
13. Levine, J.: Linkers & Loaders. Morgan Kaufmann Publishers (2000)
14. Microsoft Corporation: ASCII and hex representation of NetBIOS names,

http://support.microsoft.com/kb/194203

15. Mockapetris, P.: RFC 1034 Domain Names - Concepts and Facilities. The Internet
Engineering Task Force, Network Working Group (November 1987)

16. Mockapetris, P.: RFC 1035 Domain Names - Implementation and Specification.
The Internet Engineering Task Force, Network Working Group (November 1987)

17. Nazario, J., Holz, T.: As the net churns: Fast-flux botnet observations. In: Proc. 3rd
International Conference on Malicious and Unwanted Software, pp. 24–31 (October
2008)

18. Postel, J.: RFC 768 User Datagram Protocol. The Internet Engineering Task Force
(August 1980)

19. Rapid7: Metasploit framework, http://www.metasploit.com
20. Rapid7:Metasploit pro user guide, http://community.rapid7.com/docs/DOC-1501
21. Rebane, J.C.: The Stuxnet Computer Worm and Industrial Control System Secu-

rity. Nova Science Publishers, Inc., Commack (2011)
22. Shin, H.J.: A DNS anomaly detection and analysis system. NANOG 40 (June 2007)
23. “skape”, Turkulainen, J.: Remote library injection. Technical Report, nologin

(2004)
24. The SPF Council: Sender policy framework, http://www.openspf.org/
25. van der Heide, H., Barendregt, N.: DNS anomaly detection. Technical Report,

Universiteit van Amsterdam (2011)
26. Villamarin-Salomon, R., Brustoloni, J.: Identifying botnets using anomaly detec-

tion techniques applied to DNS traffic. In: Proc. 5th IEEE Consumer Communi-
cations and Networking Conference, pp. 476–481 (January 2008)

27. Whang, Z., Tseng, S.S.: Anomaly detection of domain name system (DNS) query
traffic at top level domain servers. Scientific Research and Essays 6(18), 3858–3872
(2011)

28. Whyte, D., Kranakis, E., van Oorschot, P.: DNS-based detection of scanning worms
in an enterprise network. In: Proc. of the 12th Annual Network and Distributed
System Security Symposium, pp. 181–195 (2005)

http://www.skullsecurity.org/wiki/index.php/Dnscat
http://en.cship.org/wiki/OzymanDNS
http://code.kryo.se/iodine
http://support.microsoft.com/kb/194203
http://www.metasploit.com
http://community.rapid7.com/docs/DOC-1501
http://www.openspf.org/

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 78–91, 2013.
© Springer-Verlag Berlin Heidelberg 2013

MeadDroid: Detecting Monetary Theft Attacks
in Android by DVM Monitoring

Lingguang Lei1,2,*, Yuewu Wang1, Jiwu Jing1, Zhongwen Zhang1,2, and Xingjie Yu1,2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
{lglei,ywwang,jing,zwzhang,xjyu}@is.ac.cn

Abstract. Monetary theft attacks are one of the most popular attack forms to-
wards Android system in recent years. In this paper, we present MeadDroid, a
lightweight real-time detection system atop Android, to hold back this type of
attacks. An FSM of monetary theft attacks is constructed, based on the analysis
of real-world attacks. Employing an FSM-based detection approach, with the
information obtained from dynamically monitoring the API calls and tracking
the processing flow of UI (User Interface) inputs, MeadDroid can detect mone-
tary theft attacks effectively and incurs only a small performance overhead. In
addition, realized as an extension of Dalvik VM, MeadDroid is transparent to
the user, and thus can provide a good user experience. Based on a prototype
system, experiments are conducted with 195 popular Android applications. 11
applications with monetary theft attacks are found and the detection accuracy is
almost 100% through comparing the results with the charge bill of the phone
number used in the experiments. The performance overhead on a CPU-bound
micro-benchmark is 8.97%. Experimental results demonstrate that MeadDroid
has good performance in terms of effectiveness and efficiency.

Keywords: Monetary Theft Attack, DVM, Android, API Calls Monitoring,
FSM.

1 Introduction

With the prevalence of Android applications [1] and loose management of Android
Market, Android has become the preferred target of malicious codes attacks [4].
Among all these attacks, monetary theft attacks are one of the most popular forms [3].
The target of monetary theft attacks is subtracting extra fees from users’ accounts
stealthily. In a typical monetary theft attack, the malicious codes usually subscribe to
or consume many uncalled-for paid services without notifying the users. Thus, a large
amount of monetary losses to users are caused furtively, and the adversaries can get

* This work was supported by National Natural Science Foundation of China (Grant No.

70890084/ G021102, 61003274 and 61003273) and Strategic Priority Research Program of
Chinese Academy of Sciences under Grant XDA06010702.

 MeadDroid: Detecting Monetary Theft Attacks in Android by DVM Monitoring 79

great monetary benefits from the service fees. Because of the generous returns, mone-
tary theft attacks have attracted more and more attackers. For example, on April 8,
2012, China’s national television CCTV has reported monetary theft attacks of hand-
set with a special news program [2]. Especially, a malicious code mentioned in the
report, called ‘ShiRenYu’, subtracts 50 Million Yuan per year from the users’ ac-
counts stealthily. Several other classic monetary theft attacks in Android are shown in
[15].

Current research mainly focuses on two fields as follows: i) Android security mod-
el analysis, such as the permission-based security model and code signature mechan-
ism analysis [6-11]; ii) privacy protection [12, 13]. However, the current Android
permission and code signature mechanisms cannot hold back monetary theft attacks
effectively. The privacy protection technology is also not suitable for monetary theft
attack defense. There is also some work on detecting malicious applications on An-
droid OS [19-24]. However, these methods are usually time-consuming and are not
suitable to be deployed on the resource-constrained mobile platforms. In order to hold
back monetary theft attacks timely and effectively, a real-time and lightweight attack
detection method is needed.

In this paper, a lightweight monetary theft attack detection system called Mead-
Droid (Monetary Theft Attack Detection System) is presented. The realization of
MeadDroid faces three challenges.

Firstly, MeadDroid should be able to detect monetary theft attacks effectively and
with low overhead. We achieve this by two findings that monetary theft attacks share
some common behavior patterns which can be described as an FSM (Finite State Ma-
chine), and these behavior patterns can be detected through DVM (Dalvik Virtual
Machine) monitoring. An FSM based attack detection approach is introduced in
MeadDroid. As a behavior-based detection system, MeadDroid is more efficient than
the signature-based systems. A typical monetary theft attack is usually launched
through SMS (Short Message Service)-related operations, but with abnormal behavior
patterns. In Android, SMS-related operations are conducted by calling Java APIs, and
Java APIs are all interpreted and executed in DVM [18]. Thus, we can detect the ma-
licious API calls entirely by DVM monitoring. Meanwhile, as SMS-related APIs are
only a small portion of APIs, dynamically monitoring in MeadDroid incurs low over-
head.

Secondly, monetary theft attacks are always launched stealthily. MeadDroid must
be able to detect this stealth effectively. The stealth of a monetary theft attack can be
obtained by two features: the SMS contents being not inputted by the user or the SMS
sending operations being not initiated manually through UI operations. Two tagging
technologies are introduced in MeadDroid to detect these two features respectively.

Finally, the attack detection process should be transparent to the user, in order for
good user experience. Being implemented as an extension of DVM, MeadDroid can-
not be felt by the user, and can be compatible with Android applications well.

The main contributions of this paper are summarized as follows.

1. An FSM is designed according to the malicious behavior patterns extracted from
real-world attacks, and is used as the foundation in monetary theft attack detection.

80 L. Lei et al.

2. A lightweight real-time dynamic monetary theft attack detection system, MeadDro-
id, is implemented. Realized as an extension of DVM, MeadDroid can detect the
attack behaviors effectively, while the overhead to Android system incurred by the
detection system is negligible.

3. Experiments are conducted to evaluate the effectiveness and efficiency of the sys-
tem with 195 Android Applications. Experimental results demonstrate that the per-
formance of MeadDroid in effectiveness and efficiency is very good.

The rest of this paper is organized as follows: Section 2 describes the overall architec-
ture of MeadDroid in detail, Section 3 describes the implementation of MeadDroid,
Section 4 evaluates the performance of MeadDroid with a series of experiments, Sec-
tion 5 describes the related work, and Section 6 concludes this paper with a brief
summary and an outline of future work.

2 The Design of MeadDroid

We seek to design a lightweight detection system that can detect monetary theft at-
tacks effectively. So that it can be deployed on the resource constrained mobile plat-
forms in real-time. In this Section, we discuss the design of MeadDroid.

In our discussion, we assume that malwares always launch attacks from the appli-
cation level, rather than embed the malicious codes in the DVM or Linux Kernel.
Meanwhile, we assume that the SMS-related operations are all achieved by calling
Java APIs provided in Android, for realization of an SMS stack in Android is compli-
cated. Therefore, the attack behaviors can be detected entirely in DVM on the hypo-
thesis that the kernel and DVM are secure.

2.1 The Principles of MeadDroid Design

Three principles are considered during the design of MeadDroid:

1. Lightweight. Smartphone platforms are usually resource-constrained. Thus, the
overhead of MeadDroid should be minimal to make it feasible for real-world dep-
loyment. Furthermore, MeadDroid is an extension of DVM, in which all applica-
tions are interpreted and executed. High overhead will affect all of the applications.

2. Completeness & accuracy. The traces of monetary theft attacks are complex. The
number of APIs involved in monetary theft attacks is 25, and the SMS-related op-
erations can be completed by calling APIs directly or using Intents indirectly.
Therefore, the monitoring system must cover all available traces of the attacks, so
that, MeadDroid can get enough information to identify the malicious behaviors of
the attacks accurately.

3. Good User Experience. MeadDroid should preferably be transparent to App level
of Android. So, the user operations on the Android with MeadDroid deployment
will be the same as that on normal Android. Meanwhile, the Apps need not any
modification to adapt to the MeadDroid, and thus the feasibility of deployment of
MeadDroid can be enhanced significantly.

 MeadDroid: Detecting Monetary Theft Attacks in Android by DVM Monitoring 81

2.2 The Architecture of MeadDroid

In order to satisfy the three design principles, MeadDroid is implemented as an exten-
sion of DVM and composed of three function modules: App behaviors monitoring,
malicious behaviors detecting and responding modules. The technical idea of Mead-
Droid is monitoring the operations in an application dynamically and detecting the
malicious behaviors based on FSM detection. The App behaviors monitoring module
can obtain enough dynamic information during the execution of an application, and
provide it to the malicious behaviors detecting module. Then, the malicious behaviors
included in an application can be detected by the detecting module based on FSM
detection. If an attack is identified, necessary corresponding actions can be taken by
responding module to hold back the attack. The dynamic information of an applica-
tion execution includes the API calls, and the processing flow of UI inputs. Both the
monitoring of API calls and tracking of UI inputs can be achieved in DVM. So, the
detection of MeadDroid is Completeness & accuracy. The FSM based detection en-
sures that MeadDroid is lightweight. Finally, the DVM level implementation makes
MeadDroid transparent to App level.

Fig. 1. The architecture of MeadDroid

The architecture of MeadDroid is shown in Fig. 1. The core of the architecture is the
Malicious Behaviors Detecting module. This module is implemented based on an FSM
of monetary theft attacks. The details of the FSM will be described later. With the
information provided by the two monitoring sub modules and two databases on SMS-
related patterns, FSM will be transited from one state to one state. If a malicious state
is reached, the Responding module located at the right of Fig. 1 will be initiated to
hold back the attack. Because the previous comparison information can be reused fully,
the efficiency of FSM based detection is higher than the signature based detection.

UI inputs monitoring sub module is used to judge the SMS-related operations are
initiated by the user or not and the contents of the SMS messages are inputted by the
user or not. A three-level operation tagging and tracking technology is employed in

82 L. Lei et al.

MeadDroid to track the operations triggered by Keyboard & Touch-screen operations.
Meanwhile, a data tagging and tracking technology is introduced to track the contents
inputted through UI. The implementation of these two tagging technologies will be
described in Section 3.3. This sub module can provide enough accurate information to
the malicious behaviors detecting module to distinguish the origin of an SMS sending
operation.

Abnormal SMS API calling patterns monitoring sub module is used to monitor the
SMS-related API calls in an Android application. The API calling patterns, such as
the frequency and the sequence of the API calls, are the important foundation of the
attack detection. All API calls can be monitored by this module. However, in order to
keep MeadDroid lightweight, only the information on SMS-related API calls is pro-
vided to the core detecting module.

Based on the data provided by the above 2 monitoring modules, we can detect
stealthy SMS-related API calls in an application. Then, the malicious SMS Body and
Address databases are used to detect whether the SMS messages processed in the
APIs are abnormal. The content and address of an SMS message can be gotten by
parsing the parameters of the SMS-related APIs, the details will be described in Sec-
tion 3.2. Through comparing the content and address of an SMS message with the
Malicious SMS databases, a questionable SMS message can be identified.

2.3 FSM of Monetary Theft Attacks

FSM is the core of the MeadDroid. In this Section, the details of the FSM design will
be described.

Two malicious operations are involved in a monetary theft attack. One is SMS
sending, the other is SMS hijacking.

As for SMS sending, one can send an SMS message by calling the APIs or by
sending a specific Intent to start corresponding activity to complete the message send-
ing. The later can be detected by monitoring the APIs named ‘StartActivity()’ and
‘startActivityForResult()’. Therefore, all of the SMS sending operations can be de-
tected with API calls monitoring. Both the normal and malicious SMS sending opera-
tions are implemented by APIs calling. In order to distinguish the malicious SMS
sending operations from normal SMS sending operations, the behavior patterns of the
SMS sending operations should be extracted, which include UI tags, SMS sending
frequency, SMS body and address. A malicious SMS sending pattern is a path from
initial state to the malicious state in FSM.

As for messages hijacking, one can hijack the incoming messages in two ways:
hijacks messages with ‘BroadcastReceiver’, and hijacks messages with ‘ContentOb-
server’ and ‘ContentResolver’. In the first way, one can register a ‘BroadcastReceiv-
er’ in the Android application to receive SMS messages. By setting the priority of
the intentfilter of ‘BroadcastReceiver’ to the highest, this application can receive the
SMS messages firstly. When receiving the messages, the ‘onReceive()’ method of the
‘BroadcastReceiver’ will be invoked. Then the attacker can check the bodies and
addresses of the messages, and then discard the specific messages by calling ‘ab-
ortBroadcast ()’.

 MeadDroid: Detecting Monetary Theft Attacks in Android by DVM Monitoring 83

In the second way, the attacker can register a ‘ContentObserver’ to monitor the
changing of the SMS database in Android. When the SMS database is changing, such
as a new incoming message is inserted, the ‘onchange()’ method of the ‘ContentOb-
server’ will be invoked. In the ‘onchange()’ method, the attacker can delete the SMS
messages from the database with the ‘ContentResolver.delete()’ method or mark them
as read-done with the ‘update()’ method, before they are pushed to the user.

According to the processes of malicious operations involved in monetary theft at-
tacks, the FSM is designed, as illustrated in Fig. 2.

Fig. 2. FSM of Monetary Theft Attacks

The initial state of the FSM is 1. When an SMS sending API call is detected, the
state of the FSM will be transited to 2. If the SMS body isn’t inputted from UI (which
means the Tag of the SMS content is 0), and the calling of SMS sending APIs isn’t
triggered by UI actions (which means the Mtag of the SMS sending API and the Ttag
of the thread sending SMS are both 0, the meanings of Mtag and Ttag are described in
Section 3.3), the state will be transited to 3 further. Otherwise, the SMS sending API
call will be permitted and the state will be backed to 1. If the state 3 is reached, the
SMS sending frequency is checked, and the SMS body and address are parsed out. If
the SMS sending frequency is too high, the state will be transited to M, i.e. the
process is infected with monetary theft attack codes. If the SMS body or address is
included in the pattern databases, the state will be transited to 4. If the above two
conditions are not satisfied, the state will be also backed to 1. When the state 4 is
reached, an alarm will be popped to the user. If the permission is gotten from the user,

84 L. Lei et al.

the SMS sending API call is permitted as that in state 2. Otherwise, the state will be
transited to M.

If the method ‘onReceive()’ or ‘onChange()’ is called, as shown in Fig. 2, the state
of the FSM will be transited to 5 or 7. If the method ‘abortBroadcast()’ is called in
state 5, or the method ‘delete()’ or ‘update()’ is called, an SMS receiving hijack may
happen. With the SMS body and address parsing, the SMS receiving hijack can be
proved further. When an SMS receiving hijack happens, the state will be transited to
M and an attack is detected. If no abnormal actions happen, all states in the SMS re-
ceiving hijack detection path will back to initial state 1 by default.

3 System Implementation

The architecture of MeadDroid is illustrated in Fig. 1, and implementing this architec-
ture needs to address several system challenges, including: a) monitoring points
selecting, b) API calls detecting and parameters parsing, c) UI inputs tagging and
tracking. Solutions to these challenges should guarantee that MeadDroid is
lightweight enough to be deployed on the mobile platforms. The remainder of this
section describes our solutions to these challenges.

3.1 Monitoring Points Selecting

As described in Section 2.2, there are two ways to call a Java API in Android, by
calling directly from Java codes and by calling from native codes via JNI. In both
ways, the methods are pushed into the interpreted stack before executed. Thus, the
pushing operation of the interpreted stack is a suitable point to monitor the Java API
calls of an application. In fact, the pushing operation of the interpreted stack is im-
plemented in two points. For the API calls in Java codes, the pushing-operation codes
are included in the hardware-related part of Dalvik, i.e. the file ‘Andro-
id\dalvik\vm\mterp\out\InterpC-portstd.c’. As for the API calls from native codes, the
pushing operation is complete in the common part of Dalvik, i.e. the file ‘Andro-
id\dalvik\vm\Interp\Stack.c’. Thus, the monitoring codes are added to these two
points to cover all pushing operations of the interpreted stack completely.

In order to keep lightweight, only the API calls are monitored instead of all Java
codes in the application. At the same time, only the API calls related to SMS opera-
tions are checked with the FSM introduced in Section 2.3.

3.2 API Calls Detecting and Parameters Parsing

There is a hierarchical relationship among the SMS-related APIs. For example, when
the method ‘sendTextMessage()’ is called, the method ‘sendText()’ will be called
certainly to complete the SMS sending operation. According to the hierarchical rela-
tionship among these SMS-related API calls, only the low-level API calls are
processed in MeadDroid. Thus, the overhead of MeadDroid can be reduced further,
while without hurting the detection accuracy.

 MeadDroid: Detecting Monetary Theft Attacks in Android by DVM Monitoring 85

Every time a method is called, a method frame is pushed into the interpreted stack.
The method name and parameters are all included in the method frame. By parsing
the method frame, the parameters of the method are gotten. As for parameters of the
class data type, only the references are stored in the interpreted stack and the real
instances are stored in the DVM heap. In this case, the reference tables are used to
access the instances to get details of the parameters. However, this process is time-
consuming. Therefore, in our system, only the necessary parameters of the SMS-
related APIs are parsed to keep lightweight.

3.3 UI Inputs Tagging and Tracking

An event handle function will be triggered in a real UI operation. Thus, in a normal
SMS sending operations initiated by the user, we can detect that obtaining of the SMS
body or calling of the SMS sending APIs are triggered in the event handle function.

In MeadDroid, we firstly detect the UI operations by monitoring Linux Input Sub-
system; then we introduce two tagging and tracking technologies to track the contents
inputted and API calls triggered in the event handle function.

UI Operations Detecting

Detecting of the UI operations composed of following two steps:

1. Monitor the writing operations to ‘/dev/input/’ in Linux kernel. The UI input event
is first written into ‘/dev/input/’ by Linux kernel. On the hypothesis that the kernel
is secure, this operation cannot be forged by the attackers.

2. Detect the event handle functions triggered by the input events. The processing
flow from the input events recorded by the Linux kernel to the handle functions
triggered involves multiple processes, and thoroughly tracking this flow is time-
consuming. Through hundreds of times experiment, we found that the time span
between the above two operations is less than 5ms, while the time span between ei-
ther two UI operations is more than 15ms. Therefore, it is possible and convenient
to use the time information in the event to determine whether an event handle func-
tion is triggered by the specified input action. And this approach is employed in
our MeadDroid system.

Data Tagging and Tracking

For tracking of SMS content, we use a data tagging approach. After inputted by the
user, the SMS content is stored into a data structure. We add a special tag to the data
structure, and propagate it through normal SMS sending processes in Android. Final-
ly, when the inputted content is processed by SMS sending APIs as a parameter, we
check the tag to determine whether it is originated from the user manipulation. This
tagging technology just needs to track one kind of data, and a small fragment of the
processing flow of the data. Therefore, comparing with TaintDroid, our tagging tech-
nology is more lightweight.

86 L. Lei et al.

Operations Tagging and Tracking

For tracking the operations triggered in the event handle functions, we introduce a
three level tagging technology. In a normal SMS sending process, the SMS sending
operation will be triggered through one of the following three ways: 1) directly calling
the SMS sending APIs in the handle functions; 2) creating a new thread to launch the
SMS sending operations; 3) sending a message to tell an existing thread to call the
SMS sending APIs. As shown in Fig. 3, we introduce three tags to mark for the above
three scenarios, which are ‘Mtag’, ‘Ttag’ and ‘Msgtag’. We add an ‘Mtag’ tag to each
method in the interpreted stack to indicated whether it is triggered by the event handle
functions. The ‘Mtag’ of a method is set to 1, if the method is an event handle func-
tion or ‘Mtag’ of the calling method is 1. In the interpreted stack, all methods in the
position between pushing and popping of one method are called by the method. We
add a ‘Ttag’ to each thread, threads created in one method will have the ‘Ttag’ being
set to 1, if the ‘Mtag’ of the method is 1, otherwise the ‘Ttag’ will be set to 0. We add
an ‘Msgtag’ to the message, and all messages sent in the method with ‘Mtag’ 1 or in
the thread with ‘Ttag’ 1, will have the ‘Msgtag’ being set to 1. Then, we will check
the message’s ‘Msgtag’ when the message handle function is called, and set the func-
tion’s ‘Mtag’ to 1 if the message’s ‘Msgtag’ tag is 1. With this tagging approach, we
can track all the operations triggered by the event handle functions, either with ‘Mtag’
being set to 1, or with ‘Ttag’ being set to 1. On the contrary, if an action, including
the SMS sending action, is launched stealthily, both the ‘Mtag’ of the method and the
‘Ttag’ of the thread calling the method will have value 0.

Fig. 3. Tagging and Tracking the Operations Triggered in the Event Handle Functions

With above technologies, we can determine whether an SMS-related operation is
initiated by the user, on the hypothesis that the kernel is secure.

4 Evaluation

Experiments are conducted to evaluate the effectiveness and efficiency of the
system, on a Google Nexus S smart-phone running Android OS Version 2.3.4.

 MeadDroid: Detecting Monetary Theft Attacks in Android by DVM Monitoring 87

The experimental results demonstrate that MeadDroid can effectively detect monetary
theft attacks in Android with reasonable overhead.

4.1 Experiment Sample Set Generation

We downloaded the most popular free applications of 12 categories from the App-
China [25] in August 2012 to generate the experiment sample set. In order to launch
the SMS-related operations in an application, SMS-related permissions must be ap-
plied for in an application and declared in its manifest.xml. To make the sample set
more effective, we check the manifest.xml of each application, and screen out the
applications without SMS-related permissions. 1200 applications are downloaded,
and 195 (16.25%) of them have applied for the SMS-related permissions, which are
included in the sample set.

4.2 Effectiveness Evaluation

Conducting experiments for 195 applications manually is time-consuming. Thus, a
script-based tool is constructed to conduct the experiment process automatically. The
atomic tool is composed of three parts: i) installing the applications with “adb install”
command; ii) running the applications automatically with Android monkey event
generator; iii) uninstalling the applications with “adb uninstall” command. The total
time to execute these applications is about two weeks.

11 applications with attack behaviors are found in the experiments. 7 of them just
initiate SMS sending operations, and send an SMS message every time they are
launched. 3 of them contain SMS sending and hijacking behaviors. Especially, one
application starts a background service to send SMS messages to ‘12114’ periodically
after it is fired. All the SMS bodies of these SMS operations are not inputted from UI,
and all SMS operations are initiated stealthily. 1 application is detected to contain
SMS hijacking behaviors only. This application checks all of the incoming SMS mes-
sages and aborts the messages from ‘10****’.

In order to evaluate the detection accuracy, we modify MeadDroid to just log the
malicious behaviors detected rather than hold back them. Then, we compare the de-
tection results with the charge bill from communication service provider. The com-
paring results show that the malicious SMS sending operations detected are consistent
with the charge bill of the phone number used in the experiments, which means
MeadDroid achieves almost 100% detection accuracy and low false positive rates in
protecting the applications from monetary theft attacks.

Like most dynamic detection technology, MeadDroid may not cover the entire at-
tack paths completely. However, our system can detect and hold back the attack
behaviors effectively, whenever these behaviors are executed really.

88 L. Lei et al.

4.3 Efficiency Evaluation

Efficiency is another factor that should be paid enough attention, because MeadDroid
is a solution running on resource-limited platforms. Experiments are conducted to
evaluate the efficiency of MeadDroid.

MeadDroid is implemented as an extension of Dalvik VM. Therefore, we evaluate
the efficiency by comparing it with normal Android Dalvik VM. Java Microben-
chmark is a classic metric used to evaluate the performance of Java VM. Caffeine-
Mark 3.0 for Android [26] is adopted to generate the scores of Java Microbenchmark.
CaffeineMark uses an internal scoring metric only useful for relative comparisons.
The experimental results are shown in Fig. 4.

Fig. 4. Microbenchmark of the overhead on Normal Dalvik and Dalvik with MeadDroid

The results are consistent with design expectations. The overhead incurred by
MeadDroid is almost zero for the benchmarks dominated by arithmetic and logic
operations. The string benchmark experiences more overhead, which is due to the
memory comparisons that occur in the method name and parameters detection. Be-
cause API calls monitoring is the most important task in MeadDroid, the method
benchmark experiences the greatest overhead.

The “overall” benchmark indicates cumulative score across all individual bench-
marks. CaffeineMark documentation indicates that the score of “overall” benchmark
roughly corresponds to the number of Java instructions executed per second. Here, the
normal Android system has an average score of 891, while the score of MeadDroid is
811. MeadDroid has an 8.97% overhead with respect to the normal system, which is a
reasonable efficiency.

5 Related Work

Malicious detection on Android has attracted considerable attention since 2008.
Some researchers provide permission based methods to detect the malicious beha-

viors in the Android applications [20, 28]. These methods deduced the behaviors of an
application according to the permissions requested by the application. In [20],

 MeadDroid: Detecting Monetary Theft Attacks in Android by DVM Monitoring 89

Enck et al. proposes a lightweight malicious detection system Kirin. It reads applica-
tion permission requirements during installation and checks them against a black list
of malicious patterns that is in the form of permission combinations. However, this
installation inspection can be bypassed easily. Moreover, accuracy of this method is
not very perfect, because many applications often request uncalled-for permissions
and the permission mechanism can be bypassed in some case.

Some other work [5-8] analyzes the applications by statically analyzing Android
source codes, Dalvik bytecodes or Java bytecodes converted from Dalvik bytecodes.
These methods usually target for overall security analysis of Android applications,
and can’t handle the codes being confused or packed and malicious attacks based on
time or event-triggered. The detection accuracy of these methods is largely affected
when using Java reflection in the codes, and they are usually large time and resource
consuming. Therefore, these static analysis approaches are not adapted to real-time
monetary theft attack detection.

A few dynamic methods [12, 13] are proposed for malicious detection. TaintDroid
[13] uses system-wide dynamic taint tracking to identify privacy leaks in Android
applications. [12] is a further work based on TaintDroid, and also targets for privacy
disclosure detection. The proposed system, MeadDroid, is also a dynamic detection
system, but it is different from TaintDroid in the following aspects: 1) MeadDroid
targets for monetary theft attacks and can hold back this type of attacks effectively in
real-time, while TaintDroid targets for privacy protection and only tracks the private
data in system without taking any measure to hold back privacy disclosure. 2) Mead-
Droid is a behavior-based detection system, and it detects the attacks through dynami-
cally monitoring the behaviors of an application execution. TaintDroid is a data track-
ing system, which only focuses on the private data. 3) MeadDroid is a light-weight
scheme and can be deployed easily on smart-phone platforms.

There are also some methods based on monitoring events occurring on Linux-
kernel level [19, 22, 23]. These methods are often resource expensive and are not
suitable for resource-constrained environment.

6 Conclusion

Monetary theft attacks are one of the most popular attacks in Android in the recent
period. To address this, we present MeadDroid, an efficient and effective system, to
detect monetary theft attacks. A key design goal of MeadDroid is efficiency. Mead-
Droid achieves the high efficiency by dynamically monitoring the API calls of an
application and comparing them with a monetary-theft-attack FSM. We also use our
MeadDroid implementation to study the behaviors of 195 third-party applications
with SMS-related permissions. The efficiency and effectiveness of MeadDroid are
validated with experiments, and the experimental results demonstrate that MeadDroid
possesses a good performance at efficiency and effectiveness.

Many other SMS-based attack forms are emerging, such as privacy information
stealing. In our future work, we will extend MeadDroid to other SMS-related
attack detection. In addition, an attack may be implemented on native codes level

90 L. Lei et al.

completely and this attack cannot be detected by our current scheme. Although the
native level attacks are difficult and very rare currently, a Linux kernel based scheme
with the same technology idea has been put on our agenda.

References

1. http://searchenginewatch.com/article/2155122/Android-Market-
vs.-App-Store-Prices-Why-Android-Users-Pay-Double-Study

2. http://news.cntv.cn/china/20120408/110689.shtml
3. Porter Felt, A., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A Survey of Mobile Mal-

ware In The Wild. In: Proceedings of the 1st Workshop on Security and Privacy in Smart-
phones and Mobile Devices, CCS-SPSM 2011 (2011)

4. http://techcrunch.com/2011/11/20/mcafee-nearly-all-new-
mobile-malware-in-q3-targeted-at-Android-phones-up-37-
percent/

5. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing Inter-Application Communi-
cation in Android. In: Proceedings of the 9th Annual Symposium on Network and Distri-
buted System Security, MobiSys 2011 (2011)

6. Fuchs, A., Chaudhuri, A., Foster, J.: SCanDroid: Automated Security Certification of An-
droid Applications.,
http://www.cs.umd.edu/avik/projects/scAndroidascaa

7. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Application Secu-
rity. In: Proceedings of the 20th USENIX Security Symposium, USENIX Security 2011
(2011)

8. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android Permissions Demystified.
In: Proceedings of the 18th ACM Conference on Computer and Communications Security,
CCS 2011 (October 2011)

9. Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: Towards formal analysis of the per-
mission-based security model for Android. In: Proceedings of the 2009 Fifth International
Conferenceon Wireless and Mobile Communications, ICWMC 2009, pp. 87–92. IEEE
Computer Society, Washington, DC (2009)

10. Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: A formal model to analyze the per-
mission authorization and enforcement in the Android framework. In: Proceedings of the
2010 IEEE Second International Conference on Social Computing, SOCIALCOM 2010,
pp. 944–951. IEEE Computer Society, Washington, DC (2010)

11. Shin, W., Kwak, S., Kiyomoto, S., Fukushima, K., Tanaka, T.: A small but non-negligible
flaw in the Android permission scheme. In: Proceedings of the 2010 IEEE International
Symposium on Policies for Distributed Systems and Networks, POLICY 2010,
pp. 107–110. IEEE Computer Society, Washington, DC (2010)

12. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These Aren’t the Droids
You’re Looking For: Retrofitting Android to Protect Data from Imperious Applications.
In: Proceedings of the 18th ACM Conference on Computer and Communications Security,
CCS 2011 (2011)

13. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., Mc- Daniel, P., Sheth, A.N.:
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones. In: Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2010 (February 2010)

14. Android Permissions, http://Android-permissions.org/

 MeadDroid: Detecting Monetary Theft Attacks in Android by DVM Monitoring 91

15. http://www.f-secure.com/en/web/labs_global/mobile-security
16. Trojan:Android/RogueSPPush,

http://www.cs.ncsu.edu/faculty/jiang/RogueSPPush/
17. Trojan:Android/ Zsone.a,

http://www.f-secure.com/v-descs/trojan_Android_zsone_a.shtml
18. Android dalvik, http://source.Android.com/tech/dalvik/index.html
19. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-Based Malware De-

tection System for Android. Proceedings of the 1st Workshop on Security and Privacy in
Smartphones and Mobile Devices, CCS SPSM 2011 (2011)

20. Enck, W., Ongtang, M., McDaniel, P.: On Lightweight Mobile Phone Application Certifi-
cation. In: Proceedings of the 16th ACM Conference on Computer and Communications
Security, CCS 2009 (2009)

21. Schmidt, A.-D., Schmidt, H.-G., Clausen, J., Yuksel, K.A., Kiraz, O., Camtepe, A.,
Albayrak, S.: Enhancing security of linux-based Android devices. In: Proceedings of 15th
International Linux Kongress, Lehmann (October 2008)

22. Schmidt, A.-D., Bye, R., Schmidt, H.-G., Clausen, J., Kiraz, O., Yxksel, K., Camtepe, S.,
Sahin, A.: Static analysis of executables for collaborative malware detection on Android.
In: ICC 2009 Communication and Information Systems Security Symposium, Dresden,
Germany (June 2009)

23. Blasing, T., Schmidt, A.-D., Batyuk, L., Camtepe, S.A., Albayrak, S.: An Android applica-
tion sandbox system for suspicious software detection. In: 5th International Conference on
Malicious and Unwanted Software, MALWARE 2010, Nancy, France (2010)

24. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, Get Off My Market: Detecting Mali-
cious Apps in Alternative Android Markets. In: Proceedings of the 16th Network and Dis-
tributed System Security Symposium, NDSS 2012 (February 2012)

25. AppChina, http://www.appchina.com/
26. Pendragon Software Corporation. CaffeineMark 3.0
27. http://www.benchmarkhq.ru/cm30/
28. Di Cerbo, F., Girardello, A., Michahelles, F., Voronkova, S.: Detection of malicious appli-

cations on Android os. In: Sako, H., Franke, K.Y., Saitoh, S. (eds.) IWCF 2010. LNCS,
vol. 6540, pp. 138–149. Springer, Heidelberg (2011)

29. http://developer.android.com/reference/android/content/
Intent.html

iBinHunt: Binary Hunting

with Inter-procedural Control Flow

Jiang Ming1, Meng Pan2, and Debin Gao3

1 College of Info Sciences and Tech, Penn State University
jum310@ist.psu.edu
2 D’Crypt Pte Ltd.

pinpinmao@gmail.com
3 School of Info Systems, Singapore Management University

dbgao@smu.edu.sg

Abstract. Techniques have been proposed to find the semantic differ-
ences between two binary programs when the source code is not available.
Analyzing control flow, and in particular, intra-procedural control flow,
has become an attractive technique in the latest binary diffing tools since
it is more resistant to syntactic, but non-semantic, differences. However,
this makes such techniques vulnerable to simple function obfuscation
techniques (e.g., function inlining) attackers any malware writers could
use. In this paper, we first show function obfuscation as an attack to
such binary diffing techniques, and then propose iBinHunt which uses
deep taint and automatic input generation to find semantic differences
in inter-procedural control flows. Evaluation on comparing various ver-
sions of a http server and gzip shows that iBinHunt not only is capable
of comparing inter-procedural control flows of two programs, but offers
substantially better accuracy and efficiency in binary diffing.

Keywords: binary diffing, semantic difference, taint analysis.

1 Introduction

Binary diffing tools for finding semantic differences between two programs have
many security applications, e.g., automatically finding security vulnerabilities
in a binary program given its patched version [17], large-scale malware indexing
with function-call graphs [20], automatically adapting trained anomaly detectors
to software patches [24], profile reuse in application development [33], etc. How-
ever, binary diffing is difficult due to different register allocation, semantically
equivalent instruction replacement, and other program obfuscation techniques
which make semantically equivalent programs syntactically different [17].

One of the latest solutions in binary diffing for finding semantic differences
is to find similarity/difference in control flow structure rather than binary in-
structions [14,12,17,20]. Such tools have the advantage of being resistant to se-
mantically equivalent instruction replacements and other program obfuscation
techniques, and therefore are more suitable in security analysis in which pro-
grams (potentially malware) are usually intentionally produced to make analysis

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 92–109, 2013.
© Springer-Verlag Berlin Heidelberg 2013

iBinHunt: Binary Hunting with Inter-procedural Control Flow 93

difficult. An interesting aspect we analyze in this paper is whether such analysis
should be based on inter-procedural control flow or intra-procedural control flow.

Most previous work [14,12,17,20] focus on the intra-procedural control flow.1

There is a good reason for this choice as the control flow comparison usually in-
volves maximum common subgraph isomorphism, an NP-complete problem [18].
Working with all basic blocks in an inter-procedural control flow graph (ICFG)
would require manipulation of graphs with thousands or tens of thousands of
nodes, where finding a graph isomorphism becomes impractical. Working with
basic blocks in an intra-procedural control flow graph (CFG), instead, is prac-
tical as the number of nodes does not usually go beyond hundreds. However,
comparing the control flow structure of basic blocks in each function is vulner-
able to function obfuscation techniques (e.g., function inlining) that could be
used in producing the binary programs under analysis. This is a serious problem
as applying some function obfuscation, e.g., function inlining, is extremely easy.

In this paper, we first demonstrate the attack of function obfuscation on bi-
nary diffing tools that compare intra-procedural control flow. We then propose
a new binary diffing technique called iBinHunt that is resistant to such an at-
tack. iBinHunt discards all function boundary information and compares the
inter-procedural control flow of binary programs. It uses deep taint, a novel dy-
namic taint analysis technique that assigns different taint tags to various parts
of the program input and traces the propagation of these taint tags to reduce
the number of candidates of basic block matching. With deep taint, the set of
matching candidates of each basic block changes from the set of all basic blocks
in a program (in the order of thousands or tens of thousands) to just a few basic
blocks on a particular execution trace with the same taint tag. To increase the
coverage of execution traces on basic blocks, iBinHunt automatically generates
program inputs that traverse different execute paths for the deep taint analysis.

We implemented iBinHunt and used it to compare various versions of a http

server and gzip. Results show that iBinHunt finds semantic differences by an-
alyzing the inter-procedural control flows with better accuracy, and is capable
of comparing binary programs with relatively large differences, an improvement
over previous techniques which are only shown to work on programs with small
changes. We also show that iBinHunt is more efficient and faster in finding basic
block matchings than previous techniques by a factor of two.

2 Existing Binary Diffing Tools and Function Obfuscation

We focus on binary diffing tools for finding semantic differences instead of syn-
tactic differences. Semantic differences refer to differences in functionality (i.e.,
input-output behavior), whereas syntactic differences refer to those in instruc-
tions [17]. Therefore we do not consider binary diffing tools that base its analysis
on the binary instructions (bsdiff, bspatch, xdelta, JDiff, etc.), because they are

1 Some of them zoom in to do intra-procedural control flow analysis first, and subse-
quently zoom out for inter-procedural control flow analysis where each procedure is
represented as a simple node with details ignored.

94 J. Ming, M. Pan, and D. Gao

more vulnerable to different register allocation, basic block re-ordering, func-
tionally equivalent instruction(s), and other instruction obfuscation techniques.

2.1 Existing Binary Diffing Tools Based on Control-Flow Structure

To find semantic differences between two binaries, some latest binary diffing
techniques [14,12,27,17] base their comparison on intra-procedural control-flow
structure. BinDiff [14] and its extension [12] use some heuristics (e.g., graphs with
the same number of basic blocks, edges, and caller nodes) to test if two graphs
or basic blocks are similar. BinHunt [17] compares basic blocks by symbolic ex-
ecution and theorem proving, and then compares intra-procedural control-flow
graphs to find the matchings between basic blocks. Call graphs are then com-
pared to find matchings between functions. DarunGrim2 [21,11] relies heavily on
function boundary information due to its simplicity. For basic blocks in every
function, DarunGrim2 first generates a fingerprint to abstract the instruction
sequences and then uses that as a key to a hash table, from which fingerprint
matching is performed to find differences in the two functions. Intra-procedural
control-flow graphs have also been used frequently in malware clustering and
classification [20,2,5,22] because it’s more resilient to instruction-level obfusca-
tions. SMIT [20] searches for the most similar malware samples by finding a
nearest-neighbor in malware’s function-call graph database. Kruegel et al. [22]
present an approach based on the analysis of a worm’s intra-procedural control-
flow graph to identify structural similarities between different worm mutations.

2.2 Function Obfuscation

Binary diffing tools based on control-flow structure are more resistant to different
register allocation, basic block re-ordering, functionally equivalent instruction(s),
and other instruction-level obfuscation techniques. However, most of them rely
heavily on function boundary information from the binary, i.e., they analyze the
intra-procedural control-flow structure of each function. We believe that this is
mainly due to efficiency of the graph comparison techniques used. The graph
comparison problem (and the subgraph isomorphism problem) is NP-complete.
Existing algorithms for subgraph isomorphism are efficient only in processing
small graphs [23,28,17]. Appendix A shows the number of basic blocks in dif-
ferent functions in a typical server program binary, which suggests that graph
isomorphism is practical when analyzing intra-procedural control flows.

However, function boundary information is not reliable due to well-studied
function transformation obfuscation techniques [9], which include

– Inlining functions: a function call to f is replaced with the body of f while
f itself is removed;

– Outlining functions: a new function f is created by extracting a sequence
of statements into f and replacing them with a function call to f ;

– Cloning functions: copies of the same function are created (with different
names) to make them appear as different functions;

iBinHunt: Binary Hunting with Inter-procedural Control Flow 95

– Interleaving functions: various function bodies are merged into one func-
tion f , while calls to these functions are replaced by calls to f .

Here we focus on function inlining and outlining because they have a large impact
on graph isomorphism as discussed in Appendix B.

3 Diffing Binary Programs with Inter-Procedural
Control-Flow Graphs

In Section 2.2, we discuss the function obfuscation attacks which existing binary
diffing tools based on intra-procedural control-flow analysis cannot deal with.
A natural solution to such attacks is to find repetitions of code sequences and
combine them into one subroutine (to combat function inlining and cloning),
and to flatten the hierarchical structure created by functions and to simply treat
function calls as execution jumps (to combat function outlining and interleaving).
After this there is only one graph left for each binary program containing all
basic blocks and the corresponding control flows, and this graph is essentially
the inter-procedural control-flow graph (ICFG).

However, such a simple solution has disadvantages in both accuracy and ef-
ficiency. Each basic block in one binary program will have a large number of
candidates of basic block matchings in the other binary program. Even if all
these candidates are examined, there could be multiple ones that are semanti-
cally similar that originally come from non-matching functions. However, since
function information is ignored, all these basic blocks are good candidates and
may make the result inaccurate. We also need to work on graph isomorphism of
two graphs with large number of nodes. We tried this with BinHunt [17], one of
the latest and most sophisticated binary diffing tools with graph isomorphism,
and found that after working for 6 hours on basic block comparison with a desk-
top computer with a Core2 Duo CPU of 3.0 GHz and RAM of 4 GB on a server
program thttpd, only 7% of the possible mappings had been compared.

3.1 Overview of iBinHunt

iBinHunt reduces the number of candidates of basic block matchings with a novel
technique called deep taint. Taint analysis is to dynamically trace data from
untrustworthy sources to monitor basic blocks in a program that process such
data [26,7,35,31,16,13]. We monitor the execution of the two binary programs
under a common input and use taint analysis to record all basic blocks involved
in the processing of the input. This reduces the number of candidates of basic
block matching from all basic blocks in the binary to those tainted.

iBinHunt goes one step further to assign different taint tags to various parts
of the input, a method we call deep taint. Deep taint differentiates various parts
of the input by assigning them different taint tags, and monitors propagation of
different taint tags to basic blocks on a dynamic trace. Only basic blocks from
two binary programs that are marked with the same taint tags are considered

96 J. Ming, M. Pan, and D. Gao

matching candidates. This further reduces the number of candidates of basic
block matchings by a factor of up to 74% in our experiments.

Deep taint and the taint tags help reduce the number of matching candidates.
However, only a small number of basic blocks are on the trace of the processing of
a single input, and we need to find the matching of a large number of basic blocks
(if not all) to make the graph isomorphism efficient. iBinHunt increases the
coverage of execution traces on tainted basic blocks by automatically generating
inputs that result in different execution traces in the binary program, a technique
inspired by recent advances in white-box fuzz testing [19]. We first record the
execution trace of a seeding input, and then symbolically replay the recorded
trace and collect constraints of the input that lead to the recorded trace. The
collected constraints are then negated and solved with a constraint solver to
generate a new input, which will result in a different execution trace due to
the negated constraint. A large number of inputs can be generated in this way,
making more and more basic blocks tainted with different taint tags.

Next, we present the details of deep taint and automatic input generation.

3.2 Deep Taint for Basic Block Comparison

Previous taint analysis treats taint sources as streams, e.g., byte streams from
keyboard, effectively tainting all input bytes with a single taint tag. Basic blocks
processing different parts of such input will therefore be tainted with the same
taint tag. In iBinHunt, we differentiate these basic blocks if they process different
parts of the input. For example, basic blocks that process the version field of
an http request should never match with basic blocks that process the host

field of the same http request. Differentiating these basic blocks will reduce the
number of candidates of basic block matchings.

Table 1 shows an example of the different taint tags assigned to various parts
of an http request. Each unique taint tag corresponds to a particular bit in
a binary number that allows disjunction manipulation. Deep taint works on
the protocol level with a finer granularity such that various protocol fields are
monitored with different taint tags. The process of locating different fields of the
program input can be automated with a protocol analyzer [10,34,4].

Table 1. Program input and its taint tags

Input Get index.html HTTP/1.1 .

Field Method URL Version Host

Taint tags 0001 0010 0100 1000

Multiple taint tags for a basic block. By monitoring the dynamic execution of
an input, we can see the propagation of different taint tags to basic blocks in
the program. Note that a basic block may appear multiple times on a dynamic
execution trace due to loops. Such a basic block may record the same taint tag
in the execution (when it processes the same part of the input in a loop) or
different taint tags (when it processes different parts of the input).

iBinHunt: Binary Hunting with Inter-procedural Control Flow 97

Figure 1 shows an example of this in our experiment with thttpd-2.25. The
highlighted instructions in the source code is located inside a for loop, which
executes multiple times in the processing of an input and records multiple taint
tags. The dynamic execution trace we obtained recorded four different taint tags
for a basic block BB_10088, which corresponds to the highlighted instructions in
the source code. We take the disjunction of these tags to obtain the final taint
representation for the corresponding basic block.

Dynamic Trace Basic Blocks
Mapping To ICFG

BB_364: taint tag 0001

BB_388: taintt tag 0010

BB_436: taintt tag 0100

BB_1189: taintt tag 1000

Basic Block in ICFG
BB_10088

mov 0x8(%ebp),%eax

mov 0x94(%eax),%eax

cmpb $0xa,-0x1(%ebp)

je 0x80530e5

BB_10088:
Tags: 1111

bufgets:
 for (i = hc->checked_idx; hc->checked_idx < hc->read_idx; ++hc->checked_idx){

c = hc->read_buf[hc->checked_idx];
if (c == '\012' || c == '\015')

 { } }

Mapping Mapping

Fig. 1. Multiple taint tags

Basic block comparison. As mentioned in Section 3.1, basic blocks from the
two binary programs that have the same taint representation will be candidates
for matching. We compare these candidate basic blocks by applying the same
algorithm as BinHunt [17], in which symbolic execution is used to represent the
outputs of a basic block in terms of its symbolic inputs, and a theorem prover is
used to test if the outputs from the two basic blocks are semantically equivalent.
Although this basic block comparison might take relatively long time to converge
(due to the use of a theorem prover), the number of comparisons is limited to
the small number of blocks with the same taint representation, and therefore
iBinHunt is more efficient (see Section 4 for our evaluation results).

Basic block matching. There are two other groups of blocks we need to consider
for finding matched blocks. One group consists of blocks that are not semanti-
cally equivalent but have the same taint representation. They could very likely
represent the differences between the two programs that iBinHunt is trying to
locate. Another group consists of blocks that are not tainted but are on the
dynamic execution trace. These blocks are not tainted due to various reasons,
including limitations of taint analysis to avoid taint explosion [6,29], not directly
processing program inputs (e.g., signal processing), etc. However, they are also
very likely to match with one another as they are on the dynamic trace of pro-
cessing the same input. Appendix C shows an example of these two groups of
blocks in thttpd-2.19 and thttpd-2.25.

98 J. Ming, M. Pan, and D. Gao

One way of dealing with these two groups of blocks is to define a matching
strength for basic block comparison, and consider two blocks matching when the
matching strength exceeds certain threshold; an approach used in BinHunt [17].
We do not use this approach because 1) iBinHunt emphasizes using control-flow
structural information rather than comparing binary instructions in basic blocks,
and 2) the setting of such a threshold is difficult and different settings may lead
to different results. Instead, we apply a more stringent requirement that basic
blocks b1 and b2 are considered matched to one another if b1 and b2 have the
same taint representation (possibly both non-tainted) and

– b1 and b2 are semantically equivalent (evaluated by symbolic execution and
theorem proving as explained above); or

– a predecessor of b1 and a predecessor of b2 match; or
– a successor of b1 and a successor of b2 match.

We want to see how far we can go with such a stringent definition of matching.
Note that it is possible that some matching blocks are not found unless a relaxed
definition is used, which can be easily applied in iBinHunt for practical usage.

3.3 Automatic Generation of Program Inputs

Although deep taint reduces the number of matching candidates in basic block
comparison, it only helps finding the matchings for basic blocks on the corre-
sponding execution trace. Therefore, deep taint applied to more program inputs
is needed. However, random inputs are not the most desired because they may
result in the same execution paths. We need to find inputs that traverse different
paths in the binary program, which is a similar requirement to those in program
testing where test cases are needed to cover more program execution paths.

White-box exploration on binary files has been used in many previous
work [3,25,19]. We apply the same idea to generate execution traces in an it-
erative process that incrementally explores new execution paths. In each itera-
tion, we first monitor and record an execution trace. We then use a constraint
collector [30] to run symbolic execution on the recorded trace and gather the
constraints on inputs on every branching conditions. These constraints capture
how the input was processed in the corresponding dynamic execution. We then
negate one of these constraints collected to obtain the input constraints that
would result in a different execution path, and solve these constraints with the
theorem prover to obtain a corresponding real input for deep taint in the next
iteration.

There are typically many branching locations on an execution trace. We pick
one that may result in the largest number of new basic blocks explored by count-
ing all the uncovered basic blocks of the corresponding sub-tree.

4 Implementation and Evaluation

4.1 Implementation of iBinHunt

Figure 2 shows the architecture of iBinHunt. In the rest of this subsection, we
briefly describe how each component of iBinHunt was implemented.

iBinHunt: Binary Hunting with Inter-procedural Control Flow 99

Static

analyzer

Protocol

parser
Deep taint

Input

generator

Basic block

comparison

Graph

isomorphism

Two

 binaries
ICFG

Protocol

specification

Path

constraints

New inputs

Basic blocks

Matching strength

matrix

Binary

 differences

Initial input

Fig. 2. Architecture of iBinHunt

Static analyzer. iBinHunt uses the same static analyzer as in BinHunt [17]. It
first disassembles the two binary programs to obtain the x86 instructions, and
then converts the x86 instructions into an intermediate representation (IR) for
further analysis. The IR we use is the same as in BinHunt and BitBlaze [1,30],
which consists of roughly a dozen different statements. Control flow is analyzed
on the IR of the two binary programs to obtain the inter-procedural control-flow
graph (ICFG), where nodes correspond to basic blocks in the program and edges
correspond to transitions among the basic blocks.

Protocol analyzer. We assume that the protocol specifications are known, and
therefore a protocol analyzer is not needed. In case the protocol specification is
not known, any automatic protocol analyzer [10,34,4] can be used.

Deep taint. Deep taint was based on TEMU [36] and QEMU2. TEMU uses a
shadow memory to store the taint status. We modify the shadow memory and
add a small data structure for each taint byte to store its corresponding taint
tag. Currently deep taint supports up to 64 different tags.

Basic block comparison. The dynamic traces from deep taint are first mapped
to the ICFG. This mapping is simple as the eip value recorded in deep taint
and the program counter value in ICFG differ by the length of the corresponding
instruction. Once this mapping is obtained, comparison of two basic blocks from
the two binary programs is carried out if they have the same taint representation
and are on dynamic traces recorded given the same program input.

We use the same basic block comparison technique as in BinHunt [17], i.e.,
symbolic execution is first used to represent outputs of the basic blocks with
their input symbols, and a theorem prover (STP [15]) is then used to check if
the outputs from the two basic block are semantically equivalent. Note that the
basic block comparison performed here is slightly different from BinHunt in that
here the comparison is context aware, i.e., the permutation of outputs of the
equivalent basic blocks is the permutation of inputs of the successor blocks. This
is because the basic blocks to be compared here are on a particular execution
path, where there is always a unique predecessor and a unique successor.

2 QEMU, www.qemu.org

www.qemu.org

100 J. Ming, M. Pan, and D. Gao

Graph isomorphism. iBinHunt also uses the same (customized) backtracking
technique to find the maximum isomorphic subgraph as in BinHunt [17].

Difference from BinHunt. Although some components of iBinHunt are very sim-
ilar to those in BinHunt as explained above, there is a major difference between
the two, namely iBinHunt uses a dynamic component of deep taint while Bin-
Hunt bases purely on static analysis of the binary programs.

Input generator. Path constraints are collected as in appreplay [30]. We use
STP [15] to find a new input that satisfies the negated constraints.

4.2 Evaluation

We applied iBinHunt to find semantic differences in several versions of thttpd
and gzip. We chose to work on thttpd and gzip for two main reasons. First,
they were commonly used programs for which we could find various older versions
that are substantially different from the latest one, an evaluation criteria we have
for iBinHunt. Second, both thttpd and gzip had known vulnerabilities in their
earlier versions, which is a typical application scenario of iBinHunt.

To evaluate iBinHunt in its resistance to function obfuscation, we simply use
iBinHunt to analyze the inter-procedural control-flow graphs instead of enu-
merating different obfuscation techniques. As discussed in Section 3, iBinHunt
removes repetitions and flattens function structures, which will result in the
same ICFG no matter what function obfuscation techniques are used.

There are two main aspects on which we want to evaluate. First, we want to
see how many basic blocks can be matched, how many matchings are identified
by deep taint, and how long it takes to find these matchings. Second, we want
to take a closer look at the differences found, and confirm these differences by
comparing them to the ground truth (program source code).

Table 2 and Table 3 show the simple statistics of the various versions of
thttpd and gzip, respectively. Note that in some cases, the differences account
to nearly 40% of the source code, which we consider very big changes between
the two versions. Due to the space limitation, we do not detail all these changes,
most of which are due to bug fixing and new features added.

Table 2. Different versions of thttpd (number of lines changed / total number of lines)

thttpd- 2.20 2.20c 2.21 2.25

2.19 252/6029 254/5843 1483/6641 2908/7271

We performed our experiments on two machines, one with a Core2 Duo CPU
of 2.6 GHz and RAM of 4 GB (for deep tainting) and another with a Core2 Duo
CPU of 3.0 GHz and RAM of 4 GB (for all other components).

Figure 3 and Figure 4 show the results of thttpd and gzip, respectively. Each
graph shows six different types of information.

iBinHunt: Binary Hunting with Inter-procedural Control Flow 101

Table 3. Different versions of gzip (number of lines changed / total number of lines)

gzip- 1.3.12 1.3.13 1.40

1.2.4 1317/4959 1351/4929 1446/4841

– Shaded areas: the three shaded areas show the number of matched blocks
according to our definition of matching in Section 3.2. The horizontal shaded
area corresponds to matched basic blocks that are semantically the same;
the 135-degree shaded area corresponds to matched ones that are not se-
mantically equivalent but have both a predecessor and a successor matched;
and the vertical shaded area corresponds to those that are not semantically
equivalent but have either a predecessor or a successor matched.

– Lines: the lower slanted line indicates the time taken for input generation
and deep taint; the upper slanted line indicates the total time spent; and the
horizontal line shows the total number of basic blocks in the binary program;

0 20 40 60 80 100trace19
42

23
42

27
42

31
42

35
42

39
42

bl
oc

k
nu

m
be

r

matched basic blocks that are semantically the same
matched basic blocks that are not semantically equivalent
but with both a predecessor and a successor matched
matched basic blocks that are not semantically equivalent
but with either a predecessor or a successor matched

total basic block number

0
20

0
40

0
60

0
80

0
tim

e
/ m

in
ut

e

input generation and
deep taint time
total time

(a) thttpd-2.19 vs. thttpd-2.20

0 20 40 60 80 100trace19
42

23
42

27
42

31
42

35
42

39
42

bl
oc

k
nu

m
be

r

matched basic blocks that are semantically the same
matched basic blocks that are not semantically equivalent
 but with both a predecessor and successor matched
matched basic blocks that are not semantically equivalent
 but with either a predecessor or a successor matched

total basic block number

0
20

0
40

0
60

0
80

0
tim

e
/ m

in
ut

e

input generation and
deep taint time
total time

(b) thttpd-2.19 vs. thttpd-2.20c

0 20 40 60 80 100trace16
47

20
47

24
47

28
47

32
47

36
47

40
47

bl
oc

k
nu

m
be

r

matched basic blocks that are semantically the same
matched basic blocks that are not semantically equivalent
but with both a predecessor and a successor matched
matched basic blocks that are not semantically equivalent
but with either a predecessor or a successor matched

total basic block number

0
20

0
40

0
60

0
80

0
tim

e
/ m

in
ut

e

input generation and deep taint time
total time

(c) thttpd-2.19 vs. thttpd-2.21

0 20 40 60 80 100trace13
25

19
25

25
25

31
25

37
25

43
25

bl
oc

k
nu

m
be

r

matched basic blocks that are semantically the same
matched basic blocks that are semantically equivalent
but with both a predecessor and a successor matched
matched basic blocks that are not semantically equivalent
but with either a predecessor or a successor matched

total basic block number

0
20

0
40

0
60

0
80

0
tim

e
/ m

in
ut

e

input generation and deep taint time
total time

(d) thttpd-2.19 vs. thttpd-2.25

Fig. 3. Evaluation on different versions of thttpd

102 J. Ming, M. Pan, and D. Gao

0 10 20 30 40 50
trace

39
1

11
91

19
91

27
91

35
91

bl
oc

k
nu

m
be

r

matched blocks that are semantically the same
matched blocks that are semantically equivalent
but with both a predecessor and a successor matched
matched basic blocks that are not semantically equivalent
but with either a predecessor or a successor matched

total basic block number

5
10

5
20

5
30

5
40

5
50

5
tim

e
/ m

in
ut

e

input generation and deep taint time
total time

(a) gzip-1.2.4 vs. gzip-1.3.12

0 10 20 30 40 50
trace

35
2

11
52

19
52

27
52

35
52

43
52

51
52

bl
oc

k
nu

m
be

r

matched basic blocks that are semantically the same
matched basic blocks that are not semantically equivalent
but with both a predecessor and a successor matched
matched basic blocks that are not semantically equivalent
but with either a predecessor or a successor matched

total basic block number

0
10

0
20

0
30

0
40

0
50

0
tim

e
/ m

in
ut

e

input generation and deep taint time
total time

(b) gzip-1.2.4 vs. gzip-1.3.13

0 10 20 30 40 50
trace

34
0

12
40

21
40

30
40

39
40

48
40

57
40

bl
oc

k
nu

m
be

r

matched basic blocks that are semantically the same
matched basic blocks that are not semantically equivalent
but with both a predecessor and a successor matched
matched basic blocks that are not semantically equivalent
but with either a predecessor or a successor matched

total basic block number

0
10

0
20

0
30

0
40

0
50

0
tim

e
/ m

in
ut

e

input generation and deep taint time
total time

(c) gzip-1.2.4 vs. gzip-1.40

Fig. 4. Evaluation on different versions of gzip

Matching basic blocks. Although we use a relatively stringent definition of match-
ing (see Section 3.2), iBinHunt manages to find most of the matching blocks.
For example, Figure 4 shows that about 90% of the basic blocks are matched
in comparing gzip-1.2.4 and gzip-1.3.12, which have over 25% of the lines
of code changed. We also study the matchings found, and confirm that they
are correct. Most differences are reflected in these matchings, too, with some
differences not found; see Section 4.3 for more discussions.

Effectiveness of deep taint. Among successfully matched basic blocks, we count
the number of them that actually contain the same taint representation (the rest
are not tainted). Results (see Table 4 and Table 5) show that more than 34% and
67% of the matched basic blocks in thttpd and gzip, respectively, contain the
same taint representation. This shows that 1) deep taint is effective in helping
to identify basic block matchings since a large number of these matchings do
contain the same taint representation; 2) even though many basic blocks are not
tainted by our limited number of program inputs, their neighbors are tainted in
most cases and the tainted neighbors help matchings to be identified.

iBinHunt: Binary Hunting with Inter-procedural Control Flow 103

Table 4. Matched basic blocks with the same taint representation (thttpd)

thttpd- 2.20 2.20c 2.21 2.25

2.19 34.8% 38.2% 39.9% 37.4%

Table 5. Matched basic blocks with the same taint representation (gzip)

gzip- 1.3.12 1.3.13 1.40

1.2.4 67.9% 72.2% 72.6%

Accuracy. iBinHunt has better accuracy in basic block matching because deep
taint reduces the number of matching candidates. Typically, the number of can-
didate matchings is 8% and 5% of total basic block pairs in our experiments
with thttpd and gzip. Refer to Appendix D for another example of accuracy
improvement of iBinHunt.

Handling binary programs with big differences. The results clearly show that
iBinHunt is good in handling binary programs with big differences, a property
previous tools for finding semantic differences [17] do not have. These can be seen
from the percentage of basic block matched (all shaded areas), which does not
decay significantly when dealing with binary programs with larger differences.

Time taken in the analysis. From Figure 3 and Figure 4, we see that when more
traces are used, more basic blocks are matched until a steady state is reached.
85 and 50 inputs were needed before the number of matched basic blocks stops
increasing for thttpd and gzip, respectively. These 85 or 50 input generations
and deep taint analysis are incremental and cannot be parallelized. However, the
basic block comparison can be easily parallelized to shorten the time needed. Also
note that our implementation is an un-optimized one and there are rooms for
improvements. That said, we still see more than a factor of 2 improvement when
compared to BinHunt [17] (see Table 6 and Table 7). The starting percentage
corresponds to basic blocks that are syntactically the same.

Table 6. Progress made in comparing thttpd-2.19 and thttpd-2.25

Percentage of basic blocks matched Time
Starting Ending Progress made spent

BinHunt 31% 38% 7% 6 hours

iBinHunt 31% 47% 18% 6 hours

Note that results in Table 6 and Table 7 are obtained without parallelizing
basic block comparison for a fair comparison. Parallelizing the comparison could
speed up the process a lot to make iBinHunt practical in analyzing real programs.

104 J. Ming, M. Pan, and D. Gao

Table 7. Progress made in comparing gzip-1.24 and gzip-1.40

Percentage of basic blocks matched Time
Starting Ending Progress made spent

BinHunt 11% 16% 5% 3 hours

iBinHunt 11% 25% 14% 3 hours

4.3 Discussions

Although we focus on analyzing the inter-procedural control-flow graph in demon-
strating the advantages of iBinHunt in this paper, iBinHunt is also resistant to
other types of program obfuscations, e.g., control flow flattening [32,8], that ex-
isting binary diffing tools cannot handle. This is mainly due to the deep taint
analysis we employ, which is a dynamic analysis approach.

The power of iBinHunt is limited by the non-perfect basic block coverage.
This is mainly due to limitations of white box exploration technique [19], e.g.,
path explosion and imperfect symbolic execution to system calls.

Since iBinHunt uses deep taint, it also suffers from some limitations of taint
analysis in general, e.g., control dependence, pointer indirection, and implicit
information flow evasions [6,29].

We performed our evaluation and analysis by comparing iBinHunt with an-
other state-of-the-art binary diffing tool BinHunt [17]. We could have made
compassion with other binary diffing tools, e.g., BinDiff. However, due to the
many heuristics BinDiff and other binary diffing tools use, it is hard to have a
fair comparison with iBinHunt, in which such heuristics are not used. We leave
it as future work to compare with other binary diffing tools.

5 Conclusion

In this paper, we first introduce function obfuscation attacks in existing binary
diffing tools that analyze intra-procedural control flow of programs. We propose
a novel binary diffing tool called iBinHunt which, instead, analyzes the inter-
procedural control flow. iBinHunt makes use of a novel technique called deep
taint which assigns different taint tags to various parts of the program input
and traces the propagation of these taint tags in program execution. iBinHunt
automatically generates program inputs to improve basic block coverage. Eval-
uations on comparing various versions of thttpd and gzip show that iBinHunt
offers better accuracy and efficiency than existing binary diffing tools.

References

1. BitBlaze: Binary analysis for computer security,
http://bitblaze.cs.berkeley.edu/

2. Briones, I., Gomez, A.: Graphs, entropy and grid computing: Automatic compari-
son of malware. In: Proceedings of the 2004 Virus Bulletin Conference (2004)

http://bitblaze.cs.berkeley.edu/

iBinHunt: Binary Hunting with Inter-procedural Control Flow 105

3. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin, H.: Bitscope: Automatically dissecting malicious binaries. Technical
Report, CMU-CS-07-133, School of Computer Science, Carnegie Mellon University
(March 2007)

4. Caballero, J., Poosankam, P., Kreibich, C., Song, D.: Dispatcher: Enabling active
botnet infiltration using automatic protocol reverse-engineering. In: Proceedings
of the 16th ACM Conference on Computer and Communication Security, Chicago,
IL (November 2009)

5. Carrera, E., Erdelyi, G.: Digital genome mapping al advanced binary malware
analysis. In: Proceedings of the 2004 Virus Bulletin Conference (2004)

6. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques
for malware analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 143–163. Springer, Heidelberg (2008)

7. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
data lifetime via whole system simulation. In: 13th USENIX Security Symposium
(2004)

8. Chow, S., Gu, Y., Johnson, H., Zakharov, V.: An approach to the obfuscation of
control-flow of sequential computer programs. In: Davida, G.I., Frankel, Y. (eds.)
ISC 2001. LNCS, vol. 2200, pp. 144–155. Springer, Heidelberg (2001)

9. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical Report 148, Department of Computer Sciences, The University of
Auckland (July 1997)

10. Cui, W.: Discoverer: Automatic protocol reverse engineering from network traces.
In: Proceedings of the 16th USENIX Security Symposium (2007)

11. DarunGrim, J.O.: A binary diffing tool, http://www.darungrim.org
12. Dullien, T., Rolles, R.: Graph-based comparison of executable objects. In: Pro-

ceedings of SSTIC 2005 (2005)
13. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic spyware analysis.

In: Proceedings of the 2007 Usenix Annual Conference (2007)
14. Flake, H.: Structural comparison of executable objects. In: Proceedings of the GI

International Conference on Detection of Intrusions & Malware, and Vulnerability
Assessment 2004 (2004)

15. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531.
Springer, Heidelberg (2007)

16. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: Pro-
ceedings of the 2009 IEEE 31st International Conference on Software Engineering
(2009)

17. Gao, D., Reiter, M.K., Song, D.: BinHunt: Automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008)

18. Garey, M.R., Johnso, D.S.: Computers and intractability: A guide to the theory of
np-completeness (1979)

19. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In:
Network and Distributed System Security Symposium, NDSS 2008 (2008)

20. Hu, X., Chiueh, T., Shin, K.: Large-scale malware indexing using function-call
graphs. In: Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security (2009)

21. Jeongwook, O.: Fight against 1-day exploits: Diffing binaries vs anti-diffing bina-
ries. In: Black Hat (2009)

http://www.darungrim.org

106 J. Ming, M. Pan, and D. Gao

22. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Valdes, A., Zamboni, D.
(eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

23. Levi, G.: A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. Calcolo 9 (1972)

24. Li, P., Gao, D., Reiter, M.K.: Automatically adapting a trained anomaly detector
to software patches. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS,
vol. 5758, pp. 142–160. Springer, Heidelberg (2009)

25. Molnar, D., Li, X.C., Wagner, D.: Dynamic test generation to find integer bugs
in x86 binary linux programs. In: Proceedings of USENIX Security Symposium
(2009)

26. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software. In: Network and
Distributed System Security Symposium, NDSS 2005 (2005)

27. Tenable Network Security Inc. PatchDiff. A patch analysis plugin for ida,
http://cgi.tenablesecurity.com/tenable/patchdiff.php

28. Raymond, J., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. Journal of Computer-Aided Molecular
Design 16 (2002)

29. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of the 2010 IEEE Symposium on Security and Privacy
(2010)

30. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer
security via binary analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

31. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. In: Proceedings of the 11th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(2004)

32. Wang, C., Davidson, J., Hill, J., Knight, J.: Protection of software-based surviv-
ability mechanisms. In: Proceedings of International Conference of Dependable
Systems and Networks (2001)

33. Wang, Z., Pierce, K., McFarling, S.: Bmat – a binary matching tool for stale profile
propagation. Journal of Instruction-Level Parallelism 2 (2000)

34. Wondracek, G., Comparetti, P.M., Kruegel, C., Kirda, E.: Automatic network pro-
tocol analysis. In: Proceedings of the 15th Annual Network and Distributed System
Security Symposium, NDSS 2008 (2008)

35. Yin, H., Song, D.: Panorama: capturing system-wide information flow for malware
detection and analysis. In: ACM Conference on Computer and Communications
Security, CCS 2007 (2007)

36. Yin, H., Song, D.: Temu: Binary code analysis via whole-system layered annotative
execution. Technical Report, EECS Department, University of California, Berkeley
(January 2010)

A Size of Different Functions in Thttpd

Figure 5 shows the cumulative histogram of functions with different number of
basic blocks in thttpd, an http server. It can be seen that 96% of the 459 non-
empty functions have fewer than 30 basic blocks. Only 7 functions have more

http://cgi.tenablesecurity.com/tenable/patchdiff.php

iBinHunt: Binary Hunting with Inter-procedural Control Flow 107

than 50 basic blocks. This makes the graph comparison simple, as in most cases
we only need to deal with graphs of fewer than 30 nodes. Graph isomorphism is
therefore practical in analyzing programs like thttpd.

20 40 60 80 100

360

380

400

420

440

460

n
u

m
b

er
 o

f
fu

n
ct

io
n

s

number of basic blocks

20 40 60 80 100

360

380

400

420

440

460

Fig. 5. Number of basic blocks in different functions (cumulative histogram)

B Function Inlining and Outlining

Figure 6 shows the basic idea of function inlining and outlining transformations.
Such simple attacks are effective in confusing existing binary diffing tools be-
cause inlining and outlining can arbitrarily increase or decrease the size of any
functions. The intra-procedural control-flow graph may contain unreliable infor-
mation, resulting in a small maximum common subgraph (as in many binary
diffing tools, e.g., [14,12,27,17]) or complete failure when the whole program
contains only a single function (as in some malware analysis tools, e.g., [20]).

P1

P2

.

.

Pm

Function P's

code

Function Q's

code

Q1

Q2

.

.

Qm

call P()

call Q()

Inline

P1

P2

Pm

Q1

Q2

Qn

Outline

call R()

Q3

Qn

Pm-1

Pm

Q1

Q2

Function R's

code

P1

P2

Pm-2

Fig. 6. Inlining and outlining transformations

108 J. Ming, M. Pan, and D. Gao

C Example of Potential Matching Blocks

Figure 7 shows an example of these two groups of blocks in thttpd-2.19 and
thttpd-2.25. In Figure 7(a), BB_13232 and BB_16184 are not semantically
equivalent, but they have the same taint representation (0011). They both origi-
nally come from function find_hash() corresponding to a difference in the hash
algorithm used in the two versions of thttpd. In Figure 7(b), the four dashed
blocks are not tainted. A closer look into the corresponding source shows that
these blocks are part of the function tmr_create(), which does some simple
time routine and therefore are not tainted.

BB_13229:

je 0x8056272

BB_13232:

cjmp(0x1f:reg8_t == 0:reg8_t ,

 name(L_1270), name(L_1269));

BB_13240:

BB_16181:

je 0x805894d

BB_16184:

mov 0x80608d0,%eax

and %edx,%eax

mov %eax,-0xc(%ebp)

jmp 0x80588cf

BB_13185:

cjmp(2:reg8_t == 0:reg8_t ,

name(L_1261), name(L_1260));

BB_16137 :

cjmp(2:reg8_t == 0:reg8_t ,

name(L_1651), name(L_1650));

P1 P2

Matched

Matched

Not matched

 but with

the same tag

(a) Blocks with same taint representation

BB_13337:

jmp 0x8056389

BB_13358:

mov %ecx,%eax

sar $0x1f,%eax

cjmp(0x1f:reg8_t == 0:reg8_t

, name(L_1285),

name(L_1284));

BB_16528:

jmp 0x8058d5b

BB_16549:

mov %ecx,%eax

sar $0x1f,%eax

cjmp(0x1f:reg8_t == 0:reg8_t

, name(L_1695),

name(L_1694));

BB_13362:

cjmp(6:reg8_t == 0:reg8_t ,

name(L_1287),

name(L_1286));

BB_16553:

cjmp(6:reg8_t == 0:reg8_t ,

name(L_1697),

name(L_1696));

Matched

Matched

Matched

P1 P2

(b) Blocks not tainted

Fig. 7. Potential matching blocks

D Improved Accuracy of iBinHunt

Figure 8 shows an example in which iBinHunt outputs basic block matching
with improved accuracy.

In this example, BB_1371 from thttpd-2.25 should match with BB_1689 in
thttpd-2.19, both of which deal with the “-i” argument. However, BB_1687
in thttpd-2.19 also contains the same (type of) instructions, which confuses
the binary diffing tool in the matching. We tried BinHunt [17] and found that
BinHunt, in fact, finds the wrong matching in this case.

On the other hand, iBinHunt easily avoids such errors because the different
taint representation BB_1687 has, and therefore BB_1687 is not even on the list
of matching candidates of BB_1371.

Besides confirming that the differences found by iBinHunt correspond to se-
mantic differences in the source code, we also verified that these differences in-
clude many patches to vulnerabilities in the earlier version. Therefore, iBinHunt

iBinHunt: Binary Hunting with Inter-procedural Control Flow 109

 thttpd-2.19

parse_args:

else if (strcmp(argv[argn], "-nov") == 0)

 do_vhost = 0;

else if (strcmp(argv[argn], "-i") == 0 &&

argn + 1 < argc)

 thttpd-2.25

parse_args:

else if (strcmp(argv[argn], "-nov") == 0)

 do_vhost = 0;

else if (strcmp(argv[argn], "-g") == 0)
 do_global_passwd = 1;
else if (strcmp(argv[argn], "-nog") == 0)
 do_global_passwd = 0;
else if (strcmp(argv[argn], "-i") == 0 && argn + 1

< argc)

BB_1371: Taint Tags: 00000011

mov [esp+18h+var_14],offset_s_-i;

Jnz short loc_804B023

BB_1689: Taint Tags: 00000011

mov [esp+18h+var_14],offset_s_-i;

Jnz short loc_804B651

BB_1687: Taint Tag: 00000111

mov [esp+18h+var_14],offset_s_-g;

Jnz short loc_804B5E0

BB_1688: Taint Tags: 00000111

mov [esp+18h+var_14],offset_s_-nog;

Jnz short loc_804B60E

BinHunt
inaccurate match

iBinHunt
accurate match

Fig. 8. Accuracy improvement

can be used to automatically find vulnerabilities by comparing different ver-
sions of a program for automatic vulnerability discovery, which is an important
security application.

Sometimes It’s Better to Be STUCK!

SAML Transportation Unit for Cryptographic
Keys�

Christopher Meyer, Florian Feldmann, and Jörg Schwenk

Horst Görtz Institute for IT-Security, Ruhr-University Bochum
{christopher.meyer,florian.feldmann,joerg.schwenk}@rub.de

Abstract. Over the last decade the Security Assertion Markup Lan-
guage (SAML) framework evolved to a versatile standard for exchanging
security statements about subjects. Most notably, SAML facilitates the
authentication of users, and is thus deployed in both Webservice (SOAP,
WS-Security) and REST-based (SAML SSO webbrowser profile, SAML
Bearer token in OAuth) services.

This paper recommends an extension to the SAML framework which
provides an easy way to transport cryptographic key material bound
to assertions issued by particular subjects. The proposal fits into exist-
ing solutions and is fully compliant with the Security Assertion Markup
Language, XML Digital Signature and XML Encryption standards.

Keywords: SAML, XML, Key Transportation, Key Distribution,
SAML Extension.

1 Introduction

SAML. In the world of Single Sign-On (SSO), and authentication of users in
general, the Security Assertion Markup Language (SAML) [1] evolved to be a
successful standard. Companies like Google1 and Salesforce2 rely on its flexi-
bility and benefits. SAML’s ability to map security statements about subjects
to XML provides an easy and human readable solution for demands concerning
authentication and authorization of data exchange.

AKE. Multiple real-world applications depend on an authenticated key exchange
(AKE), which usually consists of a key agreement protocol combined with a
corresponding authentication protocol. It is necessary to combine identity man-
agement and federation with key exchange capabilites between the participants
in a secure way.

� This work was partially funded by the Sec2 project of the German Federal Ministry
of Education and Research (BMBF, FKZ: 01BY1030).

1 http://www.google.com
2 http://www.salesforce.com

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 110–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.google.com
http://www.salesforce.com

Sometimes It’s Better to Be STUCK! 111

Contribution. This paper describes how to perform authenticated key trans-
port within the SAML framework. More precisely, it provides the following
contributions:

– It is shown how to embed key information into SAML Assertions, in a fully
standard compliant way. Thus key management can easily be integrated in
any SSO/IDM system.

– A proof of concept implementation of the proposed solution is available
within the Sec2 project3 which aims at adressing the issue of user encrypted
cloud storage by performing en- and decryption exclusively at client side
(and by using hardware enabled key stores). For this to work it is neces-
sary to exchange key material (the solution will be introduced in detail in
section 6).

2 Related Work

The idea of combining SAML and key management/distribution capabilities is
not new and has already been subject of several other publications such as the
SAML V2.0 Kerberos Web Browser SSO Profile Version1.0 [2] specification.
The aforementioned standard aims at a seamless integration of Kerberos into
the browser world in combination with SAML usage. Thus, Kerberos already
provides a complete solution for symmetric key management and distribution.
Due to its great success and wide spread distribution, Kerberos can be seen as
the de facto standard for key distribution in the symmetric world. Technologies
like Microsoft ActiveDirectory4 rely on the security of the Kerberos protocol.
Additionally, many vendors such as e.g., Oracle5 or SAP6 offer Kerberos sup-
port in their products - mostly for authentication purposes. However, the main
drawback of Kerberos - from this paper’s point of view - is that it is limited to
be used with symmetric keys only.

For use with asymmetric keys, there is an existing standard for key man-
agement, the XML Key Management Specification (XKMS 2.0) [3]. The main
focus of XKMS is to define a protocol for distribution and registration of public
keys. The goal is to provide a WebService for the management of public key
material so that other WebServices can obtain public keys for encryption and
verification of digital signatures. This WebService protocol can be compared to
the well known public key server functionality introduced by PGP [4]. Since this
standard is solely based on asymmetric public keys it is also not applicable for
this proposal, as this paper aims for a technology independent solution regarding
both, symmetric and asymmetric key material.

Binding keys to identities is not only a major goal of this proposal, but also the
X.509 standard [5] and PGP [4] address this topic. Keys should be undoubtedly

3 http://www.sec2.org
4 http://www.microsoft.com/en-us/server-cloud/windows-server/

active-directory.aspx
5 http://www.oracle.com
6 http://www.sap.com

http://www.sec2.org
http://www.microsoft.com/en-us/server-cloud/windows-server/active-directory.aspx
http://www.microsoft.com/en-us/server-cloud/windows-server/active-directory.aspx
http://www.oracle.com
http://www.sap.com

112 C. Meyer, F. Feldmann, and J. Schwenk

connected to the corresponding entities. But one has to keep in mind that these
bindings are static and non flexible. In contrast to this kind of key binding,
STUCK is flexible since it binds keys to Assertions (which are themselves bound
to static identities, but the keys are only implicitly bound to these identities via
the Assertion). As Assertions are in general only short-lived, this can be turned
into an advantage. Binding keys to Assertions and not directly to certificates
offers much more flexibility and introduces a new kind of abstraction layer.

Another standard to mention is WS-Trust [6]. Though similar ideas of this
paper could also be realized by using the WS-Trust specification, this proposal
is based on SAML due to its wider usage and acceptance at major companies.

3 Motivation

With emerging new capabilities of servers and clients transporting keys or key
material over the internet, in a secure and reliable way, will become more and
more important in the following years. For example, the proposal of the web
crypto API 7 or the suggestions made by the Web Cryptography Working Group8

will provide clients and servers with cryptographic capabilities. In these scenarios
it is often mandatory to securely exchange keys between multiple parties. There-
for standardized means for secure key transportation are necessary. Regarding
this SAML recommends itself, due to its flexibility and wide-spread deployment.

3.1 Advantages of the Proposal

This proposal offers the option to bind key material to an Assertion. Key
transportation, whether encrypted or unencrypted (as in case of asymmetric
public keys), can now easily be done in the same communication process and
same protocol as SAML. An additional step for key management or distribution
can be ommitted.

Further on, a clean standardized way may ease and facillitate identity fed-
eration beyond company borders. Not only identities could be shared, but key
material, too. It could even be possible to offer key establishment facilities as an
additional benefit on an identity provider’s side.

The practical need for key transportation, management and distribution can
be seen in the previous work that has been done, as for example the already
mentioned SAML V2.0 Kerberos Web Browser SSO Profile [2]. But proposing a
standard for only a single usage scenario is not sufficient, since it does not care
about the needs of solutions not relying on this specific scenario (in this case
Kerberos). What is really needed is a very flexible approach decoupled from
SAML profiles and existing key establishment and distribution systems. The
proposed solution in this paper is open for every possible usage scenario.

7 http://html5.creation.net/webcrypto-api/
8 http://www.w3.org/2012/webcrypto/

http://html5.creation.net/webcrypto-api/
http://www.w3.org/2012/webcrypto/

Sometimes It’s Better to Be STUCK! 113

Binding keys to SAML Assertions as explained in the prior sections elim-
inates the necessity for additional transport media encryption since the confi-
dential parts of the key structure can be protected at application level - either
by securing the key material itself using EncryptedKey elements, or obfuscating
the whole KeyInfo structure by using EncryptedAttribute.

Also, one has to be aware that transport encryption is not equal to identity
binding since the transferred data is neither bound to an identity, nor protected
after the transport has been performed. Identities and keys obtained before or
after transportation (e.g., through malware or careless data processing) can be
used independent of corresponding identities. Channel binding approaches may
solve this issue, but add an additional server side requirement: Servers need to
support both, standard conformity concerning XML processing and means like
SSL/TLS for transport layer encryption. It should be noted that XML Encryp-
tion and XML Signature are partly necessary for SAML to work properly, thus
it remains a valid assumption that those two standards are already available at
server side.

4 Technological Foundations

The following section will introduce the major technologies utilized by the pro-
posal. Readers familiar with XML, XML Signature, XML Encryption, SAML
and key management capabilities of these standards may skip this section.

XML. The eXtensible Markup Language (XML) [7] represents a human readable
and machine processable language for data structuring. Data can be organized
in a tree-based manner and tagged with attributes. As a major benefit, XML
offers the option to be automatically validated against XML Schema Definition
(XSD) files to guarantee conformance with particular data structuring rules.
Both XML and optional XSD files are highly flexible and adjustable to fit nearly
every scenario regarding data structuring.

XML Signature. For applying the concept of digital signatures to XML docu-
ments the XML-Signature Syntax and Processing Standard (XML Signature) [8]
was created. By using XML Signature it is possible to sign parts of XML docu-
ments or even the whole document.

An XML Signature is introduced by adding a <ds:Signature> element into
an XML document. In most cases this element consists of three main subele-
ments: The <ds:SignedInfo> element specifies the necessary setup for signa-
ture creation and verification such as an optional canonicalization - a document
restructuring option -, the signature algorithm and the references - the signed
document parts which can be referenced e.g., via ID or XPath. Within the ref-
erences also the digest method and possibly transformation methods as well as
the digest value can be specified. The <ds:SignatureValue> element contains
the actual signature associated with the referenced document parts. Information
about the public key, which can be used to validate the signature, can be stored
in the <ds:KeyInfo> element.

114 C. Meyer, F. Feldmann, and J. Schwenk

XML Encryption. With the capabilities provided by the XML Encryption Syn-
tax and Processing Standard (XML Encryption) [9] the security goal of confi-
dentiality can be achieved. XML Encryption includes the features of popular
encryption solutions such as DES [10] or AES [11] into the XML world. Parts of
XML documents can be encrypted and decrypted by using XML Encryption.

The <enc:EncryptedData> element introduces an encrypted part or subpart
of the XML document. Obviously, this element is not added to the XML struc-
ture as a signature would be, but it replaces the encrypted cleartext. The three
main components of an encrypted data block are the <enc:EncryptionMethod>,
which specifies the cipher algorithm used for encryption and decryption, the
<ds:KeyInfo> and the <enc:CipherData>. The latter contains the encrypted
data itself, while <ds:KeyInfo> holds information about the key which has to
be used for decryption of the ciphertext, this may also be an encrypted key.

Mostly, hybrid encryption [12] schemes are used i.e., the symmetric key is
encrypted with the recipients public key. This aims at combining the speed
advantages of symmetric encryption schemes with the absence of shared secrets
offered by asymmetric schemes.

SAML. The Security Assertion Markup Language (SAML) standard is based
on XML and defines a framework for delivery of issuer and security statements.
Authentication and authorization statements can be modeled around subjects.
Therefore the standard defines a <saml:Assertion> element which can nest se-
curity statements and additional information. Moreover SAML can be bound
to underlying transport media and ships with some predefined usage protocols
for example a protocol implementing the popular Single Sign On use case. The
SAML pre-defined protocols offer XSD files exactly defining the message struc-
ture. Message integrity and validness are achieved by using optional digital signa-
tures via the XML Signature standard, whereas confidentiality can be achieved
by using optional encryption, according to the XML Encryption standard.

5 Get STUCK - The SAML Transportation Unit
for Cryptographic Keys

After having listed and explained the existing structures and technologies in
the previous section, the following sections explain how these structures can be
utilized to enable secure key transportation in a fully SAML 2.0 compatible way.

5.1 Goals of the Contribution

The main focus while designing the STUCK solution was to provide a standard-
ized way how to transport keys securely without breaking existing technologies.
Therefore the proposal has to come with terms of XML and especially SAML
compatibility, as well as major security goals when exchanging confidential key
material.

Sometimes It’s Better to Be STUCK! 115

SAML 2.0 Compatibility. The extension proposal focuses on a solution with-
out modifications to the existing XML Schema definitions of SAML. The solu-
tion must not break existing implementations and has to be fully compatible to
the SAML 2.0 specification (Assertions and Protocols for the OASIS Security
Assertion Markup Language (SAML) V2.0 [1]).

The SAML Standard provides flexible extension points within the Assertion
element. As mentioned in chapter 4, these Assertions are one of the core features
of SAML and used for security statements about subjects. An Assertion can
be digitally signed so that integrity protection can be guaranteed. The proposed
extension puts the key information inside this element to utilize this integrity
protection. Together with the subject information and a digital signature over
the element the key information is inextricably bound to an entity identified by
the information of the Subject element.

Due to the fact that a common extension point is used, the additional key in-
formation neither breaks the SAML Schema (XSD files), nor influences
Assertion or signature processing. Existing implementations do not need to
be adjusted. The application logic behind has simply to deal with additional key
information inside of an Assertion.

Security Goals. The proposed solution addresses multiple design goals valuable
when dealing with key transportation mechanisms.

– Confidentiality - provided by utilizing XML Encryption on the key mate-
rial (EncryptedKey elements are used)

– Integrity - provided by utilizing XML Signature on the transfered Assertion

– Authentication - provided by utilizing XML Signature on the transfered
Assertion which contains Subject and Issuer elements (the information
should be equal to the one of the Issuer’s certificates)

5.2 Identification of Extension Point

In order to combine a SAML Assertion with cryptographic key information,
the necessary extension point has to be identified.

Within an Assertion there can be any amount of AttributeStatement el-
ements with an unbounded number of Attribute elements as child nodes. An
Attribute element requires the presence of an XML attribute of type Name

identifying the content and a sequence of zero to unbounded AttributeValue

elements. An AttributeValue can hold content of type anyType, which weakens
the strict schema definition and allows any well-formed XML data at this place.
This is the extension point used by STUCK to integrate key information into
an Assertion.

For clarity reasons, figure 1 provides a schematic illustration of a SAML
Assertion containing key information.

116 C. Meyer, F. Feldmann, and J. Schwenk

Fig. 1. Schematic illustration of a SAML Assertion with highlighted extension point

5.3 XML Key Data Structure

Additional to the identified extension point for including key data into a SAML
Assertion, a suitable XML structure for holding cryptographic keys is required.
For this purpose, XML Signature already offers versatile structures for keys and
certificates. Supplemented by XML Encryption and its capabilities to define
encrypted keys, all necessary structures for key distribution, management and
transport are present yet. No additional structures have to be defined.

In the following the existing structures are briefly discussed. We mainly focus
on a single element of the XML Signature Standard, the ds:KeyInfo element.

ds:KeyInfo. The ds:KeyInfo element, taken from the XML Signature Stan-
dard (here denoted as namespace ds), can be used to carry data somehow rele-
vant for cryptographic keys. This includes several predefined data structures for
storing information regarding e.g., key data for RSA, DSA, PGP or SPKI, as
well as key related meta data like e.g., X.509 certificate data, key names, retrieval
methods for externally located keys or general management information.

The following child elements from ds:KeyInfo are important for the STUCK
proposal:

– ds:KeyName
This element may contain a key identifer string which identifies key material.

– ds:KeyValue
Originally defined to contain public keys used for signature verification, this
element may also contain symmetric key material or any data structure
defined in a namespace differnet from ds. The following child nodes are
allowed in the schema:

Sometimes It’s Better to Be STUCK! 117

• ds:DSAKeyValue
Defines how to store DSA [13] public keys.

• ds:RSAKeyValue
Defines how to store RSA [14] public keys.

• any ##other
The ds:KeyValue element offers the option to include additional ele-
ments from arbitrary namespaces (other than the one refered to by ds).
This allows to extend this element by including an enc:EncryptedKey

element from the XML Encryption Standard (see below).

enc:EncryptedKey. This approach aims for a flexible solution able to carry all
kinds of keys or key material, but the number of predefined key data structures
in the ds:KeyInfo element is limited. This can be remedied by utilizing the
extension point found in ds:KeyInfo: The element can easily be extended to
allow key data usually unsuitable for these predefined data structures by adding
elements from a differing namespace which provide a data structure for the
desired keys. In this approach, an element from the XML Encryption Standard
(here denoted by namespace enc), enc:EncryptedKey, is used.

This element offers support for transportation and storage of encrypted key
material. Since it is obviously not advantageous to transport critical keys (such as
private or secret keys) in an unencrypted manner, this element remains essential
for a complete key distribution solution (such as Kerberos [15]).

5.4 Putting the Pieces Together - Extended SAML Assertion

After having identified the required XML structures and their respective ex-
tension points, the STUCK approach combines these into a single solution for
secure key transportation in the SAML context.

The first step in the STUCK approach is to insert the key or key material
which is to be transported into a ds:KeyInfo element. For this purpose, the
previously identified extension point within ds:KeyInfo can be used to include
an enc:EncryptedKey element which can hold any type of key or key material.

Note also that in case where a key of a predefined type for ds:KeyInfo should
be transported (e.g., DSA or RSA keys as stated above), enc:EncryptedKey can
be used instead of the predefined structures to utilize its inherent encryption
features. Thus, the confidentiality of the key material itself is provided by XML
Encryption.

The next step in the STUCK approach is to insert the ds:KeyInfo element
including the enc:EncryptedKey element into a SAML Assertion. This is done
by utilizing the previously defined extension point within a SAML Assertion,
i.e., the ds:KeyInfo structure holding the key or key material is inserted into
an AttributeValue element within the Assertion.

Thus, the associated key material is explicitly secured by the same means
that protect the Assertion itself. This means integrity and authenticity of the
key or key material within this extension point are implictly protected by the
(optional) digital signature that protects the Assertion.

118 C. Meyer, F. Feldmann, and J. Schwenk

If further confidentiality beyond the content of an Attribute is necessary (as
for example to obfuscate the structures behind an Attribute, so that not only
the key material itself will be confidential, but also the accompanying additional
information like e.g., key name or management data) the whole ds:KeyInfo el-
ement can be secured by applying encryption using the enc:EncryptedData

element from the XML Encryption Standard before embedding it into the
Assertion.

As an alternative, the application of EncryptedAttribute as child of Attri-
buteStatement can be used instead of Attribute. This approach, however,
does not have any benefits over the usage of XML Encryption to secure the
ds:KeyInfo structure and is not considered any further in this paper.

An example SAML Assertion including key information according to our
contribution is depicted in figure 7 in the appendix. The Assertion is extended
with an AttributeStatement which holds an Attribute with Name="desired

Key". This Attribute contains an encrypted key as AttributeValue. The whole
content (including the key element) is protected by a Signature refering to
URI="#referToMe" which targets the Assertion itself. In addition the Cipher

Data element following the KeyInfo element may contain data encrypted with
the transferred key (e.g., key confirmation/information data etc.)

��������	���������������
����	

��
����
	

��
�	�����
�����������������	����
��
����
	�	����
�	�	
	��	�����������������

�
�����
��
��
	���	����
��
	������	

��
����
	����	
 	!����

��"#	��
$��
�"��	����	�	��

$��
�"��	�%��	����	
�������
$��
�"��	����	

 	!����
&��
!'�	� 	!

 	!����
 	!%��	���

�
���	��
�������

&��
!'�����	����
��

�	� 	!%��	���	
������
��'�	
����

��'�	
����	

Fig. 2. Proof of concept SAML Assertion

5.5 Usage in the SAML Assertion Query and Request Protocol

The modified Assertion can be used with any of the predefined SAML protocols.
Figure 3, gives a simplified example scenario on how a Key Requestor (KR) is
able to obtain key material from a Key Server (KS) using only SAML compliant
messages:

– KR sends a SAML Attribute Query to KS, authenticated with an XML
signature. This request contains a reference to the requested key.

Sometimes It’s Better to Be STUCK! 119

Key Requester Key Server

SAML Attribute Query

- Issuer

- Signature

- Subject

- Attribute: desired key

SAML Response

- Assertion

- Issuer

- Signature

- Subject

- AttributeStatement

- Attribute

- AttributeValue: encrypted key

Fig. 3. Example scenario on the usage of the proposal

– After validating signature and request at Key Server side, KS may decide to
deliver the requested key, in an encrypted form, to KR via the corresponding
SAML Response, including an Assertion. For this purpose, the encrypted
key is included in a SAML Attribute Statement within this Assertion to
provide maximum compliance with the SAML standard. The requested key
is encrypted with e.g., KR’s public key preserving confidentiality.

The detailed messages (c.f., Figures 5 and 6), as well as a detailed explanation
are listed in the appendix. We will come back to this scenario in more detail in
the Case Study (c.f., section 6) when the solution is embedded to a real world
application.

6 Case Study

A reference implementation of STUCK is implemented within a research project
where key transport capabilities in conjunction with SAML are required.

6.1 Sec2 Research Project

The Sec2 research project9 provides a hardware supported solution for secure
mobile storage on public clouds. Therefore the user is able to define confidential
parts of data which will then be encrypted before they are stored in the cloud. An
underlying middleware handles the en-/decryption process transparently before
the data leaves the device. For reasons of convenience the key management and
distribution should be kept as automated as possible. Part of the solution is a
publicly available trusted key server as depicted in figure 4.

This key server is used for key distribution to clients. The key distribution
follows the principle of hybrid encryption - the key server wraps (encrypts) a

9 http://www.sec2.org

http://www.sec2.org

120 C. Meyer, F. Feldmann, and J. Schwenk

Fig. 4. Sec2 system architecture

symmetric secret key with a mobile device’s (client) individual public key. The
asymmetric keypair at the client side is bound to an entity (device owner) and
delivered together with a special microSD Card that has to be installed at the
mobile device. The microSD Card can be considered as a Smart Card that stores
key material in an unextractable way. All cryptographic operations that utilize
the key material have to be performed on the card. The corresponding public
key is deposited at the key server. The client is able to unwrap (decrypt) the
delivered key because she is in possession of the corresponding private key.

Since the whole communication between client and key server is SAML based
the proposal of this paper is applicable and used for key transportation from the
key server to its clients. Additionally, another major goal is to give up transport
security and render its usage optional. The (wrapped) keys should be bound to
SAML Assertions to provide integrity and authentication at the same time.
And all that has to be in line with the SAML specification(s). So to recap, the
following requirements are given:

– (encrypted) keys have to be delivered from a key server to the client
– all critical parts (such as the encrypted key or authentication information)

have to be authenticated and their integrity must be ensured
– deviations from the SAML standard have to be avoided

The solution within the project combines all requirements and integrates key
transport mechanisms seamlessly into SAML without Schema validations or
specification of extensions. The solution uses the approach introduced in sec-
tion 5. In the following an example communication procedure is outlined:

Sometimes It’s Better to Be STUCK! 121

1. The middleware fetches data from a public cloud storage and determines
necessary key(s) for decryption - Key X.

2. After a lookup the middleware is informed by the microSD Card that it is
not in possession of Key X.

3. A SAML attribute query including authorization data and identifier of the
desired key is built (c.f., figure 5) and sent to the key server.

4. The key server validates the signature and checks for the corresponding
access rights of the requesting client.

5. If all preconditions are met, the client’s public key together with the key
identifier of the desired key is passed to a Hardware Security Module (HSM)
attached to the key server - The client’s public key was deposited previously
at the key server during client registration. The HSM is not directly accessi-
ble by the client and can only be contacted in case of sufficient access rights
- only the key server can access the HSM.

6. The HSM wraps the key identified by the key identifier with the passed
public key and returns the encrypted key to the key server.

7. The wrapped key is included in a signed SAML response (c.f., figure 6) and
returned to the client.

8. The client verifies the SAML response, validates the digital signature, ex-
tracts the wrapped key and passes it to the microSD Card.

9. The microSD Card unwraps the desired key by utilizing the private key and
stores it unextractable after successful unwrapping.

10. The middleware is now in posession of the necessary key and can proceed as
if the key had been present at the beginning.

For further information you are invited to visit the project homepage and have a
look at the papers and information material. Criticism, tips and feature requests
are very welcome!

7 Conclusion

The proposed solution for identity bound key material and key information of-
fers major enhancements to the Security Assertion Markup Language. Addi-
tional means for key transport can be skipped and instead directly mapped to
the SAML level. A reference implementation is integrated within the Sec2 re-
search project and will be soon available as open source. The proposal offers
key management and distribution capabilities without schema violation, thus no
adjustments to existing standards have to be made.

References

1. Cantor, S., Kemp, J., Philpott, R., Maler, E.: Assertions and Protocols for the OA-
SIS Security Assertion Markup Language (SAML) V2.0. Technical report (March
2005)

2. Hardjono, Klingenstein, Howlett, Scavo: SAML V2.0 Kerberos Web Browser SSO
Profile Version 1.0. Technical Report (March 2010)

122 C. Meyer, F. Feldmann, and J. Schwenk

3. Hallam-Baker, P., Mysore, S.H.: XML Key Management Specification (XKMS 2.0).
W3C Recommendation, W3C (June 2005)

4. Garfinkel, S.: PGP: Pretty Good Privacy. O’Reilly Media (November 1994)
5. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard) (May 2008)

6. Lawrence, K., Kaler, C.: WS-trust specification. Technical Report (March 2007)
7. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible

Markup Language (XML) 1.0, 5th edn. World Wide Web Consortium, Recommen-
dation REC-xml-20081126 (November 2008)

8. Eastlake, D., Reagle, J., Solo, D.: XML-Signature Syntax and Processing. XML
Signature Working Group (2002)

9. Imamura, T., Dillaway, B., Simon, E.: XML Encryption Syntax and Processing.
Technical Report, W3C XML Encryption Working Group (December 2002)

10. US Department of Commerce: Data Encryption Standard (DES) (December 1993)
11. National Institute for Science, Technology (NIST): Advanced Encryption Standard

(FIPS PUB 197) (November 2001)
12. Wikipedia: Hybrid cryptosystem — Wikipedia, The Free Encyclopedia (2011)

(Online; accessed March 12, 2012)
13. National Institute of Standards and Technology (NIST): NIST FIPS PUB 186 –

Digital Signature Standard (May 1994)
14. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems. Communications of the ACM 21, 120–126 (1978)
15. Miller, S.P., Neuman, B.C., Schiller, J.I., Saltzer, J.H.: Kerberos Authentication

and Authorization System. In: Project Athena Technical Plan (1988)

Appendix

A Using STUCK within protocols

STUCK can easily be integrated into existing SAML protocols. To demonstrate
the usage please have a look at the corresponding messages in figures 5, 6 while
reading.

As mentioned, a requester simply queries for a key by passing the key name
as Attribute name (or as AttributeValue of a predefined Attribute for key
queries <saml:Attribute Name="requestKey"> <saml:AttributeValue>

desiredKey</saml:AttributeValue></saml:Attribute>). The KS will re-
turn the desired key (in an encrypted from) as AttributeValue carried by an
Assertion inside a Response.

Sometimes It’s Better to Be STUCK! 123

<samlp:AttributeQuery ID="myQueryID"

Version="2.0" IssueInstant="2012-07-11T17:05:40Z"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol">

<saml:Issuer> ... </saml:Issuer>

<ds:Signature> ... </ds:Signature>

<saml:Subject> ... </saml:Subject>

<saml:Attribute Name="requestKey">

<saml:AttributeValue>desiredKey</saml:AttributeValue>

</saml:Attribute>

</samlp:AttributeQuery>

Fig. 5. Proof of concept SAML AttributeQuery

<samlp:Response ID="myResponseID"

Version="2.0" IssueInstant="2012-07-11T17:10:40Z"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol">

<saml:Assertion ID="referToMe"

Version="2.0" IssueInstant="2012-07-11T17:10:40Z"

xmlns:ds="http://.../xmldsig#">

<saml:Issuer> ... </saml:Issuer>

<ds:Signature> ... </ds:Signature>

<saml:Subject> ... </saml:Subject>

<saml:AttributeStatement>

<saml:Attribute Name="desiredKey">

<saml:AttributeValue> ... </saml:AttributeValue>

</saml:Attribute>

</saml:AttributeStatement>

</saml:Assertion>

</samlp:Response>

Fig. 6. Proof of concept SAML Response

124 C. Meyer, F. Feldmann, and J. Schwenk

<saml:Assertion ID="referToMe"

Version="2.0" IssueInstant="2012-03-01T12:59:48Z"

xmlns:ds="http://.../xmldsig#" xmlns:enc="http://.../xmlenc#">

<saml:Issuer> ... </saml:Issuer>

<ds:Signature>

<ds:SignedInfo>

<ds:CanonicalizationMethod

Algorithm="http://.../xml-exc-c14n#" />

<ds:SignatureMethod

Algorithm="http://.../xmldsig#rsa-sha1" />

<ds:Reference URI="#referToMe">

<ds:Transforms> ... </ds:Transforms>

<ds:DigestMethod Algorithm="http://.../xmldsig#sha1" />

<ds:DigestValue> ... </ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue> ... </ds:SignatureValue>

<ds:KeyInfo> ... </ds:KeyInfo>

</ds:Signature>

<saml:Subject> ... </saml:Subject>

<saml:AttributeStatement>

<saml:Attribute Name="desiredKey">

<saml:AttributeValue>

<ds:KeyInfo>

<enc:EncryptedKey>

<ds:KeyInfo>

<ds:KeyName>recipientsPrivateKey</ds:KeyName>

</ds:KeyInfo>

<enc:EncryptionMethod Algorithm=".../xmlenc#rsa-1_5" />

<enc:CarriedKeyName>desiredKey</enc:CarriedKeyName>

<enc:CipherData>

<enc:CipherValue> ... </enc:CipherValue>

</enc:CipherData>

</enc:EncryptedKey>

</ds:KeyInfo>

</saml:AttributeValue>

</saml:Attribute>

</saml:AttributeStatement>

</saml:Assertion>

Fig. 7. Proof of concept SAML Assertion

Sometimes It’s Better to Be STUCK! 125

<complexType name="EncryptedElementType">

<sequence>

<element ref="xenc:EncryptedData"/>

<element ref="xenc:EncryptedKey"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

<element name="Assertion" type="saml:AssertionType"/>

<complexType name="AssertionType">

<sequence>

...

<choice minOccurs="0" maxOccurs="unbounded">

...

<element ref="saml:AttributeStatement"/>

</choice>

</sequence>

...

</complexType>

<element name="AttributeStatement" type="saml:AttributeStatementType"/>

<complexType name="AttributeStatementType">

<complexContent>

<extension base="saml:StatementAbstractType">

<choice maxOccurs="unbounded">

<element ref="saml:Attribute"/>

...

</choice>

</extension>

</complexContent>

</complexType>

<element name="Attribute" type="saml:AttributeType"/>

<complexType name="AttributeType">

<sequence>

<element ref="saml:AttributeValue"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="Name" type="string" use="required"/>

...

</complexType>

<element name="AttributeValue" type="anyType" nillable="true"/>

<element name="EncryptedAttribute" type="saml:EncryptedElementType"/>

Fig. 8. (Stripped) XSD of a SAML Assertion - Source: OASIS (http://docs.oasis-
open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd)

http://docs.oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd
http://docs.oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd

Improved Impossible Differential Attacks

on Large-Block Rijndael�

Qingju Wang1,2, Dawu Gu1, Vincent Rijmen2, Ya Liu1,
Jiazhe Chen3, and Andrey Bogdanov4

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, 200240, China

2 KU Leuven, ESAT/COSIC and iMinds, Belgium
{qingju.wang,vincent.rijmen}@esat.kuleuven.be, dwgu@sjtu.edu.cn
3 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, School of Mathematics, Shandong University,

Jinan, 250100, China
4 Technical University of Denmark, Department of Mathematics, Denmark

a.bogdanov@mat.dtu.dk

Abstract. In this paper, we present more powerful 6-round impossi-
ble differentials for large-block Rijndael-224 and Rijndael-256 than the
ones used by Zhang et al. in ISC 2008. Using those, we can improve the
previous impossible differential cryptanalysis of both 9-round Rijndael-
224 and Rijndael-256. The improvement can lead to 10-round attack on
Rijndael-256 as well. With 2198.1 chosen plaintexts, an attack is demon-
strated on 9-round Rijndael-224 with 2195.2 encryptions and 2140.4 bytes
memory. Increasing the data complexity to 2216 plaintexts, the time com-
plexity can be reduced to 2130 encryptions and the memory requirements
to 293.6 bytes. For 9-round Rijndael-256, we provide an attack requiring
2229.3 chosen plaintexts, 2194 encryptions, and 2139.6 bytes memory. Al-
ternatively, with 2245.3 plaintexts, an attack with a reduced time of 2127.1

encryptions and a memory complexity of 290.9 bytes can be mounted.
With 2244.2 chosen plaintexts, we can attack 10-round Rijndael-256 with
2253.9 encryptions and 2186.8 bytes of memory.

Keywords: block cipher, impossible differential attack, Rijndael, large
block.

1 Introduction

Rijndael [11] is a block cipher designed by Joan Daemen and Vincent Rijmen
built upon a Substitution Permutation Network (SPN). A subset of Rijndael
variants has been standardized as Advanced Encryption Standard (AES) by

� This work was supported by the National Natural Science Foundation of China
(No. 61073150), and in part by the Research Council K.U.Leuven: GOA TENSE,
the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy),
and in part by the European Commission through the ICT program under contract
ICT-2007-216676 ECRYPT II.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 126–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improved Impossible Differential Attacks on Large-Block Rijndael 127

the U.S. National Institute of Standards and Technology (NIST) [14] in 2002.
Rijndael follows the design principles of Square [9]. In its full version, both the
block and the key sizes can range from 128 to 256 bits in steps of 32 bits.
For AES, the block size of Rijndael is restricted to 128 bits. This paper deals
with non-AES Rijndael variants, that is, large-block Rijndael-b, with b > 128
indicating the block size and key size in bits.

AES is probably the most well-studied block cipher, having received about 15
years of extensive public scrutiny by now. Square attacks, impossible differential
attacks, boomerang attacks, rectangle attacks and meet-in-the-middle attacks in
both the single-key and related-key settings are just several prominent examples
of cryptanalysis techniques applied to AES [1, 4–7, 12, 17, 20, 22–24,26–28].

The large-block Rijndael is arguably less analyzed, being a highly relevant
cipher though. Among others, an important motivation for the study of large-
block Rijndael is the deployment of Rijndael-like permutations in the design of
hash functions, Whirlwind [2] and SHA-3 finalist Grøstl [16] constituting some
especially interesting instances. We mention here several multiset and integral
cryptanalytic results [13, 15, 18, 21], as well as impossible differential cryptanal-
ysis [19, 25]. In terms of the impossible differential cryptanalysis – the major
object of our study in this paper – the best attack has been proposed by Zhang
et al. [25] which cryptanalyzes 9-round Rijndael-224 and Rijndael-256 with 2209

and 2208.8 encryptions, respectively.
Impossible differential cryptanalysis, which was proposed by [3,8], is a widely

used cryptanalytic technique. The attack starts with finding a certain input dif-
ference that can never result in a certain output difference, which makes up an
impossible differential. Usually, impossible differentials have truncated input and
output differences. By adding rounds before and/or after the impossible differ-
ential, one can collect pairs with certain plaintext and ciphertext differences.
If there exists a pair that meets the input and output values of the impossible
differential under some subkey bits, these bits must be wrong. In this way, we
discard as many wrong keys as possible and exhaustively search the rest of the
keys. The early abort technique is usually used during the key recovery phase,
that is, one does not guess all the subkey bits at once, but guesses some subkey
bits instead to discard some pairs that do not satisfy certain conditions step
by step. In this case, we can discard the unwished pairs as soon as possible to
reduce the time complexity.

Our Contributions. In this paper, we present more powerful 6-round im-
possible differentials for Rijndael-224 and Rijndael-256. Using these impossible
differentials, we can improve the existing impossible differential cryptanalyses of
both Rijndael-224 and Rijndael-256. In addition, the improvement can result in
a 10-round attack on Rijndael-256.

Our impossible differentials for both Rijndael-224 and Rijndael-256 have more
active bytes in the output difference and, therefore, the number of subkey bytes
needed to be guessed during the key recovery phase can range with more options,
while the probability for a pair of plaintexts to pass the test of sieving wrong
pairs is higher compared to [25].

128 Q. Wang et al.

Table 1. Summary of Attacks on Rijndael-224 and Rijndael-256

Cipher
Number of Complexity Attack

Source
Round Time (EN) Data(CP) type

Rijndael-224

7 2141 2130.5 Multiset [18]
7 2167 2138 Imp. Diff. [19]
7 2113.4 293.2 Imp. Diff. [25]
9 2196.5 2196.5 Integral [21]
9 2209 2212.3 Imp. Diff. [25]
9 2195.2 2198.1 Imp. Diff. sect. 4
9 2162 2208 Imp. Diff. sect. 4
9 2130 2216 Imp. Diff. sect. 4

Rijndael-256

7 2128 − 2119 2128 − 2119 Part. Sum [13]
7 2141 2130.5 Multiset [18]
7 244 6× 232 Integral [15]
7 2182 2153 Imp. Diff. [19]
7 2113.2 293 Imp. Diff. [25]
8 2128 − 2119 2128 − 2119 Integral [15]
9 2204 2128 − 2119 Integral [15]
9 2174.5 2132.5 Integral [21]
9 2208.8 2244.3 Imp. Diff. [25]
9 2194 2229.3 Imp. Diff. subsect. 3.2
9 2159.1 2237.3 Imp. Diff. subsect. 3.3
9 2127.1 2245.3 Imp. Diff. subsect. 3.3
10 2253.9 2244.2 Imp. Diff. subsect. 3.4

CP: Chosen Plaintext; EN: Number of round encryptions

For 9-round Rijndael-256, utilizing the new impossible differential and depend-
ing on the number of subkey bytes needed to be guessed in key recovery phase,
three improved attacks can be obtained. If we guess the same number of subkey
bytes as [25], an attack can be mounted with reduced data complexity of 2229.3

Chosen Ciphertexts (CP), time complexity 2194 encryptions and memory com-
plexity 2139.6 bytes respectively. In addition, if the number of subkey bytes need
to guess is less than [25], given 2237.3 CP, we can attack 9-round Rijndael-256 with
2159.1 encryptions and 2115.3 bytes of memory. If the data complexity are increased
to 2245.3 CP, the time and memory complexity can be significantly reduced to
2127.1 encryptions and 290.9 bytes. Moreover, based on the same impossible dif-
ferential, considering 2244.2 CP, we can even attack 10-round Rijndael-256 with
2253.9 encryptions and 2186.8 bytes of memory accesses. As for Rijndael-224, sim-
ilarly three attacks can also be mounted on 9-round with lower complexity. With
2198.1 CP, an attack is demonstrated on 9-round Rijndael-224 with 2195.2 encryp-
tions and 2140.4 bytes memory. Take 2208 CP, we can attack 9-round Rijndael-224
with 2162 encryptions and 2117 bytes memory. Increasing the data complexity to
2216 chosen plaintexts, the time complexity can be greatly reduced to 2130 encryp-
tions and the memory requirements to 293.6 bytes.

To the best of our knowledge, these results are the best impossible differ-
ential attacks on Rijndael-224 and Rijndael-256. We summarize our results for
Rijndael-224 and Rijndael-256, as well as the major previous results in Table 1.

Improved Impossible Differential Attacks on Large-Block Rijndael 129

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of Rijndael and introduces the notations used in this paper. In Section 3
we first derive a new 6-round impossible differential, and then present three
improved impossible differential attacks on 9-round Rijndael-256. The attack
can also be extended to 10-round Rijndael-256. Then in Section 4, after a new 6-
round impossible differential distinguisher is presented, we mount three improved
attacks on 9-round Rijndael-224. Finally, we conclude this paper in Section 5.

2 Description of Rijndael and Notations

Rijndael has Nr rounds, which can be 10, 12, or 14 depending on the key size. In
Rijndael, both the text block and the key sizes can range for 128 up to 256 bits
in steps of 32 bits. The 128-bit block version of Rijndael, with the key size 128,
192 or 256, is officially known as AES [14]. The plaintext, ciphertext, subkey,
and all the intermediate data are represented by a 4 × Nb state matrix of
bytes, where Nb is the number of 32-bit words in the block. The byte indexing
for the state matrix is shown in the left part of Figure 1. The key schedule

0

1

2

3 31

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

160-bit

192-bit

224-bit

256-bit

Nb C0 C1 C2 C3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 4

8 0 1 3 4

Fig. 1. Byte Index of the State Matrix and the Shift Offsets for Each Block Length Nb

derives (Nr +1) b-bit RoundKey(RK) from the master key, denoted from RK0 to
RKNr . The Expanded Key is a linear array of 4-byte words and is denoted by
W [Nb ∗ (Nr + 1)]. The first Nk words W [0]‖W [1]‖ · · · ‖W [Nk − 1] are directly
initialised by the Nk words of the master key, while the remaining key words,
W [i] for i ∈ {Nk, · · · , Nk∗(Nr+1)−1} are generated by the following algorithm:

if (i mod N) = 0 then W [i] = W [i−Nk]⊕ f(W [i− 1])⊕Rcon[i/Nk]
else if ((Nk > 6) and (i mod N = 4)) thenW [i] =W [i−Nk]⊕g(W [i−1])

else W [i] =W [i−Nk]⊕W [i − 1]

where f, g : {0, 1}32 → {0, 1}32 are nonlinear permutations, Rcon denotes fixed
constants depending on its input. Roundkey RKi is given by the Round Key
buffer words W [Nb ∗ i] to W [Nb ∗ (i+ 1)].

The round function, which is repeated (Nr−1) times, involves four operations:
SubBytes(SB), ShiftRows(SR), MixColumns(MC) and AddRoundKey(ARK). The

130 Q. Wang et al.

SubBytes operation consists of the parallel application of a fixed 8-bit to 8-bit
Sbox to each byte of the state. ShiftRows is a byte transposition that left shifts
the rows of the state over different offsets. The shift offsets Ci of row i which
depend on the block length Nb, are specified in the right part of Figure 1 for
each block length of Rijndael. MixColumns is an (4 × 4) Maximum Distance
Separable (MDS) matrix multiplication over GF (28) for each column of the
state. Obviously the branch number of this MDS matrix is five. AddRoundKey
consists of the exclusive-or combination of the RoundKey with the intermediate
state.

These (Nr − 1) rounds are surrounded by an whitening layer consisting of
AddRoundKey only, and the last round with MixColumns operation omitted. We
also assume that this is the same case for the reduced Rijndael we are focusing
on throughout this paper. Here we only give a brief description of Rijndael, for
more detailed specification of the cipher, we refer to [10, 11].

We will also use the technique that the operations of MixColumns and
AddRoundKey can be interchanged under some conditions [11]. Here we introduce
some notations as well for later use in the following.

Xi : the state of the i-th round;

ΔXi : the difference for state of the i-th round;

XI
i : the input state of the i-th round;

RKi : the subkey of the i-th round;

RK∗
i : the value of the subkey of the i-th round after the inverse of the

MixColumns operation;

XSB
i : the intermediate state after the SubBytes operation in the i-th round;

XSR
i : the intermediate state after the ShiftRows operation in the i-th round;

XMC
i : the intermediate state after the MixColumns operation in the i-th round;

XW
i : the intermediate state after the AddRoundKey operation with RK∗

i in the
i-th round;

XO
i : the intermediate state after the AddRoundKey operation in the i-th round;

? : an indeterminate difference.

Obviously, XI
i = XO

i−1 hold. Note that the operation of AddRoundKey will be
represented as ARK∗ throughout this paper when the Roundkey RK∗ is used.

3 Improved Impossible Differential Attacks
on Rijndael-256

In this section, we first give a new 6-round impossible differential for Rijndael-256
in Section 3.1. Based on this impossible differential and depending on the number
of the subkey bytes need to guess during the key recovery phase, three improved
9-round impossible differential attacks compared to [25] will be presented in
Subsection 3.2 and 3.3 respectively. Using the same impossible differential, we
can extend it to an attack of 10-round Rijndael-256 in Subsection 3.4.

Improved Impossible Differential Attacks on Large-Block Rijndael 131

MC−1
ARK∗

SB−1 SR−1

SB SR

SB SR MC

SB MC
1R

2R

6R

5R

4R

3R

SR

?

?

?

?

?

?

?

?

MC−1

MC−1

SB−1

SB−1

SR−1

SR−1

?

?

?

?

?

?

?

?

ARK

ARK

ARK

ARK

ARK

ARK

?

?

?

? ?

?

?

?

? ?

? ?

??

??

?

?

?

?

?

?

?

?

? ?

? ?

??

?? ?

?

?

?

?

?

?

?

? ?

? ?

??

??

Fig. 2. The New 6-Round Impossible Differential of Rijndael-256

3.1 New 6-Round Impossible Differential on Rijndael-256

Assume we start with round 1 (denoted as 1R in Figure 2) and the input differ-
ence ΔX1 has one active byte whereas the other bytes are zero, one illustration
with the first byte active is depicted in Figure 2. Then request 2.5 rounds en-
cryption from the SB operation in round 1 to the SR operation in round 3 to get
the difference ΔXSR

3 . Consider the output difference with three nonzero bytes in
the first column of the state, one option with the active bytes at (0,1,3) is shown
in Figure 2, the other option has the active bytes at (0,2,3). Decrypt 3.5 rounds
(as depicted from the operation ARK∗ in round 6 to the operation ARK in round
3) in order to get the difference ΔXMC

3 . Note there is no AddRoundKey operation
in round 6 because the order of MixColumns and AddRoundKey operations can
be interchanged as mentioned before in Section 2. For the third column of the
state ΔXSR

3 , the number of nonzero bytes is one, while it is at most three for
the nonzero bytes of ΔXMC

3 (it is indeterminate at byte 9). Since the branch
number of the MDS matrix is five, there is a contradiction before and after the
MixColumns operation. By similar reasoning, there is also a contradiction in the
seventh column in the state before and after the MixColumns operation in round
3. Therefore, we make up a 6-round impossible differential for Rijndael-256.

There exist more active bytes in the output of the impossible differential
compared to [25] (they has one byte), therefore we have more options in guessing
the subkey bytes to meet the output of the impossible differential while adding
extra rounds after the impossible differential distinguisher. There are three active

132 Q. Wang et al.

bytes in one column after MC−1 at the bottom of the impossible differential,
thus the number of the subkey bytes we need to guess in order to calculate the
output after MC−1 can range from two to four, therefore three attacks can be
mounted using this impossible differential.

3.2 9-Round Attack on Rijndael-256 with Lower Data Complexity

In this subsection we present the attacks on 9-round Rijndael-256 utilizing the 6-
round impossible differential in Subsection 3.1. In our attack, we guess the same
number (i.e. four) of subkey bytes of RK∗

8 as [25] in the key recovery phase. As a
result, 16 bytes of subkey RK9 will have to be guessed to partially decrypt round
9 in order to calculate XW

8 (as shown in Figure 3), which will also provide a 128-
bit condition for ciphertexts in the data collection phase. The number of active
bytes at the end of the new impossible differential distinguisher will filter out
more wrong pairs during the key recovery phase. Therefore, an improved attack
with significantly reduced data complexity compared to [25] will be result in.
The detailed procedures of the attack will be described as follows.

ARK∗
8R

MC−1
SB−1

SB−1 SR−1

SR−1

9R

Pr3

ARK

1R
SB MCSR

Pr1

ARK

6-Round Impossible Differential of Rijndael-256
7R

MC−1

Pr2

Fig. 3. Improved 9-Round Attack on Rijndael-256 with Lower Data Complexity

Data Collection. We first choose 2n structures of plaintexts. In each structure
the plaintexts range over all 32-bit values at bytes (0,5,14,19), while the other
bytes can take certain fixed values. Each structure includes about (232)2/2 = 263

pairs of plaintexts, therefore 2n ·263 = 2n+63 pairs of plaintexts will be prepared.
Encrypt these pairs and keep the one whose ciphertext difference are zero at bytes
(1,2,4,5,8,9,11,12,14,21,23,24,26,27,30,31). The probability of such ciphertexts is
about 2−8·16 = 2−128, thus the expected number of the remaining pairs after
this phase is about 2n+63−128 = 2n−65.

The sieving of the ciphertexts can be done by birthday attack. As a result, the
time complexity of this phase is about 2n+32. In addition, we need 2n−65 ·5 ·32 =
2n−57.7 bytes memory to store these pairs.

Improved Impossible Differential Attacks on Large-Block Rijndael 133

Key Recovery. In order to check if the pairs generated in data collection phase
satisfy the impossible differential in Figure 3, we need to guess certain bytes
of subkey (RK9, RK0, , RK

∗
8) during the key recovery phase. The details are

described in the following:

Step 1. For all the pairs of plaintext obtained in the data collection phase, we
guess the 32-bit subkey (RK9,0, RK9,29, RK9,22, RK10,19) and partially
decrypt round 9 to compute the first column of ΔXW

8 . Check if the
differences at byte (1,2,3) are zero. If it is not the case, discard the pair.
The probability of this event is 2−24. After this step the expected number
of remaining pairs is about 2n−65−24 = 2n−89.

Step 2. For every guess of the 32-bit subkey (RK9,16, RK9,13, RK9,6, RK9,3), we
partially decrypt round 9 to compute the fifth column of ΔXW

8 . Check
if the differences at byte (0,1,2) are zero. If it is not the case, discard the
pair. The probability of this event is 2−24. After this step the expected
number of remaining pairs is about 2n−89−24 = 2n−113.

Step 3. For every guess of the 32-bit subkey (RK9,20, RK9,17, RK9,10, RK9,7), we
partially decrypt round 9 to compute the sixth column of ΔXW

8 . Check
if the differences at byte (0,1,3) are zero. If it is not the case, discard the
pair. The probability of this event is 2−24. After this step the expected
number of remaining pairs is about 2n−113−24 = 2n−137.

Step 4. For every guess of the 32-bit subkey (RK9,28, RK9,25, RK9,18, RK9,15),
we partially decrypt round 9 to compute the eight column of ΔXW

8 .
Check if the differences at byte (0,2,3) are zero. If it is not the case,
discard the pair. The probability of this event is 2−24. After this step the
expected number of remaining pairs is about 2n−137−24 = 2n−161.

Step 5. We need to guess the 32-bit of subkey (RK0,0, RK0,5, RK0,14, RK0,19)
for all the remaining pairs, and partially encrypt round 1 to get the first
column of ΔXMC

1 . Check if the difference at byte (1,2,3) are zero. If it
is not the case, discard the pair. The probability of this event is about
4 · (28 − 1)/232 ≈ 2−22. Thus after this step the remained pairs is about
2n−161−22 = 2n−183.

Step 6. For every guess of the 16-bit subkey (RK∗
8,0, RK

∗
8,29, RK

∗
8,22, RK

∗
8,19),

partially decrypt round 8 to compute the first column of ΔXW
7 . Check if

the differences at the third byte is zero. If it is correct, delete all the 32-bit
subkey guesses of RK∗

8 since such a differential is impossible, each subkey
guess that proposes such a differential is a wrong key. After analyzing all
the 2n−183 remaining pairs, if there still remains value of RK∗

8 , output
the 192-bit subkey guess of (RK0, RK

∗
8 , RK9) as the correct key. Our

experiments provide the evidence that the probability of the pairs pass
this step is about Pr2 = 2 · 2−8 = 2−7.

The process steps of the key recovery phase above are described in Table 2,
whereas the second column lists the bytes need to be guessed in the correspond-
ing round for each step. The third column stands for the number of remained
pairs after sieving in each step, and the time complexity of each step will be
measured in the fourth column in Table 2. Note that when evaluating the time

134 Q. Wang et al.

complexity of the recovery, it is measured by one round encryption. Similar ta-
bles will be adopted to describe the steps of the key recovery phase throughout
this paper.

Table 2. Key Recovery Processes of the Attack on Rijndael-256 with lower Data
Complexity

Step Guessed Bytes #Pairs Kept Time Complexity

1 RK9 : 0, 29, 22, 19 2n−65−24 = 2n−89 232 · 2n−65 · 2/8 = 2n−35

2 RK9 : 16, 13, 6, 3 2n−89−24 = 2n−113 264 · 2n−89 · 2/8 = 2n−27

3 RK9 : 20, 17, 10, 7 2n−113−24 = 2n−137 296 · 2n−113 · 2/8 = 2n−19

4 RK9 : 28, 25, 18, 15 2n−137−24 = 2n−161 2128 · 2n−137 · 2/8 = 2n−11

5 RK0 : 0, 5, 14, 19 2n−161−22 = 2n−183 2160 · 2n−161 · 2/8 = 2n−3

6 RK∗
8 : 0, 29, 22, 19 -

2192 · 2 · [1 + (1− 2−7) + (1− 2−7)2

+ · · ·+ (1− 2−7)2
n−183

]/8

Analysis of the Attack. Take n = 197.3, after analyzing all the remaining
pairs, there will be about 2192·(1−2−7)2

n−183

= 2−36.2 wrong subkeys ofRK0 left,
we can get rid of the wrong subkeys by 2187.8 trail encryptions. Therefore the data
complexity will be 2n+32 = 2229.3, the time complexity will be 2197.2/9 ≈ 2194

9-round encryptions, the memory required is about 2139.6 bytes.

3.3 9-Round Attack on Rijndael-256 with Lower Time Complexity

We will use the same new 6-round impossible differential as the previous section,
which helps to get rid of more pairs. As mentioned in Subsection 3.1, the number
of subkey bytes need to be guessed in round 8 can be reduced compared to [25],
i.e. two or three bytes of RK∗

8 . Here we take two bytes for example. As a result,
it will be the same case for round 9, which means fewer columns need to be
decrypted. Meanwhile, 192 bits are zero for the ciphertexts, which provides an
stronger condition of ciphertexts for sieving wrong pairs compared to 128 bits
in [25]. As a result an improved attack with the time complexity greatly reduced
can be mounted on 9-round Rijndael-256. Because of the similarity of the attack
with the one in Subsection 3.2, only a brief description of this attack will be
demonstrated as follows:

In the data collection phase, we take the same structures as in Subsect 3.2,
thus 2n+63 pairs of plaintexts will be generated. there exists the 192-bit condition
for ciphertext to discard wrong pairs, thus the expected number of the remaining
pairs is 2n+63−192 = 2n−129 at the end of this phase.

In the key recovery phase, we only guess 8 bytes of RK9, 4 bytes of RK0

and 2 bytes of RK∗
8 to check if the impossible differential will be satisfied for the

remaining pairs. When filtering out wrong pairs, we obtain the probabilities that
the pairs pass the tests in round 8, round 1 and round 7 are Pr3 = (2−24)2 =
2−48, Pr1 = 4 · (28 − 1)/232 ≈ 2−22 and Pr2 = 2 · 2−8 ≈ 2−7 respectively. The
expected number of remaining pairs after this phase is about 2n−199. The steps

Improved Impossible Differential Attacks on Large-Block Rijndael 135

and the time complexity evaluation of this phase are given in Table 3. Take
n = 213.3, the data complexity is 2n+32 = 2245.3 CP, the time complexity will
be 2130.3/9 ≈ 2127.1 9-round encryptions, the memory required is about 290.9

bytes.

Table 3. Key Recovery Processes of the Improved Attack on Rijndael-256 with lower
Time Complexity

Step Guessed Bytes #Pairs Kept Time Complexity

1 RK9 : 0, 29, 22, 19 2n−129−24 = 2n−153 232 · 2 · 2n−129/8 = 2n−99

2 RK9 : 28, 25, 18, 15 2n−153−24 = 2n−177 264 · 2 · 2n−153/8 = 2n−91

3 RK0 : 0, 5, 14, 19 2n−177−22 = 2n−199 296 · 2 · 2n−177/8 = 2n−83

4 RK∗
8 : 0, 29 -

2112 · 2 · [1 + (1− 2−7) + (1− 2−7)2

+ · · ·+ (1− 2−7)2
n−199

]/16

Moreover, as mentioned at the beginning of this subsection, it is also possible
to guess three bytes of the subkey RK∗

8 to calculate ΔXW
7 in order to check

if the impossible differential can be satisfied. As a result 12 bytes of RK9 have
to be guessed to partially decrypt round 9 in the key recovery phase. In this
case, the data complexity is about 2237.3 CP, the time complexity is about 2159.1

9-round encryption, and the memory is about 2115.3 bytes.

3.4 10-Round Impossible Differential Attack on Rijndael-256

Based on the same impossible differential as in the previous subsection, we will
extend two rounds backwards and forwards respectively, an attack on 10-round
Rijndael-256 will be led with complexity less than exhaustive search. We adopt
the 9-round attack with lower time complexity in Subsection 3.3 to act as our
internal 9-round attack, on which we make some modification. In addition, we
will take the key schedule into consideration. The brief attack will be given out
as follows.

In the data collection phase, take 2n structures of plaintexts, in which the
plaintexts range over 128-bit values at bytes (0,3,4,5,9,12,14,16∼19,21,23,26,
30,31), while the other bytes can take certain fixed values. Each structure in-
cludes about (2128)2/2 = 2255 pairs of plaintexts, therefore 2n · 2255 = 2n+255

pairs of plaintexts are obtained. Encrypt these pairs and keep the one whose
ciphertext difference are zero at bytes (1∼14,16,17,20,21,23,24,26,27,30,31). The
probability of such ciphertexts is about 2−8·24 = 2−192, thus the expected num-
ber of the remaining pairs after this phase is about 2n+255−192 = 2n+63.

In the key recovery phase, as in the 9-round attack in Subsection 3.3, 8 sub-
key bytes of RK10 should be guessed. Because of the extra round backward
extension, 16 bytes of RK0 and 4 bytes of RK1 will also be guessed respectively.

136 Q. Wang et al.

MC−1

ARK∗

1R

10R

2R

MC−1
SB−1

SB−1 SR−1

SR−1

9R

SB MCSR

Pr1

Pr4

Pr3

ARK

ARK

6-Round Impossible Differential of Rijndael-256

SR MC

Pr2

8R

ARK

Fig. 4. 10-Round Impossible Differential Attack on Rijndael-256

At the end of this phase, the number of remaining pairs is 2n−103. The process
steps of this phase are described in Table 4. By the key schedule, we can calculate
RK0,29 from RK0,0 and RK1,0. RK0,5 and RK1,5 determine RK1,1, then RK1,1

together with RK0,30 determine RK0,1. Therefore, in order to recover the key,
there are 14 bytes of RK0 left to guess. We can take n = 116.2, from the
data collection phase we know that the data complexity of the attack is 2n ·
2128 = 2244.2 Chosen Ciphertext (CP). In the key recovery phase, after analyzing
the remaining 2n−103 = 213.2 pairs, the expected number of wrong subkeys is
2240 · (1− 2−7)2

n−103 ≈ 2133.5. With about 2112 · 2133.5 = 2245.5 trail encryptions,
the correct key will be recovered. The time complexity is about 2257.2/10 ≈ 2253.9

10-round encryptions. The memory required to store the pairs is about 2186.8

bytes.

Table 4. Key Recovery Processes of the Attack on 10-Round Rijndael-256

Step Guessed Bytes #Pairs Kept Time Complexity

1 RK10 : 0, 29, 22, 19 2n+63−24 = 2n+39 232 · 2n+63 · 2/8 = 2n+93

2 RK10 : 28, 25, 18, 15 2n+39−24 = 2n+15 264 · 2n+39 · 2/8 = 2n+101

3 RK0 : 0, 5, 14, 19 2n+15−24 = 2n−9 296 · 2n+15 · 2/8 = 2n+109

4 RK0 : 4, 9, 18, 23 2n−9−24 = 2n−33 2128 · 2n−9 · 2/8 = 2n+117

5 RK0 : 12, 17, 26, 31 2n−33−24 = 2n−57 2160 · 2n−33 · 2/8 = 2n+125

6 RK0 : 16, 21, 30, 3 2n−57−24 = 2n−81 2192 · 2n−57 · 2/8 = 2n+133

7 RK1 : 0, 5, 14, 19 2n−81−22 = 2n−103 2224 · 2n−81 · 2/8 = 2n+141

8 RK∗
9 : 0, 29 -

2240 · 2 · [1 + (1− 2−7) + (1− 2−7)2

+ · · ·+ (1− 2−7)2
n−103

]/16

Improved Impossible Differential Attacks on Large-Block Rijndael 137

4 Improved Impossible Differential Attacks
on Rijndael-224

In this section, we first give a new 6-round impossible differential of Rijndeal-224
(see Figure 5 in Appendix A). Utilizing the new 6-round impossible differential,
we extend one round at the top and two rounds at the bottom to mount 9-
round impossible differential attacks on Rijndael-224. As we can see there exist
three active bytes at the bottom of the distinguisher, as a result the number of
the subkey bytes need to guess in round 8 during the key recovery stage can
range from two to four. Therefore three 9-round attacks on Rijndael-224 can
be obtained respectively. First assume there are four bytes of subkey RK∗

8 need
to guess in order to check if the impossible differential distinguisher is satisfied
during the key recovery phase, as depicted in Figure 6.

In the data collection phase, choose structures of 232 plaintexts, in which the
plaintexts take all possible 32-bit values at bytes (0,5,10,19) while the others
take certain fixed values. Take 2166.1 structures, about 2229.1 pairs of plaintexts
will be generated. Filter out the pairs whose ciphertext difference are not zero at
byte (1∼5,8,10,13,16,19,23,26). Because of this 96-bit condition for ciphertexts,
the expected number of remaining pairs is 2133.1 at the end of this phase.

In the process of key recovery phase, we need to guess 16 bytes of subkey RK9,
4 bytes of subkey RK∗

8 and 4 bytes of RK0 to check if the 6-round of impossible
differential is satisfied. While guessing the 4 bytes of RK∗

8 , the probability that
a pair can pass the test is about Pr2 = 2−8. The rest of the steps are similar to
Subsection 3.2. At the end of this phase, there exist about 2133.1−96−22 = 215.1

pairs.
After analyzing the remaining 215.1 pairs, we can get rid of 2192·(1−2−8)2

15.1 ≈
2−6.3 wrong pairs. With about 2185.7 encryption trails the key can be recovered.
The data complexity of this attack is about 2198.1 CP, the time complexity is
about 2198.4/9 ≈ 2195.2 encryptions, and the memory we need for storing pairs
is about 2133.1 · 5 · 32 = 2140.4 bytes.

As mentioned above, we can also guess three bytes of subkey RK∗
8 , given 2208

CP, a 9-round attack can be mounted with the time complexity and memory
about 2162 encryptions and 2117 bytes respectively. Moreover in the case that
two bytes of RK∗

8 are guessed, the data, time and memory complexity can be
2216 CP, 2130 encryptions and 293.6 bytes respectively.

5 Conclusion

More powerful 6-round impossible differentials for both Rijndael-224 and
Rijndael-256 are presented in this paper. Based on those, we significantly
improve impossible differential attacks on both Rijndael-224 and Rijndael-256.
The improvement can also result in a 10-round attack on Rijndael-256.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

138 Q. Wang et al.

References

1. Bahrak, B., Aref, M.R.: A Novel Impossible Differential Cryptanalysis of AES. In:
Proceedings of WEWoRC (2007)

2. Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind:
a new cryptographic hash function. Des. Codes Cryptography 56(2-3), 141–162
(2010)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential Attacks
on 8-Round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 21–33. Springer, Heidelberg (2006)

5. Biryukov, A.: The Boomerang Attack on 5 and 6-Round Reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 11–15.
Springer, Heidelberg (2005)

6. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

7. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

8. Borst, J., Knudsen, L.R., Rijmen, V.: Two attacks on reduced idea. In: Fumy, W.
(ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg (1997)

9. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

10. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. In: 1st AES Conference, Califor-
nia, USA (1998)

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

12. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008)

13. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

14. FIPS 197: Advanced Encryption Standard. Federal Information Processing Stan-
dards Publication 197, U.S. Department of Commerce/N.I.S.T (2001)

15. Galice, S., Minier, M.: Improving Integral Attacks Against Rijndael-256 Up to 9
Rounds. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 1–15.
Springer, Heidelberg (2008)

16. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate. Submission to NIST
(2008), http://www.groestl.info

17. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES
Candidate Conference, pp. 230–241 (2000)

18. Nakahara Jr., J., de Freitas, D.S., Phan, R.C.-W.: New Multiset Attacks on Rijn-
dael with Large Blocks. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 277–295. Springer, Heidelberg (2005)

http://www.groestl.info

Improved Impossible Differential Attacks on Large-Block Rijndael 139

19. Nakahara Jr., J., Pavão, I.C.: Impossible-Differential Attacks on Large-Block Ri-
jndael. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 104–117. Springer, Heidelberg (2007)

20. Kim, J., Hong, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced AES-
192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

21. Li, Y., Wu, W.: Improved Integral Attacks on Rijndael. Journal of Information
Science and Engineering 27(6), 2031–2045 (2011)

22. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New Impossible Differential Attacks on
AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

23. Lucks, S.: Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys. In:
AES Candidate Conference, pp. 215–229 (2000)

24. Phan, R.C.W.: Impossible differential cryptanalysis of 7-round Advanced Encryp-
tion Standard (AES). Inf. Process. Lett. 91(1), 33–38 (2004)

25. Zhang, L., Wu, W., Park, J.H., Koo, B.W., Yeom, Y.: Improved Impossible Differ-
ential Attacks on Large-Block Rijndael. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee,
D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 298–315. Springer, Heidelberg (2008)

26. Zhang, W., Wu,W., Feng, D.: New Results on Impossible Differential Cryptanalysis
of Reduced AES. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817,
pp. 239–250. Springer, Heidelberg (2007)

27. Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved Related-Key Impossible Dif-
ferential Attacks on Reduced-Round AES-192. In: Biham, E., Youssef, A.M. (eds.)
SAC 2006. LNCS, vol. 4356, pp. 15–27. Springer, Heidelberg (2007)

28. Zhang, W., Zhang, L., Wu, W., Feng, D.: Related-Key Differential-Linear At-
tacks on Reduced AES-192. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 73–85. Springer, Heidelberg (2007)

A New 6-Round Impossible Differential of Rijndael-224
and 9-Round Attack with Lower Data Complexity

Assume we start with round 1 and there is only one nonzero byte of the input
difference ΔX1 whereas the other bytes are zero. One options is depicted in
Figure 5 with nonzero byte at the first byte position. Then encrypt the input
for 2.5 rounds from the SB operation in 1R to the SR operation in 3R to get
the difference ΔXSR

3 . Given the output difference with three nonzero bytes in
the first column, whereas the other bytes are zero. For Rijndael-224, the only
option exists is given in Figure 5. After 3.5 rounds decryption (as depicted from
the operation ARK∗ in round 6 to the operation ARK in round 3 in order to get
the difference ΔXMC

3). For the first column of the state XSR
3 , the number of

nonzero bytes of ΔXSR
3 is one, while the maximum number of nonzero bytes

of ΔXMC
3 is three. Since the branch number of the MDS matrix is five, there

exists an contradiction. Therefore, we make up a 6-round impossible differential
for Rijndael-224.

140 Q. Wang et al.

ARK∗

SB−1 SR−1

SB SR

SB SR MC

SB MC
1R

2R

6R

5R

4R

3R

SR

MC−1
SB−1

SB−1

SR−1

SR−1

?

?

?

?

?

?

?

?

ARK

MC−1

ARK

ARK

ARK

ARK

ARK

MC−1

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Fig. 5. The New 6-Round Impossible Differential of Rijndael-224

ARK∗
8R

7R

MC−1
SB−1

SB−1 SR−1

SR−1

9R

Pr3

ARK

MC−1

1R
SB MCSR ARK

Pr1

Pr2

6-Round Impossible Differential of Rijndael-224

Fig. 6. The Improved 9-Round Attack on Rijndael-224 with lower Data Complexity

Cube Cryptanalysis of LBlock

with Noisy Leakage�

Zhenqi Li1, Bin Zhang2, Yuan Yao1, and Dongdai Lin2

1 Institute of Software Chinese Academy of Sciences, Beijing
2 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,

Beijing
{lizhenqi,zhangbin,yaoyuan}@is.iscas.ac.cn, ddlin@iie.ac.cn

Abstract. In this paper, we present some side channel cube attacks
on LBlock, a lightweight block cipher proposed at ACNS 2011. It is
shown that in the single bit leakage model, 14 bits of the secret key
can be recovered with 210.7 time and 27.6 chosen plaintexts, captured
the 44th state bit of the third round. In the Hamming weight leakage
model, the full 80-bit key can be retrieved with only 210 32-round LBlock
encryptions and 211.1 chosen plaintexts, given the leakage of the second
least significant bit (LSB) of the Hamming weight after the third round.
We also provide a rigorous analysis on the error tolerance probabilities
of our attacks and show that the full 80-bit key can be restored in 230

32-round LBlock encryptions with 28.5 chosen plaintexts and at most
5.5% of the noisy leaked bits in the LSB of the Hamming weight after
the second round. Many of the ideas in our attacks are applicable to
other block ciphers as well.

Keywords: Cryptanalysis, Cube attack, Side channel attack, LBlock.

1 Introduction

RFID technology has been widely used in many real life applications nowadays,
to name but a few, access control, parking management, identification, goods
tracking and so on. To assure the security in such scenarios (weak computation
ability, small storage space and strict power constraints), many lightweight block
ciphers have been designed such as SEA [24], CGEN [21], HIGHT [9], DESL
[13], PRESENT [2], KATAN/KTANTAN [4], MIBS [10], TWIS [18], LED [8],
LBlock [28], Piccolo [23] and TWINE [25]. LBlock is proposed by Wu and Zhang
at ACNS 2011. It is a 80-bit key Feistel-like block cipher with 64-bit block size

� This work was supported by the programs of the National Natural Science Foun-
dation of China (Grant No. 60833008, 60603018, 61173134, 91118006, 61272476),
the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant
No. XDA06010701) and the National Grand Fundamental Research 973 Program of
China(Grant No. 2013CB338002).

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 141–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

142 Z. Li et al.

and 32 rounds. It is efficient not only in hardware but also in software. Cur-
rent cryptanalysis [28,3,29,17,14] shows that it provides enough security margin
against known cryptanalytic techniques.

Cube attack [5] was formally proposed by Dinur and Shamir at EUROCRYPT
2009. It is a generic key recovery attack, applicable to any cryptosystem in which
at least a single bit can be represented by an unknown low degree multivariate
polynomial in the secret and public variables. Side channel attacks typically
exploit partial information leakage (time counting [19], physical probing, power
consumption [11], electro-magnetic radiation [20] et al.) to recover the secret key.
In this paper, we ignore these concrete issues and focus on the abstract leaked
information hereafter. Side channel cube attack is a combination of cube and
side channel attack. In such an attack, the adversary can obtain not only the
plaintexts and the ciphertexts but also some restricted internal state information
of the intermediate rounds. Dinur and Shamir applied side channel cube attack
to AES and Serpent[6]. Since then, PRESENT is also found to be especially
vulnerable to side channel cube attack [15,30,22].

In this paper, we present some side channel cube attacks on LBlock both
in the single bit leakage model and Hamming weight leakage model. Combin-
ing the divide and conquer strategy with the cube-searching algorithm of large
and complex algebraic systems, we can efficiently find good cubes based on the
leaked information in the first few rounds. Based on the investigation of the
mixing extent of the plaintext and key bits, we derive some important diffusion
properties of the key bits, which can be utilized by a side channel cube attack.
In real applications, the 0/1 value of the leaked information is likely to contain
errors due to the noise and quantization problems. The original cube attack is
extremely sensitive to errors. Therefore, we present a rigorous analysis of error
tolerance of all our side channel cube attacks on LBlock. It is shown that the
attacker can recover 50 key bits with 5.52% error tolerance and can obtain 56
key bits with 4.52% error tolerance in practical scenarios. Many of the ideas in
our attacks are applicable to other block ciphers as well. Our attack results are
summarized in Table 1.

Table 1. Our results on LBlock

Leakage Round Leaked bit Data Time No. of Error
model position key bits tolerance

SB leakage 3 44th 27.6 210.7 14 2.42%
HW leakage 2 0th 28.5 215.9 50 5.52%
HW leakage 3 0th 210.0 217.0 67 2.40%
HW leakage 2 1st 28.9 216.4 56 4.52%
HW leakage 3 1st 211.1 217.2 70 0.62%

SB:Single bit. HW:Hamming weight.

The paper is organized as follows. The description of LBlock is provided in
Section 2. We present a brief review of cube attacks in Section 3. In Section 4,
the side channel cube attacks on LBlock based on the single bit leakage model

Cube Cryptanalysis of LBlock with Noisy Leakage 143

and the Hamming weight leakage model are given respectively. The analysis of
error tolerance on our side channel cube attacks is presented in Section 5. Finally,
some conclusions are in Section 6.

2 Description of LBlock

2.1 Encryption Algorithm

The block length of LBlock is 64-bit, and the key length is 80-bit. It employs a
variant Feistel structure and consists of 32 rounds. The encryption procedure is
depicted in Fig. 1. Let M = X1||X0 denote the 64-bit plaintext, and then the
data processing procedure can be expressed as follows.

F
F

8

8

F
F

1X 0X

32X 33X

1K

32K

Fig. 1. Encryption procedure

X

0s1s2s3s4s5s6s7s

Fig. 2. Round Function F

1. For i = 2, 3, ..., 33, do

Xi = F (Xi−1,Ki−1)⊕ (Xi−2 <<< 8)

2. Output C = X32||X33 as the 64-bit ciphertext
(1) Round function F: The round function F is defined as follows, where

S and P denote the confusion and diffusion functions which will be
defined later.

F : {0, 1}32 × {0, 1}32 −→ {0, 1}32
(X,Ki) −→ U = P (S(X ⊕Ki)

Fig.2 shows the structure of round function F in detail.
(2) Confusion function S: Confusion function S denotes the non-linear

layer of round function F , and it consists of eight 4-bit S-boxes si in
parallel.

S : {0, 1}32 −→ {0, 1}32
Y = Y7||Y6||Y5||Y4||Y3||Y2||Y1||Y0 −→ Z =

Z7||Z6||Z5||Z4||Z3||Z2||Z1||Z0

Z7 = s7(Y7), Z6 = s6(Y6), Z5 = s5(Y5), Z4 = s4(Y4),
Z3 = s3(Y3), Z2 = s2(Y2), Z1 = s1(Y1), Z0 = s0(Y0).

144 Z. Li et al.

(3) Diffusion function P: Diffusion function P is defined as a permu-
tation of eight 4-bit words, and it can be expressed as the following
equations.

P : {0, 1}32 −→ {0, 1}32
Z = Z7||Z6||Z5||Z4||Z3||Z2||Z1||Z0 −→ U =

U7||U6||U5||U4||U3||U2||U1||U0

U7 = Z6, U6 = Z4, U5 = Z7, U4 = Z5,
U3 = Z2, U2 = Z0, U1 = Z3, U0 = Z1.

2.2 Key Scheduling

The 80-bit master key K is stored in a key register and denoted as K =
k79k78k77k76......k1k0. Output the leftmost 32 bits of current content of regis-
ter K as round subkey K1, and then operate as follows.

1. For i = 1, 2, ..., 31, update the key register K as follows:
(a) K <<< 29
(b) [k79k78k77k76] = s9[k79k78k77k76]

[k75k74k73k72] = s8[k75k74k73k72]
(c) [k50k49k48k47k46]⊕ [i]2, where [i]2 is the binary form of i.
(d) Output the leftmost 32 bits of current content of register K as round

subkey Ki+1.

where s8 and s9 are two 4-bit S-boxes, and they are defined in Table 2.

3 Cube Attacks

Cube attack was formally introduced by Dinur and Shamir at Eurocrypt 2009
[5]. According to the comments and arguments of some researchers, cube attack
has been studied under other names such as higher order differential attack
[12] and algebraic IV differential attack [26][27] as well. Any output bit can
be represented by a multivariate master polynomial p(k1, ..., kn, v1, ..., vm) over
GF (2). The variables include secret variables ki (key bits) and public variables
vi (plaintext bits in block ciphers and MACs, IV bits in stream ciphers).

In the off-line phase, the attacker chooses tI randomly which can be in-
dexed by the subset I ⊆ {1, ...,m}. The index of the subset I is defined as
cube index. The polynomial can be represented as p(k1, ..., kn, v1, ..., vm) =
tI ·pS(I)+q(k1, ..., kn, v1, ..., vm) where pS(I) is called the superpoly of I in p. The
polynomial is divided into two parts pS(I) and q by tI . We assign all the public
variables with all the possible combination of 0/1 values. Then the pS(I) becomes
a polynomial including secret variables only. A maxterm of p is a term tI such
that deg(pS(I)) ≡ 1, i.e. the superpoly of I in p is a linear polynomial which is
not a constant. The pS(I) corresponding to the maxterm calls maxterm equation.
Let the degree of the polynomial be d. According to Theorem. 1 of [5], Sum p
that tI ∈ {0, 1}d−1, then

∑
tI∈{0,1}d−1 p =

∑
tI∈{0,1}d−1(tIpS(I) + q) = pS(I). We

set other variables not involving in I to be constant (e.g. all 0s). Since the key

Cube Cryptanalysis of LBlock with Noisy Leakage 145

can be chosen in this phase, it is easy to check whether a superpoly is linear by
linear tests [1]. We choose secret variable vectors x, y ∈ {0, 1}n randomly, and
verify the equation pS(I)[0] + pS(I)[x] + pS(I)[y] = pS(I)[x + y]. The test always
succeeds if pS(I) is linear. The attackers repeat the test N times, and a non-linear
superpoly can be accepted with probability 2−N . In this phase the attackers try
to find as many maxterms and their equations as possible.

In the on-line phase, the secret key is fixed. The attackers choose plaintexts
to get a system of linear equations and solve it to recover the key. The superpoly
can be evaluated by summing over every possible assignment to its maxterm. If
the degree of the maxterm is d − 1, each sum requires 2d−1 evaluations of the
derived polynomials.

4 Cube Attack on LBlock

In this section, we first analyze the diffusion properties of the key bits in the
first few rounds of LBlock, then we give the side channel cube attack on LBlock
based on the single bit leakage model and the Hamming weight leakage model
respectively.

4.1 The Attack Round and Bit Position

In general, the choice of round r plays a vital role in the side channel cube
attack on block ciphers. If r is small, e.g. r = 1 or r = 2, the complexity of
chosen plaintext is minimized, but the number of key bits which can be recovered
would be very few, the remaining key bits have to be exhaustively tested. If r
gets bigger, the mixing of plaintexts and key bits will be much thorough, it is
hard to find the maxterms with a low complexity since both the degree and the
number of monomials will grow exponentially.

Fig. 3. Polynomial degree for the 64 bit positions of round 1,2,3,4 and 5

146 Z. Li et al.

Fig.3 depicts the polynomial degree for the 64 bit positions1 of round 1,2,3,4
and 5 of LBlock. It is easy to see that the degree of the polynomial grows ex-
ponentially with the increasing of LBlock round number. Besides, due to the
intrinsic properties of Feistel network, only half of the state bits will be changed
each round. Considering the efficiency of cube attack in which the polynomial
degree of state bits should not be too large, we choose the right side state
bits:{33, 34, ..., 64} of the third round (or equivalently the left side state bits
{1, 2, ..., 32} of the fourth round). Experiments show that the polynomial degree
of these state bits are around 15.

4.2 Diffusion of Key Bits

In order to recover more key bits in the single bit leakage model, it is helpful
to observe the key bits diffusion of LBlock and select an appropriate leaked bit
position. For each round, we keep two types of monomials, one involving a single
key variable and the other only involving public variables. Then in the next
round we compute the terms in the polynomial of the state bit which related
to the selected terms only. And we discard other terms involving more than one
key variables. In this way, we can control the number of the monomials in the
first 3 rounds. We give an analysis of the initial key bits diffusion as follows.

Fig. 4. Diffusion of key bits

Fig.4 exhibits the frequency of occurrences of the initial key bits in the mul-
tivariate polynomial of the state bits (36,36,40,44,48,52,56,60,64) in the third
round (The distributions of initial key bits in other state bits are similar). It is
easy to see that the distribution of the initial key bits is not uniform. For state
bit 44 (symbol ’+’ indicates the frequency of occurrences), it only covers the
following 16 key bits. The reason is that the speed of the key bits diffusion is not

1 Bit positions from 1 to 64 corresponds to the state bits from right side to left side
in each round of Fig.1.

Cube Cryptanalysis of LBlock with Noisy Leakage 147

fast. When the diffusion of key bits is complete in the latter round, the degree
of polynomial will be much higher.

4.3 Attack in the Single Bit Leakage Model

In the single bit leakage model, we assume that only one internal state bit at
certain round is available to the cryptanalyst. We employ the same strategy
mentioned in section 4.2 to control the complexity of the multivariate polyno-
mials. In this way, we can explicitly compute the multivariate polynomials for
each state bit after the third round and treat the coefficient of the linear terms
and constant terms as cubes. We apply the cube attack on each bit of the right
side state bits:{33, 34, ..., 64} of the third round. We found that at most 14 key
bits can be recovered with 27.6 chosen plaintexts2 and 210.7 time (This is the
cost of Gaussian elimination [7] to solve the linear equation system). The cor-
responding leaked bit position is 44. The maxternms with linearly independent
maxterm equations are listed in Table 3.(The attack results on other state bits
are listed in Table 5 of appendix A).

Table 2. 14 maxterms and maxterm equations

Cube Indexes Linear Equations Cube Indexes Linear Equations

{37, 39} 1 + k56 {37, 40} k55
{39, 40} 1 + k53 {29, 30, 31} k71

{29, 30, 45, 57} k63 {29, 30, 47, 57} 1 + k61 + k62
{29, 31, 32, 57} k73 + k74 {29, 45, 46, 57} 1 + k26 + k73
{30, 31, 32, 57} 1 + k74 {30, 45, 47, 58} k64
{31, 46, 59, 60} k61 + k64 {32, 45, 47, 58} k24
{46, 47, 59, 60} k24 + k25 {31, 45, 46, 57, 60} 1 + k27 + k63 + k64

Therefore, this attack can recover 14 key bits. Due to the incomplete diffusion
of key bits in the third round of LBlock, the number of recovered key bits is very
limited. In the following, we will show a better attack in the Hamming weight
leakage model.

4.4 Attack in the Hamming Weight Leakage Model

In general, Hamming weight leakage model is a weaker leakage assumption, sup-
ported by many previously known practical results on side channel attacks. More
precisely, let the internal state of the cipher S = s0...sL−1 be a binary string of
length L. The Hamming weight of S is the number of bits with value 1 in the
binary representation of S, which can be computed as HW (S) =

∑L−1
i=0 si and

has a value between 0 and L. Clearly, the Hamming weight can also be viewed
as a boolean vector mapping HW : {0, 1}L → {0, 1}|log2L+1|, where the LSB of

2 Since the cube index size is different in Table 3, we choose the number of plaintexts
as NCP = 3 · 22 + 1 · 23 + 9 · 24 + 1 · 25 ≈ 27.6.

148 Z. Li et al.

HW (S) is the exclusive OR of all bits from S, the most significant bit(MSB) of
HW (S) is the logic AND of all bits from S and each bit in between is a boolean
function whose degree increases as the bit position gets closer to the MSB. We
consider all bits starting from the LSB position towards the MSB position.

In our attacks, we assume that only one bit of the Hamming weight at certain
round is available to the cryptanalyst. If the LSB of Hamming weight after the
second round is leaked, 50 key bits can be retrieved with 28.5 chosen plaintexts3

and 215.9 time. All these recovered key bits can be deduced from the 50 linearly
independent maxterm equations listed in Table 3.

Table 3. 50 maxterms and maxterm equations

Cube Indexes Maxterm Equations Cube Indexes Maxterm Equations

{1, 33} k50 + k51 + k52 {5, 42} k57 + k59 + k60

{9, 53} 1 + k70 + k71 + k72 {13, 61} k78 + k80

{17, 49} k66 + k67 + k68 {21, 57} 1 + k74 + k76

{25, 37} 1 + k54 + k56 {29, 45} k62 + k63 + k64

{2, 3, 34} k49 + k52 {3, 4, 35} 1 + k49 + k50

{6, 7, 43} 1 + k57 + k58 {1, 34, 35} k52

{2, 33, 34} 1 + k30 + k51 {3, 33, 34} 1 + k29

{3, 34, 35} 1 + k31 + k52 {5, 41, 44} k59

{5, 43, 44} k57 {6, 41, 42} k35

{6, 42, 43} k34 {7, 41, 43} k33

{9, 54, 55} k72 {9, 54, 56} 1 + k71

{10, 11, 54} 1 + k69 + k72 {10, 53, 54} 1 + k38

{10, 54, 55} 1 + k39 + k72 {11, 53, 54} 1 + k37 + k71

{13, 62, 63} 1 + k80 {13, 62, 64} 1 + k79

{14, 15, 62} k77 + k80 {14, 61, 62} 1 + k42 + k79

{15, 61, 62} 1 + k41 {17, 50, 51} k68

{17, 50, 52} 1 + k67 {18, 19, 51} 1 + k65 + k66

{21, 58, 59} 1 + k76 {21, 58, 60} k75

{22, 23, 58} 1 + k73 + k76 {25, 38, 39} 1 + k56

{25, 38, 40} 1 + k55 {26, 27, 38} 1 + k53 + k56

{26, 37, 38} k22 + k55 {27, 37, 38} k21

{29, 46, 47} k64 {29, 46, 48} k63

{30, 32, 47} 1 + k61 + k62 {31, 45, 46} 1 + k27 + k63

{32, 45, 46} 1 + k26 {32, 46, 47} k25 + k64

{37, 38, 40} 1 + k23 {61, 62, 64} 1 + k43

If the LSB of the Hamming weight after the third round is leaked, 67 key
bits can be restored with 210.0 chosen plaintexts and 217.0 time, reducing the
LBlock key searching space to 213, which is better than that of the second round.
All these recovered key bits can be deduced from the 67 linearly independent
maxterm equations listed in Table 6 of appendix A.

3 Since the cube index size is different in Table 3, we choose the number of plaintexts
as NCP = 8 · 22 + 42 · 23 ≈ 28.5.

Cube Cryptanalysis of LBlock with Noisy Leakage 149

We also extend the cube attack on the leakage of the second LSB of the
Hamming weight after the second round. More precisely, the second LSB of the
Hamming weight of S can be expressed as [HW (S)]2 = si·sj (0 ≤ i < j ≤ L− 1),
where the degree of [HW (S)]2 is 2 and suppose L to be an even number, which is
often 8 due to the implementation of a block cipher on a 8-bit microcontroller. By
utilizing this leaked bit, 56 key bits can be obtained with 28.9 chosen plaintexts
and 216.4 time, leaving k1, k2, ..., k19 and k44, k45, ..., k48 to be recovered. All those
recovered key bits can be deduced from the 56 linearly independent maxterm
equations listed in Table 7 of appendix A.

Next, we further improve the above attack by using the divide-and-conquer
strategy. If the second LSB of Hamming weight after the third round is leaked, we
find that the multivariate polynomial of [HW (S)]2 in the third round is hard to
compute explicitly, since each si in the third round contains a lot of monomials
with relatively high degree. We divide [HW (S)]2 into L different groups and
compute the explicit multivariate polynomial expression for each group. We use
the same strategy mentioned in section 4.3 to search good cubes for each group,
then apply the attack to LBlock based on all these cubes. Experimental results
show that 70 key bits can be obtained with 211.1 chosen plaintexts and 217.2 time,
please see Table 8 of appendix A for the 70 linearly independent equations.

These results show that the speed of the key bits diffusion of a block cipher
has a great influence to the attack efficiency of the side channel cube attack.
The attack under the single bit leakage model proves to be very effective to
PRESENT [15,30] whose diffusion speed is very fast. However, it is not applicable
for a block cipher with low diffusion speed, such as LBlock. It is inferior to
the attack under the Hamming weight leakage model, which proves to be more
efficient for both PRESENT [22] and LBlock.

5 Error Tolerance Side Channel Cube Attack

In real applications, the 0/1 value of the leaked information is likely to contain
errors due to the noise and quantization problems. The original attack is ex-
tremely sensitive to errors, since it typically sums (modulo 2) lots of 0/1 values
of a cube to get a single linear equation and repeats the summation over a num-
ber of different cubes to derive all the equations. In this section, we first give a
brief introduction of Dinur-Shamir error correcting model [6] and point out its
limitations when applying in the side channel cube attacks. Then we apply a
modified version of Dinur-Shamir model to our attacks on LBlock

5.1 Dinur-Shamir Model

In the basic model, each leaked bit has three possible values: 0, 1 and ⊥, where ⊥
indicates a problematic measurement which cannot be relied upon. This model
is closely related to erasure codes [16], in which the recipient of some communi-
cation knows which of the received bits are correct and which bits might have
been flipped. Such flipped bits can be set as new variables in linear equations to
overcome the uncertainty.

150 Z. Li et al.

More precisely, let ε be the fraction of the ⊥ values among all the measure-
ments (leaked bits). Let n be the number of secret key variables. It is assumed
that the errors are uniformly distributed and the leakage function is a d-random
multivariate polynomial. The attacker chooses a big cube with k ≥ d+ lognd
public variables. In the off-line phase, the attacker compute all the coefficients
of all the

(
k

d−1

)
linear equations which are determined by summing over all the

possible subcubes of dimension d − 1 in the big cube of dimension k. In the
on-line phase, the attacker obtains 2k leaked bits. Out of the 2k values, ε · 2k
values are ⊥ due to the uncertainty (noise) in the measurement of the leakage
function. The attacker assigns a new variable yj to each one of these unknown
values and sums both the known 0/1 values and the unknown yj variables over

each one of the
(

k
d−1

)
overlapping subcubes of the big cube. The result of each

summation is the sum of a subset of the yj ’s, plus 0 or 1. The attacker treats all

these unknown variables as the new key variables and obtains a system of
(

k
d−1

)
linear equations in the ε · 2k + n variables yj and ki.

In order to solve the random looking linear system, the number of linear
equations

(
k

d−1

)
should be larger than ε · 2k +n. That is

(
k

d−1

)
≥ ε · 2k + n, then

we can derive ε ≤ (k
d−1)−n

2k
≈ 1√

Π·(d−1)
. In feasible attacks k = 2(d − 1) < 50,

and thus 1√
Π·(d−1)

is bigger than 1√
Π·25 ≈ 0.11. Consequently, the attacker can

find the complete key even when 11% of the leaked bits are too noisy to measure
accurately.

However, considering the efficiency and feasibility, the side channel cube at-
tacks are often applied to the early rounds of some cipher. The number of linear
equations we can obtained is very limited. The assumption that the leakage
function is a d-random multivariate polynomial, made in the model is thus not
applicable in the real scenario. Therefore, we applied a modified version of Dinur-
Shamir model to the attacks on LBlock in the following.

5.2 Side Channel Cube Attacks on LBlock with Noisy Leakage

In our side channel cube attack on LBlock, the number of measurements can be
expressed as N∗

CP =
∑m

i=1 ni · 2di, where ni is the number of cubes with size di
and m is the number of different sizes of cubes. We assume that the errors are
uniformly distributed, then out of the N∗

CP values, ε ·N∗
CP values are ⊥ due to

the noise. We then obtained a system of L linear equations in the ε ·N∗
CP + n

variables, where n is the number of the key variables and L is the number of
linear equations we obtained in the off-line stage, satisfying L =

∑m
i=1 ni.

In order to solve the random looking linear system, it is required that L ≥
ε ·N∗

CP + n. Considering the matrix of the linear system might not be nonsin-
gular, we add a modifying factor θ representing the fraction of linear equations
which is linearly dependent to other equations, thus modify the inequation to
L · (1 − θ) ≥ ε ·N∗

CP + n, therefore, we can derive

ε ≤ L · (1− θ)− n

N∗
CP

.

Cube Cryptanalysis of LBlock with Noisy Leakage 151

We can thus recover the key when at most (L · (1− θ)− n)/N∗
CP fraction of the

leaked bits are ⊥. In the single bit leakage attacks on the 44th of the third round
in Section 4.3, we totally get L = 172 linear equations, which contain a lot of
linearly dependent equations. After canceled all these linearly dependent equa-
tions, we obtained 14 maxterms and the corresponding linearly independently
maxterm equations listed in Table 3. However, considering the random existence
of new variable yj when summing over the leakage bit for a cube, we can use
those linearly dependent equations to solve the new linear system. The value of
N∗

CP is different from that of NCP in Section 4, since it count all those cancelled
maxterms, thus N∗

CP = 1 ·21+3 ·22+4 ·23+50 ·24+73 ·25+41 ·26 = 5806. There
exists n = 14 key variables in all the 172 linear equations. Given θ = 0.1, we can
get ε ≤ 2.42%. Consequently, the attacker can retrieve 14 key bits even when
2.42% of the leaked bits are too noisy to measure accurately. We also apply the
same model to other leakage attacks in section 4, the results are summarized in
Table 4.

Table 4. Analysis of error tolerance of our attacks

Leakage model Round Bit position L n N∗
CP ε

SB leakage 3 44th 172 14 5806 ≤ 2.42%
HW leakage 2 0th 188 50 2160 ≤ 5.52%
HW leakage 3 0th 1199 67 42200 ≤ 2.40%
HW leakage 2 1st 868 56 16024 ≤ 4.52%
HW leakage 3 1st 13952 70 1990904 ≤ 0.62%

SB:Single bit. HW:Hamming weight.

From Table 4, it is easy to see that the error tolerance of attacks in the second
round is higher than that of the third round, since the cube size in the second
round is relatively smaller than that of the third round. This subtle difference
will lead to a big gap between N∗

CP of the second round and the third round.
The reason is that the high degree of the multivariate polynomial of the leakage
bit will lead to the exponential increase in N∗

CP . Consequently, in our leakage
model, it is strongly recommend that the attack should base on a polynomial
whose degree is as low as possible in order to get higher error tolerance. Another
way to increase the error tolerance is to obtain more linear equations in the
off-line stage of cube attack.

6 Conclusion

In this paper, we have presented several side channel cube attacks on LBlock
under the novel assumption of obtaining accurate leaked bits without any noise.
Based on the Hamming weight leakage model, we can obtain all the 80-bit key
with 210 32-round LBlock encryptions and 211.1 chosen plaintexts with a special
leaked bit of the second LSB of Hamming weight after the third round. We also

152 Z. Li et al.

present an rigorous analysis on the error tolerance of all our attacks on LBlock.
Under our leakage model, we can recover all the 80-bit key with 230 32-round
LBlock encryptions and 28.5 chosen plaintexts when at most 5.52% of the leaked
bits in the LSB of Hamming weight after the second round are too noisy to
measure accurately in practical scenarios. To our knowledge, this is the most
efficient cube cryptanalysis of LBlock. In order to get a higher error tolerance,
we need to get more linear equations and the corresponding cubes’ size should
be as small as possible. Our further research will focus on how to enhance the
error tolerance, how to identify the multivariate polynomial in deeper round of
block cipher and identify cipher structures against side channel cube attacks.

References

1. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences 47, 549–595 (1993)

2. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

3. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: ElimLin Algorithm Revis-
ited. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 306–325. Springer,
Heidelberg (2012)

4. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

5. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer,
Heidelberg (2009)

6. Dinur, I., Shamir, A.: Side Channel Cube Attacks on Block Ciphers. Cryptology
ePrint Archive. Report 2009/127 (2009)

7. Farebrother, R.W.: Linear Least Squares Computations. STATISTICS: Textbooks
and Monographs. Marcel Dekker (1988) ISBN 978-0-8247-7661-9

8. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

9. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D.,
Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

10. Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: A New
Lightweight Block Cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

12. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. In: Communica-
tions and Cryptography: Two Sides of One Tapestry, p. 227 (1994)

Cube Cryptanalysis of LBlock with Noisy Leakage 153

13. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

14. Zhao, L., Nishide, T., Sakurai, K.: Differential Fault Analysis of Full LBlock. In:
Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 135–150.
Springer, Heidelberg (2012)

15. Yang, L., Wang, M., Qiao, S.: Side Channel Cube Attack on PRESENT. In:
Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp.
379–391. Springer, Heidelberg (2009)

16. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient era-
sure correcting codes. IEEE Transactions on Information Theory 47(2), 569–584
(2001)

17. Marine, M., Maria, N.P.: A related key impossible differential attack against
22 rounds of the lightweight block cipher LBlock. Information Processing Let-
ters 112(16), 624–629 (2012)

18. Ojha, S.K., Kumar, N., Jain, K., Sangeeta: TWIS - A Lightweight Block Cipher.
In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol. 5905, pp. 280–291.
Springer, Heidelberg (2009)

19. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

20. Quisquater, J.J., Samyde, D.: A new tool for non-intrusive analysis of smart cards
based on electro-magnetic emissions: the SEMA and DEMA methods(EB/OL).
Eurocrypt rump session (2000)

21. Robshaw, M.J.B.: Searching for Compact Algorithms: cgen. In: Nguyen, P.Q. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 37–49. Springer, Heidelberg (2006)

22. Shekh Faisal, A.-L., Mohammad, R.R., Willy, S., Jennifer, S.: Extended Cubes:
Enhancing the cube attack by Extracting Low-Degree Non-linear Equations. In:
Cheung, B., Hui, L.C.K., Sandhu, R., Wong, D.S. (eds.) ASIACCS 2011, pp. 296–
305 (2011)

23. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

24. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

25. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight,
Versatile Block Cipher. In: ECRYPT Workshop on Lightweight Cryptography
(November 2011)

26. Vielhaber, M.: Breaking ONE.TRIVIUM by AIDA and Algebraic IV Differential
Attack. IACR Cryptology ePrint Archive, 413 (2007)

27. Vielhaber, M.: AIDA Breaks (BIVIUM A and B) in 1 Minute Dual Core CPU
Time. IACR Cryptology ePrint Archive, 402 (2009)

28. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

29. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible Differential Attacks on Reduced-Round
LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 97–108. Springer, Heidelberg (2012)

30. Zhao, X.J., Wang, T., Guo, S.Z.: Improved Side Channel Cube Attacks on
PRESENT. Cryptology ePrint Archive. Report 2011/165 (2011)

154 Z. Li et al.

A Results of Side Channel Cube Attacks on LBlock

Table 5. Recovered key bits on other state bits

Bit Position Recovered Key Bits

33 k32, k33, k34, k35, k57, k58, k59, k60, k67, k68, k77, k75 + k76
34 k34, k35, k57, k58, k59, k60, k67, k68, k77, k32 + k33, k65 + k66
35 k32, k33, k34, k35, k57, k58, k59, k60, k65, k67, k68, k77, k78, k75 + k76
36 k34, k35, k57, k58, k59, k60, k67, k75, k77, k32 + k33
37 k5, k6, k28, k29, k30, k31, k49, k50, k51, k52, k75, k73 + k74
38 k3, k5, k6, k30, k31, k28, k29, k49, k50, k51, k52, k75, k76
39 k5, k28, k29, k30 , k31, k49, k50 , k51, k52, k3 + k4, k73 + k74
40 k5, k6, k28, k29, k30, k31, k49, k50, k51, k52, k73, k75, k76
41 k24, k25, k26, k27, k55, k61, k62, k63, k64, k73, k74, k53 + k54
42 k26, k27, k55, k56, k61, k62, k63, k64, k24 + k25, k71 + k72
43 k24, k25, k26, k27, k55, k56, k61, k62, k63, k64, k73, k74, k53 + k54, k71 + k72
44 k24, k25, k26, k27, k53, k55, k56, k61, k62, k63, k64, k71, k73, k74
45 k1, k2, k20, k21, k22, k23, k53, k54, k55, k56, k63, k64, k79 + k80
46 k1, k2, k20, k21, k22, k23, k53, k54, k55, k56, k61, k63, k64
47 k1, k2, k20, k21, k22, k23, k53, k54, k55, k56, k63, k79
48 k22, k23, k53, k54, k55, k56, k63, k64, k20 + k21, k61 + k62, k79 + k80
49 k13, k14, k51, k52, k73, k74, k75, k76
50 k13, k14, k51, k73, k74, k75, k76, k11 + k12
51 k51, k52, k73, k74, k75, k76, k11 + k12, k49 + k50
52 k11, k13, k14, k49, k51, k52, k73, k74, k75, k76
53 k59, k60, k65, k66, k67, k68, k57 + k58
54 k59, k60, k65, k66, k67, k68
55 k57, k59, k60, k65, k66, k67, k68
56 k59, k65, k66, k67, k68, k57 + k58
57 k9, k10, k40, k41 , k42, k43, k71 , k72, k77, k78 , k79, k80
58 k9, k10, k40, k41 , k42, k43, k71 , k72, k77, k78 , k79, k80, k7 + k8, k69 + k70
59 k7, k9, k10, k40, k41, k42, k43, k71, k77, k78, k79, k80, k69 + k70
60 k9, k42 , k43, k69, k71 , k72, k77, k78 , k79, k80, k40 + k41
61 k36, k37, k38, k39, k69, k70, k71, k72, k79, k77 + k78
62 k36, k38, k39, k69, k70, k71, k72, k79, k80
63 k36, k37, k38, k39, k69, k70, k71, k72, k79, k80, k77 + k78
64 k36, k37, k38, k39, k69, k70, k71, k72, k77, k79, k80

Table 6. 67 maxterms and maxterm equations

Cube Indexes Maxterm Equations Cube Indexes Maxterm Equations

{2, 3, 4} k5 + k6 {5, 6, 7} 1 + k77

{1, 2, 38} k6 {1, 2, 40} 1 + k4

{2, 33, 37} k50 + k52 {5, 42, 61} k57 + k59 + k60

{9, 49, 53} 1 + k70 + k71 + k72 {13, 14, 15} 1 + k9

{13, 41, 61} k78 + k80 {21, 22, 23} 1 + k12

{21, 22, 24} 1 + k14 {21, 45, 58} k73 + k76

{25, 26, 27} 1 + k80 {25, 33, 37} 1 + k54 + k56

{29, 30, 31} k72 {29, 30, 32} 1 + k74

{29, 45, 57} k62 + k64 {5, 7, 8, 63} 1 + k76 + k78

{1, 2, 33, 35} 1 + k52 {1, 2, 33, 36} 1 + k51

{1, 2, 35, 36} 1 + k49 + k50 {5, 7, 44, 63} k59 + k76 + k78

{6, 7, 43, 61} 1 + k57 + k58 {1, 33, 34, 37} k30 + k51

{3, 33, 34, 37} k28 {3, 33, 34, 39} 1 + k6 + k29

{3, 34, 35, 39} k4 + k31 + k52 {5, 41, 43, 61} k60

{6, 41, 42, 61} k35 {6, 42, 43, 61} k34

{7, 41, 43, 61} 1 + k33 {9, 10, 52, 53} 1 + k71

{9, 10, 52, 55} 1 + k69 + k70 {10, 49, 53, 54} 1 + k38

{10, 49, 54, 55} 1 + k39 + k72 {11, 49, 53, 54} k37 + k71

{13, 15, 16, 43} 1 + k8 + k10 {13, 41, 62, 64} 1 + k79

{14, 15, 16, 43} k10 {14, 41, 61, 62} 1 + k42 + k79

{15, 41, 61, 62} k41 {17, 18, 49, 56} 1 + k67

{17, 18, 50, 54} k65 + k68 {17, 18, 51, 56} 1 + k65 + k66

{17, 49, 51, 53} k68 {21, 23, 24, 46} 1 + k13 + k14

{21, 45, 57, 60} 1 + k75 {25, 27, 28, 34} 1 + k1 + k2

{25, 33, 38, 39} 1 + k56 {25, 33, 38, 40} 1 + k55

{26, 27, 28, 34} k2 {26, 33, 37, 38} k22 + k55

{27, 33, 37, 38} 1 + k21 {29, 30, 45, 58} k63

{29, 30, 47, 58} 1 + k61 + k62 {29, 45, 46, 58} k26 + k73

{29, 45, 46, 60} k27 + k63 {29, 46, 47, 57} 1 + k64

{31, 32, 46, 57} 1 + k61 + k64 {32, 46, 47, 57} k25 + k64

{33, 37, 38, 40} 1 + k23 {41, 42, 62, 64} k32 + k33 + k59

{41, 61, 62, 64} 1 + k43 {11, 50, 52, 53, 54} k36

{15, 42, 43, 61, 62} 1 + k40 {27, 34, 35, 37, 38} k20

{32, 45, 47, 58, 59} k24

Cube Cryptanalysis of LBlock with Noisy Leakage 155

Table 7. 56 maxterms and maxterm equations

Cube Indexes Maxterm Equations Cube Indexes Maxterm Equations

{32, 47} 1 + k64 {32, 48} k63

{1, 2, 34} k49 + k52 {2, 4, 35} 1 + k52

{2, 4, 36} 1 + k51 {5, 7, 41} 1 + k59

{5, 7, 43} 1 + k57 + k58 {5, 8, 42} 1 + k57 + k60

{1, 33, 34} k29 + k30 + k51 {2, 33, 34} k28

{3, 35, 39} k49 + k50 + k52 {5, 41, 42} 1 + k35

{5, 42, 43} k34 + k60 {6, 42, 43} k34

{8, 41, 42} 1 + k32 + k33 + k59 {9, 10, 54} 1 + k69 + k72

{9, 51, 53} 1 + k71 {9, 51, 55} 1 + k69 + k70

{9, 53, 54} k37 + k38 + k71 {10, 12, 55} 1 + k72

{10, 53, 54} 1 + k36 {13, 14, 62} k77 + k80

{13, 61, 62} k41 + k42 + k79 {14, 16, 61} 1 + k79

{14, 16, 63} 1 + k77 + k78 {14, 61, 62} k40

{14, 62, 63} k43 {15, 62, 63} 1 + k43 + k80

{17, 18, 50} k65 + k68 {18, 19, 51} 1 + k68

{18, 19, 52} 1 + k67 {18, 51, 55} k65 + k66 + k68

{21, 23, 58} k73 + k76 {22, 23, 57} k75

{22, 23, 59} 1 + k73 + k74 {25, 27, 38} k53 + k56

{25, 37, 38} 1 + k22 + k55 + k56 {26, 27, 37} 1 + k55

{26, 27, 39} 1 + k53 + k54 {27, 37, 38} 1 + k20

{27, 38, 39} k21 + k23 + k56 {29, 30, 47} 1 + k61 + k62

{29, 31, 46} 1 + k61 + k64 {29, 45, 46} 1 + k26

{29, 46, 47} k25 {30, 45, 47} 1 + k24 + k64

{33, 34, 36} k31 {33, 34, 37} 1 + k30 + k51

{33, 37, 38} k56 {42, 61, 62} 1 + k42 + k79

{46, 57, 58} k76 {50, 53, 54} 1 + k38

{50, 54, 55} 1 + k39 {8, 41, 42, 61} k32 + k59

{27, 35, 38, 39} k23 + k56 {31, 45, 46, 60} 1 + k27 + k63 + k64

Table 8. 70 maxterms and maxterm equations

Cube Indexes Maxterm Equations Cube Indexes Maxterm Equations

{10, 13, 14} 1 + k9 {10, 14, 15} 1 + k10

{1, 21, 22, 23} 1 + k11 + k12 {1, 21, 22, 24} k14

{5, 17, 42, 64} 1 + k57 + k60 {6, 18, 41, 42} k75 + k76

{10, 15, 44, 63} k77 + k78 + k80 {11, 15, 50, 53} 1 + k70 + k72

{12, 13, 14, 43} k7 {13, 14, 15, 54} 1 + k9 + k69 + k72

{17, 41, 42, 64} k32 + k33 + k59 {21, 22, 24, 34} k14 + k49 + k52

{25, 26, 27, 30} 1 + k79 + k80 {25, 26, 28, 30} k2

{25, 27, 28, 29} k1 + k2 {25, 29, 31, 32} 1 + k71 + k72

{25, 29, 45, 46} 1 + k27 + k63 {25, 30, 32, 48} 1 + k63 + k71 + k72

{26, 29, 35, 38} 1 + k53 + k55 + k56 {26, 29, 45, 46} k26 + k73

{50, 52, 62, 63} 1 + k67 + k80 {3, 4, 21, 33, 37} 1 + k6 + k51

{1, 21, 23, 24, 45} k13 + k14 {1, 22, 45, 47, 58} k73 + k75 + k76

{2, 21, 33, 34, 37} 1 + k6 + k30 + k51 {2, 22, 33, 35, 36} 1 + k5 + k6

{3, 21, 34, 35, 37} 1 + k5 + k31 + k52 {3, 21, 34, 35, 38} 1 + k31 + k52

{3, 21, 34, 36, 38} k28 + k29 + k51 {3, 21, 35, 37, 39} k49 + k50 + k52

{5, 17, 42, 43, 63} 1 + k34 + k60 {5, 17, 42, 44, 63} 1 + k35 + k59

{8, 18, 41, 42, 63} 1 + k32 + k59 {9, 13, 15, 16, 43} 1 + k7 + k8 + k10

{9, 14, 41, 61, 62} 1 + k9 + k42 + k79 {9, 15, 16, 41, 64} 1 + k9 + k79

{10, 11, 12, 49, 62} k77 + k80 {10, 14, 51, 53, 54} k38

{10, 14, 51, 54, 55} k39 + k72 {10, 14, 51, 54, 56} k38 + k71

{10, 15, 43, 61, 62} 1 + k40 {10, 15, 43, 62, 63} k43 + k80

{10, 44, 61, 63, 64} 1 + k40 + k41 {11, 13, 52, 53, 54} k36

{11, 14, 51, 53, 54} 1 + k36 + k37 + k71 {17, 18, 19, 43, 54} 1 + k57 + k58

{17, 41, 42, 43, 63} 1 + k35 {17, 41, 43, 44, 64} k32 + k33 + k34

{18, 41, 42, 50, 54} 1 + k65 + k67 + k68 {19, 41, 42, 44, 63} k35 + k75

{21, 22, 24, 35, 36} k14 + k49 {25, 26, 27, 33, 45} k62 + k64

{25, 26, 27, 34, 46} 1 + k61 + k64 {25, 26, 29, 37, 39} 1 + k56

{25, 26, 29, 37, 40} 1 + k55 {25, 26, 29, 39, 40} 1 + k53 + k54

{25, 29, 32, 45, 47} k64 + k71 + k72 {25, 29, 35, 37, 38} 1 + k22 + k55

{25, 32, 46, 47, 57} 1 + k24 + k25 + k64 {27, 29, 35, 37, 38} k20

{27, 29, 35, 38, 39} k23 + k56 {27, 29, 36, 37, 38} 1 + k20 + k21

{1, 2, 3, 40, 59, 60} 1 + k73 + k74 {5, 7, 44, 50, 51, 63} k59 + k68 + k75 + k76 + k78

{1, 21, 33, 34, 35, 40} 1 + k3 + k5 {1, 23, 33, 34, 35, 40} k3 + k4 + k5

{17, 18, 41, 43, 51, 56} 1 + k65 + k66 {21, 22, 23, 33, 35, 36} 1 + k11

{21, 33, 34, 35, 37, 40} 1 + k28 {26, 31, 45, 47, 48, 59} 1 + k24

Comprehensive Study of Integral Analysis

on 22-Round LBlock

Yu Sasaki1 and Lei Wang2

1 NTT Secure Platform Laboratories, NTT Corporation
sasaki.yu@lab.ntt.co.jp

2 Nanyang Technological University, Singapore
Wang.Lei@ntu.edu.sg

Abstract. The current paper presents an integral cryptanalysis in the
single-key setting against light-weight block-cipher LBlock reduced to
22 rounds. Our attack uses the same 15-round integral distinguisher as
the previous attacks, but many techniques are taken into consideration
in order to achieve comprehensive understanding of the attack; choosing
the best balanced-byte position, meet-in-the-middle technique to identify
right key candidates, partial-sum technique, relations among subkeys,
and combination of the exhaustive search with the integral analysis.

Keywords: LBlock, integral analysis, partial-sum, meet-in-the-middle.

1 Introduction

Block-ciphers are basic tools for secure communications which provide the con-
fidentiality of the data. Recently, block-ciphers which can be implemented in
resource constraint environment, e.g., RFID Tags for a sensor network, have re-
ceived much attention. Such block-ciphers are called light-weight block-ciphers.

Many light-weight block-ciphers were designed so far. Some examples are
HIGHT [1] proposed at CHES 2006 which were standardized by ISO as a 64-
bit block-cipher [2], and PRESENT [3] proposed at CHES 2007 and CLEFIA
[4] proposed at FSE 2007, which were standardized by ISO for the lightweight
cryptography [5]. Many other designs were proposed independently of the ISO
standards e.g., LBlock [6] proposed at ACNS 2011, Piccolo [7] proposed at CHES
2011, LED [8] proposed at CHES 2011, and TWINE [9] proposed at SAC 2012.
Different designs provide different implementation characteristics, e.g., different
tradeoff of area, throughput, and security, thus making a comparison and identi-
fying good designs is very hard. Particularly security evaluation is hard because
it takes long and usually requires evaluations by the third party.

Integral analysis is a cryptanalytic technique against symmetric-key primi-
tives, which was firstly proposed by Daemen et al. to evaluate the security of
Square cipher [10], and was later unified as integral analysis by Knudsen and
Wagner [11]. The crucial part is a construction of an integral distinguisher : an
attacker prepares a set of plaintexts which contains all possible values for some
bytes and has a constant value for the other bytes. All plaintexts in the set are

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 156–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Comprehensive Study of Integral Analysis on 22-Round LBlock 157

passed to an encryption oracle. Then, the corresponding state after a few rounds
has a certain property, e.g. the XOR of all texts in the set becomes 0 with prob-
ability 1. Throughout the paper, this property is called balanced. A key recovery
attack can be constructed by using this property. The attacker appends a few
rounds to the end of the distinguisher. After she obtains a set of the cipher-
texts, she guesses a part of round keys and performs the partial decryption up
to the balanced state. If the guess is correct, the XOR sum of the results always
becomes 0. Hence, the key space can be reduced.

Several improved techniques are known for the integral analysis. Ferguson et
al. proposed a technique called partial-sum [12]. It reduces the complexity of
the partial decryption up to the balanced state by guessing each subkey byte
one after another. Sasaki and Wang introduced meet-in-the-middle techniques
for the key recovery phase of the integral analysis against block-ciphers with a
Feistel network [13]. It separates the partial decryption into two independent
parts, and thus the complexity can be reduced.

The integral analysis has already been applied to LBlock. Firstly, the de-
signers proposed a 15-round integral distinguisher, and constructed an 18-round
attack [6]. Then, Sasaki and Wang extended the attack up to 20 rounds [13].
Regarding other approaches, the designers proposed a 20-round impossible dif-
ferential attack [6]. This was later extended up to 21 rounds by Liu et al. [14].
This is the current best attack on LBlock in the single-key setting. Regarding
related-key attacks, Minier and Naya-Plasencia proposed a related-key impossi-
ble differential attack up to 23 rounds [15]. Liu et al. studied several related-key
differential-based attacks at ICICS 2012 [16]. An optimization of the brute-force
attack by a biclique technique was studied by Wang et al. at WISA 2012 [17]. In
this paper, we do not discuss such an optimized brute force attack with a small
advantage of a constant factor.

Very recently, we have realized that Wang et al. [17] cited an unpublished
paper written in the Chinese language which claims a 22-round integral attack
on LBlock [18]. All the information we have about [18] is obtained through
[17], and is summarized as follows. 1) It is claimed that 22 rounds of LBlock
are attacked with 261.6 CPs and 271.2 encryptions. 2) The integral distinguisher
used in the attack is the same as the previous one in [6]. We emphasize that our
work is independent of [18].

Our Contributions. In this paper, we present a comprehensive study of the
integral analysis against LBlock. Our goal is extending the number of attacked
rounds and optimize the complexity as much as possible by considering all pre-
viously known techniques. Specifically, we consider the following techniques;

– There are 4 possibilities of the balanced-byte position at the output of the
integral distinguisher. We try all of them to identify the best choice.

– We optimize the complexity by using the meet-in-the-middle approach.
– We optimize the complexity by using the partial-sum technique.
– We analyze the key schedule function, and exploit subkey relations.
– We combine the exhaustive search with integral analysis. This can optimize

the data complexity.

158 Y. Sasaki and L. Wang

Table 1. Comparison of attack results

Model Approach #Rounds Data Time Memory (bytes) Reference

Single-key Imp. Diff. 20 263 272.7 268 [6]
Imp. Diff. 21 262.5 273.7 255.5 [14]
Integral 18 262 236 220 [6]
Integral 20 263.6 239.6 235 [13]
Integral 22 261.6 271.2 not given [18] †
Integral 21 261.6 254.16‡ 251.58 This paper
Integral 22 261 270.00 263 This paper

Related-key Imp. Diff. 23 240 270 not given [15]

†: Unpublished independent work available only in Chinese.
‡: The attack requires 261.58 memory access in order to process 261.58 ciphertexts.

As a result, we construct a 21-round attack with (Data, Time, Memory) =
(261.6, 254.16, 251.58), which is better than the previous 21-round impossible differ-
ential attack with (Data, Time, Memory) = (262.5, 273.7, 255.5). We then extend
the attack by one more round, and obtain a 22-round attack with (Data, Time,
Memory) = (261, 270.00, 263). The attack results are summarized in Table 1.

The 15-round integral distinguisher discovered by the designers [6] produces
the balanced byte at 4 byte-positions, 0th, 2nd, 4th, and 6th bytes of the in-
termediate state after 15 rounds. The previous integral attacks [13,6] used the
balanced byte at the 4th byte without any reasoning. Our analysis shows that
the choice of the balanced-byte position is very sensitive when subkey relations
are considered. Interestingly, as later explained in Table 2, using the balanced
byte at the 6th byte for attacking 21 rounds and at the 2nd byte for attacking
22 rounds achieves significantly smaller complexity than the other 3 choices.

Our results indicate that the integral cryptanalysis is particularly useful for
LBlock like structures. Indeed, LBlock is the almost only case that the integral
cryptanalysis works more rounds than the impossible differential cryptanalysis.

2 Preliminaries

2.1 LBlock Specification

LBlock is a light-weight block-cipher proposed by Wu and Zhang [6]. The block
size is 64 bits and the key size is 80 bits. It adopts a modified Feistel structure
with 32 rounds, and its round function consists of the subkey addition, S-box
transformations, and a permutation of the byte positions (1 byte is 4 bits).

Let XL
i ‖XR

i , where 0 ≤ i ≤ 32, be an internal state which is an input
to the i-th round or an output from the i − 1-th round. We further denote
8 bytes inside of XL

i and XR
i by XL

i = XL
i [7]‖XL

i [6]‖ · · · ‖XL
i [0] and XR

i =
XR

i [7]‖XR
i [6]‖ · · · ‖XR

i [0], respectively. The plaintext is loaded into an inter-
nal state XL

0 ‖XR
0 . The state XL

i ‖XR
i is updated with a 32-bit subkey Ki =

Comprehensive Study of Integral Analysis on 22-Round LBlock 159

S0
S1
S2
S3
S4
S5
S6
S7

Ki <<< 8

32 32

32

4
Xi

L: Xi
L[7]||…||Xi

L[0] Xi
R: Xi

R[7]||…||Xi
R[0]

Xi+1
L: Xi+1

L[7]||…||Xi+1
L[0] Xi+1

R: Xi+1
R[7]||…||Xi+1

R[0]

Zi

Fig. 1. LBlock round function

AAAC AAAA AAAA AAAA

15 rounds

X15
L X15

R???? ???? ?B?B ?B?B

X0
L X0

R

Fig. 2. 15-round integral distinguisher

Ki[7]‖Ki[6]‖ · · · ‖Ki[0] byX
L
i+1 = P

(
S(XL

i ⊕Ki)
)
⊕(XR

i ≪ 8), andXR
i+1 = XL

i ,
where, S(·), P (·), and ≪ 8 represent an S-box layer, a permutation of the byte
positions, and the left cyclic shift by 8 bits, respectively. In the S-box layer, each
byte is updated according to the 4-bit to 4-bit S-boxes defined in the specifica-
tion. Then, P (x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0) returns (x6‖x4‖x7‖x5‖x2‖x0‖x3‖x1).
These computations are described in Fig. 1. In this paper, we denote the state
after the byte-position permutation in round i by Zi. After 32 rounds, XL

32‖XR
32

are produced as the ciphertext.

Key Schedule Function. The key schedule function produces thirty-two 32-
bit subkeys from an 80-bit secret key. Let κi, where 0 ≤ i ≤ 31, be an 80-bit
internal state for the key schedule function for round i. We denote each bit of κi
by κi[79], κi[78], . . . , κi[0]. We often denote several bits of κi by κi[a, b, c, · · ·].

The leftmost 32 bits of κ0, i.e., κ0[79, 78, . . . , 48], are output as a 32-bit subkey
for round 0, K0. Then, the following is operated for i = 1, 2, . . . , 31.

1. κi ← κi−1 ≪ 29.
2. Update κi[79, 78, 77, 76] and κi[75, 74, 73, 72] by S9(κi[79, 78, 77, 76]) and

S8(κi[75, 74, 73, 72]) respectively, where S8 and S9 are 4-bit to 4-bit S-boxes.
3. Update κi[50, 49, 48, 47, 46] by κi[50, 49, 48, 47, 46]⊕[i]2, where [i]2 is a binary

representation of the round index.
4. Output the leftmost 32 bits of κi as a 32-bit subkey Ki.

2.2 Notations for Integral Attack

To discuss integral distinguishers, the following notations are used in this paper.

“A (Active)” : all values appear exactly the same number in the set of texts.
“B (Balanced)” : the XOR of all texts in the set is 0.
“C (Constant)” : the value is fixed to a constant for all texts in the set.

We also use the following notations to describe the attack.

D: number of plaintexts to construct an integral distinguisher.
Kα: size of subkeys (in bits) recovered during the key recovery phase.

160 Y. Sasaki and L. Wang

Kβ : size of subkeys (in bits) exhaustively guessed after the key recovery phase.
|B|: size of the balanced state (in bits) to be checked in the key recovery phase.

The key space is reduced by |B| bits with analyzing a single set.

The previous integral attack, especially for LBlock, analyzed Kα/|B| plaintext
sets to identify the right key of Kα. Then, Kβ is recovered by the exhaustive
search. The data complexity is D · (Kα/|B|) and the time complexity is a sum of
the one for the key recovery phase and 2Kβ . Several techniques can be applied
to reduce the time complexity of the key recovery phase. Note that if D is much
bigger than the time complexity for the key recovery phase and the exhaustive
search, D · (Kα/|B|) memory access for processing obtained ciphertexts is the
bottle-neck of the time complexity.

2.3 Partial-Sum Technique

The partial-sum technique was introduced by Ferguson et al. [12]. The original
attack target was AES. In the key recovery phase of the AES, the partial de-
cryption involves 5 bytes of the key and 4 bytes of the ciphertext. Suppose that
the number of data to be analyzed, n, is 232 and the byte position b of each
ciphertext is denoted by cb,n. Then, the equation can be described as follows.

232⊕
n=1

[
S4

(
S0(c0,n⊕ k0)⊕S1(c1,n⊕ k1)⊕S2(c2,n⊕ k2)⊕S3(c3,n⊕ k3)⊕ k4

)]
. (1)

With a straightforward method, the analysis takes 232+40 = 272 partial decryp-
tions, while the partial-sum technique requires only 248 partial decryptions. The
idea is partially computing the sum by guessing each key byte one after another.

The analysis starts from 232 texts (c0,n, c1,n, c2,n, c3,n). First, two key bytes
k0 and k1 are guessed, and S0(c0,n ⊕ k0) ⊕ S1(c1,n ⊕ k1) is computed for each

guess. Let xi,n be
⊕i

p=0(Sp(cp,n ⊕ kp)). Then, S0(c0,n ⊕ k0)⊕ S1(c1,n ⊕ k1) can

be represented by x1,n, and Eq. (1) becomes
⊕232

n=1

[
S4

(
x1,n ⊕ S2(c2,n ⊕ k2) ⊕

S3(c3,n ⊕ k3) ⊕ k4

)]
. The original set includes 232 texts, but now only 3-byte

information (x1, c2, c3) is needed. Hence, by only picking the values that appear
odd times, the size of the data set is compressed into 3 bytes. For the second
step, k2 is guessed, and the size of the data set becomes 2 bytes (x2, c3). For
the third step, k3 is guessed, and the size of the data set becomes 1 byte (x3).
Finally, k4 is guessed and Eq. (1) is computed. The complexity for the guess of
k0, k1 is 216 × 232 = 248, for the guess of k2 is 216 × 28 × 224 = 248. Similarly,
the complexity is preserved to be 248 until the end.

2.4 Previous Integral Analysis on LBlock

The designers showed a 15-round integral distinguisher [6], which is shown in
Fig. 2. For a set of 260 plaintexts with the form of (AAAC AAAA AAAA AAAA),

Comprehensive Study of Integral Analysis on 22-Round LBlock 161

S

K15

X16
L X16

R

4
<<< 8

P

???? ???? ?B?B ?B?B

6

(6)

[6][4][4]

[4]

S

K16 <<< 8

P

S

K17 <<< 8

P

[4]

X17
L X17

R

X18
L X18

R

[6]
[6][4]

[6]
[4] (6)

[6] (0)

[6] (0)

[1,4,6]
(0,2)

[6]
(0)

[4]
(1)

[4] (1)

[4,6] (1)

Z15

S

<<< 8

P

S

K19 <<< 8

P

X19
L X19

R

[6,0][4,1]

[3,6,0] (2,4)

K18

[6,0] (3)

(3)
[6,0] (3)

(2)

[4,1] (2)

[3,6,0] (2,4)

[3,6,0]

(2,4)(0,5)

[2,4,1]

[2,4,1]
(0,5)

[0,1,2,4,6]
(0,3,5)

[3,6,0] (2,4)X20
L [0,1,2,4,6] (0,3,5) X20

R

Fig. 3. 20-round attack on LBlock

S

K15

X16
L X16

R

2
<<< 8

P
4

(4)

[4][5][5]

[5]

X17
L X17

R

X18
L X18

R

[7]

[7]
(4)

[0] (6)

[0] (6)

[0,2,3]
(4,6)

[0]
(6)

[1]
(4)

[1] (4)

[1,7] (4)

Z15

X19
L X19

R

[3,1][2,3]

[2,4,5] (6,0)

[3,1] (6)

(6) [3,1] (6)(4)

[2,3] (4)

[2,4,5] (6,0)
[2,4,5]

(6,0)(4,1)

[0,5,7]

[0,5,7]
(4,1)[0,1,3,5,7]

(1,4,6)

S

K16
<<< 8

P
[7][6][6]

[6]

S

K17
<<< 8

P

S

K18
<<< 8

P

S

K19
<<< 8

P

[2,3,5,
7,1]

(3,6,0)(2,4,1)

[0,2,7,
6,3]

[0,2,7,6,3]
(2,4,1)

S

K20
<<< 8

P

X20
L X20

R

(3,6,0)[2,3,5,7,1][0,2,3,4,5,6,7]
(0,1,2,4,6)

X22
L X22

R

[0,5,7,4,6,1,3]
(0,2,5,4,1)

S

K21
<<< 8

P

X21
L X21

R

[0,1,2,3,4,5,6,7]
(0,1,2,3,4,5,6)

[2,4,5,6,7,0,1]
(2,3,4,6,0)

[0,1,2,3,4,5,6,7]
(0,1,2,4,5,6,7)

[0,1,2,4,5,6,7]
(0,2,4,6,7)

???? ???? ?B?B ?B?B

Fig. 4. 22-round attack on LBlock

the state after 15 rounds, (XL
15‖XR

15), has the form of (???? ???? ?B?B ?B?B). By
using this property, the designers showed an 18-round key recovery attack. The
attacker guesses a part of subkeys, and performs the partial decryption up to the
fourth byte of XR

15 and checks if its sum is 0 or not. The partial decryption up to
XR

15[4] involves 5 bytes of the ciphertext and 4 bytes of subkeys. The attacker first
counts how many times each 5-byte value of the ciphertext appears and only picks
the ones that appear odd times. Hence, at most 24×5 = 220 values are stored in a
memory. Then, for each guess of four key bytes, she computes the corresponding
XR

15[4] and computes the sum. The attack complexity is 220 × 216 = 236 partial
decryptions. With the analysis of a single 260 plaintexts set, the key space is
reduced by 1 byte. Therefore, to identify the right key, 4 sets of plaintexts need
to be analyzed. Hence, the data complexity is 4× 260 = 262.

Sasaki and Wang introduced a meet-in-the-middle technique for the key re-
covery phase, and extended the number of attacked rounds up to 20 rounds [13].
The 5-round key-recovery phase is shown in Fig. 3. Because

⊕
XR

15[4] = 0 can
be written as

⊕
Z15[6] =

⊕
XL

16[6], the sum of Z15[6] and XL
16[6] can be com-

puted independently, and right-key candidates are identified by checking their
matches. The bottle-neck of the complexity, which is the partial decryption for⊕

Z15[6], involves 8 bytes of the ciphertext and 8 bytes of subkeys, and thus re-
quires 232×232 = 264 partial decryptions. Moreover, they applied the partial-sum

162 Y. Sasaki and L. Wang

technique, and the complexity for
⊕

Z15[6] was reduced to 236 partial decryp-
tions. In this attack, 12 key bytes are guessed, and the key space is reduced
by 1 byte with the analysis of a single 260 plaintexts set. Therefore, 12 sets of
plaintexts were analyzed, and the data complexity is 12× 260 = 263.6, which is
very close to the full code book.

3 Combining Exhaustive Search for Data-Time Trade-Off

We explain a simple technique which gives the trade-off between the data
complexity and time complexity. For example, we can convert the previous
20-round attack [13] with (Data, Time)=(263.7, 236) into the one with (Data,
Time)=(262, 264), and thus can avoid the marginal improvement of the data
complexity. Note that the complexity evaluation by Sasaki and Wang [13] is
only for the key recovery phase. Actually, it requires 263.7 memory access to
process 263.7 ciphertexts.

The approach is very simple. When we recover a part of subkeys, we stop
identifying the unique right key for Kα, but reduce the key space into a suffi-
ciently small size. Then, the reduced key space is exhaustively searched together
with the remaining subkey bits Kβ . Note that the exhaustive search only for
Kα (independently of Kβ) is impossible. Kα and Kβ must be guessed together.
With this method, the data complexity can be reduced with an extra cost for
the exhaustive search. Let d be the number of sets to be analyzed. Then, the
data complexity is d · D. The key space for Kα is reduced into Kα − (d · |B|),
and the cost for the exhaustive search becomes 2Kα−(d·|B|)+Kβ .

Let us apply this method to the previous 20-round attack [13] with (Data,
Time)=(263.7, 236). More precisely, the parameters of this attack are D =
260,Kα = 48,Kβ = 32, |B| = 4. [13] chose d = 12, thus the data complex-
ity is 12 · 260 = 263.6 and the time complexity for the exhaustive search is
20+32 = 232. We now change the parameter d to d = 4. Then, the data com-
plexity is 4 · 260 = 262 and the time complexity for the exhaustive search is
248−16+32 = 264. Considering that the attack requires at least 260 memory access
to process the ciphertexts, the time complexity is now almost equally distributed,
and we can avoid the marginal improvement of the data complexity.

Note that the data complexity of our attack is exactly the same as the expected
values, while the previous attack in [6] uses double of the expected value to
increase the success probability. Because our approach runs the exhaustive test,
the right key can be identified with probability 1.

4 21-Round and 22-Round Attacks on LBlock

4.1 Overview without Considering the Key Schedule Function

As was done in [13], to detect the right key candidates, the attacker computes the
sum of the target byte in Z15 and the sum of the target byte ofXL

16 independently,

Comprehensive Study of Integral Analysis on 22-Round LBlock 163

Table 2. Key space for 21- and 22-round attacks for all balanced-byte positions

Balanced-byte 21-round attack 22-round attack
position Key space for Z15 Kα Key space for Z15 Kα

XR
15[0] 50 63 62 75

XR
15[2] 44 61 55 69

XR
15[4] 47 63 63 75

XR
15[6] 42 57 65 77

and find matches between two results. Due to the Feistel structure, the bottle-
neck of the time complexity is the one for Z15. Hence, how many subkey bytes
relate to the computation for Z15 is important. The number of total subkey
bytes, Kα, is also important to estimate the number of necessary text sets.

We firstly obtain such information for each of the balanced-byte position,
XR

15[0], X
R
15[2], X

R
15[4], and XR

15[6]. As a result, we found that such important
factors are the same for all balanced-byte positions. In details, for 21-round
attack, the computation for Z15 involves 13 subkey bytes and 12 ciphertext
bytes, and Kα is 80 (20 bytes). For 22-round attack, the computation for Z15

involves 20 subkey bytes and 15 ciphertext bytes, and Kα is 128 (32 bytes).
21- and 22-round attacks are impossible only with the techniques in the previ-

ous attacks. We then analyze the key schedule function and exploit the relation
between subkeys. If it is considered, the attack complexity is very different de-
pending on the balanced-byte position.

4.2 Analysis of Key Schedule Function

What we do here is guessing several bits of the key state, and trace the guessed
bit positions during several rounds. If the guess of several subkey bits reveals
some information about other subkeys in different rounds, the number of guessed
bits by the attacker can be reduced. We analyze the subkey relations for both of
21- and 22-rounds and for each balanced-byte position. As shown in Sect. 4.1,
the number of guessed key bytes is too many, and thus we should choose the
balanced-byte position with minimum key space. The results of the analysis is
summarized in Table 2. The columns for “Key space for Z15” show how many
key bits must be guessed to compute the sum of the target byte in Z15 by
considering the subkey relations, which is the bottle-neck of the time complexity.
The columns for “Kα” show how many bits are guessed to analyze a single
plaintext set, i.e., Kα is the number of elements of the union of the key space
for Z15 and the key space for XL

16. A smaller number indicates that overlaps
of subkeys occur more frequently, and thus the number of guessed bits can be
small. From Table 2, usingXR

15[6] andX
R
15[2] as the balanced-byte position would

yield the best attack for 21 rounds and 22 rounds, respectively. It is particularly
interesting that Kα for 22-round attack is significantly smaller for XR

15[2] than
other balanced-byte positions.

164 Y. Sasaki and L. Wang

S

K20
<<< 8

P

X20
L X20

R

X22
L X22

R

S

K21
<<< 8

P

X21
L X21

R

[0,2,7,6,3]
[2,3,5,7,1]

[0,2,3,4,5,6,7]

[0,5,7,4,6,1,3]

[0,1,2,3,4,5,6,7] [2,4,5,6,7,0,1]

[0,1,2,3,4,5,6,7][0,1,2,4,5,6,7]

Fig. 5. Partial-sum with 1-byte guess

[0,2,7,6,3]

S

K20
<<< 8

P

X20
L X20

R

[2,3,5,7,1][0,2,3,4,5,6,7]

X22
L X22

R

[0,5,7,4,6,1,3]

S

K21
<<< 8

P

X21
L X21

R

[0,1,2,3,4,5,6,7] [2,4,5,6,7,0,1]

[0,1,2,3,4,5,6,7][0,1,2,4,5,6,7]

X19
L X19

R

[2,4,5]

[0,5,7]

[0,1,3,5,7]
S

K19
<<< 8

P

Fig. 6. Partial-sum with 3-byte guess

4.3 7-Round Key-Recovery Phase for 22-Round Attack

Details of the 7-round key-recovery phase are shown in Fig. 4. We follow the
notations used in [13], where 20 key bytes and 15 ciphertext bytes related to
the computation of Z15[4] are denoted by numbers in red square brackets. Simi-
larly, 12 key bytes and 12 ciphertext bytes related to the computation of XL

16[4]
are denoted by numbers in blue round brackets. The sum of Z15[4] and XL

16[4]
are computed independently, and the bottle-neck is the computation for Z15[4].
Hereafter, we mainly explain how to compute the sum of Z15[4].

High-Level Description. Because the procedure is very complicated, we first
give the high-level description of the attack. The attack complexity depends on
how we apply the partial-sum technique and how we utilize the subkey relations.
In our attack, there are 2 patterns of the application of the partial-sum.

1-byte partial-sum: Suppose that we compute the sum for some byte of XR
i .

This always involves 1 byte of Ki and 2 bytes of (XL
i+1, X

R
i+1). The 1-byte

partial-sum is applied when (XL
i+1, X

R
i+1) only relate to the computation of

XR
i . Namely, after we obtain the sum of XR

i , we can discard the information
on (XL

i+1, X
R
i+1). An example is shown in Fig. 5, which we compute XR

21[0] =
XL

20[0] = (S0(X
R
22[0]⊕K21[0])⊕XL

22[2]) ≫ 8, and XR
22[0] and X

L
22[2] are only

used to compute XR
21[0]. Suppose, the number of texts to be analyzed is 24N ,

which consists of N -byte information (XR
22[0], X

L
22[2], and other N−2 bytes).

For each 4-bit guess ofK21[0], the attacker computes XR
21[0] for all 2

4N texts.
Then she only picks N − 1 byte tuple (XR

21[0] and other N − 2 bytes) which
appear odd times. The analysis requires 24N+4 1-round computations, and
for each guess, the data is compressed into 24N−4. Therefore, the complexity
of 24N+4 is preserved until the end.

3-byte partial-sum: Suppose that we need to compute XR
i by using 2-byte in-

formation of (XL
i+1, X

R
i+1). The 3-byte partial-sum is applied when XR

i+1 is
used not only for computing XR

i but also for computing XR
i−1. In this case,

the data cannot be compressed after we guess 4 bits of Ki, and thus the
attack complexity increases. An example is shown in Fig. 6, which XR

22[1, 7]

Comprehensive Study of Integral Analysis on 22-Round LBlock 165

κ18 for X16L[4]:κ18 for Z15[4]:
Fig. 7. κ18 for computing Z15[4] and XL

16[4]. Known bits are in grey.

are used not only for computing XR
21[6, 3] but also for computing XR

20[7, 5].
We first guess two bytes of K21[1, 7], and update the value of XL

22[0, 5] to
XR

21[6, 3]. This requires the complexity of 24N+8. Then, 1-byte partial-sum
is applied for the computation of XR

20[5] (and then XR
20[7]). In summary, the

3-byte partial-sum increases the complexity into 2(4N+8)+4.

The attack optimization also requires to consider the subkey relations, i.e., we
need to arrange the computation order so that we can reduce the number of
guessed bits by using the relations. This also makes the attack complicated.
In our attack, these techniques are considered simultaneously by hand. In high-
level, the complexity for computing the sum of Z15[4] can be explained as follows.
The detailed procedure and and its evaluation are available in Appendix A.

- The analysis starts from 260 texts, 15-byte information of the ciphertext.
- The 1-byte partial-sum is applied several times. At this stage, the complexity

is preserved to be 260+4 = 264 1-round computations.
- The 3-byte partial-sum is applied once, but thanks to the subkey relations, we

can save the guess of 3 bits to update the value. At this stage, the complexity
increases to 2(60+5)+4 = 269 1-round computations.

- Thanks to the subkey relations, the 1-byte partial-sum is applied by only
guessing 2 bits. This occurs 2 times. At this stage, the complexity is
2(60+5−4)+4 = 265 1-round computations.

- The 3-byte partial-sum is applied once again. At this stage, the complexity
increases to 2(60+5−4+8)+4 = 273 1-round computations.

- The remaining part can be computed with less complexity due to the subkey
relations. Hence, intuitively, the bottle-neck of the complexity is 273 1-round
computations.

Remaining Part of the Attack. The complexity for computing
⊕

XL
16[4]

must be estimated. We confirmed that
⊕

XL
16[4] is computed with at most 12 ·

248+8 < 260 1-round computations. Due to the limited space, we omit the details.
We store the result of

⊕
XL

16[4] together with the 48-bit guessed keys in a table
LXL

16
. After the analysis, we obtain a list LXL

16
with 248 entries.

After we make two lists LZ15 and LXL
16
, we identify the right key candidates

by checking the match. By the condition
⊕

Z15[4] =
⊕

XL
16[4], the key space

can be reduced by 4 bits. Moreover, because the computations of Z15[4] and
XL

16[4] share some key bits in common, we can reduce the key space more. The
key state κ18 for computing Z15[4] and XL

16[4] are shown in Fig. 7. 25 key bits
are overlapped between κ18 for computing Z15[4] and X

L
16[4]. Therefore, the key

space can be reduced by 4 + 25 = 29 bits in total. Note that 12 bits of κ18 are

166 Y. Sasaki and L. Wang

not included in both parts. Those 12 bits are exhaustively searched after the key
space for other 68 bits of κ18 is sufficiently reduced.

Finally, we conclude the attack. We analyze 2 sets of 260 texts. The key
space for the guessed 68 bits of κ18 is reduced into 256+48−(29∗2) = 246. These
246 and the other 12 bits are exhaustively searched with 246+12 = 258 LBlock
computations. The data complexity is 261 plaintexts. The time complexity is
2 · (273.46 + 260) round functions and 258 22-round LBlock computations. The
cost for computing one round function is regarded as 1/22 of 22-round LBlock
computations. Hence, the total cost is 2 ·(273.46+260)/22+258 ≈ 270.00 22-round
LBlock computations. The memory complexity is 266 bits, which is 263 bytes.

5 Concluding Remarks

In this paper, we presented a comprehensive study of the integral analysis against
LBlock. We showed that the choice of the balanced-byte position is very sensitive
when the subkey relations are considered. As a result, we achieved the 22-round
attack with (Data, Time, Memory) = (261, 270.00, 263).

References

1. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D.,
Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable
for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

2. ISO/IEC 18033-3:2010: Information technology–Security techniques–Encryption
Algorithms–Part 3: Block ciphers (2010)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit block-
cipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

5. ISO/IEC 29192-2:2011: Information technology–Security techniques–Lightweight
cryptography–Part 2: Block ciphers (2011)

6. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

7. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

8. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

9. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

Comprehensive Study of Integral Analysis on 22-Round LBlock 167

10. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

11. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

12. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.,
Whiting, D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000.
LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

13. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
Feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013)

14. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible differential attacks on reduced-round
LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 97–108. Springer, Heidelberg (2012)

15. Minier, M., Naya-Plasencia, M.: A related key impossible differential attack against
22 rounds of the lightweight block cipher LBlock. Inf. Process. Lett. 112(16),
624–629 (2012)

16. Liu, S., Gong, Z., Wang, L.: Improved related-key differential attacks on reduced-
round LBlock. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618,
pp. 58–69. Springer, Heidelberg (2012)

17. Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against biclique crypt-
analysis. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 1–14.
Springer, Heidelberg (2012)

18. Li, Y.: Integral cryptanalysis on block ciphers. Institute of Software, Chinese
Academy of Sciences, Beijing (2012) (in Chinese)

A Details of 22-Round Attack

The procedure to compute
⊕

Z15[4] is as follows. Its summary is available in
Table 3. The key state for the last seven rounds, κ15, . . . , κ21 are shown in Fig. 8.

1. Query 260 plaintexts which has the form of (AAAC AAAA AAAA AAAA).
2. Count how many times each fifteen-byte valueXL

22[0, 1, 2, 4, 5, 6, 7], X
R
22[0, 1, 2,

3, 4, 5, 6, 7] appears, and pick the values which appear odd times.
3. Guess 4 bits of K21[0], and compute XR

21[0] with XL
22[2], X

R
22[0]. Compress

the data into 256 texts of (XL
22[0, 1, 4, 5, 6, 7], X

R
22[1, 2, 3, 4, 5, 6, 7], X

R
21[0]).

4. Guess 4 bits of K21[4], and compute XR
21[4] with XL

22[6], X
R
22[4]. Compress

the data into 252 texts of (XL
22[0, 1, 4, 5, 7], X

R
22[1, 2, 3, 5, 6, 7], X

R
21[0, 4]).

5. Guess 4 bits of K21[6], and compute XR
21[5] with XL

22[7], X
R
22[6]. Compress

the data into 248 texts of (XL
22[0, 1, 4, 5], X

R
22[1, 2, 3, 5, 7], X

R
21[0, 4, 5]).

6. Guess 4 bits of K20[0], and compute XR
20[0] with XR

22[2], X
R
21[0]. Compress

the data into 244 texts of (XL
22[0, 1, 4, 5], X

R
22[1, 3, 5, 7], X

R
21[4, 5], X

R
20[0]). The

known bits of the key state upto this step are shown in red in Fig. 8.
7. Guess K21[7]. From Fig. 8, this can be done by 1-bit guess of κ20[47], which

is colored in yellow. Compute XR
21[3] with XL

22[5], X
R
22[7]. Update the data

into 244 texts of (XL
22[0, 1, 4], X

R
22[1, 3, 5, 7], X

R
21[3, 4, 5], X

R
20[0]).

8. Guess 4 bits of K21[1], and compute XR
21[6] with XL

22[0], X
R
22[1]. Update the

data into 244 texts of (XL
22[1, 4], X

R
22[1, 3, 5, 7], X

R
21[3, 4, 5, 6], X

R
20[0]).

168 Y. Sasaki and L. Wang

9. Guess 4 bits of K20[3], and compute XR
20[7] with XR

22[1], X
R
21[3]. Compress

the data into 240 texts of (XL
22[1, 4], X

R
22[3, 5, 7], X

R
21[4, 5, 6], X

R
20[0, 7]). The

new known bits of the key state upto this step are shown in yellow in Fig. 8.
10. Guess K19[7]. From Fig. 8, this can be done by 2-bit guess of κ19[78, 79],

which is colored in blue. Compute XR
19[3] with XR

21[5], X
R
20[7]. Compress the

data into 236 texts of (XL
22[1, 4], X

R
22[3, 5, 7], X

R
21[4, 6], X

R
20[0], X

R
19[3]).

11. Guess 4 bits of K20[6], and compute XR
20[5] with XR

22[7], X
R
21[6]. Compress

the data into 232 texts of (XL
22[1, 4], X

R
22[3, 5], X

R
21[4], X

R
20[0, 5], X

R
19[3]).

12. Guess K19[5]. From Fig. 8, this can be done by 2-bit guess of κ19[68, 69],
which is also colored in blue. Compute XR

19[2] with X
R
21[4], X

R
20[5]. Compress

the data into 228 texts of (XL
22[1, 4], X

R
22[3, 5], X

R
20[0], X

R
19[2, 3]).

13. Guess 4 bits of K21[3], and compute XR
21[7] with XL

22[1], X
R
22[3]. Update the

data into 228 texts of (XL
22[4], X

R
22[3, 5], X

R
21[7], X

R
20[0], X

R
19[2, 3]).

14. Guess 4 bits of K21[5], and compute XR
21[2] with XL

22[4], X
R
22[5]. Update the

data into 228 texts of (XR
22[3, 5], X

R
21[2, 7], X

R
20[0], X

R
19[2, 3]).

15. Guess 4 bits of K20[7], and compute XR
20[3] with XR

22[5], X
R
21[7]. Compress

the data into 224 texts of (XR
22[3], X

R
21[2], X

R
20[0, 3], X

R
19[2, 3]). The new known

bits of the key state upto this step are also shown in blue in Fig. 8.
16. From Fig. 8, K18[2] is already known. Compute XR

18[1] with XR
20[3], X

R
19[2].

Compress the data into 220 texts of (XR
22[3], X

R
21[2], X

R
20[0], X

R
19[3], X

R
18[1]).

17. Guess 4 bits of K20[2], and compute XR
20[1] with XR

22[3], X
R
21[2]. Update the

data into 220 texts of (XR
21[2], X

R
20[0, 1], X

R
19[3], X

R
18[1]).

18. From Fig. 8, K18[3] is already known. Compute XR
18[7] with XR

20[1], X
R
19[3].

Compress the data into 216 texts of (XR
21[2], X

R
20[0], X

R
18[1, 7]).

19. Guess K19[0]. From Fig. 8, this can be done by 1-bit guess of κ19[51], which
is colored in green. Compute XR

19[0] with XR
21[2], X

R
20[0]. Compress the data

into 212 texts of (XR
19[0], X

R
18[1, 7]).

20. From Fig. 8, K17[1] is already known. Compute XR
17[6] with XR

19[0], X
R
18[1].

Compress the data into 28 texts of (XR
18[7], X

R
17[6]).

21. Guess K16[6]. From Fig. 8, this can be done by 2-bit guess of κ16[73, 74],
which is colored in green. Compute XR

16[5] with XR
18[7], X

R
17[6]. Compress

the data into 24 texts of XR
16[5].

22. Guess 4 bits of K15[5], and compute the final sum for Z15[4]. We store the
result together with the guessed key value in a list LZ15 The new known bits
of the key state upto this step are also shown in green in Fig. 8.

Complexity for
⊕

Z15[4]. The complexity for each step is estimated as a
product of the previous data size and the total number of guessed bits, and is
shown in the last column of Table 3. In total, it requires 264+264+264+264+261+
265+269+267+267+265+265+269+273+269+269+269+266+262+260+260 ≈
273.46 1-round computations. After Step 22, we obtain a list LZ15 with 256 entries
which contains 60-bit information;

⊕
Z15[4] and 56-bit key values.

Comprehensive Study of Integral Analysis on 22-Round LBlock 169

Table 3. Summary of the computation of
⊕

Z15[4] in 22-round attack

Step Guessed #guessed New Discarded #texts Values in the set Complexity
key bits (total) value values

2 0 260 XL
22[0, 1, 2, 4, 5, 6, 7], XR

22[0, 1, 2, 3, 4, 5, 6, 7]

3 K21[0] 4 XR
21[0] XL

22[2], XR
22[0] 256 XL

22[0, 1, 4, 5, 6, 7], XR
22[1, 2, 3, 4, 5, 6, 7], XR

21[0] 260+4 = 264

4 K21[4] 8 XR
21[4] XL

22[6], XR
22[4] 252 XL

22[0, 1, 4, 5, 7], XR
22[1, 2, 3, 5, 6, 7], XR

21[0, 4] 256+8 = 264

5 K21[6] 12 XR
21[5] XL

22[7], XR
22[6] 248 XL

22[0, 1, 4, 5], XR
22[1, 2, 3, 5, 7], XR

21[0, 4, 5] 252+12 = 264

6 K20[0] 16 XR
20[0] XR

22[2], XR
21[0] 244 XL

22[0, 1, 4, 5], XR
22[1, 3, 5, 7], XR

21[4, 5], XR
20[0] 248+16 = 264

7 K21[7] 17 XR
21[3] XL

22[5] 244 XL
22[0, 1, 4], XR

22[1, 3, 5, 7], XR
21[3, 4, 5], XR

20[0] 244+17 = 261

8 K21[1] 21 XR
21[6] XL

22[0] 244 XL
22[1, 4], XR

22[1, 3, 5, 7], XR
21[3, 4, 5, 6], XR

20[0] 244+21 = 265

9 K20[3] 25 XR
20[7] XR

22[1], XR
21[3] 240 XL

22[1, 4], XR
22[3, 5, 7], XR

21[4, 5, 6], XR
20[0, 7] 244+25 = 269

10 K19[7] 27 XR
19[3] XR

21[5], XR
20[7] 236 XL

22[1, 4], XR
22[3, 5, 7], XR

21[4, 6], XR
20[0],XR

19[3] 240+27 = 267

11 K20[6] 31 XR
20[5] XR

22[7], XR
21[6] 232 XL

22[1, 4], XR
22[3, 5], XR

21[4], XR
20[0, 5], XR

19[3] 236+31 = 267

12 K19[5] 33 XR
19[2] XR

21[4], XR
20[5] 228 XL

22[1, 4], XR
22[3, 5], XR

20[0], XR
19[2, 3] 232+33 = 265

13 K21[3] 37 XR
21[7] XL

22[1] 228 XL
22[4], XR

22[3, 5], XR
21[7], XR

20[0], XR
19[2, 3] 228+37 = 265

14 K21[5] 41 XR
21[2] XL

22[4] 228 XR
22[3, 5], XR

21[2, 7], XR
20[0], XR

19[2, 3] 228+41 = 269

15 K20[7] 45 XR
20[3] XR

22[5], XR
21[7] 224 XR

22[3], XR
21[2], XR

20[0, 3], XR
19[2, 3] 228+45 = 273

16 K18[2] 45 XR
18[1] XR

20[3], XR
19[2] 220 XR

22[3], XR
21[2], XR

20[0], XR
19[3], XR

18[1] 224+45 = 269

17 K20[2] 49 XR
20[1] XR

22[3] 220 XR
21[2], XR

20[0, 1], XR
19[3], XR

18[1] 220+49 = 269

18 K18[3] 49 XR
18[7] XR

20[1], XR
19[3] 216 XR

21[2], XR
20[0], XR

18[1, 7] 220+49 = 269

19 K19[0] 50 XR
19[0] XR

21[2], XR
20[0] 212 XR

19[0], XR
18[1, 7] 216+50 = 266

20 K17[1] 50 XR
17[6] XR

19[0], XR
18[1] 28 XR

18[7], XR
17[6] 212+50 = 262

21 K16[6] 52 XR
16[5] XR

18[7], XR
17[6] 24 XR

16[5] 28+52 = 260

22 K15[5] 56 Z15[4] XR
16[5] 20

⊕
Z15[4] 24+56 = 260

κ 15

κ 16

κ 17

κ 18

κ 19

κ 20

k 21

K i [1] K i [0]

79 76 75 72 71 68 67 64

Κ i [7] K i [6] K i [5] K i [4] K i [3] K i [2]

51 48 47 0

S 9 S 8 xor [i]2

63 60 59 56 55 52

S 9 S 8 xor [i]2

S 9 S 8 xor [i]2

S 9 S 8 xor [i]2

S 9 S 8 xor [i]2

55

S 9 S 8 xor [i]2

79 76 75 72 71 68 67 64 63 60 59 56 52 51 48 47 0

<<< 29

<<< 29

<<< 29

<<< 29

<<< 29

<<< 29

Fig. 8. Key state for the last 7 rounds

New Impossible Differential Attack

on SAFER+ and SAFER++
�

Jingyuan Zhao1,2, Meiqin Wang1,2,

, Jiazhe Chen1,2, and Yuliang Zheng1,2,3

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

2 School of Mathematics, Shandong University, Jinan 250100, China
3 Department of Software and Information Systems, UNC Charlotte, 9201 University

City Blvd, Charlotte, NC 28223, USA

Abstract. SAFER+was a candidate block cipher for AES with 128-
bit block size and a variable key sizes of 128, 192 or 256 bits.
Bluetooth uses customized versions of SAFER+ for security. The
numbers of rounds for SAFER+ with key sizes of 128, 192 and 256
are 8, 12 and 16, respectively. SAFER++, a variant of SAFER+,
was among the cryptographic primitives selected for the second
phase of the NESSIE project. The block size is 128 bits and the
key size can take either 128 or 256 bits. The number of rounds
for SAFER++ is 7 for keys of 128 bits, and 10 for keys of 256
bits. Both ciphers use PHT as their linear transformation. In this
paper, we take advantage of properties of PHT and S-boxes to
identify 3.75-round impossible differentials for SAFER++ and 2.75-
round impossible differentials for SAFER+, which result in impos-
sible differential attacks on 4-round SAFER+/128(256), 5-round
SAFER++/128 and 5.5-round SAFER++/256. Our attacks signifi-
cantly improve previously known impossible differential attacks on
3.75-round SAFER+/128(256) and SAFER++/128(256). Our at-
tacks on SAFER+/128(256) and SAFER++/128(256) represent the
best currently known attack in terms of the number of rounds.

Keywords: SAFER+, SAFER++, Impossible Differential, PHT,
Bluetooth.

1 Introduction

SAFER+, designed by Massey, Khachatrian and Kuregian, was a candidate block
cipher for AES with 128-bit block size and a variable key sizes of 128, 192 or

� This work was supported by NSFC Projects(No.61133013, No.61070244 and
No.61103237), by 973 Project (No.2013CB834205) and No.2012GGX10135 as well
as Research Foundation of Shandong University(No.2012JC018 and No.2010TS069).

�� Corresponding author.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 170–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

New Impossible Differential Attack on SAFER+ and SAFER++ 171

256 bits, denoted by SAFER+/128, SAFER+/192 and SAFER+/256, respec-
tively [8]. Since some weaknesses to the key schedules of SAFER+/192 and
SAFER+/256 were discovered, Massey et al. changed the key schedule algo-
rithms later. In this paper, we will use the remedied key schedule algorithms
as in [12]. Bluetooth uses custom algorithms based on SAFER+ for key deriva-
tion and authentication as MAC [4]. SAFER++ was submitted to the NESSIE
project [13] and was among the primitives selected for the second phase of this
project [9]. The block size is 128-bit and the key size can be taken as 128-bit and
256-bit. The two ciphers have common S-boxes derived from exponentiation and
discrete logarithm functions and share the Pseudo-Hadamard-like mixing trans-
forms (PHT) but have different ways to use it. They also share the methods to
perform key-mixing with two-commutative operations.

Several cryptanalytic results on SAFER+ and SAFER++ have been published.
Nakahara et al. gave the non-homomorphic linear cryptanalysis for 3.25 rounds
of SAFER+/128 and 3 rounds of SAFER++/128 and SAFER++/256 [10, 11].
Piret et al. gave the integral cryptanalysis for 4.25 rounds of SAFER++/128
and 4.75 rounds of SAFER++/256 [14]. Biryukov et al. gave the multiset attack
on 4.5 rounds of SAFER++/128 and the boomerang attack on 5.5 rounds of
SAFER++/128. For the impossible differential cryptanalysis, Nakahara et.al also
gave the impossible differential cryptanalysis for 2.75 rounds of SAFER+/128
and SAFER++/128 [11, 12]. Then Behnam et al. claimed they could attack
4 rounds of SAFER++/128 with the impossible differential cryptanalysis [1],
however, their attack only worked for 4-round SAFER++/128 without the final
whitening-key layer, so their attack was a 3.75-round attack. Zheng et al. gave the
impossible differential attacks on 3.75 rounds of SAFER+/128 (SAFER+/256)
and 3.75 rounds of SAFER++/128 (SAFER++/256).

The impossible differential attack, which was independently proposed by Bi-
ham et al. [2] and Knudsen [5], is a popular cryptanalytic method. The attack
starts with finding an input difference that can never result in an output dif-
ference, which will produce an impossible differential. By adding rounds before
and/or after the impossible differential, one can collect pairs with certain plain-
text and ciphertext differences. If there exists a pair that meets the input and
output values of the impossible differential under some subkey bits, these bits
must be wrong. In this way, we discard as many wrong keys as possible and
exhaustively search the rest of the keys, this phase is called key recovery phase.
The early abort technique is usually used during the key recovery phase, that
is, one does not guess all the subkey bits at once, but guess some subkey bits
instead to discard some pairs that do not satisfy certain conditions step by step.
In this case, we can discard the unwished pairs as soon as possible to reduce the
time complexity.

Our Contributions. By delicately choosing the positions and the number
of the active S-boxes in the first round, we can identify 3.75 rounds impossible
differentials for SAFER++, which are significantly better than the previous 2.75-
round impossible differentials [1, 16].

172 J. Zhao et al.

At the same time, we also identify 2.75-round impossible differentials for
SAFER+. Although our impossible differentials work for the same number of
rounds as those in [1,16], they will result in less active S-boxes in the first round
or the last round, and then the number of guessed subkey bytes will be reduced
during the key recovery phase, so we can attack four full rounds with the final
whitening key layer; the attack is better than the 3.75-round attack in [16] and
the four-round attack without the final whitening key layer in [1]. Our attacks
on bluetooth ciphers SAFER+/128 and SAFER+/256 are the best attacks ac-
cording to the number of rounds. Specially, our attack on SAFER+/128 is the
first attack on half of the full-round SAFER+.

Our attack on SAFER++/128 can work for 5 rounds with the final whitening
key layer, which is much better than the previous impossible differential attack
for 3.75 rounds in [1, 16]. However, the best attack on SAFER++/128 is the
boomerang attack for 5.5 rounds [3]. Our attack on SAFER++/256 can work for
5.5 rounds. Although our attack on SAFER++/128 is not as good as those in [3],
we greatly improve the impossible differential attacks in [1, 16] and our attacks
are the best chosen plaintext attacks.

The only difference for the components of round functions for SAFER+ and
SAFER++ is the linear transformation; the linear transformation of SAFER++

is more complicated than that of SAFER+, so the designers use less rounds for
SAFER++ than SAFER+. It seems that the linear transformation for SAFER++

is much more secure than SAFER+, however, our attack shows that SAFER++

is less resistant to impossible differential attack than SAFER+, because the
diffusion of the inverse linear layer for SAFER++ is much weaker.

We summarize our results of SAFER+ and SAFER++, as well as the major
previous results in Table 1.

The rest of the paper is organized as follows. We give the brief descriptions
of SAFER+ and SAFER++ in Sect. 2. Section 3 identifies the impossible differ-
entials for SAFER+ and SAFER++. The impossible differential cryptanalysis of
SAFER+/128 and SAFER+/256 is presented in Sect. 4. Section 5 gives the im-
possible differential cryptanalysis of SAFER++/128 and SAFER++/256. Finally,
Sect. 6 concludes this paper.

2 Brief Descriptions of SAFER+ and SAFER++

This section contains short descriptions of SAFER+ and SAFER++. For more
details, see [8,9]. SAFER+ (SAFER++) is a 128-bit SPN block ciphers with vari-
able key sizes of 128, 192 or 256 bits, denoted by SAFER+/128, SAFER+/192
and SAFER+/256 (SAFER++/128 and SAFER++/256). The round function
of SAFER+ (SAFER++) consists of an upper key layer, a nonlinear layer,
a lower key layer and a linear transformation. After the final round, an ad-
ditional key-addition whitening similar to the upper key layer is added. The
numbers of rounds of SAFER+/128 and SAFER+/256 are 8 and 16, respec-
tively. The numbers of rounds of SAFER++/128 and SAFER++/256 are 7 and
10, respectively. Among the components of the round functions of SAFER+

New Impossible Differential Attack on SAFER+ and SAFER++ 173

Table 1. Summary of attacks on SAFER+ and SAFER++

Cipher Attack #Rounds Data Time Memory Source
(Encryptions) (Bytes)

+/128 ID 2.75 264CP 258 2104 [12]
+/128 LNH 3.25 2101KP 2141 2108 [10]
+/128 ID 3.75 278CP 272 268 [16]
+/128 ID 4 2122.4CP 2121 287.4 Sect.4

+/256 ID 3.75 278CP 272 268 [16]
+/256 ID 4 2124.4CP 2216 289.4 Sect.4

++/128 LNH 3 281KP 2105 288 [10]
++/128 ID 2.75 264CP 258 2104 [12]
++/128 Integral 4 264CP 2117 271 [14]
++/128 Integral 4.25 − − − [3]
++/128 Multiset 4.5 248CP 2100 255 [3]
++/128 Boomerang 5.5 2108CP/ACC 2116 255 [3]
++/128 ID 3.75 223CP 284 275 [1]
++/128 ID 3.75 278CP 263 262 [16]
++/128 ID 5 2124CP 2121 297 Sect.5

++/256 LNH 3 281KP 2105 288 [10]
++/256 Integral 4 264CP 2149 271 [14]
++/256 Integral 4.75 − − − [14]
++/256 ID 3.75 278 CP 271 270 [16]
++/256 ID 5.5 2124CP 2246 297 Sect.5

CP: Chosen Plaintext; KP: Known Plaintext; ACC: Adaptive Chosen Ciphertext
ID: Impossible Differential; LNH: Linear(Non-Homomorphic).

and SAFER++, only the linear transformation is different. SAFER+ uses a 2-
point pseudo Hadamard transformation(2-PHT) while SAFER++ uses a 4-point
pseudo Hadamard transformation(4-PHT).

2.1 The Keyed Non-linear Layer

Since SAFER+ and SAFER++ are byte-oriented ciphers, the input plaintext
block is initially splited into 16 bytes to combine with the 16 bytes subkey. Bytes
0, 3, 4, 7, 8, 11, 12, and 15 of the subkey are XORed to the corresponding bytes
of the block, while bytes 1, 2, 5, 6, 9, 10, 13, and 14 of the subkey are combined
with the corresponding bytes using addition modulo 256. The nonlinear layer is
based on two different 8-to-8 bit functions, X and L,

X(a) = (45a mod 257) mod 256,
L(a) = log45

a mod 257,

with the special case that L(0) = 128, making X and L mutually inverse. We
call the layer including X and L as S-box layer. In this layer, bytes 0, 3, 4, 7, 8,
11, 12, and 15 are sent through the function X, and L is applied to bytes 1, 2, 5,
6, 9, 10, 13, and 14. The lower key layer mixes a 16-byte subkey to the output
blocks from the X and L functions. Bytes 2, 3, 6, 7, 10, 11, 14 and 15 of the

174 J. Zhao et al.

subkey are XORed to the corresponding bytes of the block and bytes 1, 4, 5, 8,
9, 12, 13 and 16 of the subkey and blocks are combined using addition modulo
256.

2.2 The Linear Layer

The linear transformation of SAFER+ (SAFER++) is constructed by two parts:
the first is a permutation and the second is a 2-PHT(4-PHT) to two group of
2-branch(four group of 4-branch). The 2-PHT(4-PHT) can be implemented with
two(six) modular additions. The linear layers can be expressed by matrices.

2.3 The Key Schedule

The key schedule of SAFER++ is same as that of SAFER+ for the same key size
and the key schedules of 128-bit and 256-bit master keys are different. Firstly
we introduce the 128-bit key schedule: K=(k1, k2,· · · , k16) is the 128-bit master
key. From the 16 bytes of master key we get the 17-th byte:

ksp1 =

16⊕
i=1

ki.

The 256-bit mater key is K=(k1,· · · , k16, k17,· · · , k32). Different from 128-bit
key schedule, the 256-bit master key is splitted into two 128-bit blocks. The
first one is used to produce the upper key layer of each round and the final
key addition, and the second one is used to produce the lower key layer of each
round. ksp1 is computed as in SAFER+/128 and SAFER++/128. In addition,
another subkey byte ksp2 can be computed with

ksp2 =
32⊕

i=17

ki.

The recovered master key was marked in the Fig.2 and Fig.4. We do not depict
them here in detail.

3 Impossible Differentials of SAFER+ and SAFER++

In this section, we will show how to identify 2.75 rounds impossible differentials
for SAFER+ and 3.75 rounds impossible differentials for SAFER++ .

3.1 Notations

In this paper we use the following notations: T I
r denotes the input of the r-th

round, TU
r , T S

r , T
L
r and TA

r denote the output values of the upper key layer,
the S-boxes, the lower key layer and the linear layer in round r, respectively.
So T I

r = TA
r−1 for r ≥ 2. Δ represents the modular subtraction difference in

F28 . ∗ means the undetermined value. (ΔT i
r)j stands for the j-th byte of ΔT i

r ,
0 ≤ j ≤ 15. Cj means the j-th byte of the ciphertext, 0 ≤ j ≤ 15.

New Impossible Differential Attack on SAFER+ and SAFER++ 175

3.2 Impossible Differentials of SAFER+ and SAFER++

Firstly, we will introduce three propositions related with S-boxes, XOR and the
modular addition.

Proposition 1 (see [7]). For any byte pair (p, p′), if (p−p′) ≡ 0x80 (mod 256),
then the output difference X(p)�X(p′) is always odd.

Proposition 2 (see [6]). For any byte pair (p, p′), p⊕p′ = 0x80 always means
(p− p′) ≡ 0x80 (mod 256), and vice versa.

Proposition 3 (see [16]). For any given byte pair (p, p′), if p⊕ p′ is odd, then
(p� k)⊕ (p′ � k) is odd. Also, if p� p′ is odd, (p⊕ k)� (p′ ⊕ k) is odd. Here, k
can take any value in Z256.

Based on the propositions, we can get 2.75-round impossible differentials for
SAFER+ and 3.75-round impossible differentials for SAFER++.

Theorem 1. For SAFER+, if the output difference of the S-boxes in the first
round ΔT S

1 is (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80x, 0) and the output difference of
the upper key layer in the fourth round ΔTU

4 is (0, a, 0, 0, 0, b, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0), where a and b are any non-zero values. Such 2.75-round differential
in Fig. 1 is impossible if a and b satisfy one of the three following conditions:
a+ b = 0, 8a+ b = 0, a+ 8b = 0.

Theorem 2. For SAFER++, if the output difference of the S-boxes in the first
roundΔT S

1 is (0, 80x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80x, 0), and the output difference
of the upper key layer in the fifth round is

ΔTU
5 = (0, a,−a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where a is any non-zero value, such 3.75-round differential is impossible in Fig. 3.

The proof of the above theorems is available in the full version of this paper [17].

4 Impossible Differential Attacks on SAFER+

In this section, we will use our 2.75-round impossible differential to recover the
keys for four rounds of SAFER+/128 in Fig.2 and four rounds of SAFER+/256.
First of all, in order to filter out the pairs as soon as possible, we derive the
relation between the ciphertext bytes difference in Proposition 4.

Proposition 4. For four full-round of SAFER+/128 or SAFER+/256, if the
pairs have the difference ΔTU

5 =(0, a, −a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), the
differences for their corresponding ciphertext pairs have the following relations,

ΔC1 −ΔC2 = 0, 2ΔC1 −ΔC6 = 0, ΔC5 −ΔC10 = 0, (1)

ΔC5+ΔC9−5ΔC13 = 0, ΔC6+2ΔC14−6ΔC13 = 0, ΔC1+ΔC5+ΔC6−7ΔC13 = 0.
(2)

176 J. Zhao et al.

4.1 Impossible Differential Attack on SAFER+/128

By placing the 2.75-round impossible differential on round 0.5-3.25, we can attack
from round 1 to round 4. This is described in Fig.2. In order to show the effect
of the key schedule, we denote our guessed subkey bits with their related master
key bytes instead of themselves in Fig.2.

Data Collection. We first construct 2114.4 structures of plaintexts, where in
each structure the plaintext byte P14 takes all values, whereas the other bytes
are fixed. For each structure, ask for the encryption of the plaintexts to get the
corresponding ciphertexts. In order to filter out the wrong pairs with Equation
(1) in Proposition 4, we construct a hash table indexed by (C1 − C2|2C1 −
C6|C5 − C10) and put 28 corresponding ciphertexts into the hash table. Then
we combine the ciphertext pairs in the same entity in the hash table which can
satisfy Equation (1) in Proposition 4. On average there are about 215/224 = 2−9

remaining pairs for each structure. Then we will further filter out the wrong pairs
with Equation (2) in Proposition 4, so we construct another hash table indexed
by (C5+C9−5C13|C6+2C14−6C13|C1+C5+C6−7C13) and put the 2−9 pairs
into the hash table. There will remain pairs in the same entity in the hash table
which can satisfy Equation (2) in Proposition 4. Now we can easily get the value
of A and B in Fig.2 from the ciphertext difference for each remaining ciphertext
pair. On average, there are 2−9/224 = 2−33 remaining pairs for each structure.

Key Recovery. In order to find if there are pairs obtained from the data
collection phase that may follow the differential in Fig.2, we need to guess the
key bits and sieve the pairs in round 1 and round 4. From Fig.2, in round 1,
we need to guess the 15-th subkey byte in the upper key layer which is related
to the master key byte k15. In round 4, 16 subkey bytes of the lower key layer
which are related to the master key bytes (k9, k10, k11, . . ., k16, ksp1, k1, k2,. . .,
k7) and we will guess partial bits for these 16 key bytes. We also need to guess
the second and the sixth subkey bytes of the upper key layer which are related
to the master key bytes (k9, k13). We proceed the key recovery phase for the
remaining pairs as follows:

– Step 1. For all 28 possible values for the 15-th subkey byte of the upper key
layer of the first round which depends on k15, encrypt each plaintext of 2−33

remaining pairs for 1
2 round to get the output differences of the S-boxes in

the first round, which should satisfy (ΔT S
1)14 = 80x. Then the number of

remaining pairs is about 2−41. The total number of guessed subkey bits in
this step is 8.

– Step 2.
• Step 2.1 In the final whitening key layer, there are eight XOR op-
erations. As we get the ciphertext differences for the eight bytes, we
can directly get the value for the least significant bit of (ΔTA

4)j , j ∈
{0, 3, 4, 7, 8, 11, 12, 15}without guessing the corresponding subkey value.
Because we have known the value for A and B in the data collection

New Impossible Differential Attack on SAFER+ and SAFER++ 177

phase, we can derive the difference values for the eight least significant
bits from A and B. Then we can sieve the pairs with the eight conditions,
as a result, 2−41/28 = 2−49 pairs remain for each structure.

• Step 2.2 For all 28 values of the least significant bits of the eight sub-
key bytes which depend on k9, k12, k13, k16, ksp1, k3, k4, and k7, re-
spectively, compute the second least significant bits for (ΔTA

4)j , j ∈
{0, 3, 4, 7, 8, 11, 12, 15} for all remaining pairs and verify if they equal
to the corresponding values obtained from A and B. If not, we discard
the pair. In a similar way, we guess the eight subkey bytes from the sec-
ond least significant bit to the seventh least significant bit one by one
and sieve the pairs according the conditions derived from A and B. As
a result, about 2−49/28∗7 = 2−105 pairs are obtained. The total number
of new guessed subkey bits in this step is 56.

– Step 3. In this step, we will compute the value for a and b corresponding to
(ΔTU

4)1 and (ΔTU
4)5.

so in order to calculate the values of them the bits depending on the following
keys should be guessed:
(TU

4)1: k
13, k14, ksp1, k1, k6, k9; the seven least significant bits of k11, k2, k3,

k7; the six least significant bits of k10, k12, k15, k16; the five least significant
bits of k4; the four least significant bits of k5.
(TU

4)5: k
9, k13, k14, ksp1, k1; the seven least significant bits of k10, k15, k16,

k4, k6; the six least significant bits of k11, k12, k5, k7; the five least significant
bits of k2; the four least significant bits of k3.
Here some subkey bits have been guessed in the previous steps, so the total
number of the new involved subkey bits in this step is 54.
For each pair obtained from Step 2.2, compute a and b to verify if they
satisfy any one of the three relations for the three impossible differentials. If
so, the 54-bit subkey should be discarded. After processing all the pairs, if
any values for the 54-bit subkey remain, we output them with the guessed 64-
bit subkey, and exhaustively search them with the remaining 10 bits subkey
by trial encryption. Otherwise, we try another guess for 64-bit subkey from
Step 1 and Step 2.

The data complexity of the attack is 2122.4 chosen plaintexts. In the data collec-
tion phase, the time complexity is about 2122.4 × 3 = 2124 modular subtraction
operations which is equivalent to 2119 encryptions and the memory complexity
is about 281.4 × 2× 32 = 287.4 bytes for the remaining pairs. In Step 1, the time
complexity is about 2× 28 × 2114.4−33 × 1

2 ×
1
16 ×

1
4 = 283.4 encryptions and the

memory complexity for remaining pairs is less than that in the data collection
phase. In Step 2, the time complexity is about 2× 28 × 2114.4−41 × 8× 8 ≈ 288.4

XOR operations and 287.4 modular subtraction operations. The memory com-
plexity for remaining pairs is less than that in Step 1. In Step 3, The expected
number of remaining 118-bit subkey guesses is about 2118 × (1 − 3

28)
2114.4−105 ≈

2108. Since each of the remaining key guesses has to be exhaustively searched
with the other 210 key values, so the time complexity of this step is about
2× 2118× [1+ (1− 3

28)+ (1− 3
28)

2+ . . .+(1− 3
28)

29.4]× 2
16 ×

1
4 +2108+10 ≈ 2120.7

178 J. Zhao et al.

encryptions. Thus the total time complexity is about 2121 encryptions and the
memory complexity is about 287.4 bytes.

4.2 Impossible Differential Attack on SAFER+/256

The only difference between the attacks on SAFER+/256 and SAFER+/128 is
the difference in the key schedule. The detailed attack procedure is available in
the full version of this paper [17].

The data complexity of the attack is 2124.4 chosen plaintexts. The total time
complexity is 2216 encryptions and the memory complexity is about 289.4 bytes.

5 Impossible Differential Attacks on SAFER++

In this section, we will use the 3.75-round impossible differentials for SAFER++

in Section 3 to recover the keys for SAFER++/128 and SAFER++/256. First of
all, in order to filter out the pairs as soon as possible, we derive the relations
between the ciphertext bytes difference in Proposition 5.

Proposition 5. For five full rounds of SAFER++/128 or SAFER++/256, if
the pairs have the difference ΔTU

5 =(0, a, b, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
their corresponding output difference has the following relations,

(ΔTU
6)5 − (ΔTU

6)10 = 0, (ΔTU
6)1 − (ΔTU

6)9 = 0, (ΔTU
6)6 − (ΔTU

6)14 = 0, (3)

(ΔTU
6)1 + (ΔTU

6)6 − 3(ΔTU
6)5 = 0,

(ΔTU
6)2 + (ΔTU

6)13 − 5(ΔTU
6)5 = 0,

3(ΔTU
6)1 + (ΔTU

6)13 − 7(ΔTU
6)5 = 0.

(4)

5.1 Impossible Differential Attack on SAFER++/128

By placing the 3.75-round impossible differential on round 0.5-4.25, we can attack
SAFER++/128 from round 1 to round 5. This is described in Fig.4.

Data Collection. We first construct 2108 structures of plaintexts, where in each
structure the plaintext bytes P1 and P14 take all values, whereas the other bytes
are fixed. For each structure, ask for the encryption of the plaintexts to get the
corresponding ciphertexts. In order to filter out the wrong pairs with Equation
(3) and Equation (4) in Proposition 5, we construct two hash tables indexed by
(C5−C10|C1−C9|C6−C14) and (C1+C6−3C5|C2+C13−5C5|3C1+C13−7C5)
and put the pairs into the hash tables. Now we can easily get the value of A and
B in Fig.4 from the ciphertext difference for any remaining ciphertext pair. On
average, there are 2−17 remaining pairs for each structure.

New Impossible Differential Attack on SAFER+ and SAFER++ 179

Key Recovery. In order to find if there are pairs obtained from the data col-
lection phase that may follow the differential in Fig.4, we need to guess the
key bits and sieve the pairs in round 1 and round 5. From Fig.4, in round
1, we need to guess the second and 15-th subkey bytes in the upper key
layer which are related to the master key bytes k2 and k15, respectively. In
round 5, 16 final whitening subkey bytes are related to the master key bytes
(k11, k12, k13, . . . , k16, ksp1, k1, k2,
. . . , k9) and we will guess partial bits for the 16 subkey bytes. We also need to
guess the second and the third subkey bytes of the lower key layer in round 5
which are related to the master key bytes (k11, k12), respectively. We proceed
the key recovery phase for the remaining pairs as follows:

– Step 1. For all 216 possible values for the second and the 15-th bytes of upper
key layer of the first round which depend on k2 and k15, for each structure
encrypt each plaintext pair of the 2−17 remaining pairs for 1

2 round to get
the output differences of the S-boxes in the first round, which should satisfy
(ΔT S

1)1 = (ΔT S
1)14 = 80x. Then the number of remaining pairs is about

2−33. The total number of guessed subkey bits in this step is 16.
– Step 2.

• Step 2.1 In the final whitening key layer, there are eight XOR op-
erations. As we get the ciphertext differences for the eight bytes, we
can directly get the value for the least significant bit of (ΔTA

5)j , j ∈
{0, 3, 4, 7, 8, 11, 12, 15}without guessing the corresponding subkey value.
Because we have known the value for A and B in the data collection
phase, we can derive the 8 bits difference for the least significant bits
from A and B. Then we can sieve the pairs with the eight conditions, as
a result, 2−33/28 = 2−41 pairs remain for each structure.

• Step 2.2 For all 28 values for the least significant key bit of eight
subkey bytes which depend on k11, k14, k15, k1, k2, k5, k6, k9, re-
spectively, compute the second least significant bits for (ΔTA

5)j , j ∈
{0, 3, 4, 7, 8, 11, 12, 15} for all remaining pairs and verify if they equal
to the corresponding value derived from A and B. If not, we discard
the pair. In a similar way, we guess eight subkey bytes from the second
least significant bits to the seventh least significant bits one by one which
depend on k11, k14, k15, k1, k2, k5, k6, k9, respectively, then we sieve
the pairs according to the conditions derived from A and B. As a result,
about 2−41/28∗7 = 2−97 pairs are obtained. The total number of new
guessed subkey bits in this step is 42.

– Step 3. In this step, we will compute the value for a and −a corresponding to
(ΔTU

5)1 and (ΔTU
5)2. Similar to the attack on SAFER+, we only guess the

subkey bits that are necessary, the total number of the new involved subkey
bits in this step is 52.
For each pair obtained from Step 2.2, compute the value for (ΔTU

5)1 and
(ΔTU

5)2 to verify if (ΔTU
5)1 = −(ΔTU

5)2. If so, the 52-bit subkey should be
discarded. After processing all the pairs, if any values for the 52-bit subkey
remain, we output them with the guessed 58-bit subkey, and exhaustively

180 J. Zhao et al.

search them with the remaining 18 bits key by trial encryption. Otherwise,
we try another guess for 58-bit subkey from Step 1 and Step 2.

The data complexity of the attack is 2124 chosen plaintexts. In the data collec-
tion phase, the time complexity is about 2124 × 3 = 2125.6 modular subtraction
operations, which is equivalent to 2120.6 times of encryptions and the memory
complexity is about 291 × 2 × 32 = 297 bytes for the remaining pairs. In Step
1, the time complexity is about 2 × 216 × 291 × 1

2 ×
1
16 × 14 = 2101 encryp-

tions. In Step 2, the time complexity is about 2 × 216 × 275 × 8 × 8 ≈ 298

XOR operations and 297 modular subtraction operations. In Step 3, the ex-
pected number of remaining 110-bit key guesses is about 2110× (1− 1

28)
2108−97 ≈

2100. Sine each of the remaining key guesses has to be exhaustively searched
with the other 218 key values, so the time complexity of this step is about
2 × 2110 × [1 + (1 − 1

28) + (1 − 1
28)

2 + . . .+ (1 − 1
28)

211] × 2
16 ×

1
4 + 2118 ≈ 2118

encryptions. Thus the total time complexity is about 2118 encryptions and the
memory complexity is about 297 bytes.

5.2 Impossible Differential Attack on SAFER++/256

Put the 3.75-round impossible differential from round 0.5 to round 4.25 and we
will recover the key for 5.5-round SAFER++/256. The detailed attack procedure
is available in the full version of this paper [17]. The data complexity of the attack
is 2124 chosen plaintexts. The memory complexity is about 297 bytes. The time
complexity is 2246 encryptions.

6 Conclusion

This paper introduces impossible differential attacks on SAFER+ and SAFER++

block ciphers. We first derive 2.75-round and 3.75-round impossible differentials
for SAFER+ and SAFER++, which improves the previous 2.75-round impossible
differentials for SAFER++. With the impossible differentials, attacks on 4-round
SAFER+/128(256), 5-round SAFER++/128 and 5.5-round SAFER++/256 can
be achieved. Our method can also be applied to other ciphers that have similar
structures to SAFER+.

References

1. Behnam, B., Taraneh, E., Mohammad, R.A.: Impossible Differential Cryptanalysis
of SAFER++. In: Proceedings of the 2008 International Conference on Security
Management, SAM 2008, pp. 10–14. CSREA Press (2008)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

3. Biryukov, A., De Cannière, C., Dellkrantz, G.: Cryptanalysis of Safer++. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidelberg
(2003)

New Impossible Differential Attack on SAFER+ and SAFER++ 181

4. BLUETOOTH SPECIFICATION Version 1.0B (November 29, 1999),
http://www.bluetooth.com/link/spec/bluetooth_b.pdf

5. Knudsen, L.: DEAL-A 128-bit Block Cipher. NIST AES proposal. Technial re-
port 151 (February 21, 1998) (retrieved February 27, 2007)

6. Knudsen, L.: A Detailed Analysis of SAFER K. Journal of Cryptplogy 13(4),
417–436 (2000)

7. Massey, J.L.: SAFER K-64: One Year Later. In: Preneel, B. (ed.) FSE 1994. LNCS,
vol. 1008, pp. 212–241. Springer, Heidelberg (1995)

8. Massey, J.L., Khachatrian, G.H., Kuregian, M.K.: 1st AES Conference on Nomina-
tion of SAFER+ as Candidate Algorithm for The Advanced Encryption Standard,
California, USA (June 1998), http://csrc.nist.gov/encryption/aes/

9. Massey, J.L., Khachatrian, G.H., Kuregian, M.K.: 1st NESSIE Workshop on The
SAFER++ Block Encryption Algorithm, Heverlee, Belgium (November 2000),
http://cryptonessie.org

10. Nakahara Jr., J., Preneel, B., Vandewalle, J.: Linear Cryptanalysis of Reduced-
Round Versions of the SAFER Block Cipher Family. In: Schneier, B. (ed.)
FSE 2000. LNCS, vol. 1978, pp. 244–261. Springer, Heidelberg (2001)

11. Nakahara, J.: Cryptanalysis and Design of Block Ciphers. PhD thesis. Katholidke
University, Leuven (2003)

12. Nakahara, J., Preneel, B.: Impossible Differential Attacks on Reduced-Round
SAFER Ciphers. NESSIE Public Report, NES/DOC/KUL/WP5/30/1 (2003)

13. NESSIE Project–New European Schemes for Signatures, Integrity and Encryption,
http://cryptonessie.org

14. Piret, G., Quisauater, J.: Integral Cryptanalysis on Reduced-Round SAFER++–A
Way to Extend The Attack? (2003), http://eprint.iacr.org/2003/033.pdf

15. Yemo, Y., Park, I.: Optimization of Integral Cryptanalysis on Reduced-Round
SAFER++. Joho Shori Gakkai Shinpojiumu Ronbunshu 2003(15) (2003) (pub-
lished in Japan)

16. Zheng, S., Wang, C.L., Yang, Y.X.: A New Impossible Differential Attack on
SAFER Ciphers. Computers and Electrical Engineering 36, 180–189 (2010)

17. Zhao, J., Wang, M., Chen, J., Zheng, Y.: New Impossible Differential Attack on
SAFER+ and SAFER++. IACR ePrint Archive report (2012)

http://www.bluetooth.com/link/spec/bluetooth_b.pdf
http://csrc.nist.gov/encryption/aes/
http://cryptonessie.org
http://cryptonessie.org
http://eprint.iacr.org/2003/033.pdf

182 J. Zhao et al.

A Appendix

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕

XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕

80x 80x 80x 80x80x

80x 80x 80x 80x 80x

m1 od n1 od od

od od od

od od od od od* * * * * * * * * * *

0

0

0

a

a

b

b

P H T

P H T

P H T

⊕⊕

contradiction

XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

m2 n2

Fig. 1. 2.75-Round Impossible Differential of SAFER+

80x

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕
XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

a b

P H T

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
A0 B0

A B

A+2B A+2B A+2B A+B 8A+2B 4A+B 2A+4B A+2B 2A+8B A+4B 4A+B 2A+B A+B A+B 2A+B 2A+B

k15

k9 k13

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕
k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5 k6 k7

2.75-round Impossible Differential

Plaintext

Ciphertext

Fig. 2. Impossible Differential Attack on SAFER+128

New Impossible Differential Attack on SAFER+ and SAFER++ 183

XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

80x 80x 80x 80x80x80x

80x 80x 80x 80x 80x 80x

n3od od od

0

⊕ ⊕ ⊕ ⊕
0

⊕ ⊕ ⊕ ⊕
0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
od od od odm4 n4

od* * * * * * * * * * * * * * *

XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

0

0

0

00 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a -a

controdiction

P H T

P H T

P H T

P H T

od m3

a -a

Fig. 3. 3.75-Round Impossible Differential of SAFER++

80x

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕
XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

XX LL LL XX XX LL LL XX XX LL LL XX XX LL LL XX

a -a

P H T

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
A0 B0

A B

2A+2B A+2B A+4B A+2B A+2B A+B 2A+B A+B A+B A+2B A+B A+B 2A+B 4A+B 2A+B 2A+B

k15

k11 k12

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕
k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5 k6 k7 k8 k9

3.75-round Impossible Differential

k2

80x

Plaintext

Ciphertext

Fig. 4. Impossible Differential Attack on SAFER++128

An Information-Theoretically Secure Threshold

Distributed Oblivious Transfer Protocol

Christian L.F. Corniaux and Hossein Ghodosi

James Cook University, Townsville QLD 4811, Australia
chris.corniaux@my.jcu.edu.au, hossein.ghodosi@jcu.edu.au

Abstract. The unconditionally secure Distributed Oblivious Transfer
(DOT) protocol presented by Blundo, D’Arco, De Santis, and Stinson at
SAC 2002 allows a receiver to contact k servers and obtain one out of n
secrets held by a sender.

Once the protocol has been executed, the sender does not know which
secret was selected by the receiver and the receiver knows nothing of the
secrets she did not choose. In addition, the receiver’s privacy is guar-
anteed against a coalition of k − 1 servers and similarly, the sender’s
security is guaranteed against a coalition of k− 1 servers. However, after
the receiver has obtained a secret, she is able to learn all secrets by cor-
rupting one server only. In addition, an external mechanism is required
to prevent the receiver from contacting more than k servers.

The one-round DOT protocol we propose is information-theoretically
secure, allows the receiver to contact k servers or more, and guarantees
the sender’s security, even if the receiver corrupts k − 1 servers after
having obtained a secret.

Keywords: Cryptographic Protocol, Distributed Oblivious Transfer,
Commodity Based Model, Information-Theoretic Security.

1 Introduction

Oblivious Transfer (OT) protocols allow two parties to exchange, in total privacy,
one or more secret messages. The first OT protocol, introduced by Rabin [13],
enables a sender to transmit a message to a receiver in such a way that the
receiver gets the message with probability 1

2 while the sender does not know
whether the message was received. Even, Goldreich and Lempel [8] introduced
a variant of the original OT for a contract signature application. This OT, iden-
tified as OT-

(
2
1

)
, is an exchange protocol between a receiver and a sender who

has two secret messages; the receiver chooses one of the two messages and the
sender transmits the chosen message to the receiver. At the end of the protocol,
the sender does not know which message was selected and the receiver knows
nothing of the other message.

A major drawback with OT-
(
2
1

)
and with the more general OT-

(
n
1

)
proposed

by Brassard, Crépeau and Roberts [6] is the restriction in the availability of the
secret messages, because if the unique sender is unavailable, the receiver cannot

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 184–201, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Information-Theoretically Secure Threshold DOT Protocol 185

execute the protocol. To increase the availability of messages, the sender may
distribute them to m servers, like in the first unconditionally secure Distributed
Oblivious Transfer (DOT) protocol introduced by Gertner and Malkin [10] in
1997. However, Gertner and Malkin’s protocol does not guarantee the messages’
confidentiality against curious or corrupted servers.

In 2000, Naor and Pinkas [11] proposed an unconditionally secure DOT proto-
col which takes non-fully trusted servers into account: servers are only provided
with parts – called shares – of the original messages. This DOT protocol was
generalized to n secrets by Blundo, D’Arco, De Santis and Stinson [4,5]. Both
protocols are composed of two phases: (i) the set-up phase and (ii) the transfer
phase. During the set-up phase, the sender generates and sends shares of his
secrets to all the servers. In the transfer phase, the receiver chooses the index
of a secret, selects k servers (1 < k ≤ m) and sends them requests. From the k
responses the receiver is able to determine the chosen secret.

Blundo et al. also defined a security model composed of four fundamental
conditions that every DOT protocol should satisfy:

C1. Correctness – The receiver is able to determine the chosen secret once she
has received information from the k contacted servers.

C2. Receiver’s privacy – A coalition of up to k − 1 servers cannot obtain any
information on the choice of the receiver.

C3. Sender’s privacy with respect to k−1 servers and the receiver – A coalition of
up to k− 1 servers with the receiver does not obtain any information about
the secrets.

C4. Sender’s privacy with respect to a “greedy” receiver – Given the transcript
of the interaction with k servers, a coalition of up to k− 1 dishonest servers
and the receiver does not obtain any information about secrets which were
not chosen by the receiver.

As it has been pointed out by Blundo et al. in [4,5], the protocol introduced by
Naor and Pinkas only satisfies conditions C1 and C2. Their own protocol satisfies
conditions C1, C2 and C3 only. Actually, they have proven that condition C4

cannot be guaranteed with a one-round DOT protocol – a round being defined
as a set of consistent requests/responses exchanged between the receiver and k
servers.

Besides, Nikov, Nikova, Preneel and Vanderwalle have demonstrated [12] that
more generally, if the receiver’s privacy is guaranteed against a coalition of kR
servers and the sender’s security against a coalition of kS servers, including when
a secret had already been obtained, then the parameters kS and kR must satisfy
the inequality (kS + 1) + (kR + 1) < k.

Recently, Beimel, Chee, Wang and Zhang [2] introduced communication-
efficient DOT protocols. These protocols, based on information-theoretic pri-
vate information retrieval (PIR) protocols, require that the number of servers
contacted by the receiver is pre-determined.

In this paper, we introduce an information-theoretically secure threshold DOT
protocol. That is, the number of servers the receiver needs to contact to obtain

186 C.L.F. Corniaux and H. Ghodosi

a secret is not limited to k. Moreover, unlike other unconditionally secure DOT
protocols, our protocol satisfies security conditions C1, C2 for a coalition of any
size, C3 and C4. Actually, to circumvent the impossibility result established by
Blundo et al., we use the commodity-based model introduced by Beaver [1]. More
precisely, our protocol is based on Rivest’s trusted initializer OT protocol [15].
In this protocol, an additional party – the trusted initializer – is involved in the
set-up phase; he generates and distributes random values, but receives nothing
from other parties (in particular, he obtains neither the sender’s secrets, nor
the receiver’s choice). In addition, our protocol has an efficiency similar to the
efficiency of the full protocol presented by Blundo et al. [4,5].

This paper is organized as follows: in Sect. 2, we give an overview of the OT
protocol proposed by Rivest [15]. In Sect. 3, we introduce some definitions and
notations, as well as our security model. The protocol is described in Sect. 4 and
the security is analysed in Sect. 5. The last section is devoted to the performance
of the protocol.

2 Background

The OT-
(
2
1

)
protocol presented by Rivest [15] is based on the protocol introduced

by Bennett, Brassard, Crépeau and Skubiszewska [3], adapted to the trusted
initializer model.

We assume that a sender S holds two secrets w0, w1 ∈ { 0, 1 }� (� ∈ IN∗ =
{ 1, 2, . . .}) and that a receiver R wishes to learn the secret we (e = 0 or e = 1).

In the set-up phase, the trusted initializer T gives to S two random �-bit
strings r0 and r1. Then, T selects a random bit d and sends the pair (d, rd)
to R.

In the transfer phase,R selects the index e of one secret and transmits c = e⊕d
to S. S replies with two values f0 = w0 ⊕ rc and f1 = w1 ⊕ r1−c. To obtain
we, R calculates fe ⊕ rd.

Clearly, the receiver obtains one secret only and the sender cannot determine
which secret was chosen by the receiver.

3 Preliminaries

3.1 Notations and Definitions

The setting of the DOT protocol described in this paper encompasses a sender
S who owns n secrets w1, . . . , wn (n > 1) in a finite field IK = IFp (p prime),
a receiver R who wishes to learn a secret we (1 ≤ e ≤ n), a trusted initializer
T who generates random elements of IK and m servers S1, . . . , Sm. We assume
that p > max(n,w1, . . . , wn,m) and that all operations are executed in IK.

Our protocol is composed of three phases: a set-up phase, a commodity acqui-
sition phase and a transfer phase. In the set-up phase, for each secret the sender
generates shares thanks to Shamir’s (k, m)-threshold secret sharing schemes [16]
(1 < k ≤ m). Then, the sender distributes the shares to the m servers and does

An Information-Theoretically Secure Threshold DOT Protocol 187

not intervene in the rest of the protocol. In the commodity acquisition phase, the
receiver contacts the trusted initializer who generates and distributes consistent
masks to the m servers and to the receiver. The trusted initializer’s presence is
only required in this phase. In the transfer phase, the receiver has to contact t
servers (k ≤ t ≤ m) to collect enough shares to construct we.

The protocol requires the availability of private communication channels be-
tween the trusted initializer and the servers, between the trusted initializer and
the receiver and between the sender and the servers. The receiver sends requests
to the servers thanks to a private broadcast channel and collects responses thanks
to private channels between servers and herself. We assume that private channels
are secure, i.e., any party is unable to eavesdrop on them and that all channels
guarantee that communications cannot be tampered with.

The set { 1, . . . , n } of natural numbers is denoted [n]. The additive group
of univariate polynomials of degree at most k with coefficients in IK is denoted
IKk[X]. In addition, by an abuse of language, a polynomial and its corresponding
polynomial function will not be differentiated.

Since security conditions are linked to the quantity of information received by
parties, it seems appropriate to use Shannon’s entropy function [17], and more
generally information theory, to demonstrate the security of our protocol. The
following definitions and properties will be used in the paper (for more details
on information theory, see for example [7]).

An element v of a finite field V is described by a discrete random variable V
over a finite set V . The probability distribution Pr(V) is associated with V .

Let X and Y be two random variables.

– The entropy of X is H(X) = −
∑

x∈X Pr(X = x) log2 Pr(X = x).
– The joint entropy H(X,Y) of X and Y (joint distribution Pr(X ,Y)) is

H(X,Y) = −
∑
x∈X

∑
y∈Y

Pr(X = x,Y = y) log2 Pr(X = x,Y = y).

– The conditional entropy H(X | Y) of X given Y is defined as

H(X | Y) =
∑
y∈Y

Pr(Y = y)H(X | Y = y),

where the entropy H(X | Y = y) is

H(X | Y = y) = −
∑
x∈X

Pr(X = x | Y = y) log2 Pr(X = x | Y = y).

Note that if Pr(X = x) = 0, then we adopt the convention that
Pr(X = x) log2 Pr(X = x) = 0.

Let X , Y , Z and Xi (i ∈ [n]) be random variables. We use the following
properties in the security demonstrations:

188 C.L.F. Corniaux and H. Ghodosi

H(X) ≥ H(X | Y) (1)

H(X,Y) = H(X) +H(Y | X) = H(Y) +H(X | Y) (2)

0 ≤ H(X) ≤ log2|X | (3)

If H(Y | Z) = 0 then H(X | Y) ≥ H(X | Z) (4)

If H(Y | Z) = 0 then H(X | Y ,Z) = H(X | Z) (5)

H(Z |X,Y) = H(Z |X) iff H(Y |X,Z) = H(Y |X) (6)

If H(Z |X,Y) = H(Z) then H(X | Y ,Z) = H(X | Y) (7)

and

If H(X | Y ,Z) = H(X) then H(X | Y) = H(X | Z) = H(X) (8)

3.2 Security Model

The point of the paper is not to propose a verifiable DOT protocol. This is why
we assume that all parties wish to complete the protocol to allow the receiver to
obtain the chosen secret. In particular, the trusted initializer and the sender are
honest. However, even if they are not malicious, servers may actively collaborate
to determine the receiver’s choice (C2) or the sender’s secrets (C3). The receiver
may also actively cheat, either while cooperating with a coalition of active cheat-
ing servers (C3), or by corrupting servers after having obtained a secret (C4). In
this latter case, the receiver has access to all data held by the corrupted servers.

4 Protocol Description

The key idea underlying our t-out-of-n DOT protocol is to extend Rivest’s OT
protocol in two directions:

1. Generalization to n secrets
2. Introduction of a distributed model with m servers

Furthermore, to prevent the servers from learning the sender’s secrets, they
receive shares of the secrets held by the sender. These shares are generated
thanks to Shamir’s secret sharing schemes [16].

In addition, to guarantee that the contacted servers do not receive requests
related to different secrets, they all receive the same request and this request is
broadcast.

The full protocol is described in Fig. 1.

5 Security of the Protocol

5.1 Formal Model

To prove the security of our protocol we use a formal model similar to the
model introduced by Blundo et al. [4,5]. In this model, we assume that the

An Information-Theoretically Secure Threshold DOT Protocol 189

Input The sender S contributes with n secrets w1, . . . , wn ∈ IK
The trusted initializer T generates m sets of n random masks
and randomly chooses one of the n sets
The receiver R chooses an index e ∈ [n], and contributes
with a cyclic permutation π ∈ Sn

Output R receives we, while S and T receive nothing.

Set-up Phase

1 - Preparation of shares. For each secret wi (i ∈ [n]), the sender S generates,
thanks to Shamir’s (k, m)-threshold secret sharing scheme, a sharing polynomial
Fi of degree at most k − 1, such that Fi(0) = wi.

2 - Distribution of shares. To each server Sj (j ∈ [m]), S transmits the n shares
F1(j), . . . , Fn(j).

Commodity Acquisition Phase

1 - Preparation of masks. The trusted initializer T generates mn random masks
rj,i ∈ IK (j ∈ [m], i ∈ [n]) and one random index s ∈ [n].

2 - Distribution of masks. T distributes the n masks rj,1, . . . , rj,n to the server Sj

(j ∈ [m]) and the index s as well as the m masks r1,s, . . . , rm,s to the receiver R.

Transfer Phase

1 - Selection of the secret index and generation of the corresponding request. The
receiver R chooses a secret index e and generates the cyclic permutation π ∈ Sn

which satisfies π(e) = s.

2 - Selection of servers and broadcast of a query. R selects a subset I ⊂ [m] of
t ≥ k indices and broadcasts a query containing the first cyclic permutation item,
π(1), as well as the list I.
3 - Responses of the servers. Each server S� such that 	 ∈ I returns μ�,i = Fi() +
r�,π(i) (i ∈ [n]) to R.

4 - Construction of the requested secret. For each of the t responses μ�,e, R calcu-
lates the share μ�,e − r�,s = Fe(), interpolates Fe and obtains we = Fe(0).

Fig. 1. Protocol Overview

parties execute publicly known programs whose data are private. These data are
described by the following discrete random variables shown on Fig. 2.

By extension, if Xj is a random variable which describes a datum xj held
by a server Sj (j ∈ [m]) and G = { j1, . . . , jt } (t ∈ [m]), we denote XG =
(Xj1 , . . . ,Xjt) the random variable describing the sequence (xj1 , . . . , xjt). By
simplification, X[m] is denoted X.

– Each secret wi ∈ IK (i ∈ [n]) is described by a variable W i and the sequence
of secrets w1, . . . , wn by the variable W = (W 1, . . . ,W n). Moreover, if
e ∈ [n], we denote W ē the sequence (W 1, . . . ,W e−1,W e+1, . . . ,W n).

– The secret index e ∈ [n] chosen by R is described by the random
variable E.

190 C.L.F. Corniaux and H. Ghodosi

Sender S W , RS

Trusted
Initializer T

RmT , RsT

S1

S2

. . .

Sm

F1

F2

Fm

Receiver R E

M1

M2

Mm

S, Ms

Q

A1

A2

Am

Fig. 2. Random Variables

– The random variable M i
j (j ∈ [m], i ∈ [n]) corresponds to the mask rj,i and

the random variable Mj (j ∈ [m]) to the n ordered masks (rj,1, . . . , rj,n)
distributed by T to the server Sj . Similarly, the random variable F i

j (i ∈
[n], j ∈ [m]) corresponds to the share Fi(j) and the random variable Fj

(j ∈ [m]) to the n shares (F1(j), . . . , Fn(j)) distributed by S to the server

Sj . By simplification M
[n]
j = (M1

j , . . . ,M
n
j) is denoted M j and F

[n]
j =

(F 1
j , . . . ,F

n
j) is denoted F j .

– In addition, the random index s ∈ [n] chosen by T is described by the random
variable S. The notation Ms

j corresponds to the random variable describing
rj,s and Ms is a shorthand for (Ms

1, . . . ,M
s
m).

– The cyclic permutation π ∈ Sn is described by the random variable Q:

H(Q | E,S) = 0. (9)

– The transcript Tj = (Q,Aj) is composed of a query Q = π described by
the random variable Q and of an answer Aj = (Fj(1) + rj,π(1), . . . , Fj(n) +
rj,π(n)) described by the random variable Aj . The random variable describ-

ing the answer Fj(i) + rj,π(i) (j ∈ [m], i ∈ [n]) is denoted Ai
j .

– A few uniform random variables are held by the parties involved in the
protocol to allow them to produce private data:

An Information-Theoretically Secure Threshold DOT Protocol 191

• The trusted initialiser T holds two uniform random inputs, RmT , to
generate the random masks rj,i (i ∈ [n], j ∈ [m]),

H(M i
j | RmT) = 0, (10)

and RsT , to determine the secret index s,

H(S | RsT) = 0. (11)

Note that since H(Ms |M ,S) = 0 then

H(Ms | RmT ,RsT) = 0. (12)

• The sender S holds a uniform random input RS to generate the shares
Fj(i) (i ∈ [n], j ∈ [m]):

H(F i
j |W i,RS) = 0. (13)

To show properties C1, C2, C3 and C4 is equivalent to show properties listed in
Table 1.

Table 1. Security Conditions from an Information Theory Viewpoint

Security Number of
Servers

Property
Condition

C1 k ≤ |G| ≤ m H(W e | E = e,S,Ms,Q,AG) = 0

C2 |G| ≤ m H(E | FG,MG,Q) = H(E)

C3 |G| ≤ k − 1 H(W | FG,MG,E,S,Ms) = H(W)

C4 k ≤ |G| ≤ m
|G′| ≤ k − 1

H(W ē | FG′ ,MG′ ,E = e,S = s,Q = π,AG,M
s =

(r1,s, . . . , rm,s)) = H(W ē)

5.2 Correctness

Theorem 1. The protocol is correct (condition C1 is satisfied), i.e. if all parties
follow the protocol, the receiver obtains the chosen secret we by contacting t
servers Sj where j ∈ G = I = { j1, . . . , jt } (k ≤ t ≤ m).

Proof.
To demonstrate that H(W e | E = e,S,Ms,Q,AG) = 0 is equivalent to

demonstrate that once the protocol has been executed, Pr(W e = we | E =
e,S,Ms,Q,AG) = 1.

Once R has chosen e, the cyclic permutation π ∈ Sn such that π(e) = s is
determined. The response sent by the server S� (� ∈ I) then contains the value
μ�,e = Fe(�) + r�,π(e) = Fe(�) + r�,s. Since R knows r�,s, she is able to calculate
the t shares Fe(�), to interpolate Fe (degree at most k− 1 < t) and to determine
we = Fe(0). It follows that Pr(W

e = we | E = e,S,Ms,Q,AG) = 1. ��

192 C.L.F. Corniaux and H. Ghodosi

5.3 Receiver’s Privacy against a Coalition of Servers

Theorem 2. The protocol guarantees the receiver’s privacy against a coalition
of h servers Sj where j ∈ G = { j1, . . . , jh } (0 ≤ h ≤ m), i.e. condition C2 is
satisfied.

Proof.
To show that H(E | FG,MG,Q) = H(E), first we demonstrate that

H(E | FG,MG,Q) = H(E | Q)

and second that
H(E | Q) = H(E).

For the first part of the demonstration, we adapt a technique applied by Beimel,
Chee, Wang and Zhang [2] in a similar context.

1. First, we show that the conditional entropy of E given FG, MG and Q
satisfies

H(E | FG,MG,Q) = H(E | Q).

For this purpose, thanks to property (6), we show that

H(FG,MG | E,Q) = H(FG,MG | Q).

The choice of the receiver is independent from the data held by the trusted
initializer, by the sender, by the servers and by herself at the end of the
commodity acquisition phase, so

H(E | RmT ,RsT ,W ,RS ,F ,M ,S,Ms) = H(E). (14)

If we apply property (8), we obtain the particular case

H(E | FG,MG,RsT) = H(E). (15)

Similarly, the uniform random variable RsT held by the trusted initializer
is independent from the uniform random variable RmT , from the sender’s
data and from the data held by the servers at the end of the commodity
acquisition phase. It follows

H(RsT | RmT ,W ,RS ,F ,M) = H(RsT). (16)

Once more, if we apply property (8), we obtain the particular case

H(RsT | FG,MG) = H(RsT). (17)

The joint entropy between FG and MG is

H(FG,MG) ≥ H(FG,MG | Q) (from (1))

≥ H(FG,MG | Q,E) (from (1))

≥ H(FG,MG | RsT ,E) (from (9), (11) and (4))

= H(FG,MG | RsT) (from (15) and (7))

= H(FG,MG). (from (17) and (7))

An Information-Theoretically Secure Threshold DOT Protocol 193

Therefore, H(FG,MG | Q) = H(FG,MG | Q,E) and from property (6),
H(E | Q,FG,MG) = H(E | Q).

2. To prove that H(E | Q) = H(E), thanks to property (6), it is sufficient to
show that H(Q | E) = H(Q).
First, we observe that given a secret index e and a cyclic permutation π,
the random index s is uniquely determined: s = π(e). Therefore, in terms of
entropy, it follows that

H(S | Q,E) = 0. (18)

Second, the conditional joint entropy between Q and S given E is

H(Q,S | E) = H(Q | E) +H(S | Q,E) (from (2))

= H(Q | E) (from (18))

and also

H(Q,S | E) = H(S | E) +H(Q | E,S) (from (2))

= H(S | E) (from (9))

It follows that H(Q | E) = H(S | E).
If we apply property (8) to equality (14), we obtain the particular case
H(E | S) = H(E) which, combined with property (6) gives H(S | E) =
H(S). Therefore,H(Q | E) = H(S). Moreover, because the random variable
S is uniform, it holds H(S) = log2 n and because the number of cyclic
permutations of Sn is n, we can write:

log2 n ≥ H(Q) ≥ H(Q | E) = H(S) = log2 n.

It follows that H(Q | E) = H(Q) and from (6) that H(E | Q) = H(E).

We have shown that H(E | Q,FG,MG) = H(E | Q) and H(E | Q) = H(E).
We conclude H(E | FG,MG,Q) = H(E). ��

5.4 Sender’s Security against a Coalition of the Receiver and
Servers

Theorem 3. The protocol guarantees the sender’s security against a coalition
of the receiver and h servers Sj where j ∈ G = { j1, . . . , jh } (0 ≤ h ≤ k − 1),
before the protocol is executed (condition C3 is satisfied).

Proof.
The demonstration is symmetrical to the previous demonstration. First, we

demonstrate that H(W | FG,MG,E,S,M
s) = H(W | FG) and second that

the secrets are independent from the shares received by any set of h servers (h ≤
k−1) in the set-up phase, i.e., H(W | FG) = H(W). These two demonstrations
will allow us to show that the secrets are independent from the data held by a
coalition between the receiver and h servers.

194 C.L.F. Corniaux and H. Ghodosi

1. The uniform random variable RmT held by the trusted initializer is inde-
pendent from the data held by the sender, by the servers and by herself at
the end of the commodity acquisition phase, except masks. It follows

H(RmT | RsT ,W ,RS ,F) = H(RmT). (19)

If we apply property (8), we obtain the particular case

H(RmT | RsT ,W ,FG) = H(RmT). (20)

Likewise, from (14) and (8) we can write

H(E |W ,FG,RsT ,RmT) = H(E), (21)

and from (16) and (8) we can write

H(RsT |W ,FG) = H(RsT). (22)

The conditional entropy of W given FG is

H(W | FG) ≥ H(W | FG,MG,E,S,M
s) (from (1))

≥ H(W | FG,E,RmT ,RsT) (from (10), (11), (12) and (4))

= H(W | FG). (from (21), (22), (20) and (7))

We conclude that H(W | FG,MG,E,S,M
s) = H(W | FG).

2. It is well-known that Shamir’s secret sharing scheme [16] is perfect, i.e, for
i ∈ [n], we have H(W i | F i

G) = H(W i). The n secrets w1, . . . , wn are
shared thanks to independent schemes; Therefore, the previous equality may
easily be generalized to a vector of secrets (W 1, . . . ,W n). It follows that
H(W | F 1

G, . . . ,F
n
G) = H(W).

Since F 1
G, . . . ,F

n
G = F

[n]
G = FG, we obtain H(W | FG) = H(W).

We have demonstrated that H(W | FG,MG,E,S,M
s) = H(W | FG) and that

H(W | FG) = H(W). We conclude

H(W | FG,MG,E,S,M
s) = H(W).

��

5.5 Sender’s Security against a “Greedy” Receiver

Theorem 4. The protocol guarantees the sender’s security against a coalition
of the receiver and h servers Sj′ where j′ ∈ G′ = { j′1, . . . , j′h } (0 ≤ h ≤ k − 1),
after the protocol has been executed (condition C4 is satisfied).

Proof.
We assume that in the transfer phase of the protocol, t servers Sj are contacted

by the receiver, where j ∈ G = { j1, . . . , jt } (1 < t ≤ m). We introduce a random
variable K = (E,S,Ms) describing the data K = (e, s, (r1,s, . . . , rm,s)). The
theorem is demonstrated in four steps:

An Information-Theoretically Secure Threshold DOT Protocol 195

– First, we demonstrate that,

H(W ē | FG′ ,MG′ ,AG,K = K,Q = π)

= H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K).

– Second, we show that

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K)

= H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K).

– Third, we show that

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K) = H(W ē | F ē

G′ ,F e
G,K = K).

– Lastly, we show that H(W ē | F ē
G′ ,F e

G,K = K) = H(W ē).

1. The random variable AG may be decomposed under the form
AG = (AG\G′ ,AG′). Since H(AG′ | FG′ ,MG′ ,Q = π) = 0, we apply
property (5) which yields

H(W ē | FG′ ,MG′ ,AG,K = K,Q = π)

= H(W ē | FG′ ,MG′ ,AG\G′ ,K = K,Q = π).

The random variable AG\G′ may be decomposed under the form AG\G′ =
(Aē

G\G′ ,Ae
G\G′). Since for j ∈ [m], we have Fe(j) = (Fe(j) + rj,π(e)) +

rj,π(e) = (Fe(j) + rj,π(e)) + rj,s, it holds that

H(F e
G\G′ | Ae

G\G′ ,Ms
G\G′) = 0 and H(Ae

G\G′ | F e
G\G′ ,Ms

G\G′) = 0.

Applying (5) we obtain

H(W ē | FG′ ,MG′ ,AG\G′ ,K = K,Q = π)

= H(W ē | FG′ ,F e
G\G′ ,MG′ ,Aē

G\G′ ,K = K,Q = π).

From properties (9) and (5), we obtain

H(W ē | FG′ ,F e
G\G′ ,MG′ ,Aē

G\G′ ,K = K,Q = π)

= H(W ē | FG′ ,F e
G\G′ ,MG′ ,Aē

G\G′ ,K = K).

Because MG′ = (M s
G′ ,M s̄

G′) and FG′ = (F e
G′ ,F ē

G′), we can apply (5). It
follows

H(W ē | FG′ ,F e
G\G′ ,MG′ ,Aē

G\G′ ,K = K)

= H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K).

196 C.L.F. Corniaux and H. Ghodosi

2. To prove that

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K) = H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K),

thanks to property (7) and Lemma 1, it is enough to show that

H(Aē
G\G′ | F ē

G′ ,F e
G,M

s̄
G′ ,K,W ē) = H(Aē

G\G′).

We have:

H(Aē
G\G′ ,M s̄

G\G′ | F ē,F e
G,M

s̄
G′ ,K = K,W ē)

= H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē)

+H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē,M s̄

G\G′)

= H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē)

+H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē,Aē

G\G′).

For i ∈ [n], i �= e and j ∈ [m], we have Fi(j) = (Fi(j) + rj,π(i)) + rj,π(i).
Using property (9), it holds that

H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē,M s̄

G\G′) = 0

and symetrically

H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē,Aē

G\G′) = 0.

It follows that

H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē)

= H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē).

Each mask rj,i (i ∈ [n], j ∈ [m]) is randomly generated by the trusted
initializer and is independent from the other variables held by the different
parties at the beginning of the transfer phase. More precisely, if G1 ⊂ [m],
G2 ⊂ [m], H1 ⊂ [n] and H2 ⊂ [n] are four subsets such that G1 ∩G2 = ∅ or
H1 ∩H2 = ∅, we have

H(MH1

G1
| E,S,W ,F ,MH2

G2
) = H(MH1

G1
). (23)

If we apply property (8) and Lemma 1 (See Appendix A), we obtain the
particular case

H(M s̄
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē) = H(M s̄

G\G′).

Therefore, H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē) = H(M s̄

G\G′).

Furthermore, the random variable M s̄
G\G′ is uniform, so

H(M s̄
G\G′) = log2 p

(n−1)×|G\G′|.

An Information-Theoretically Secure Threshold DOT Protocol 197

Thus,

H(Aē
G\G′) ≥ H(Aē

G\G′ | F ē,F e
G,M

s̄
G′ ,K = K,W ē) (from (1))

= log2 p
(n−1)×|G\G′|.

By property (3), H(Aē
G\G′) ≤ log2 p

(n−1)×|G\G′|.

It follows that H(Aē
G\G′) = log2 p

(n−1)×|G\G′| = H(M s̄
G\G′). We conclude

H(Aē
G\G′ | F ē,F e

G,M
s̄
G′ ,K = K,W ē) = H(M s̄

G\G′) = H(Aē
G\G′).

Applying property (8), we obtainH(Aē
G\G′ | F ē

G′ ,F e
G,M

s̄
G′ ,K = K,W ē) =

H(Aē
G\G′) and consequently

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,Aē

G\G′ ,K = K) = H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K).

3. Once again, we apply property (8) and Lemma 1 to (23) and obtain the
particular case

H(M s̄
G′ |W ē,F ē

G′ ,F e
G,K = K) = H(M s̄

G′).

It follows, from property (7), that

H(W ē | F ē
G′ ,F e

G,M
s̄
G′ ,K = K) = H(W ē | F ē

G′ ,F e
G,K = K).

4. Thanks to Lagrange’s interpolation theorem, we can write H(F e
G′′ ,W e |

F e
G) = 0 and H(F e

G | F e
G′′ ,W e) = 0 where G′′ is a set of k− 1 distinct non-

null indices. In particular, if G′′ = G′ (|G′| = h < k), we obtainH(F e
G′ ,W e |

F e
G) = 0 and H(F e

G | F e
G′ ,W e) = 0. Using property (5), it follows that

H(W ē | F ē
G′ ,F e

G,K) = H(W ē | FG′ ,W e,K).

In Sect. 5.4, we have demonstrated that if |G| < k then

H(W | FG,MG,E,S,M
s) = H(W).

Applying this property to G′ and combining it with property (8) gives

H(W | FG′ ,K) = H(W).

From property (6), H(W | FG′ ,K) = H(W) involves H(FG′ ,K |
W) = H(FG′ ,K) and from property (7), H(FG′ ,K | W) = H(FG′ ,K |
W e,W ē) = H(FG′ ,K) involves H(W ē | FG′ ,K,W e) = H(W ē |W e). We
assume that the secrets are independent; consequently, H(W ē | W e) =
H(W ē), which allows us to conclude H(W ē | FG′ ,W e,K) = H(W ē),
i.e., H(W ē | F ē

G′ ,F e
G,K) = H(W ē). Using Lemma 1, it follows that

H(W ē | F ē
G′ ,F e

G,K = K) = H(W ē).

The demonstrations of the four steps above yield that H(W ē | FG′ ,MG′ ,E =
e,S = s,Ms = (r1,s, . . . , rm,s),Q = π,AG) = H(W ē). ��

198 C.L.F. Corniaux and H. Ghodosi

6 Efficiency Consideration

Clearly, the number of shares returned by the servers to the receiver is higher with
the proposed protocol (linear communication complexity in n) than with Beimel,
Chee,Wang and Zhang’s DOT protocols [2] (sublinear communication complexity
in n for some PIR protocols). However, in this section, we show that the perfor-
mance of Blundo et al.’s DOT protocol [4,5] and of our protocol are similar.

In Table 2, we list the main computations performed by each party, for Blundo
et al.’s DOT protocol and for our DOT protocol.

Table 2. Computation Efficiency of DOT protocols

Blundo et al.’s DOT Protocol Our DOT Protocol

Set-up Phase

S 2(n− 1) random masks in IK∗,
2n sharing polynomials and 2mn
shares

n sharing polynomials and mn
shares

Commodity Acquisition Phase

T mn random masks in IK
1 random number in [n]

Transfer Phase

R (n− 1) sharing polynomials and
k(n− 1) shares,
4 polynomial interpolations

1 cyclic permutation of Sn,
1 polynomial interpolation

Sj

(j ∈ I)
2 (n− 1)-tuple scalar products
and 2 additions

n additions

Similarly, in Table 3, we list for each protocol the number of shares exchanged
between the sender and the servers, the receiver and the servers, and between
the trusted initializer and (1) the sender and (2) the receiver in the case of
our protocol. We assume that in both protocols, k servers are contacted by the
receiver, i.e., t = k in our protocol.

The operations performed off-line (set-up and commodity acquisition phases)
for both protocols are close, but in our protocol these operations are distributed
between the sender and the trusted initializer. As for the on-line operations, our
protocol is more efficient than Blundo et al.’s one: on the receiver’s side, only
one cyclic permutation and one interpolation are required (vs. the generation of
k(n− 1) shares from (n− 1) sharing polynomials and four interpolations in the
case of Blundo et al.’s protocol), whereas on the servers’ side, only n additions
are required (vs. 2(n− 1)-tuple scalar products and two additions in the case of
Blundo et al.’s protocol).

The number of shares distributed by the sender in the set-up phase is around
3n in Blundo et al.’s protocol and 2n in our protocol. However, our protocol
requires an additional distribution of m(n+ 1) shares by the trusted initializer
in the commodity acquisition phase. In the transfer phase, the request sent to

An Information-Theoretically Secure Threshold DOT Protocol 199

Table 3. Communication Efficiency of DOT protocols (shares)

Blundo et al.’s DOT
Protocol

Our DOT Protocol

Set-up Phase

S → Sj (j ∈ [m]) 2n shares, n− 1
elements of IK

n shares

Commodity Acquisition Phase

T → Sj (j ∈ I) n masks

T → R 1 index, m masks

Transfer Phase

R → Sj (j ∈ I) n− 1 shares t = k server indices,
1 number in [n] (nota:
broadcast data)

Sj → R (j ∈ I) 2n shares n shares

a server contains n − 1 shares (Blundo et al.’s protocol) whereas the broadcast
request contains k + 1 integers (our protocol). The receiver collects two times
more shares in Blundo et al.’s protocol than in our protocol.

We also note that our DOT protocol can easily be extended to a DOT-
(
n
�

)
;

instead of choosing one set of random masks, the trusted initializer randomly se-
lects � sets of random masks and distributes them to the receiver in the commod-
ity acquisition phase, with the corresponding indices s1, . . . , s�. In this scenario,
the receiver selects � indices e1, . . . , e� and generates a random permutation π,
instead of a cyclic permutation, such that π(e1) = s1, . . . , π(e�) = s�. The op-
erations executed by the servers are the same as in the case where the receiver
wishes to obtain one secret only. On reception of the responses, the receiver has
to interpolate � polynomials to determine the � chosen secrets. Therefore, in our
protocol, due to the constant number of operations performed by the servers and
to the constant number of data exchanged between the servers and the receiver,
the communication and computation performance, relative to �, improves when
� increases. Blundo et al.’s DOT protocol would need to be executed � times for
� secrets, which would be less efficient than our protocol.

In a similar vein, the protocol may easily be extended to a verifiable DOT,
with the simple requirement that enough shares are collected by the receiver to
identify – and discard – incorrect shares returned by malicious servers. Thus,
a Reed-Solomon codes [14] decoding algorithm like the algorithm introduced
by Gao [9] would allow the receiver to determine the chosen secret in spite of
u ≤ t−k

2 malicious servers.

Acknowledgements. We would like to thank the anonymous reviewers of
ICISC 2012 for their helpful comments.

200 C.L.F. Corniaux and H. Ghodosi

References

1. Beaver, D.: Commodity-based cryptography. In: Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, pp. 446–455. ACM (1997)

2. Beimel, A., Chee, Y.M., Wang, H., Zhang, L.F.: Communication-efficient dis-
tributed oblivious transfer. Journal of Computer and System Sciences 78(4),
1142–1157 (2012)

3. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical Quantum
Oblivious Transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992)

4. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New Results on Uncondition-
ally Secure Distributed Oblivious Transfer. In: Nyberg, K., Heys, H.M. (eds.) SAC
2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003)

5. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: On Unconditionally Secure
Distributed Oblivious Transfer. Journal of Cryptology 20(3), 323–373 (2007)

6. Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987)

7. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley
& Sons, Inc., Hoboken (2006)

8. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Communications of the ACM 28, 637–647 (1985)

9. Gao, S.: A new algorithm for decoding Reed-Solomon codes. In: Bhargava, V.K.,
Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network
Security, pp. 55–68. Kluwer Academic Publishers (2003)

10. Gertner, Y., Malkin, T.: Efficient Distributed (n choose 1) Oblivious Transfer.
Tech. rep., MIT Lab of Computer Science (1997)

11. Naor, M., Pinkas, B.: Distributed Oblivious Transfer. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000)

12. Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On Unconditionally Secure Dis-
tributed Oblivious Transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002.
LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002)

13. Rabin, M.O.: How to Exchange Secrets with Oblivious Transfer. Tech. rep., Aiken
Computation Lab, Harvard University (1981)

14. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)

15. Rivest, R.L.: Unconditionally Secure Commitment and Oblivious Transfer Schemes
Using Private Channels and a Trusted Initializer (1999) (unpublished manuscript)

16. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

17. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technol-
ogy Journal 27, 379–423, 623–656 (1948)

An Information-Theoretically Secure Threshold DOT Protocol 201

A Conditional Entropy with Fixed Condition

Let X, Y and Z be three random variables.

Lemma 1. If H(X | Y ,Z) = H(X) then for zi ∈ Z we have H(X | Y ,Z =
zi) = H(X).

Proof.
BecauseH(X | Y ,Z) = H(X), the variablesX and (Y ,Z) are independent.

Their corresponding probabilities satisfy the relation Pr(X = x,Y = y,Z =
z) = Pr(X = x) Pr(Y = y,Z = z) for (x, y, z) ∈ X×Y×Z. That is, Pr(X = x |
Y = y,Z = z) = Pr(X = x,Y = y,Z = z)/Pr(Y = y,Z = z) = Pr(X = x).
Hence

H(X | Y ,Z = zi)

=
∑
y∈Y

Pr(Y = y)×H(X | Y = y,Z = zi)

=
∑
y∈Y

(
Pr(Y = y)

×−
∑
x∈X

Pr(X = x | Y = y,Z = zi) log2 Pr(X = x | Y = y,Z = zi)
)

=
∑
y∈Y

(
Pr(Y = y)×−

∑
x∈X

Pr(X = x) log2 Pr(X = x)
)

=
∑
y∈Y

Pr(Y = y)×H(X)

= H(X)

��

Practically Efficient Multi-party Sorting Protocols
from Comparison Sort Algorithms

Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi

NTT Secure Platform Laboratories, NTT Corporation
3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585 Japan
{hamada.koki,kikuchi.ryo,ikarashi.dai,chida.koji,

takahashi.katsumi}@lab.ntt.co.jp

Abstract. Sorting is one of the most important primitives in various systems, for
example, database systems, since it is often the dominant operation in the running
time of an entire system. Therefore, there is a long list of work on improving its
efficiency. It is also true in the context of secure multi-party computation (MPC),
and several MPC sorting protocols have been proposed. However, all existing
MPC sorting protocols are based on less efficient sorting algorithms, and the re-
sultant protocols are also inefficient. This is because only a method for converting
data-oblivious algorithms to corresponding MPC protocols is known, despite the
fact that most efficient sorting algorithms such as quicksort and merge sort are
not data-oblivious. We propose a simple and general approach of converting non-
data-oblivious comparison sort algorithms, which include the above algorithms,
into corresponding MPC protocols. We then construct an MPC sorting protocol
from the well known efficient sorting algorithm, quicksort, with our approach.
The resultant protocol is practically efficient since it significantly improved the
running time compared to existing protocols in experiments.

Keywords: Multi-party protocol, sorting, comparison sort, secret sharing,
unconditional security.

1 Introduction

With the growth in information technology, the use of personal data is also increasing.
Therefore, awareness concerning privacy issues has been growing, and systems that use
sensitive data without breaching privacy are needed. Secure multi-party computation
(MPC) is a technique that enables the creation of such secure systems, and frame-
works, such as FairplayMP [3], Sharemind [6], SEPIA [7], TASTY [17], and VIFF
[13], have been implemented. MPC protocols allow a set of participants (parties) to
compute a function privately. That is, when a function is represented as (y1, . . . , yn) =
f (x1, . . . , xn), each party with its private input xi obtains only the output yi and noth-
ing else. In a typical MPC framework, input and output values are in secret-shared
form. Namely, xi and yi are the shares of input and output values, respectively. Al-
though any function can be computed securely by using a circuit representation of the
function [4,15], it is not easy to design practically efficient MPC protocols for com-
plex algorithms, such as database operations. Therefore, proposals have been made to

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 202–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multi-party Sorting Protocols from Comparison Sort Algorithms 203

construct specific and efficient MPC protocols as building blocks, e.g., computing bit-
decomposition and comparison [10,25], and modulo reduction [24].

Sorting is one of the most important primitives in various systems, for example,
database systems, since it is frequently conducted and comparatively time-consuming.
The importance of a sorting algorithm is known, and there is a long list of work on
improving its efficiency. To obtain a practically efficient sorting algorithm, researchers
not only investigated computational complexity but also experimental performance. Al-
though computational complexity is a good asymptotic metric of efficiency, sometimes
an inferior (in the sense of computational complexity) sorting algorithm exceeds the ex-
perimental performance of superior ones. For example, quicksort is more popular than
merge sort since quicksort often performs better even though its computational com-
plexity is worse than that of the merge sort algorithm. One of the most famous classes
of sorting is comparison sorts. A comparison sort determines the sorted order based
only on comparisons between the input elements. Comparison sorts include a number
of well-known and efficient sorting algorithms, such as quicksort, shell sort, heapsort,
and merge sort.

In the context of MPC protocols, sorting is also a very important primitive. MPC
sorting protocols are often required in various database operations and have many appli-
cations such as cooperative IDS [20], oblivious RAM [12] and private set intersection
[19]. Therefore, a number of MPC sorting protocols has been proposed [16,3,20,32].
However, they are based on less efficient sorting algorithms, and the resultant proto-
cols are also inefficient. One of the main causes is the obstacle in constructing MPC
protocols.

1.1 Obstacle for Using Well-known Algorithms

We say that an algorithm is data-dependent if the control flow of the algorithm depends
on data values, and an algorithm that is not data-dependent is said to be data-oblivious.
Generally speaking, there is a large obstacle when one constructs a practically efficient
MPC protocol from a well-known algorithm. That is, MPC protocols should be data-
oblivious while most efficient algorithms are not. Furthermore, how to convert data-
dependent algorithms to data-oblivious algorithms is not known.

To illustrate this obstacle during the conversion from data-dependent algorithms to
MPC protocols, let us consider the following two algorithms. Both algorithms receive
a sequence of values a1, . . . , am ∈ Zp = {0, 1, . . . , p − 1}, where p is a prime, as input,
and the output is the number of non-zero values in a1, . . . , am. 1

CountNonZero1(a1, . . . , am):

1: c = 0.
2: for i = 1 to m do
3: c = c + ((ai)p−1 mod p).
4: return c.

CountNonZero2(a1, . . . , am):

1: c = 0.
2: for i = 1 to m do
3: if ai � 0 then
4: c = c + 1.
5: return c.

1 (ai)p−1 mod p =

{
0 if ai = 0
1 otherwise

holds by Fermat’s little theorem.

204 K. Hamada et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 100 1000 10000 100000 1e+06

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
]

Number of items sorted

Randomized shell sort
Oblivious keyword sort

Batcher’s merge sort
Quicksort (proposed)

Fig. 1. Running time of four compared sorting implementations. Number of elements on x-axis
is on log-scale.

The running time of the first algorithm is O(m log p) since (ai)p−1 mod p is com-
puted with O(log p) multiplications over Zp by using the exponentiation by squaring
technique, and that of the second algorithm is O(m). Therefore, the second algorithm
seems more efficient than the first one.

Next, let us consider the case when we convert these algorithms to MPC proto-
cols. For the first algorithm, we need only minor modifications: We replace the values
a1, . . . , am and c with secret-shared values (or values in other forms depending on the
MPC environment), and replace operations applied to these values, such as additions
and multiplications, with corresponding MPC subprotocols. 2

The resulting protocol requires only O(m log p) invocations of subprotocols. For the
second algorithm, it is not enough to apply the same modifications as the first one since
the second algorithm has an if condition, and the result of the if condition discloses the
information that ai = 0 or not. Even if the result is hidden, the branch of subsequent
processes discloses the information. To avoid these disclosures naively, we have to ex-
ecute both cases of the if condition. Therefore, the resulting protocol requires Ω(2m)
invocations of subprotocols.

This significant difference between the complexities of the converted protocols is
due to the fact that the first algorithm is data-oblivious while the second algorithm is
data-dependent. Thus, the naive method used to convert data-oblivious algorithms to
MPC protocols does not work when the algorithm is data-dependent.

Above obstacle also occurs in the area of sorting. Therefore, all existing MPC sorting
protocols are based on specific sorting algorithms, which are data-oblivious but less
efficient. This is one of the main causes of the large gap on efficiency between MPC
sorting protocols and well known sorting algorithms.

1.2 Contributions

In this paper we show that in the areas of comparison sort one can efficiently convert
data-dependent algorithms to MPC protocols with a simple approach. Furthermore, we

2 We have no need for applying expensive exponentiation protocols since p is a public constant
value.

Multi-party Sorting Protocols from Comparison Sort Algorithms 205

propose a practically efficient MPC sorting protocol from the well known sorting algo-
rithm quicksort. Note that we discriminate protocol and algorithm such that the former
is used in a multi-party sense and the other is in an ordinal one, and say an algorithm or
protocol is practically efficient if it not only has less computational complexity but also
delivers good experimental results.

When trying to convert comparison sort algorithms to MPC protocols, an obstacle to
conversion for data-dependent algorithms occurs: The next pair of elements to be com-
pared depends on the outcome of previous comparisons in sorting algorithms. There-
fore, well known and practically efficient comparison sort algorithms, such as quicksort,
have not been applied to MPC protocols.

To overcome the above obstacle, we use a simple approach of shuffling before sort-
ing. That is, the parties first shuffle the input (in an MPC sense) and then use a com-
parison sort algorithm, e.g., quicksort or merge sort, with minor modifications on the
shuffled secret-shared values. Roughly speaking, although the data-dependent compar-
ison leaks the order of compared elements, the order is randomized by the shuffling
and has no relation to the inputs of the protocol. Therefore, we can straightforwardly
construct MPC sorting protocols from comparison sort algorithms after shuffling.

We next show that our approach can construct a practically efficient MPC sorting
protocol. We concretely construct an MPC sorting protocol from the quicksort algo-
rithm with our approach. Our protocol uses O(m log m) comparisons in O(log m) rounds
on average, which are comparable to other existing protocols. We describe a precise
complexity comparison in Sect. 4. Furthermore, we implement the proposed quicksort
protocol and other existing sorting protocols [2,31,32] on (2, 3)-Shamir’s secret-sharing
scheme with corruption tolerance t = 1. This setting is reasonable since our aim is to
produce a practically efficient sorting protocol and the performance of MPC protocols
does not scale well based on the number of parties. As a result, our proposed quick-
sort protocol sorts 32-bit words and 1, 000, 000 secret-shared values in 1, 227 seconds,
while existing sorting protocols cannot sort within 3, 600 seconds. We describe an intu-
itive graph in Fig. 1 and precise experimental results in Sect. 4.

1.3 Related Work

Some circuit-based sorting algorithms are known as sorting networks. Since sorting net-
works are constructed in a circuit style and circuit-based algorithms are data-oblivious,
they can be efficiently applied to MPC protocols. Ajtai et al. proposed an asymptotically
optimal sorting network known as the AKS sorting network, which exhibits a complex-
ity of O(m log m) comparisons, where m is the number of input shares [1]. However,
this algorithm is not practical since its constant factor is very high. On the other hand,
Batcher’s merge sort [2] is more efficient unless m is quite large [21]. This algorithm
exhibits a complexity of O(m log2 m) comparisons with a lower constant factor.

Goodrich proposed a data-oblivious sort called randomized shell sort [16]. Similar
to sorting networks, data-oblivious sorts are also efficiently applied to MPC protocols.
Although randomized shell sort returns a wrong output with low probability, it exhibits
a complexity of O(m) rounds and O(m log m) comparisons.

Wang et al. reported experimental results of some sorting algorithms [31]. Their im-
plementation is based on the MPC system Fairplay [23]. The running times of Batcher’s

206 K. Hamada et al.

merge sort [2] and randomized shell sort [16] for 256 input values are approximately
3, 000 and 6, 200 seconds, respectively.

Jónsson et al. studied a general technique to hide the number of input values for sort-
ing protocols [20]. They also implemented Batcher’s merge sort [2] and other sorting
protocols on the MPC system Sharemind [6]. Their implementation is optimized using
a technique called vectorization, and the vectorized Batcher’s merge sort sorts 16, 384
secret shared values in 210 seconds.

Zhang proposed data-oblivious sorting algorithms [32] based on bead sort. All of
Zhang’s algorithms exhibit complexities of constant rounds and O(Rm) or O(m2) com-
parisons depending on the algorithm, where R represents the range of input values.
Since these algorithms are data-oblivious, we can convert them to multi-party sorting
protocols by using a circuit-based technique while keeping their complexities.

2 Preliminaries

2.1 Assumptions and Notations

We focus on secret-sharing-based MPC. For simplicity, n parties P1, . . . , Pn are con-
nected by secure channels. All values used in secret-sharing schemes belong to a field
K. We use [[s]]Pi to denote a share for Pi where a secret value is s ∈ K. Let Q be a coali-
tion of parties and [[s]]Q denote a set of shares {[[s]]Pi | Pi ∈ Q}. When U represents all
parties, we simply denote [[s]]U as [[s]] and call it shared values. We call some elements
related to secret-sharing scheme as follows;

– s: secret value,
– [[s]]Pi : share (for a party Pi),
– [[s]] = [[s]]U = {[[s]]P1 , . . . , [[s]]Pn}: shared value.

We use [i] to denote a set {1, 2, . . . , i}.

2.2 Security Model

We consider unconditional, perfect security against a semi-honest adversary with static
corruption of at most t. This means that the adversary can execute unbounded computa-
tion, must follow a protocol, and can corrupt at most t parties only before the protocol
is conducted. More technically, we say that a protocol is secure if there is a simulator
that simulates the view of corrupted parties from the inputs and outputs of the protocol.
We use I = {Pi1 , Pi2 , . . . , Pit } ⊂ U to denote the parties that are corrupted. Due to space
limitation, the formal definition of the security against a semi-honest adversary with
static corruption appears in Appendix A.

2.3 Complexity Metrics in MPC

We use two metrics, round complexity and the number invocations of the comparison
protocol, to evaluate the overall running time of protocols. The round complexity of a
protocol is the number of rounds of parallel invocations of the communication. Because
the comparison protocol is a dominant factor of the complexity of communications, we
measure the amount of data transmitted by the parties with the number of invocations
of the comparison protocol.

Multi-party Sorting Protocols from Comparison Sort Algorithms 207

2.4 Secret-Sharing Scheme

We focus on a class of secret-sharing schemes called (k, n)-threshold. This means that
the shares are shared by the n parties in such a way that any coalition of k or more parties
can together reconstruct the secret, but no coalition fewer than k parties can. Shamir’s
secret-sharing scheme [28] belongs to this class. We assume that the corruption toler-
ance t satisfies t < min(k, n − k). We say [[s]] is uniformly random if it is uniformly
randomly chosen from the set of possible shared values whose secret value is s.

A secret-sharing scheme ΠSS is a pair of algorithms, dealing and revealing. The
dealing algorithm takes a secret value s as input and outputs a uniformly random shared
value. The revealing algorithm takes at least k shares and outputs the secret value s.

2.5 Shuffling, Comparison, and Reveal Protocols

We introduce some existing MPC protocols used as building blocks of our protocol.
Our protocols are designed to be used as building blocks in the paradigm of comput-

ing on shared values, which is one of the most common paradigms for MPC protocols
[8]. In this paradigm, secret values are preliminary shared with a secret-sharing scheme
to all parties that participate in MPC protocols. Then MPC protocols take secret-shared
values as inputs from each party and output the result in secret-shared form. The result
is finally recovered by the revealing algorithm of the secret-sharing scheme.

Comparison protocol. The comparison protocol [10,25] receives two shared values
and outputs a shared value of the comparison result of the inputs. More precisely, the
comparison protocol accepts [[a]]Pi , [[b]]Pi from each Pi ∈ U as input and outputs [[c]]Pi

to each Pi ∈ U such that c = 1 if a ≤ b and c = 0 otherwise. We assume that K is
totally ordered and denote this protocol as “[[c]] ← [[a ≤ b]]”. We formally define the
comparison protocol with the following function f CMP

ΠSS
.

f CMP
ΠSS

: On inputting [[x]]Pi and [[y]]Pi from each Pi ∈ U, it reveals x and y with the
revealing algorithm of ΠSS, sets z = 1 if x ≤ y and z = 0 otherwise, and generates [[z]]
with the dealing algorithm of ΠSS. Finally, it outputs [[z]]Pi to each Pi ∈ U.

The comparison protocol proposed by Nishide and Ohta [25] exhibits the complexity
of O(1) rounds and O(�) invocations of multiplication protocols where � is the bit-length
of K.

Shuffling protocol. The shuffle protocol receives some shared values and outputs re-
newed shared values where their secret values are uniformly randomly permuted. More
precisely, the shuffle protocol accepts [[a1]]Pi , . . . , [[am]]Pi from each Pi ∈ U and out-
puts [[b1]]Pi , . . . , [[bm]]Pi to each Pi ∈ U such that b j = aπ(j) for a uniformly random
permutation π : [m]→ [m] and every j ∈ [m]. A run of this protocol is denoted as

[[b1]], . . . , [[bm]]← Shuffle([[a1]], . . . , [[am]]).

We formally define the shuffling protocol with the following function f Shuffle
ΠSS

.

f Shuffle
ΠSS

: On inputting ([[a1]]Pi , . . . , [[am]]Pi) from each Pi ∈ U, it reveals a1, . . . , am

with the revealing algorithm of ΠSS, selects a permutation π : [m] → [m] uniformly

208 K. Hamada et al.

at random, sets bi = aπ(i) for i ∈ [m], and generates [[b1]], . . . , [[bm]] with the dealing
algorithm of ΠSS. Finally, it outputs ([[b1]]Pi , . . . , [[bm]]Pi) to each Pi ∈ U.

Laura et al. proposed efficient shuffling protocols [22]. One of their protocols exhibits
the complexity of O(2n/

√
n) rounds and O(2nn3/2m log m) communications. When the

number of parties is constant, it exhibits O(1) rounds and O(m log m) communications.
We use this protocol as the shuffling protocol.

Reveal protocol. The reveal protocol accepts [[x]]Pi from each Pi ∈ U and outputs x
to each Pi ∈ U. This protocol just has a role of the reveal algorithm in a multi-party
setting. A run of this protocol is denoted as

x ← Reveal([[x]]).

We formally define the reveal protocol with the following function f Reveal
ΠSS

.

f Reveal
ΠSS

: On inputting [[x]]Pi from each Pi ∈ U, it reveals x with the revealing algo-
rithm of ΠSS and outputs x to each Pi ∈ U.

The reveal protocol can be easily constructed in a semi-honest model by distributing
all shares among all parties. Even in the malicious model it can be constructed by using
secret-sharing schemes secure against cheating [27,26].

3 MPC Sorting Protocols

In this section, we propose an approach of constructing efficient sorting protocols, and
then we apply our approach to the quicksort algorithm. For simplicity, we split the
construction of our quicksort protocol with two steps: we begin by describing the con-
struction with restricted inputs and later show how to remove this restriction. We also
discuss further extensions of our approach.

We assume that the following protocols can be executed on ΠSS; shuffling, compar-
ison, and reveal. For example, Shamir’s secret-sharing scheme satisfies this condition.

3.1 Our Approach of Constructing Efficient Sorting Protocols

To construct an efficient sorting protocol, it is natural to try to construct an MPC sorting
protocol that emulates practically efficient sorting algorithms. However, this approach
has to solve a certain problem; When trying to convert well-known sorting algorithms
to MPC protocols, the problem with most practically efficient sorting algorithms is that
they are data-dependent. On the other hand, if an MPC protocol changes its behavior
according to the input, it might violate privacy. Therefore, all existing sorting protocols
use less efficient data-oblivious sorting algorithms. Consequently, we have to fill the gap
between data-dependency and data-obliviousness to construct MPC sorting protocols
from well-known sorting algorithms.

Sorting algorithms which determine the sorted order based only on comparisons
between the input elements are called comparison sorts. Comparison sorts include a
number of practically efficient sorting algorithms, such as quicksort, shell sort, heap-
sort, insertion sort, and merge sort. However, comparison sorts are essentially data-
dependent since the next pair of elements to be compared depends on the outcome of

Multi-party Sorting Protocols from Comparison Sort Algorithms 209

previous comparisons. Therefore no comparison sort, including well known quicksort
algorithm, has been applied to MPC protocols.

To solve the above problem, we use a simple approach of shuffling before sorting.
Our approach consists of the following modifications to the original comparison sort
algorithm.

1. We apply the shuffling protocol to the inputs at the first step.
2. We execute as the same to the original (data-dependent) comparison sort algorithm,

except to replace the comparison operation with a continuous execution of compar-
ison and reveal protocols.

In the execution of the protocol, the revealed result of comparison seems to leak ordinal
information. However, the ordinal information is randomized by the shuffling at the
first step, so it leaks no information about true inputs. This approach is quite simple
and effective for constructing practically efficient sorting protocols. Our approach is
also quite general since, to our knowledge, all of practically efficient comparison sort
algorithms can be converted to MPC protocols with our approach.

3.2 Quicksort Protocol

Now, we concretely construct an MPC sorting protocol, which we call quicksort pro-
tocol, from the quicksort algorithm with our approach. Note that we assume that the
secret values of inputs are distinct here and discuss the unrestricted input case in the
following subsection.

The sorting function is defined as follows.
f Sorting
ΠSS

: On inputting ([[a1]]Pi , . . . , [[am]]Pi) from each Pi ∈ U, it reveals a1, . . . , am

with the reveal algorithm of ΠSS, sorts (a1, . . . , am) to (b1, . . . , bm) such that bi ≤ bi+1

for i ∈ [m−1], and generates [[b1]], . . . , [[bm]] with the dealing algorithm ofΠSS. Finally,
it outputs ([[b1]]Pi , . . . , [[bm]]Pi) to each Pi ∈ U.

We describe our quicksort protocol constructed by applying our approach in Proto-
col 1. Next we discuss the property of our quicksort protocol.

Correctness. Our quicksort protocol has two differences compared to the original quick-
sort algorithm. The first difference is comparison; however, this has no effect on execu-
tion since the replicated protocols simply emulate the original. The second difference
is an additional shuffling step inserted at the beginning of our quicksort protocol. Since
the secret values of the input shared values are distinct, the order of the secret values of
the output is unique. Therefore, the first shuffling step does not affect the results.

Security. Roughly speaking, the shuffling and comparison protocols are secure, and
the swapping operation is just a local computation. Therefore, the only possible infor-
mation leakage is the revealed results from the comparisons. However, the results of
each comparison have no relation to the input. This is because the input shared values
are shuffled in the first step by the shuffling protocol. We formally claim the following
theorem.

Theorem 1. Protocol 1 t-privately reduces f Sorting
ΠSS

to f Shuffle
ΠSS

, f CMP
ΠSS

, and f Reveal
ΠSS

.

The proof of the theorem appears in Appendix B.

210 K. Hamada et al.

Protocol 1. Quicksort protocol
Notation: [[b1]], . . . , [[bm]]← Quicksort([[a1]], . . . , [[am]])
Input: Shared values [[a1]], . . . , [[am]].
Output: Shared values [[b1]], . . . , [[bm]] where b1 ≤ · · · ≤ bm.

1: Unless this is a recursively called execution, apply the shuffling protocol to [[a1]], . . . , [[am]].
2: if 1 < m then
3: p, [[e1]], . . . , [[em]]← Partition([[a1]], . . . , [[am]]).
4: [[b1]], . . . , [[bp−1]]← Quicksort([[e1]], . . . , [[ep−1]]).
5: Let [[bp]] = [[ep]].
6: [[bp+1]], . . . , [[bm]]← Quicksort([[ep+1]], . . . , [[em]]).
7: else
8: Let ([[b1]], . . . , [[bm]]) = ([[a1]], . . . , [[am]]).
9: return [[b1]], . . . , [[bm]].

Notation: p, [[e1]], . . . , [[em]]← Partition([[a1]], . . . , [[am]])
Input: Shared values [[a1]], . . . , [[am]].
Output: Position p and shared values [[e1]], . . . , [[em]].

1: Let i = 0.
2: for j = 1 to m − 1 do
3: [[c]]← [[aj ≤ am]].
4: c← Reveal([[c]]).
5: if c = 1 then
6: Let i = i + 1.
7: Swap [[ai]] and [[aj]].
8: Let p = i + 1.
9: Swap [[ap]] and [[am]].

10: Let ([[e1]], . . . , [[em]]) = ([[a1]], . . . , [[am]]).
11: return p, [[e1]], . . . , [[em]].

Complexity. There are only two subprotocols that matter in terms of complexity. One is
the shuffling protocol and the other is the comparison protocol. As described previously,
we use the shuffling protocol proposed by Laura et al. [22], which exhibits a complexity
of O(1) rounds and O(m log m) communications when the number of parties n is con-
stant. Since the quicksort algorithm requiresΩ(m log m) invocations of comparison, we
have no need to take into account the complexity of the shuffling protocol.

The number of invocations of the comparison protocol is exactly the same as that of
comparisons in the original quicksort algorithm. With a naive implementation, there-
fore, our quicksort protocol exhibits a complexity of O(m log m) rounds and O(m log m)
comparisons.

We can improve the round complexity of the main part of the proposed quicksort
protocol to O(log m) by setting the invocations of the comparison protocols to be par-
allel. First, we claim that the depth of the recursive calls is Θ(log m) on average. Since
our quicksort protocol shuffles the input in the first step, the input to the main part of
the quicksort protocol is uniformly randomized. When the input is assumed to be uni-
formly randomized, the depth of the recursive calls for the quicksort algorithm is known
to beΘ(log m) on average [9]. Additionally, we can easily confirm that we can make the

Multi-party Sorting Protocols from Comparison Sort Algorithms 211

invocations of the subprotocol Partition parallel at each depth. Thus, through parallel
implementation, our quicksort protocol exhibits a complexity of O(log m) rounds and
O(m log m) comparisons on average.

3.3 Sorting Duplicated Values

When there are duplicate inputs in its secret values, our quicksort protocol may leak
information regarding the input. For example, if the protocol invokes two comparison
protocols [[a ≤ b]] and [[b ≤ a]] s.t. a = b, the results of the comparisons reveal the
existence of a pair of shared values with identical secret values. Another example is the
case when all the values are same. In this case, the results of comparisons are all true,
and this implies many values are same with high probability.

We can easily address this problem, for example, by the following steps. Let m be
the number of input shares and add 	log2 m
 bits, which we call a tie breaker, to every
input share in the least significant positions. Then, we execute the protocol treating the
modified input as the input. The above modification gives the identical shared values
strict order; therefore, solving the problem. Furthermore, depending on how we make
the tie breaker, we can give the proposed quicksort protocol certain features. If we
shuffle the tie breaker, the duplicated values are uniformly and randomly ordered. To
generate a sorting protocol while retaining the original order of the duplicated items
(such a sorting operation is called stable), we arrange the tie breakers in ascending
order.

3.4 Further Extensions

Beyond sorting, our approach must be applied to many other data-dependent algo-
rithms. We illustrate a selection algorithm which is for finding the k-th smallest number
in a list. This includes finding the minimum, maximum, and median elements often
executed in the database operation. For example, we can obtain the median MPC pro-
tocol that exhibits O(log m) rounds and O(m) comparisons in the average case from
Hoare’s algorithm [18] and also obtain the protocol that exhibits the same rounds and
comparisons even in the worst case from Blum’s algorithm [5].

Our approach seems to be secure even in the malicious model if the shuffling, reveal,
and comparison protocols are also secure in the malicious model. However, we are
interested in constructing a practically efficient MPC protocol, and to our knowledge,
there is no secret-sharing scheme providing practically efficient shuffling, reveal, and
comparison protocols simultaneously. Therefore, we only give the proof in the semi-
honest model in this paper.

4 Evaluation

In this section, we evaluate our quicksort protocol. We compare this protocol with other
existing sorting protocols both asymptotically and experimentally. As a result, we show
that our quicksort protocol exhibits a comparable computational complexity and signif-
icantly improved the running time in an experiment.

212 K. Hamada et al.

Table 1. Complexities of sorting protocols. m and R represent the number of the input values and
the range of input values, respectively.

Rounds Invocations of comparison
Sorting protocol Average Worst Average Worst

AKS sorting network [1] O(log m) O(log m) O(m log m) O(m log m)
Randomized shell sort [16] O(m) O(m) O(m log m) O(m log m)
Batcher’s merge sort [2] O(log2 m) O(log2 m) O(m log2 m) O(m log2 m)
Oblivious arrayless bead sort [32] O(1) O(1) O(Rm) O(Rm)
Oblivious keyword sort [32] O(1) O(1) O(m2) O(m2)
Quicksort (proposed) O(log m) O(m) O(m log m) O(m2)

Table 2. Performance of sorting protocols. m represents the number of the input values. The
“N/A” means that the execution did not finish in 3, 600 seconds.

Sorting protocol m = 10 m = 102 m = 103 m = 104 m = 105 m = 106

Randomized shell sort [16] 6.356[s] 86.355[s] 911.376[s] N/A N/A N/A
Oblivious keyword sort [32] 0.335[s] 3.392[s] 387.128[s] N/A N/A N/A
Batcher’s merge sort [2] 1.331[s] 4.139[s] 14.285[s] 152.168[s] 2070.890[s] N/A
Quicksort (proposed) 0.247[s] 0.488[s] 1.410[s] 9.859[s] 93.674[s] 1226.267[s]

4.1 Complexity Analysis

We first evaluated our quicksort protocol from an asymptotic perspective. As described
in Sect. 3, this protocol exhibits a complexity of O(log m) rounds and O(m log m) com-
parisons on average, where m is the number of the input values. We summarize the
complexities of ours and existing sorting protocols in Table 1 by taking into account
parallelism.

As mentioned repeatedly, we are interested in practically efficient protocols; there-
fore, we stress the average case rather than the worst case. Our quicksort protocol re-
quires O(m log m) comparisons on average, which is asymptotically optimal for
comparison sorts. Our quicksort protocol is superior to randomized shell sort [16] and
Batcher’s merge sort [2] in either rounds or comparisons. The AKS sorting network
[1] has the same complexity on average. The oblivious arrayless bead sort [32] exhibits
O(1) rounds and O(Rm) comparisons where R is the range of secret values. This algo-
rithm is quite efficient when R is small, e.g., the secret value belongs to {0, 1}. However,
when R is large, e.g., R = 232, it becomes quite inefficient. The oblivious keyword sort
[32] has a comparable complexity to ours. This exhibits a complexity of constant rounds
that is superior to ours but O(m2) comparisons that is inferior on average.

4.2 Experimental Results

As the quicksort often outperforms other sorting algorithms with O(m log m) compar-
isons in practice [30], the experiment results are very important for practical use. We
implemented our quicksort protocol and existing sorting protocols, such as the random-
ized shell sort [16], the oblivious keyword sort [32] and Batcher’s merge sort [2], for

Multi-party Sorting Protocols from Comparison Sort Algorithms 213

comparison. The AKS sorting network [1] was not implemented since this algorithm
is not of practical interest. We also did not implement the oblivious arrayless bead sort
[32]. This is because in many applications such as Oblivious RAM the range of num-
bers, R, is large; therefore, this sort protocol becomes quite inefficient.

We implemented sorting protocols on (2, 3)-Shamir’s secret-sharing scheme with cor-
ruption tolerance t = 1. This is because MPC protocols generally do not scale well as
the number of participants increases, and such MPC protocols executed by a few par-
ticipants can be building blocks of ones executed by many participants [11]. For better
performance, we implemented component protocols secure against a semi-honest adver-
sary. This implies all the implemented sorting protocols are also secure against such an
adversary. We implemented the comparison protocol proposed by Damgård et al. [10]
as a building block of all sorting protocols. The quicksort protocol additionally uses the
shuffling protocol proposed by Laura et al. [22]. Our implementation of the randomized
shell sort and Batcher’s merge sort protocols are based on circuit representations. That
is, we replaced the comparators in the original algorithms to comparator protocols con-
structed by comparisons, multiplications, and additions. We implemented all of them on
C++ and compiled by g++ 4.6.1. All values are in Zp = {0, 1, . . . , p − 1}, where p is a
prime number 4294967291 and satisfies 231 < p < 232, that is, 32-bit words.

We then timed how long the running time of these protocols is. All the experiments
were conducted on three laptop machines with an Intel Core i5 2540M 2.6-GHz CPU
and 8 GB of physical memory. These three machines were connected to a 1-Gbps LAN.
The running times of the sorting protocols are shown in Fig. 1, and detailed times in
some cases are summarized in Table 2 where m is the number of input shared values.

As expected, our quicksort protocol allowed us to consider large inputs size. The
results show that our quicksort protocol is much faster than randomized shell sort and
oblivious keyword sort, and about ten to twenty times faster than Batcher’s merge sort.
Consequently, the proposed quicksort protocol significantly improved the running time
of the existing sorting protocols. In other words, our quicksort protocol is practically
efficient.

5 Conclusion

We proposed a simple and general approach, shuffling before sorting, for converting
data-dependent but efficient comparison sort algorithms to MPC sorting protocols. We
then constructed a quicksort protocol from the quicksort algorithm with our approach.
The resultant protocol is practically efficient since it has comparable computational
complexity and significantly improved the running time compared to existing protocols
in experiments.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: STOC, pp. 1–9.
ACM (1983)

2. Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint Computing
Conference, pp. 307–314 (1968)

214 K. Hamada et al.

3. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party computa-
tion. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer and Commu-
nications Security, pp. 257–266. ACM (2008)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In: [29], pp. 1–10

5. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J.
Comput. Syst. Sci. 7(4), 448–461 (1973)

6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 192–206. Springer, Heidelberg (2008)

7. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.A.: Sepia: Privacy-preserving ag-
gregation of multi-domain network events and statistics. In: USENIX Security Symposium,
pp. 223–240. USENIX Association (2010)

8. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended
abstract). In: [29], pp. 11–19

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press, Cambridge (2001)

10. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

11. Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudoran-
dom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer,
Heidelberg (2005)

12. Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM without random
oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163. Springer, Heidelberg
(2011)

13. Geisler, M.: Cryptographic Protocols: Theory and Implementation. PhD thesis, University of
Aarhus (2010)

14. Goldreich, O.: The Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2004)

15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)

16. Goodrich, M.T.: Randomized shellsort: A simple oblivious sorting algorithm. In: SODA,
pp. 1262–1277 (2010)

17. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: Tasty: tool for automat-
ing secure two-party computations. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.)
ACM Conference on Computer and Communications Security, pp. 451–462. ACM (2010)

18. Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4(7), 321–322 (1961)
19. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better than custom

protocols? In: NDSS (2012)
20. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications. IACR

Cryptology ePrint Archive 2011, 122 (2011)
21. Knuth, D.E.: Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3, ch. 5.

Addison-Wesley Professional (1998)
22. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipulation. In: Lai,

X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg
(2011)

23. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system.
In: USENIX Security Symposium, pp. 287–302 (2004)

Multi-party Sorting Protocols from Comparison Sort Algorithms 215

24. Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-decomposition
and a generalization to bit-decomposition. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 483–500. Springer, Heidelberg (2010)

25. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without
bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 343–360. Springer, Heidelberg (2007)

26. Obana, S., Araki, T.: Almost optimum secret sharing schemes secure against cheating for ar-
bitrary secret distribution. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 364–379. Springer, Heidelberg (2006)

27. Ogata, W., Kurosawa, K.: Optimum secret sharing scheme secure against cheating. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 200–211. Springer, Heidelberg
(1996)

28. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
29. Simon, J. (ed.): Proceedings of the 20th Annual ACM Symposium on Theory of Computing,

STOC, Chicago, Illinois, USA, May 2-4. ACM (1988)
30. Skiena, S.S.: The Algorithm Design Manual, 2nd edn. Springer Publishing Company, Incor-

porated (2008)
31. Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for secure two-

party sorting, selection, and permuting. In: ASIACCS, pp. 226–237 (2010)
32. Zhang, B.: Generic constant-round oblivious sorting algorithm for MPC. In: Boyen, X.,

Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 240–256. Springer, Heidelberg (2011)

A Formal Definition of the Security

We give the formal definition of the security against a semi-honest adversary with static
corruption. Let x = (x1, . . . , xn), xI = (xi1 , . . . , xit), fi(x) be the i-th output of f (x), and
fI(x) = (fi1 (x), . . . , fit (x)). We denote the view of Pi during the protocol execution of ρ
on inputs x as viewρPi

(x) = (xi, ri; μ1, . . . , μ�) where ri is Pi’s random tape, and μ j is the
j-th message that Pi received in the protocol execution. We also denote the output of Pi

as outputρPi
(x).

We are now ready to define the security notion in the presence of semi-honest
adversaries.

Definition 1 ([14]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a probabilistic n-ary functionality,
ρ be a protocol, viewρ

I
(x) = (viewρPi1

(x), . . . , viewρPit
(x)), and

outputρ(x) = (outputρP1
(x), . . . , outputρPn

(x)).

We say that ρ t-privately computes f if there exists S such that for all I ⊂ U of cardi-
nality of at most t and all x , it holds that

{(S(I, xI, fI(x)), f (x)
)} ≡ {(viewρ

I
(x), outputρ(x)

)}
.

It is well known that a protocol satisfying the above security notions can be securely
composed with other protocols in a semi-honest setting. To explain this composition
property, we introduce the security notion for a protocol that computes a function with
the help of an oracle.

216 K. Hamada et al.

Definition 2 ([14]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a probabilistic n-ary functionality,
g : ({0, 1}∗)m → ({0, 1}∗)m be a probabilistic m-ary functionality, and ρ be a protocol.
We say that ρ t-privately reduces g to f if ρ privately computes g with an oracle access
of the functionality of f .

We introduce an informal description of the composition theorem. Suppose that a pro-
tocol Πg privately reduces g to f and a protocol Π f privately computes f . Then the
protocol Πg| f , which is the same as Πg except that all oracle calls are substituted by
the executions of Π f , privately computes g. This implies that we can treat a constitutive
protocol as a black box to prove the security of a high-level protocol.

B Proof of Theorem 1

Let [[b′1]], . . . , [[b′m]] be the shuffled (and renewed) shared values in the Step 1 of
Quicksort(). The view of adversaries consists of their inputs [[a1]]I, . . . , [[am]]I, random
tapes, [[b′1]]I, . . . , [[b′m]]I, [[c]]I, and c. The output consists of [[b1]]I, . . . , [[bm]]I. Note that
the adversaries have no view of the subprotocols Shuffle(·), [[· ≤ ·]], and Reveal(·) since
the execution of these protocols are substituted with the oracle invocation of function-
alities f Shuffle

ΠSS
, f CMP
ΠSS

, and f Reveal
ΠSS

, respectively.
We construct the simulator S as follows. Inputs and outputs are the same as those of

adversaries, and S selects random tapes uniformly at random.
As for [[b′1]]I, . . . , [[b′m]]I and c, let π′ : [m] → [m] be a permutation that satisfies

[[bi]] = [[b′π′(i)]] (i ∈ [m]). There exists exactly one such permutation since {b1, . . . , bm}
is distinct and ([[b1]], . . . , [[bm]]) is a permutated sequence from ([[b′1]], . . . , [[b′m]]) by the
swap operations executed in Step 7 or Step 9 of Partition(·). Once π′ is perfectly simu-
lated, [[b′i]]I is also perfectly simulated by setting [[bπ′−1(i)]]I as the simulated shares and
c is also perfectly simulated by setting the value

c′ =
{

1 if π′−1(i) ≤ π′−1(j)
0 otherwise

when [[b′i ≤ b′j]] is executed. Now we claim that S perfectly simulates π′ by selecting
just a uniformly random permutation. By the correctness of the shuffling and quicksort
protocols, b′i = aπr(i) and bi = aπs(i) (i ∈ [m]) hold for a fixed (according to a1, . . . , am)
permutation πs : [m] → [m] and a uniformly random permutation πr : [m] → [m].
πs = πr ◦ π′ holds and this implies π′ = πr

−1 ◦ πs. Therefore, π′ is uniformly random.
As for [[c]]I, S picks |I| uniformly random numbers and sets them as the simulated

values for [[c]]I. Since [[c]]I is the output shares of Reveal(·), the above simulation is
perfect.

Thus, S perfectly simulates the view of adversaries. ��

Provably Secure Certificateless One-Way

and Two-Party Authenticated Key Agreement
Protocol

Lei Zhang

Shanghai Key Laboratory of Trustworthy Computing
Software Engineering Institute

East China Normal University, Shanghai, China
leizhang@sei.ecnu.edu.cn

Abstract. Key agreement protocols are one of the fundamental prim-
itives in cryptography. In this paper, we formalize the security model
for certificateless one-way and two-party authenticated key agreement
protocols and propose a concrete certificateless one-way and two-party
authenticated key agreement protocol. The security of our protocol is
proven under the computational Diffie-Hellman, square computational
Diffie-Hellman and gap bilinear Diffie-Hellman assumptions. As for effi-
ciency, the protocol requires only one pass and has low communication
overhead.

Keywords: key agreement, authentication, certificateless cryptography,
one-way.

1 Introduction

Key agreement (KA) is one of the fundamental cryptographic primitives in cryp-
tography. It allows two or more parties agree on a session key in such a way that
both influence the outcome. One of the most famous protocol for KA was pro-
posed by Diffie and Hellman [7]. However, the basic Diffie-Hellman protocol does
not authenticate the two communication entities. Therefore, an active adversary
who has control over the communication channel can mount a man-in-the-middle
attack [11]. Authenticated KA [19,20] enables two or more parties to establish a
shared session key over an insecure channel.

Two party KA protocols can be classified into three types [15], i.e., non-
interactive, one-way and one-round. In a non-interactive KA protocol, no in-
formation needs to be transmitted between two entities. However, the session
key generated in a non-interactive KA is derived only from long-term private
keys. Hence, they cannot offer any form of forward secrecy. In a one-round KA
protocol, both entities require to transmit information to each other during the
protocol. It usually offers better security properties than other two types of key
agreement protocols. In a one-way KA protocol, only one entity is required to
transmit information to the other during the protocol. One-way KA protocols are

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 217–230, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 L. Zhang

very useful in the condition when the trade-off between security and efficiency
is considered. When a message needs to be encrypted with a shared session key,
they require two less message flows than the one-round protocols and at the
same time provide better security properties than the non-interactive ones.

Authenticated KA protocols can be designed in different public key cryptosys-
tems. In traditional public key cryptosystem, the management of certificates is
usually a big problem. To eliminate such cost, Shamir [17] introduced identity-
based public key cryptosystem (ID-PKC). In ID-PKC, the public key of an entity
is just its identity (such as its IP address). However, key escrow problem comes
with ID-PKC. That is the PKG (who helps an entity to generate its private key)
knows the private keys of all the entities in the system. Therefore, in an identity-
based one-way and two-party authenticated KA protocol [8,15], the PKG can
always compute the session key. Certificateless public key cryptography (CL-
PKC) may successfully solve this drawback. In CL-PKC, the KGC (who is used
to help an entity to generate its private key) only has access to the partial private
key of an entity. An entity’s full private key is composed of the partial private
key comes from the KGC and a secret information chosen by itself. Since the
KGC does not hold the full private key of the entity in the system, it cannot
represent any entity to do cryptographical operations without being detected.

The first certificateless authenticated KA protocol was proposed by Al-Riyami
and Paterson [1]. Later, several certificateless two-party authenticated KA proto-
cols [9,10,12,13,16,20] have been presented. Among them, the authors in [10,16,20]
defined the security models for certificateless authenticated KA protocols respec-
tively. These protocols require both entities to transmit information to the other.
Therefore, they are one-round KA protocols. The first certificateless one-way and
two-party authenticated KA protocol is presented in [5]. However, no formal se-
curity analysis is provided for the protocol in [5].

Our contribution: In this paper, we propose a formal security model for certifi-
cateless one-way and two-party authenticated KA protocols and propose a con-
crete certificateless one-way and two-party authenticated KA protocol based on
bilinear maps. Our protocol captures the common security requirements of one-
way and two-party authenticated AK protocols [15], i.e., known-key security, un-
known key-share, random number compromise security, sender’s key-compromise
impersonation, sender’s forward security and no key control (See Section3.1).
Our protocol is efficient and has low communication cost. The security of our
protocol is proven under the assumptions that the computational Diffie-Hellman,
square computational Diffie-Hellman and gap bilinear Diffie-Hellman problems
are hard.

Paper organization: The rest of the paper is organized as follows: Section 2 gives
some preliminaries. In Section 3, we introduce the security model for certificate-
less one-way and two-party authenticated KA protocols. Our efficient certificate-
less one-way and two-party authenticated KA protocol is proposed in Section 4.
In Section 5, we prove the security of our protocol. Section 6 concludes our paper.

Secure Certificateless One-Way and Two-Party Authenticated KA Protocol 219

2 Preliminaries

2.1 Bilinear Maps

Let G1 be an additive group of prime order q and G2 be a multiplicative group
of the same order. Let P denote a generator of G1. A map ê : G1 ×G1 −→ G2

is called a bilinear map if it satisfies the following properties: 1) Bilinearity:
ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1, a, b ∈ Z∗

q ; 2) Non-degeneracy: There
exists P,Q ∈ G1 such that ê(P,Q) �= 1 3)Computability: There exists an efficient
algorithm to compute ê(P,Q) for any P,Q ∈ G1.

2.2 Mathematical Problems

Here we present some mathematical problems, which are related to the security
of our key agreement protocol.

Let G1, G2, and ê : G1 ×G1 −→ G2 be groups and bilinear map as specified
in Section 2.1.

Computational Diffie-Hellman (CDH) Problem: Given a generator P of
G1 and (aP, bP) for unknown a, b ∈ Z∗

q , compute abP .
When a = b, the above CDH problem degenerate to the following square

computational Diffie-Hellman problem.

Square Computational Diffie-Hellman (SCDH) Problem: Given a gen-
erator P of G1 and aP for unknown a ∈ Z∗

q , compute a2P .
It was shown that the CDH problem and the SCDH problem are polynomial

time equivalent [18].

Bilinear Diffie-Hellman (BDH) Problem: Given a randomly chosen P ∈
G1, as well as aP, bP, cP (for random unknown a, b, c ∈ Z∗

q), compute ê(P, P)abc.
When a = c, the above BDH problem degenerate to the following bilinear

square Diffie-Hellman problem.

Bilinear Square Diffie-Hellman (BSDH) Problem: Given a randomly cho-
sen P ∈ G1, as well as aP, bP (for random unknown a, b ∈ Z∗

q), compute

ê(P, P)a
2b.

The BDH problem and the BSDH problem are proved to be polynomial time
equivalent [18].

Decisional Bilinear Diffie-Hellman (DBDH) Problem: Given a randomly
chosen P ∈ G1, as well as aP, bP, cP (for random unknown a, b, c ∈ Z∗

q) and

v ∈ G2, decide whether v = ê(P, P)abc.
When a = c, the above DBDH problem degenerate to the following decision

bilinear square Diffie-Hellman problem.

Decisional Bilinear Square Diffie-Hellman (DBSDH) Problem: Given
a randomly chosen P ∈ G1, as well as aP, bP (for random unknown a, b ∈ Z∗

q)

and v ∈ G2, decide whether v = ê(P, P)a
2b.

Gap Bilinear Diffie-Hellman (GBDH) Problem [2,14]: Given a randomly
chosen P ∈ G1, as well as aP, bP and cP (for random unknown a, b, c ∈ Z∗

q),

220 L. Zhang

compute ê(P, P)abc with the help of the DBDH oracle D(aP, bP, cP |v). If
ê(P, P)abc = v, D(aP, bP, cP |v) output 1; otherwise, it outputs 0, where v ∈ G2.

The intractability of the GBDH problem means that it is hard to solve the
BDH problem although one has access to a DBDH oracle. When a = c, the above
GBDH problem degenerate to the following gap bilinear square Diffie-Hellman
problem.

Gap Bilinear Square Diffie-Hellman (GBSDH) Problem: Given a ran-
domly chosen P ∈ G1, as well as aP, bP (for random unknown a, b ∈ Z∗

q), com-

pute ê(P, P)a
2b with the help of the DBSDH oracle DS(aP, bP |v). If ê(P, P)a

2b =
v, DS(aP, bP |v) output 1; otherwise, it outputs 0, where v ∈ G2.

The GBSDH problem is a special case of the GBDH problem. For simplicity,
in this paper, the GBSDH problem is included in the GBDH problem.

2.3 Certificateless One-Way and Two-Party Authenticated Key
Agreement Protocol

A certificateless one-way and two-party authenticated KA protocol is defined by
following six algorithms:

– Setup: This algorithm is run by the KGC. It takes as input a security pa-
rameter k and returns a master-key and a list of system parameters params.

– Partial-Private-Key-Extract: This algorithm is run by the KGC. It takes as
input an entity’s identity IDi, a parameter list params and a master-key to
produce the entity’s partial private key Di.

– Set-Secret-Value: This algorithm is run by an entity. On input a parameter
list params, an entity’s identity IDi, this algorithm produces the entity’s
secret value xi.

– Set-Private-Key: It is run by an entity that accepts a parameter list params,
the entity’s identity IDi, partial private keyDi and secret value xi to produce
a private key Si for that entity.

– Set-Public-Key: It is run by an entity that takes as input a parameter list
params, an entity’s identity IDi and secret value xi to produce a public key
Pi for the entity.

– Key-Agreement: This algorithm accepts a parameter list params,
(SA, IDA, PA) for sender A, (SB , IDB, PB) for receiver B to produce a ses-
sion key K.

3 Security Model

In this section, we define the security model for certificateless one-way and two-
party authenticated KA protocols. Our model is based on the security models
in [10,16,20] derived from [3,4,6].

Secure Certificateless One-Way and Two-Party Authenticated KA Protocol 221

3.1 Desirable Attributes

Our security model intends to capture the following security attributes [15]:

1. Known-key security: Each run of the KA protocol have to result in a unique
session key. The compromise of one session key should not compromise other
session keys.

2. Unknown key-share: An entity A must not be coerced into sharing a key
with any entity C if A thinks that it is sharing the key with another
entity B.

3. Random number compromise security : The compromise of a random input
of sender A should not compromise A’s private key or the established session
keys.

4. Sender’s key-compromise impersonation: If an adversary compromises the
sender A’s private key. He can impersonate A, but he cannot impersonate
other entities in the presence of A.

5. Sender’s forward security: If private keys of senders are compromised, the
secrecy of previously established session keys should not be affected.

6. No key control : Neither entity should be able to force the session key to be
a preselected value. In other words, for a preselected session key, none of
the protocol participants can find the corresponding random input. We note
that the definition of no key control in this paper is the same as that in [15].

3.2 The Model

Two types of adversaries with different capabilities are generally considered in
certificateless key agreement protocols [1]. They are known as type I adversary
and type II adversary:

– Type I adversary. This type of adversary does not have access to the
master-key, but has the ability to replace the public key of any entity with a
value of his choice.

– Type II adversary. This type of adversary has access to the master-key
but cannot perform public key replacement.

In [20], the ability of type II adversary is strengthened. A type II adversary is
also allowed to replace the public key of any entity except the target one. Our
model is designed to capture the properties described in Section 3.1 as well as
the ability of Type I and strengthened type II adversaries.

Our model is specified via the following two games between a challenger C
and an adversary A. Both games include a set of protocol participants, each
participant has a public/private key pair. These participants are modeled by
oracles. We use the notation

∏n
i,j , meaning a participant i believing that it is

communicating with another participant j for the n-th time. A is either a type
I or type II adversary. A is modeled by a probabilistic polynomial time Turing
Machine and has access to all the oracles in the game. A can relay, modify, delay,
interleave and delete messages. All communications go through A. Participant

222 L. Zhang

oracles only respond to queries by A and do not communicate directly amongst
themselves. We call A is benign, if he is deterministic and restricts its action to
choosing a pair of oracles

∏n
i,j and

∏t
j,i and then faithfully conveying each flow

from one oracle to the other.

Before defining the games, we first define the following oracles:

– Create: The input of this oracle is an identity IDi of a participant i. On
receiving such a oracle query, C generates the public and private keys for
this participant.

– Public-Key: The input of this oracle is an identity IDi of a participant i. The
output of this oracle is the public key Pi of i.

– Partial-Private-Key: The input of this oracle is an identity IDi of a participant
i. The output of this oracle is the partial private key Di of i.

– Secret-Value: The input of this oracle is an identity IDi of a participant i.
The output of this oracle is the secret value xi of i.

– Corrupt: The input of this oracle is an identity IDi of a participant i. The
output of this oracle is the private key Si of i.

– Public-Key-Replacement: The input of this oracle is (IDi, P
′
i). On receiving

such a oracle query, C sets P ′
i as the new public key of the participant i.

C will record this replacement which will be used later.

– Send: The input of this oracle (
∏n

i,j ,M). In this case, participant i assumes
the message M has been sent by participant j. A may also make a special
Send query λ to an oracle

∏n
i,j , which instructs i to initiate a protocol run

with j. An oracle is an initiator oracle if the first message it has received is
λ. If an oracle does not receive a message λ as its first message, then it is a
responder oracle.

– Session-Key-Reveal: On receiving the Session-Key-Reveal query on
∏n

i,j , this

oracle outputs the session key held by
∏n

i,j .

– Random-Number-Reveal: On receiving the Random-Number-Reveal query on∏n
i,j , this oracle outputs the random number held by

∏n
i,j . Since, only the

sender will choose a random number, we require that
∏n

i,j is an initiator
oracle.

An oracle
∏n

i,j exists in one of the following several possible states:

– Accepted : An oracle is in an accepted state, if it decides to accept, holding
a session key, after receipt of properly formulated messages.

– Rejected : An oracle is in a rejected state, if it decides not to establish a
session key and to abort the protocol.

– State * : An oracle is in state *, if it has not made any decision to accept or
reject.

– Opened : An oracle is in an opened state, if it has answered a session key
reveal query.

– Corrupted : An oracle is in a corrupted state, if it has answered a corrupt
query.

Secure Certificateless One-Way and Two-Party Authenticated KA Protocol 223

Definition 1 (Matching conversation). Let the session ID be the concatena-
tion of the identities and public keys of the protocol participants, and, the other
messages transmitted in a session. Two oracles

∏n
i,j and

∏t
j,i are said to have

a matching conversation with each other if they have the same session ID.

Game 1

At the beginning of this game, C runs the Setup algorithm to obtain the master-
key and the system parameter list params. If A is a Type I adversary, C sends
params to A and keeps the master-key secret; otherwise, A is a Type II adversary,
C sends params with master-key to A.

A is allowed to access Create, Public-Key, Partial-Private-Key, Secret-Value, Cor-
rupt, Public-Key-Replacement, Send, Session-Key-Reveal and Random-Number-
Reveal oracles.

Test: At some point in A’s attack, he may choose one of the oracles, say
∏n

i,j ,
to ask a single Test query. This oracle must be fresh (See Definition 2). To
answer the query, the oracle flips a fair coin θ ∈ {0, 1}, and returns the
session key held by

∏n
i,j if θ = 0, or else a random session key if θ = 1.

Definition 2 (Freshness). An oracle
∏n

i,j is fresh if (1)
∏n

i,j is in the state

Accepted; (2)
∏n

i,j is not in the state Opened; (3) party i and j are not corrupted;

(4) there is no oracle
∏t

j,i in the state Opened having a matching conversation

with
∏n

i,j; (5) if A is a Type I adversary, A has never requested the partial
private key of participants i and j; if A is a Type II adversary, A has never
replaced the public key of participants i and j, and has never requested the secret
value of participants i and j.

After the Test query, A can continue querying the oracles except that he cannot
reveal the test oracle

∏n
i,j or

∏t
j,i which is matching conversation with

∏n
i,j (if

it exists); and he cannot corrupt party i and j; and if A is a Type I adversary,
he cannot request the partial private key of participants i and j; and if A is a
Type II adversary, he cannot replace the public key of participants i and j, and
cannot request the secret value of participants i and j. At the end of A’s attack,
he must output a bit θ′ as his guess for θ. A’s advantage, denoted ε, is defined
as:

ε = |Pr[θ′ = θ]− 1/2|

is the probability that A can distinguish the session key held by the tested oracle
from a random string.

Definition 3. A protocol is a secure certificateless one-way and two-party au-
thenticated AK protocol if:

1. In the presence of the benign adversary on
∏n

i,j and
∏t

j,i, both oracles always
accept holding the same session key, and this key is distributed uniformly at
random;

224 L. Zhang

2. For any adversary A whether of type I or type II, ε is negligible in the above
game.

The above model captures the known-key security, unknown key-share and ran-
dom number compromise security properties of certificateless one-way and two-
party authenticated KA protocols. However, it does not allowA to get the private
key of the sender. Therefore, it does not capture the sender’s key-compromise
impersonation and sender’s forward security properties.

Game 2
To capture the sender’s key-compromise impersonation and sender’s forward

security properties, we define the second game. In this game, A is allowed to
access Create, Public-Key, Partial-Private-Key, Secret-Value, Corrupt, Public-Key-
Replacement, Send, Session-Key-Reveal and Random-Number-Reveal oracles.

Test: At some point in his attack, A may choose one of the oracles, say
∏n

i,j ,

to ask a single Test query. It requires that
∏n

i,j is an initiator. Further, this
oracle must be fresh (See Definition 4). To answer the query, the oracle flips
a fair coin θ ∈ {0, 1}, and returns the session key held by

∏n
i,j if θ = 0, or

else a random key sampled from
∏n

i,j if θ = 1.

Definition 4 (Freshness). An oracle
∏n

i,j is fresh if (1)
∏n

i,j is in the state

Accepted; (2)
∏n

i,j is not in the state Opened; (3) party j is not corrupted; (4)

there is no oracle
∏t

j,i in the state Opened having a matching conversation with∏n
i,j; (5) if A is a Type I adversary, A has never requested the partial private

key of participant j; if A is a Type II adversary, A has never replaced the public
key of participant j, and has never requested the secret value of participant j;
(6)

∏n
i,j has not answered a random number reveal query.

After the Test query the adversary can continue querying the oracles except
that he cannot reveal the test oracle

∏n
i,j or its partner

∏t
j,i (if it exists); and

he cannot corrupt party j; and if A is a Type I adversary, he cannot request the
partial private key of participant j; if A is a Type II adversary, he cannot replace
the public key of participant j, and cannot request the secret value of participant
j; and he cannot request the Random-Number-Reveal query on

∏n
i,j . At the end

of A’s attack, he must output a bit θ′ as his guess for θ. A’s advantage, denoted
ε, is defined as:

ε = |Pr[θ′ = θ]− 1/2|
is the probability that A can distinguish the session key held by the tested oracle
from a random string.

Definition 5. A certificateless one-way and two-party authenticated KA proto-
col holds sender’s key-compromise impersonation and sender’s forward security
if:

1. In the presence of the benign adversary on
∏n

i,j and
∏t

j,i, both oracles always
accept holding the same session key, and this key is distributed uniformly at
random;

2. ε is negligible for any adversary A whether of type I or type II in Game 2.

Secure Certificateless One-Way and Two-Party Authenticated KA Protocol 225

4 Our Protocol

In this section, we propose our concrete protocol. It comes as follows:

– Setup: On input a security parameter k, the KGC selects a cyclic additive
group G1 with prime order q, a cyclic multiplicative group G2 of the same
order, a generator P ∈ G1 and a bilinear map ê : G1 ×G1 −→ G2; chooses
a random master-key s ∈ Z∗

q and set P0 = sP ; chooses cryptographic hash

functions H1 : {0, 1}∗ −→ G1, H2 : {0, 1}∗ −→ {0, 1}l. The system parame-
ters params=(q,G1, G2, ê, P, P0, H1, H2).

– Partial-Private-Key-Extract: This algorithm accepts params, an entity’s iden-
tity IDi and generates the partial private key for the entity as follows:
1. Compute Qi = H(IDi).
2. Output the partial private key Di = sQi.

– Set-Secret-Value: This algorithm accepts params and an entity’s identity IDi,
and selects a random xi ∈ Z∗

q . It outputs xi as the entity’s secret value.
– Set-Private-Key: This algorithm takes as input params, an entity’s partial
private key Di and secret value xi. The output of the algorithm is the private
key Si = (xi, Di).

– Set-Public-Key: This algorithm accepts params and an entity’s secret value
xi ∈ Z∗

q to produce the entity’s public key Pi = xiP .
– Key-Agreement: Assume a sender A with identity IDA, private key SA =
(xA, DA) and public key PA = xAP , and, a receiver B with identity IDB,
private key SB = (xB , DB) and public key PB = xBP want to establish
a session key. A picks a random r ∈ Z∗

q , computes U = rP , and sends
(IDA, PA, U) to B. A and B can establish their session key as follows:
A computes:

KAB = H2(IDA, IDB, PA, PB , U, rPB, xAPB, ê(DA, QB), ê(rP0, QB)).

B computes:

KBA = H2(IDA, IDB, PA, PB , U, xBU, xBPA, ê(QA, DB), ê(U,DB)).

The session key is K = KAB = KBA.

5 Security Analysis

In this section, we prove that our protocol captures the security attributes in
Section 3.1.

Lemma 1. In the presence of the benign adversary on
∏n

i,j and
∏t

j,i, both ora-
cles always agree on the same session key, and this key is distributed uniformly
at random.

226 L. Zhang

Proof. Suppose that the two oracles follow the protocol and the adversary is be-
nign. In this case, since KAB = KBA by the bilinearity of the bilinear map, both
oracles agree on the same session key. Since r is random, based on the properties
of cryptographic hash functions, the session key is uniformly distributed over
{0, 1}l.
Lemma 2. Our protocol is a secure certificateless ony-way and two-party au-
thenticated KA protocol against type I adversary in the random oracle model
assuming the GBDH problem is intractable. Specifically, suppose in the attack,
a type I adversary A who makes at most qH1 times H1 queries, qH2 times H2

queries, qc times Corrupt queries, qsr times Session-Key-Reveal queries, wins the
game with advantage ε. Then there exists an algorithm C to solve the GBDH
problem with advantage ε′ � 1

qH2e
3 (

3
qc+qsr+3)

3ε.

Proof. See Appendix A.

Lemma 3. Our protocol is a secure certificateless ony-way and two-party au-
thenticated KA protocol against type II adversary in the random oracle model
assuming the SCDH problem is intractable. Specifically, suppose in the attack, a
type II adversary A who makes at most qH2 times H2 queries, qc times Corrupt
queries, qsr times Session-Key-Reveal queries, wins the game with advantage ε.
Then there exists an algorithm C to solve the SCDH problem with advantage
ε′ � 1

qH2e
3 (

3
qc+qsr+3)

3ε.

Proof. Due to the page limitation, it will be presented in this full version of this
paper.

Theorem 1. Our protocol is a secure certificateless ony-way and two-party au-
thenticated KA protocol.

Proof. The theorem follows directly from Lemma 1, 2 and 3.

Lemma 4. Our protocol has sender’s key-compromise impersonation and
sender’s forward security against type I adversary in the random oracle model
provided the GBDH problem is intractable. Specifically, suppose in the at-
tack, an adversary A who makes at most qH1 times H1 queries, qH2 times
H2 queries, qc times Corrupt queries, qsr times Session-Key-Reveal queries,
qrr times Random-Number-Reveal queries, wins the game with advantage ε.
Then there exists an algorithm C to solve the GBDH problem with advantage
ε′ � 1

2qH2e
2 (

2
qc+qsr+qrr+3)

2ε.

Proof. It will be presented in this full version of this paper.

Lemma 5. Our protocol has sender’s key-compromise impersonation and
sender’s forward security against type II adversary in the random oracle model
provided the CDH problem is intractable. Specifically, suppose in the attack, an
adversary A who makes at most qH2 times H2 queries, qc times Corrupt queries,
qsr times Session-Key-Reveal queries, qrr times Random-Number-Reveal queries,
wins the game with advantage ε. Then there exists an algorithm C to solve the
CDH problem with advantage ε′ � 1

2qH2 e
3 (

2
qc+qsr+qrr+2)

2ε.

Secure Certificateless One-Way and Two-Party Authenticated KA Protocol 227

Proof. It will be presented in this full version of this paper.

Theorem 2. Our protocol has sender’s key-compromise impersonation and
sender’s forward security.

Proof. The theorem follows directly from Lemma 1, 4 and 5.

Theorem 3. Our protocol captures no key control.

Proof. Since the value r is selected by A, it is easy to see that B cannot control
the session key. A cannot do this either comes from the fact that for a predeter-
mined session key K to find r such that H2(IDA, IDB, PA, PB, U, rPB , xAPB ,
ê(DA, QB), ê(rP0, QB)) = K is computationally impossible.

6 Conclusion

One-way and two-party authenticated KA protocols are important tools in cer-
tificateless cryptography. In this paper, we have presented an efficient certificate-
less one-way and two-party authenticated KA protocol. To generate a session key,
our protocol only requires one pass and has low communication overhead. The
security of our protocol is based on the hardness of the CDH, SCDH and GBDH
problems.

Acknowledgments and Disclaimer. This work was supported in part by the
the NSF of China under Grants 61202465, 61021004, 11061130539, 61103222;
the Shanghai NSF under Grant No. 12ZR1443500, 11ZR1411200; the Shanghai
Chen Guang Program (12CG24); the Open Project of Shanghai Key Laboratory
of Trustworthy Computing (No. 07dz22304201101); the Fundamental Research
Funds for the Central Universities; EU FP7 under Projects “DwB” and “Inter-
Trust”; the Spanish Government under Projects CTV-09-634, PTA2009-2738-E,
TSI-020302-2010-153, TIN2009-11689, TIN2011-27076-C03-01,CONSOLIDER
INGENIO 2010 “ARES” CSD2007-0004, and TSI2007-65406-C03-01.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Baek, J., Safavi-Naini, R., Susilo, W.: Efficient multi-receiver identity-based en-
cryption and its application to broadcast encryption. In: Vaudenay, S. (ed.) PKC
2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Blake-Wilson, S., Johason, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

228 L. Zhang

5. Chen, W., Zhang, L., Qin, B., Wu, Q., Zhang, H.: Certificateless one-way authen-
ticated two-party key agreement protocol. In: IEEE IAS 2009, pp. 483–486 (2009)

6. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

8. Gorantla, M., Boyd, C., Nieto, J.: ID-based one-pass authenticated key establish-
ment. In: Sixth Australasian Conference on Information Security, vol. 81, pp. 39–46
(2008)

9. Li, X., Zhang, Y., Zhang, G.: A new certificateless authenticated key agreement
protocol for SIP with different KGCs, Security and Communication Networks,
doi:10.1002/sec.595

10. Lippold, G., Boyd, C., Nieto, J.G.: Strongly secure certificateless key agreement.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 206–230.
Springer, Heidelberg (2009)

11. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters 56(3), 131–133 (1995)

12. Luo, M., Wen, Y., Zhao, H.: An enhanced authentication and key agreement mech-
anism for SIP using certificateless public-key cryptography. In: IEEE ICYCS 2008,
pp. 1577–1582 (2008)

13. Mandt, T.K., Tan, C.H.: Certificateless authenticated two-party key agreement
protocols. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp.
37–44. Springer, Heidelberg (2008)

14. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

15. Okamoto, T., Tso, R., Okamoto, E.: One-way and two-party authenticated
ID-based key agreement protocols using pairing. In: Torra, V., Narukawa, Y.,
Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 122–133. Springer,
Heidelberg (2005)

16. Swanson, C., Jao, D.: A Study of two-party certificateless authenticated key-
agreement protocols. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS,
vol. 5922, pp. 57–71. Springer, Heidelberg (2009)

17. Shamir, A.: Identity based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

18. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bi-
linear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC
2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004), Full version:
http://www.uow.edu.au/~wsusilo/PKC04.pdf

19. Zhang, L., Wu, Q., Qin, B., Domingo-Ferrer, J.: Provably secure one-round
identity-based authenticated asymmetric group key agreement protocol. Informa-
tion Sciences 181(19), 4318–4329 (2011)

20. Zhang, L., Zhang, F., Wu, Q., Domingo-Ferrer, J.: Simulatable certificateless
two-party authenticated key agreement protocol. Information Sciences 180(6),
1020–1030 (2010)

http://www.uow.edu.au/~wsusilo/PKC04.pdf

Secure Certificateless One-Way and Two-Party Authenticated KA Protocol 229

A Proof of Lemma 2

Proof. Suppose C is given an arbitrary input (P, aP, bP, cP), where a = c. We
show how can C use A to solve GBDH problem, i.e. to compute ê(P, P)abc with
the help of the DBDH oracle. All queries by the adversaryA now pass through C.
Firstly, C sets P0 = bP , then selects the system parameter params=(q,G1, G2, ê,
P, P0, H1, H2), and gives params to A.
H1 queries: C maintains a list H1list which is initially empty. On input IDi,
C first checks whether this query has been queried. If so, C finds the tuple
(coini, IDi, πi, Qi) on H1list and returns Qi as the answer; otherwise, he flips a
coin coini ∈ {0, 1} that yields 1 with probability δ and 0 with probability 1−δ. If
coini = 1, C selects πi ∈ Z∗

q at random, sets Qi = πiaP , adds (coini, IDi, πi, Qi)
to H1list and returns Qi as the answer; else, selects πi ∈ Z∗

q at random, sets
Qi = πiP , adds (coini, IDi, πi, Qi) to H1list and returns Qi as the answer.

H2 queries: C maintains a list H2list which is initially empty. On input (IDi
A, ID

i
B,

P i
A, P

i
B , Ui, Xi, Yi, ui, vi), C checks whether this query has been queried. If so, C

finds the tuple (IDi
A, ID

i
B, P

i
A, P

i
B, Ui, Xi, Yi, ui, vi, hi) on H2list and returns hi

as the answer; otherwise, C does the following:

– If there’s a tuple (coin′
i, n, IDI , IDJ , PI , PJ , Ui,j, ri,j ,Ki,j) on SList (See Send

queries) such that IDI = IDi
A, IDJ = IDi

B, PI = P i
A, PJ = P i

B, Ui =
Ui,j , ê(Xi, P) = ê(Ui,j , PJ), ê(Yi, P) = ê(PI , PJ), D(P0, H1(IDI),
H1(IDJ)|ui) = 1,D(Ui,j , P0, H1(IDJ)|vi) = 1,Ki,j �= ⊥, set hi = Ki,j ,
add (IDi

A, ID
i
B, P

i
A, P

i
B , Ui, Xi, Yi, ui, vi, hi) to H2list and return hi as the

answer.
– Else, set hi to be a random value in {0, 1}l, add (IDi

A, ID
i
B, P

i
A, P

i
B, Ui, Xi, Yi,

ui, vi, hi) to H2list and return hi as the answer.

Create queries: C maintains an initially empty list CList. On input an identity IDi,
if IDi has been submitted previously, C does nothing; otherwise, C chooses a ran-
dom xi ∈ Z∗

q , computes the public key Pi = xiP , submits IDi toH1 and recovers
the tuple (coini, IDi, πi, Qi) from H1list. If coini = 0, C computes Di = πiP0,
adds (IDi, xi, Di, Pi) to CList; else, sets Di = ⊥, adds (IDi, xi, Di, Pi) to CList.

Public-Key queries: On input an identity IDi, C first submits IDi to the Create
oracle, then recovers the tuple (IDi, xi, Di, Pi) from CList and then returns Pi

as the answer.

Secret-Value queries: On input an identity IDi, C first submits IDi to the Create
oracle and then recovers the tuple (IDi, xi, Di, Pi) from CList. If Pi �= xiP , C
returns ⊥; else he returns xi as the answer. Note that if A has made a Public-
Key-Replacement query on IDi, then Pi �= xiP .

Corrupt queries: On input IDi, C submits IDi to the Create oracle and recovers
(IDi, xi, Di, Pi) from CList. If Di = ⊥, C aborts (Event 1); else if Pi �= xiP ,
returns (⊥, Di) as the answer; else returns (xi, Di) as the answer.

Partial-Private-Key queries: On input an identity IDi, C submits IDi to the
Corrupt oracle. If C does not abort, he returns Di as the answer.

230 L. Zhang

Public-Key-Replacement queries: On input (IDi, P
′
i), C submits IDi to the Create

oracle, then recovers (IDi, xi, Di, Pi) from CList, and then sets Pi = P ′
i .

Send queries: C keeps a list SList which is initially empty. One receiving
a Send query

∏n
i,j(M), C submits IDi and IDj to the Create oracle, re-

covers the tuples (IDi, xi, Di, Pi) and (IDj , xj , Dj , Pj) from CList, flips a
coin coin′

i ∈ {0, 1} that yields 1 with probability δ and 0 with probabil-
ity 1 − δ. If M = λ, C randomly chooses ri,j ∈ Z∗

q , computes Ui,j =
ri,jP , sets Ki,j = ⊥, IDI = IDi, IDJ = IDj , PI = Pi, PJ = Pj , adds
(coin′

i, n, IDI , IDJ , PI , PJ , Ui,j , ri,j ,Ki,j) to SList and returns Ui,j as the an-
swer. Else, C sets ri,j = ⊥, Ui,j = M,Ki,j = ⊥, IDI = IDj, IDJ = IDi, PI =
Pj , PJ = Pi, adds (coin

′
i, n, IDI , IDJ , PI , PJ , Ui,j, ri,j ,Ki,j) to SList and returns

Ui,j as the answer.

Session-Key-Reveal queries: On receiving a Session-Key-Reveal query on
∏n

i,j , C
finds the tuple (coin′

i, n, IDI , IDJ , PI , PJ , Ui,j , ri,j ,Ki,j) on SList, then does the
following:
– If coin′

i = 1, abort (Event 2).
– Else if Ki,j �= ⊥, return Ki,j as the answer.
– Else if there’s a tuple (IDi

A, ID
i
B, P

i
A, P

i
B , Ui, Xi, Yi, ui, vi, hi) on H2list such

that IDI = IDi
A, IDJ = IDi

B, PI = P i
A, PJ = P i

B , Ui = Ui,j , ê(Xi, P) =
ê(Ui,j , PJ), ê(Yi, P) = ê(PI , PJ), D(P0, H1(IDI), H1(IDJ)|ui) = 1, D(Ui,j ,
P0, H1(IDJ)|vi) = 1, set Ki,j = hi and return Ki,j as the answer.

– Else, set Ki,j to be a random value in {0, 1}l and return Ki,j as the answer.

Random-Number-Reveal queries: On receiving a Random-Number-Reveal query
on

∏n
i,j , C finds the tuple (coin′

i, n, IDI , IDJ , PI , PJ , Ui,j , ri,j ,Ki,j) on SList and

returns ri,j as the answer. As denoted in Section 3.2, it requires that
∏n

i,j is an
initiator oracle.

Test query: At some point in the simulation, A asks a Test query on
∏n

i,j . C
recovers the tuple (coin′

i, n, IDI , IDJ , PI , PJ , Ui,j , ri,j ,Ki,j) from SList, submits
IDi and IDj to H1, finds the tuples (coini, IDi, πi, Qi) and (coinj , IDj , πj , Qj)
on H1list. If coini �= 1 or coinj �= 1 or coin′ �= 1, C aborts (Event 3). Otherwise,
C simply outputs a random value h ∈ {0, 1}l.

Once A finishes his queries and returns his guess bit, C randomly chooses uρ
from H2list and returns (uρ)

(πiπj)
−1

as the response to the GBDH challenge.
In the above simulation, all the responses of the oracles are uniformly dis-

tributed in the message space. Hence, if C does not abort, A cannot find any
inconsistency between the simulation and the real world. Therefore, A can win
the game with probability Pr[θ = θ′] = ε. It remains to determine the probability
that C outputs the required uρ.

In our simulation, C will abort if Event 1 or Event 2 or Event 3 happens. We
must calculate Pr[¬Event 1 ∧ ¬Event 2 ∧ ¬Event 3]. By our setting, it is easy
to get

Pr[¬Event 1 ∧ ¬Event 2 ∧ ¬Event 3] � 1

e3
(

3

qc + qsr + 3
)3

It is now easy to see that C solves the GBDH problem with probability ε′ �
1

qH2e
3 (

3
qc+qsr+3)

3ε. This concludes the proof.

A CCA-Secure Identity-Based Conditional

Proxy Re-Encryption without Random Oracles

Kaitai Liang1, Zhen Liu1,2, Xiao Tan1,
Duncan S. Wong1, and Chunming Tang3

1 Department of Computer Science, City University of Hong Kong, China
{kliang4,zhenliu7,xiaotan4}@student.cityu.edu.hk, duncan@cityu.edu.hk

2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
China

liuzhen@sjtu.edu.cn
3 School of Mathematics and Information Science, Guangzhou University, China

ctang@gzhu.edu.cn

Abstract. Although a few unidirectional single-hop Identity-Based
Proxy Re-Encryption (IBPRE) systems are available in the literature,
none of them is CCA secure in the standard model. Besides, they can
not support conditional re-encryption property, which allows a delegator
to specify a condition for ciphertexts so that the proxy can re-encrypt
ciphertexts only if the re-encryption key corresponding to the same condi-
tion is given. This paper, for the first time, proposes a new unidirectional
single-hop Identity-Based Conditional Proxy Re-Encryption (IBCPRE)
scheme that not only captures the property of IBPRE (i.e. identity-based
re-encryption), but also supports conditional re-encryption. Moreover,
the scheme can be proved secure against adaptive condition and adap-
tive identity chosen-ciphertext attacks in the standard model.

Keywords: Unidirectional Conditional Proxy Re-encryption, Identity-
Based Encryption, Single Hop, Standard Model.

1 Introduction

First defined by Blaze, Bleumer and Strauss [3], Proxy Re-Encryption (PRE)
extends the traditional Public Key Encryption (PKE) to support the decryption
rights delegation, in which a semi-trusted proxy is allowed to transform a cipher-
text under Alice’s public key into a ciphertext under Bob’s public key using a
re-encryption key given by Alice. The proxy, however, learns nothing about the
plaintext. If ciphertexts can be transformed from Alice to Bob and to Carol,
and so on, then the scheme is multi-hop. If ciphertexts can be transformed to
Bob only, then the scheme is a single-hop PRE. PRE can be further catego-
rized into bidirectional PRE and unidirectional PRE. In bidirectional PRE, a
re-encryption key allows ciphertexts to be transformed from Alice to Bob and
vise versa. In the unidirectional setting, a re-encryption key only allows cipher-
texts to be transformed from Alice to Bob or from Bob to Alice.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 231–246, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

232 K. Liang et al.

PRE can offer practical solutions to many network applications where the
delegation of decryption rights is required, such as secure e-mail forwarding,
secure files systems [1] and cloud storage systems. In many cloud storage systems,
to protect the confidentiality of the data, a system user (say Alice) often encrypts
her data with a content key before uploading to the cloud server. When sharing
the data with multiple system users, Alice may directly deliver the content key
to the users or alternatively, she may first encrypt the content key under each
user’s public key and then upload the ciphertexts to the cloud so that the users
can recover the content key using their respective secret key. The inconvenience
with the two strategies above is that Alice has to be responsible for either the
delivery of the content key or the generation of the ciphertexts of the content key
(which are intended for multiple users), and meanwhile, Alice has to be on-line.

Using traditional PRE, Alice is able to utilize the proxy’s (i.e. the cloud’s)
abundant computational power to re-encrypt the ciphertext of the content key
so that her encryption workload is lessened. Meanwhile, PRE allows Alice to
share the data when she is off-line. Specifically, Alice encrypts the content key
using her public key and uploads the ciphertext to the cloud. And before being
off-line, Alice (i.e. the delegator) first specifies the delegatees, next generates
and sends the re-encryption keys to the cloud server (i.e. the proxy). The cloud
server then uses the re-encryption keys to re-encrypt the ciphertext of Alice’s
content key and forwards the resulting ciphertexts to the delegatees, so that the
delegatees can access the data using the content key. Indeed, the server is kept
from knowing either the content key or the content (of the data).

To employ traditional PRE in the identity-based cryptographic setting,
Green and Ateniese [13] proposed the first Identity-Based Proxy Re-Encryption
(IBPRE), which allows the proxy to transform an encryption under Alice’s iden-
tity (e.g., email address) to a new ciphertext computed under Bob’s identity.
This is similar to identity-based encryption (IBE) but a major difference is
that IBPRE in addition supports the delegation of decryption rights, i.e. al-
lowing identity-based re-encryption. This paper deals with the case of unidi-
rectional single-hop IBPRE. Despite there are some unidirectional single-hop
IBPRE schemes in the literature, how to construct one that is secure against
chosen-ciphertext attacks (CCA) in the standard model still remains open. In
this paper, we focus on such an open problem.

A problem incurred by employing either traditional PRE or IBPRE in cloud
storage systems is that the re-encryption power of the cloud server cannot be
controlled. More specifically, the server can re-encrypt all ciphertexts of Alice’s
content keys to Bob as long as the corresponding re-encryption key is given. It
might be a potential risk for access control as Alice might want to share the data
labeled “Monday” but not the one tagged with “Thursday” with Bob.

To solve the problem above in the PRE setting, Conditional Proxy Re-
Encryption (CPRE) (e.g., [20,25,26]) is proposed. A CPRE is a type of PRE
providing conditional re-encryption to capture a fine-grained control over the
delegation. That is, Alice is allowed to specify a condition for a ciphertext so that
the cloud server can re-encrypt the ciphertext to Bob only if the re-encryption

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption 233

key corresponding to the same condition is given. However, as far as we know,
there is no solution for IBPRE to capture conditional re-encryption property in
the standard model. This paper also focuses on filling such a gap.

1.1 Our Contributions

In this paper we first formalize the definition and security models for IBCPRE.
Specifically, in our definition a condition is required as an auxiliary input to the
re-encryption key, encryption and decryption algorithms. Regarding the secu-
rity models, we first define the adaptive condition and adaptive identity chosen-
ciphertext security (IND-aCon-aID-CCA) at original ciphertext. We next define
the IND-aCon-aID-CCA security at re-encrypted ciphertext, which can be re-
garded as a weaker notion when compared with the one defined in [15].

There are two open problems in the literature of IBPRE: one is how to con-
struct a CCA-secure unidirectional single-hop IBPRE without random oracles,
and the other is how to extend IBPRE to support conditional re-encryption.
This paper, for the first time, answers the problems affirmatively by proposing a
new unidirectional single-hop IBPRE scheme with conditional re-encryption (i.e.
IBCPRE). Moreover, the new scheme can be proved IND-aCon-aID-CCA secure
in the standard model. Besides, our scheme also captures collusion resistance
(that is, the proxy cannot compromise the entire secret key of the delegator
even if the proxy colludes with the corresponding delegatee).

Here we further describe the difficulty of constructing a CCA-secure unidirec-
tional single-hop IBPRE scheme in the standard model. The construction is not
trivial even if an IBE scheme (e.g., [5]) is given as a building block. In Green
and Ateniese’s IBPRE [13], an eligible decryptor who has either the secret key
skid of the delegator or the secret key skid′ of the delegatee can recover σ and
the plaintext m so that he/she can verify the validity of the decryption of the

original ciphertext (resp. re-encrypted ciphertext) by checking A
?
= gH4(σ,m) and

D
?
= H3(id||〈A,B,C〉)H4(σ,m) (resp. A

?
= gH4(σ,m)) (for more details, the reader

is referred to [13]). Using such a verifying technique in the random oracle model,
the scheme can capture CCA security.

The technique above, however, is not suitable for constructing IBPRE in the
standard model. Intuitively, the CHK transformation [7] might be a possible ap-
proach to make a unidirectional single-hop IBPRE scheme secure against CCA in
the standard model. Nevertheless, we show that the manner cannot be trivially
employed in IBPRE. Suppose an IBPRE scheme without random oracles is se-
cure against chosen-plaintext attacks (CPA) based on an IBE scheme (e.g., [24]),
and its original ciphertext is (A, B, C). In re-encryption, suppose the proxy can
generate (at least) a new component A′ and output (A′, B, C) as the re-encrypted
ciphertext so that the delegatee can recover the plaintext from A′, B, C using
his secret key. Can we simply apply the CHK transformation to achieve CCA
security? Unfortunately, the above manner seems unwieldy. Note that for sim-
plicity we omit the transformation details and only discuss the signature part. If
we sign (A,B,C) by the CHK transformation, then the proxy cannot output the

234 K. Liang et al.

re-encrypted ciphertext (A′, B, C) without invalidating the signature. To keep
the validity of the signature, the proxy might choose to output (A,B,C), the
corresponding signature (for A,B,C) and A′ as re-encrypted ciphertext. Despite
the validity of (A,B,C) can be verified by the signature, the validity of A′ can-
not be guaranteed. But if we only sign (B,C), then A can be arbitrarily mutated
which leads to the invalidity of the decryption value. In Section 3, we propose a
solution to overcome the above difficulty.

1.2 Related Work

Following the concept of decryption rights delegation introduced by Mambo and
Okamoto [17], Blaze, Bleumer and Strauss [3] formalized proxy re-encryption
and proposed the first CPA-secure PRE scheme. Later on, many classical PRE
schemes, such as [1,8,14,15], have been proposed.

Employing traditional PRE in the identity-based cryptographic setting, Green
and Ateniese [13] defined the notion of IBPRE and proposed two unidirec-
tional IBPRE schemes in the random oracle model: one is CPA-secure multi-hop
IBPRE and the other is CCA-secure single-hop IBPRE. The schemes,
however, are not collusion resistant. Note that Ivan and Dodis [14] also proposed
an IBPRE in which a trusted private key generator (PKG) delegates decryption
rights for all system users. Their construction differs from that of Green and
Ateniese. In this paper we mainly focus on the previous works of unidirectional
single-hop IBPRE.

In 2007, two CPA-secure IBPRE schemes without random oracles were pro-
posed by Matsuo [18]. Later on, Wang et al. [22,23] proposed two IBPRE schemes
in the random oracle model: one is CPA secure and supports the revocability
of proxy’s re-encryption rights, and the other is CCA secure and allows the
proxy to be malicious (rather than being semi-trusted). In [22], Wang et al.
claimed that their scheme could achieve CCA security by combining the 2-level
HIBE of Waters with the CHK transformation. However, the manner cannot be
trivially used to convert a CPA-secure IBPRE to a CCA-secure one in the stan-
dard model. Please refer to the discussion in Section 1.1. In 2011, Minzuno and
Doi [19] proposed an IBPRE scheme in the standard model with CPA security.
Previous IBPRE schemes require PKG to participate into the generation of the
re-encryption key (i.e. the re-encryption key generation is interactive).

Following the first IBPRE scheme [13] without any interaction (i.e. non-
interactive) in the re-encryption key generation, Tang et al. [21] proposed a
CPA-secure IBPRE scheme with random oracles, in which the delegator and the
delegatee can come from different domains. Recently, two CPA-secure IBPRE
schemes without random oracles were proposed by Luo et al. [16]: one is single-
hop and the other is multi-hop.

Both traditional PRE and IBPRE have a potential risk for access control in
the sense that they allow the proxy to re-encrypt all ciphertexts of the delega-
tor without any discrimination. To solve the problem, Type-Based PRE [20] (in
2008) and Conditional PRE (CPRE) [25,26] (in 2009) were proposed to guaran-
tee that the proxy can re-encrypt a ciphertext tagged with a specific condition

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption 235

only if a re-encryption key corresponding to the same condition is generated by
the delegator.

The aforementioned unidirectional single-hop IBPRE schemes neither achieve
CCA security in the standard model nor support conditional re-encryption. We
choose some previous unidirectional single-hop IBPRE schemes which are related
to our work, and summarize the comparison of properties in Table 1. To the best
of our knowledge, our scheme is the first CCA-secure unidirectional single-hop
IBPRE scheme without random oracles supporting conditional re-encryption.

Table 1. Property Comparison

Schemes Security Without Collusion Conditional Non-Interactivity
ROM Resistance Re-Encryption

IBPRE [19] CPA � � � �

IBPRE [16] CPA � � � �

IBPRE [13] CCA � � � �

IBPRE [23] CCA � � � �

IBPRE [11] CCA � � � �

Our IBCPRE CCA � � � �

2 Definition and Security Models

As of [13], we refer to the original ciphertext and the re-encrypted ciphertext
as the second-level ciphertext and the first-level ciphertext, respectively. Unless
stated otherwise, by an IBCPRE we mean a unidirectional single-hop IBCPRE.

2.1 Definition of Identity-Based Conditional Proxy Re-Encryption

Definition 1. (IBCPRE) An Identity-Based Conditional Proxy Re-
Encryption (IBCPRE) scheme consists of the following algorithms:

1. (mpk,msk) ← Setup(1λ): on input a security parameter λ ∈ N, output a
master public key mpk and a master secret key msk.

2. skID ← KeyGen(mpk,msk, ID): on input mpk, msk, and an identity ID ∈
{0, 1}∗, output a secret key skID.

3. rkw|IDi→IDj
← ReKeyGen(mpk, skIDi, IDj , w): on input mpk, the secret

key skIDi of an identity IDi, an identity IDj, and a condition w ∈ {0, 1}∗,
output a re-encryption key rkw|IDi→IDj

from IDi to IDj under w.

4. C
(2)
(IDi,w) ← Enc(mpk, IDi, w,m): on input mpk, an identity IDi, a condi-

tion w and a plaintext m ∈ {0, 1}λ, output a second-level ciphertext C
(2)
(IDi,w).

5. C
(1)
(IDj ,w) ← ReEnc(mpk, rkw|IDi→IDj

, IDi, w, C
(2)
(IDi,w)): on input mpk, a

re-encryption key rkw|IDi→IDj
, an identity IDi, a condition w and a second-

level ciphertext C
(2)
(IDi,w), output a first-level ciphertext C

(1)
(IDj ,w).

236 K. Liang et al.

6. m ← Dec2(mpk, IDi, skIDi , w, C
(2)
(IDi,w)): on input mpk, an identity IDi

and the corresponding secret key skIDi , a condition w and a second-level

ciphertext C
(2)
(IDi,w), output a plaintext m or ⊥ for failure.

7. m ← Dec1(mpk, IDi, IDj , skIDj , w, C
(1)
(IDj ,w)): on input mpk, an identity

IDi, an identity IDj and the corresponding secret key skIDj , a condition w

and a first-level ciphertext C
(1)
(IDj ,w), output a plaintext m or ⊥ for failure.

For simplicity, we omit mpk in the expression of the algorithms in the rest of
the paper.

Correctness: For any λ ∈ N, any identities IDi, IDj ∈ {0, 1}∗, where i �= j,
i, j ∈ {1, ..., poly(λ)}, any condition w ∈ {0, 1}∗ and any message m ∈ {0, 1}λ, if
(mpk,msk)← Setup(1λ), skID ← KeyGen(msk, ID), for all ID used in the sys-

tem, rkw|IDi→IDj
← ReKeyGen(skIDi, IDj, w), C

(2)
(IDi,w) ← Enc(IDi, w,m),

and C
(1)
(IDj ,w) ← ReEnc(rkw|IDi→IDj

, IDi, w, C
(2)
(IDi,w)), we have Dec2(IDi,

skIDi , w, C
(2)
(IDi,w)) = m; Dec1(IDi, IDj , skIDj , w, C

(1)
(IDj ,w)) = m.

2.2 Security Models

We start with the formalization of IND-aCon-aID-CCA security at second-level
ciphertext as follows.

Definition 2. An IBCPRE scheme is IND-aCon-aID-CCA-secure at second-
level ciphertext if no probabilistic polynomial time (PPT) adversary A can win
the game below with non-negligible advantage. In the game, B is the game chal-
lenger and λ is the security parameter.

1. Setup. B runs Setup(1λ) and sends mpk to A.
2. Query Phase I. A is given access to the following oracles.

(a) Extract(ID): given an identity ID, return skID ← KeyGen(msk, ID),
and ID is considered as corrupted.

(b) ReKeyExtract(IDi, IDj , w): given two distinct identities IDi and IDj,
and a condition w, return rkw|IDi→IDj

← ReKeyGen(skIDi, IDj, w),
where skIDi ← KeyGen(msk, IDi).

(c) ReEnc(IDi, IDj , w, C
(2)
(IDi,w)): given two distinct identities IDi and

IDj, a condition w and a second-level ciphertext C
(2)
(IDi,w), return

a first-level ciphertext C
(1)
(IDj ,w) ← ReEnc(rkw|IDi→IDj

, IDi, w,

C
(2)
(IDi,w)), where rkw|IDi→IDj

← ReKeyGen(skIDi, IDj , w), skIDi ←
KeyGen(msk, IDi).

(d) Dec2(IDi, w, C
(2)
(IDi,w)): given an identity IDi, a condition w and a

second-level ciphertext C
(2)
(IDi,w), return m ← Dec2(IDi, skIDi , w,

C
(2)
(IDi,w)), where skIDi ← KeyGen(msk, IDi).

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption 237

(e) Dec1(IDi, IDj, w, C
(1)
(IDj ,w)): given two distinct identities IDi and IDj,

a condition w, and a first-level ciphertext C
(1)
(IDj ,w), return m ←

Dec1(IDi, IDj, skIDj , w, C
(1)
(IDj ,w)), where skIDj ← KeyGen(msk,

IDj).

3. Challenge. A outputs two equal-length plaintexts m0, m1, a target identity
ID∗ and a target condition w∗ to B. If the following queries

– Extract(ID∗), and
– ReKeyExtract(ID∗, IDj, w

∗) and Extract(IDj) for any identity IDj

are never made, B outputs C
(2)∗
(ID∗,w∗) = Enc(ID∗, w∗,mb), where b ∈R

{0, 1}.
4. Query Phase II. A makes further queries as in Query Phase I except the

following:

(a) Extract(ID) if ID = ID∗;
(b) ReKeyExtract(ID∗, IDj, w

∗) and Extract(IDj) for any identity IDj;

(c) ReEnc(ID∗, IDj, w
∗, C

(2)∗
(ID∗,w∗)) and Extract(IDj) for any identity

IDj;

(d) Dec2(ID
∗, w∗, C

(2)∗
(ID∗,w∗)); and

(e) Dec1(ID
∗, IDj, w

∗, C
(1)
(IDj ,w∗)) for any IDj and C

(1)
(IDj ,w∗), if (IDj, w

∗,

C
(1)
(IDj ,w∗)) is a derivative of (ID∗, w∗, C

(2)∗
(ID∗,w∗)). As of [8], the deriva-

tive of (ID∗, w∗, C
(2)∗
(ID∗,w∗)) is defined as follows.

i. If A has issued a re-encryption key query on (ID∗, IDj,
w∗) to obtain the re-encryption key rkw∗|ID∗→IDj

, and com-

puted C
(1)
(IDj ,w∗) ← ReEnc(rkw∗|ID∗→IDj

, ID∗, w∗, C
(2)∗
(ID∗,w∗)), then

(IDj , w
∗, C

(1)
(IDj ,w∗)) is a derivative of (ID∗, w∗, C

(2)∗
(ID∗,w∗)).

ii. If A has issued a re-encryption query on (ID∗, IDj , w
∗, C

(2)∗
(ID∗,w∗))

and obtained C
(1)
(IDj ,w∗), then (IDj , w

∗, C
(1)
(IDj ,w∗)) is a derivative of

(ID∗, w∗, C
(2)∗
(ID∗,w∗)).

5. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, A wins.

The advantage of A is defined as ε = AdvIBCPRE−2nd
A (1λ) = |Pr[b′ = b]− 1

2 |.

The definition of IND-aCon-aID-CCA security at first-level ciphertext for
IBCPRE can be defined in an identical method. Due to limited space, the defi-
nition is provided in the full paper.

3 Constructions

Our IBCPRE scheme is constructed based on Waters IBE [24], a strongly ex-
istential unforgeable one-time signature scheme [2], a pseudorandom function
family [12] and a Target Collision Resistant (TCR) hash function .

238 K. Liang et al.

3.1 Preliminaries

Bilinear Pairings. Let BSetup be an algorithm that on input the security pa-
rameter λ, outputs the parameters of a bilinear map as (q, g,G1,G2, e), where
G1 and G2 are multiplicative cyclic groups of prime order q, |q| = λ, and g is
a random generator of G1. The mapping e : G1 × G1 → G2 has three proper-
ties: (1) Bilinearity: for all a, b ∈R Z∗

q , e(g
a, gb) = e(g, g)ab; (2) Non-degeneracy:

e(g, g) �= 1G2 , where 1G2 is the unit of G2; (3) Computability: e can be efficiently
computed.

The Decisional Bilinear Diffie-Hellman Assumption.We review the Deci-
sional Bilinear Diffie-Hellman (DBDH) problem (symmetric case) [4] as follows.
Let g be a random generator of group G1.

Definition 3. Given the tuple (g, ga, gb, gc, T) ∈ G4
1 × G2, the DBDH problem

is to decide whether T = e(g, g)abc, where a, b, c ∈R Z∗
q. Define AdvDBDH

A =

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[A(g, ga, gb, gc, T) = 1]| as the advantage
of A in winning the DBDH problem. We say that the DBDH assumption holds
in G1 if no PPT algorithm has non-negligible advantage.

Strongly Existential Unforgeable One-Time Signatures. A strongly
existential unforgeable one-time signature (OTS) [2] consists of the following
algorithms:

1. (Ks,Kv) ← Sign.KeyGen(1λ): on input a security parameter λ ∈ N, the
algorithm outputs a signing/verification key pair (Ks,Kv).

2. σ ← Sign(Ks,M): on input the signing key Ks and a message M ∈ ΓSig,
the algorithm outputs a signature σ, where ΓSig is the message space of a
signature scheme.

3. 1/0 ← V erify(Kv, σ,M): on input the verification key Kv, a signature σ
and a message M , the algorithm outputs 1 when σ is a valid signature of
M , and output 0 otherwise.

Remark. In this paper we assume the verification key Kv is n-bit length.

Definition 4. A signature scheme is one-time strongly unforgeable chosen mes-
sage attack secure if the advantage AdvOTS

A (1λ) is negligible for any PPT adver-
sary A in the following experiment.

AdvOTS
A (1λ) = Pr[V erify(Kv, σ

∗,M∗) = 1 : (Ks,Kv)← Sign.KeyGen(1λ);

(M,State)← A(Kv);σ ← Sign(Ks,M); (M∗, σ∗)← A(Kv, σ, State);

(M∗, σ∗) �= (M,σ)],

where λ is the security parameter, State is the state information, M,M∗ ∈ ΓSig.

3.2 Identity-Based Encryption Scheme

We first review the construction of Waters IBE scheme [24]. The details of defi-
nition and security model of IBE can be found in [24].

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption 239

1. Setup(1λ): run (q, g,G1,G2, e)← BSetup(1λ), choose α ∈R Z∗
q , g2, u

′, u1, ...,
un ∈R G1, set g1 = gα and U = {ui|1 ≤ i ≤ n}. The master public key is
mpk = (λ, g, g1, g2, u

′, U) and the master secret key is msk = gα2 .
2. KeyGen(mpk,msk, ID): output a secret key skID=(skID1 , skID2)=(gα2 ·

(u′
∏

i∈V ui)
r, gr), where r ∈R Z∗

q , ID is an n-bit string and V is the set of
all i for which the i-th bit of ID is set to 1.

3. Enc(mpk, ID,m): compute the ciphertext C = (C1, C2, C3) = (m·e(g1, g2)t,
gt, (u′

∏
i∈V ui)

t), where t ∈R Z∗
q , m ∈ G2.

4. Dec(mpk, skID, C): recover a message m =
C1·e(skID2 ,C3)

e(skID1 ,C2)
.

By Theorem 1 stated in [24], we have the following theorem.

Theorem 1. Waters IBE scheme is CPA secure assuming the DBDH assump-
tion holds.

We next extend Waters IBE scheme to support hybrid encryption without losing
CPA security. Specifically, we modify the system to admit m to be encoded as
a λ-bit string, and to employ a pseudorandom function, which takes a function
key (in G2) and a ciphertext component (in G1) as input and outputs a λ-bit
pseudorandom string, to hide m symmetrically. Below is the extension.

1. Setup(1λ): choose a pseudorandom function PRF : G2 × G1 → {0, 1}λ and
add PRF to mpk.

2. KeyGen(mpk,msk, ID): same as that of Waters IBE scheme.
3. Enc(mpk, ID,m): compute C = (C0, C1, C2, C3) = ([PRF (σ,C2)] ⊕m,σ ·

e(g1, g2)
t, gt, (u′

∏
i∈V ui)

t), where t ∈R Z∗
q , σ ∈R G2, m ∈ {0, 1}λ.

4. Dec(mpk, skID, C): recover σ =
C1·e(skID2 ,C3)

e(skID1 ,C2)
and m = C0 ⊕ [PRF (σ,C2)].

We refer to Waters IBE scheme with the extension above as Type-I modified
Waters IBE (Type-I mWIBE). The CPA security of the above scheme depends
on the DBDH assumption and the pseudorandomness of PRF .

Theorem 2. The Type-I mWIBE scheme is CPA secure assuming the DBDH
assumption holds and PRF is a pseudorandom function family.

Due to limited space, the proof of Theorem 2 is provided in the full paper.
Employing the technique introduced in [9], we can transform the Type-I

mWIBE scheme to capture CCA security. Below is the transformation.

1. Setup(1λ): run (q, g,G1,G2, e) ← BSetup(1λ), choose α ∈R Z∗
q , g2, u

′
1, u

′
2,

u1,1, ..., u1,n, u2,0, u2,1, ..., u2,n ∈R G1, a pseudorandom function PRF : G2×
G1 → {0, 1}λ, set g1 = gα, U1 = {u1,i|1 ≤ i ≤ n} and U2 = {u2,i|1 ≤ i ≤
n}. The master public key is mpk = (λ, g, g1, g2, u

′
1, u

′
2, u2,0, U1, U2, PRF ,

(Sign.KeyGen, Sign, V erify)), and the master secret key is msk = gα2 .
2. KeyGen(mpk,msk, ID): output a secret key skID=(skID1 , skID2)=(gα2 ·

(u′
∏

i∈V ui)
r, gr), where r ∈R Z∗

q .

3. Enc(mpk, ID,m): run (Ks,Kv)← Sign.KeyGen(1λ), generate the cipher-
text C = (Kv, C0, C1, C2, C3, C4, C5) = (Kv,[PRF (σ,C2)]⊕m, σ·e(g1, g2)t,

240 K. Liang et al.

gt, (u′1
∏

i∈V u1,i)
t, (u′2u2,0

∏
i∈K u2,i)

t, Sign(Ks, (C0, C1, C2, C3, C4))),

where t ∈R Z∗
q , σ ∈R G2, m ∈ {0, 1}λ, and K is the set of all i for which the

i-th bit of Kv is set to 1.

4. Dec(mpk, skID, C): check e(g, C4)
?
= e(C2, u

′
2u2,0

∏
i∈K u2,i), V erify(Kv,

C5, (C0, C1, C2, C3, C4))
?
= 1. If the equations do not hold, output ⊥. Oth-

erwise, compute σ =
C1·e(skID2 ,C3)

e(skID1 ,C2)
and m = C0 ⊕ [PRF (σ,C2)].

As stated in [9], Waters IBE scheme can be transformed to capture CCA security
in the same manner above. We refer to the transformed Waters IBE scheme as
Type-II mWIBE. By the security argument in [6], Theorem 1 and 2, we have
the following theorem.

Theorem 3. Suppose the Type-I mWIBE scheme (resp. Waters IBE scheme)
is secure against CPA and the underlying one-time signature scheme
(Sign.KeyGen, Sign, V erify) is strongly existential unforgeable, the trans-
formed Type-I mWIBE scheme (resp. the Type-II mWIBE scheme) is CCA
secure.

We further modify the transformed Type-I mWIBE scheme as follows. In algo-
rithm Enc, we notice that (C0, C1, C2, C3, C4) have to be signed so that they can
be fixed by C5 and Kv. However, it is unnecessary to sign all of them to capture
CCA security. We utilize PRF to verify the validity of C1 so that the signature
C5 can be only made for (C0, C2, C3, C4). Specifically, we first modify C0 as
C0 = [PRF (σ,C2)]

λ1−λ||[PRF (σ,C2)]λ ⊕m, where λ1 is a security parameter
and PRF is now required to output a λ1-bit pseudorandom string. Then, we
only sign (C0, C2, C3, C4) with Ks. In algorithm Dec, a decryptor can check the
integrity of (C0, C2, C3, C4) by verifying C5 with Kv. Meanwhile, the integrity

of C1 can be verified by [PRF (σ,C2)]
λ1−λ ?

= [C0]
λ1−λ. Hence, the scheme still

captures CCA security even if C0 and C5 are modified as above.
Besides, the transformed Type-I mWIBE scheme (which is a 2-level HIBE)

can be naturally extended to a 3-level HIBE without losing CCA security as
follows. Note that the additional level is for an n-bit condition w. We first define
new parameters u′3 ∈R G1 and U3 = (u3,i) ∈R Gn

1 and add them to mpk, and
next add a new component C6 = (u′3

∏
i∈ξw

u3,i)
t to ciphertext C, where ξw is

the set of all i for which the i-bit of w is set to 1. Finally, we sign C6 as well as
C0, C2, C3 and C4, i.e. C5 = Sign(Ks, (C0, C2, C3, C4, C6)).

It is not difficult to see that the two modifications above do not affect the CCA
security of the transformed Type-I mWIBE scheme. We refer to the transformed
Type-I mWIBE scheme with the two modifications as Type-III mWIBE. By the
security argument in [6] and Theorem 3, we have the following theorem.

Theorem 4. Suppose the transformed Type-I mWIBE scheme is secure against
CCA, the Type-III mWIBE scheme is CCA secure.

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption 241

3.3 A New Unidirectional Single-Hop IBCPRE Scheme

We now start describing our IBCPRE scheme. Note that we allow identities and
conditions to be arbitrary length bit-string, but they have to be hashed by a
TCR hash function H0 : {0, 1}∗ → {0, 1}n beforehand.

1. Setup(1λ). Run (q, g,G1,G2, e) ← BSetup(1λ). Let w ∈ {0, 1}n be an
n-bit condition string. Choose α ∈R Z∗

q , g2, u
′
1, u

′
2, u

′
3, u3,0 ∈R G1, three

random n-length sets U1 = {u1,i|1 ≤ i ≤ n}, U2 = {u2,i|1 ≤ i ≤ n},
U3 = {u3,i|1 ≤ i ≤ n}, u1,i, u2,i, u3,i ∈R G1, a pseudorandom function
PRF : G2×G1 → {0, 1}λ1, and a TCR hash function H1 : G2 → G1, where
λ1 is a security parameter. The master secret key is msk = gα2 , the master
public key is mpk = (λ, λ1, g, g1, g2, u

′
1, u

′
2, u

′
3, u3,0, U1, U2, U3, PRF , H1,

(Sign.KeyGen, Sign, V erify)), where g1 = gα.
2. KeyGen(msk, ID). Output skID = (skID1 , skID2) = (gα2 · (u′1

∏
i∈VID

u1,i)
r,

gr), where r ∈R Z∗
q , ID ∈ {0, 1}n, and let VID be the set of all i for which

the i-bit of ID is set to 1.
3. Enc(IDi, w,m). Run (Ks,Kv)← Sign.KeyGen(1λ), choose t ∈R Z∗

q , σ ∈R

G2, generate the ciphertext: C0 = [PRF (σ,C2)]
λ1−λ||[PRF (σ,C2)]λ ⊕ m,

C1 = e(g1, g2)
t · σ, C2 = gt, C3 = (u′1

∏
i∈VIDi

u1,i)
t, C4 = (u′2

∏
i∈ξw

u2,i)
t,

C5 = (u′3u3,0
∏

i∈XKv
u3,i)

t, C6 = Sign(Ks, (C0, C2, C3, C4, C5)), and out-

put C
(2)
(IDi,w) = (Kv, C0, C1, C2, C3, C4, C5, C6), where IDi ∈ {0, 1}n, m ∈

{0, 1}λ, let ξw, XKv, VIDi be the sets of all i for which the i-bit of w, Kv,
IDi is set to 1, respectively.

4. ReKeyGen(skIDi, IDj , w). Choose ρ, t
′ ∈R Z∗

q , θ ∈R G2, compute rk0 =

skIDi1
· (u′2

∏
i∈ξw

u2,i)
ρ, rk1 = gρ, rk2 = skIDi2

·H1(θ), rk3 = e(g1, g2)
t′ · θ,

rk4 = gt
′
, rk5 = (u′1

∏
i∈VIDj

u1,i)
t′ , rk6 = (u′3u3,0

∏
i∈XK′

v
u3,i)

t′ , rk7 =

Sign(K ′
s, (rk3, rk4, rk5, rk6)), and output rkw|IDi→IDj

= (K ′
v, rk0, rk1, rk2,

rk3, rk4, rk5, rk6, rk7), where IDj ∈ {0, 1}n, (K ′
s,K

′
v)← Sign.KeyGen(1λ).

5. ReEnc(rkw|IDi→IDj
, IDi, w, C

(2)
(IDi,w)).

(a) Verify

e(g, C3)
?
= e(C2, u

′
1

∏
i∈VIDi

u1,i), e(g, C4)
?
= e(C2, u

′
2

∏
i∈ξw

u2,i),

e(g, C5)
?
= e(C2, u

′
3u3,0

∏
i∈XKv

u3,i),

V erify(Kv, C6, (C0, C2, C3, C4, C5))
?
= 1.

(1)

If Eq. (1) does not hold, output ⊥. Otherwise, proceed.

(b) Compute C′
1 = C1·e(rk2,C3)

e(rk0,C2)/e(rk1,C4)
, and output the first-level ciphertext

C
(1)
(IDj ,w) = (Kv, C0, C

′
1, C2, C3, C4, C5, C6,K

′
v, rk3, rk4, rk5, rk6, rk7).

6. Dec2(IDi, skIDi , w, C
(2)
(IDi,w)).

242 K. Liang et al.

(a) Verify Eq. (1). If Eq. (1) does not hold, output ⊥. Otherwise, proceed.

(b) Compute σ = C1 ·
e(skIDi2

,C3)

e(skIDi1
,C2)

, and output m = [C0]λ ⊕ [PRF (σ,C2)]λ

if [PRF (σ,C2)]
λ1−λ = [C0]

λ1−λ holds. Otherwise, output ⊥.
7. Dec1(IDi, IDj, skIDj , w, C

(1)
(IDj ,w)).

(a) Verify

e(g, rk5)
?
= e(rk4, u

′
1

∏
i∈VIDj

u1,i), e(g, rk6)
?
= e(rk4, u

′
3u3,0

∏
i∈XK′

v

u3,i),

V erify(K ′
v, rk7, (rk3, rk4, rk5, rk6))

?
= 1.

(2)

If Eq. (2) does not hold, output ⊥. Otherwise, proceed.

(b) Compute θ = rk3 ·
e(skIDj2

,rk5)

e(skIDj1
,rk4)

.

(c) Verify Eq. (1). If Eq. (1) does not hold, output ⊥. Otherwise, proceed.
(d) Compute σ = C′

1/e(H1(θ), C3), and output m = [C0]λ ⊕ [PRF (σ,C2)]λ
if [PRF (σ,C2)]

λ1−λ = [C0]
λ1−λ holds. Otherwise, output ⊥.

Correctness: It is easy to verify that the plaintexts of the first-level and second-
level ciphertexts can be recovered correctly if the ciphertexts are computed via
the description above. We hence skip the details.

Theorem 5. Suppose the DBDH assumption holds, PRF is a pseudorandom
function family, (Sign.KeyGen, Sign, V erify) is a strongly existential unforge-
able one-time signature scheme and H1 is a TCR hash function, our IBCPRE
scheme is IND-aCon-aID-CCA secure at second-level ciphertext.

The proof of Theorem 5 is provided in Appendix A.
Remark. Despite a malicious proxy can collude with the delegatee to recover the
second component of the delegator’s secret key and obtain the decryption rights
of the ciphertexts which are only encrypted under the delegator’s identity and
condition w, the proxy cannot compromise the entire secret key of the delegator.

4 Concluding Remarks

In this paper, we tackled the open problems of the existing IBPRE schemes
by proposing a new unidirectional single-hop IBCPRE scheme which achieves
identity-based re-encryption and conditional re-encryption. We also showed that
our scheme can be proved IND-aCon-aID-CCA secure in the standard model.
To the best of our knowledge, our scheme is the first CCA-secure unidirectional
single-hop IBCPRE without random oracles.

This paper also motivates some open problems, for example, how to construct
CCA-secure IBCPRE in the standard model supporting OR gates on conditions.

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption 243

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

2. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

3. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

7. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer
and Communications Security, pp. 185–194. ACM (2007)

9. Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random
oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007)

10. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

11. Emura, K., Miyaji, A., Omote, K.: An identity-based proxy re-encryption scheme
with source hiding property, and its application to a mailing-list system. In: Ca-
menisch, J., Lambrinoudakis, C. (eds.) EuroPKI 2010. LNCS, vol. 6711, pp. 77–92.
Springer, Heidelberg (2011)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

13. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

14. Ivan, A.A., Dodis, Y.: Proxy cryptography revisited. In: NDSS. The Internet So-
ciety (2003)

15. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

16. Luo, S., Shen, Q., Chen, Z.: Fully secure unidirectional identity-based proxy re-
encryption. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 109–126. Springer,
Heidelberg (2012)

17. Mambo, M., Okamoto, E.: Proxy cryptosystems: Delegation of the power to decrypt
ciphertexts. IEICE Transactions E80-A(1), 54–63 (1997)

18. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 247–267. Springer, Heidelberg (2007)

244 K. Liang et al.

19. Mizuno, T., Doi, H.: Secure and efficient ibe-pke proxy re-encryption. IEICE Trans-
actions 94-A(1), 36–44 (2011)

20. Tang, Q.: Type-based proxy re-encryption and its construction. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp.
130–144. Springer, Heidelberg (2008)

21. Tang, Q., Hartel, P., Jonker, W.: Inter-domain identity-based proxy re-encryption.
In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 332–347.
Springer, Heidelberg (2009)

22. Wang, L., Wang, L., Mambo, M., Okamoto, E.: Identity-based proxy cryptosystems
with revocability and hierarchical confidentialities. In: Soriano, M., Qing, S., López,
J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 383–400. Springer, Heidelberg (2010)

23. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-
encryption schemes to prevent collusion attacks. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010)

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

25. Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-encryption
secure against chosen-ciphertext attack. In: Li, W., Susilo, W., Tupakula, U.K.,
Safavi-Naini, R., Varadharajan, V. (eds.) ASIACCS, pp. 322–332. ACM (2009)

26. Weng, J., Yang, Y., Tang, Q., Deng, R.H., Bao, F.: Efficient conditional proxy
re-encryption with chosen-ciphertext security. In: Samarati, P., Yung, M., Mar-
tinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 151–166. Springer,
Heidelberg (2009)

A Proof of Theorem 5

Proof. Suppose there is an adversary A who can break the IND-aCon-aID-CCA
security at second-level ciphertext of our IBCPRE scheme with non-negligible
probability ε. We then construct a reduction algorithm B to break the CCA-
secure Type-III mWIBE scheme using A. Let B1 be the challenger of the Type-
III mWIBE in the CCA experiment. Note that B maintains the following tables
which are initially empty.

1. SKT : records the tuples (coini, IDi, skIDi), which are the information of
the secret keys.

2. RKT : records the tuples (coinz, IDi, IDj , w, rkw|IDi→IDj
, θ, tag1, tag2),

which are the results of the queries to ReKeyExtract(IDi, IDj , w), where
tag1, tag2 denote that the re-encryption key is a valid/random key.

3. RET : records the tuples (IDi, IDj, w, C
(1)
(IDj ,w), tag1, tag2), which are the

results of the queries to ReEnc(IDi, IDj , w, C
(2)
(IDi,w)), where tag1, tag2

denote that the first-level ciphertext is generated under either a valid re-
encryption key or a random one.

1. Setup. B1 sends mpk = (λ, λ1, g, g1, g2, u
′
1, u

′
2, u

′
3, u3,0, U1, U2, U3, PRF ,

(Sign.KeyGen, Sign, V erify)) to B. Then B chooses a TCR hash function
H1 : G2 → G1, adds H1 to mpk and forwards mpk to A.

A CCA-Secure Identity-Based Conditional Proxy Re-Encryption 245

2. Query Phase I. A issues a series of queries to which B responds as follows.
(a) Extract(ID): B first uses the Coron’s technique [10] to flip a biased

coini ∈ {0, 1} such that Pr[coini = 1] = ϑ and Pr[coini = 0] = 1 − ϑ,
where ϑ will be determined later.
– If coini = 0, B outputs a random bit in {0, 1} and aborts.
– Otherwise, B forwards the query to the secret key extraction oracle

of Type-III mWIBE, obtains the secret key skID, returns skID to A
and adds (1, ID, skID) to SKT .

(b) ReKeyExtract(IDi, IDj, w): B first checks whether there is a tuple
(∗, IDi, IDj , w, rkw|IDi→IDj

, θ, ∗, ∗) in RKT . If yes, B directly responds
rkw|IDi→IDj

to A, where ∗ is the wildcard. Otherwise, B first flips a
biased coinz ∈ {0, 1} for w and next generates the re-encryption key for
A as follows.
– If there is no tuple (1, IDi, skIDi) in SKT , B flips a biased coini

for IDi. If coini = 1, B queries the secret key extraction oracle
of Type-III mWIBE to obtain skIDi , generates the re-encryption
key rkw|IDi→IDj

via algorithm ReKeyGen as in the real scheme,
returns rkw|IDi→IDj

to A and adds (1, IDi, skIDi) and (∗, IDi, IDj ,
w, rkw|IDi→IDj

, θ, 1, 0) to SKT and RKT , respectively, where
θ ∈R G2. If coini = 0, B first sets rk0 = δ1, rk1 = δ2, rk2 = δ3 and
constructs rk3, rk4, rk5, rk6, rk7 to encrypt a θ ∈R G2 as in the real
scheme, where δ1, δ2, δ3 ∈R G1. B next forwards the re-encryption
key to A and adds (∗, IDi, IDj , w, rkw|IDi→IDj

, θ, 0, 1) to RKT .
– Otherwise, B uses skIDi to generate the re-encryption key via algo-

rithmReKeyGen as in the real scheme, returns the re-encryption key
to A and adds (∗, IDi, IDj , w, rkw|IDi→IDj

, θ, 1, 0) to RKT , where
θ ∈R G2.

(c) ReEnc(IDi, IDj , w, C
(2)
(IDi,w)): B first checks whether there is a tuple

(∗, IDi, IDj , w, rkw|IDi→IDj
, θ, ∗, ∗) inRKT . If yes, B generatesC

(1)
(IDj ,w)

using rkw|IDi→IDj
as in the real scheme, returns C

(1)
(IDj ,w) to A and

adds (IDi, IDj , w, C
(1)
(IDj ,w), ∗,∗) to RET . Otherwise, B first issues

ReKeyExtract(IDi, IDj , w) to obtain the re-encryption key, next gen-

erates C
(1)
(IDj ,w) and adds the corresponding tuple to RET as above.

(d) Dec2(IDi, w, C
(2)
(IDi,w)): B first verifies Eq. (1). If the equation does not

hold, B output ⊥. Otherwise, B proceeds. If (1, IDi, skIDi) ∈ SKT , B re-
coversm using skIDi . Otherwise, B forwards the query to the decryption
oracle of Type-III mWIBE to obtain m.

(e) Dec1(IDi, IDj, w, C
(1)
(IDj ,w)): B first verifies Eq. (1) and Eq. (2). If the

equations do not hold, B output ⊥. Otherwise, B proceeds.

i. If (IDi, IDj, w, C
(1)
(IDj ,w), 0, 1) ∈ RET∨(∗, IDi, IDj , w, rkw|IDi→IDj

,

θ, 0, 1) ∈ RKT holds, B recovers rkw|IDi→IDj
from RKT and com-

putes C1 = C′
1 ·

e(δ1,C2)/e(δ2,C4)
e(δ3,C3)

. Then B issues (IDi, w, C
(2)
(IDi,w)) to

the decryption oracle of Type-III mWIBE to obtain m.

246 K. Liang et al.

ii. Otherwise, B checks whether there is a tuple (1, IDj , skIDj) in SKT .
If yes, B recoversm using skIDj . Otherwise, B issues (IDj , C

′) to the
decryption oracle of Type-III mWIBE1, obtains θ and then recovers
m as in the real scheme, where C′ = (K ′

v, rk3, rk4, rk5, rk6, rk7).
3. Challenge. When A decides that Query Phase I is over, it outputs m0, m1,

ID∗ and w∗ to B. If either the case that there is a tuple (1, ID∗, skID∗) in
SKT or the case that the coinz for w∗ is equivalent to 1 holds, B outputs a
random bit in {0, 1} and aborts. Otherwise, B sends the challenge message

(m0,m1, ID
∗, w∗) to B1, obtains the challenge ciphertext C

(2)∗
(ID∗,w∗) from B1

and returns C
(2)∗
(ID∗,w∗) to A.

4. Query Phase II. A makes further queries as in Query Phase I with the
constraints defined in Definition 2, and B responds as in Query Phase I
except that in ReKeyExtract, if IDi �= ID∗, B responds as in Query Phase
I, otherwise, B generates a random re-encryption key as in Query Phase I.

5. Guess. When A outputs a guess bit b′ ∈ {0, 1}, B outputs b′.

If B does not abort, A’s view is identical to the real scheme except for the case
that B outputs the random re-encryption keys in step (b) of the simulation.
Let us consider the indistinguishability of the random re-encryption key and
the valid one. It is not difficult to see that δ1, δ2 and δ3 (which are randomly
chosen by B) must be able to take the form of rk0, rk1 and rk2 (which are
the components of the valid re-encryption key), respectively. Hence, the above
indistinguishability relies on the indistinguishability between the encryption of
θ ∈R G2 (which is chosen by B) and the encryption of the θ (which is used to hide
skIDi2

in the real scheme). If there exists an adversary A1 who can distinguish
the two encryptions, then we can construct a reduction algorithm B2 to break
the CCA security of the Type-II mWIBE scheme via using A1.

Now we analyze the advantage of B using the same manner introduced in [11].
We have that B does not abort in the simulation with the probability ϑqsk · (1−
ϑ)2, which is maximized at ϑopt = qsk

2(1+qsk)
, where qsk is the total number of

secret key extraction queries. Using ϑopt, B dose not abort with probability
at least 1

2ė(1+qsk)
, where ė is the base of the natural logarithm. Therefore, the

advantage of B is at least ε
2ė(1+qsk)

.

This completes the proof of Theorem 5. �

1 We cannot issue (IDj , C
′) to the decryption oracle of Type-III mWIBE directly.

But we can modify the CCA-secure Type-III mWIBE scheme (by removing the
PRF and the condition parts) to achieve the Type-II mWIBE scheme which is
used to encrypt θ as in algorithm ReKeyGen. From Theorem 1 and 3, we can see
that the Type-II mWIBE scheme is CCA secure assuming the DBDH assumption
holds and (Sign.KeyGen, Sign, V erify) is a strongly existential unforgeable one-
time signature scheme.

Ciphertext Policy Multi-dimensional Range

Encryption

Kohei Kasamatsu1,2, Takahiro Matsuda2,
,
Goichiro Hanaoka2, and Hideki Imai1

1 Chuo University, Japan
{kasamatsu-kohei,h-imai}@imailab.sakura.ne.jp

2 National Institute of Advanced Industrial Science and Technology, Japan
{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. There are many applications in which services are provided
only if some values associated with some confidential (encrypted) data
are within a specific range. In this paper, we propose the notion of
(ciphertext-policy) range encryption (RE) that can be used in many of
such applications. RE is a type of public key encryption with additional
functionality where an encryptor can freely specify a range to a cipher-
text so that it can be decrypted only if the values associated with the
key belong to the range. We propose a concrete RE scheme based on the
time-specific encryption scheme by Kasamatsu et al. (SCN2012). Our
RE scheme is selectively secure under the weak bilinear Diffie-Hellman
inversion assumption.

1 Introduction

There are many applications in which services are provided only if some values
associated with a user’s encrypted data are within a certain range, while pre-
serving the data confidential. For example, an Internet advertising company may
want to distribute information only for those who are adult and whose income
is greater than some threshold. In such a case, it will be useful if we have an
encryption scheme with the following property: a decryption key is associated
with values, and an encryptor can freely specify a range to a ciphertext so that it
can be decrypted only if the values associated with the key belong to the range.

In this paper, we propose the notion of (ciphertext-policy) multi-dimensional
range encryption (RE) that realizes such a requirement. More specifically, in
RE, a user’s information (attribute) is encoded as a point (p1, p2, . . .) in a multi-
dimensional space, and an authority distributes to each user a decryption key
that corresponds to the point. An encryptor specifies a (multi-dimensional) range
([x1, y1], [x2, y2], . . .), and sends a ciphertext that corresponds the range. A re-
ceiver of the ciphertext can decrypt it only if the point associated with his/her
decryption key belongs to the range associated with the ciphertext, i.e. if it holds
that pi ∈ [xi, yi] for all i. In fact, we actually consider a more flexible “thresh-
old” version of such an encryption scheme. That is, an encryption scheme has

� The second author is supported by a JSPS Fellowship for Young Scientists.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 247–261, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

248 K. Kasamatsu et al.

a threshold K such that the ciphertext can be decrypted only if the number of
indices i satisfying pi ∈ [xi, yi] is greater than or equal to the threshold K. We
refer to an encryption scheme in which the total number of dimensions treated
in the scheme is L and the threshold is K as K-out-of-L dimensional RE. In
this paper, we propose a concrete RE scheme by extending the time-specific
encryption (TSE) scheme by Kasamatsu et al. [14].

1.1 Background

Time-Specific Encryption and the Construction in [14]. Paterson and Quaglia
[17] proposed the notion of time-specific encryption (TSE), and several instan-
tiations of it. In TSE, there is a trusted agent that periodically issues the in-
formation skt that is associated with each time slot t, and a ciphertext c is
generated in such a way that it is associated with a time interval [tL, tR] (called
decryption time interval). The ciphertext c can be decrypted by using skt only
if t ∈ [tL, tR].

1 By regarding time as a point in one dimensional space, TSE can
be viewed as a 1-out-of-1 dimensional RE scheme.

As mentioned earlier, our construction of a RE scheme is based on the TSE
scheme by Kasamatsu et al. [14]. [14] constructed a TSE scheme based on a
forward-secure encryption (FSE) scheme [1,8] which is obtained from a hierar-
chical identity-based encryption (HIBE) scheme by Boneh, Boyen, and Goh [5]
(we call it BBG-HIBE). The Kasamatsu et al.’s TSE construction is based on
the similarity of the functionalities of FSE and TSE. In fact, FSE can be viewed
as a special case of TSE in which the “starting point” of an interval is fixed, by
the following simple observation: In FSE, a ciphertext and a decryption key are
associated with a time, and a decryption key can be updated periodically (with-
out updating a corresponding public key). If a ciphertext is associated with time
t, the ciphertext can be decrypted using any decryption key skt′ corresponding
to time t′ satisfying t′ ≤ t by updating the decryption key skt′ into skt corre-
sponding to time t and using it for decryption. Therefore a ciphertext of FSE for
time t can be considered as a ciphertext of TSE for the decryption time interval
of [1, t]. By reversing the role of time in a trivial manner, from a FSE scheme
one can realize a TSE scheme in which the “end point” of a decryption time
interval is fixed. The basic idea behind the TSE scheme in [14] is to combine
these “restrictive” TSE schemes to obtain a TSE scheme in which we can specify
an arbitrary decryption time interval of a ciphertext. However, a naive combina-
tion by multiple encryption [21,9] of these two “restrictive” TSE schemes does
not work, because a decryption key of such a naive combination consists of two
independently generated decryption keys of the underlying two restrictive TSE
schemes, but an adversary who obtains several different decryption keys can de-
compose them to re-construct a new decryption key that allows the adversary

1 We note that in [17], Paterson and Quaglia proposed three different settings of TSE:
the plain setting, the public-key setting, and the identity-based setting. In the latter
two settings, a ciphertext is additionally associated with a public-key or an identity
of a receiver, and to decrypt the ciphertext the receiver’s secret key is also required.
The explanation of TSE here is about the plain setting.

Ciphertext Policy Multi-dimensional Range Encryption 249

to decrypt a challenge ciphertext. In [14], Kasamatsu et al. solved the above
technical problem by using a specific instantiation of FSE obtained from the
BBG-HIBE scheme [4]. More specifically, they combined two keys from the re-
strictive TSE schemes (obtained from the FSE scheme based on the BBG-HIBE
scheme) in an inseparable manner, by relying on an algebraic structure of the
BBG-HIBE scheme.

1.2 Our Contribution

In this paper, we propose the notion of RE and its efficient construction. Our
construction of a concrete RE scheme is based on the time-specific encryption
scheme by Kasamatsu et al. [14], and we show its selective security under the
weak bilinear Diffie-Hellman inversion assumption [5, Sect. 2.3].

Here, we explain a basic idea for our proposed RE scheme. As mentioned in the
previous subsection, TSE can be viewed as 1-out-of-1 dimensional RE. One might
intuitively think that a K-out-of-L dimensional RE scheme can be obtained
by combining this 1-out-of-1 dimensional RE with a K-out-of-L secret sharing
scheme by a naive multiple encryption methodology. That is, a plaintext is split
into shares using a K-out-of-L secret sharing scheme, each share is encrypted by
an independent 1-out-of-1 dimensional RE scheme, and a ciphertext of a K-out-
of-L dimensional RE scheme consists of ciphertexts of the underlying 1-out-of-1
dimensional RE schemes.

Unfortunately, this naive approach does not work, because it is vulnerable for
collusion attacks, with a similar reason to the case of constructing TSE from
FSE as we explained in the previous section. More specifically, a decryption
key of such a RE scheme must consist of independently generated decryption
keys of the underlying 1-out-of-1 dimensional RE scheme, but an adversary who
obtains several different decryption keys can decompose them and re-construct
a decryption key that allows the adversary to decrypt a challenge ciphertext. We
solve this technical problem by using a splitting of not a plaintext, but a master
secret key. More specifically, we split the master secret key of the TSE scheme
by Kasamatsu et al. [14] using a K-out-of-L secret sharing so that each share of
the master secret key can be used as the master secret key of the TSE scheme
in [14]. Such an approach will not work in general, but we show that it works
for the particular TSE scheme (i.e. 1-out-of-1 dimensional RE) of [14].

1.3 Related Work

The functionality of RE (i.e. the conditions for decryption via range member-
ship) can be generally realized by functional encryption [16,3] which includes
ciphertext-policy attribute-based encryption (CP-ABE) [2] and inner-product
encryption [10] as special cases. However, the data size of RE schemes obtained
from this general methodology are at least linear in N ·L where the RE schemes
support the maximal size of the range N , and thus will not be practical.

As mentioned in Sect. 1.1, TSE treats an interval as a condition for decryp-
tion, and can be viewed as 1-out-of-1 dimensional RE. TSE is introduced by

250 K. Kasamatsu et al.

Paterson and Quaglia [17], and they constructed generic constructions of TSE
schemes from identity-based encryption [18,6] and broadcast encryption [12,7].
Kasamatsu et al. [14] showed a concrete TSE scheme based on the BBG-HIBE
scheme [5] and a generic construction of a TSE scheme from any FSE scheme.

Shi, Bethencourt, Chan, Song, and Perrig [11] proposed multi-dimensional
range query over encrypted data (MRQED). In MRQED, as opposed to RE, a
ciphertext is associated with a point in a multi-dimensional space, and a de-
cryption key is associated with a (multi-dimensional) range. The ciphertext can
be decrypted only if each coordinate of the point is within the range for all di-
mensions. (Therefore, by our terminology, MRQED could be called key-policy
L-out-of-L RE.) By using MRQED, we can realize applications in which an ad-
ministrator allows controlled access of data to a user of the applications, such
as audit log systems for network and finance. For example, in the case of a net-
work audit log system, an auditor can request, to a system administrator, for a
decryption key so that it allows him/her to decrypt an encrypted log for port
numbers, IP addresses, and time stamps that belong to a certain range.

2 Preliminaries

In this section, we formally introduce the definition of FSE and bilinear groups,
and describe the decisional �-weak Bilinear Diffie-Hellman Inversion (�-wBDHI)
assumption.

Notation. For integers x, y with 0 ≤ x ≤ y, we denote by [x, y] the interval
containing all time periods from x to y inclusive for representing discrete L-
dimensional space. Furthermore, for a positive integer n ∈ N, we define [n] =

{1, . . . , n}. x $←− y denotes that x is chosen uniformly at random from y. x← y
denotes x is output from y if y is an algorithm, or y is assigned to x otherwise.
“PPT” denotes probabilistic polynomial time. We say that a function f(k) is neg-
ligible (in k) if f(k) < 1/p(k) for any positive polynomial p(k) and all sufficiently
large k

2.1 Forward-Secure Encryption

FSE [1,8] has the property that the threat of key exposure is confined to some
span by updating the secret key at each time unit. This scheme realizes the
property by using the functionality that a receiver can update the previous
secret key dt−1 to the next secret key dt without interacting with any outside
entity and without updating the corresponding public key. Here, we provide a
formal definition of FSE by following [8] but slightly customized for our purpose.

An FSE scheme is defined by the four algorithms (Gen, Upd, Enc, Dec), which
has the associated message spaceMSP . The key generation algorithm Gen(1λ, N)
takes a security parameter 1λ and the total number of time periods N as input,
and outputs a public key pk and an initial secret key d0. The key update al-
gorithm Upd(pk, i, j, di) takes pk, an index i < N of a previous time period, an

Ciphertext Policy Multi-dimensional Range Encryption 251

GenBBG(1
k, N) :

α
$←− Zq; g

$←− G; u
$←− G

R ← e(gα, g); d0 ← gα

hi
$←− G for all i ∈ [0, N]

Let h := (h0, . . . , hN)
PK ← (g, u,h, R)
Return (PK, d0).

EncBBG(PK, i, σ,M ; s ∈ Zq) :
Parse PK as (g, u,h, R).
C1 ← Rs ·M
C2 ← gs

C3 ← Hσ(i,h, u)
s

Return C ← (C1, C2, C3).

UpdBBG(PK, di, j, σ): (where j > i)

Parse PK as (g, u,h, R).; r
$←− Zq

If i = 0 then
dj ← (d0 ·Hσ(j,h, u)

r, gr, {hr
�}�∈[j+1,N])

Else (i.e. i �= 0)
Parse di as (a0, a1, bi+1, . . . , bN).

D1 ← a0 · (
∏j

k=i+1 b
σ
k) ·Hσ(j,h, u)

r

dj ← (D1, a1 · gr, {bv · hr
v}v∈[j+1,N])

End If
Return dj .

DecBBG(di, C) :
Parse C as (C1, C2, C3).; Parse di as (D1, D2, . . .).

Return M ← C1·e(C3,D2)
e(C2,D1)

.

Fig. 1. Basic BBG-FSE: The FSE scheme obtained from the BBG HIBE scheme,
where Hσ(i,h = (h0, . . . , hN), u) = h0 · (

∏i
k=1 h

σ
k) · u

index j > i for the current time period, and a secret key di (corresponding to
the period i) as input, and outputs a secret key dj for the time period j. The
encryption algorithm Enc(pk, i,M) takes pk, i < N , and a message M ∈ MSP
as input, and outputs a ciphertext c. The decryption algorithm Dec(pk, di′ , c)
takes pk, di′ , and c as input, and outputs either M or a failure symbol ⊥.
We require, for all λ ∈ N, all N ∈ N, all (pk, d0) ← Gen(1λ, N), all indices
i ∈ [0, N − 1] (for specifying time periods), and all messages M ∈ MSP , that
Dec(pk, Upd(pk, 0, i, d0), Enc(pk, i,M)) = M . The security of FSE guarantees
that even if an adversary learns SKi for some i, messages encrypted during all
time periods prior to i remain secret. We omit the explanation of security of
FSE. For details, we would like to refer the reader to [8].

We note that Canetti et al. [8] defined only the “sequential update” algo-
rithm for FSE. That is, in their syntax, the key update algorithm only allows
an update from a secret key di for the time period i to a key di+1 for the next
time period. However, for the sake of simplicity, we use the syntax in which
the update algorithm allows the “direct update”, so that Upd takes a key di for
the time period i as input and outputs the secret key dj as long as i < j. It
is straightforward to see that the direct update functionality can be generally
achieved by the sequential update algorithm of [8]. In addition, there are FSE
schemes which support an efficient direct update algorithm (compared to run-
ning the “sequential update” algorithm many times), such as the FSE scheme
instantiated with the HIBE scheme by Boneh et al. [5] via the HIBE-to-FSE
transformation shown in [8].

Basic Forward-Secure Encryption from the Boneh-Boyen-Goh HIBE Scheme.
In Fig. 1, we show the instantiation of an FSE scheme, which we call the basic
BBG-FSE scheme, using the HIBE scheme by Boneh, Boyen, Goh (BBG-HIBE)
[5] via the “chain”-style HIBE-to-FSE transformation. The basic version of our
RE scheme in Sect. 4.2 is obtained from the TSE scheme based on the above
basic BBG-FSE scheme.

252 K. Kasamatsu et al.

In the chain-style HIBE-to-FSE transformation, we realize an FSE scheme
which supports N time periods by interpreting a time period i in FSE as an
identity-vector (1, . . . , 1) in HIBE whose length is i. To update a secret key for
time period i to time period j > i, one can run the key derivation algorithm of
the HIBE scheme to obtain a decryption key for the identity-vector (1, . . . , 1) of
length j. In this section, we use this transformation.

Another more sophisticated HIBE-to-FSE transformation is the binary tree-
based construction due to Canetti, Halevi, and Katz [8]. This construction has
the advantage in that to instantiate an FSE scheme with N time periods, a
building block HIBE only needs to support a hierarchy with depth logN . In
Appendix A, we use this binary tree-based transformation to obtain our full
construction.

The common feature of these HIBE-to-FSE transformations is that multi-
ple instances of FSE can virtually be instantiated so that they all share the
same public parameters, by regarding the top-level identities as the indices for
specifying an independent HIBE scheme, and then applying the HIBE-to-FSE
transformations to each HIBE scheme instantiated in the second (and lower)
level identity space. This trick will be used in our basic and main constructions.

For notational convenience, in Fig. 1, we describe the scheme so that the
encryption and the update algorithms take an additional input σ ∈ N. This
value σ is used to instantiate the σ-th BBG-FSE schemes with N time periods
under the same public parameter, in such a way that each time period of the
instantiation does not cover others’ time periods. An identity-vector used in the
chain HIBE-to-FSE transformation is represented as (1, σ, . . . σ), where the first
“1” is the common prefix of the chains, obtained by using the above trick of
sharing public parameter.

2.2 Decisional �-wBDHI Assumption

We first recall bilinear groups. Let G and GT be groups of order p for some large
prime q (we assume that the size of q is implicitly determined by the security
parameter λ), and let e : G × G → GT be an efficiently computable mapping.
We call a tuple (G,GT , e) bilinear groups, and e a bilinear map, if the following
two conditions hold: (Bilinear:) for all generators (g, h) ∈ G × G and a, b ∈ Zp,
we have e(ga, hb) = e(g, h)ab. (Non-degenerate:) for all generators g, h ∈ G, we
have e(g, h) �= 1GT .

Now we recall the decisional �-wBDHI assumption (which is defined via the
so-called decisional �-wBDHI∗ problem [5, Sect. 2.3]). Let � ∈ N. We say that
the decisional �-wBDHI assumption holds in (G,GT , e) if for any PPT algorithm
A the following difference is negligible in the security parameter 1λ:

|Pr[A(g, h, t1, . . . , t�, e(g, h)α
�+1

) = 0]− Pr[A(g, h, t1, . . . , t�,W) = 0]|

where g, h
$←− G, α

$←− Zq, ti ← g(α
i), and W

$←− GT .

Ciphertext Policy Multi-dimensional Range Encryption 253

3 Our Basic Idea

In this section, we give an intuitive explanation of our strategy of the proposed
construction and review an efficient construction of TSE due to [14].

Underlying Technique of Our Construction. As explained in Sect. 1.2, a TSE
scheme is already a 1-out-of-1 dimensional RE scheme, and thus, it seems also
possible to obtain a K-out-of-L dimensional RE scheme by extending TSE. A
naive idea for such extension is to split a plaintext into L shares by using a
K-out-of-L secret sharing, and individually encrypt these shares by using L
different copies of the underlying 1-out-of-1 dimensional RE scheme. However,
this construction is not secure as collusion attacks are quite effective. Namely,
for example, assuming that there are two users who possess different decryption
keys, even if any one of these keys can recover at most K − 1 shares, they could
reconstruct the plaintext as they may obtain K shares in total by the collusion
attack.

In this work, for constructing K-out-of-L dimensional RE, we basically follow
the above (insecure) method but also introduce a countermeasure which prevents
the above collusion attack. More specifically, we do not straightforwardly com-
bine TSE and a secret sharing (as above) but modify TSE to have the resplittable
threshold property [13]. Roughly speaking, we say that threshold encryption sat-
isfies resplittability if for a given fixed public and decryption keys, it is possible
to repeatedly generate shares of the decryption keys for multiple times. Fur-
thermore, a common “label” is given to all the shares which are generated in
the same share generation process, and the decryption algorithm correctly re-
covers the plaintext only when using the threshold number of shares with the
same label. In our proposed scheme, each user is implicitly given a unique label,
and therefore, even though two (or more) malicious users collude, they cannot
recover the plaintext from their shares since their labels are different.

From the above discussion, we see that a promising approach for achieving our
goal is to extend a basic TSE scheme to have the resplittable threshold property.
As such a basic TSE scheme, we choose Kasamatsu et al.’s scheme [14] which
is one of the most efficient constructions of TSE. In the remaining part of this
section, we give a brief review and an overview of our idea to extend it to have
the resplittable threshold property.

Kasamatsu et al.’s Time-Specific Encryption. Here, we review a TSE scheme
which was proposed in [14]. In [14], Kasamatsu et al. pointed out the similarity
between FSE and TSE, and showed that it is possible to efficiently construct
TSE via a simple modification of FSE. Based on this observation, they actu-
ally construct a fairly practical TSE scheme from an FSE scheme which can be
straightforwardly obtained from the BBG-HIBE scheme [4]. More specifically,
Kasamatsu et al.’s scheme is essentially a double encryption by the BBG-HIBE
scheme, and the algebraic structure of Kasamatsu et al.’s scheme is almost the
same as that of the BBG-HIBE scheme. Furthermore, as pointed out in [13],

254 K. Kasamatsu et al.

natural constructions of threshold encryption from pairings usually have resplit-
tability as it is. Thus, we can expect that it is not difficult to construct a resplit-
table threshold version of Kasamatsu et al.’s TSE (if thresholding Kasamatsu
et al.’s TSE is not difficult), and that by using it, K-out-of-L dimensional RE
can be obtained. Actually, our proposed K-out-of-L dimensional RE scheme is
constructed in this way.

4 Our Basic Construction of Range Encryption

In this section, we give the definition of RE and our proposed construction of
RE.

4.1 Definition of Ciphertext-Policy Multi-dimensional Range
Encryption

In RE, secret keys are associated with a point P = (p1, . . . , pL) in an L-
dimensional space and ciphertexts are associated with a multi-dimensional range
F = ([x1, y1], . . . , [xL, yL]). A receiver can decrypt a ciphertext only if the num-
ber of indices satisfying pi ∈ [xi, yi] is greater than or equal to the threshold K.
For notational convenience, for a point P = (p1, . . . , pL) and an L dimensional
range F = ([x1, y1], . . . , [xL, yL]), we define IP,F = {i ∈ [L] |pi ∈ [xi, yi]} as the
set consisting of indices i for which the coordinate pi of the point P lies in the
corresponding range [xi, yi] of F.

Now, we give the formal definition of RE as follows.

Definition 1. Ciphertext-policy K-out-of-L dimensional range encryption is de-
fined by the four algorithms (Setup, KeyGen, Enc, Dec):

Setup(1λ, L,N,K): The setup algorithm takes a security parameter 1λ, the total
number of dimensions L, the maximal size of the range N , and a threshold
K as input, and outputs a public parameter PP and a master secret key
MSK.

KeyGen(PP,MSK, P = (p1, . . . , pL)): The key generation algorithm takes PP ,
MSK, and a point P as input, and outputs a secret key SKP.

Enc(PP, F = ([x1, y1], . . . , [xL, yL]),M): The encryption algorithm takes PP , an
L dimensional range F, and a plaintextM as input, and outputs a ciphertext
CF.

Dec(PP, SKP, CF): The decryption algorithm takes PP , SKP, and CF as input,
and outputs M or ⊥.

We require that for all λ ∈ N, all N ∈ N, all points P = (p1, . . . , pL) ∈ [N]L,
all L dimensional ranges F = ([x1, y1], . . . , [xL, yL]) where 1 ≤ xi ≤ yi ≤ N
(for all i ∈ [L]), all (PP,MSK) ← Setup(1λ, L,N,K), and all plaintexts M :
if |IP,F| ≥ K, then it holds that Dec(PP, KeyGen(PP,MSK, P), Enc(PP, F,M))
=M .

Ciphertext Policy Multi-dimensional Range Encryption 255

Definition 2. We say that a K-out-of-L dimensional RE scheme is selective
IND-CPA secure if for any polynomial N , for any PPT adversary A, the advan-
tage function AdvCPA

A,N (λ) is negligible in the following game between a challenger
C and A:

Init. A chooses a challenge L-dimensional range F∗ = ([x∗1, y
∗
1], . . . , [x

∗
L, y

∗
L])

and sends it to C.
Setup. C runs Setup(1λ, L,N,K) to generate (PP,MSK), and gives PP to A.
Phase 1. A can adaptively issue the key generation query Pi. If |IPi,F∗ | ≥ K,

then C returns ⊥ to A. Otherwise, C responds to the query by running
KeyGen(PP,MSK, Pi) to generate SKPi and sending SKPi to A.

Challenge. A selects two challenge messages M0,M1, and sends them to C. C
chooses a random bit β, and runs Enc(PP, F∗,Mβ) to generate a challenge
ciphertext C∗

F∗ . Then C gives C∗
F∗ to A.

Phase 2. A can adaptively issue key generation queries Pi satisfying |IPi,F∗ | < K.
Guess. A outputs its guess β′ for β.

A’s advantage in the above game is defined by AdvCPA
A,N (λ) = |Pr[β′ = β]− 1/2|.

As usual, adaptive security is defined by allowing an adversary to choose a
challenge L-dimensional range F∗ in the challenge phase, instead of forcing the
adversary to choose it in the initial phase.

4.2 Basic Construction

For the sake of simplicity, in this section, we give the basic version of our proposed
construction whose public parameter size is O(N) +O(L) and secret key size is
O(NL). Our full scheme, in which the public parameter size is O(L)+O(logN)
and the secret key size is O(L log2N) by using binary tree structures inspired by
the HIBE-to-FSE transformation of Canetti et al. [8], is given in Appendix A.
We stress that those proposed schemes share the same idea as explained in
Sect. 3, and we believe that the basic version of our proposed scheme is helpful
for understanding the full construction.

Description of Our Basic Construction. We give the basic version of our pro-
posed RE scheme. Let (G,GT , e) be bilinear groups, let N ∈ N be the size of the
space, let L ∈ N be the number of the dimension, and let (GenBBG, UpdBBG, EncBBG,
DecBBG) be the BBG-FSE scheme given in Fig. 1. Then we construct the basic
version of our RE scheme as in Fig 2.

As explained in Sect. 3, we consider L “related” instantiations of the 1-out-of-1
dimensional RE (i.e. TSE) scheme of [14] each of whosemaster secret key is a share
obtained from a K-out-of-L secret-sharing of a top level master secret gα, using
the specific algebraic property of the TSE scheme. Furthermore, each 1-out-of-1 di-
mensional RE scheme is constructed by connecting two “restrictive” TSE schemes
derived from the basic BBG-FSE scheme described in Fig. 1 in the same way as is
done in [14]. More specifically, the secret key of the n-th 1-out-of-1 dimensional RE

schemeconsists of two secret keys (d
(1,n)
yn , d

(2,n)
N−xn+1) of thebasicBBG-FSEschemes,

256 K. Kasamatsu et al.

Setup(1λ, L,N,K) :

(PK, d0) ← GenBBG(1
k, N); MSK ← d0 = gα

Parse PK as (g, u,h = (h0, . . . , hN), R).

u1,i
$←− G and u2,i

$←− G for all i ∈ [L]
PP ← (g, {u1,i, u2,i}i∈[L],h, R,K).
Return (PP,MSK).

KeyGen(PP,MSK, P = (p1, . . . , pL)) :
Parse PP as (g, {u1,i, u2,i}i∈[L],h, R,K).

ξi
$←− Zq for all i ∈ [L]

aj
$←− Zq for all j ∈ [K − 1]

f(x) := α + ΣK−1
k=1 akx

k

For all n ∈ [L]:
PK1,n ← (g, u1,n,h, R)
PK2,n ← (g, u2,n,h, R)
n′ ← 2(n − 1) + 1

d(1,n)
pn

← UpdBBG(PK1,n, g
f(n)+ξn , pn, n

′)

d
(2,n)
N−pn+1

← UpdBBG(PK2,n, g
−ξn , N − pn + 1, 2n)

End For

Return SKP ← ({d(1,i)
pi

, d
(2,i)
N−pi+1}i∈[L], P).

Enc(PP, F = ([x1, y1], . . . , [xL, yL]),M) :
Parse PP as (g, {u1,i, u2,i}i∈[L],h, R,K).

s
$←− Zq

For all n ∈ [L]:
PK1,n ← (g, u1,n,h, R)
PK2,n ← (g, u2,n,h, R)
n′ ← 2(n − 1) + 1
(C1, C2, C3,n) ← EncBBG(PK1,n, yn, n

′,M ; s)
(C1, C2, C

′
3,n)

← EncBBG(PK2,n, N − xn + 1, 2n,M ; s)
End For
Return CF ← (C1, C2, {C3,i, C

′
3,i}i∈[L], F).

Dec(PP, SKP, CF) :
Parse PP as (g, {u1,i, u2,i}i∈[L],h, R,K).

Parse SKP as ({d(1,i)
pi

, d
(2,i)
N−pi+1}i∈[L], P).

Parse CF as (C1, C2, {C3,i, C
′
3,i}i∈[L], F).

Parse P as (p1, . . . , pL).
Parse F as ([x1, y1], . . . , [xL, yL]).
If |IP,F| < K then return ⊥.
Let I′ be any set s.t. I′ ⊆ IP,F ∧ |I′| = K

Let Ĩ be any set s.t. Ĩ ⊆ I′ ∧ |Ĩ| = K − 1

Let ñ := I′\Ĩ
For all n ∈ I′:
PK1,n ← (g, u1,n,h, R)
PK2,n ← (g, u2,n,h, R)
n′ ← 2(n − 1) + 1

d(1,n)
yn

← UpdBBG(PK1,n, d
(1,n)
pn

, yn, n
′)

d
(2,n)
N−xn+1

← UpdBBG(PK2,n, d
(2,n)
N−pn+1, N − xn + 1, 2n)

Parse d(1,n)
yn

as (d1,n, d
′
1,n, . . .).

Parse d
(2,n)
N−xn+1 as (d2,n, d

′
2,n, . . .).

D1,n ←
(
d
Δ

n,I′ (0)
1,n , (d′

1,n)
Δ

n,I′ (0), . . .
)

D2,n ←
(
d
Δ

n,I′ (0)
2,n , (d′

2,n)
Δ

n,I′ (0), . . .
)

If n = ñ then
Cn ← (C1, C2, C3,n)

Else (i.e. n �= ñ)
Cn ← (1GT

, C2, C3,n)
End If
M1,n ← DecBBG(D1,n, Cn)
C′

n ← (1GT
, C2, C

′
3,n)

M2,n ← DecBBG(D2,n, C
′
n)

End For
Return M ′ ←

∏
n∈I′ M1,n · M2,n.

Fig. 2. The basic version of our proposed K-out-of-L dimensional RE scheme. Let
the Lagrange coefficient Δi,S(x) =

∏
j∈S,j �=i

x−j
i−j

for i ∈ Zq and a set S, of elements in
Zq, and let 1GT be an identity element in GT . For K − 1 degree polynomial f and I
which is sets of K elements of Z∗

q , we have f(x) = Σn∈IΔn,I(x)f(n). For the notation
regarding the Lagrange coefficients, we follow [19].

which are connected via a 2-out-of-2 secret sharing (using the “blinding factor” ξn),

where d
(i,j)
p indicates a secret key for the time period p of the i-th FSE scheme in

the j-th 1-out-of-1 dimensional RE scheme. The secret key of our basic version of
the K-out-of-L dimensional RE scheme consists of L secret keys of 1-out-of-1 di-
mensional RE schemes connected by shares f(n) of aK-out-of-L secret sharing.

We would like the reader to notice that in Fig. 2, the scheme is described at
the cost of efficiency, so that it is easy to see that the TSE scheme is extended to
have the resplittable threshold property, as we explained above. For example, in
the encryption scheme, the ciphertext components C1 and C2 are computed 2L
times by running EncBBG from the common randomness s. However, in practice,
{C3,i, C

′
3,i}i∈[L] can be computed without calculating C1 and C2. The security

is guaranteed by the following theorem.

Theorem 1. If the decisional (N + 1)-wBDHI assumption holds in (G,GT , e),
then the K-out-of-L dimensional RE scheme constructed as in Fig 2 is selective
IND-CPA secure.

Ciphertext Policy Multi-dimensional Range Encryption 257

In the proof of the theorem 1, as usual, we will build an algorithm B that solves
the decisional (N+1)-wBDHI problem in (G,GT , e) by using any selective IND-
CPA adversary A that attacks our proposed scheme in Fig. 2. Intuitively, we
simulate the IND-CPA game of A by combining the proof methodology of [14]
and that of [19]. We can simulate a secret key of 1-out-of-1 dimensional RE
by using the approach of [14]. Due to the technique of [19] by using Lagrange
interpolation, we can also apply the approach of [14] to the way of simulating
secret keys corresponding to each dimension for the proposed K-out-of-L RE
scheme (recall that a secret key of the K-out-of-L RE scheme consists of the
underlying L secret keys of 1-out-of-1 RE scheme). The detail of the proof is
given in the full version of this paper.

Flexible Choice of Threshold. In Fig. 2, a thresholdK is common to all secret keys.
However, in fact ourRE scheme can allow the choice of a thresholdK for each secret
key by setting a randomK − 1 degree polynomial f for each key generation, (We
have to change the security game slightly so that an adversary can choose not only
a point, but also a threshold.) We can straightforwardly prove the security of this
flexible variant in essentially the same way as we did for our RE scheme in Fig. 2.
A RE scheme which allows flexible choice of a threshold is useful in the cases in
which available conditions need to be changed depending on users.

5 Discussion

In this section, we discuss applications of RE and the efficiency of our RE scheme.

5.1 Immediate Applications

We introduce some applications realized straightforwardly by using our RE. Our
RE scheme is useful for services managed based on information of a membership
card, e.g. expiration date, age, birth date, and utility time. For example, a shop
does not want to sell products for customers who are minor or who have the
out-of-date membership card. The shop can easily make such a management
based on a secret key of a RE scheme stored in the membership card.

There are also needs to control available services based on information of a
user in e-commerce. For example, an on-line rental video company could provide
rental videos only for customers with age 15 or elder, and within the limited
number of lent goods, and expiration date. Our RE scheme allows a seller to
easily manage the privileges of users. The available services of a user are decided
by a secret key based on information provided when registering the user.

5.2 Comparison with Functional Encryption

RE can be seen as a special case of functional encryption (FE) [16,3] for a
class of policies which express range membership and attributes which express
points in each dimension. Hence, we could construct RE by using CP-ABE [2]

258 K. Kasamatsu et al.

or Predicate Encryption (PE) [10] which are special cases of FE. However, RE
schemes obtained straightforwardly by using FE tend to become less efficient. For
example, Okamoto and Takashima’s scheme in [15] is known as one of the most
sophisticated and powerful CP-ABE schemes, but it has a linearly-increasing
ciphertext overhead and the size of public parameter in N ·L where L is the total
number of dimensions and N is the maximum size of the range. Furthermore,
to our knowledge, an RE scheme which allows flexible choice of threshold could
not be constructed from existing schemes. 2

On the other hand, parameter sizes of our full RE scheme in Appendix A
depend on at most not O(L·N) but O(L·log2N), since our scheme can efficiently
express the range membership. More specifically, our full scheme has the public
parameter size of O(L) + O(logN) group elements, the ciphertext overhead of
O(L) group elements, and the secret key size of O(L log2N).

References

1. Anderson, R.: Two remarks on public key cryptology. In: ACM CCS 1997 (1997)
(Invited Lecture),
http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: IEEE Symposium on Security and Privacy 2007, pp. 321–334 (2007)

3. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with
constant size ciphertext. Full version of [4]. Cryptology ePrint Archive: Report
2005/015 (2005)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

8. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 646–646. Springer,
Heidelberg (2003)

9. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

2 One of the reviewers pointed out that applying the range method by Bethencourt,
Sahai, and Waters [2] into CP-ABE by Waters [20] results in an efficient RE scheme.
In fact, the RE scheme constructed in such a way seems to have each the public pa-
rameter size, ciphertext overhead, secret key size of O(L logN). However, compared
to this RE scheme, our RE scheme still is superior in the public parameter size and
ciphertext overhead.

http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html

Ciphertext Policy Multi-dimensional Range Encryption 259

10. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

11. Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-Dimensional Range
Query over Encrypted Data. In: IEEE Symposium on Security and Privacy 2007,
pp. 350–364 (2007)

12. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

13. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao,
Y.: Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Hei-
delberg (2012)

14. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G., Imai,
H.: Time-Specific Encryption from Forward-Secure Encryption. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 184–204. Springer, Heidelberg
(2012)

15. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General
Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

16. O’Neill, A.: Definitional Issues in Functional Encryption. Cryptology ePrint
Archive: Report 2010/556 (2010)

17. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco,
R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)

18. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

19. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

20. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011)

21. Zhang, R., Hanaoka, G., Shikata, J., Imai, H.: On the Security of Multiple Encryp-
tion or CCA-security+CCA-security=CCA-security? In: Bao, F., Deng, R., Zhou, J.
(eds.) PKC 2004. LNCS, vol. 2947, pp. 360–374. Springer, Heidelberg (2004)

A Our Main Construction of Range Encryption

Here, we describe our main RE scheme obtained by using the binary tree struc-
tures for the basic version of our scheme presented in Sect. 4. As noted earlier,
this construction is obtained by applying the technique from the HIBE-to-FSE
transformation by Canetti et al. [8] to the basic version of the proposed scheme
for reducing the sizes of the public parameter and decryption keys.

Let � ∈ N. Consider a complete binary tree B with N = 2� − 1 nodes, where
N will be the maximal size of values in one dimension supported by our pro-
posed RE scheme. The nodes in the binary tree B are numbered according to
a pre-order traversal in an incremental order, with the root node of B being 1.
Intuitively, the binary tree corresponds to one instantiation of FSE obtained via
the HIBE-to-FSE transformation of Canetti et al. [8] to the BBG-HIBE scheme.

260 K. Kasamatsu et al.

We need to introduce point vectors PVp and point vectors set PV Setp. PVp
is the vector consisting of the indices corresponding to the nodes included in
the path from the node p to the root node (of B), where PV0 is empty set.
Intuitively, the point vector PVi shows an identity-vector corresponding to the
time period i of the BBG-FSE scheme. (Recall that a time period is interpreted
as an identity-vector in HIBE-to-FSE transformation of Canetti et al. [8].) For
an index p ∈ [N] (of a node in the tree B), the set PV Setp is defined as follows:
PV Set1 = {PV1}. Recursively, for p ∈ [2, N], PV Setp+1 is defined depending
on PV Setp as follows: Let s = min{j | PVj ∈ PV Setp}. If PVs is a leaf node,
then PV Setp+1 is obtained by removing the vector PVs from the set PV Setp.
Otherwise, let sL (resp. sR) be the index of the left (resp. right) node of the
node s. PV Setp+1 is the set obtained by removing PVs from and adding PVsL
and PVsR to the set PV Setp.

Our proposed scheme is constructed from multiple BBG-FSE schemes. We
virtually instantiate multiple BBG-FSE schemes by using a map Hi,σ which
takes as input point vector PVp as well as additional inputs i ∈ [2] and σ ∈ [L].
The map Hi,σ generates a point vector corresponding to the time period p of a
first or second BBG-FSE scheme of the σ-th dimension. (Recall that the 1-out-
of-1 dimensional RE scheme is constructed from two BBG-FSE schemes.)

In the basic construction of RE given in Sect. 4.2, we implicitly use PVp =
(1, 2(σ − 1) + i, . . . , 2(σ − 1) + i) s.t. |PVp| = p as a point vector corresponding
to the time period p of the i-th BBG-FSE scheme of the σ-th dimension. This
is the difference between the main and the basic constructions of RE.

Description of Our Full Scheme. Let (G,GT , e) be bilinear groups (where G and
GT are of prime order q), let � ∈ N, let N = 2� − 1 be the size of the space, and
let L ∈ N be the number of the dimension. Then we construct the main version
of our RE scheme as in Fig. 3.

As explained Sect. 4.2, this construction is obtained by applying the technique
from the HIBE-to-FSE transformation by Canetti et al. [8] to the basic version
of the proposed scheme. In the technique, a secret key of FSE corresponding to
time j consists of a set of the secret keys of basic FSE for PVv ∈ PV Setj. In
Fig. 3, KeyDerive is used as the update algorithm of FSE.

Similarly to the basic version of our RE in Fig. 2, the secret key of the i-
th 1-out-of-1 dimensional RE scheme consists of two secret keys d1,PV Setpi

,
d2,PV SetN−pi+1 of basic BBG-FSE connected by the shares ξi, −ξi of a 2-out-of-2
secret sharing. The secret key of a K-out-of-L dimensional RE scheme consists
of L secret keys of 1-out-of-1 dimensional RE schemes connected by the share
f(i) of a K-out-of-L secret sharing.

The security is guaranteed by the following theorem (the proof is given in the
full version of this paper).

Theorem 2. If the decisional (� + 1)-wBDHI assumption holds in (G,GT , e),
then the K-out-of-L constructed as in Fig. 3 is selective IND-CPA secure.

Ciphertext Policy Multi-dimensional Range Encryption 261

Setup(1λ, L,N = 2� − 1,K) :

α
$←− Zq ; R ← e(gα, g); MSK ← gα; u1,i

$←− G and u2,i
$←− G for all i ∈ [�]

hj
$←− G for all j ∈ [0, N]

Define Hi,σ(PV = (pv1, . . . , pv|PV |)) := h2NL+1
0 ·

∏|PV |
j=1 (h

{2(σ−1)+i}N+pvj
j) · ui,σ

PP ← (g, {u1,i, u2,i}i∈[L], {hj}j∈[0,�], R,H,K)
Return (PP,MSK).

KeyGen(PP,MSK, P = (p1, . . . , pL)) :

Parse PP as (g, {u1,i, u2,i}i∈[L], {hj}j∈[0,�], R, H,K).; ξi
$←− Zq for all i ∈ [L]

bj
$←− Z

∗
q for all j ∈ [K − 1]; Let f(x) := α + b1x + b2x

2 + · · · + bK−1x
K−1

For all n ∈ [L]:
For all PVv ∈ PV Setpn :

r(1,n)
v

$←− Z
∗
q ; D1 ← gf(n)+ξn · H1,n(PVv)

r
(1,n)
v

d
(1,n)
PVv

← (D1, g
r
(1,n)
v , {hr

(1,n)
v

v′ }v′∈[|PVv |+1,N])

End For
For all PVv′ ∈ PV SetN−pn+1:

r
(2,n)

v′
$←− Z

∗
q ; D2 ← g−ξn · H2,n(PVv′)

r
(2,n)

v′

d
(2,n)
PV

v′
← (D2, g

r
(2,n)

v′ , {h
r
(2,n)

v′
v′ }v′∈[|PV

v′ |+1,N])

End For

d1,PV Setpn
← {d(1,n)

PVv
}PVv∈PV Setpn

d2,PV SetN−pn+1
← {d(2,n)

PV
v′

}PV
v′ ∈PV SetN−pn+1

End For
Return SKP ← ({d1,PV Setpi

, d2,PV SetN−pi+1
}i∈[L], P).

Enc(PP, F = ([x1, y1], . . . , [xL, yL]),M) :

s
$←− Zq ; CF ← (Rs · M, gs, {H1,i(PVyi

)s, H2,i(PVN−xi+1)
s}i∈[L], F)

Return CF.
Dec(PP, SKP, CF) :
Parse PP as (g, {u1,i, u2,i}i∈[L], {hj}j∈[0,�], R, H,K).
Parse SKP as ({d1,PV Setpi

, d2,PV SetN−pi+1
}i∈[L], P).

Parse CF as (C1, C2, {C3,i, C4,i}i∈[L], F).
Parse P as (p1, . . . , pL).; Parse F as ([x1, y1], . . . , [xL, yL]).
If |IP,F| < K then return ⊥.
Let I′ be any set s.t. I′ ⊆ IP,F ∧ |I′| = K
For all j ∈ I′:

d
(1,j)
PVv

∈ d1,PV Setpj
s.t. PVv ⊆ PVyj

d
(2,j)
PV

v′
∈ d2,PV SetN−pj+1

s.t. PVv′ ⊆ PVN−xj+1

d
(1,j)
PVyj

← KeyDerive(PP, d
(1,j)
PVv

, PVyj
); d

(2,j)
PVN−pj+1

← KeyDerive(PP, d
(2,j)
PV

v′
, PVN−xj+1)

Parse d
(1,j)
PVyj

as (D1,j , D
′
1,j , . . .).; Parse d

(2,j)
PVN−pj+1

as (D2,j , D
′
2,j , . . .).

End For

Return M ′ ← C1 ·
∏

i∈I′
e(C3,i,D

′Δi,I′ (0)
1,i

)·e(C4,i,D
′Δi,I′ (0)
2,i

)

e(C
Δ

i,I′ (0)
2

,D1,i)·e(C
Δ

i,I′ (0)
2

,D2,i)

.

KeyDerive(PP, d
(i,j)
PV , PV ′ = (pv1, . . . , pv|PV ′|)): where PV ⊂ PV ′

Parse d
(i,j)
PV as (D,D′, D|PV |+1, . . . , DN).; r

$←− Zq

d
(i,j)

PV ′ ←
(
(D ·

∏|PV ′|
v=|PV |+1

D{2(j−1)+i}N+pvv
v · ui,j) · Hi,j(PV ′)r ,

D′ · gr , {Dv′ · hr
v}v′∈[|PV ′|+1,N]

)
Return d

(i,j)

PV ′ .

Fig. 3. The main version of our proposed K-out-of-L multi-dimensional RE. Let the
Lagrange coefficient Δi,S(x) =

∏
j∈S,j �=i

x−j
i−j

for i ∈ Zq and a set S, of elements in
Zq. For K − 1 degree polynomial f and I which is sets of K elements of Z∗

q , we have
f(x) = Σn∈IΔn,I(x)f(n). For the notation regarding the Lagrange coefficients, we
follow [19].

Speeding Up Ate Pairing Computation

in Affine Coordinates

Duc-Phong Le and Chik How Tan

Temasek Laboratories, National University of Singapore,
5A Engineering Drive 1, #09-02, Singapore 117411

{tslld,tsltch}@nus.edu.sg

Abstract. At Pairing 2010, Lauter et al’s analysis showed that Ate pair-
ing computation in affine coordinates may be much faster than projective
coordinates at high security levels. In this paper, we further investigate
techniques to speed up Ate pairing computation in affine coordinates.
We first analyze Ate pairing computation using 4-ary Miller algorithm
in affine coordinates. This technique allows us to trade one multiplication
in the full extension field and one field inversion for several multiplica-
tions in a smaller field. Then, we focus on pairing computations over
elliptic curves admitting a twist of degree 3. We propose new fast ex-
plicit formulas for Miller function that are comparable to formulas over
even twisted curves. We further analyze pairing computation on cubic
twisted curves by proposing efficient subfamilies of pairing-friendly el-
liptic curves with embedding degrees k = 9, and 15. These subfamilies
allow us not only to obtain a very simple form of curve, but also lead to
an efficient arithmetic and final exponentiation.

Keywords: Ate pairing, Pairing computation, final exponentiation,
affine coordinates, cubic twisted curves, pairing-friendly elliptic curves.

1 Introduction

In recent years, the pairings have become extremely useful in public-key cryp-
tography. Pairings used in cryptography are efficiently computable bilinear maps
on torsion subgroups of points on a (hyper-)elliptic curve that map into the mul-
tiplicative group of a finite field. We call such a map a cryptographic pairing. Let
G1,G2 be finite abelian groups written additively, and let G3 be a finite abelian
group written multiplicatively. A cryptographic pairing is a map:

e : G1 ×G2 → G3.

The first pairing application to cryptography was introduced in Joux’ seminal
paper [17] describing a one-round tripartite Diffie-Hellman key exchange protocol
in 2000. Since then, the use of cryptographic protocols based on pairings has had
a huge success with some notable breakthroughs such as practical Identity-based
Encryption (IBE) schemes [7], and many other new cryptographic primitives.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 262–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Speeding Up Ate Pairing Computation in Affine Coordinates 263

Due to the high cost of pairing operations, the efficiency of pairing computa-
tion and the construction of pairing-friendly curves have become an active field
of research. The former concerns many techniques having been exploited to dra-
matically improve the performance of the Miller algorithm, see [2][3][20][8][24].
The later focuses on constructing curves that are suitable for pairing-based cryp-
tosystems. Whereas standard elliptic curve cryptography can be implemented
using randomly generated elliptic curves, the elliptic curves required to imple-
ment pairing-based protocols must have a small embedding degree such that
pairings can be efficiently computed in extension finite fields. Many works on
constructing pairing-friendly elliptic curves have been presented in [27][9][4] and
this research is collected and extended in the recent paper [13].

Projective coordinates are usually preferred than affine coordinates for imple-
menting pairings. That is because point addition or doubling operations in affine
coordinates involve a field modular inversion that is much expensive than one
field multiplication in the base field Fp. However, recent analysis in [22] showed
that over Fpd , for larger d, the inversion-to-multiplication ratio is significant re-
duced. Ate pairing computation in affine coordinates is thus much faster than
that in projective coordinates at high security levels.

This work presents our optimizations to Miller loop using a 4-ary algorithm
with direct formulas to compute quadrupling of points and a multiplication of
two line functions in affine coordinates. Our techniques make a trade-off between
one multiplication in the full extension field Fpk , one inversion in the subfield
Fpe for some multiplications in Fpe , where k is the embedding degree of the
elliptic curve E over the finite field Fp, e = k/d, and d is the degree of the twist
admitted during pairing computation.

This work also focuses on pairing computations over pairing-friendly elliptic
curves admitting a cubic twist. Although, such a curve doesn’t provide a full
denominators elimination technique, but it allows a shorter Miller loop. We first
present new fast formulas in affine coordinates for doubling/addition steps of
Miller’s algorithm over cubic twisted curves. Then, we give a finer choice for
curves of embedding degrees k = 9, 15. By carefully choosing parameters, we
point out that the desired curve is always of form y2 = x3 + 1. Finally, we
present improvements for the hard part in final exponentiation for such curves.

The rest of the paper is organized as follows: Section 2 briefly recalls some
basic knowledges about Ate pairing and its computation. Section 3 presents our
improvements for the curves with even twisted degree. Section 4 presents new
explicit formulas to speed up pairing computation on curves with cubic twisted
degree. We conclude in Section 5.

2 Background on Pairings

For p prime and p > 3, an elliptic curve defined over a finite field Fp in short
Weierstrass form is the set of solutions (x, y) to the equation

E : y2 = x3 + ax+ b,

264 D.-P. Le and C.H. Tan

where a, b ∈ Fp such that the discriminantΔ = 4a3+27b2 is non-zero. We denote
byO the point at infinity onE, and by #E(Fp) the number of points onE defined
over Fp. We have n = #E(Fp) = p+1− t, where t is the trace of Frobenius, which
satisfies |t| ≤ 2

√
p (Hasse’s theorem). Let r be a prime number that divides the

number of points n and is co-prime to the characteristic p. Let k be the embedding
degree of the elliptic curve E with respect to r, i.e., k the smallest positive integer
such that r|pk−1. By this setting, we can define subgroups of points of prime order
r on E and a multiplicative group of order r in the extension field F∗

pk = Fpk\{0},
i.e., F∗

pk contains the group μr of r-roots of unity.

2.1 The Ate Pairing

We denote subgroups of points of prime order r on E(Fpk) by E[r]. Let m ∈
Z, P ∈ E[r] and fm,P be a rational function on E with divisor div(fm,P) =
m(P) − (mP) − (m − 1)(O). Let πp be the p-power Frobenius endomorphism
on E, πp : E → E given by πp(x, y) = (xp, yp). Let T = t − 1. We denote by
G1 = E[r]∩Ker(πp−[1]) = E(Fp)[r], G2 = E[r]∩Ker(πp−[p]) ⊆ E(Fpk)[r]. For
Q ∈ G2 and P ∈ G1, the Ate pairing is defined as [16] (so with the arguments
swapped in comparison to Tate pairing):

aT = G2 ×G1 → μr, (Q,P) %→ fT,Q(P)(p
k−1)/r. (1)

The length of Miller loop during Ate pairing computation is determined by the
trace of Frobenius t. The Ate pairing is thus particularly suitable for pairing-
friendly elliptic curves with small values of t. Usually, when implementing Tate
pairing and its variants, instead of inputing the point Q on the curve G2 ⊆
E(Fpk)[r], one can take Q′ ∈ G′

2 ⊆ E′(Fpk/d)[r], where E′ is a twist of E, and
d|k is the degree of the twist. Points on the twisted curve are defined over a
smaller field, and are thus obviously much faster for computation.

Let ψ : E′ → E,Q′ %→ Q be an isomorphism mapping points of the twisted
curve to that of the original curve. The computation of aT (ψ(Q

′), P) consists
of two parts: evaluation of the function fT,Q at P and final exponentiation en-
suring a unique result of the pairing. The first part is computed using Miller’s
algorithm [26] that is described in Algorithm 1.

Input: T =
∑l−1

i=0 ti2
i (radix 2), ti ∈ {0, 1}, Q′ ∈ G′

2 not a multiple of P ∈ G1.
Output: fT,ψ(Q′)(P) representing a class in F∗

pk/(F
∗
pk)

r

R′ ← Q′, f ← 1, ;
for i = l − 2 to 0 do

f ← f2gψ(R′),ψ(R′)(P) , R′ ← [2]R′ ;
if ri = 1 then

f ← fgψ(R′),ψ(Q′)(P) , R′ ← R′ +Q′ ;

end
return f

Algorithm 1. Miller’s algorithm for Ate-like pairings

Speeding Up Ate Pairing Computation in Affine Coordinates 265

3 Improvements for the Even Twisted Curves

Pairing-friendly elliptic curves with an even embedding degree k are preferred in
implementing Tate pairing and its variants. That is because the denominators
elimination techniques can be used (see [2][14]) on such curves. Furthermore,
such curves can admit a high-degree twist, e.g., twists of degree 4 or 6 such that
the points on the twisted curve E′ can be represented in a smaller finite field.

Lauter et al. analyzed the costs of Miller’s algorithm in affine coordinates over
curves with even embedding degrees [22, Table 1, 2]. They pointed out that when
implementing one of the optimal Ate pairings [34] in high security levels, affine
coordinates could be much faster than projective coordinates. This is because
the ratio of the computational costs of inversions to multiplications for point
doubling/addition operations is drastically reduced in extension fields.

3.1 4-ary Miller Algorithm

In this subsection, we present our optimizations of Miller loop using a 4-ary
algorithm with direct formulas in affine coordinates. Usually, Miller’s algorithm
computes pairings using the double-and-add method. In [6], Blake et al. present
the idea to compute the pairing using a 4-ary algorithm for the purpose of elim-
ination vertical lines (i.e., denominators) in Miller’s algorithm. Their algorithm
can be applied on any curves (i.e., curves don’t admit a twist and thus there
isn’t any denominators elimination technique), and has advantage if the binary
expansion of the trace t has many zeros. Costello et al. [10] also addressed this
problem by introducing a new algorithm so-called the Miller 2n-tuple-and-add
algorithm. They also presented explicit formulas in projective coordinates for
cases of n = 2, 3.

Direct computation of �R,R × �[2]R,[2]R: We assume that E′, twisted curve of E
defined in § 2, is given by an equation E′ : y2 = x3 + (a/α4)x+ (b/α6) for some
α ∈ Fpk with an isomorphism ψ : E′ → E, (x, y) %→ (α2x, α3y). Furthermore,
we assume that Fpk = Fpe(α), and we have αd = ω ∈ Fpe , where d is the degree
of the twist. Each element in Fpk is given by a polynomial of degree d − 1 in α
with coefficients in Fpe .

Let P ∈ E(Fp), R
′ ∈ E′(Fpe) and R = ψ(R′). Let R3 = [2]R = (xR3 , yR3).

Let �1 = �R,R(P), and �2 = �R3,R3(P). In the following computation, we use the
abscissas of the point −R3 instead of that of the point R in the line function
�1 passing points R and −R3. We also compute �1·�2

xP−xR3
instead of �1 · �2. Note

that, for even twisted curves, the factor xP − xR3 is in the proper subfield, thus
we can make this division without changing the final result of Tate pairing. Two
consecutive doubling steps are performed as follows:

	 =
	1 · 	2

xP − xR3

=
(yP + yR3 − λ1(xP − xR3))(yP − yR3 − λ2(xP − xR3))

xP − xR3

=
y2
P − y2

R3

xP − xR3

− λ1(yP − yR3)− λ2(yP + yR3) + λ1λ2(xP − xR3)

= x2
P + xPxR3 + x2

R3
+ a− λ1(yP − yR3)− λ2(yP + yR3) + λ1λ2(xP − xR3),

266 D.-P. Le and C.H. Tan

where λ1, λ2 are slopes when computing [2]R and [4]R. Let R′
3 = [2]R′ =

(xR′
3
, yR′

3
). The details of computations is as follows:

� = �1 · �2 = �ψ(R′),ψ(R′)(P) · �ψ([2]R′),ψ([2]R′)(P) = x2
P + α2xR′

3
xP + α4x2

R′
3

+ a− αλ′
1(yP − α3yR′

3
) − αλ′

2(yP + α3yR′
3
) + α2λ′

1λ
′
2(xP − α2xR′

3
)

= x2
P + a − α(λ′

1 + λ′
2)yP + α2(xR′

3
+ λ′

1λ
′
2)xP + α4(x2

R′
3
+ (λ′

1 + λ′
2)yR′

3
+ λ′

1λ
′
2xR′

3
),

where λ1 = αλ′1, and λ2 = αλ′2. Since P is fixed throughout the computation, we
assume that value x2P is precomputed, the costs of updating � are summarized
in the following table. Note that, we use the same notations for field arithmetic
costs as in [22]. Notations Ipe , Mpe , Spe , addpe , subpe , negpe denote the costs
for inversion, multiplication, squaring, addition, subtraction, and negation in the
field Fpe , where e = k/d. The cost for a multiplication by a constant ω is denoted
by M(ω).

Table 1. Number of operations for updating two consecutive line function values

Mp Mpe Spe M(ω) addpe negpe

d = 2 k 3 1 2 6 1

d = 4 k/2 3 1 1 5 1

d = 6 k/3 3 1 - 4 1

Fast quadrupling. LetR′
4 = [4]R′ = (xR′

4
, yR′

4
). Traditionally,R′

4 can be obtained
using two repeated doublings that require 2 field inversions. In [23], Le introduced
fast algorithms for quadrupling a point on elliptic curves in affine coordinates.
His algorithm requires 1Ipe + 8Spe + 8Mpe , and is better than two repeated
doublings whenever Ipe > 4Mpe + 4Spe . It performs even better for curves that
allow “a = 0” speedup (found in pairing-friendly elliptic curves admitting twists
of degrees 2, 3, or 6) as [4]R′ in affine coordinates can be computed just using
only 1Ipe + 5Spe + 6Mpe . This section presents the revised formula for point
quadrupling that requires fewer additions in comparison to that in [23] for pairing

computation over curves with a = 0. Let d = y4R′ + 18by2R′ − 27b2, I =
3x2

R′
2yR′d

,

and � is the product of two consecutive line function values as described above.
One also can precompute and cache values s = 18b and t = 27b2.

This quadrupling formula only requires 1Ipe +6Mpe +5Spe +eMp+8addpe +
9subpe . If an inversion in Fpe is more than 2Mpe + 1Spe + eMp + 1subpe , then
the new quadrupling formula is faster than two repeated doublings. In the case
of curves with a twist of degree 4 (i.e., y2 = x3 + ax), a similar quadrupling can
be performed by 1Ipe + 9Mpe + 5Spe + 14addpe + 10subpe .

Table 2 summarizes and compares the costs of our technique to those from [22]
in affine coordinates and [10] in projective coordinates. Again, we assume that
all values that depend only on fixed parameters, are precomputed and cached,
and small multiples are computed by additions.

Speeding Up Ate Pairing Computation in Affine Coordinates 267

λ1 = I · d, λ2 = I(y2
R − 9b)2/2

xR′
3
= λ2

1 − 2xR, yR′
3
= λ1(xR − xR′

3
)− yR,

xR′
4
= λ2

2 − 2xR′
3
, yR′

4
= λ2(xR′

3
− xR′

4
)− yR′

4
,

	 = 	1 · 	2 = 	ψ(R′),ψ(R′)(P) · 	ψ(R′
3),ψ(R′

3)
(P),

A = y2
R′ , B = A2, C = 3x2

R′ , d = B + sA+ t,
D = 2dyR′ , E = D−1, I = C · E, λ1 = I · d,

xR′
3
= λ2

1 − 2xR′ , yR′
3
= λ1(xR′ − xR′

3
)− yR′ , λ2 = (B−sA+3t)I

2
,

xR′
4
= λ2

2 − 2xR′
3
, yR′

4
= λ2(xR′

3
− xR′

4
)− yR′

3
,

	 = 	1 · 	2 = 	ψ(R′),ψ(R′)(P) · 	ψ(R′
3),ψ(R′

3)
(P)

Table 2. Operation counts for two doubling steps in the Ate-like Miller loop

d Technique Mp Mpk Ipe Mpe Spe M(·) addpe subpe negpe

2 Ours 5k/2 1 1 9 6 2 14 9 1
(a = 0) Lauter et al. [22] k 2 2 6 4 2 8 12 -

Costello et al. [10] 2k 1 - 14 16 4 60 24 2

4 Ours k 1 1 12 6 1 19 10 1
(b = 0) Lauter et al. [22] k/2 2 2 6 4 - 8 10 2

Costello et al. [10] k 1 - 11 20 3 55 27 2

6 Ours 5k/6 1 1 9 6 - 12 9 1
(a = 0) Lauter et al. [22] k/3 2 2 6 4 - 8 10 2

Costello et al. [10] 2k/3 1 - 14 16 4 60 24 2

As showed in Table 2, the costs of two doubling steps on curves having a twist
of degree d = 2 requires 5k

2 Mp + 1Mpk + 1Ipk/2 + 9Mpk/2 + 6Spk/2 + 2M(ω) +
14addpk/2 + 9subpk/2 + 1negpk/2 , while analysis in [22] require kMp + 2Mpk +
2Ipk/2 + 6Mpk/2 + 4Spk/2 + 2M(ω) + 8addpk/2 + 12subpk/2 . If 1Mpk + 1Ipk/2 >
3Mpk/2 + 2Spk/2 + 3addpk/2 + negpk/2 , then our technique is better.

4 Improvements for the Cubic Twisted Curves

4.1 Updating Miller Function

Pairing computation over cubic twisted curves with embedding degrees 9 or 15
were investigated in papers [25][12][11]. Although such curves only admit a cubic
twist d = 3, and there exists no full denominators elimination technique, but they
provide a shorter Miller loop. In [30], Scott pointed out that in the contexts
of multi-pairings in conjunction with fixed arguments, these curves have more
advantages than curves admitting a higher twist (i.e., 4 or 6). This section gives
the first analysis about the costs of Miller’s algorithm in such curves in affine
coordinates.

Recall that cubic twisted curves have the form y2 = x3 + b. In [25], Lin et al.
proposed a denominators elimination trick during Ate pairing computation on a
k = 9 curve due to the following observation about the factor 1/vR+Q(P):

268 D.-P. Le and C.H. Tan

1

vR+Q(P)
=

1

xP − xR+Q
=

x2P + xPxR+Q + x2R+Q

(yP − yR+Q)(yP + yR+Q)

Since (yP − yR+Q)(yP + yR+Q) lies in a subfield when the curve admits a cubic
twist, f function can be updated by multiplying by x2P +xPxR+Q+x2R+Q instead
of dividing it by vR+Q(P). The updated factor is :

�′R,Q(P) = (yP − λ(xP − xR+Q)− yR+Q) · (x2P + xPxR+Q + x2R+Q) (2)

where λ is the slope of the line function passing points R and Q. This formula
needs one full extension field multiplication than the full denominators elimina-
tion technique of Barreto et al [2]. The following lemma allows us to save one
multiplication in the full extension field in comparison to the analysis in [25].

Lemma 1. For elliptic curves admitting a cubic twist, the rational function
gR,Q(P) in Miller’s algorithm can be rewritten as follows:

gR,Q(P) =
�R,Q(P)

vR+Q(P)
=
x2R+Q + xR+QxP + x2P − λ(yP + yR+Q)

yP − yR+Q
(3)

Proof. For the line function �R,Q(P), using the coordinates of the point −(R+Q)
instead of that of R, we have:

�R,Q(P)

vR+Q(P)
=
yP − λ(xP − xR+Q) + yR+Q

xP − xR+Q

= −λ+
y2P − y2R+Q

(xP − xR+Q)(yP − yR+Q)
= −λ+

x3P − x3R+Q

(xP − xR+Q)(yP − yR+Q)

=
−λ(yP − yR+Q) + x2R+Q + xR+QxP + x2P

yP − yR+Q

The factor (yP − yR+Q) lying in a proper subfield of Fpk can be cancelled out.
The actual updated factor is x2R+Q + xR+QxP + x2P − λ(yP − yR+Q). The com-
putation of this updated factor doesn’t require one more multiplication in the
full extension field and it is much faster than that given in [25].

Doubling step. Let the notations be described in Section 3. Let e = k/3, and let
ν ∈ Fpk be not a cubic residue but a quadratic residue over Fpe , and ν1/2 = ω ∈
Fpe . Furthermore, we assume that Fpk = Fpe(ν1/6), i.e., each element in Fpk can

be represented by a polynomial A + Bν1/6 + Cν1/3, where A,B,C ∈ Zpe . Let
the twisted curve is of the form E′ : y2 = x3 + b/ν. There exists an isomorphism
ψ : E′(Fpe) → E(Fpk), (x, y) %→ (ν1/3x, ν1/2y). Let P ∈ G1, R

′, Q′ ∈ G′
2, and

let R = ψ(R′), Q = ψ(Q′), where G1,G2,G
′
2 are defined as in Section 2.1.

As showed in Lemma 1, the computation of the line functions need squarings
of x-coordinates. This implies that a new coordinate (x, y, z), where z = x2

Speeding Up Ate Pairing Computation in Affine Coordinates 269

matches the computation. Let R′
3 = [2]R′. Doubling steps can be computed as

follows:

�R,R(P) = ν2/3x2R′
3
+ ν1/3xR′

3
xP + x2P − λ(yP − ν1/2yR′

3
)

= zP − ν1/6λ′yp + ν1/3xR′
3
xP + ν2/3(zR′

3
+ λ′yR′

3
)

= zP + ν1/6(ω(zR′
3
+ λ′yR′

3
)− λ′yp) + ν1/3xR′

3
xP ,

where xR′
3
= λ′2 − 2xR′ , yR′

3
= λ′(xR′ − xR′

3
) − yR′ and zR′

3
= x2R′

3
. We have

λ′ = 3x2R′/2yR′ = 3zR′/2yR′ and λ = 3x2R/2yR = ν1/6λ′.
The double of R′ needs Ipe + 2Mpe + 2Spe + 3addpe + 4subpe , where the

computation of the slope λ′ need Ipe +Mpe + 3addpe . Assume that the multi-
plication of elements in Fpe with a small constant (e.g., 3zR′ , 2yR′) is computed
by additions. Then, we need 2eMp +Mpe +M(ω) + addpe + subpe to compute
the line function value. In total, our new formula requires 2eMp+ Ipe +3Mpe +
2Spe +M(ω) + 4addpe + 5subpe for each doubling step.

Addition step. The line function is computed similarly as in doubling steps.

�R,R(P) = zP + ν1/6(ω(zR′
3
+ λ′yR′

3
)− λ′yp) + ν1/3xR′

3
xP ,

where R′
3 = R′ + Q′, and xR′

3
= λ′2 − xR′ − xQ′ , yR′

3
= λ′(xR′ − xR′

3
) − yR′

and zR′
3
= x2R′

3
. The slope λ′ = (yR′ − yQ′)/(xR′ − xQ′). We have λ = (yR −

yQ)/(xR − xQ) = ν1/6λ′.
Computation of the line function in addition steps has the same cost as in

the doubling steps. It needs Ipe +Mpe +2subpe for computing the slope λ′ and
Mpe + 2Spe + 4subpe for computing the addition of R′ and Q′ from the slope
λ′. In total, we need 2eMp + Ipe + 3Mpe + 2Spe +M(ω) + addpe + 7subpe for
each addition step.

We summarize the number of operations required by the Miller loop over
cubic twisted curves in Table 3. We also make a comparison on the number of
operations between affine coordinates and projective coordinates taken from [11].

Table 3. Number of operations in the Ate-like Miller loop over cubic twisted curves

coord. Mp Ipe Mpe Spe M(·) addpe subpe negpe

DBL
affine 2k/3 1 3 2 M(ω) 4 5 -
proj. [11] k - 6 7 M(b/ω) 11 10 1

ADD
affine 2k/3 1 3 2 M(ω) 1 7 -
proj. [11] k - 13 3 - 6 8 3

The above analysis showed that the number of operations in doubling steps
over cubic twisted curves is similar to that over even twisted curves as analyzed
in [22]. Addition steps require only 1Spe + 1M(ω) more than that for even

270 D.-P. Le and C.H. Tan

twisted curves. Table 3 also showed that the doubling steps in affine coordinates
are better than that in projective coordinates [11] if:

Ipe ≤ eMp + 3Mpe + 5Spe + 7addpe + 5subpe + negpe , (4)

where e = k/3.

Example 1. In the case of k = 9, we can obtain pairing-friendly elliptic curves of
form y2 = x3 + b admitting a cubic twist [25]. During Ate pairing computation,
point operations are performed over Fp3 (i.e., e = 3). Analysis in [21, §5.1] showed
that inversion over Fp3 needs 12 multiplications and one inversion over Fp. If the
inversion-to-multiplication ratio is around 13 as benchmarks in [22] and is used in
this analysis, the cost of one inversion over Fp3 is around 25 multiplications over
Fp. Obviously, this cost is much less than 3Mp + 3Mp3 + 5Sp3 ≈ 21Mp + 30Sp

(from Eq. 4). Note that using Karatsuba algorithm, Mp3 ≈ 6Mp and Sp3 ≈ 6Sp.

4.2 Choice of Curves

In this section, we present efficient subfamilies of pairing-friendly elliptic curves
with embedding degrees k = 9, 15 presented in [25] and [12].

The family of curves with k = 9 is described by the following polynomials:

p(x) = ((x+ 1)2 + ((x− 1)2(2x3 + 1)2)/3)/4,

r(x) = (x6 + x3 + 1)/3,

n(x) = (x− 1)2(x6 + x3 + 1)/3, (5)

t(x) = x+ 1,

where t(x) is the trace of Frobenius, p(x) represents the field size and r(x)
represents the pairing-friendly subgroup. In comparison to BN curves at 128-bit
security level [4], this family supports a shorter Miller loop. But, BN curves
provide a much more efficient tower extension field arithmetic.

El Mrabet et al. [12] introduced a family of pairing-friendly elliptic curve of
embedding degree k = 15 and compared its performance with KSS curves [18]
at 192-bit security level. Their family of curves is described as follows:

p(x) = (x12 − 2x11 + x10 + x7 − 2x6 + x5 + x2 + x+ 1)/3,

r(x) = x8 − x7 + x5 − x4 + x3 − x+ 1, (6)

n(x) = (x− 1)2(x2 + x+ 1)(x8 − x7 + x5 − x4 + x3 − x+ 1)/3,

t(x) = x+ 1.

For both families of curves, the ρ-value is equal to 4/3 and the elliptic curves are
of the form y2 = x3 + b. By using the above parameters when x0 ≡ 1 (mod 3),
one is able to get all involved parameters being integers and construct a curve.
The following theorem show that by choosing x ≡ 1 (mod 6), we always choose
the curve constant b equal to 1. That means that the multiplications with b is
free.

Speeding Up Ate Pairing Computation in Affine Coordinates 271

Lemma 2. Let E : y2 = x3 + b be an elliptic curve defined over Fp where p
prime and p ≡ 1 (mod 6). Let #E(Fp) = n. If 2 | n and 3 | n, then b is both a
square and a cube in Fp.

Proof. The proof of Lemma 2 can be found in Appendix A.

Theorem 1. By choosing x0 ≡ 1 (mod 6) for both above families of curves with
embedding degrees k = 9 or 15, the desired curve is always of form E(Fp) : y

2 =
x3 + 1.

Proof. In [33, §X.5], Silverman showed that an curve defined over Fp with the j
invariant j(E) = 0 (i.e. the curves of the form y2 = x3 + b) will only have six
possible curve orders. More precisely, the CM construction only ensures that the
order of a curve satisfying the norm equation 3y2 = 4p − t2 has one of the six
forms {p+1± t, p+1± (t± 3y)/2}. Moreover, assume that γ be both quadratic
and cubic non-residue modulo p, these possible group orders occur as the order
of one of the 6 twists with b ∈ {1, γ, γ2, γ3, γ4, γ5}.

For x0 ≡ 1 (mod 6) in (5) (and (6), resp.), is is easy to see that n0 = (x0 −
1)2(x60+x30+1)/3 (n0 = (x0−1)2(x20+x0+1)(x80−x70+x50−x40+x30−x0+1)/3,
resp.) is congruent to 0 modulo 6, i.e., 2|n0 and 3|n0. It is also easy to verify
that p(x0) ≡ 1 (mod 6). From Lemma 2, b must be both a square and a cube in
Fp, it follows that b = 1 is the only option.

4.3 Final Exponentiation

After the main Miller loop, the Tate pairing (and its variants) must carry out
the final exponentiation to ensure a unique result of the pairing. The output of
the Miller loop f must be raised to be power of (pk − 1)/r to obtain a result
of order r. Scott et al. [32] introduced an efficient algorithm to compute such a
computation. Their algorithm splits the final exponentiation into two parts: the
first part is “easy” as raising to the power of p is an almost free application of the
Frobenius operator; the second so-called “hard” is to power of Φk(p)/r ∈ Fp[x].
The exponent of the hard part can be expanded to the base p as an−1p

n−1 +
· · ·+ a1p+ a0, where n = ϕ(k), the Euler-phi function. We refer readers to [32]
for more details about this computation.

In this section, we give an efficient version of the hard part in final exponen-
tiation for curves of embedding degrees k = 9. In the case of k = 15, readers can
see in Appendix B.

In the case of k = 9. By setting x = 6u+ 1, we obtain the new explicit polyno-
mials as follows :

t(u) = 6u+ 2,

p(u) = 559872u8 + 559872u7 + 233280u6 + 54432u5 + 7776u4 + 648u3 + 36u2 + 6u+ 1,

r(u) = 15552u6 + 15552u5 + 6480u4 + 1512u3 + 216u2 + 18x+ 1.

272 D.-P. Le and C.H. Tan

The cost of the final exponentiation for the Ate pairing on curves with k = 9 was

analyzed by Lin et al. [25]. Let the hard part p(u)6+p(u)3+1
r(u) =

∑5
i=0 ai(u)p(u)

i,

where ai(u) are following explicit polynomials (see in [25, §6.1]):

a5 = 36u2,

a4 = 216u3 + 36u2 = a5(6u+ 1),

a3 = 1296u4 + 432u3 + 36u2 = a4(6u+ 1), (7)

a2 = 7776u5 + 3888u4 + 648u3 + 72u2 = a3(6u+ 1) + a5,

a1 = 46656u6 + 31104u5 + 7776u4 + 1080u3 + 72u2 = a2(6u + 1),

a0 = 279936u7 + 233280u6 + 77760u5 + 14256u4 + 1512u3 + 72u2 + 3 = a1(6u+ 1) + 3.

Their calculation requires 65Mp9 +375Sp9 +45Mp for computing this hard part
(see [25, Section 6.2]). The following computation allows us to save 15Mp9 +
66Sp9 + 45Mp.

Let T = t− 1, where t = 6u+ 2 is the trace of Frobenius. Furthermore, let f
be the output of Miller algorithm, and m = fp3−1 (i.e., easy part). We compute
the hard part as follows:

m
p(u)6+p(u)3+1

r(u) = μ0 · μp
1 · μ

p2

2 · μp3

3 · μp4

4 · μp5

5 ,

where μi can be computed as follows:

μ5 = (mT−1)T−1, μ4 = (μ5)
T , μ3 = (μ4)

T ,

μ2 = (μ3)
T · μ5, μ1 = (μ2)

T , μ0 = (μ1)
T ·m3.

This part requires 7 exponentiations by T or T − 1, 8 multiplications and one
squaring in Fp9 , and 5 p-power Frobenius operations. Let T be a number of 44
bits length and Hamming weight of T is 7 (as the example given in [25]). This part
requires 2(44Sp9 +6Mp9)+ 5(44Sp9 +6Mp9)+ 8Mp9 +1Sp9 = 309Sp9 +50Mp9 .
We save 66Sp9 + 15Mp9 + 45Mp in comparison to computations in [25].

4.4 Discussion

At 128-bit security level, the current public-key security recommendations,
Barreto-Naehrig curves [4] lead a very efficient implementation. Many results
have been reported in papers [28][5][29][1]. That is because BN curves can exploit
a sextic twist and there exist efficient algorithms for squarings in Fp12 [15][19].
The former allows us to work on points of the twisted curve whose coordinates
are in Fp2 instead of Fp12 during Miller loop computation. The later provides an
efficient speedup for the final exponentiation step.

In [25] the authors consider curves with k = 9 at 128-bit security level. One
advantage of such a curve compared with BN curve is that it will have an Ate
pairing with 2/3 Miller loop length compared with the BN equivalent. With
many optimizations in both Miller loop and the final exponentiation, BN curves

Speeding Up Ate Pairing Computation in Affine Coordinates 273

are perfectly suited for implementing a single pairing. However, when we need to
compute several pairings in parallel, where only one final exponentiation required
to compute, curves with shorter Miller loop may offer a good choice. Our above
analysis allowing to speed up pairing computation over cubic twisted curves in
affine coordinates for both Miller loop and final exponentiation, are helpful for
this case.

5 Conclusion

In this paper we further analyzed techniques to speed up Ate pairing computa-
tion in affine coordinates using 4-ary Miller algorithm. We focused on pairing
computations over pairing-friendly elliptic curves admitting a cubic twist and
presented the first and fast explicit formulas in affine coordinates for such curves.
We also gave a finer choice for curves of embedding degrees k = 9, 15, and show
that this choice leads to an efficient arithmetic and final exponentiation.

Acknowledgement. The authors thank the anonymous referees for their useful
comments and suggestions.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–368. Springer, Heidelberg (2002)

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25.
Springer, Heidelberg (2004)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

5. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal Ate
pairing over barreto-naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

6. Blake, I.F., Murty, V.K., Xu, G.: Refinements of Miller’s algorithm for computing
the Weil/Tate pairing. J. Algorithms 58(2), 134–149 (2006)

7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

8. Boxall, J., El Mrabet, N., Laguillaumie, F., Le, D.-P.: A variant of miller’s formula
and algorithm. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS,
vol. 6487, pp. 417–434. Springer, Heidelberg (2010)

9. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des.
Codes Cryptography 37, 133–141 (2005)

274 D.-P. Le and C.H. Tan

10. Costello, C., Boyd, C., González Nieto, J.M., Wong, K.K.-H.: Avoiding full exten-
sion field arithmetic in pairing computations. In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 203–224. Springer, Heidelberg (2010)

11. Costello, C., Lange, T., Naehrig, M.: Faster Pairing Computations on Curves with
High-Degree Twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

12. El Mrabet, N., Guillermin, N., Ionica, S.: A study of pairing computation for elliptic
curves with embedding degree 15. Cryptology ePrint Archive, Report 2009/370
(2009), http://eprint.iacr.org/

13. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-Friendly Elliptic Curves.
J. Cryptol. 23, 224–280 (2010)

14. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the tate pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

15. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010)

16. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52, 4595–4602 (2006)

17. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS-IV. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

18. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng Pairing-
Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008)

19. Karabina, K.: Squaring in cyclotomic subgroups. Cryptology ePrint Archive, Re-
port 2010/542 (2010), http://eprint.iacr.org/

20. Kobayashi, T., Aoki, K., Imai, H.: Efficient algorithms for tate pairing. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E89-A(1), 134–143 (2006)

21. Kobayashi, T., Morita, H., Kobayashi, K., Hoshino, F.: Fast elliptic curve algorithm
combining frobenius map and table reference to adapt to higher characteristic.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 176–189. Springer,
Heidelberg (1999)

22. Lauter, K., Montgomery, P.L., Naehrig, M.: An analysis of affine coordinates for
pairing computation. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010.
LNCS, vol. 6487, pp. 1–20. Springer, Heidelberg (2010)

23. Le, D.P.: Fast Quadrupling of a Point in Elliptic Curve Cryptography. Cryptology
ePrint Archive, Report 2011/039 (2011), http://eprint.iacr.org/

24. Le, D.P., Liu, C.L.: Refinements of Miller’s Algorithm over Weierstrass Curves
Revisited. The Computer Journal 54(10), 1582–1591 (2011)

25. Lin, X., Zhao, C.A., Zhang, F., Wang, Y.: Computing the Ate pairing on elliptic
curves with embedding degree k = 9. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E91-A(9), 2387–2393 (2008)

26. Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. Journal of Cryptol-
ogy 17(4), 235–261 (2004)

27. Miyaji, A., Nakabayashi, M., Takano, S.: New Explicit Conditions of Elliptic Curve
Traces for FR-Reduction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 84(5), 1234–1243 (2001)

28. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryp-
tographic pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Speeding Up Ate Pairing Computation in Affine Coordinates 275

29. Pereira, G.C.C.F., Simpĺıcio, J.M.A., Naehrig, M., Barreto, P.S.L.M.: A family of
implementation-friendly bn elliptic curves. J. Syst. Softw. 84, 1319–1326 (2011)

30. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen, L.
(ed.) IMACC 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011)

31. Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

32. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

33. Joseph, H.: Silverman: The Arithmetic of Elliptic Curves, 2nd edn. Springer (May
2009)

34. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information The-
ory 56(1), 455–461 (2010)

A Proof of Lemma 2

Proof. Assume that 2 | n, then the elliptic curve E : y2 = x3 + b contains points
of order 2. Let P = (x1, y1) ∈ E be a point having order 2. The tangent at P

meets O and hence
(

dy
dx

)
P

= ∞ or y1 = 0. We have y21 = x31 + b, and hence

b = −x31 or b is a cube in Fp.
When 3 | n, E contains points of order 3. Assume that P = (x1, y1) has order

3, that means 3P = O or 2P = −P . Let Q = [2]P = (x2, y2). Then we have
x2 = x1 which implies λ2 − 2x1 = x1, where λ = 3x21/2y1. Therefore, we obtain
9x1(y

2
1 − b) = 12x1y

2
1 , so that x1 = 0 or y21 = −3b.

In the former case x1 = 0, it is easy to verify that the point 0, δ has order 3
for some δ, and b = δ2 or b is a square in Fp. For the later case −3b = y21 , to
prove b square in Fp we need to show that −3 is a square in Fp. We consider the
Legendre symbol:(

−3
p

)
=

(
−1
p

)(
3

p

)
= (−1)

p−1
2 × (−1)�

p+1
6 �.

– If p ≡ 1 (mod 12), we have (
−3
p

)
= 1× 1 = 1.

– If p ≡ 7 (mod 12), we have(
−3
p

)
= (−1)× (−1) = 1.

In the other words, −3 is a square in Fp.

276 D.-P. Le and C.H. Tan

B Final Exponentiation for Curves with k = 15

We present the first analysis for the hard part during Tate pairing computation
over elliptic curves with embedding degree k = 15. By setting x = 6u + 1, we
obtain the new explicit polynomials as follows :

t(u) = 6u+ 2,

p(u) = 725594112u12 + 1209323520u11 + 906992640u10 + 403107840u9 + 117573120u8

+ 23607936u7 + 3343680u6 + 336960u5 + 23760u4 + 1080u3 + 36u2 + 6u+ 1,

r(u) = 1679616u8 + 1959552u7 + 979776u6 + 279936u5 + 50544u4 + 6048u3

+ 504u2 + 24x+ 1.

Once again, assume that the hard part p(u)10+p(u)5+1
r(u) of the final exponentiation

can be expanded as
∑9

i=0 ai(u)p(u)
i. It is easy to verify ai(u) to be following

explicit polynomials.

a9 = 432u4 + 216u3 + 36u2,

a8 = 2592u5 + 1728u4 + 432u3 + 36u2 = a9T,

a7 = 15552u6 + 12960u5 + 4320u4 + 648u3 + 36u2 = a8T,

a6 = 93312u7 + 93312u6 + 38880u5 + 8208u4 + 864u3 + 36u2 = a7T,

a5 = 559872u8 + 653184u7 + 326592u6 + 88128u5 + 13392u4 + 1080u3 + 36u2 = a6T,

a4 = 3359232u9 + 4478976u8 + 2612736u7 + 855360u6 + 168480u5 + 20304u4 + 1512u3

+ 72u2 = a5T + a9,

a3 = 20155392u10 + 30233088u9 + 20155392u8 + 7744896u7 + 1866240u6 + 290304u5

+ 29376u4 + 1944u3 + 72u2 = a4T, (8)

a2 = 120932352u11 + 201553920u10 + 151165440u9 + 66624768u8 + 18942336u7

+ 3608064u6 + 466560u5 + 41040u4 + 2376u3 + 72u2 + 1 = a3T + 1,

a1 = 120932352u11 + 201553920u10 + 147806208u9 + 62705664u8 + 16982784u7 + 3063744u6

+ 375840u5 + 31536u4 + 1728u3 + 36u2 + 1 = a2 − a4 + a5 − a7 + a8,

a0 = 120932352u11 + 181398528u10 + 120932352u9 + 47029248u8 + 11757312u7 + 1975104u6

+ 228096u5 + 18144u4 + 864u3 + 1 = a1 − a3 + a4 − a6 + a7 − a9,

where T = 6u+1. Similarly, we assume that f is the output of Miller algorithm,
and m = fp3−1. The hard part can be performed as follows:

m
p(u)10+p(u)5+1

r(u) =

9∏
i=0

μpi

i ,

where μi can be computed as follows:

μ9 = ((mT−1)(T−1)/3 ·mT−1 ·m)(T−1)2 , μi = (μi+1)
T for i ∈ {3, 5, 6, 7, 8}, μ4 = (μ5)

T ·μ9,

μ2 = (μ3)
T ·m, μ1 = μ2 · μ5 · μ8 · (μ4 · μ7)

−1, μ0 = μ1 · μ4 · μ7 · (μ3 · μ6 · μ9)
−1.

Speeding Up Ate Pairing Computation in Affine Coordinates 277

This part requires 11 exponentiations by T , T−1 or (T−1)/3, 22 multiplications,
two inversions in Fp15 , and 9 p-power Frobenius operations. Note that inversions
in Fp15 can be computed for free using a simple conjugation [31]. Assume that
we apply this family of curves for pairing computation at 192-bit security level.
The sizes in bits of r, and T are 384 and 64, respectively. By carefully choosing
parameters, we can get a value of T with low Hamming weight (e.g., H(T) = 7).
This final exponentiation will require 88Mp15 + 528Sp15 .

An Improved Hardware Implementation

of the Grain-128a Stream Cipher

Shohreh Sharif Mansouri and Elena Dubrova

Department of Electronic Systems, Royal Institute of Technology, Stockholm
{shsm,dubrova}@kth.se

Abstract. We study efficient high-throughput hardware implementa-
tions of the Grain-128a family of stream ciphers. To increase the through-
put compared to the standard design, we apply five different techniques in
combination: isolation of the authentication section, Fibonacci-to-Galois
transformation of the feedback shift registers, multi-frequency implemen-
tation, simplification of the pre-outputs functions and internal pipelin-
ing. The combined effect of all these techniques enables an average 56%
higher keystream generation throughput among all the ciphers, at the
expense of an average 8% area penalty, an average 4% power overhead
and a 21% slower keystream initialization phase. An alternative combi-
nation of techniques allows an average 23% throughput improvement in
all phases.

1 Introduction

Feedback Shift Registers (FSR)-based stream ciphers, characterized by a low
hardware footprint, are one of the most promising candidates for deployment
in low-cost authentication devices [1]. Since FSR-based stream ciphers target
highly-constrained environments, designing them efficiently is important. Hard-
ware efficiency was one of the main parameters used for grading the ciphers
during the eSTREAM project [2], that in 2008 identified a portfolio of three
promising FSR-based stream ciphers: Grain [3], Mickey [4] and Trivium [5]. Un-
til recently, however, only straightforward implementations of the ciphers were
considered (standard syntheses of RTL models that are direct translation of the
cipher algorithm) [6].

In 2010, special techniques to improve the hardware figures-of-merit of FSR-
based stream ciphers were introduced in [7] and [8], and it was shown that the
throughput of FSR-based stream ciphers can be considerably improved.

In 2011, Agren and co-workers introduced a new family of Grain ciphers that
natively supports authentication, with a maximal tag length of 32 bits, called
Grain-128a [9] (described in Section 2). To our best knowledge, no study on
the hardware implementation of the Grain-128a ciphers has been conducted. In
this work we aim on finding the best implementation of Grain-128a in terms of
throughput. In Section 4 we implement the original Grain-128a ciphers using a
straightforward design flow. Then, we apply five different techniques to improve
their throughput: in Section 5 we isolate the authentication section of the ciphers,

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 278–292, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Improved Hardware Implementation of the Grain-128a Stream Cipher 279

in Section 6 we transform the Fibonacci FSRs of the ciphers to Galois FSRs,
in Section 7 we introduce dual-frequency implementations of the ciphers and we
simplify and pipeline their pre-outputs functions.

The final results, reported in Section 8, show that among the six versions of the
cipher we obtain an average 56% higher keystream generation throughput at the
expense of an average 8% area penalty, a 4% power overhead and a 21% slower
keystream initialization phase. We also introduce an alternative combination
of techniques that improves throughput in both initialization and keystream
generation phases, well suited for ciphers that process short bursts of data and
spend a lot of time in the keystream initialization phase: in this case, the average
throughput improvement is 23%.

2 The Grain-128a Cipher

The Grain-128a family of ciphers [9] are extensions of the Grain-128 stream
cipher, that natively supports authentication with a variable tag size up to 32
bits. The non-linear functions of the Grain-128a ciphers are also slightly different
compared to those of Grain-128.

The Grain-128a family of ciphers is constituted by one unparallelized cipher
and five parallelized versions of the same cipher, which can have degree of par-
allelization 2, 4, 8, 16 or 32. We refer to a version of Grain-128a parallelized k
times as Grain-128aXk (we refer to the unparallelized cipher as Grain-128a or
Grain-128aX1). All members of the family are functionally equivalent, i.e. they
have the same output when fed by the same input. In Grain-128Xk the FSR
feedback functions and the pre-output functions, as well as some parts of the
authentication section, are replicated k times compared to the unparallelized
cipher. Grain-128aXk outputs k

2 keystream bits per cycle.
A complete schematic of the grain-128a cipher is shown in Figure 1. The cipher

is divided into two parts: the keystream generator, which generates a pre-output
stream, and the authentication section.

mimi

accumulator

authentication
shift register

(splitter) z

29 6 gf

LFSRNLFSR
2 h

y

7 17

sectionauthenticationkeystream generator

Fig. 1. The Grain-128a cipher

2.1 Keystream Generator

The keystream generator contains a 128-bit Linear FSR (LFSR) and a 128-bits
Non-Linear FSR (NLFSR). The contents of the 128-bits LFSR are denoted as
s0, s1, ..., s127; the contents of the 128-bits NLFSR are denoted as b0, b1, ..., b127.

280 S.S. Mansouri and E. Dubrova

All memory elements of the LFSR and the NLFSR are updated simultaneously.
si is updated to si+1 for 0 ≤ i ≤ 126; s127 is updated to f(s), where f(s) is:

f(s) = s0 + s7 + s38 + s70 + s81 + s96

bi is updated to bi+1 for 0 ≤ i ≤ 126; b127 is updated to g(b, s0), where g(b, s0)
is:

g(b, s0) = s0 + b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13 + b17b18 + b27b59

+b40b48 + b61b65 + b68b84 + b88b92b93b95 + b22b24b25 + b70b78b82

The function h(b, s) is:

h(b, s) = b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94

The pre-output function y(b, s) is:

y(b, s) = h(b, s) + s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89

The sequence of pre-output bits output by the y function are denoted as y0, ..., yi.
The output function z(b, s) = y64+2i outputs all pre-output bits of even index
except the first 64. The first 64 pre-output bits and all bits of odd index are
instead passed to the authentication section.

2.2 Authentication Section

Two authentication registers, the accumulator and the authentication shift reg-
ister, both of size 32, are used. The content of the accumulator is denoted as
a0, ..., a31. The content of the authentication shift register is denoted as r0, ..., r31.
During an initial 64-cycles authentication initialization phase, the first 32 pre-
output elements y0, ..., y31 of yi are stored in the authentication shift register
(ri = yi) while the following 32 elements y32, ..., y63 of yi are stored in the accu-
mulator (ai = y32+i).

In every cycle i, r31 is updated to the new pre-output bit y64+2i+1 while all
the other 31 elements rj are updated to rj+1. All bits aj in the accumulator are
updated to aj+mirj , wheremi is the bit of the messagem = m0, ...,mL−1 that is
being encrypted in cycle i. The final content of the accumulator once encryption
is concluded is denoted as the tag t and can be used for authentication (ti = ai).

If the tag size is w < 32, only the part of the tag t with the w highest indexes
is used as a tag; the other parts are discarded.

2.3 Cipher Phases

When the cipher starts operating, the 128-bit key k0, ..., k127 is loaded in the
128 NLFSR memory elements b0, ..., b127; the 96-bit Initial Value IV0, ..., IV95 is
loaded in the first 96 LFSR memory elements s0, ..., s95; the last 32 bits of the
LFSR are loaded with s96, ..., s126 = 1 and s127 = 0. After having been loaded

An Improved Hardware Implementation of the Grain-128a Stream Cipher 281

with the key and the initial value, the cipher goes through the following phases:
(1) keystream initialization phase, 256 clock cycles in which the cipher does not
produce any output bit and the output of the y function is fed back to the LFSR
and the NLFSR (red lines in Figure 1); (2) authentication initialization phase,
64 clock cycles in which all the pre-output bits are stored in the accumulator
and the authentication shift register; (3) operational phase in which half the
pre-output bits are output as keystream and half are fed to the authentication
section of the cipher. The keystream generation phase includes both phases (2)
and (3). The phases of the cipher are summarized in Figure 2.

256 cycles 64 cycles

operationalauthentication

generation
initializationkeystream initialization

keystream

Fig. 2. Cipher phases

3 Implementation and Analysis Methodology

All timing, area and power figures reported in this paper are obtained by design-
ing the ciphers at Register Transfer Level (RTL) in Verilog, and then synthesizing
the code for best performances using Cadence RTL Compiler for the TSMC 90
nm ASIC technology.

To keep track of the phases of the cipher and decide when to change phase,
the cipher uses an LFSR counter [10], the smallest and fastest type of counter.
The FSRs are initialized serially with the key and the initial value.

Timing and area figures are obtained from the synthesis tool; power figures
are obtained using the following procedure: the post-synthesis gate-level netlist
is exported by the synthesis tool; a gate-level simulation is performed using the
Cadence Incisive logic simulator with a set of random test vectors and a clock
frequency of 10MHz; the switching activity of all nets in the system is saved to
a VCD file and read back by Cadence RTL Compiler, which then estimates the
power consumption of the system.

4 Straightforward Implementation

We first implement Grain-128aXk using a standard design flow (applied to an
RTL model that directly tranlates the algorithms), and optimizing the system
for the highest throughput.

To improve the throughput of the different versions of the Grain-128a cipher,
we study the location of the critical paths in the synthesized ciphers, i.e. the
longest combinational propagation delays, which determine their throughput.
We define the following delays:

– Dn: maximal propagation delay from any NLFSR flip-flop to any other
NLFSR flip-flop. Dl is the LFSR counterpart.

282 S.S. Mansouri and E. Dubrova

Table 1. Timing in the original versions of Grain-128a

X1 X2 X4 X8 X16 X32

Minp (ps), CP 472, Dhyn 493, Dhyn 499, Dhyn 521, Dhyn 588, Dhya 665, Dhya

– Dhy: maximal propagation delay from any NLFSR or LFSR flip-flop through
the h and y functions to the output of the cipher.

– Dhya: maximal propagation delay from any NLFSR or LFSR flip-flop through
the h and y functions to any accumulator flip-flop.

– Da: maximal propagation delay from any flip-flop in the authentication sec-
tion of the cipher to any accumulator flip-flop.

Two additional delays, active only during the keystream initialization phase, are
defined:

– Dhyn: maximal propagation delay from a flip-flop of the NLFSR or LFSR
through the h and y functions to the first flip-flop of the NLFSR. Dhyl is
the LFSR counterpart.

Table 1 reports the minimal clock period and the critical paths for all the versions
of the cipher. The first observation is that Grain-128aX16 and Grain-128aX32
can benefit from breaking the h-y-accumulator path. This is discussed in the
next section.

5 Isolating the Authentication Section

In a parallelized cipher Grain-128aXk with k ≥ 4, the value of aj must be
updated to

aj +

u< k
2∑

u=0

mi+u · rj+u

in every cycle i. The implementation is straightforward for j ≤ 31− k
2 . However,

for j > 31 − k
2 , the accumulator logic would need to access values of rj with

j > 31. These values can be seen as ”future values” of the r bits. Since r shifts
its elements by k

2 positions every clock cycle and loads k
2 new elements from k

2

outputs of the k parallel h/y functions, k
2 future values of the r elements can

always be found on the output lines of the h/y functions, and can be accessed
by the accumulator logic to implement the authentication functionality.

For high degrees of parallelism, this straightforward solution, used in Section 4,
involves a long combinational path Dhya through the h/y functions and the
accumulator logic that limits the performances of Grain-128aX16 and Grain-
128aX32.

To break the Dhya path, flip-flops are inserted in the authentication section
of the cipher on the outputs of the h/y functions, as shown in Figure 3. This
solution adds one cycle latency in the production of the tag, but has no effect
on cipher security.

An Improved Hardware Implementation of the Grain-128a Stream Cipher 283

ff ff ffff

m3m2m1m0 m2m1m3 m0m3m2m1m3m2m3
r30

Accumulator

Auth. shift reg

a31 a30 a29 a28 a27

r31

Y0Y1Y2Y3

4

Fig. 3. Isolation of the authentication section for Grain-128aX8

Table 2. Timing in the versions of Grain-128a after the isolation of the authentication
section

X1 X2 X4 X8 X16 X32

Minp (ps),CP 440, Dhyn 490, Dhyn 483, Dhyn 517, Dhyn 545, Dhyn 580, Dhyn

After applying this solution to all versions of Grain-128a, the minimal clock
periods (Minp) and critical paths (CPs) of the ciphers improve, as reported in
Table 2. Timing improves for all versions of the cipher.

The critical paths of all versions of the cipher are now determined by Dhyn.
Since h, y and g are optimized together by the synthesis tool, Dhyn depends on
both the h/y functions (19 literals in total) and on the g(b, s0) feedback function
of the NFLSR (30 literals).

In the next section we try to reduce Dhyn by reducing the maximal propaga-
tion delay of the paths going from the NLFSR bits to the first bit of the NLFSR
through Fibonacci to Galois transformation [11].

6 Fibonacci to Galois Transformation

A Feedback Shift Register (FSR) consists of n binary storage elements, called
bits [12]. Each bit i has an associated state variable xi which represents the
current value of bit i and a feedback function fi(x0, ..., xn−1) which determines
how the value of i is updated. All updates take place simultaneously.

The FSRs can be implemented in two configurations, Fibonacci or Galois. An
FSR is in Fibonacci configuration if all feedback functions fi except fn−1 take
the form fi = xi+1. If some functions fi with i �= n−1 are not in this form, then
the FSR is in Galois configuration. For LFSRs, this definition is more general
than the traditional definition of Galois LFSRs, which corresponds to that of
fully-shifted Galois LFSRs [11]. However, to keep the presentation simple, in
this paper we use this definition for both NLFSRs and LFSRs.

As discussed in [11] a serially-initialized Fibonacci n-bit FSR can be trans-
formed into an equivalent Galois FSR having the same output stream (i.e. the
values of x0 in the two FSRs are always identical). The transformation can be
done by moving a set of product terms P from fi to fj while changing the in-
dexes of each variable xk of each product term in P to xk−i+j . To guarantee

284 S.S. Mansouri and E. Dubrova

the equivalence of a Fibonacci NLFSR to a Galois NLFSR, product terms can-
not be shifted to positions lower that the minimum terminal bit τmin, which is
calculated as:

τmin = max
pi∈PT

(max index (pi)−min index (pi))

where min index(pi) and max index(pi) denote respectively the minimum and
maximum index of the variables in product term pi and pT is the set of all
product terms. Proof of equivalence between the Fibonacci and the Galois FSRs
can be found in [11].

When this transformation is applied to stream cipher’s FSRs, as discussed
in [7], the feedback functions in which a product term pi can be moved are also
limited by:

– minimal index in the product term: no product term pi can be moved to a
feedback function of grade lower than n− 1−min index(pi).

– combinational functions inputs : to preserve the original encryption algo-
rithm, no product term can be moved to a feedback function of grade lower
than the highest state bit used as input of any combinational function.

– degree of parallelization: in an FSR parallelized k times, all feedback func-
tions fi except n − j · k − 1, ∀j = {0, 1, . . . , 	(n − 1)/k
 − 1} should have
feedback functions of type fi = xi+1.

6.1 Throughput Optimization

Tranformation from Fibonacci to Galois for a single FSR can generally result into
many different configurations. To choose the best design in terms of throughput,
a heuristic algorithm was developed in [8]. This algorithm tries to find the fastest
Galois FSR equivalent to a given Fibonacci FSR, i.e. the Galois FSR with the
shortest critical path [8].

The algorithm associates every FSR to a cost, which is an estimation of its
critical path, and tries to find the minimal-cost Galois FSR. Normally, given a
Fibonacci FSR, the algorithm can choose among more than one minimal-cost
Galois FSR. Although all of them have in principle similar throughput, they
have slightly different area overheads.

In this paper we use the same algorithm suggested in [8] to find the best
Fibonacci-to-Galois transformation; however, since the original algorithm does
not consider area, we have introduced a final area optimization stage to it.

6.2 Area Optimization

The main idea of the area optimization stage is that area savings occur when
two or more products in different feedback functions can be implemented using
shared gates.

Once the algorithm in [8] has identified a minimal-cost FSR, its feedback func-
tions are scanned to search for product terms in the form xixj ... and xi+kxj+k

An Improved Hardware Implementation of the Grain-128a Stream Cipher 285

These product terms will be encountered if the original Fibonacci FSR also
contained product terms in the form xi∗xj∗ ... and xi∗+k∗xj∗+k∗ ..., a common
occurrence for cryptographic FSRs.

The algorithm removes the two product terms from the feedback functions and
tries to place them exactly at distance k from each other, with the first above
the second. All available positions are scanned to find a suitable placement. The
product-term movement takes place only if it does not increase the cost of the
FSR, i.e. its estimated critical path. If a suitable placement for the two product
terms is found, the products xixj and xi+kxj+k are transformed to the same
product xi∗∗xj∗∗ , and both products can be implemented using a single shared
AND gate. The main idea of this optimization is shown in Figure 4: the Galois
configuration allows to implement the two product terms of the Fibonacci FSR
using a single AND gate. The algorithm continues until all suitable product
terms have been placed and no further area optimization is possible.

ff4ff5ff5 ff4 ff3 ff2 ff1 ff0x5 x3 x1 x0 ff3 ff2 ff1 ff0x4x5 x3 x2 x1 x0x4 x2

Fig. 4. Area savings obtained through shared AND gates

7 Final Optimization

By transforming the FSRs of Grain-128aXk from a Fibonacci to a Galois con-
figuration, Galois FSRs (both LFSR and NLFSR) run faster compared to the
original Fibonacci FSRs. The highest improvement in timing is 67% for Grain-
128aX1’s NLFSR; the average timing improvement is 34%.

However, after implementing the Grain128a ciphers with Galois FSRs, the
minimal clock periods of the complete ciphers improve only by 9% on average
(compare Tables 3 and 2). The reason is that for all versions of Grain-128a, the
critical path is given by Dhyn, i.e. performances are limited by the initialization
path from the FSRs bits through the h, y and g functions to the first NLFSR
bit. To increase further the throughput of the cipher, we suggest two alternative
approaches: the first improves cipher performance during the keystream genera-
tion phase but sacrifices performances during the keystream initialization phase;
the second tries to optimize throughput during both phases.

Table 3. Timing in the versions of Grain-128a after the Fibonacci to Galois transfor-
mation

X1 X2 X4 X8 X16 X32

Minp (ps), CP 440, Dhyn 445, Dhyn 472, Dhyn 482, Dhyn 573, Dhyn 580, Dhyn

286 S.S. Mansouri and E. Dubrova

7.1 First Approach: Dual Frequency Implementation

Similarly to the work in [7], to increase throughput during the keystream gen-
eration phase we realize a dual-frequency implementation of Grain-80 in which
the cipher works with a slower clock clkki during the keystream initialization
phase (the only phase in which the path Dhyn is active) and with a faster clock
clkkg during the keystream generation phase. The clock clkki can be generated
externally or generated locally from clkkg by a clock divider block.

We synthesize the ciphers optimizing them for operation during the keystream
generation phase by defining the paths from the outputs of the y functions to
the inputs of the LFSR and NLFSR as false paths during synthesis, i.e. we
instruct the synthesis tool not to optimize any combinational path going from
the outputs of the y functions to the inputs of the LFSR and NLFSR. This makes
Dhyn larger, but reduces Dn, Da and Dhy because it pushes the tool to optimize
them as much as possible. Timing figures are reported in Table 4, row N/A, for
both keystream initialization and keystream generation phases. Based on the
results in Table 4, to ensure correct operation for all degrees of parallelization,
it is sufficient that clkki be twice slower than clkkg, i.e. clock division by a factor
two is sufficient to guarantee correct operation if the keystream generation clock
period is defined by the keystream generation critical path.

For high-parallelism versions of the cipher, the critical path during the op-
erational phase is given by one of the feedback functions of the NLFSR, which
are hard to optimize further. However, for k ≤ 8, the performances of the cipher
are limited by the propagation delay through the h and y functions. To keep the
presentation simple, we consider the cascade of the h and y functions as a sin-
gle non-linear function hy. To improve throughput, this hy function is pipelined
using a 2-levels or 3-levels pipeline (see Figure 5-A).

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

FF

FF

FF

FF

A

FF

FF

125FF

126FF

FF

FF

B

g126

g125

g127

g125

g126

g127

run

run

run

run
hy
out

run

FSR FSR

0

0

0
1

1

1

1
0

hy(A)

hy(B)

hy(C)

hy(D)

FF

run

hy

hy
outhy127

125

hy126

run=en127

125en

en
126

en126

en125

127

FF

FF127

126

125FF

Fig. 5. Pipelined hy function in Section 7.1 (left) and Section 7.2 (right)

During the keystream generation phase, the output of the hy function goes to
the output and the authentication section of the cipher. There is no feedback to
the keystream generator; therefore pipelining the hy function does not alter the
functionality of the cipher but only introduces a latency delay in the generation
of the output stream and the authentication tag, which does not have any effect
on the security of the cipher.

An Improved Hardware Implementation of the Grain-128a Stream Cipher 287

Table 4. Timing (Minp (ps), CP) in the versions of Grain-128a during the keystream
initialization (K.I.) and generation (K.G.) phases without pipelining (N/A) and with
pipelining (P.L.) of the hy function (2 or 3 pipeline levels considered)

P.L. Phase X1 X2 X4 X8 X16 X32

N/A K.I. 561, Dhyn 598, Dhyn 607, Dhyn 639, Dhyn 751, Dhyn 840, Dhyn

K.G. 389, Dhy 372, Dhy 389, Dhy 403, Dhy 446, Dn 498, Dn

2 K.I. 579, Dhyn 604, Dhyn 629, Dhyn 657, Dhyn 830, Dhyn 904, Dhyn

K.G. 303, Dhy 286, Dhy 328, Dhy 350, Dn 417, Da 488, Da

3 K.I. 569, Dhyn 623, Dhyn 668, Dhyn 685, Dhyn 827, Dhyn 881, Dhyn

K.G. 283, Dhy 280, Dhy 305, Dhy 350, Dn 410, Da 475, Da

During the keystream initialization phase, the output of the hy function is
fed back to the first bits of the NLFSR and the LFSR; if the hy function is
pipelined during this phase, the functionality of the cipher is altered. Therefore,
multiplexers are implemented in the pipeline to bypass the flip-flops and deac-
tivate them during the keystream initialization phase. The initialization path
through the multiplexers is defined as a false path during synthesis to push the
tool to optimize for the keystream generation phase.

Pipelining the hy function has no effect on cipher security but has some draw-
backs: flip-flops have to be inserted to implement the pipeline; An L level pipeline
adds a latency of L cycles in the production of the tag. In general. the drawbacks
increase with the number of pipeline levels.

Table 4 shows timing figures and critical paths for versions of the cipher with
and without (N/A) pipelined hy function. Pipelining the hy function improves
the timing of all versions of Grain-128a. The best improvement is obtained for
Grain-128aX2.

7.2 Second Approach: Transformed hy Function

The solution presented in Section 7.1 is not well-suited for ciphers that spend a
lot of time in keystream initialization phase because it makes this phase slower.
In this section we introduce a new approach which decreases the delay of the
path Dhyn by breaking down the hy function into several smaller functions. The
approach is based on the idea that it is possible to ”move product terms” of the
hy function similarly to a FSR Fibonacci-to-Galois transformation.

The hy function is indicated as hy127 because it is fed to state bits s127 and
b127. The transformation is done by moving a set of product terms P of hy127 to
hy127−i while changing the index of each variable xj of each product term pi ∈ P
to xj−i. Similarly to the Fibonacci-to-Galois transformation in Section 6, 127− i
can not be smaller that the minimum terminal bit τmin for the hy function, i.e.
the maximal difference between variable indexes across all the product terms of
hy. As an example, the hy function can be broken into three parts with:

288 S.S. Mansouri and E. Dubrova

Table 5. Timing (Minp (ps), CP) in the versions of Grain-128a with transformed hy
function

X1 X2 X4 X8 X16 X32

382, Dhyn 389, Dhyn 397, Dhyn 439, Dhyn 468, Dhyn 580, Dhyn

hy127(b, s) = b12s8 + s13s20 + b95s42

hy126(b, s) = b11b94s93 + b72 + b1 + s59s78

hy125(b, s) = s91 + b87 + b13 + b34 + b43 + b62

As shown in Figure 5-B, during the keystream initialization phase all hy127−i

functions are fed back to states bits b127−i and s127−i of the NLFSR and the
LFSR. During the keystream generation phase, the feedback loop is disconnected
and the hyi functions form a 3 levels pipeline.

To preserve functional equivalence with the original cipher, care should be
taken in determining the moment in which the hy feedback loop is activated and
removed: before feeding the FSRs, the output of each hy127−i function is ANDed
with a signal en127−i (en127 = run). This guarantees that each hy127−i feedback
becomes activated/de-activated i cycles after the hy127 feedback at the start/end
of the keystream initialization phase. The en127−i signals can be generated by
delaying the run signal using flipflops (as shown in Figure 5) or can alternatively
be driven by the internal counter.

Table 5 reports the minimal clock period and the critical paths for all the
versions of the Grain-128aXk with a three-stage hy function when k ≤ 4 and for
a two-stage hy function when k = 8, 16.

8 Final Comparison

In this Section, we report the final throughputs of Grain-128a after applying
all the techniques introduced in Sections 5, 6, 7.1 and 7.2. For every value, we
report also the improvement over the original cipher. We denote as (ORG) the
original ciphers (see Section 4); as (F2G) the original ciphers after the isolation
of the authentication section and the Fibonacci to Galois transformation of the
FSRs (see Sections 5 and 6); as (2F) the F2G ciphers modified with the im-
plementation of the dual frequency solution (see Section 7.1) and 2-levels (for
degree of parallelism k > 4) or 3-levels (for k ≤ 4) internal pipelining; (1F)
are the F2G ciphers with transformed hy function introduced in Section 7.2.
For Grain-128aXk with k ≤ 4, the hy function is divided into three functions
(hy127, hy126, hy125); for k > 4, it is divided into two functions (hy127, hy126).

The results are reported in terms of maximal frequency, throughput (fmax · k2),
area and power. for 2F designs, the frequency reported in Table 6 is the frequency

An Improved Hardware Implementation of the Grain-128a Stream Cipher 289

Table 6. Implementation results

k data Freq. (GHz) Through.(Gb/s) Area(μm2) Power (μW)
imp. ORG 2F 1F ORG 2F 1F ORG 2F 1F ORG 2F 1F

X1 d. 2.1 3.5 2.6 1.1 1.5 1.3 5876 5856 5884 96.9 94.1 93.9
% - 67 24 - 67 24 - 0 0 - 3 3

X2 d. 2 3.6 2.6 2 3.6 2.6 6972 7314 7345 106.1 113.1 102.6
% - 80 30 - 80 30 - 0 0 - -7 3

X4 d. 2 3.3 2.5 4 6.6 2.5 8299 9145 8614 120.6 136.1 125.1
% - 65 25 - 65 25 - -10 -4 - -13 4

X8 d. 1.9 2.9 2.3 7.6 11.6 9.2 10778 11087 10729 176.4 174.6 164.8
% - 53 21 - 53 21 - -3 0 - 1 6

X16 d. 1.7 2.4 2.1 13.6 19.2 17.1 15709 17653 14585 247.8 275.4 205.4
% - 41 24 - 41 24 - -12 7 - -11 17

X32 d. 1.5 2 1.7 24 32 27.2 23430 28917 25554 417.9 415.1 403.5
% - 33 13 - 33 13 - -23 -9 - 1 3

during the keystream generation phase. The keystream initialization frequency
is twice lower than this frequency.

As shown in Table 6, the highest improvement in keystreamgeneration through-
put is achieved by the 2F implementation of Grain-128a, with an average 56%
improvement in throughput among all the versions of the cipher. The highest im-
provement is 80% for Grain-128aX2 and the minimal improvement is 33% for
Grain-128aX32. The 2F implementation can be used in applications which en-
code/decode large data sets. On the other hand, with the 1F implementation we
achieve on average a 23% throughput improvement in all phases. Although the 1F
implementation has a lower throughput improvement compared to the 2F imple-
mentation, it does not use a double clock and is therefore simpler and with a lower
area overhead. It is well-suited for applications which encode/decode short data
sets and switch often between operational phases.

9 Conclusion

In conclusion, we have shown that it is possible to considerably improve the
hardware timing figures of merit of the different versions of the Grain-128a ci-
pher by applying a combination of different techniques. With a two-frequencies
implementation, the keystream generation throughput improved on average 56%
at the expense of a 21% slowing of the keystream initialization phase an rea-
sonable overheads. An alternative single-clock solution allowed us to obtain an
average 23% higher throughput in all phases.

Acknowledgment. This work was supported in part by a project No 621-2010-
4388 from Swedish Research Council.

290 S.S. Mansouri and E. Dubrova

References

1. Good, T., Benaissa, M.: ASIC hardware performance. In: Robshaw, M.,
Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 267–293.
Springer, Heidelberg (2008)

2. Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs: The eSTREAM Fi-
nalists. LNCS, vol. 4986. Springer, Heidelberg (2008)

3. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream
ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS,
vol. 4986, pp. 179–190. Springer, Heidelberg (2008)

4. Babbage, S., Dodd, M.: The mickey stream ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 191–209. Springer,
Heidelberg (2008)

5. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)

6. Good, T., Benaissa, M.: Hardware results for selected stream cipher candidates.
In: Workshop Record of Stream Ciphers 2007 (SASC 2007), pp. 191–204 (2007)

7. Mansouri, S., Dubrova, E.: An improved hardware implementation of the grain
stream cipher. In: 2010 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools (DSD), pp. 433–440 (September 2010)

8. Chabloz, J.-M., Mansouri, S.S., Dubrova, E.: An algorithm for constructing a
fastest galois nlfsr generating a given sequence. In: Carlet, C., Pott, A. (eds.)
SETA 2010. LNCS, vol. 6338, pp. 41–54. Springer, Heidelberg (2010)

9. Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of
grain-128 with optional authentication. Int. J. Wire. Mob. Comput. 5, 48–59 (2011)

10. Balph, T.: Lfsr counters implement binary polynomial generators. Motorola Semi-
conductor, EDN 43, 155–156 (1998)

11. Dubrova, E.: A transformation from the fibonacci to the galois nlfsrs. IEEE Trans-
actions on Information Theory 55(11), 5263–5271 (2009)

12. Golomb, S.: Shift Register Sequences. Aegean Park Press (1982)

Appendix A: Fibonacci to Galois Transformation of FSRs
in Grain-128a

NLFSR Fibonacci to Galois Transformation

We use the algorithm described in [8] and the area optimization algorithm from
Subsection 6.2 to transform the NLFSRs of Grain-128aXk from a Fibonacci to
a Galois configuration.

For Grain-128a, the product term with the maximal difference in variable
indexes is b3b67, i.e. τmin = 64 (see Section 6). Product terms cannot be allocated
to feedback functions gi of grade i < 95 because bit b95 is used in function h
(see Section 6).

The area optimization algorithm (see Subsection 6.2) places the Fibonacci
product terms b88b92b93b95, b22b24b25 and b70b78b82 respectively 27, 11 and 30
feedback functions downer than the product terms b61b65, b11b13 and b40b48.

An Improved Hardware Implementation of the Grain-128a Stream Cipher 291

For Grain-128aX1, the following Galois NLFSR is obtained:

g127 = s0 ⊕ b0
g126 = b127 ⊕ b39b47
g125 = b126 ⊕ b59b63
g124 = b125 ⊕ b0b64
g123 = b124 ⊕ b52
g116 = b117 ⊕ b0b2
g105 = b106 ⊕ b0b2b3
g110 = b111 ⊕ b0b1
g102 = b103 ⊕ b71
g101 = b102 ⊕ b0
g100 = b101 ⊕ b0b32
g99 = b100 ⊕ b63
g98 = b99 ⊕ b59b63b64b66
g97 = b98 ⊕ b38b54
g96 = b97 ⊕ b39b47b51

Here and in the remainder of the paper, unspecified feedback functions are in
the form gi = xi+1.

For Grain-128aX2 the Fibonacci product terms of the original NLFSR can
be moved only to feedback functions g127, g125, g123, g121, g119, g117, g115, g113,
g111, g109, g107, g105, g103, g101 and g99. The following Galois NLFSR is obtained
after application of the timing and area optimization algorithms:

g127 = b0 ⊕ s0
g125 = b126 ⊕ b1b65
g123 = b124 ⊕ b57b61
g121 = b122 ⊕ b5b7
g119 = b120 ⊕ b9b10
g115 = b116 ⊕ b15b47
g113 = b114 ⊕ b12
g111 = b112 ⊕ b6b8b9
g109 = b110 ⊕ b73
g107 = b108 ⊕ b62b58b50
g105 = b106 ⊕ b18b26
g103 = b104 ⊕ b72
g101 = b102 ⊕ b30
g99 = b100 ⊕ b40b56
g97 = b98 ⊕ b58b62b63b65

The area optimization algorithm places the Fibonacci product terms b88b92b93b95
and b70b78b82 respectively 26 and 16 feedback functions downer than the Fi-
bonacci product term b61b65. Also, the b22b24b25 product term is placed 10 feed-
back functions downer than the b11b13 product term. This allows sharing gates
among some of the parallelized feedback functions.

For Grain-128aX4 the Fibonacci product terms of the original NLFSR can be
moved only to feedback functions g127, g123, g119, g115, g111, g107, g103 and g99.

292 S.S. Mansouri and E. Dubrova

The NLFSR is transformed to:

g127 = s0 ⊕ b0 ⊕ b3b67
g123 = b124 ⊕ b22 ⊕ b52 ⊕ b23b55
g119 = b120 ⊕ b9b10 ⊕ b3b5
g115 = b116 ⊕ b70b66b58
g111 = b112 ⊕ b6b8b9
g107 = b108 ⊕ b68b72b73b75
g103 = b104 ⊕ b72 ⊕ b37b41
g99 = b100 ⊕ b40b56 ⊕ b63 ⊕ b12b20

The area optimization algorithm places the Fibonacci b88b92b93b95 product term
8 feedback functions downer than the product term b70b78b82; the product term
b22b24b25 is placed 8 feedback functions downer than the product term b11b13.

For Grain-128aX8 the Fibonacci product terms of the original NLFSR can
be moved only to feedback functions g127, g119, g111 and g103. The NLFSR is
transformed to:

g127 = s0 ⊕ b0 ⊕ b3b67 ⊕ b88b92b93b95
g119 = b120 ⊕ b9b10 ⊕ b3b5 ⊕ b32b40 ⊕ b60b76
g111 = b112 ⊕ b10 ⊕ b40 ⊕ b11b43 ⊕ b75 ⊕ b6b8b9
g103 = b104 ⊕ b72 ⊕ b37b41 ⊕ b46b54b58

For Grain-128aX16 the Fibonacci product terms of the original NLFSR can be
moved only to feedback functions g127 and g111. The NLFSR is transformed to:

g127 = s0 ⊕ b0 ⊕ b56 ⊕ b3b67 ⊕ b11b13 ⊕ b40b48 ⊕ b22b24b25 ⊕ b70b78b82
g111 = b112 ⊕ b10 ⊕ b75 ⊕ b80 ⊕ b1b2 ⊕ b11b43 ⊕ b45b49 ⊕ b72b76b77b79 ⊕ b68b52

For Grain-128aX32 the Fibonacci product terms of the original NLFSR can be
moved only to feedback functions g127, i.e. the NLFSR cannot be transformed
into a Galois NLFSR.

Optimized GPU Implementation

and Performance Analysis of HC Series
of Stream Ciphers�

Ayesha Khalid1, Deblin Bagchi2, Goutam Paul2, and Anupam Chattopadhyay1

1 Institute for Communication Technologies and Embedded Systems,
RWTH Aachen University, Aachen 52074, Germany

{ayesha.khalid,anupam.chattopadhyay}@ice.rwth-aachen.de
2 Department of Computer Science and Engineering,

Jadavpur University, Kolkata 700 032, India
deblinbagchi@gmail.com, goutam.paul@ieee.org

Abstract. The ease of programming offered by the CUDA programming
model attracted a lot of programmers to try the platform for acceleration
of many non-graphics applications. Cryptography, being no exception,
also found its share of exploration efforts, especially block ciphers. In
this contribution we present a detailed walk-through of effective map-
ping of HC-128 and HC-256 stream ciphers on GPUs. Due to inherent
inter-S-Box dependencies, intra-S-Box dependencies and a high number
of memory accesses per keystream word generation, parallelization of
HC series of stream ciphers remains challenging. For the first time, we
present various optimization strategies for HC-128 and HC-256 speedup
in tune with CUDA device architecture. The peak performance achieved
with a single data-stream for HC-128 and HC-256 is 0.95 Gbps and 0.41
Gbps respectively. Although these throughput figures do not beat the
CPU performance (10.9 Gbps for HC-128 and 7.5 Gbps for HC-256), our
multiple parallel data-stream implementation is benchmarked to reach
approximately 31 Gbps for HC-128 and 14 Gbps for HC-256 (with 32768
parallel data-streams). To the best of our knowledge, this is the first
reported effort of mapping HC-Series of stream ciphers on GPUs.

Keywords: CUDA, eSTREAM, GPU, HC-128, HC-256, stream cipher.

1 Introduction

The eSTREAM [12] Portfolio (revision 1 in September 2008) contains the stream
cipher HC-128 [21] in Profile 1 (SW) which is a lighter version of HC-256 [22]
stream cipher born as an outcome of 128-bit key limitation imposed in the
competition. Several research contributions exist on the cryptanalysis of HC-
128 [14,15,13,18,20]. However, HC-256 has undergone fewer cryptanalytic at-
tempts [16,19]. For algorithmic details of HC-128 and HC-256, the reader may
refer to Appendix A.

� This work was done in part while the second author was a summer intern and the
third author was an Alexander von Humboldt Fellow at RWTH Aachen, Germany.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 293–308, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

294 A. Khalid et al.

After NVIDIA introduced a general purpose parallel computing platform
namely Compute Unified Device Architecture (CUDA) in November 2006 [24],
many cryptographers harnessed GPUs for acceleration. The earliest successful
effort of AES acceleration on GPUs, that outperformed CPU in throughput, was
presented by Manavski [1] who reported a throughput of 8.28 Gbps for AES-128
encryption on NVIDIA GeForce 8800. His work was later criticized for having
half of the throughput rates that it could achieve by using shared memory in-
stead of constant memory for T-boxes [2]. A more recent work by Iwai et al. [3]
reported 35 Gbps of throughput for AES encoding on NVIDIA GeForce GTX285
by exploiting memory granularity for independent threads.

Several endeavors undertook more than one cipher to present a suite of CUDA
based crypto accelerator application. Liu et al. [4] studied the effect of number of
parallel threads, size of shared memory for lookup tables and data coalescing in
device memories for several block encryption algorithms (AES, TRI-DES, RC5,
TWOFISH) processing on GPU using CUDA. Nishikawa et al. [5] targeted five
128-bit symmetric block ciphers from an e-government recommended ciphers list
by CRYPTREC in Japan and achieved substantial speedup.

The block ciphers, when subjected to parallelism offered by CUDA, gener-
ally show high speedups compared to CPUs because of the absence of data
dependency between the consecutive data blocks. Generally, the plaintext is
broken into n-many blocks of same size and subjected to independent threads of
GPUs. Higher sizes of plaintext give more data blocks and hence result in better
throughput by achieving more data parallelism, till the device limit is reached.

Unlike block ciphers, stream ciphers in general cannot be subjected to this ‘di-
vide and rule’ strategy. The reason is the dependencies in the states/S-boxes that
are used for keystream generation. The only endeavor of mapping eSTREAM (in-
cluding HC-128) and SHA-3 cryptographic algorithms on GPUs was presented by
D. Stefan in his masters thesis [7]. He reported a throughput of 2.26 Gbps (4.39
cycles/byte) for HC-128 implementation using multiple parallel data-streams on
NVIDIA GTX 295 GPU device[7]. This effort, however, lacks any optimization
opportunity exploiting the structure of the algorithm and is, therefore, easily
surpassed by our implementation in throughput.

This work presents a novel implementation of HC series of stream ciphers
on recent graphics hardware. To the best of our knowledge, this is the first
publication employing CUDA framework for GPU acceleration of any stream
cipher.

2 Limitations in Parallelization of HC Ciphers

The keystream generation for HC series of stream ciphers has two steps, we name
them as self-update step (SUS) of P/Q array and keystream word generation step
(KWGS). In a serial implementation, each 32-bit word of P array SUS is followed
by one KWGS. This goes on for 512 iterations in HC-128 and 1024 iterations for
HC-256. The same follows for Q array for exactly the same number of iterations.
Ideally, a fast GPU-based implementation would be able to run all these steps

Optimized GPU Implementation and Performance Analysis of HC Series 295

in parallel by independent threads as long as the device capacity is not over-
budgeted. However, ciphers like HC have highly iterative structures, prohibiting
parallelization beyond a limit.

2.1 Intra-S-Box Dependency in Self Update Step of S-Boxes

The gain of parallelization offered by CUDA programming model can be ex-
ploited easily if each iteration of a given iterative code block is independent of
its past execution. Such loops can be converted to parallel kernels by complete
unrolling where each loop iteration is executed by an independent thread. If an
array value being computed by a loop iteration has an intra-array-dependency,
such parallelism cannot be harnessed.

The SUS of HC-128 has a data dependency, the update of element P [j] de-
pends on its current and past values, i.e., P [j], P [j�3], P [j�10] and P [j�511].
Since the nearest dependency in the SUS of P [j] is on P [j�3], one cannot unroll
the loop more than 3 times.

//Three times unrolled version of P array SUS
for(j = 0; j < 512; j = j + 3)
{

P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
P [j + 1] = P [j + 1] + g1(P [j � 2], P [j � 9], P [j � 510]);
P [j + 2] = P [j + 2] + g1(P [j � 1], P [j � 8], P [j � 509]);

}

Fig. 1 describes the data dependencies for calculating the values at the ith,
(i + 1)th and (i + 2)th indices of P array pictorially. Calculation of (i + 3)th

index value requires the value at ith index of the array, making a simultaneous
update of values at indices i and (i + 3) impossible. This dependency limits
the number of threads carrying out the SUS of P/Q array to no more than 3.
The same arguments can be extended for HC-256 SUS. Moreover, due to similar
limitations, we cannot harness more than 2 and 3 simultaneous threads for Step
1 and 3 respectively of initialization phase in HC series of stream ciphers.

2.2 Inter-S-Box Dependency in Keystream Generation

For exploiting parallelism we try to investigate if it is possible to carry out SUS
P and Q arrays simultaneously (no spatial data dependency) or their current
and future copies simultaneously (no temporal data dependency).

Inter-S-Box Spatial Data Dependency. Consider the keystream generation
phase of HC-128 as given in Appendix A. The SUS of P and Q arrays does not
require values from each other. However, KWGS after SUS of P array has a
dependency on Q array and vice versa. Hence a naive implementation with si-
multaneous update of P and Q arrays will not bear correct results for KWGS. In
HC-256, even the SUS of the two S-Boxes is dependent on each other. Moreover,
the KWGS dependency after SUS in HC-256 is the same as in HC-128.

296 A. Khalid et al.

Fig. 1. Dependency in SUS at indices i, i+ 1 and i+ 2 in S-Boxes

Inter-S-Box Temporal Data Dependency. Temporal data dependency be-
tween the current instance of S-Boxes and their future instance is investigated
to exploit the possibility of simultaneous keystream generation from these ar-
rays for multiple data blocks. Consider two temporal instances of P array. Let
Pcurrent contain the expanded values after initialization phase and Pfuture be
the one that will have the future values of P array after SUS. Note that SUS of
Pfuture has a dependency on Pcurrent, hence making it impossible to simultane-
ously update multiple temporal instances of P/Q arrays. Arguing along the same
lines, its evident to see data dependency of P/Q arrays on their past instances
in HC-256 too.

2.3 Data-Intensiveness

When comparing the computational nature of stream ciphers with block ciphers,
a striking trend can be seen. Stream ciphers are predominantly data intensive
while block ciphers are computation intensive. HC series of stream ciphers are
no exception. Appendix B gives the list and frequency of various 32-bit binary
operations required by the SUS and KWGS of HC-128 and HC-256. The high
ratio of memory accesses to the arithmetic operations can be seen to be quite
high.

3 Optimization Strategies for GPU Implementation of
HC Series of Stream Ciphers

Kernels in CUDA compatible devices are assigned a small budget of thread-local
registers. Shared memory is local to a block of threads and is comparatively
bigger. The biggest memory in size is the grid-local global memory whose access

Optimized GPU Implementation and Performance Analysis of HC Series 297

incurs a 100x penalty as compared to register access [9]. Our device NVIDIA
GeForce GTX 590 has 3 GB of global memory, 48 KB of shared memory per MP
and a maximum of 64 registers per thread. Considering the memory hierarchy,
the fastest single data-stream implementation of the algorithm should use the
fastest memory, i.e., the registers. However, the S-boxes of HC-128 (4 KB) and
HC-256 (8 KB) are far too big to fit in them. The next best possibility is to put
the P and Q arrays in the shared memory and let the registers hold their smaller
16-element snapshot as suggested for the optimized implementation in [21,22].
However, this single thread implementation of keystream generation does not
lead to significant throughput. For example, HC-128 on our device yielded a
throughput of only 0.24 Gbps.

For exploiting parallelism, we strive to launch multiple threads simultane-
ously. As registers are local to one kernel, we use shared memory instead and
discuss various optimization strategies for single data-stream implementation in
Section 3.1. For multiple data-streams implementation, the use of on-chip block-
local shared memory instead of off-chip grid-local global memory can boost the
speedup significantly. However, each data-stream requires a memory budget m
for P and Q arrays, where m = 4 KB for HC-128 and m = 8 KB for HC-256
and hence the number of parallel data-streams per MP is restricted to s/m,
where s = 48 KB is the shared memory size. Therefore, we perform the multiple
data-streams implementation using global memory, as discussed in detail in Sec-
tion 3.2. A brief overview of the CUDA programming model for GPUs is given
in Appendix C.

3.1 Single Data-Stream Optimizations

Program listing of a simple implementation of keystream generation code for HC-
128 with the degree of parallelism that is straightforward to manipulate is given
in Table 1. Since the initialization phase is similar and simpler, its explanation
is skipped. The intra-dependency of S-Box arrays does not allow more than 3
parallel threads to update P/Q arrays as described in Section 2.1. The CUDA
kernel is called with 1 block of 512 threads. The code is divided into four parts.
The first and third parts give SUS for P and Q arrays respectively while part
two and four perform KWGS. Only 3 out of 512 threads update P array in part
one, requiring 171 (512/3) times execution for completely updating P array. In
part 2, the S-Boxes are employed to generate 512 words of keystream using 512
threads simultaneously. Part 3 updates the Q array followed by 512 words of
KWGS in part 4. This implementation yields a throughput of 0.37 Gbps for
keystream generation in HC-128.

Next we discuss the optimization strategies undertaken to improve the par-
allelism and consequently the throughput of this simple parallel CUDA based
implementation of HC-128. In case the strategies are applicable only to one of
the ciphers in HC series of stream ciphers, it has been explicitly mentioned.

Parallelization of P/Q Array SUS with Key Generation(512 words).
One way of increasing the degree of parallelism in HC-128 algorithm was

298 A. Khalid et al.

Table 1. Keystream generation implementation of HC-128 using three threads

if(threadIdx.x <= 2)
for(i = threadIdx.x; i < 512; i = i+ 3)

P s[i] = P s[i] + g1(P s[i� 3], P s[i � 10], P s[i � 511];
i = threadIdx.x;
s[i] = h1(Q s, P s[i� 12]) ⊕ P s[i];
if(threadIdx.x <= 2)

for(i = threadIdx.x; i < 512; i = i+ 3)
Q s[i] = Q s[i] + g2(Q s[i � 3], Q s[(i� 10)], Q s[i � 511]);

i = threadIdx.x;
s[i + 512] = h2(P s,Q s[i � 12]) ⊕ Q s[i];

suggested by Chattopadhyay et al. [23]. The authors proposed carrying out SUS
of either of the S-Boxes along with a simultaneous KWGS from the other S-Box.
The parallelism can be employed ensuring correct results by keeping multiple
temporal copies of S-Boxes (say P0, Q0, P1, Q1). If the shared memory of the
GPU device used for S-Box instances is not over-budgeted, this strategy can
be employed for achieving parallelism. As seen from Appendix A, each round
of HC-128 keystream generation for 1024 words has a P -SUS and P -KWGS for
512 words, followed by a similar Q-SUS and Q-KWGS for 512 words. With two
copies of S-Boxes, we can parallelize the P -SUS with Q-KWGS and vice versa.
The series of steps as proposed in [23] are summarized in Table 2. After ini-
tialization routine, arrays P0, Q0 contain the expanded key and IV. SUS of P
array starts by reading values from P0 (past values) and updating P1 (current
values). No more than 3 parallel threads (due to intra-data-dependency) execute
iteratively updating the entire 512 words array. In step 1 the Q array is updated
reading values from Q0 (past values) and updating Q1 (current values). KWGS
using P1 and Q0 is done by 512 parallel threads simultaneously - we denote this
by Keygen(Q0,P1). Similar notations describe the other steps.

Table 2. Parallelizing one SUS warp with one KWGS block

Step # KWGS SUS Comments
Step 0 - P1 3 threads for SUS
Step 1 Keygen(Q0,P1) Q1

3 active threads (out of a warp) for SUS
Step 2 Keygen(Q1,P1) P0
Step 3 Keygen(Q1,P0) Q0
Step 4 Keygen(Q0,P0) P1 + 512 threads for KWGS

After the initial step, Q1, P0, Q0, P1 are updated in successive steps, each
time simultaneously generating keystream words from the S-Box updated in the
previous step. This goes on by repetition of step 1 till 4 for as many keystream
values as required. CUDA framework for HC-128 parallel implementation em-
ploys 544 threads for keystream generation in total. Out of these, 512 threads
carry out KWGS from an entire array of S-Box words simultaneously. One thread
warp with three active threads carry out the SUS of the S-Box. Here parallelism

Optimized GPU Implementation and Performance Analysis of HC Series 299

is achieved at the cost of extra resources, since only multiple copies of the S-
Boxes guarantee correct results for parallel implementation. This strategy is
applied to HC-256 as well. Similarly, one warp with 3 active threads remains
under-utilized; however KWGS is carried out by 1024 parallel threads for larger
S-Boxes in HC-256.

Parallelization of P and Q SUS with Key Generation (1024 words).
Further parallelization of HC-128 is possible by simultaneous P -SUS and P -
KWGS of 512 words as well as the Q-SUS and Q-KWGS of 512 words in
keystream generation phase as described in Appendix A. Thus both the S-Boxes
can be updated in parallel along with simultaneous generation of 1024 words
of keystream. However, step 1 and 3 of keystream generation in Table 2 reveal
a data dependency. Q0 is needed for generating key from P1, and Q1 for gen-
erating key from P0. Hence, update of P0, Q0 and generating 1024 keystream
words using Keygen(Q0, P1) and Keygen(P1, Q1) gives rise to a race condition,
commonly called a Read After Write (RAW) hazard where the keystream values
would depend upon which statement gets executed first. This can be success-
fully avoided by using 2 more copies of Q arrays, namely QBuff0 and QBuff1

for keeping backups of Q0 and Q1 respectively. For preserving correctness, these
buffers need to be updated at every alternate step. All arrays are stored in the
shared memory for fast access.

Table 3 describes a step by step execution. After initialization, the expanded
key and IV reside in P0,Q0. All other temporal S-Box copies i.e., P1,Q1,QBuff0

andQBuff1 are left un-initialized. Simultaneous SUS of P andQ arrays is carried
out by reading values from P0, Q0 (past values) and updating P1, Q1 (current
values) respectively. A copy of Q0 is backed up in QBuff0 simultaneously. In this
step, 6 threads of 2 warps carry out the SUS for P1 and Q1. For Q0 backup,
512 parallel threads make a copy.

Table 3. Parallelizing 2 S-Box SUS warps with 2 KWGS blocks

QBuff copy KWGS SUS Comments
QBuff0 - - P1 Q1 3 + 3 threads for SUS, 512
copy threads for copying Q0 to QBuff0

QBuff1 Keygen Keygen P0 Q0 3 + 3 threads for SUS,
copy (Q1,P1) (QBuff0,P1) 512 threads for Keygen(Q1,P1),

512 threads for copying Q1 to
QBuff1 and Keygen(QBuff0,P1)

QBuff0 Keygen Keygen P1 Q1 3 + 3 threads for SUS,
copy (Q0,P0) (QBuff1,P0) 512 threads for Keygen(Q0,P0),

512 threads for copying Q0 to
QBuff0 and Keygen(QBuff1,P0)

In step 1, we employ a block of 1024 threads for generating 1024 words of
keystream, each thread generates one word of keystream. Out of these, 512
threads are used to execute the extra step of copying values to the buffers. Al-
ternate updates of P0, Q0 and P1, Q1 follows, simultaneously generating 1024

300 A. Khalid et al.

words of keystream. Hence step 1 and 2 are repeated as long as the keystream
generation is required.

A single kernel cannot be invoked with more than 1024 threads in a block. We
break the thread budget in two blocks, each having 544 threads. The two blocks
run concurrently, one warp in each carrying out SUS and 512 threads generating
keystream. GPUs with compute capability 2.0 or more have the capability of
calling concurrent kernels at the same time as well.

This strategy of achieving parallelism cannot be extended for HC-256 since
its SUS of the S-Boxes is dependent on each other.

3.2 Multiple Data-Streams Optimization

The GPU clock is slower than the CPU clock speed. Thus speedup in GPU
devices can be achieved in two ways. One way is by employing parallel threads
respecting data dependencies in a single stream of data as investigated in Sec-
tion 3.1. A better alternative in terms of resource utilization and throughput is
to employ all the SPs (stream processors) of the CUDA device by employing
ciphers of multiple data-streams in parallel. Due to the limited size of shared
memory, we employ the larger albeit slower global memory for ciphering multiple
parallel streams of data.

Performance tuning on the GPU requires understanding device specifications
and accordingly finding and exposing enough parallelism to populate all the
multiprocessors (MPs). NVIDIA GeForce GTX 590 can accommodate up to 8
blocks (or 48 warps) per MP. Since each warp can have 32 homogeneous threads,
an MP can process up to 1536 threads (48× 32). To fully utilize each MP, the
number of threads it should get assigned should be no more than 192 per block
(1536/8). This limit is kept in mind when assigning the thread budget to each
MP for HC series of stream ciphers.

For HC-128, the 3 threads for SUS of each of the S-Boxes constitute one warp.
Since these threads execute a total of 171 times (512/3) for complete update of
either of the S-Boxes, the number of parallel threads employed for KWGS can
be adjusted so that the budget of total number of 192 threads per block is never
exceeded. We employ 128 threads for KWGS and 2 warps for S-Box update in
case of HC-128. Hence 2 warps of S-Box SUS and 4 warps of KWGS are kept in
the same block of 192 threads. For HC-256, however, only one warp is used for
SUS and 4 for KWGS, making the total thread budget equal to 160 per block.
This strategy ensures maximum number of parallel data-streams the device can
encrypt simultaneously, showing noticeable increase in the throughput of both
HC-128 and HC-256.

4 Experimental Results

Throughput performances of HC ciphers for single and multiple parallel data-
streams were benchmarked on NVIDIA GeForce GTX 590. We used an AMD
PhenomTMII X6 1100T Processor with 8 GBs of RAM as host CPU. Each test

Optimized GPU Implementation and Performance Analysis of HC Series 301

was conducted 1000 times and the results were averaged. Appendix D summa-
rizes the hardware specifications of the two computation platforms.

4.1 Encryption of Single Data-Stream

Initialization phase of HC ciphers has been implemented using shared memory
and global memory in two separate experiments. The last step of initialization
phase is similar to SUS phase, consequently 3 parallel threads are employed for it.
In the second step of initialization phase, intra-dependency for W is even more
severe, limiting the number of simultaneous threads to 2. Using faster shared
memory instead of global memory accelerates initialization phase as shown in
Table 4. It however, incorporates the overhead of copying P , Q and W arrays
on shared memory that can be done simultaneously using 512 and 1024 parallel
threads in case of HC-128 and HC-256 respectively.

Table 4. Duration and throughput of initialization phase of HC series of stream ciphers

NVIDIA GeForce GTX 590 AMD PhenomTMII
Global memory Shared memory X6 1100T

HC-128 1.386 ms 1.078 ms 27 μs
22.53 Mbps 28.98 Mbps 1.15 Gbps

HC-256 1.930 ms 1.666 ms 60 μs
32.35 Mbps 53.56 Mbps 1.04 Gbps

The performance results of keystream generation phase are presented in Fig. 2
and Fig. 3 for HC-128 and HC-256 respectively. The throughput shows an in-
creasing trend, till it saturates for higher data sizes considered. The maximum
throughput when using the global memory for storing S-Boxes of HC-128 is 0.41
Gbps. Using shared memory gives a boost to performance because of its smaller
access time. A similar trend is observed for HC-256. The size of the S-Boxes is
double compared to that of HC-128, the amount of shared memory used by the
optimized version of our algorithm is 16 KB (two copies of each S-Box). A GPU

Fig. 2. HC-128 keystream generation throughput using shared and global memory

302 A. Khalid et al.

device with lower compute capability has no more than 16 KB of shared memory
per MP. Hence, this optimized implementation of HC-256 on one thread block of
such devices is not possible. The maximum throughput from the global memory
implementation of HC-256 is 0.15 Gbps and for shared memory implementation
is 0.41 Gbps.

Fig. 3. HC-256 keystream generation throughput using shared and global memory

4.2 Encryption of Multiple Data-Streams in Parallel

The parallelism offered by the CUDA device can be well exploited using multiple
parallel streams of data. For simulation purposes we start with a single stream
of data and double them up to 32K parallel streams. Fig. 4 gives the throughput
of HC-128 and HC-256 for increasing number of parallel data-streams on our
CUDA device. The trend of throughput rise shown by the two ciphers is similar,
having an apparent peak for 64 parallel streams. The CUDA device used has a
total of 16 MPs and each MP can accommodate 8 blocks at most. Maximum
utilization of MPs is achieved for 128 parallel streams of data (16× 8). Further
increase in the number of parallel data-streams shows a slight improvement in
the throughput. The reason is that the parallel streams in excess of 128 are
waiting in instruction queue and are launched with negligible context switch
time. The maximum throughput achieved is 31 Gbps for HC-128 and 14 Gbps
for HC-256 employing 32768 parallel streams.

4.3 Throughput Comparison of HC Series of Stream Ciphers on
Various Platforms

We compare our acceleration results with the only available figures for HC-128
acceleration on GPUs by D. Stefan in his masters thesis [7]. Without employing
parallelism within a single data-stream for HC-128, he assigned one thread to one
data-stream. For supporting multiple data-streams, he employed global memory
for S-boxes. The highest throughput achieved is reported and compared with
our implementation in Table 5. For the same number of blocks, our throughput
is approximately 14 times higher. Comparing the cycles/byte performance also
shows a significant decrease. Results for initialization phase are not available for
comparison.

Optimized GPU Implementation and Performance Analysis of HC Series 303

Fig. 4. Keystream generation throughput for varying number of multiple data-streams

Table 5. Comparison of our HC-128 acceleration with D. Stefan [7]

Implementation by D. Stefan[7] Our Implementation
NVIDIA device GeForce GTX 295 GeForce GTX 590
Release date January 8, 2009 March 24, 2011

Compute Capability 1.3 2.0
Memory Used Global Memory Global Memory

Threads / data-stream 1 192
data-stream / Block 256 1
Total blocks used 680 680
Total data-streams 680×256 680
Total threads used 680×256 192×680

Performance(Cycles/byte) 4.39 0.279
Throughput(Gbps) 2.26 31

The HC-128 performance evaluation on CPU was done using the eSTREAM
testing framework [6]. The C implementation of the testing framework was in-
stalled in the CPU machine (specs given in Appendix D) on CentOs 5.8 (Linux
version 2.6.18-308.11.1.el5xen). For the benchmark implementation of HC-128
and HC-256 the highest keystream generation speeds were found to be 2.36
cycles/byte and 3.63 cycles/byte respectively. Table 6 gives a comparison of
throughput of HC series of stream ciphers on various platform. The throughput
obtained on an AMD PhenomTM II X6 1100T Processor is 10.94 Gbps and 7.5
Gbps for keystream generation phase of HC-128 and HC-256 respectively. The
high speed rendered by CPU is primarily because it has to incur no memory
overhead for RAM located contents unlike the GPU memory accesses. More-
over, the limitation of SIMD architecture of GPUs requires homogeneity of warp
threads which is not a limitation in CPUs. Consequently the CUDA mapping of
the HC family of ciphers is 11-18 times slower. The ASIC based implementation
proposed by Chattopadhyay et al. is so far the fastest reported implementation
of HC-128 claiming a throughput of 22.88 Gbps [23]. The throughput results of
HC-256 are however not reported.

304 A. Khalid et al.

Table 6. Throughput (Gbps), Cycles/Byte (C/B) of a single data-stream HC ciphers

AMD PhenomTM NVIDIA GeForce ASIC [23]
II X6 1100T GTX 590 (65nm Technology)

HC-128 10.9 Gbps 2.36 C/B 0.95 Gbps 9.27 C/B 22.88 Gbps 0.5 C/B

HC-256 7.5 Gbps 3.63 C/B 0.41 Gbps 21.82 C/B Not reported Not reported

For multiple data-streams we get promising results which for CPUs is not
straightforward to implement. For 32768 parallel data-streams, our GPU gives a
throughput of 31 Gbps for HC-128 and 14 Gbps for HC-256. Hence we conclude
that HC-series of stream ciphers is unfit to be off-loaded to GPUs in case of
a single data-stream application. In contrast, an application exploiting multiple
parallel data-streams can achieve GPU acceleration up to 2.8 times faster in case
of HC-128 and 1.87 times faster for HC-256 (with 32768 parallel data-streams).

5 Conclusion and Future Work

This work presents the first detailed study of algorithmic acceleration limitations
in HC series of stream ciphers for mapping on a GPU device. The high degree
of data dependency in their S-box update procedures puts strict limitations
on exploiting the inherent parallelism that a graphics device offers. Moreover
these ciphers are primarily data intensive in nature. These limitations explain
the absence of relevant scientific publications in this arena. We present various
strategies to improve the throughput of the HC-128 and HC-256 ciphers at the
cost of replicated copies of S-Boxes. However, for a single data-stream accelera-
tion, our throughput does not go beyond 0.95 Gbps and 0.41 Gbps for HC-128
and HC-256 respectively on a GeForce GTX 590 (leaving it 11-18 times slower
than a standard CPU in throughput).

For multiple data-streams, however, we beat the CPU performance. We did
a thorough tuning on the GPU for optimizing all the architectural features that
the device could offer. Thread and warp grouping is done so as to expose enough
parallelism to the device to keep all the MP cores busy all the time. Our GPU
based acceleration resulted in being 2.8 times faster than CPU in case of HC-128
and 1.87 times faster for HC-256 (with 32,768 parallel data-streams). Hence we
conclude that GPUs can successfully be employed as a co-processor with a CPU
host to accelerate HC series of stream ciphers using multiple parallel streams of
data. As future work, we plan to investigate the parallelism opportunities offered
by the entire eSTREAM portfolio [12] of software stream ciphers and compare
the performance against today’s CPUs.

References

1. Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In: International Signal Processing and Communications (IC-
SPC), pp. 65–68. IEEE (2007)

Optimized GPU Implementation and Performance Analysis of HC Series 305

2. Biagio, A., Barenghi, A., Agosta, G., Pelosi, G.: Design of a parallel AES for
graphics hardware using the CUDA framework. In: International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 1–8. IEEE (2009)

3. Iwai, K., Nishikawa, N., Kurokawa, T.: Acceleration of AES encryption on CUDA
GPU. International Journal of Networking and Computing 2(1), 131–145 (2012)

4. Liu, G., An, H., Han, W., Xu, G., Yao, P., Xu, M., Hao, X., Wang, Y.: A Program
Behavior Study of Block Cryptography Algorithms on GPGPU. In: Fourth Inter-
national Conference on Frontier of Computer Science and Technology 2009, FCST
2009, pp. 33–39. IEEE (2009)

5. Nishikawa, N., Iwai, K., Kurokawa, T.: High-Performance Symmetric Block Ciphers
on Multicore CPU and GPUs. International Journal of Networking and Comput-
ing 2(2), 251–268 (2012)

6. Cannire, C.D.: eSTREAM testing framework,
http://www.ecrypt.eu.org/stream/perf

7. Stefan, D.: Analysis and Implementation of eSTREAM and SHA-3 Cryptographic
Algorithms (2011), http://hgpu.org/?p=5972

8. Bauer, M., Cook, H., Khailany, B.: CudaDMA: Optimizing GPU memory band-
width via warp specialization. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis. ACM, New
York (2011); Article 12

9. http://stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/

lecture 4/cuda memories.pdf

10. Bernstein, D.: Cache-timing attacks on AES (2005),
http://cr.yp.to/papers.html#cachetiming

11. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

12. eSTREAM: the ECRYPT Stream Cipher Project,
http://www.ecrypt.eu.org/stream

13. Kircanski, A., Youssef, A.M.: Differential Fault Analysis of HC-128. In:
Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp.
261–278. Springer, Heidelberg (2010)

14. Liu, Y., Qin, T.: The key and IV setup of the stream ciphers HC-256 and HC-128.
In: International Conference on Networks Security, Wireless Communications and
Trusted Computing, pp. 430–433. IEEE (2009)

15. Maitra, S., Paul, G., Raizada, S., Sen, S., Sengupta, R.: Some observations on
HC-128. Designs, Codes and Cryptography 59(1-3), 231–245 (2011)

16. Zenner, E.: A Cache Timing Analysis of HC-256. In: Avanzi, R.M., Keliher, L.,
Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 199–213. Springer, Heidelberg
(2009)

17. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

18. Paul, G., Maitra, S., Raizada, S.: A Theoretical Analysis of the Structure of HC-
128. In: Iwata, T., Nishigaki, M. (eds.) IWSEC 2011. LNCS, vol. 7038, pp. 161–177.
Springer, Heidelberg (2011)

19. Sekar, G., Preneel, B.: Improved Distinguishing Attacks on HC-256. In: Takagi, T.,
Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 38–52. Springer, Heidelberg
(2009)

20. Stankovski, P., Ruj, S., Hell, M., Johansson, T.: Improved distinguishers for HC-
128. Designs, Codes and Cryptography 63(2), 225–240 (2012)

http://www.ecrypt.eu.org/stream/perf
http://hgpu.org/?p=5972
http://stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_4/cuda_memories.pdf
http://stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_4/cuda_memories.pdf
http://cr.yp.to/papers.html#cachetiming
http://www.ecrypt.eu.org/stream

306 A. Khalid et al.

21. Wu, H.: The Stream Cipher HC-128,
http://www.ecrypt.eu.org/stream/hcp3.html

22. Wu, H.: A New Stream Cipher HC-256. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 226–244. Springer, Heidelberg (2004),
http://eprint.iacr.org/2004/092.pdf

23. Chattopadhyay, A., Khalid, A., Maitra, S., Raizada, S.: Designing High-
Throughput Hardware Accelerator for Stream Cipher HC-128. In: International
Symposium on Circuits and systems (ISCAS), pp. 1448–1451. IEEE (2012)

24. NVIDIA CUDA, http://developer.NVidia.com/object/CUDA.html

Appendix A: Description of HC-128 and HC-256
Keystream Generation

HC-t uses t-bit secret key and IV, and 32-bit element internal arrays P and Q
each of length 4t, where t is either 128 or 256. We briefly sketch the keystream
generation phase of the algorithms here. For details of key and IV setup, one may
refer to [21,22]. The operators used are + (addition modulo 232), � (subtraction
modulo 512), ⊕ (bit-wise exclusive OR), ',((32-bit shifts) and ≫,≪ (32-
bit rotations). Let sr denote the keystream word generated at the r-th step,
r = 0, 1, 2, The functions g1 and g2 (3 inputs for HC-128 and 2 inputs for
HC-256) are used for self-update of P and Q and functions h1 and h2 are used
in the keystream generation, as follows.

HC-128 HC-256
t 128 256
g1 ((x ≫ 10) ⊕ (z ≫ 23)) + (y ≫ 8) ((x ≫ 10) ⊕ (y ≫ 23)) + Q[(x⊕ y) mod 4t]
g2 ((x ≪ 10) ⊕ (z ≪ 23)) + (y ≪ 8) ((x ≫ 10) ⊕ (y ≫ 23)) + P [(x ⊕ y) mod 4t]
h1 Q[x(0)] + Q[2t + x(2)] Q[x(0)] + Q[t + x(1)] + Q[2t + x(2)] + Q[3t + x(3)]
h2 P [x(0)] + P [2t + x(2)] P [x(0)] + P [t + x(1)] + P [2t + x(2)] + P [3t + x(3)]

P [j]+ = g1(P [j � 3], P [j � 10], P [j � 511]) P [j � 10] + g1(P [j � 3], P [j � 1023])
Q[j]+ = g2(Q[j � 3], Q[j � 10], Q[j � 511]) Q[j � 10] + g2(Q[j � 3], Q[j � 1023])

The last two rows of the above table show the self-update steps (SUS) for the
arrays P and Q. Here x = x(3)‖x(2)‖x(1)‖x(0) is a 32-bit word, with x(0), x(1), x(2)
and x(3) being the four bytes from right to left. The keystream generation phase
happens in cycles of 8t rounds, in the first 4t of which the array P is updated
followed by a keystream word generation step (KWGS) si = h1(P [j�12])⊕P [j].
In the next 4t rounds, the array Q is updated and the corresponding KWGS is
given by si = h2(Q[j � 12])⊕Q[j].

http://www.ecrypt.eu.org/stream/hcp3.html
http://eprint.iacr.org/2004/092.pdf
http://developer.NVidia.com/object/CUDA.html

Optimized GPU Implementation and Performance Analysis of HC Series 307

Appendix B: List of Operations for Keystream Generation
in HC-128 and HC-256

HC-128 HC-128 HC-256 HC-256
SUS KWGS SUS KWGS

Modulo Additions 2 2 3 7
Xor 1 1 2 1

Modulo Subtractions 3 1 3 1
Rotations 3 0 2 0
Shifts 0 1 0 3

Total operations 9 5 10 12
Memory Reads 4 4 5 6
Memory Writes 1 1 1 1

Total memory accesses 5 5 6 7

Appendix C: Overview of CUDA Programming Model

CUDA exposes the device as a repository of thousands of parallely executable
threads as shown in Fig. 5. The GPU chip is organized as a collection of mul-
tiprocessors (MPs). Each MP has a number of Stream Processors (SPs), each
handling one thread. Each MP is responsible for handling one or more thread
blocks. Since thread blocks have no dependencies among themselves, their as-
signment is independent of MPs allowing transparent scaling of programs across
different GPUs. Here are some technical terms relevant to the CUDA execution
model.

Fig. 5. CUDA GPU execution model

1. Thread: the smallest unit of execution in CUDA.
2. Warp: the threads are forwarded to the CUDA MPs in groups (warps) of

32 for execution. If all thread kernels in a warp are homogeneous, all the SPs
in an MP execute the same instruction in a true SIMD fashion.

3. Block: a group of threads each with exclusive local memories and registers
and a single shared memory as shown in Fig. 5.

308 A. Khalid et al.

4. Grid: one or more thread blocks being executed by a kernel in memory form
a grid. Each MP handles one or more blocks in a grid. Threads in a block
are not divided across multiple MPs.

5. Kernel: a block of code called from the host CPU, and then sent to the
device with a grid of thread blocks. CUDA gives the freedom of choosing the
threads and block structure and dimension to the coder.

Appendix D: Hardware Specifications of CPU and GPU
used for Throughput Comparison

AMD PhenomTMII X6 1100T NVIDIA GeForce TX 590
Transistors 904 million 6 billion

Processor Frequency (GHz) 3.31 1.2
Cores/SPs 6 1024

Cache/shared Memory L2-512 KB, L3-6 MB×6 48 KB×32
Threads executed per cycle 6 1024
Active Hardware threads 6 49152 (maximum)

Trusted Launch of Virtual Machine Instances

in Public IaaS Environments

Nicolae Paladi1, Christian Gehrmann1, Mudassar Aslam1,
and Fredric Morenius2

1 Swedish Institute of Computer Science, Stockholm, Sweden
2 Ericsson Research, Stockholm, Sweden

{nicolae,chrisg,mudassar.aslam}@sics.se, fredric.morenius@ericsson.com

Abstract. Cloud computing and Infrastructure-as-a-Service (IaaS) are
emerging and promising technologies, however their adoption is ham-
pered by data security concerns. At the same time, Trusted Computing
(TC) is experiencing an increasing interest as a security mechanism for
IaaS. In this paper we present a protocol to ensure the launch of a virtual
machine (VM) instance on a trusted remote compute host. Relying on
Trusted Platform Module operations such as binding and sealing to pro-
vide integrity guarantees for clients that require a trusted VM launch, we
have designed a trusted launch protocol for VM instances in public IaaS
environments. We also present a proof-of-concept implementation of the
protocol based on OpenStack, an open-source IaaS platform. The results
provide a basis for the use of TC mechanisms within IaaS platforms and
pave the way for a wider applicability of TC to IaaS security.

Keywords: IaaS, security, trusted computing, trusted virtual machine
launch, OpenStack.

1 Introduction

One of the distinguished trends in IT operations today is the consolidation of
IT systems onto common platforms. A key technology in realizing this is sys-
tem virtualization [1]. System virtualization makes it possible to streamline IT
operations, save energy and obtain better utilization of hardware resources. A
virtualized computing infrastructure allows clients to run own services in form of
Virtual Machines (VM) on shared computing resources. This approach however
introduces new challenges, as it means that information previously controlled by
one administrative domain and organization, is now under the control of a third
party provider and that the information owner loses direct control over how data
and services are used and protected. IaaS [2] is one of the business models based
on system virtualization and security aspects are among the main identified ob-
stacles for its adoption1. The problems with securing IaaS are evident not least

1 AFCEACyberCommittee – October, 2011, http://www.afcea.org/mission/intel/
documents/cloudcomputingsecuritylessonslearned final.pdf

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 309–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.afcea.org/mission/intel/documents/cloudcomputingsecuritylessonslearned_final.pdf
http://www.afcea.org/mission/intel/documents/cloudcomputingsecuritylessonslearned_final.pdf

310 N. Paladi et al.

through the fact that widely known platforms such as Amazon EC2, Microsoft
Azure, services provided by RackSpace and other IaaS services are plagued by
vulnerabilities at several levels of the software stack, from the web based cloud
management console [3] to VM side-channel attacks, to information leakage, to
collocation with malicious virtual machine instances [4].

A promising approach towards handling IaaS security threats and a mean
to provide service confidence is the use of Trusted Computing technologies as
defined by the Trusted Computing Group (TCG) [5]. The core component in
the TCG-defined security architecture is the Trusted Platform Module (TPM),
a hardware module that can be used as a trust anchor for software integrity
verification in open platforms that also offers protected storage for sensitive pa-
rameters. TPM usage and deployment models for IaaS clouds are currently an
active research area [6,7,8,9,10,11]. Earlier research has introduced principles of
a trusted IaaS platform [9], later extended to cover both trusted VM launch [10]
and VM migration [11]. These research results demonstrate principles of combin-
ing basic TPM attestation mechanisms with standard cryptographic techniques
to design an infrastructure for VM protection. However, such solutions have lim-
itations with respect to security, complexity and target compute host selection
procedures.

In this paper we describe a trusted VM launch process that addresses these
limitations and present a trusted launch protocol that does not require secure
pre-packaging of the VM image on the client side. Furthermore, in order to be
usable in a significant proportion of IaaS deployment scenarios and to provide
full scheduling flexibility on the IaaS side, the protocol allows the IaaS provider
to select a target trusted compute host without directly involving the client. The
main contributions of this paper are:

1. Description of a trusted launch protocol for VM instances in public IaaS
environments.

2. Implementation of the proposed protocol based on a widely-known IaaS plat-
form.

The paper is further organized as follows: In section 2 we define the trust and at-
tack models, formulate the problem area and define requirements for a scheme to
address the identified issues; section 3 presents the main contribution of the pa-
per, namely a platform-agnostic protocol for trusted virtual machine launching.
In section 4 we perform a security analysis of the proposed protocol and continue
with a description of the prototype implementation based on the OpenStack IaaS
platform in section 5. In section 6 we provide summaries of significant related
work within trusted computing in IaaS environments. We conclude in section 7
and provide a set of further research suggestions.

2 Trust and Attack Models, Problem Description and
Requirements

Next we describe the trust and attack models we assume in this paper, list the
top security and general design requirements applicable given the defined trust

Trusted Launch of Virtual Machine Instances in Public IaaS Environments 311

and attack models and revisit virtual machine images in the context of a trusted
VM instance launch. We also discuss the characteristics that can be expected
from a well-designed VM instance launch.

2.1 Trust and Attack Models

In the trust model and consequently the attack model used in this paper, the
client does not implicitly trust any aspect of the IaaS provider. Although poten-
tially true for many IaaS environment types, this trust model should be partic-
ularly relevant to public IaaS environments (according to the definition in [12]),
where the relationship between the client and the IaaS provider is often formal
and lacks prerequisites for implicit trust.

We share the attack model with [9,10,11] which assume that privileged access
rights can be maliciously used by IaaS provider remote system administrators
(Ar). This scenario assumes that Ar can log in remotely to any host maintained
by the IaaS provider and obtain root access. However, in this model Ar does
not have physical access to the hosts. The only possibility for Ar to circumvent
this constraint is by succeeding to force a client to launch their VM instance
on an Ar-controlled compute host outside the physically secured IaaS provider
perimeter. Furthermore, we assume that an Ar obtaining remote root access to
the compute host will not be able to access the volatile memory of any VM
residing on the compute host at that time, i.e. the compute host offers VMs
a closed box execution environment2. This assumption is required in order to
ensure that Ar can not access the nonce provided by C and its implementation
is out of the scope of this paper.

In a trusted VM launch context this means that we consider both the attack
where Ar attempts to launch a VM instance on a non-trusted compute host
instead of on a trusted one and the attack where Ar attempts to substitute the
VM image requested by the client with a maliciously modified VM image.

In the current attack model, a VM instance is considered trusted if and only
if it fulfils the following criteria:

1. The VM image used for the instance is itself trusted;
2. The VM instance is started on a trusted compute host;
3. The VM instance has the client-generated verification token injected (see

section 3.1)

2.2 Virtual Machine Images

As an implication of the above trust and attack models, we consider the following
two properties of virtual machines in the context of trusted computing:

– No VM instance, or any entity communicating with the VM instance, can
determine whether the hypervisor the VM instance is running on is trusted
or not.

2 This does not include any VMs which are part of the hosting infrastructrure, such
as Xen dom0 VM).

312 N. Paladi et al.

– A VM instance cannot be trusted to reliably determine if it has the config-
uration originally requested by the client.

To overcome these issues, we suggest a launch protocol where we use standard
TPM v1.2 functionality to first ensure that the client can detect the situation
when it is communicating with a VM instance that is not launched on a trusted
platform and subsequently utilize the trusted platform to verify the integrity of
the VM image prior to VM launch.

It is essential, in the scope of the protocol, that no modifications or cus-
tomizations of the VM image to be launched are performed by the IaaS provider
without the client’s knowledge.

2.3 Requirements for a Trusted VM Launch Protocol

Considering the trust and attack models above, it is important for the client to
be able to obtain reasonable security guarantees from the IaaS provider. These
include both trustworthiness of the computing resources, as well as guarantees
regarding VM integrity and confidentiality. In order to also be cost and imple-
mentation efficient, the underlying infrastructure should provide such guarantees
with a minimal operational overhead without increasing structural complexity.
The expectations can be summarized as a set of basic requirements towards a
trustworthy VM launch process:

– R1: The client shall have the mechanisms to ensure that the VM instance
has been launched on a trusted compute host.

– R2: The client should have the possibility to reliably determine that it is
communicating with a VM instance launched on a trusted compute host,
and not with a different VM instance.

– R3: The integrity of the VM image scheduled to be launched must be veri-
fiable by the target trusted compute host.

– R4: The trusted VM launch procedure should be scalable and have a mini-
mum impact on the performance of the IaaS platform.

– R5: Clients should have a transparent view of the trusted launch procedure.

3 A Trusted Launch Protocol for Virtual Machine Images
in IaaS Environments

Based on the above requirements for a trusted launch protocol for VM instances
in IaaS environments, we present a platform-agnostic protocol that shows prin-
ciples of using TPM functionality to ensure the integrity of the compute host
and of the VM image requested to be launched by the client. The below protocol
addresses the security concerns presented above by focusing on simplicity, trans-
parency, scalability and minimal interference with the currently known setup of
the IaaS implementations. Furthermore, the protocol is based on widely-used
and verified techniques, such as hashing and asymmetric cryptography in com-
bination with TPM functionality.

Trusted Launch of Virtual Machine Instances in Public IaaS Environments 313

The protocol requires the participation of four entities, three of which are
typically involved in VM launch procedures in IaaS architectures:

1. Client (C) is a IaaS user and intends to launch a VM instance. In this paper, C
is considered to be a non-expert, i.e. one not capable of assessing the security
of platform configurations based on values contained in the measurement list.
C requires a VM instance to be launched on a trusted platform. Furthermore,
it is important for C to be able to either verify or trust the security of VM
images provided for launch.

2. Scheduler (S) is responsible for receiving requests for VM instance launches
from C, as well as scheduling and rescheduling of VM instances on avail-
able compute hosts at the IaaS provider. S should be able to function with
minimal involvement in the security-specific message passing.

3. The compute host (CH) is the target resource that will be chosen by S to
run the particular VM instance. CH represents a physical or virtual server
that is able to host one or more VM instances (however, this paper considers
exclusively the case when the CH is a physical server). For the purposes of
the proposed protocol, a CH must also be equipped with a TCG-compliant
TPM as well as be immune to modification attempts when in a trusted state.

4. The Trusted third party (T T P) is, as the name implies, trusted by both
the Client and the IaaS provider and can not be controlled or manipulated
by the IaaS provider. The recent breaches of Certificate Authorities have
emphasized the drawbacks of centralized security models and their suscep-
tibility to attacks [13]. The more complex the operations performed by the
T T P, the higher the probability of it having exploitable vulnerabilities. It
is therefore important to keep the implementation of the T T P as simple as
possible. The main task of the T T P is to attest the configuration of the CH
that will host the VM instance and assess its security profile according to
predefined policies. Within the current trust model, T T Ps could be imple-
mented by an expert C, as long as the IaaS provider agrees to that and C has
the capability to set up and operate an attestation and evaluation engine.

For the purpose of the protocol, we also introduce the concept ‘security profile
of a CH’:

Definition 1. A security profile (SP) is a verified setup of an OS including
underlying libraries and configuration files, which is considered to be trusted by
all parties. SP can range on an ascending integer scale which reflects the level
of verification, from least to most strict (and hence more restrictive).

The information needed to calculate the SP and also to compare the setup of two
CHs is stored in the integrity measurement log (IML), as the IML contains hashes
of the components that were loaded or used during the boot sequence of the CH.
The validity of the IML is confirmed through a signature using the attestation
identity keys (AIK) of a TPM. The AIK are persistent, non-migratable keys that
are used to sign and authenticate by the means of an AIK certificate (denoted
by AIK − cert) the validity of the information provided by the TPM in case of

314 N. Paladi et al.

an external attestation [14]. We thus assume that the SP of any given CH can
be deterministically calculated by each of the parties involved in the protocol.3

3.1 Platform-Agnostic Protocol Description

The following steps are required in order to perform a trusted VM launch (Fig.
1, the steps of the protocol correspond to the steps in the figure4).

1. Before initiating the launch procedure, C generates a sufficiently long nonce
N , to be used as a proof token in communications between C and the VM
instance and must be kept confidential to untrusted parties throughout the
launch process.

2. C creates a token which we denote by T , representing a data structure
with information necessary for the trusted VM launch. T contains N , the
minimum SP and the hash of the VM image used for launch, denoted by
HV Mimage

5. Finally, the token is encrypted with the public key of T T P , rep-
resented by PKTTP , while the encrypted token is represented by TPKTTP .

3. C provides the scheduler (S) the following parameters:
– VM image identifier and optionally the VM image to be launched;
– SP ;
– URL of the T T P ;
– Encrypted token TPKTTP generated in step (2);
SP will determine the lower bound of trust level required from CH on which
the VM will run, with stricter security profiles accepted.

4. S schedules a VM on the appropriate CH, depending on its membership in
the respective security profile group and sends the CH a request to generate
a bind key PKBind, also providing the URL of the T T P .

5. Once the destination CH receives the bind key request, it retrieves a PCR-
locked non-migratable TPM-based bind key PKBind. This key can be pe-
riodically regenerated by CH according to a administrator-defined policy,
using the current platform state represented by the TPM PCRs. It is im-
portant to note that the values of the PCRs should not necessarily be in a
trusted state in order to create a trusted state bind key.

6. In order to prove that the bind key is a non-migratable, PCR-locked, asym-
metric TPM key, CH uses the TPM CERTIFY KEY TPM command in order to
retrieve the TPM CERTIFY INFO structure signed with the TPM attestation
indentity key [14], which we denote by PKAIK ; we also denote the signed
structure by
HTPM CERTIFY INFO

AIK . The TPM CERTIFY INFO data structure contains
the hash of the bind key and the PCR value required for the key usage.

3 The methodology for calculating the SP of a CH is out of the scope of this paper.
4 Due to space limitations, ”Attestation data” was chosen as the condensed notation
for: TPKTTP , PKBind, TPM CERTIFY INFO,HTPM CERTIFY INFO

AIK , IML,AIK −
cert

5 If non-repudiation of VM launch is required, the client should also sign the VM
image hash and include the signature and corresponding client certificate into the
token.

Trusted Launch of Virtual Machine Instances in Public IaaS Environments 315

7. CH sends an attestation request to the T T P through an HTTPS session
using the URL supplied by C. The following arguments are sent in the request
to T T P :
– Client-provided token TPKTTP

– Attestationdata,which includes thepublic bindkey, theTPM CERTIFY INFO

structure, the hash of TPM CERTIFY INFO signed with the AIK6, the IML
and the AIK-certificate collectively represented as:
PKBind, TPM CERTIFY INFO,HTPM CERTIFY INFO

AIK , IML, AIK-cert .
8. T T P uses its private key PrKTTP , which corresponds to the public PKTTP

to attempt to decrypt the token TPKTTP .
9. T T P validates the attestation information obtained from CH as follows:

– Validates the AIK certificate;
– Validates the structure of the AIK-signed TPM CERTIFY INFO;
– Validates the key PKBind by comparing its digest with the digest re-

ceived in TPM CERTIFY INFO;
– Calculates the hash of the PCR values HPCR based on the informa-

tion in the IML and compares it with the hash of PCR INFO, which is a
component of TPM CERTIFY INFO

10. T T P examines the entries in the IML in order to determine the trustwor-
thiness of the CH and decides whether SP is satisfied.

11. If step 10 is true, T T P encrypts N and the hash HV Mimage with the bind
key PKBind obtained from CH, to ensure that N is only available to CH in
a trusted state. By sending N and HVMimage encrypted with the public key
PKBind available to the trusted configuration of CH, the security perime-
ter expands to include three parties: C itself, T T P and CH in its trusted
configuration. This implies that all actions performed by CH in its trusted
configuration are trusted by default.

12. Prior to launching the VM, CH decrypts N and HVMimage using the TPM-
issued PrKBind, which is available to it in its trusted configuration but
stored in the TPM; next, CH compares HVMimage obtained from the T T P
with the hash of the VM image to be used for launch and accepts the image
only in case the values are equal.

13. CH injects N into the VM image prior to launching the VM instance.
14. CH returns an acknowledgement to S to confirm a successful launch.
15. To verify that the VM instance has been launched on a trusted platform, C

challenges the VM instance to prove its knowledge of N .

The fact that N is kept confidential allows it to be used as an authentication
token while establishing a secure communication channel between C and the
launched VM instance. N can be used as the pre-shared secret in order to
add protection against man-in-the-middle attacks when using Diffie-Hellman key
exchange, as specified in the password-authenticated key-exchange protocol [15].

Some of the operations can be optimized taking into account the operational
environment. For example, the validity period of PKBind created in step (5)

6 Expressed as HTPM CERTIFY INFO
AIK .

316 N. Paladi et al.

can be adjusted. In a similar way, T T P can have a cache of the PKBind keys
created by CHs with verified trusted configurations. In this case, steps (9) and
(10) can be skipped for a certain number of cases, which can also be regulated
by an administrative policy. However, it is important to remember that the use
of such a cache introduces further complexity to T T P , the analysis of which is
out of the scope of this paper.

4 Protocol Security Analysis

In this section we present a critical review of the protocol and highlight improve-
ment areas that were left as future work. We begin with a security analysis of
the protocol, in order to outline its strengths and weaknesses.

Returning to the security concerns expressed in the requirements on the
trusted launch protocol formulated in section 2.3, they are addressed as follows.
Let ϕ be the guest VM instance launched on CH, then:

– R1: Following above protocol, C and ϕ have a shared secret N . The fact that
ϕ is running on a trusted platform is ensured by the properties of the bind
key used to seal the shared secret N to the trusted configuration of CH;

– R2: The fact that C is communicating with ϕ and not any other unexpected
VM instance ϕ′ is ensured through the combination of: a. verification of CH
by the T T P , b. presence of the token N injected into ϕ where N is only
available to CH in a trusted state; c. the VM image integrity verification
performed by the CH prior to the launch. A failure at any of the steps of the
above sequence would prevent the trusted VM launch, a fact that would be
verifiable by C.

– R3: Integrity of the VM image is ensured through the verification performed
by CH in a trusted state, prior to the trusted VM launch. Thus, the VM
image is verified using the hash value obtained from the TTP. By comparing
the hash of the VM image with the expected HV Mimage provided by C, CH
ensures a one-to-one correspondence between the VM image to be used for
launch and the VM image expected by C. The chain is completed once C
verifies the presence of N injected into ϕ. The presence of the correct token
N guarantees the integrity of ϕ requested by C.

– R4: Scalability of the protocol is ensured by the lightweight nature of op-
erations that must be performed by both T T P and CH and the flexibility
in the choice of T T P . While a challenging topic, especially in the case of
high-availability and heavy load IaaS setups, the design of a scalable T T P
architecture is out of the scope of this paper.

– R5: Transparency of the trusted VM launch procedure is ensured by the
introduction of client parameters, such as the URL of the T T P , the trust
level of CH and the secret token generated by C. The ability to choose T T P
opens the possibility for C to ensure the trustworthiness of the CH attestation
procedure, either through audit controls of the T T P or by itself serving the
role of T T P.

Trusted Launch of Virtual Machine Instances in Public IaaS Environments 317

:C :S :CH :T T P:C :S :CH :T T P

1. Generate nonce

N

2. E(N ,SP,HV Mimg)

TPKTTP

3. V M type, SP,
URL, TPKTTP

ok

4.
URL, TPKTTP
Gen. bind key

5. Create TPM Bind Key

PKBind

6. Sign PKBind

HTPM CERTIFY INFO
AIK

7. Attestation data

8. D(TPKTTP
:PrKTTP)

N ,SP,HV Mimg

9. V alidate attestation

V alid ∨ Invalid

10.Eval(IML)�SP

True ∨ False

11. Return encrypted token
{N ,HV Mimg}PKBind

12. Unseal N ,HV Mimg

Eval(HV Mimg = HIaaSvm)

13. Inject N , launch V M

OK

14. Confirm launch to S

OK

ok

15. Challenge N

Return challenge N

Fig. 1. Trusted VM launch protocol: C: Client; S : Scheduler; CH: Compute Host;
T T P : Trusted Third Party

318 N. Paladi et al.

4.1 T T P Verification Model

The stateless architecture of the T T P implies that it does not maintain knowl-
edge of N except for at the moment of sealing it to CH and does not maintain
any session state at any point of the protocol. As a result, an Ar can only obtain
N from T T P if they obtain T T P ’s private key PrKTTP . Furthermore, assess-
ment of the trust level of a CH according to a deterministic algorithm which
only takes two inputs (in the form of static set of reference measurement data
and dynamic attestation calls from any CH) will be easily traceable and repro-
ducible based on the original input data, without the need to recreate or rely
on a certain state of the TPP’s internal data. Finally, a stateless architecture of
the T T P contributes indirectly towards requirement R4.

4.2 Protocol Caveats

One aspect that requires more attention is the possibility of a post-launch mod-
ification of the software stack of CH. The runtime process infection method,
which is a method for infecting binaries during runtime7 is one of the malicious
approaches that could be used to this end. This scenario is in fact a common
threat to all TCG-based systems, also touched upon in [16], described in detail
in [17] and should thus be prevented using means within the platform which is
part of the trusted computing base verified at boot time, the presence of which
is verified by the above protocol.

5 Protocol Implementation

In order to validate the assumptions made during the protocol design phase, we
have implemented it as an extension to OpenStack, an open source IaaS platform
chosen given the open access to its codebase, its large community and the traction
it has gained. This section briefly introduces the OpenStack architectural model
and changes made for the prototype implementation.

5.1 OpenStack IaaS Platform

The Essex release of OpenStack comprises five core components (projects),
namely Compute (Nova), Image Service (Glance), Object Storage (Swift),
Identity Service (Keystone) and Dashboard (Horizon). Nova has several
sub-components: nova-api, nova-compute, nova-schedule, nova-network, nova-
volume, plus an SQL database and message queue functionality to pass mes-
sages between sub-components. OpenStack components affected by the protocol
implementation are mentioned here in more detail:

7 Runtime process infection, http://www.phrack.org/
issues.html?issue=59&id=8&mode=txt

http://www.phrack.org/issues.html?issue=59&id=8&mode=txt
http://www.phrack.org/issues.html?issue=59&id=8&mode=txt

Trusted Launch of Virtual Machine Instances in Public IaaS Environments 319

– Nova-api is the interface for nova- compute and volume API calls. It is
through this interface most of the cloud orchestration operations are per-
formed. The interface supports both the OpenStack and Amazon EC2 API.

– Nova-compute handles VM instance life cycle tasks through hypervisor API
calls. Notably the libvirt and XenAPI hypervisor APIs are supported.

– Nova-schedule is responsible for selecting CH(s) to run VM instances on. The
CH selection process is determined by which scheduling policy/algorithm is
employed.

– The nova SQL database holds tables and relations to describe the state of
nova, such as launched instances and network configurations.

– The Dashboard is a web based GUI for OpenStack operation and adminis-
tration. It interfaces nova-api.

5.2 Prototype Implementation

Below are the main additions to OpenStack required for the prototype imple-
mentation.

Nova SQL database The nova SQL database has been extended to include tables
to hold the available CHs and their SPs:

– An SP is an integer in the range 1-10, with a higher number being more
trusted than a lower number.

– The security profile of a CH is global, rather than specific per e.g. tenant.

Dashboard and nova-api The Dashboard web based GUI has been extended
to include the option to request CH attestation, minimum SP selection, token
TPKTTP entry and T T P URL provision (3) into the “Launch Instance” dialog.
This information is included in the OpenStack API HTTP payload to nova-api,
which propagates the information to the scheduler.

In the prototype implementation, steps (1) and (2) are performed by a script
which outputs TPKTTP , which then can be manually input into the Dashboard
dialog. Note that it is not an option to let Dashboard provide functionality for
generating TPKTTP , since Dashboard is not trusted by C.

Scheduler, compute host and virtualization driver The nova scheduler S is a
central component as it decides on which CH a certain VM instance will be
launched. Each S works according to a specific configurable algorithm and several
S implementations are available in OpenStack by default. In the SimpleScheduler
implementation, S identifies the least loaded CH and schedules the VM instance
to be launched on that CH.

We extend the behaviour of the SimpleScheduler to include the policy that a
CH must belong to a certain SP or stricter in order to be acceptable for hosting
the VM instance. This policy is realized as follows: first S looks up the recorded
SP of CH in the nova database and proceeds if SP is sufficient compared to
the requirements of C (corresponds to (4)). The second step is to request CH to
attest itself with T T P. If SP was not sufficient, the next eligible CH is selected.

320 N. Paladi et al.

Steps (5)-(7) are perfomed by CH, followed by T T P in steps (8)-(11).
Token TCH = {N , HVMimage}PKBind

is returned from T T P to CH after which
CH includes the token in the return message to S . If the attestation was suc-
cessful, S requests the now trusted CH to launch the VM instance and includes
TCH in the request.

Next, CH decrypts TCH and obtains N and HVMimage. To verify the integrity
of the VM image, HVMimage is included in the call to the virtualization driver
(libvirt is used by the prototype), which fetches the VM image from Glance
and caches it locally on CH. The hash of the cached image is calculated and
compared to HVMimage. If the hashes do not match, an exception is raised.
Otherwise, the launch procedure continues (12) and the file injection capability
of Nova is used to inject N into the file system of the VM image (13). The VM
image is then used to launch the VM instance on CH and steps (14) and (15)
are completed.

6 Related Work

Application of trusted computing principles within IaaS environments has been
the focus of several research papers examined below.

Santos et al propose the design of a “trusted cloud compute platform” (TCCP)
that ensures VMs are running on a trusted hardware and software stack with a
remote and initially untrusted CH [9]. The authors propose a remote attestation
process where a trusted coordinator (T C) stores the list of attested CHs that
run a “trusted virtual machine monitor” which can securely run the client’s VM.
A trusted CH maintains in its memory an individual trusted key (TK) used for
identification each time the client C instantiates a VM on the trusted CH. The
paper presents a good initial set of ideas for trusted VM launch and migration,
in particular the use of a T C. A limitation of this solution is that the TK re-
sides in the memory of the trusted CH, which leaves the solution vulnerable
to cold boot attacks [18] with keys extractable from memory. Furthermore, the
authors require that the T C maintains information about all CH deployed on
the IaaS platform, but do not mention mechanisms for anonymizing this infor-
mation, making it valuable to an attacker and unacceptable for a public IaaS
provider. Finally, the solution lacks both mechanisms for revocation of the TK
and considerations for the re-generation of TK outside of CH reboot.

A decentralized approach to integrity attestation is adopted by Schiffman et al
in [19]. The primary concerns addressed by this approach are the limited trans-
parency of IaaS platforms and the limits to scalability imposed by third party
integrity attestation mechanisms, as described in [9]. The authors examine a
trusted cloud architecture where the integrity of the IaaS CH is verified by the
IaaS client through a “cloud verifier” (CV) proxy that resides in the application
domain of the IaaS platform provider and is accessible by the client. Thus, in
the first step of the protocol the client evaluates the integrity of the CV in order
to include the CV into its trust perimeter if the integrity level of the CV is con-
sidered satisfactory. Next, the CV sends attestation requests from CH, i.e. the

Trusted Launch of Virtual Machine Instances in Public IaaS Environments 321

CH where the guest VM instance can potentially be deployed, thus extending
the trust chain to the CH. Finally, CH verifies the integrity of the VM image,
which is countersigned by the CV and returned to the client which evaluates the
VM image integrity data and allows or disallows the VM launch on the CH.
While the idea of increasing the transparency of the IaaS platform for the client
is indeed supported in industry [20,21], the authors do not clarify how the in-
troduction of an additional integrity attestation component in the architecture
of the IaaS platform has positive effects on the transparency of the IaaS plat-
form. Furthermore, the proposed protocol increases the complexity model for the
IaaS client both by introducing the evaluation of integrity attestation reports of
the CV and CH and introduction of additional steps in the trusted VM launch,
where the client has to take actions based on the data returned from the CV .
This requires either human interaction or a fairly complex integrity attestation
evaluation component (or a combination thereof) on the client side, making a
wide-scale adoption of the solution difficult.

In [10], Aslam et al proposed principles for trusted VM launch on public
cloud platforms using trusted computing techniques. In order to ensure that
the requested VM instance is launched on a CH with verifiable integrity, the
client encrypts the VM image (along with all injected data) with a symmetric
key sealed to a particular configuration of CH, which is reflected through the
values in the platform configuration registers (PCR) of the TPM deployed on
the CH. The solution proposed by Aslam et al presents a suitable model in the
case of trusted VM launch scenarios for enterprise clients. It requires that the
VM image is pre-packaged and encrypted by C prior to IaaS launch. However
the proposed model does not cover the very common scenario of launching an
unmodified VM image made available by the IaaS provider or uploaded by C.
Furthermore, we believe that reducing the number of steps required from C will
facilitate the adoption of the trusted IaaS model. Likewise, direct communication
between C and CH, as well as significant changes to the existing VM launch
implementations in IaaS platforms hamper the implementation of this protocol.
This paper reuses some of the ideas proposed in [10] and directly addresses the
above limitations, namely actions to be performed by C, also touching upon the
requirements towards the launched VM instance and required changes to the
IaaS platform.

7 Conclusion

In this paper we have presented a detailed trusted launch protocol for VM in-
stance launch in public IaaS environments. Furthermore, we have provided a
prototype implementation of the launch protocol in OpenStack. Detailed per-
formance measurement and evaluation, as well as alternative implementation
choices have been left for future work.

The presented results make a case for broadening the range of use cases for
trusted computing by applying it to IaaS environments, especially within the
security model of an untrusted IaaS provider. Trusted computing offers capa-
bilities to securely perform data manipulations on remote hardware owned and

322 N. Paladi et al.

maintained by another party by potentially preventing the use of untrusted soft-
ware on that hardware for such manipulations. The presented design is directly
applicable to the process of developing a trusted virtualized environment, e.g. a
public IaaS service.

Future research recommendations can be grouped into three categories:
First is the extension of the trust chain to other operations on VM instances

(migration, suspension, updates, etc.), as well as data storage and virtual net-
work communication security.

The second category includes addressing certain assumptions of the proposed
launch protocol, e.g. the assumption that the CH configuration is not changed
after the trusted launch of the VM instance, since even in the case of a bona fide
IaaS provider the CH can be compromised through runtime process infection. A
technique to enable C to either directly or through mediated access discover such
events and protect the data used by the VM instance is a promising research
topic.

The third category focuses on the design and implementation of the evaluation
policies of the TTP. The current assumption is that the TTP has access to
information regarding “secure” configurations and the PCR values, something
which needs to be directly addressed as evaluating exactly how secure a certain
software stack is, is a challenge. Furthermore, taking into account the diversity
of available libraries as well as the different combinations in which they can be
loaded during the boot process, verification of PCR values (such as values stored
in PCR10 and reference values in binary runtime measurements) becomes a less
trivial task.

References

1. Smith, J., Nair, R.: Virtual Machines: Versatile Platforms for Systems and Pro-
cesses. Morgan Kaufmann (June 2005)

2. Krutz, R.L., Vines, R.D.: Cloud Security: A Comprehensive Guide to Secure Cloud
Computing. John Wiley & Sons (August 2010)

3. Somorovsky, J., Heiderich, M., Jensen, M., Schwenk, J., Gruschka, N.,
Lo Iacono, L.: All Your Clouds are Belong to us: Security Analysis of Cloud Man-
agement Interfaces. In: Proceedings of the 3rd ACM Workshop on Cloud Comput-
ing Security, CCSW 2011, pp. 3–14. ACM, New York (2011)

4. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: Pro-
ceedings of the 16th ACM Conference on Computer and Communications Security,
CCS 2009, pp. 199–212. ACM, New York (2009)

5. Pohlmann, N., Reimer, H.: Trusted Computing - eine Einführung. In: Pohlmann,
N., Reimer, H. (eds.) Trusted Computing, pp. 3–12. Vieweg+Teubner (2008),
doi:10.1007/978-3-8348-9452-6 1

6. Neisse, R., Holling, D., Pretschner, A.: Implementing Trust in Cloud Infrastruc-
tures. In: 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), pp. 524–533 (May 2011)

7. Sadeghi, A.-R., Stüble, C., Winandy, M.: Property-Based TPM Virtualization. In:
Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222,
pp. 1–16. Springer, Heidelberg (2008)

Trusted Launch of Virtual Machine Instances in Public IaaS Environments 323

8. Danev, B., Masti, R.J., Karame, G.O., Capkun, S.: Enabling Secure VM-vTPM
Migration in Private Clouds. In: Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC 2011, pp. 187–196. ACM, New York (2011)

9. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards Trusted Cloud Computing. In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud
2009. USENIX Association, Berkeley (2009)

10. Aslam, M., Gehrmann, C., Rasmusson, L., Björkman, M.: Securely Launching Vir-
tual Machines on Trustworthy Platforms in a Public Cloud - An Enterprise’s Per-
spective. In: Leymann, F., Ivanov, I., van Sinderen, M., Shan, T. (eds.) CLOSER,
pp. 511–521. SciTePress (2012)

11. Aslam, M., Gehrmann, C., Björkman, M.: Security and Trust Preserving VM Mi-
grations in Public Clouds. In: 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), Liverpool
(2012)

12. Mell, P., Gance, T.: The nist definition of cloud computing. Technical report, Na-
tional Institute of Standards and Technology (September 2011)

13. Goyal, P.: Application of a Distributed Security Method to End-2-End Services
Security in Independent Heterogeneous Cloud Computing Environments. In: 2011
IEEE World Congress on Services, pp. 379–384 (July 2011)

14. Trusted Computing Group: TCG Specification, Architecture Overview, revision
1.4. Technical report, Trusted Computing Group (2007)

15. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

16. Price, M.: The Paradox of Security in Virtual Environments. Computer 41(11),
22–28 (2008)

17. Wojtczuk, R., Rutkowska, J., Tereshkin, A.: Attacking intel trusted execution tech-
nology. In: Black Hat USA 2008, Las Vegas, NV, August 7 (2008)

18. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold-Boot
Attacks on Encryption Keys. Commun. ACM 52, 91–98 (2009)

19. Schiffman, J., Moyer, T., Vijayakumar, H., Jaeger, T., McDaniel, P.: Seeding
Clouds With Trust Anchors. In: Proceedings of the, ACM Workshop on Cloud
Computing Security, CCSW 2010, pp. 43–46. ACM, New York (2010)

20. Molnar, D., Schechter, S.: Self Hosting vs. Cloud Hosting: Accounting for the Se-
curity Impact of Hosting in the Cloud. In: Workshop of the Economics of Cloud
Security, pp. 1–18 (2010)

21. Chen, Y., Paxson, V., Katz, R.: The Hybrex Model for Confidentiality and Privacy
in Cloud Computing. Technical Report UCB/EECS-2010-5, EECS Department,
University of California, Berkeley (January 2010)

Secure and Privacy-Aware Multiplexing

of Hardware-Protected TPM Integrity
Measurements among Virtual Machines

Michael Velten and Frederic Stumpf

Fraunhofer Research Institution AISEC, Munich, Germany
{michael.velten,frederic.stumpf}@aisec.fraunhofer.de

Abstract. Measuring the integrity of critical operating system compo-
nents and securely storing these measurements in a hardware-protected
Trusted Platform Module (TPM) is a well-known approach for improving
system security. However, currently it is not possible to securely extend
this approach to TPMs used in virtualized environments. In this paper, we
show how to multiplex integrity measurements of arbitrarily many Virtual
Machines (VMs) with just a single standard TPM. In contrast to existing
approaches such as vTPM, our approach achieves a higher level of security
since measurements will never be held in software but are fully hardware-
protected by the TPM at all times. We establish an integrity-protected
mapping between each measurement and its respective VM such that it is
not possible for an attacker to alter this mapping during remote attesta-
tion without being detected. Furthermore, all measurements will be stored
in the TPM in a concealed manner in order to prevent information leakage
of other VMs during remote attestation. The experimental results of our
proof of concept implementation show the feasibility of our approach.

Keywords: Integrity Measurement, Attestation, Trusted Platform Mod-
ule, Trusted Computing, Virtualization.

1 Introduction

Virtualization and the utilization of a Hardware Security Module (HSM) are
two well-known approaches for improving system security. Virtualization can be
used to partition a system into several Virtual Machines (VMs) such that critical
system components are isolated from one another and to allow for a reduced
Trusted Computing Base (TCB) of the overall system. Virtualization is also
heavily used in the context of cloud computing where multiple VMs of different
customers run concurrently on the same system platform. In this context, it is
crucial that one VM cannot access or manipulate data of another VM.

An HSM is a hardware device usually capable of securely managing cryp-
tographic keys and storing data such that it is not possible for an attacker to
extract or manipulate these keys and data. A very prominent and widespread
HSM is the Trusted PlatformModule (TPM) [1] as specified by the Trusted Com-
puting Group (TCG) [2]. In particular, the TPM can be used to securely store

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 324–336, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM 325

integrity measurements in special Platform Configuration Registers (PCRs) that
reflect a system’s configuration. An authenticated boot is used to establish a chain
of trust by measuring each component in the booting sequence, starting with an
inherently trusted component called the Core Root of Trust for Measurement
(CRTM). Developments such as the Integrity Measurement Architecture (IMA)
[3] extend this chain of trust to the application layer by measuring programs
executed in the OS and storing the measurements in a PCR of the TPM. Fi-
nally, the integrity measurements are used in the course of a remote attestation
to prove to a remote party that the system platform is in a trusted state.

Unfortunately, the TPM was not designed to be used in virtualized environ-
ments and thus the advantages of virtualization and HSMs cannot be easily com-
bined. In particular, the TPM was not designed to store integrity measurements
on a per-VM basis. Furthermore, it is impossible to perform remote attesta-
tions only for particular VMs. Researchers have proposed several ideas to tackle
these problems. The emulation of PCRs in software for each VM was proposed
in [4,5]. However, on a compromised system these PCRs can be manipulated
by an attacker, allowing him to forge remote attestations. There also exist pro-
posals that describe next-generation TPMs with hardware-based virtualization
support that do not suffer from the aforementioned security vulnerability [6,7,8].
However, such TPMs are not available yet.

In this paper, we show how to multiplex integrity measurements of arbitrarily
many VMs with just a single standard TPM and only requiring one PCR. In con-
trast to [4,5], which emulate PCRs in software, our approach achieves a higher level
of security since measurements are always stored in the hardware-protectedPCRs
of the TPM. We show how to establish an integrity-protected mapping between
eachmeasurement and its respective VM such that it is not possible for an attacker
to alter this mapping (e.g., hiding malicious programs by mapping their measure-
ments to other VMs) without being detected. Furthermore, we develop a remote
attestation protocol for attesting the integrity of individual VMs. A crucial prob-
lem we have to solve in the context of remote attestation is that our approach of
sharing PCRs among VMs, inherently requires the disclosure of all measurements
of all VMs. This entails security and privacy issues as even a legitimate challenger
in the remote attestation protocol is then able to determine exactly which software
is running in all other VMs. This information might be used to exploit (known)
vulnerabilities of that software.We overcome this problem by storing all measure-
ments in the multiplexed PCR in a concealed manner. This enables us to fully dis-
close the (concealed) contents of the PCR and to selectively reveal non-concealed
measurements on a per-VM basis. Finally, the experimental results of our proof of
concept implementation show the feasibility of our approach.

The rest of this paper is organized as follows. Sect. 2 first gives an overview
of our concept, states our assumptions, describes the threat model, and then
explains in detail the multiplexing technique used for storing measurements and
attesting individual VMs. Sect. 3 gives the security analysis. Sect. 4 describes
our proof of concept implementation. Sect. 5 presents our evaluation results.
Sect. 6 discusses related work. Sect. 7 concludes this paper.

326 M. Velten and F. Stumpf

2 Concept

Our concept is based on a virtualized platform consisting of a single hardware
TPM, a hypervisor, and arbitrarily many VMs. A multiplexing agent (MPA) is
located in the hypervisor (or in a privileged VM) and processes integrity mea-
surements received from the VMs and stores them in the TPM. In each VM runs
a measurement agent (MA) (e.g., IMA [3]) that monitors the execution of super-
vised files, calculates integrity measurements, and forwards them to the MPA. Al-
ternatively, the files could be monitored by using passive monitoring techniques
where the monitoring is implemented in the hypervisor (e.g., HIMA [9] or Patago-
nix [10]). Our proposed multiplexing concept is compatible with either approach.

2.1 Overview of Multiplexed Storage and Attestation

The MPA stores integrity measurements in a single shared PCR of the TPM.
Each of the 24 PCRs of a TPM may (conceptually) hold arbitrarily many mea-
surements by extending them as a hash chain, i.e., PCR[i]← SHA1(PCR[i]||m),
for a measurement m and PCR i (where || denotes concatenation). However, to
retain the (integrity-protected) information in which VM a measurementm took
place, the MPA not only extends m but also the corresponding VM’s unique vir-
tual machine identifier (VM-ID) in the PCR (cf. Sect. 2.3).

Furthermore, the MPA is able to attest the integrity of individual VMs to a
verifier (cf. Sect. 2.4). However, without further precautions, this requires the
disclosure of all measurements of all VMs sharing the PCR. This entails security
and privacy related problems as described in the introduction. Therefore, before
extending the PCR, the MPA first conceals each measurement with a special
value called concealment. A concealment is a non-predictable random or pseudo-
random value that is at least the size of the output of the SHA1 hash function
in which we will use it (cf. Sect 2.3). The reason for this size is to adequately
protect against lookup attacks trying to extract the plain measurements. Note
that the concept of a concealment is related to the concept of a salt. However,
in contrast, a concealment is unknown to a verifier and will only be disclosed to
him when attesting a particular VM. The MPA maintains one base concealment
for each VM and derives further concealments from it. In addition to concealing
measurements, we also conceal the measurement’s associated VM-ID to prevent
a verifier from gathering information about how many measurements have been
conducted in other VMs. This information might otherwise be misused to detect
usage patterns (e.g., activity level of VMs of competitors).

Finally, this enables the MPA to disclose all measurements of all VMs in a
concealed manner to a verifier. For the attested VM, the non-concealed measure-
ments, along with the attested VM’s base concealment, are additionally revealed.
The base concealment is used by the verifier to derive the same concealments as
the MPA, which are then used to link the non-concealed measurements to their
corresponding concealed measurements. This, in turn, allows the verifier to re-
calculate the proper hash chain (consisting of concealed measurements only) and

Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM 327

to match it against the (signed) PCR value, thus ensuring the measurements’
integrity and authenticity (cf. Sect. 2.5).

2.2 Assumptions and Threat Model

Assumptions. In the remote attestation protocol, we focus on the measure-
ment data of the multiplexed PCR as we assume the rest of the system can be
attested with general remote attestation techniques. We assume the MPA utilizes
some form of VM-based (one-way) authentication of parties requesting a remote
attestation for a particular VM. Note that even for authenticated parties, we
still need to privacy-protect the measurement data of other (non-authenticated)
VMs as done by our approach.

Threat Model. We consider all man-in-the-middle (MITM) attacks on the
remote attestation protocol. The MITM is located between the prover and the
verifier and is able to intercept and manipulate the transmitted data (e.g., dis-
carding or forging measurements). We also consider attacks on the attesting
platform in which an attacker tampers with software (e.g., by forging remote
code updates). The malicious software (or the attacker) may try to hide its ex-
ecution by removing or manipulating its respective integrity measurement. We
do not consider direct physical attacks on the TPM.

2.3 Integrity Measurement Transformation and Storage

We let idvm1 , . . . , idvmn denote unique and publicly known VM-IDs w.r.t. the
set of all n VMs on a particular system. The MPA maintains for each VM
idvm one non-predictable base concealment cvm ∈ {0, 1}k, with k ≥ 160 (i.e., at
least the size of the output of SHA1). For the i’th measurement transformation
(counting from zero) of a VM idvm, the MPA derives a new concealment civm by
incrementing cvm i times, that is, civm := cvm + i, i ≥ 0. Note that c0vm denotes
the base concealment cvm. For brevity, we define H := SHA1 in the remainder
of this document.

Each time MA measures (the content of) a monitored file f executed in VM
idvm by calculating m := H(f) and forwards it to the MPA, the MPA associates
m with idvm, conceals both m and idvm, and extends the result to the shared
PCR p. In particular, for the i’th measurement of VM idvm, the MPA does the
following five steps (called a round in the following):

1. Derive new VM-specific concealment civm from base concealment cvm
2. Conceal measurement m by hashing it with civm, i.e., μ := H(m||civm)

3. Conceal VM-ID idvm with same concealment civm, i.e., δvm := H(idvm||civm)

4. Hash over the concealed measurement value μ combined with the concealed
VM-ID δvm, i.e., ϕ := H(μ||δvm)

5. Extend the TPM’s shared PCR p with ϕ

328 M. Velten and F. Stumpf

Note that it is not possible to defer this measurement transformation (e.g., to the
point in time where a remote attestation is requested) because the measurement
must immediately be stored in the TPM in order to prevent an attacker from
removing or manipulating previous integrity measurements once the system gets
compromised.

Step one guarantees that we use a new concealment for each round. It is im-
portant that a verifier is able to produce the exact same sequence of concealments
c1vm, c

2
vm, . . . from the base concealment cvm = c0vm (cf. Sect. 2.5). Note that sim-

ple incrementation is sufficient for deriving the concealments (in terms of confi-
dentiality of the concealed values in steps two and three) since two consecutive
(and thus similar) concealments civm and ci+1

vm result in two completely different
hash values H(civm) and H(ci+1

vm) due to the avalanche effect [11]. Step two makes
sure that it is sufficient to only disclose concealed measurements to a verifier V in
order to reconstruct the hash chain represented by the shared PCR p. V can eas-
ily verify that a measurementm of the attested VM corresponds to the concealed
hash value μ by checking whether μ = H(m||civm) holds. Note that it is infeasible
to find some other preimage x �= m||civm such thatH(x) = H(m||civm) because of
the second-preimage resistance property of H . In step three, we conceal the VM-
ID to prevent V from gathering usage patterns of other VMs. Note that the usage
of a static (VM-based) concealment cvm would always map a VM-ID idvm to the
same concealed VM-ID δvm = H(idvm||cvm), thus allowing to link (concealed)
VM-IDs and measurements. We use different concealments for each round in or-
der to prevent this. Step four establishes the mapping between μ and δvm and thus
implicitly also between m and idvm. In step five, the concealed hash value ϕ gets
finally extended to the PCR p by using ϕ as the incoming operand TPM DIGEST of
the TPM Extend command [1]. Note that it is sufficient to use the standard, non-
modified TPM Extend operation. Also note that storing the just described map-
ping between measurement and VM-ID directly in the integrity protected PCR
(PCR Quote may be used to sign the value of the PCR) makes it redundant to
maintain an external integrity protected mapping.

Multiplexed Measurement List (MML). The final hash chain value con-
tained in PCR p is not sufficient to reconstruct the actual measurement data.
Therefore, the MPA separately stores all measurement data in chronological
order w.r.t. their corresponding TPM Extend operations in the multiplexed mea-
surement list (MML). The MML is an ordered list of pairs of the form (m, idvm),
where m is a (non-concealed) measurement and idvm the corresponding (non-
concealed) VM-ID idvm, denoting the VM in which the measurement took place,
that is:

MML :=
〈
(m0, idvmi0

), (m1, idvmi1
), . . . , (mn, idvmin

)
〉

2.4 Integrity Reporting

Fig. 1 shows our adapted remote attestation protocol enabling the integrity
reporting of individual VMs. Note that the remote attestation process actually

Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM 329

TPM P V

create 160bit nonce n

request PCR p for VM idvm, n

load AIKsk

quote PCR p with n

=:q︷ ︸︸ ︷
sig{pcrp, n}AIKsk

retrieve MML and cvm

construct CMMLvm from MML

q, cvm,

=CMMLvm︷ ︸︸ ︷
〈(m0, idvm), (μ1, δvm′), . . . 〉

retrieve cert(AIKpk)

verify q with AIKpk and validate n

validate CMMLvm using cvm and pcrp

Fig. 1. Multiplexed remote attestation protocol

consists of the integrity reporting phase as explained in the following as well as
of the integrity validation phase as explained in Sect. 2.5.

First, the verifier V requests integrity measurement data for a particular VM
and PCR p by providing the VM’s unique and publicly known VM-ID idvm.
The prover P (the MPA in our case) then signs the content pcrp of the requested
PCR p with a special key of the TPM, a so-called Attestation Identity Key
(AIK). This proves to V the content of the requested PCR. In the next step,
the VM-specific concealed multiplexed measurement list (CMML) CMMLvm is
constructed from the MML. Recall that all pairs of the MML are non-concealed.

The construction is done by sequentially processing all pairs of the MML
from left to right. Pairs not belonging to the attested VM idvm are substituted
with their concealed counterparts. In particular, the i’th occurrence (counting
from zero) of a pair (m, idvm′) ∈ MML, for some measurement m and some
VM-ID idvm′ �= idvm, gets substituted with (H(m||civm′), H(idvm′ ||civm′)). Pairs
belonging to the attested VM remain non-concealed. Finally, P sends CMMLvm,
the base concealment cvm, and the signature data q of content pcrp to V. Note
that the MPA may cache the concealed pairs to avoid recalculating them for
each remote attestation.

330 M. Velten and F. Stumpf

Algorithm 1. Validation of CMML

1: procedure Validate CMML(idvm, cmmlvm, cvm, pcr)
2: pcr′ := 0
3: usedc := false
4: for (a, b) in cmmlvm do
5: if b = idvm then � does pair belong to attested VM?
6: μ ← H(a||cvm) � construct concealed measurement value
7: δ ← H(b||cvm) � construct concealed VM-ID
8: cvm ← cvm + 1 � set concealment for next round
9: usedc ← true � exhaustive blinding attack not possible anymore
10: else
11: μ ← a � measurement already concealed
12: δ ← b � VM-ID already concealed
13: if δ = H(idvm||cvm) ∨ δ = H(idvm||cvm − 1) then
14: return false � blinding attack
15: end if
16: end if
17: ϕ ← H(μ||δ)
18: pcr′ ← H(pcr′||ϕ) � simulate PCR Extend
19: end for
20: if pcr′ = pcr ∧ usedc = true then
21: return true � confirm integrity of cmmlvm
22: else
23: return false � integrity violation detected
24: end if
25: end procedure

2.5 Integrity Validation

In the following, we will describe how to validate the CMML and its contained
measurements which were transmitted in an attestation protocol run as described
before. We will show that a validation always fails if a MITM manipulates com-
binations of CMMLvm, cvm, and q. The verification process done by V is twofold.

In the first phase, the CMML is validated to make sure that a MITM did not
tamper with it and that consequently all contained measurements are correct.
The validation process is shown in Algorithm 1 and will be explained in the
following. In the second phase, V inspects these measurements to determine the
trustworthiness of the attested VM. This might be done by a whitelist or blacklist
approach that checks for good measurements (e.g., legitimate programs) or bad
measurements (e.g., known malware), respectively. However, the second phase
is outside the scope of this paper.

V first uses AIKpk on q to verify the authenticity and integrity of content
pcrp of the requested PCR p. This detects all manipulations of q by a MITM as
well as replay attacks due to the included nonce n. V then validates the CMML
with the help of cvm and pcrp. The validation process is shown in Algorithm 1.
It simulates all PCR Extend operations that have (allegedly) been done by P
and compares the result with the signed PCR value pcrp =: pcr. This is done

Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM 331

by inspecting each pair (a, b) of the CMML. Each pair (a, b) with b = idvm
contains non-concealed measurement data a for the attested VM idvm. However,
since all measurements have been extended to the PCR by P in a concealed
manner (cf. Sect. 2.3), V needs to reconstruct the corresponding concealed value
ϕ := H(μ||δ), where μ := H(a||civm) and δ := H(b||civm) (for round i), in order to
correctly simulate all PCR Extend operations. All other pairs (a, b) with b �= idvm
do not belong to the attested VM idvm and have already been concealed by P,
that is, a = μ and b = δ. Thus, the concealed values μ and δ can be directly
used to construct ϕ := H(μ||δ). Finally, ϕ is used to simulate the PCR Extend

operation. These steps are repeated for each pair of the CMML. If the final
simulated PCR value pcr′ matches the signed PCR value pcr, the measurements
of the CMML correctly reflect the actual measurements of the attested VM.

The check in line 13 of Algorithm 1 detects blinding attacks where a MITM
tries to hide non-concealed pairs (a, b) = (a, idvm) belonging to the attested VM
idvm. The blinding is done by substituting pairs (a, idvm) with their correspond-
ing concealed pairs (μ, δ) := (H(a||civm), H(idvm||civm)), with the intention of
misleading V into thinking that the concealed pairs (μ, δ) do not belong to VM
idvm. Note that in this case the recalculated pcr′ would still match pcr since (μ, δ)
has indeed been extended to the TPM. Note also that in our concept we inten-
tionally conceal a measurementm and its corresponding VM-ID idvm separately
instead of concealing m and idvm combined, e.g., ϕ := H(m||idvm||civm). In the
latter case, it would be impossible for V to check whether a non-concealed pair
(m, idvm) has been blinded (i.e., checking whether ϕ = H(m||idvm||civm) holds)
because the measurement m is unknown to V. We will come back to blinding
attacks in the security analysis in Sect. 3.

A special case of the described blinding attack is to blind all non-concealed
pairs and to additionally substitute the base concealment cvm = c0vm with some
c′vm �= c0vm ∧ c′vm �= c1vm. Note that in this case the check for blinding attacks in
line 13 fails since the original base concealment cvm used for the (first) blinding
operation now differs from the concealment c′vm used in the check. Furthermore,
the substitution of cvm with c′vm will not be detected since c′vm is never used to
calculate a concealed pair out of a non-concealed one (because there are no non-
concealed pairs left) and thus pcr′ matches pcr. Therefore, in order to detect such
exhaustive blinding attacks, we explicitly check in lines 9 and 20 of Algorithm 1
that V used the base concealment in the calculation of pcr′.

3 Security Analysis

An attacker might try to remove or manipulate previous measurements on a
compromised system. However, all measurements, along with the mapping to
their respective VM-IDs, are stored in the hardware-protected PCR of the TPM
and thus it is impossible to remove or manipulate them.

In the context of a remote attestation, a MITM might try to simply discard or
substitute measurements (e.g., malicious programs) contained in the transmitted
CMMLor tomanipulate ameasurement’s associatedVM-ID.However, in each case

332 M. Velten and F. Stumpf

the hash chain value pcr′ calculated by V from the CMML (cf. Algorithm 1) will
not match the TPM’s quoted PCR value pcr anymore and the attestation will fail.

In a blinding attack, a MITM substitutes measurements and VM-IDs with
their corresponding concealed pairs. There exist four types of blinding attacks
(and combinations thereof) w.r.t. the position of the blinded pairs within the
CMML. In the following, we will show that our concept protects against each
type. Note that since concealed pairs in the CMML do not influence the state
of the concealment cvm in Algorithm 1, we consider, w.l.o.g., only pairs of the
attested VM. In particular, we consider the following CMML (along with signa-
ture data q and base concealment cvm) is sent from P to V in the course of a
remote attestation protocol run as described in Sect. 2.4:

CMMLvm = 〈(m0, idvm), (m1, idvm), (m2, idvm)〉

Intermediate Blinded Pairs. In this attack, a MITM blinds a pair (or several
consecutive pairs) which is neither the first pair nor the last pair of the CMML.
In other words, there exists at least one pair before and after the blinded pair,
respectively:

q, c0vm,
〈
(m0, idvm), (H(m1||c1vm), H(idvm||c1vm)), (m2, idvm)

〉
In this case, even without the explicit check for blinded pairs in line 13 of Algo-
rithm 1, the attestation fails because the wrong concealment c1vm is used by the
algorithm to conceal the third pair (since the concealment will not be incremented
when processing the intermediate blinded pair (cf. Algorithm 1, lines 11 to 15)).

Trailing Blinded Pairs. In this attack, a MITM blinds one or more consecutive
trailing pairs:

q, c0vm,
〈
(m0, idvm), (H(m1||c1vm), H(idvm||c1vm)), (H(m2||c2vm), H(idvm||c2vm))

〉
Note that in contrast to the previous scenario, in this case the attestation would
actually succeed if there was not the explicit check for blinded pairs. The reason
is that the “out of sync” concealment will not be used anymore after concealing
the first pair (as was the case above). With the explicit check, the algorithm
detects H(idvm||c1vm) in the second pair and the attestation fails. In general, the
check always matches the leftmost trailing blinded pair.

Leading Blinded Pairs. In this attack, a MITM blinds one or more consecu-
tive leading pairs:

q, c2vm,
〈
(H(m0||c0vm), H(idvm||c0vm)), (H(m1||c1vm), H(idvm||c1vm)), (m2, idvm)

〉
Note that in this type of attack, the MITM needs to manipulate the transferred
base concealment such that it correctly blinds the first non-concealed pair in the

Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM 333

CMML. In particular, since the base concealment is now c2vm, the explicit check
for the first pair on whether δ equals H(idvm||c2vm)∨H(idvm||c1vm) fails because
c0vm was used for the blinding by the MITM. However, the check matches the
second pair and the attestation fails. In general, the check always matches the
rightmost leading blinded pair.

Exhaustively Blinded Pairs. In this attack, a MITM blinds all pairs and
substitutes the base concealment c0vm with some c′vm �= c0vm ∧ c′vm �= c1vm. Since
in this case the above checks fail (as explained in Sect. 2.5), we enforce the
usage of the base concealment in the calculation of pcr′ in order to detect the
base concealment’s manipulation, thus preventing such attacks.

4 Implementation

We have implemented a proof of concept using the QEMU emulator [12] (version
1.0.50) with enabled KVM [13] full virtualization support. The host system runs
the Ubuntu OS (version 11.04). Each guest VM runs Ubuntu 10.04 with an
IMA-enabled Linux kernel (2.6.35). We patched the IMA kernel code so that
measurements are not directly extended to the TPM but instead are forwarded
to the MPA running in the host system. The MPA has exclusive access to the
TPM (using TrouSerS [14], version 0.3.5-2) and implements the multiplexing
concept as described in Sect. 2.

The communication between the MPA and the VMs is done over Virtual
LAN (VLAN). The MPA listens on a dedicated range of ports for incoming
connections. Whenever a new VM is started, QEMU connects the VM to a
free port in that range with a guest forward (guestfwd) rule. The so established
socket is then used by our patched IMA to forward measurements to the MPA;
all communication over other ports is blocked. Furthermore, the MPA uses this
port number to derive the unique VM-ID of the connected VM. This mapping
cannot be changed from within the VM in an attempt to forge the VM-ID since
it is maintained solely by QEMU and the MPA.

Note that our patched IMA does not block until the measurements have ac-
tually been extended to the TPM. It rather just forwards them to the MPA and
is immediately ready for further tasks. The MPA asynchronously processes and
extends the measurements in a round-robin fashion as soon as they arrive. This
significantly increases response times and overall performance in the VMs.

5 Evaluation

We use our implementation to determine whether the MPA might constitute
a possible performance bottleneck since it represents the centralized location
where all measurements from all VMs are collected, processed, and extended to
the TPM. The testing hardware consists of a PC with an Intel Core2 Duo 3 GHz
CPU, 4,096 MB RAM, and a TPM 1.2.7.40 from STM. Each VM gets assigned

334 M. Velten and F. Stumpf

Table 1. Average processing time for 10,000 measured files in each VM (in seconds)

VMs No IMA
Patched IMA

Ratio VM Ratio total
VM only Total

1 48.87 86.73 200.84 1.77 4.11
2 50.91 104.96 400.29 2.06 7.86
3 79.61 171.85 601.02 2.16 7.55
4 108.73 229.32 825.06 2.11 7.59
5 146.32 295.27 1318.17 2.02 9.01

512 MB RAM and contains 10,000 distinct testing binaries which, on execution,
just return. Furthermore, each VM runs our patched IMA that we additionally
modified for the evaluation such that only the testing binaries get processed.
To start the testing, we simultaneously trigger in all VMs the execution of the
testing binaries in successive order.

Table 1 shows the testing results. Column four lists the total time needed from
measuring all files to extending the measurements in the TPM. Note that the
TPM requires most of the computation time. It takes about 200ms for 10,000
operations. Column three shows the fraction spent in a VM (on average) for mea-
suring and forwarding. Column two lists the time needed by a VM (on average)
running no IMA at all. The latter system allows us to better compare how the
parallel execution of multiple VMs naturally slows down program execution time
in the VMs because of shared hardware resources. In fact, the parallel execution
of more than three VMs exhibits such behavior for both our approach and the
system running no IMA at all, as indicated by our results. The time ratio in
column five indicates an overhead of factor ≈ 2 for our approach considering the
time spent in the VMs. This is due to forwarding the measurements over VLAN
to the MPA. Techniques like shared memory may be used to further reduce this
overhead. The total ratio in column six reflects mainly the time needed for the
TPM extend operations as noted above. We can see that our approach scales
roughly linearly with the number of VMs. The increased slowdown with more
than three VMs is mainly due to the rather limited hardware resources of our
testing system as it occurs also with the system running no IMA at all. Hence,
the results indicate that the MPA does not constitute a performance bottleneck.

For the remote attestation, in order to attest a single VM, we need to send
the measurement data (CMML) of all VMs (cf. Sect. 2.4). Thus, the size of the
transferred data increases linearly with the number of VMs. This is a disadvan-
tage compared to other approaches that emulate a set of PCRs for each VM in
software [4,5] or maintain them in hardware [6,8,7], where it is sufficient to only
send measurement data of the attested VM.

6 Related Work

Berger et al. describe a virtualized TPM emulating TPM functionality in soft-
ware, called vTPM [4]. In particular, each VM is provided its own vTPM with

Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM 335

its own instance of (upper) PCRs. All upper PCRs are held in software and their
contents may be signed by the hardware TPM. However, this does not provide
the same level of security as storing measurements in hardware-protected PCRs
since measurements held in software can be manipulated by an attacker once
the system is compromised.

In [5], England et al. try to reduce the complexity of approaches such as vTPM
by not emulating the entire TPM interface in software. They utilize a para-
virtualized approach that will pass through most of the functionality of a real
TPM, but changes some aspects of the device interface. However, this approach
suffers from the same problem as vTPM since (upper) PCRs are emulated in
software and thus can be manipulated on a compromised system.

Feller et al. propose dcTPM [8], an architecture to multiplex several software-
based TPMs, hardware TPMs, or a combination thereof. By multiplexing only
hardware TPMs, the above issue of software-emulated PCRs can be solved. How-
ever, their approach does not scale very well. In fact, multiplexing cloud systems
consisting of hundreds of VMs becomes infeasible in terms of technology (e.g.,
limited number of FPGA pins needed for multiplexing TPMs) and in terms of
economy (e.g., hardware must be especially built with as many hardware TPMs
as the (maximum) number of associated VMs).

In [6], Stumpf et al. propose a concept for enhancing a TPM to support
hardware-based virtualization without the above scaling issues. This is achieved
by employing a root-data structure that is only accessible by the hypervisor
and a TPM-control structure that is used to dynamically swap TPM-context
information of each VM in and out in an encrypted manner. Unfortunately, such
a TPM is not available for production use.

The TCG also defines a specification for a virtualized trusted platform archi-
tecture [7]. However, such an envisioned TPM 2.0 is not available yet.

7 Conclusion

We have shown that it is possible to multiplex integrity measurements of arbi-
trarily many VMs with just a single standard TPM and only requiring one PCR.
In contrast to existing approaches that emulate PCRs in software, our approach
achieves a higher level of security since measurements, along with the mapping
to their respective VMs, will always be stored in the hardware-protected PCRs of
the TPM. We presented a remote attestation protocol for attesting the integrity
of individual VMs. A crucial problem we had to solve in this context, was that
our approach of sharing PCRs among VMs, inherently requires the disclosure of
all measurements of all VMs. We overcame this by storing measurements in the
PCR in a concealed manner. We additionally conceal a measurement’s associ-
ated VM-ID, so as to prevent the collection of usage patterns. This enables us to
fully disclose the (concealed) contents of the PCR and to selectively reveal non-
concealed measurements of individual VMs. Finally, the experimental results of
our proof of concept implementation show the practicality of our approach.

336 M. Velten and F. Stumpf

Acknowledgements. We would like to thank our colleagues Julian Horsch,
Dominik Merli, Steffen Wagner, Sascha Wessel, and Philipp Zieris for fruitful
discussions and valuable comments. This work was partly supported by the Fed-
eral Ministry of Economics and Technology (BMWi) through grant 01MD11012.

References

1. Trusted Platform Module, Main Specification, Level 2, Version 1.2, Revi-
sion 116 (2011), http://www.trustedcomputinggroup.org/resources/tpm main

specification

2. Trusted Computing Group, https://www.trustedcomputinggroup.org/
3. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of

a tcg-based integrity measurement architecture. In: Proceedings of the 13th Con-
ference on USENIX Security Symposium, SSYM 2004, vol. 13, p. 16. USENIX
Association, Berkeley (2004)

4. Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vtpm:
virtualizing the trusted platform module. In: Proceedings of the 15th Conference
on USENIX Security Symposium, USENIX-SS 2006, vol. 15, USENIX Association,
Berkeley (2006)

5. England, P., Loeser, J.: Para-virtualized tpm sharing. In: Lipp, P., Sadeghi, A.-R.,
Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 119–132. Springer, Heidelberg
(2008)

6. Stumpf, F., Eckert, C.: Enhancing trusted platform modules with hardware-based
virtualization techniques. In: The International Conference on Emerging Security
Information, Systems, and Technologies, pp. 1–9 (2008)

7. Virtualized Trusted Platform Architecture Specification, Version 1.0, Revision
26 (2011), http://www.trustedcomputinggroup.org/resources/virtualized

trusted platform architecture specification

8. Feller, T., Malipatlolla, S., Kasper, M., Huss, S.A.: dctpm: A generic architecture
for dynamic context management. In: 2011 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig), November 30-December 2, pp. 211–216
(2011)

9. Azab, A.M., Ning, P., Sezer, E.C., Zhang, X.: Hima: A hypervisor-based integrity
measurement agent. In: ACSAC, pp. 461–470. IEEE Computer Society (2009)

10. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proceedings of the 17th Conference on Security Symposium,
SS 2008, pp. 243–258. USENIX Association, Berkeley (2008)

11. National Institute of Standards and Technology. Secure Hash Standard (SHA-1).
Federal Information Processing Standards Publication 180-1 (1993)

12. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005, p. 41.
USENIX Association, Berkeley (2005)

13. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual
machine monitor. In: OLS 2007: Proceedings of the Linux Symposium, vol. 1,
pp. 225–230 (June 2007)

14. TrouSerS – The open-source TCG Software Stack,
http://trousers.sourceforge.net

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/resources/virtualized_trusted_platform_architecture_specification
http://www.trustedcomputinggroup.org/resources/virtualized_trusted_platform_architecture_specification
http://trousers.sourceforge.net

Improved Key Recovery Attacks

on Reduced-Round Salsa20 and ChaCha�

Zhenqing Shi1, Bin Zhang2, Dengguo Feng1, and Wenling Wu1

1 Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China
2 Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, 100195, China
zhenqingshi@gmail.com, {zhangbin,feng,wwl}@is.iscas.ac.cn

Abstract. Salsa20 is a stream cipher designed by Bernstein in 2005 and
Salsa20/12 has been selected into the final portfolio of the eSTREAM
Project. ChaCha is a variant of Salsa20 with faster diffusion for similar
performance. The previous best results on Salsa20 and ChaCha proposed
by Aumasson et al. exploits the differential properties combined with the
probabilistic neutral bits (PNB). In this paper, we extend their approach
by considering a new type of distinguishers, named (column and row)
chaining distinguishers. Besides, we exhibit new high probability second-
order differential trails not covered by the previous methods, generalize
the notion of PNB to probabilistic neutral vectors (PNV) and show that
the set of PNV is no smaller than that of PNB. Based on these findings,
we present improved key recovery attacks on reduced-round Salsa20 and
ChaCha. Both time and data complexities of our attacks are smaller than
those of the best former results.

Keywords: Stream ciphers, Salsa20, ChaCha, Neutral bits, Distinguisher.

1 Introduction

Salsa20 [1] is a stream cipher designed by Bernstein in 2005 for the eSTREAM
project [2]. The 8- and 12-round variants, Salsa20/8 and Salsa20/12 [3], were
also published. ChaCha [4] is a variant of Salsa20 with faster diffusion in the
core function for similar performance. After three evaluation phases, Salsa20/12
was selected into the final portfolio of the eSTREAM Project in 2008.

Since their publication, Salsa20 and ChaCha have undergone significant cryp-
tographic analysis. In 2006, Crowley presented a truncated differential crypt-
analysis on Salsa20/5 [5]. The result revealed that the diffusion of Salsa20 was
not ideal, though it did not threaten the full round security of Salsa20. For the
same variant, V. Velichkov et al. mounted a key recovery attack using UNAF [6]

� This work was supported by the programs of the National Natural Science Foun-
dation of China (Grant No. 60833008, 60603018, 61173134, 91118006, 61272476),
the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant
No. XDA06010701) and the National Grand Fundamental Research 973 Program of
China(Grant No. 2013CB338002).

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 337–351, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

338 Z. Shi et al.

Table 1. Comparisons of our attacks with other well known attacks on Salsa20 and
ChaCha

Cipher Round/Key length Time Data Reference

Salsa20

5/256

2165 26 [5]

2167 27 [6]

255 210 This work

6/256
2177 216 [7]

273 216 This work

7/256
2151 226 [9]

2148 224 This work

8/256
2251 231 [9]

2250 227 This work

7/128
2111 221 [9]

2109 219 This work

ChaCha

6/256
2139 230 [9]

2136 228 This work

7/256
2248 227 [9]

2246.5 227 This work

6/128
2107 230 [9]

2105 228 This work

at FSE 2012. At Indocrypt 2006, Fischer et al. described some non-randomness
properties of Salsa20/5 and used this observation to construct a key-recovery at-
tack on Salsa20/6 [7]. At SASC 2007, Tsunoo et al. exploited a bias of Salsa20/4
to construct an attack on Salsa20/7 [8]. So far, the best key recovery attacks on
variants of Salsa20 and ChaCha were proposed by Aumasson et al [9] at FSE
2008, exploiting first-order differential properties combined with the probabilistic
neutral bits (PNB) technique.

In this paper, we extend the approach of Aumasson et al. by considering a
new type of distinguishers, named (column and row) chaining distinguishers,
which can efficiently make use of the biases of multiple differential trails and the
matrix structure of the cipher. Besides, we find new high probability second-
order differential trails that are not covered by the previous results, some of
which are employed in our attack. The notion of PNB is generalized to that
of probabilistic neutral vectors (PNV), which investigate the properties of the
underlying function when more than one input bit are flipped simultaneously and
include the PNB as a special case. It is shown that the set of PNV is no smaller
than that of PNB. Based on these findings, we construct improved key recovery
attacks on reduced-round Salsa20 and ChaCha, repectively. Both time and data
complexities of our new attacks are smaller than those of the best former results.
Table 1 presents our results together with comparisons with other well known
attacks.

The rest of the paper is organized as follows. A brief description of Salsa20 and
ChaCha is presented in Section 2. The attacks of Aumasson et al. are recalled
in Section 3. In Section 4, our new attacks are described in details with the

Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha 339

introduction of the (column and row) chaining distinguishers, high probability
differential trails and the notion of PNV. Finally, we conclude the paper in
Section 5.

2 Description of Salsa20 and ChaCha

2.1 Salsa20

Salsa20 operates on 32-bit words and supports keys of 128 bits and 256 bits.
During its operation, the key, a 64-bit nonce (unique message number), a 64-bit
counter and four 32-bit constants are used to construct the 512-bit initial state.

Denote the 256-bit key by k = (k0, k1, ..., k7), the 64-bit nonce by v = (v0, v1)
and the 64-bit counter corresponding to the integer i by t = (t0, t1). The Salsa20
function acts on the following 4× 4 matrix of 32-bit words.

X =

⎛⎜⎜⎝
x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

⎞⎟⎟⎠ =

⎛⎜⎜⎝
c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

⎞⎟⎟⎠ .

The ci’s are predefined constants. For the 128-bit key k′, just fill the 256 key bits
in the matrix as k = k′||k′. If not mentioned otherwise, we focus on the 256-bit
version. A keystream block Z is then defined as Z = X +X20, where + is the
wordwise integer addition and Xr = Roundr(X) with the round function Round
of Salsa20. This round function is based on the following nonlinear operation
(also called the quarterround function), which transforms a vector (x0, x1, x2, x3)
to (z0, z1, z2, z3) by sequentially computing

z1 = x1 ⊕ [(x3 + x0) ≪ 7]

z2 = x2 ⊕ [(x0 + z1) ≪ 9]

z3 = x3 ⊕ [(z1 + z2) ≪ 13]

z0 = x0 ⊕ [(z2 + z3) ≪ 18].

In odd numbers of rounds (which are called columnrounds in the original
specification of Salsa20), the nonlinear operation is applied to the columns
(x0, x4, x8, x12), (x5, x9, x13, x1), (x10, x14, x2, x6), (x15, x3, x7, x11). In even
numbers of rounds (which are also called the rowrounds), the nonlinear op-
eration is applied to the rows (x0, x1, x2, x3), (x5, x6, x7, x4), (x10, x11, x8, x9),
(x15, x12, x13, x14). We write Salsa20/R for R-round variants, i.e., with Z =
X +XR. After R iterations of the Salsa20/R round function, the updated state
is used as a 512-bit keystream output. Each such output block is an independent
combination of the key, nonce, and counter.

2.2 ChaCha

ChaCha is similar to Salsa20 except the following three differences: the compo-
sition of the initial matrix, the composition of the quarterround function and
the round function. See [4] for details.

340 Z. Shi et al.

3 Aumasson et al’s Attacks on Salsa20 and ChaCha

In this section, we briefly recall the first-order differential attacks of Aumasson
et al. These attacks are based on the concept of probabilistic neutral bits (PNB).
Let us first list some notations used hereafter.

- Let xi be the i-th word of the initial matrix X and the j-th least significant
bit of xi is denoted by [xi]j .

- Let x′i be an associated word with the difference Δ0
i = xi ⊕ x′i.

- The first-order differential for the input X , with a single-bit input-difference
[Δ0

i]j = 1 and a single-bit output-difference [Δr
p]q after r rounds, is denoted

by ([Δr
p]q|[Δ0

i]j).

3.1 First-Order Differential Analysis of Salsa20 and ChaCha

First note that the round function of Salsa20 and ChaCha is invertible. Define
the r-round inverseX−r = Round−r(X), which is different depending on whether
it inverts after an odd or an even number of rounds.

For a fixed differential ([Δr
p]q|[Δ0

i]j), the corresponding output Z and Z ′ can

be observed for nonce v, counter t and key k. Based on Z = X +XR, if we have
v, t and k, we can get Xr = (Z − X)r−R and (X ′)r = (Z ′ − X ′)r−R(r < R).
Then [Δr

p]q = Xr⊕ (X ′)r = (Z−X)r−R⊕ (Z ′−X ′)r−R can be observed. Define
the Boolean function f(k, v, t, Z, Z ′) = [Δr

p]q. Then, for a fixed key, the bias εd
of f is defined by Pr{f(k, v, t, Z, Z ′) = 1} = Pr{[Δr

p]q = 1|[Δ0
i]j} = 1

2 (1 + εd),
where the probability holds over all nonces and counters.

Given enough output block pairs with the presumed differential, we have
Pr{f(k̄, v, t, Z, Z ′) = 1} = 1

2 (1 + εd) conditioned on k̄ = k, whereas for (almost
all) k̄ �= k we expect f be unbiased, i.e., Pr{f(k̄, v, t, Z, Z ′) = 1} = 1

2 . Note
that the complexity of the above way is 2256. Instead, Aumasson et al. pro-
posed to find some approximation g of f which effectively depends on s key bits
(s < 256). Let f be correlated to g with the bias εa, i.e., Pr{g(k′, v, t, Z, Z ′) =
f(k, v, t, Z, Z ′)} = 1

2 (1+εa), where k
′ is the s bits subkey of k and the probability

holds over all nonces and counters. Assume Pr{g(k′, v, t, Z, Z ′) = 1} = 1
2 (1+ ε),

then under some reasonable independency assumptions, we have ε = εd · εa.
Hence, given enough output block pairs with the presumed differential, we can
verify the correctness of a guessed candidate subkey k̄′ for the subkey k′ by eval-
uating the bias of the function g. More precisely, we have Pr{g(k̄′, v, t, Z, Z ′) =
1} = 1

2 (1+ε) if k̄
′ = k′, whereas for (almost all) k̄′ �= k′ we expect g be unbiased,

i.e. Pr{g(k̄′, v, t, Z, Z ′) = 1} = 1
2 . In this way, the complexity is reduced from

2256 to 2s. Next, we will give a concise description of how the approximation g
of f is found.

3.2 Key Recovery Attacks on Salsa20 and ChaCha

In [9], Aumasson et al. gave an efficient way of finding suitable approximations
g(k′, v, t, Z, Z ′) of the function f(k, v, t, Z, Z ′) using the concept of PNB.

Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha 341

Definition 1. The neutrality measure of the key bit ki with respect to the func-
tion f(k, v, t, Z, Z ′) is defined as γi, where Pr =

1
2 (1+γi) is the probability (over

all k, v and t) that complementing the key bit ki does not change the output of
f(k, v, t, Z, Z ′).

When the threshold γ is set, all the key bits can be divided into two sets: signif-
icant key bits with neutrality measure γi < γ (size of s) and non-significant
key bits with neutrality measure γi ≥ γ (size of ns). Then we can define
g(k′, v, t, Z, Z ′) as an approximation of f(k, v, t, Z, Z ′) just simply making k′

be the significant key bits and the non-significant key bits be set to fixed values
(e.g. all zero). More details of the construction of the distinguisher g can be
found in [9]. Then, the whole attack can be carried out as follows:

Attack Online

Parameters: N , s, ε
1: Collect N pairs of keystream blocks where each pair is produced by states

with a random nonce and counter (satisfying the relevant input-difference).
2: For each choice of the subkey (i.e. the s significant key bits) do:

(2.1) Compute the bias of g using the N keystream block pairs.
(2.2) If the optimal distinguisher legitimates the subkeys candidate as a

(possibly) correct one, perform an additional exhaustive search over
the ns non-significant key bits in order to check the correctness of this
filtered subkey and to find the non-significant key bits.

(2.3) Stop if the right key is found and output the recovered key.

In this attack, there is a set of 2s sequences of random variables by guessing s
significant key bits. Actually, 2s − 1 of them should verify the null hypothesis
H0, and a single one verify the alternative hypothesis H1. For a realization a of
the corresponding random variable A, the decision rule D(a) = i to accept Hi

can lead to two types of errors:

1. Non-detection: D(a) = 0 and A ∈ H1. The probability of this event is pnd.
2. False alarm: D(a) = 1 and A ∈ H0. The probability of this event is pfa.

The Neyman-Pearson decision theory gives results to estimate the number of
samples N required to get some bounds on the probabilities. It can be shown
that

N ≈
(√

α log 4 + 3
√
1− ε2

ε

)2

(1)

samples suffices to achieve pnd = 1.3 × 10−3 and pfa = 2−α. Calculus details
and the construction of the optimal distinguisher can be found in [10].

The time complexity of this attack can be estimated as follows. Step 2 is
repeated 2s times. For each subkey, step (2.1) is always executed which has
complexity of N . The search part of step (2.2) is performed only with probability
pfa = 2−α which brings an additional cost of 2ns(= 2256−s) in case a subkey
passes the optimal distinguisher’s filter. Therefore, the complexity of step (2.2)
is 2256−s ·pfa, showing a total complexity of 2s(N+2256−s ·pfa) = 2s ·N+2256−α.

342 Z. Shi et al.

4 Our Attacks

In the above attack, α (and hence N) is chosen such that it minimizes 2s ·N +
2256−α based on the single distinguisher g. In this section, our new attacks are
described in details with the introduction of the (column and row) chaining
distinguishers, high probability differential trails and the notion of PNV.

4.1 Chaining Distinguishers

For a subkey K ′, define the set S(K ′) = {ki|ki is involved in the subkey K ′}.
Note that, all the single distinguishers we mentioned below are constructed with
the method in Section 3.

Definition 2. Column Chaining Distinguishers(CCD for short): For a collec-
tion of subkey {K ′

i}i∈A with S(K ′
i) ⊂ S(K ′

j) (∀i, j ∈ A and i < j), if there exists
a collection of distinguishers {Di}i∈A, and ∀i ∈ A the distinguisher Di effectively
depends on the subkey K ′

i, we call {Di}i∈A the Column Chaining Distinguishers
of {K ′

i}i∈A.

What’s the advantage of CCD? Here is an example: Suppose A = {1, 2, 3}, and
{Di}i∈A are CCD of {K ′

i}i∈A with S(K ′
1) ⊂ S(K ′

2) ⊂ S(K ′
3). For each i ∈ A,

there is a relation between the data Ni and (pfa)i = 2−αi with the (pnd)i fixed
(see Eq. 1). Let si = |S(K ′

i)|, so we have s1 < s2 < s3. Then the execution of
CCD is described as follows:

Execution of CCD

Parameters: {Ni}, {si}
1: For each subkey candidate K̄ ′

1 by guessing the s1 key bits of set S(K ′
1),

verify K̄ ′
1 with the distinguisher D1 of N1 pairs of keystream blocks, if this

step succeeds, do Step 2;
2: Guess the s2−s1 key bits of set S(K ′

2)−S(K ′
1), then for the subkey candidate

K̄ ′
2 (K̄ ′

1 plus s2 − s1 guessed key bits), verify K̄ ′
2 with the distinguisher D2

of N2 pairs of keystream blocks, if this step succeeds, do Step 3;
3: Guess the s3−s2 key bits of set S(K ′

3)−S(K ′
2), then for the subkey candidate

K̄ ′
3 (K̄ ′

2 plus s3 − s2 guessed key bits), verify K̄ ′
3 with the distinguisher D3

of N3 pairs of keystream blocks, if this step succeeds, do Step 4;
4: Perform an additional exhaustive search over the 256− s3 key bits (i.e. not

in the set S(K ′
3)) in order to check the correctness of this filtered subkey

and to find the remaining key bits.

Let us discuss the time complexity of such an attack. Step 1 is repeated for
all 2s1 subkey candidates, and each incorrect subkey candidate passes the test
of distinguisher D1 with probability (pfa)1 = 2−α1 (according to N1 pairs of
keystream blocks). Step 2 needs to search over s2 − s1 key bits of set S(K ′

2) −
S(K ′

1), and each incorrect subkey candidate passes the test of distinguisher D2

with probability (pfa)2 = 2−α2 (according to N2 pairs of keystream blocks).
Step 3 needs to search over s3 − s2 key bits of set S(K ′

3) − S(K ′
2), and each

Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha 343

incorrect subkey candidate passes the test of distinguisher D3 with probability
(pfa)3 = 2−α3 (according to N3 pairs of keystream blocks). And step 4 needs to
search over the remaining 256− s3 key bits. So the total complexity is

2s1 ·N1 + 2s1 · (pfa)1 · 2s2−s1 ·N2 +

2s1 · (pfa)1 · 2s2−s1 · (pfa)2 · 2s3−s2 ·N3 +

2s1 · (pfa)1 · 2s2−s1 · (pfa)2 · 2s3−s2 · (pfa)3 · 2256−s3

= 2s1 ·N1 + 2s2−α1 ·N2 + 2s3−α1−α2 ·N3 + 2256−α1−α2−α3

If we use single distinguisher D1 to recover the key, the time complexity is
2s1 ·N1 + 2256−α1 . Furthermore, we can easily get:

min
N1

{2l1 ·N1+2256−α1} ≥ min
N1,N2,N3

{2l1 ·N1+2l2−α1 ·N2+2l3−α1−α2 ·N3+2256−α1−α2−α3}.

Two ordinary methods of constructing CCD are as follows:

First method of constructing CCD

1: (a) Find a highly biased differential and set a threshold γ(1);
(b) Estimate the measure γi of all the key bits and put all those key bits

with γi ≥ γ(1) into the set S1;
(c) Construct a single distinguisher D1 with the key bits in S1 being set to

a fixed value, if the bias of D1 is non-negligible, do Step 2;

2: (a) Find another highly biased differential and set a threshold γ(2);
(b) Estimate the measure γi of all the key bits in set S1 and put all those

key bits in set S1 with γi ≥ γ(2) into the set S2;
(c) Construct a single distinguisher D2 with the key bits in S2 being set to

a fixed value(the same as in Step1), if the bias of D2 is non-negligible,
do Step 3;

3: (a) Find another highly biased differential and set a threshold γ(3);
(b) Estimate the measure γi of all the key bits in set S2 and put all those

key bits in set S2 with γi ≥ γ(3) into the set S3;
(c) Construct a single distinguisher D3 with the key bits in S3 being set to

a fixed value(the same as in Step1), if the bias of D3 is non-negligible,
do Step 4;

4: Continue the work until only a few key bits are left to be guessed.

Second method of constructing CCD

1: Find a highly biased differential and set a threshold γ;
2: Construct a distinguisher gγ(K

′
γ , v, t, Z, Z

′) based on the subkey K ′
γ =

{ki|γi < γ};
3: If the bias of gγ(K

′
γ , v, t, Z, Z

′) is non-negligible, set a series of thresholds

γ(1) < γ(2) < ... < γ(e) with γ(i) ≥ γ, and for each γ(i), construct the dis-
tinguisher gγ(i)(K ′

γ(i) , v, t, Z, Z
′) effectively depending on the subkey K ′

γ(i) .

344 Z. Shi et al.

The first method is feasible for lower rounds of Salsa20 and ChaCha because of
sufficient numbers of PNB’s (usually more than half of the key bits with high γi).
And the second method of constructing CCD is based on a single distinguisher,
which is more feasible when the numbers of PNB’s are insufficient.

Definition 3. Row Chaining Distinguishers(RCD for short): For a fixed subkey
K ′, if there exists a collection of distinguishers {Di}i∈A which effectively depend
on the subkey K ′, we call the {Di}i∈A the Row Chaining Distinguishers for K ′.

The advantage of RCD is obvious: firstly, some incorrect subkey candidate K̄ ′

may verify the alternative hypothesis of distinguisher Di, while the probability
that it verifies all the alternative hypothesis of distinguishers {Di}i∈A is much
lower; secondly, RCD can be used as a CCD1 . We will show how to construct
RCD based on a second-order differential in the next subsection.

4.2 Second-Order Differential Analysis on Salsa20 and ChaCha

First, we recall the second-order differential: let X be the initial matrix, X1, X2

and X3 be associated initial matrices with a single-bit input-difference [Δ0
i]j =

1, a single-bit input-difference [Δ0
m]n = 1 and the double-bit input-differences

[Δ0
i]j = 1 and [Δ0

m]n = 1 respectively. Note that (i − m)2 + (j − n)2 = 0
should not hold. We consider a single-bit output-difference [Δr

p]q = [Xr
p]q ⊕

[(X1)p]
r
q ⊕ [(X2)

r
p]q ⊕ [(X3)

r
p]q after r rounds. Then the second-order differential

for the input X is denoted by ([Δr
p]q|[Δ0

i]j , [Δ
0
m]n). The bias εd of the output-

difference is defined by Pr{([Δr
p]q = 1|[Δ0

i]j , [Δ
0
m]n)} = 1

2 (1 + εd), where the
probability holds over all keys, nonces and counters. We found many highly
biased differentials for Salsa20 and ChaCha (see Table 2).

For a fixed differential ([Δr
p]q|[Δ0

i]j , [Δ
0
m]n) with bias εd, let Z = X+XR, Z1 =

X1+(X1)
R, Z2 = X2+(X2)

R, and Z3 = X3+(X3)
R, so Z, Z1, Z2, and Z3 can be

observed for nonce v, counter t and key k. As mentioned in section 3, the round
functions of Salsa20 and ChaCha is invertible, i.e. Xr = (Z −X)r−R(r < R), so
[Δr

p]q = [((Z−X)r−R⊕(Z1−X1)
r−R⊕(Z2−X2)

r−R⊕(Z3−X3)
r−R)p]q. Define

Fp,q,i,j,m,n(k, v, t, Z, Z1, Z2, Z3) = [Δr
p]q. For short, we define Fp,q,i,j,m,n(k,W) =

[Δr
p]q where W = (v, t, Z, Z1, Z2, Z3). The next work is finding suitable approx-

imations Gp,q,i,j,m,n(k
′,W) of the function Fp,q,i,j,m,n(k,W). Here, we also use

the PNB’s mentioned in Section 3.
After all the neutrality measure γl’s of each key bit kl be estimated, we

set a threshold γ and put all the key bits with γl < γ into a set denoted by
Kp,q,i,j,m,n(γ) = {kl|γl < γ}. Having found the set Kp,q,i,j,m,n(γ), we sim-
ply let k′ be subkey with the key bits in the set Kp,q,i,j,m,n(γ) and define
Gγ,p,q,i,j,m,n(k

′,W) as Fp,q,i,j,m,n(k,W) with the remaining key bits (i.e. not in
the set Kp,q,i,j,m,n(γ)) with a fixed value. The bias εa of the correlation between
F and G is defined by Pr{Gγ,p,q,i,j,m,n(k

′,W) = Fp,q,i,j,m,n(k,W)} = 1
2 (1+εa),

where the probability holds over all keys, nonces and counters. Denote the bias

1 Actually, RCD are special CCD with the subkey unchanged.

Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha 345

Table 2. Some highly biased differentials for Salsa20/4 and ChaCha3

Type [Δ0
i]j , [Δ

0
m]n [Δr

p]q εd

Salsa20/4

[Δ0
7]24, [Δ

0
8]17 [Δ4

1]7 0.67

[Δ0
7]24, [Δ

0
8]18 [Δ4

1]7 0.64

[Δ0
7]24, [Δ

0
8]19 [Δ4

1]7 0.62

[Δ0
7]24, [Δ

0
8]20 [Δ4

1]7 0.58

[Δ0
7]25, [Δ

0
8]17 [Δ4

1]7 0.59

ChaCha3

[Δ0
12]15, [Δ

0
13]20 [Δ3

3]0 0.43

[Δ0
12]20, [Δ

0
15]15 [Δ3

2]0 0.43

[Δ0
13]15, [Δ

0
14]20 [Δ3

0]0 0.43

[Δ0
14]15, [Δ

0
15]20 [Δ3

1]0 0.43

[Δ0
13]16, [Δ

0
14]20 [Δ3

0]0 0.41

of G by ε, i.e. Pr{Gγ,p,q,i,j,m,n(k
′,W) = 1} = 1

2 (1 + ε). Under some reasonable
independency assumptions, the equality ε = εd · εa holds. Hence, given enough
output block pairs with the presumed differential, we can verify the correctness
of a guessed candidate subkey k̄′ for the subkey k′ by evaluating the bias of the
function G. More precisely, we have Pr{Gγ,p,q,i,j,m,n(k

′,W) = 1} = 1
2 (1 + ε)

conditioned on k̄′ = k′, whereas for (almost all) k̄′ �= k′ we expect G be un-
biased, i.e. Pr{Gγ,p,q,i,j,m,n(k

′,W) = 1} = 1
2 . The way for searching such a

distinguisher is similar to that of the first-order differentials.
Now, we show how to use the second-order differentials to construct RCD. For

a second-order differential ([Δr
p]q|[Δ0

i]j , [Δ
0
m]n), we choose a threshold γ empiri-

cally and construct a single distinguisher Gγ,p,q,i,j,m,n(k
′,W) using the method

above, where k′ is the subkey of all key bits in the set Kp,q,i,j,m,n(γ). In order
to construct RCD, the subkey should stay the same, i.e. the set Kp,q,i,j,m,n(γ)
should stay the same. Now, we consider the factors of the set Kp,q,i,j,m,n(γ):
p, q, i, j,m, n, γ. By tests, we find: if the value of p changes, the set Kp,q,i,j,m,n(γ)
will change with a high probability, so do the factors q, i,m, γ; while, if only the
factor j changes, Kp,q,i,j,m,n(γ) will stay the same with a high probability, so
does the factor n. Hence, for the distinguisher Gγ,p,q,i,j,m,n(k

′,W), we search
over all j’s only or all m’s only to construct a new distinguisher with subkey
unchanged. Here we give an example of the RCD on 256-bit ChaCha7. We con-
struct 4-Step RCD {Gγ,9,0,14,j,15,12(k,W)}j∈{0,1,2,28}. Let γ = 0.3, and we get
K9,0,14,j,15,12(γ) ={ 3, 7, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 63, 67, 79,
80, 95, 99, 159, 160, 184, 185, 186, 187, 188, 189, 190, 191, 200, 255} for any
j ∈ {0, 1, 2, 28}.

346 Z. Shi et al.

Actually, we can easily find RCD for Salsa20 and ChaCha using the method
above. However, we did not find enough PNB’s to improve our attacks2 on
Salsa20 and ChaCha. And such a reality limits us to display the use of RCD.
We believe the concept of RCD can be used in other ciphers.

4.3 Probabilistic Neutral Vectors

Note that, contrary to the mutual interaction between neutral bits, we have
directly combined several PNB’s without altering their probabilistic quality, so
do J. Aumasson et al. In order to justify the reasonableness, we introduce a
generalized concept of PNB’s called probabilistic neutral vectors(PNV’s).

Definition 4. The neutrality measure of the two-dimension key bit vector (ki, kj)
with respect to the function f(k, v, t, Z, Z ′) is defined as γ(i,j), where Pr =
1
2 (1 + γ(i,j)) is the probability (over all k, v and t) that complementing the key
bit ki and kj does not change the output of f(k, v, t, Z, Z ′).

Simulations shows that: for key bit vector (ki, kj), we have γi · γj ≤ γ(i,j) ≤
max{γi, γj}. Furthermore, for a fixed differential, denote the setH1(γ)={ki|γi ≥
γ} and H2(γ) = {ki|γ(i,j) ≥ γ for at least one kj}. Then we have the following
lemma:

Lemma 1. For a fixed differential of Salsa20 or ChaCha, H1(γ) ⊆ H2(γ), and
hence | H1(γ) |≤| H2(γ) |.

For Salsa 20/7 with the differential ([Δ4
1]14|[Δ0

7]31), we have H2(0.4)−H1(0.4) =
{k1, k78}. So it’s reasonable to combine several PNB’s directly in our attacks.
Actually, if we want to construct a distinguisher with s key bits fixed, we should
use the concept of s-dimension PNV’s. However, when s is too big, the cost of
finding the most significant PNV’s is too high to search over all Cs

256 cases.

4.4 Experimental Results with CCD

We present attacks on 256-bit Salsa20/5 and Salsa20/6 with the CCD con-
structed by the first method. And the rest improved attacks are based on the
CCD constructed by the second method. In order to compare our method with
that in [9], we use the same differentials and the same threshold γ as used in [9].
And we believe there exists other choices that lead better results.

Attack on 256-bit Salsa20/5. The output differential is observed after working
two rounds backward from a 5-rounds keystream block. We use five differentials:
([Δ3

3]15|[Δ0
6]0), ([Δ

3
3]9|[Δ0

6]0), ([Δ
3
8]11|[Δ0

7]2), ([Δ
3
8]20|[Δ0

7]0) and ([Δ3
12]23|[Δ0

7]1).
We set the threshold γ = 0.9 and the subkeys for each distinguisher are listed
in the Appendix A. The parameters of our attacks are listed in Table 3 (see

2 We only test the second-order differential with single bit input and single bit(and
double bits) output, and for other second-order differential, there maybe exist enough
PNB’s to improve the attacks.

Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha 347

Appendix B). And the total attack runs in time 255 and data 210.

Attack on 256-bit Salsa20/6. The output differential is observed after work-
ing two rounds backward from a 6-rounds keystream block. We construct a
CCD using four differentials: ([Δ4

6]26|[Δ0
7]31), ([Δ

4
1]3|[Δ0

7]29), ([Δ
4
1]26|[Δ0

7]13) and
([Δ4

1]12|[Δ0
7]13). For each difference, we use the same threshold γ = 0.9 and the

subkeys for each distinguisher are listed in the Appendix A. The parameters of
our attacks are listed in Table 4 (see Appendix B). And the total attack runs in
time 273 and data 216.

Attack on 256-bit Salsa20/7. We use the differential ([Δ4
1]14|[Δ0

7]31) with |εd| =
0.131. The parameters and results of Aumasson’s attacks are listed in Table 5
(see Appendix B). We construct 2-step CCD using γ(1) = 0.5 and γ(2) = 0.6 with
ε(1) = 0.0022 and ε(2) = 0.0050 respectively. Note that, ε(2) = 0.0050 < 0.0064.
That because we test and find that such a value leads a result: if the correct
key passes the distinguisher of γ(1) = 0.5 (with success probability 50%3), then
it can pass the distinguisher of γ(2) = 0.6 with success probability more than
90% (we define this probability by step success probability). The time complex-
ity is 2125 ·N1 + 2132−α1 ·N2 + 2256−α1−α2 . We choose α1 = 10 and α2 = 104,
then get N1 = 223 and N2 = 223 respectively by Eq.1. So the time complexity is
2125 ·N1+2132−α1 ·N2+2256−α1−α2 ≈ 2148, the data complexity is 223+223 = 224,
and the success probability is 50%× 90% = 45%.

Attack on 256-bit Salsa20/8. For the differential ([Δ4
1]14|[Δ0

7]31) with |εd| =
0.131, we construct 2-step CCD. using γ(1) = 0.15 4 and γ(2) = 0.20 with
ε(1) = 0.00047 and ε(2) = 0.00102 respectively. For the threshold γ(1) = 0.15,
we find ns1 = 33 non-significant key bits, and for the threshold γ(2) = 0.20, we
find ns2 = 30 non-significant key bits. Note that, the value ε(2) = 0.00102 is
chosen with the step success probability 90%. The time complexity is 2223 ·N1+
2226−α1 · N2 + 2256−α1−α2 . We choose α1 = 2 and α2 = 7, then get N1 = 226.5

and N2 = 225 respectively by Eq.1. So the time complexity is 2250, the data
complexity is 226.5+225 = 227, and the success probability is 50%×90% = 45%.

Attack on 128-bit Salsa20/7. For the differential ([Δ4
1]14|[Δ0

7]31), we construct
4-step CCD. The parameters of our attacks are listed in Table 6 (see Ap-
pendix B). Note that, the value ε(i)(i = 2, 3, 4) is chosen with the step success
probability 95%. The time complexity is 290 · N1 + 292−α1 · N2 + 294−α1−α2 ·
N3 + 298−α1−α2−α3 · N4 + 2128−α1−α2−α3−α4 ≈ 2109, the data complexity is
219+217.5+216.5+215.5 ≈ 219, and the success probability is 50%×(95%)3 ≈ 43%.

3 In [9], they use the median bias in their attack, which leads in a success probability
of at least 1

2
(1− pnd) ≈ 50%.

4 In [9], the threshold γ is set to 0.12, and they get εa = 0.0011. However, εa = 0.0011 is
not reasonable as they say: we can only measure a bias of about |εa| > c ·2−12(where
c ≈ 10 for a reasonable estimation error).

348 Z. Shi et al.

Attack on 256-bit Chacha6. For the differential ([Δ3
11]0|[Δ0

13]13) with |εd| = 0.026,
we construct 3-step CCD. The parameters of our attacks are listed in Table 7 (see
Appendix B). Note that, the value ε(i)(i = 2, 3) is chosen with the step success
probability 95%. The time complexity is 2209 ·N1 + 2213−α1 ·N2 + 2256−α1−α2 ·
N3+2214−α1−α2−α3 ≈ 2136, the data complexity is 227+225.5+226.3 ≈ 228, and
the success probability is 50%× (95%)2 ≈ 45%.

Attack on 256-bit Chacha7. For the differential ([Δ3
11]0|[Δ0

13]13), we construct 4-
step CCD. The parameters of our attacks are listed in Table 8 (see Appendix B).
Note that, ε(i)(i = 2, 3, 4) is chosen with the step success probability 95%. The
time complexity is 2221 ·N1+2222−α1 ·N2+2224−α1−α2 ·N3+2228−α1−α2−α3 ·N4+
2256−α1−α2−α3−α4 ≈ 2246.5, the data complexity is 226.3 + 225.3 + 224.2 +222.4 ≈
227, and the success probability is 50%× (95%)3 ≈ 43%.

Attack on 128-bit Chacha6. For the differential ([Δ3
11]0|[Δ0

13]13) with |εd| = 0.026,
we construct 3-step CCD. The parameters of our attacks are listed in Table 9
(see Appendix B). Note that, the value ε(i)(i = 2, 3) is chosen with the step suc-
cess probability 95%. The time complexity is 277 ·N1+281−α1 ·N2+285−α1−α2 ·
N3 + 2128−α1−α2−α3 ≈ 2105, the data complexity is 227.9 + 224.6 + 223.3 ≈ 228,
and the success probability is 50%× (95%)2 ≈ 45%.

5 Conclusions

In this paper, we extend the approach of Aumasson et al. by considering a
new type of distinguishers, named (column and row) chaining distinguishers,
which can efficiently make use of the biases of multiple differential trails and the
matrix structure of the cipher. Besides, we find new high probability second-
order differential trails that are not covered by the previous results, some of
which are employed in our attack. The notion of PNB is generalized to that
of probabilistic neutral vectors (PNV), which investigate the properties of the
underlying function when more than one input bit are flipped simultaneously
and include the PNB as a special case. It is shown that the set of PNV is no
smaller than that of PNB. Based on these findings, we construct improved key
recovery attacks on reduced-round Salsa20 and ChaCha, repectively. Both time
and data complexities of our new attacks are smaller than those of the best
former results.

Acknowledgement. The authors gratefully acknowledge the anonymous ref-
erees, whose comments helped to improve the presentation.

References

1. Bernstein, D.J.: Salsa20. Technical Report 2005/025, eSTREAM, ECRYPT Stream
Cipher Project, http://cr.yp.to/snuffle.html

http://cr.yp.to/snuffle.html

Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha 349

2. The eSTREAM project, http://www.ecrypt.eu.org/stream/
3. Bernstein, D.J.: Salsa20/8 and Salsa20/12. Technical Report 2006/007, eSTREAM,

ECRYPT Stream Cipher Project, http://cr.yp.to/snuffle/812.pdf
4. Bernstein, D.J.: ChaCha, a variant of Salsa20, http://cr.yp.to/chacha.html
5. Crowley, P.: Truncated differential cryptanalysis of five rounds of Salsa20. In:

Stream Ciphers Revisited - SASC 2006 (2006)
6. Velichkov, V., Mouha, N., De Cannière, C., Preneel, B.: UNAF: A Special Set

of Additive Differences with Application to the Differential Analysis of ARX. In:
Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 287–305. Springer, Heidelberg
(2012)

7. Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.J.B.: Non-
randomness in eSTREAM Candidates Salsa20 and TSC-4. In: Barua, R., Lange, T.
(eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 2–16. Springer, Heidelberg (2006)

8. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T., Nakashima, H.: Differential crypt-
analysis of Salsa20/8. In: The State of the Art of Stream Ciphers - SASC 2007
(2007)

9. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New fea-
tures of Latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008)

10. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE
Transactions on Computers 34(1), 81–85 (1985)

Appendix A: CCD of Salsa20/5 and Salsa20/6

For Salsa20/5, we get the significant key bits sets:
A1 = {0, 1, 32, 33, 34, 35, 36, 37, 38, 74, 75, 76, 77, 78, 84, 85, 86, 87, 88, 89,
90, 129, 130 131, 132, 133, 134, 135, 143, 144, 145, 146, 147, 148, 149, 208, 209,
210, 211, 212 244, 245, 246, 247, 248 },
A2 = {21, 22, 23, 24, 25, 26, 27, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 68, 69,
70, 71, 72, 80, 81, 82, 83, 128, 139, 140, 141, 142, 200, 201, 202, 203, 204, 205,
206, 236, 237, 238, 239, 240, 241, 242 },
A3 = { 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, 19, 20, 43, 44, 45, 46, 47, 96, 97, 98,
99, 100, 101, 102, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 207, 213, 214,
215, 216, 217, 218, 219},
A4 = { 9, 10, 11, 12, 13, 28, 29, 30, 31, 50, 51, 52, 91, 92, 93, 103, 104, 105, 106,
107, 108, 109, 110, 111, 136, 137, 138, 181, 182, 183, 184, 185, 186, 187, 188, 189,
192, 193, 194, 195, 196, 220, 221, 222, 223 },
A5 = { 39, 40, 41, 48, 49, 112, 113, 114, 115, 116, 117, 151, 152, 153, 154, 155,
156, 157, 160, 161, 162, 190, 191, 197, 198, 199, 224, 225, 226, 227, 228, 229, 230,
231, 232, 233, 234, 235, 243, 249, 250, 251, 252, 253 }.
For each differential ([Δ3

3]15|[Δ0
6]0), ([Δ

3
3]9|[Δ0

6]0), ([Δ
3
8]11|[Δ0

7]2), ([Δ
3
8]20|[Δ0

7]0)
and ([Δ3

12]23|[Δ0
7]1), construct the single distinguisher Dj(j = 1, 2, ..., 5) with

the non-significant key bits being set to a fixed value. And the Dj effectively

depends on subkey K ′
j = {ki|i ∈ ∪

j
l=1Al}.

http://www.ecrypt.eu.org/stream/
http://cr.yp.to/snuffle/812.pdf
http://cr.yp.to/chacha.html

350 Z. Shi et al.

For Salsa20/6, we get the significant key bits sets:

A1 = {0, 1, 2, 3, 31, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 74, 75, 76, 77,
78, 79, 80, 81, 96 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127,
185, 186, 187, 188 189, 190, 191, 217, 218, 219, 220, 221, 222, 223, 230, 231, 232,
233, 234, 235, 236 },
A2 = { 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 67, 68, 69, 70, 71, 72, 73, 85, 86, 87,
88, 89, 90, 91, 130, 131, 132, 133, 134, 135, 136, 166, 167, 168, 169, 170, 171,
172, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 243, 244, 245, 246, 247, 248,
249, 250},
A3 = { 4, 5, 21, 22, 23, 24, 25, 32, 33, 34, 58, 59, 60, 61, 62, 63, 64, 82, 92, 93,
94, 95, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 198, 199, 200, 201,
202, 203, 204, 205, 206, 237, 238, 239, 240, 241},
A4 = { 7, 15, 18, 19, 20, 50, 51, 52, 53, 54, 55, 65, 66, 139, 140, 141, 142, 143,
144, 145, 175, 176, 177, 178, 179, 180, 181, 192, 193, 194, 195, 224, 225, 226, 227,
252, 253, 254, 255}.
For each differential ([Δ4

6]26|[Δ0
7]31), ([Δ4

1]3|[Δ0
7]29), ([Δ4

1]26|[Δ0
7]13),

([Δ4
1]12|[Δ0

7]13), construct the single distinguisher Dj(j = 1, 2, 3, 4) with
the non-significant key bits being set to a fixed value. And the Dj effectively

depends on subkey K ′
j = {ki|i ∈ ∪

j
l=1Al}.

Appendix B: Parameters for Our Attacks

Table 3. Different parameters for our attack on 256-bit Salsa 20/5

i Differential ns εd εa ε α Data

1 ([Δ3
3]15|[Δ0

6]0) 211 0.995 0.677 0.674 45 28

2 ([Δ3
3]9|[Δ0

6]0) 165 0.929 0.670 0.622 46 28

3 ([Δ3
8]11|[Δ0

7]2) 121 0.999 0.737 0.736 44 28

4 ([Δ3
8]20|[Δ0

7]0) 76 0.971 0.947 0.921 45 27

5 ([Δ3
12]23|[Δ0

7]1) 32 0.918 0.943 0.866 44 27

Table 4. Different parameters for our attack on 256-bit Salsa 20/6

i Differential ns εd εa ε α Data

1 ([Δ4
6]26|[Δ0

7]31) 196 0.201 0.680 0.137 60 213

2 ([Δ4
1]3|[Δ0

7]29) 140 0.1113 0.664 0.075 56 215

3 ([Δ4
1]26|[Δ0

7]13) 93 0.110 0.771 0.085 47 214

4 ([Δ4
1]12|[Δ0

7]13) 54 0.183 0.801 0.147 39 213

Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha 351

Table 5. Different parameters for Aumasson’s attack on 256-bit Salsa 20/7

γ ns εa ε α Time Data

1.0 39 1.000 0.1310 31 2230 213

0.9 97 0.655 0.0860 88 2174 215

0.8 103 0.482 0.0634 93 2169 216

0.7 113 0.202 0.0265 101 2162 219

0.6 124 0.049 0.0064 108 2155 223

0.5 131 0.017 0.0022 112 2151 226

Table 6. Parameters for our attack on 128-bit Salsa 20/7

i γ(i) nsi ε(i) αi Ni

1 0.40 38 0.0059 2 219

2 0.42 36 0.0105 4 217.5

3 0.45 34 0.0165 6 216.5

4 0.60 30 0.0359 18 215.5

Table 7. Parameters for our attack on 256-bit Chacha6

i γ(i) nsi ε(i) αi Ni

1 0.60 147 0.00048 4 227

2 0.66 143 0.00091 8 225.5

3 0.75 139 0.00171 120 226.3

Table 8. Parameters for our attack on 256-bit Chacha7

i γ(i) nsi ε(i) αi Ni

1 0.50 35 0.00059 3.8 226.3

2 0.53 34 0.00080 3.5 225.3

3 0.55 32 0.00127 5 224.2

4 0.58 28 0.00280 9 222.4

Table 9. Parameters for our attack on 128-bit Chacha6

i γ(i) nsi ε(i) αi Ni

1 0.50 51 0.00034 4 227.9

2 0.56 47 0.00114 5.5 224.6

3 0.65 43 0.00281 25 223.3

Multi-differential Cryptanalysis on Reduced

DM-PRESENT-80: Collisions and Other
Differential Properties

Takuma Koyama1, Yu Sasaki2, and Noboru Kunihiro1

1 The University of Tokyo
5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 Japan

{t-koyama@it.,kunihiro@}k.u-tokyo.ac.jp
2 NTT Secure Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. The current paper studies differential properties of the com-
pression function of reduced-round DM-PRESENT-80, which was pro-
posed at CHES 2008 as a lightweight hash function with 64-bit digests.
Our main result is a collision attack on 12 rounds with a complexity of
229.18 12-round DM-PRESENT computations. Then, the attack is ex-
tended to an 18-round distinguisher and an 12-round second preimage
attack. In our analysis, the differential characteristic is satisfied by the
start-from-the-middle approach. Our success lies in the detailed analysis
of the data transition, where the internal state and message values are
carefully chosen so that a differential characteristic for 5 rounds can be
satisfied with complexity 1 on average. In order to reduce the attack
complexity, we consider as many techniques as possible; multi-inbound
technique, early aborting technique, precomputation of look-up tables,
multi-differential characteristics.

Keywords: DM-PRESENT-80, Collision, Second preimage, Multi-
differential cryptanalysis, Rebound attack.

1 Introduction

Recently, demand on the secure communication in a resource constraint envi-
ronment has been increased, e.g., sensor network with RFID tags. From this
background, block-ciphers and hash functions suitable for a resource constraint
environment are actively discussed. They are called lightweight block-ciphers
and hash functions. One of the remarkable designs for lightweight block-ciphers is
PRESENT, which was proposed by Bogdanov et al. at CHES 2007 [4]. The block
size of PRESENT is 64 bits, and it supports 80- and 128-bit keys. It adopts an
SPN structure and consists of 31 rounds for both key sizes. Recently, PRESENT
has been adopted by ISO as one of the international standards in lightweight
cryptography [12]. Several cryptanalytic results were published against reduced-
round PRESENT [2, 7, 8, 11, 14, 21–23, 25]. The current best key recovery attack

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 352–367, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80 353

is up to 26 rounds with the assumption that the full codebook is available to the
attacker. Without the full codebook, the best attack is up to 25 rounds.

Hash functions are usually constructed by using a block-cipher or permutation
as a building block. Hence, it is natural to design lightweight hash functions based
on lightweight block-ciphers or a permutation inside lightweight block-ciphers.
In fact, there are several lightweight hash functions based on PRESENT or the
permutation inside PRESENT. DM-PRESENT was proposed by Bogdanov et al.
at CHES 2008 [5], where the compression function is simply constructed by using
the PRESENT block-cipher in the Davies-Meyer mode [20, Algorithm 9.42].
Another compression function called H-PRESENT was proposed in [5], which
consists of a double-block-length mode-of-operation instantiating the PRESENT
block-cipher. SPONGENT was proposed by Bogdanov et al. at CHES 2011 [3],
which adopts the sponge construction [1], and its internal permutation is based
on PRESENT.

Attack scenarios for block-ciphers and hash functions are very different. In-
tuitively, the complexity for the attack on block-ciphers is bounded by the key
size, while, for collision attacks agains hash function, the attack complexity is
bounded by only a half of the digest size. Thus, attacks on block-ciphers can-
not be converted to the attack on hash functions directly. Hence the security of
PRESENT-based hash functions must be evaluated independently of the attacks
on the PRESENT block-cipher.

In this paper, we study the security of DM-PRESENT. As far as we know,
no result is published about it. Regarding H-PRESENT, two results have been
announced. One is by Ferguson at the rump session of CRYPTO 2011 [9]. It
reported a weakness of the mode-of-operation of H-PRESENT-128 leading to the
pseudo-preimage attack whose complexity is a half of the brute force attack. The
other is by Kobayashi and Hirose at SCIS 2012 [13], which reports differential
attacks for H-PRESENT-80 reduced to 10 rounds.

Our Contributions. This paper studies differential properties of the compres-
sion function of reduced-round DM-PRESENT-80. Our main result is a collision
attack on 12 rounds with a complexity of 229.18 12-round DM-PRESENT com-
putations. Attacks on block-ciphers and hash functions are different. Therefore,
we need to construct a differential characteristic from scratch with consider-
ing the following properties; (1) for attacks on hash functions, the attacker can
choose internal state and message values so that differential characteristics for
several rounds can be satisfied with low complexity. Hence, characteristics must
be chosen to take into account such impact. (2) To generate collisions, the dif-
ferential form of the plaintext and ciphertext must be identical so that they can
be canceled each other with the feed-forward operation.

As a result, we construct a 12-round differential characteristic that produces
a collision of the compression function with probability of 2−70 for a randomly
chosen message and chaining variable. We then search for paired values satisfy-
ing the characteristic much more efficiently with the rebound attack [19]. The
characteristic is divided into inbound part (Round 3 to 7) and outbound part

354 T. Koyama, Y. Sasaki, and N. Kunihiro

(Round 0 to 2 and Round 8 to 11). With several techniques such as multi-inbound
technique [15, 16] and precomputation of a look-up table, the inbound part is
satisfied with a very low complexity, which reduces the attack complexity from
270 to 237. Moreover, with several techniques such as early aborting technique
[6, 26] and multi-differential characteristics [18], the outbound part is satisfied
with the complexity of 229.18 12-round DM-PRESENT computations. Finally,
the attack becomes faster than the birthday attack.

The 12-round differential characteristic can be extended for other attack sce-
narios. With respect to a distinguisher, the differential form of the plaintext
and ciphertext can be different and the attacker may be allowed to spend more
than 232 computations. By extending the 12-round characteristic in forward and
backward, we can construct an 18-round distinguisher. Furthermore, with the
approach by Yu et al. [27], this can be used to mount a second preimage attack
for 12 rounds of the compression function. The attack results are summarized in
Table 1.

Table 1. Summary of our attacks

Attacks �Rounds Time Memory

Collision 12 229.18 212

2nd Preimage 12 261.91 Negl.
Distinguisher 18 257.18 212

Paper Outline. The organization of this paper is as follows. Sect. 2 summarizes
related work. Sect. 3 describes a new collision attack against 12 rounds. In Sect. 4,
we extend the attack to several different scenarios. Finally, we conclude the paper
in Sect. 5. We postpone the specification of DM-PRESENT-80 in App. A.

2 Previous Work

2.1 Iterative Linear Characteristic of Key Recovery Attack

Linear and multi-linear analyses are the best approach for the key recovery
attack on PRESENT. They use linear characteristics of an iterative form. The
base of the iterative characteristic is as follows. The linear form of 0x02 can be
transformed into 0x06 during the S-box transformation, and the opposite also
can be transformed. The idea is also useful to construct an iterative differential
characteristic in our attack.

2.2 Rebound Attack

Rebound attack, which was proposed by Mendel et al. at FSE 2009, is an ap-
proach to satisfy a truncated differential characteristic when the key value is
known to the attacker [19]. The technique is useful to analyze hash functions.

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80 355

Suppose that the round function adopts the SPN structure, where S-layer adopts
the S-box transformations, and P-layer introduces a diffusion. In truncated dif-
ferential cryptanalysis, the only probabilistic part is the transformation in the
P-layer. The basic rebound attack can satisfy the differential characteristic with
two P-layers �IN → P → S → P → �OUT. The attacker chooses the input dif-
ference ΔIN and compute P(ΔIN). This can be computed without determining
actual values. Similarly, the attacker chooses the output difference ΔOUT and
compute P−1(ΔOUT). Finally, paired values are determined so that the differ-
ential transformation through the middle S-layer is satisfied. Several improved
techniques have been proposed after the publication of [19]. In this paper, we
particularly use the start-from-the-middle technique [17] and the multi-inbound
technique [15, 16]. We stress that our attack is the differential attack, not the
truncated one. Thus, these techniques cannot be applied straight-forward, but
the ideas of determining internal state values and bypassing several rounds are
also useful for our attack.

2.3 Second Preimage Attack on MD4

In 2005, Yu et al. proposed a second preimage attack on MD4 [27]. In the second
preimage attack, the attacker is given a message M and its digest H(M). For a
random oracle, the probability that H(M) = H(M ′) is satisfied for M �= M ′ is
2−n, where n is the size of the hash value. Therefore, finding a way to choose
M ′ satisfying the above equation with a higher probability than 2−n can be
regarded as the second preimage attack. MD4 generates 128-bit hash values. Yu
et al., against full MD4, found the message difference ΔM that would result
in H(M) = H(M ⊕ ΔM) with a probability of 2−61. In a later section, we
propose the second preimage attack on the reduced-round compression function
of DM-PRESENT-80 with a similar idea.

3 12-Round Collision Attack on Compression Function

This section shows a collision attack against the 12-round DM-PRESENT-80
compression function with a complexity of 229.18. We choose the differential ap-
proach to find a collision. At first, we give the detailed analysis of the differential
propagation within 1 round. Then, the differential characteristic for 12 rounds
is introduced.

3.1 Analysis of Differential Properties of S-box

The S-box used in PRESENT is a 4-bit to 4-bit S-box S(·). The following table
gives the detailed specification of the S-box in hexadecimal notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

356 T. Koyama, Y. Sasaki, and N. Kunihiro

We search for pairs of input/output differences of the S-box (Δx,Δy), where
Δx,Δy ∈ F4

2, satisfying the following two conditions.

HW(Δx) +HW(Δy) = 3, (1)

∃x, y ∈ F4
2 :
(
S(x)⊕ S(x⊕Δx) = Δy

)
∧
(
S(y)⊕ S(y ⊕Δy) = Δx

)
. (2)

Note that HW(x) indicates a Hamming weight of x. Let Pr(Δa,Δb) be the
probability that the input difference Δa is transformed into Δb with an S-box
transformation. More strictly, Pr(Δa,Δb) is defined as �{a|S(a)⊕ S(a⊕Δa) =
Δb}/24. Then, we identify (Δx,Δy) which achieves the maximum value for the
following probability;

Pr(Δx,Δy)× Pr(Δy,Δx). (3)

– (1): Slower differential propagations lead to longer differential characteristics.
Thus, we need to minimize the number of bits with differences. In the S-box
of PRESENT, any input difference with a single bit always produces output
differences with at least two bits. Thus, the minimum number of (1) is 3.

– (3): For a fixed (Δx,Δy), we get an input/output pair with the probability
Pr(Δx,Δy). The Pr(Δ·, Δ·) is either 2−2, 2−3, or zero.

These can be verified by enumerating through all 24×24 input/output pairs. It is
remarkable that there is no differential pairs satisfied with the total probability of
2−2−2 = 2−4 in the condition (3). In other words, the maximum value is 2−2−3

or 2−3−2, which is 2−5. As a result, we found only three pairs (Δ0x4, Δ0x9),
(Δ0x4, Δ0x5), and (Δ0x1, Δ0x3) that satisfy the all conditions. A detailed de-
scription of the pairs is given in App. B.

3.2 Entire Differential Characteristic

We construct a 12-round differential characteristic by using the good 1-round
characteristics observed in Sect. 3.1. Each three pair can be used to construct
a 6-round iterative characteristic with the same probability. However, using
(Δ0x4, Δ0x9) and (Δ0x4, Δ0x5) is more advantageous than using (Δ0x1, Δ0x3)
because multi-differential characteristics can be constructed. Hereafter, we mainly
use the pair (Δ0x4, Δ0x9) to construct 12-round characteristic, and use (Δ0x4,
Δ0x5) for the multi-differential characteristics.

Fig. 1 shows our 12-round differential characteristic. Hereafter, we call the
bits with differences active or active bits. In Fig. 1, the blue and black bits
represent active bits for the characteristic for (Δ0x4, Δ0x9), and the red and
black bits in the first and last 3 rounds represent the ones for (Δ0x4, Δ0x5). We
describe the 12-round characteristic for (Δ0x4, Δ0x9) right now, and mention
the characteristic for (Δ0x4, Δ0x5) later in Sect. 3.3. Note that Pr(Δ0x4, Δ0x9)
and Pr(Δ0x9, Δ0x4) are 2−3 and 2−2, respectively. First of all, by using the
pair (Δ0x4, Δ0x9), we construct a 6-round iterative differential characteristic
where the number of active bits transits 8 → 4 → 2 → 1 → 2 → 4 → 8
with a probability of 2−8−4−2−3−6−12 = 2−35. Second, we repeat the iterative

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80 357

Fig. 1. Differential characteristics on 12-round DM-PRESENT. Black bits denote ac-
tive bits. White bits denote zero difference. Red and blue bits represent two variants.

characteristic twice and construct the 12-round differential characteristic. The
total probability that a randomly chosen input/output pair satisfies the 12-round
differential characteristic is 2−35−35 = 2−70.

3.3 Multi-differential Characteristics for Collisions

As later discussed, we use the rebound approach to satisfy the characteristic.
For this purpose, we fix the differential characteristic for the middle 5 rounds
(Round 3 to Round 8) and choose internal state and message values so that the
characteristic can be satisfied. Then, the first 3 and last 4 rounds belong to the
outbound phase, where the characteristic is satisfied probabilistically.

We consider reducing the complexity of our collision attack by introduc-
ing multi-differential characteristics for the outbound phase. Because both of
(Δ0x4, Δ0x9) and (Δ0x4, Δ0x5) contain Δ0x4, from the fixed middle 6-round
characteristic, we can construct two differential characteristics which have the
same active-bit patterns at the plaintext and ciphertext. In Fig. 1, two character-
istics are denoted by blue and red. Pr(Δ0x4, Δ0x5) and Pr(Δ0x5, Δ0x4) are 2−2

and 2−3, respectively. Hence, the probability of satisfying the red characteristic
is the same as the one for the blue characteristic. As a result, we can obtain a
collision pair that follows either two differential characteristics with 2−69, which
is double of the single-characteristic case.

3.4 Attack Overview

This section gives an overview of our collision attack procedure. The procedure
mainly consists of an inbound phase and an outbound phase. These names de-
rive from the rebound attack described in Section 2.2. We start searching for

358 T. Koyama, Y. Sasaki, and N. Kunihiro

a colliding pair from a middle round. In the inbound phase, we aim to obtain
many of internal-state values and round-message values that satisfy the differ-
ential characteristic for the middle five rounds; state �3 to state �8 of Fig. 2. The
paired values satisfying the differential characteristic for the inbound phase are
called start points. We need to generate many start points so that the differ-
ential propagation of the outbound phase can be satisfied. The inbound phase
is further divided into five 1-round procedures. In each procedure, several bits
of internal states are fixed to satisfy the differential characteristic. We indepen-
dently perform the procedures, and then choose several bits of round-message
values that connect the results of procedures without any contradiction. After
we choose several bits of the internal states and round messages that satisfy the
middle five rounds, 63 bits of a round message remain unfixed. We use those bits
as the available degrees of freedom for the outbound phase. Therefore, we can
prepare enough start points with a very low complexity.

In the outbound phase, we compute each start point in outward until plain-
text and ciphertext with checking whether or not the differential propagation
conforms one of the multi-differential characteristics. Because the differential
propagation is probabilistic, we need to generate enough start points. Due to the
DM-mode, the output of the compression function is derived from the exclusive-
or of plaintext and ciphertext, and they have the identical differential form.
Therefore, the plaintext and ciphertext differences cancel each other surely. In
the following part, we describe the procedure of inbound phase and outbound
phase in more details.

The Inbound Phase. This phase consists of five 1-round inbound procedures.
In each 1-round inbound procedure, the goal is finding paired values satisfy-
ing the differential characteristic between the state just before the sBoxlayer
and immediately after the pLayer. Note that our inbound phase is the (single)
differential attack, not truncated differential attack. Therefore, the differential
characteristic is already fixed uniquely. In the inbound phase of i-th round, we
firstly fix active column values of state �i.5 to satisfy the differential characteris-
tic. For instance, if 1 active column transits from Δ4 to Δ9 through the S-box,
the output of the S-box must be either 0x7 or 0xE due to the S-box characteris-
tic. For more details of possible output values of the active column, please refer
to App. B. After we fix the paired values of active columns either (0x7, 0xE)
or (0xE, 0x7), we compute these values in backward through one S−1 function
and in forward by one pLayer. The inbound procedure is applied to another ad-
jacent round independently. Then, we merge two inbound procedures by fixing
several bits of a round-message value. By iterating the above, we can merge five
inbound procedures by fixing several bits of round messages. Choosing several
bits of round-message values in different rounds sometimes causes the contradic-
tion in the key schedule function. Using the precomputed look-up table, we can
merge five inbound procedures. That is to say, a start point for the outbound
phase is generated with a low complexity.

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80 359

The Outbound Phase. The first and last three rounds belong to the outbound
phase, where the differential transition of each S-box is satisfied probabilisti-
cally. The probability that one start point satisfies the differential characteristic
of seven outbound rounds is 2−2−4−8−2−3−6−12 = 2−37. By using the multi-
differential characteristics described in Section 3.3, the probability increases to
2−36. In other words, one of the 236 start points can yield the collision. We check
the differential propagation of each of 236 start points round by round with the
early aborting technique [6, 26]. Namely, we first check whether or not the start
points satisfy the differential transition from round 8 to round 9. If it is not
satisfied, we stop the computation of this start point, and choose different one.
If it is satisfied, we continue the computation for the next round. Due to this
effort, the complexity for examining 236 start points can be reduced into about

1
12×16 × 236, which is faster than the birthday attack on 64-bit values, 232.

3.5 Attack Procedure

Our attack procedure against the 12-round compression function is as follows.

1. In the precomputation step, we generate a lookup table that are used in
Step 11 of inbound phase. We compute 24+4+4=12 tuples of
{(x, y,m)|x, y,m ∈ F4

2; y = S(x ⊕ m)} and store them in the look-
up table. x and y indicate the input/output of a single S-box, and m
is 4 bits of a round message.

2. Inbound phase consists of 11 steps as follows. In this phase, we look for
a pair of internal state values and one message value that satisfy the
differential transition from state �3 to �8. We fix the internal states and
round messages bit by bit. In Fig. 2, the colored bits in the inbound
phase are classified into two types, simple-colored bits and shaded-
colored bits. The simple-colored bits of internal states are fixed solely
by the S-box characteristic. The shaded-colored bits are fixed after all
bits of round message are determined.

Step 1. fix the values of the four columns indicated by black and red (active
columns) in state �5.5 so that the differential transition from Δ0x4 to
Δ0x9 is satisfied through the sBoxlayer in round 5. The probability
of this transition is 2−3 per column, which means that only one pair
of values can satisfy the transition. 0x7 and 0xE are the values of the
S-box output satisfying the transition. For the eight black bits, we have
24 choices (2 choices per column). We pick any 1 from these 24 patterns.
We then compute these 4 columns in forward until state �6.

Step 2. fix similarly the black and blue active columns in state �4.5. We need to
fix the values of each S-box output only either 0x7 or 0xE for the same
reason as described in Step 1. We pick any 1 from these 22 patterns,
and then compute these 2 columns in backward until state �5. The 8
bits of the state just before the sBoxlayer of the fourth round are also
uniquely computed.

Step 3. merge the fixed values in Step 1 and 2 to satisfy the transition from
state �5 to �5.5 by fixing the four red bits ofM6. Depending on un-fixed

360 T. Koyama, Y. Sasaki, and N. Kunihiro

bits ofM6, there are several possibilities for the shaded-red bits of state
�5 in Fig. 2. The following Steps from 4 to 9 are similar to Step 2 and 3.
Only positions of the fixed bits and the number of choices are different
from Step 2 and 3. Step 8 and 9 are, however, reverse of Step 2 and 3.

Step 4. fix the black and yellow active columns in state �3.5. For the four black
bits, we have 2 choices. After we pick one choice for two black bits, we
compute the fixed bits in forward until state �4 and in backward until
state �3.

Step 5. merge the fixed values in Step 2 and 4 to satisfy the transition from
state �4 to �4.5. We can fix two blue bis of M5.

Step 6. fix the black and green active columns in state �6.5. In fact, we can fix
the each column either 0x0, 0x4, 0xB, or 0xF due to the differential
characteristic of S-box. For the eight black bits, we have 28 choices (4
choices per column).

Step 7. merge the fixed values in Step 1 and 6 to satisfy the transition from
state �6 to �6.5. We can fix eight green bis of M7.

Step 8. fix two orange bis of M8 to merge the fixed values in Step 6 and 9 to
satisfy the transition. Due to the message schedule, the values of two
bits of fixed M7 and two bits of M8 are overlapped. Thus we cannot
fix both adjacent inbound procedures independently. Because of the
characteristic of S-box, we can still merge them by reducing the choices
from 4 to 2 per column.

Step 9. fix the two black and orange active columns in state �7.5. We already
fixed some bits of M8, thus we have 22 choices (2 choices per column,
not 4 choices) for the two black bits.

Step 10. fix all remaining 63 bits of round messages randomly.

Step 11. merge whole inbound procedures. After Step 10, we can compute the
shaded-colored bits in Fig. 2. In �5, each of 12 columns including fixed
yellow or fixed blue bit must transits compatibly to �5.5. Thus, we fix
the white bits of the internal states to satisfy the transition referring
the look-up table. For each of 12 columns, we have two choices of val-
ues on averages. In other words, 212 start points for one round message
can be constructed with a low complexity. And we can construct more
24+2+1+8+2+63+12 = 292 start points because of the forementioned free-
dom degree.

3. Outbound phase consists of two steps as follows.

Step 1. compute start points in both forward and backward. Then, the total
probability of the outbound phase is 2−37. We check the differential
propagation round by round by using the early aborting technique.

Step 2. link the input and output values of the internal cipher by exclusive-or of
the DM-mode. The input and output differences match with probability
of exactly 1, becausebothof thesedifferences areΔ0x90090000000090091.

1 Note that our attack is a differential attack, not a truncated differential attack. Hence,
the probability of the match is 1, not 2−8.

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80 361

Fig. 2. Differential characteristic focused the inbound and outbound phases. Black
denotes active bits. The rest of colored bits is fixed in the inbound phase.

3.6 Complexity Evaluation

We can generate 212 start points for the outbound phase that satisfies the in-
bound phase with the complexity of about 1 on average and the 212 bits memory
requirement. The probability that a pair satisfies the whole outbound phase is
2−37. Utilizing the multi-differential characteristics, the probability that a pair
satisfies outbound phase is 2−36. Then, we have to generate 236 start points to
find a collision pair. Remember that we can generate enough start points for the
outbound phase because of the freedom degrees of internal state and message
values. At a glance, a rough evaluation of our attack complexity to find a colli-
sion is 236 12-round DM-PRESENT-80 computations. However, considering the
early aborting technique [6, 26], our attack complexity to find a collision is in
fact much smaller. Let the complexity of 1-round function is 1

12 of the 12-round
DM-PRESENT-80 function, and the complexity of a column is 1

16 of 1-round
function. We examine all 236 start points for round 8. It is only necessary to
compute a column whether or not the start points satisfy the differential charac-
teristics. Hence, the complexity for round 8 is 1

12 ×
1
16 × 236. After round 8, only

236−2 = 234 pairs follow the characteristics in Fig. 1. Similarly, we examine 234

start points for round 3. And then, 234−3 = 231 pairs follow the red characteristic,
and 234× 2−2 = 232 pairs follow the blue one. Hence, we examine 231+232 pairs
for round 9, and thus the complexity for round 9 is 1

12 ×
4
16 × (231 + 232). After

round 9, 236−2−3−2 = 229 pairs satisfy the red characteristic and 236−2−2−3 = 229

pairs satisfy the blue one. After all, the attacker computes 1
12×16 × (236 +234)+

4
12×16 × (231 + 232 + 229 + 229)+ 1

12 × (223 + 225 + 211 + 217 + 27 + 211) ≈ 229.18

362 T. Koyama, Y. Sasaki, and N. Kunihiro

12-round DM-PRESENT-80 computations. Finally, we can find collisions of the
12-round DM-PRESENT-80 compression function faster than the birthday at-
tack, which requires 232 computations.

4 Application for other Attacks

The differential characteristic discussed in the previous section can be used to
construct other kinds of attacks. In this section, we discuss an 18-round distin-
guisher and 12-round second preimage attack on the compression function.

4.1 18-Round Distinguisher

We construct an 18-round differential distinguisher that finds a pair of messages
with specific input and output differences. We show that the attack on 18-round
DM-PRESENT-80 is faster than the attack on an ideal compression function.

Fig. 3. Differential characteristic for 18-round distinguisher

For this attack, we extend the differential characteristic by 3 rounds in back-
ward and 3 rounds in forward. The procedure of the multi-inbound phase is the
same as the one in Sect 3, where middle 5 rounds can be satisfied with average
complexity 1. Hence, only the outbound phase is extended and satisfying the
entire differential characteristic becomes harder for these extended outbound
phase. Note that we do not have to match the differential forms of the plaintext
and ciphertext. This enables the attacker to use the differential propagation with
probability 2−2 for each S-box transformation in both directions, i.e., Δ1→ Δ9
with probability of 2−2 instead of Δ4→ Δ9 with probability of 2−3.

The differential propagations for the first and last 3 rounds are shown in Fig. 3.
The input value has 1-bit difference in the chaining variable and no difference
in the message. The output values has 1-bit difference. As discussed in Sect. 3,
satisfying the middle 12 rounds (round 3 to round 14) requires the complexity of
229.18. Then, extending the characteristic from Round 3 to 2, 2 to 1, and 1 to 0 re-
quires the complexity of 22×4 = 28, 22×2 = 24, and 22, respectively. Similarly ex-
tending the characteristic from Round 14 to 17 requires 28+4+2+214. Finally, the

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80 363

entire characteristic is satisfied with the complexity of 22+4+8+29.18+14 = 257.18

18-round DM-PRESENT computations. We then show that finding such pairs
in an ideal compression function requires more complexity. In the truncated
differential analysis, this complexity is evaluated by the limited birthday at-
tack proposed Gilbert and Peyrin [10]. However, our attack only allows a 1-bit
difference on the input. Therefore, the structure technique (constructing 22x−1

pairs with 2x queries) cannot be applied. The best way is randomly generating
(hi−1,M) and check whether or not CF(hi−1,M)⊕CF(hi−1⊕ΔIN,M) = ΔOUT.
The relation holds with a probability of 2−64. Thus, our attack is faster than the
ideal case.

4.2 12-Round Second Preimage Attack on Compression Function

Our differential attack can be converted into a second preimage attack on the
compression function by using the conversion proposed at CANS 2005 by Yu
et al. [27]. In the second preimage attack on the compression function, the at-
tacker is given a message M , input chaining variable h, and the output of the
compression function CF(h,M). For an ideal compression function, the prob-
ability that CF(h,M) = CF(h′,M ′) is satisfied for (h,M) �= (h′,M ′) is 2−n.
Therefore, finding a way to choose (h′,M ′) satisfying the above equation with
a higher probability than 2−n can be regarded as the second preimage attack.
Note that the second preimage attack on the compression function is also dis-
cussed by Rechberger [24]. Finally, if we can find the differences (Δh,ΔM) where
Pr[CF(h,M) = CF(h⊕Δh,M ⊕ΔM)] > 2−n, for a randomly chosen h,M , we
can succeed in constructing the second preimage attack. The differential charac-
teristic for 12-round collisions in Sect. 3 satisfies the above equation with proba-
bility 2−70. At a glance, we need 270 12-round DM-PRESENT-80 computations
to the second preimage attack. However, considering the early aborting technique
again, our attack complexity can be much smaller. In fact, we can construct the
second preimage attack on the compression function with a complexity of 261.91

12-round DM-PRESENT-80 computations. Due to the regulation of pages, we
omit the detail of the complexity evaluation.

5 Concluding Remarks

In this paper, we presented the first third-party security analysis of reduced-
round DM-PRESENT-80. The main result is a collision attack on the 12-round
compression function. We constructed a differential characteristic suitable for
collisions, and efficiently found paired values with the multi-inbound technique.
Based on this attack, we also presented the 18-round distinguisher and 12-round
second preimage attack on the compression function. Because PRESENT is one
of the most successful designs for the lightweight cryptography, we believe that
our results contribute to deeper understanding of lightweight designs.

Acknowledgments. The authors would like to thank anonymous reviewers for
their helpful comments to improve the quality of this paper.

364 T. Koyama, Y. Sasaki, and N. Kunihiro

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

2. Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: Theory and practice.
In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg
(2011)

3. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

5. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash functions and RFID tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

6. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

7. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

8. Dai, Z., Wang, M., Sun, Y.: Effect of the dependent paths in linear hull. Cryptology
ePrint Archive: Report 2010/325 (2010)

9. Ferguson, N.: Observations on H-PRESENT-128. Rump Session of CRYPTO 2011
(2011)

10. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: Improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

11. Hermelin, M., Nyberg, K.: Linear cryptanalysis using multiple linear approxima-
tions. Cryptology ePrint Archive: Report 2011/093 (2011)

12. ISO/IEC 29192-2:2011: Information technology–Security techniques–Lightweight
cryptography–Part 2: Block ciphers (2011)

13. Kobayashi, T., Hirose, S.: Collision attack on double-block length compression
function using round-reduced PRESENT. In: SCIS 2012 (2012) (in Japanese)

14. Kumar, M., Yadav, P., Kumari, M.: Flaws in differential cryptanalysis of reduced
round PRESENT. Cryptology ePrint Archive: Report 2010/407 (2010)

15. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: Results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

16. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
attack on the full Lane compression function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

17. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the
reduced Grøstl compression function, ECHO permutation and AES block cipher. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 16–35. Springer, Heidelberg (2009)

18. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: The impact of carries on
the complexity of collision attacks on SHA-1. In: Robshaw, M.J.B. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 278–292. Springer, Heidelberg (2006)

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80 365

19. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

20. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press (1997)

21. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (hull) and algebraic
cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

22. Ohkuma, K.: Weak keys of reduced-round PRESENT for linear cryptanalysis. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 249–265. Springer, Heidelberg (2009)

23. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight block ciphers revisited:
Cryptanalysis of reduced round PRESENT and HIGHT. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg
(2009)

24. Rechberger, C.: Second-preimage analysis of reduced SHA-1. In: Steinfeld, R.,
Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 104–116. Springer, Heidelberg
(2010)

25. Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In: Vaudenay,
S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

26. Wang, X.: Cryptanalysis of hash functions and potential dangers. Invited Talk at
CT-RSA 2006 (2006)

27. Yu, H., Wang, G., Zhang, G., Wang, X.: The second-preimage attack on MD4. In:
Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp.
1–12. Springer, Heidelberg (2005)

A Specification of DM-PRESENT-80

The lightweight block cipher PRESENT was proposed by Bogdanov et al. in
CHES 2007 [4]. PRESENT has a 31-round SPN (Substitution and Permutation
Network) construction. The block length is 64 bits and two key lengths of 80
and 128 bits are supported. The lightweight hash functions DM-PRESENT-80/-
128 were also proposed by Bogdanov et al. at CHES 2008 [5]. The compression
function of DM-PRESENT is constructed by PRESENT with the Davies-Meyer
(DM) mode [20, Algorithm 9.42]. Thus, the j-th 64-bit chaining variable Hj

of DM-PRESENT is updated using a 80 or 128 bits message Mj to Hj+1 =
E(Hj ,M) ⊕ Hj . E(· · · ,K) indicates the encryption operation of PRESENT
under a secret key K. The proposers of PRESENT recommended the 80-bit key
version for applications in resource constraint environments. So we show attacks
on DM-PRESENT-80 in this paper, and the details of PRESENT-80 in this
section. We denote a state of 64 bits data block X = (x63, x62, ..., x0) by 4-by-16
matrix as;

X =

⎛⎜⎜⎝
x63, x59, x55, x51, x47, x43, x39, x35, x31, x27, x23, x19, x15, x11, x7, x3
x62, x58, x54, x50, x46, x42, x38, x34, x30, x26, x22, x18, x14, x10, x6, x2
x61, x57, x53, x49, x45, x41, x37, x33, x29, x25, x21, x17, x13, x9, x5, x1
x60, x56, x52, x48, x44, x40, x36, x32, x28, x24, x20, x16, x12, x8, x4, x0

⎞⎟⎟⎠ .

(4)

366 T. Koyama, Y. Sasaki, and N. Kunihiro

The round transformations of PRESENT are as follows.

– addRoundkey (AK) adds the the 64 bits round key.
– sBoxlayer (S) is a 4-to-4 bits S-box of PRESENT and applies to each vertical

4 bits. The transition by sBoxlayer is illustrated at the right side of Fig. 4.
– pLayer (P) permutes the horizontal 4 bits to the vertical 4 bits. The left side

of Fig. 4 illustrates where every 4 bits group is permuted by pLayer.

Fig. 4 illustrates the transition by S and P. Then, the i-th round function F of
PRESENT can be denoted by

Xi+1 = F (Xi) ≡ P ◦ S ◦AK(Xi). (5)

The round keys are generated as follows. The 80 bits secret key is stored in a key
register K and represented as k79k78...k0. The i-th round key Ki (1 ≤ i ≤ 32)
consists of leftmost 64-bit of the actual content of register K. Thus the first
round key K1 is K1 = k79k78...k16. To generate next round key, the key resister
K is updated as follows.

– 61 bits rotation: [k79k78...k0] = [k18k17...k0k79...k19]
– partial sBoxlayer: [k79k78k77k76] = sBoxlayer[k79k78k77k76]
– addRound counter: [[k19k18k17k16k15]=[k19k18k17k16k15]⊕round counter(i)

The round counter(i) is the 5-bit binary representation of i. K32 is used for
post-whitening. It is similar to the round keys that we call Mi as i-th round
message from the message M .

We use the following notation to the internal states to describe our attacks:
�x.y denotes the number of intermediate states. See Fig. 1, state �0, for example,
indicates an input differential value, and state �5.5 indicates the internal state
after the S transformation of the fifth round and before the P transformation of
the fifth round, and state �5.5, for example, indicates the internal state after the
S transformation of the fifth round and before the P transformation of the fifth
round.

Fig. 4. The sBoxlayer and pLayer of PRESENT. Each rectangle contains 4 bits. Both
transformations are operated per 4 bits.

B Differential Characteristics of S-Box

This section shows the input/output pairs of S-box that are used in our differ-
ential characteristic in detail. We note that following values of the transition
are represented in hexadecimal notation. For a fixed differences (Δx,Δy), where
Δx = x⊕x′ and Δy = S(x)⊕S(x′), we searched for the input pairs (x, x′) that
satisfy (Δx,Δy). These pairs can be searched by computing all 16 × 16 pairs

Multi-differential Cryptanalysis on Reduced DM-PRESENT-80 367

of (x, x′) and (S(x), S(x′)). As a result the number of input/output pairs that
satisfy one (Δx,Δy) is either two, four or zero. Obviously, the number of input
pairs (x, x′) that satisfyΔx = x⊕x′ is 16. Table 2 indicates all the possible input
pairs (x, x′) that satisfy either (Δ4, Δ9), (Δ9, Δ4), (Δ4, Δ5), or (Δ5, Δ4). The
input pair (9, D), for instance, satisfies the differential transition of (Δ4, Δ9).
The order of x and x′ can be exchanged against the S-box operation. Then
the symmetric input pairs (9, D) and (D, 9) satisfy (Δx,Δy). Hence, there are
two pairs that satisfy (Δ4, Δ9). And there are four pairs that satisfy (Δ9, Δ4)
similarly. The same analysis is applied to (Δ4, Δ5) and (Δ5, Δ4).

Table 2. The input pairs (x, x′) of S-box used in our differential characteristic

(x, x′) Δinput Δoutput

(9, D) 9⊕D = 4 S(9)⊕S(D) = E⊕7 = 9

(3, A) 3⊕A = 9 S(3)⊕S(A) = B⊕F = 4

(5, C) 5⊕C = 9 S(5)⊕S(C) = 0⊕4 = 4

(0, 4) 0⊕4 = 4 S(0)⊕S(4) = C⊕9 = 5

(1, 5) 1⊕5 = 4 S(1)⊕S(5) = 5⊕0 = 5

(8, D) 8⊕D = 5 S(8)⊕S(D) = 3⊕7 = 4

Estimating the Probabilities of Low-Weight

Differential and Linear Approximations
on PRESENT-Like Ciphers

Mohamed Ahmed Abdelraheem

Department of Mathematics
Technical University of Denmark, Lyngby, Denmark

Abstract. We use large but sparse correlation and transition-difference-
probability submatrices to find the best linear and differential approx-
imations respectively on PRESENT-like ciphers. This outperforms the
branch and bound algorithm when the number of low-weight differen-
tial and linear characteristics grows exponentially which is the case in
PRESENT-like ciphers. We found linear distinguishers on 23 rounds of
the SPONGENT permutation. We also found better linear approxima-
tions on PRESENT using trails covering at most 4 active Sboxes which
give us 24-round statistical saturation distinguishers which could be used
to break 26 rounds of PRESENT.

Keywords: block cipher, differential, difference matrix, linear hull, cor-
relation matrix, statistical saturation attack, PRESENT, SPONGENT.

1 Introduction

In recent years, the need for lightweight encryption systems has been increas-
ing as many applications use RFID and sensor networks which have a very low
computational power and thus incapable of performing standard cryptographic
operations. In response to this problem, the cryptographic community designed
a number of lightweight cryptographic primitives that varies from stream ci-
phers such as Grain [15], Trivium [8], and block ciphers such as PRESENT [5],
KATAN/KTANTAN [7] and recently to hash functions such as QUARK [1],
PHOTON [14] and SPONGENT [4].

Out of these many lightweight primitives, the block cipher PRESENT gets
a lot of attention from the cryptographic community and it has been recently
adopted as an ISO standard (ISO/IEC 29192) [18]. In this paper, we focus on the
differential and linear cryptanalysis of the following two ciphers: PRESENT and
SPONGENT. We mainly discuss how to estimate the probabilities of low-weight
differential and linear approximations on these kind of ciphers.

Our Contribution: We estimate the probability of low-weight linear and differen-
tial approximations in PRESENT-like ciphers. By using large but sparse corre-
lation and difference submatrices, we overcome the memory and time problems

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 368–382, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Estimating the Probabilities of Low-Weight Differential 369

that appears in the branch and bound algorithm [22] when the number of good
linear and differential trails grows exponentially. For instance, there would be
memory and time problems in the branch and bound method when the number
of differential and linear trails grows exponentially but using sparse correlation
and difference submatrices we can handle any number of trails and investigate
many differential and linear approximations with a negligible cost. For instance,
all the linear approximations of PRESENT at Table 4 described in the Appendix
come from a number of good and bad trails exceeding 289 which clearly shows
a convincing advantage of using sparse submatrices over the branch and bound
algorithm when the number of trails grows exponentially.

Using sparse correlation and difference submatrices of PRESENT and SPON-

GENT: We report the first improved analysis on SPONGENT [4], specifically we
improve the linear cryptanalysis on the SPONGENT permutation presented by
the designers by one more round. We present better linear approximations on
PRESENT and present a 24-round statistical saturation distinguisher that uses
better input and output subspaces compared to the original attack paper [10].
These approximations also show that the assumption, made by all the previous
analyses on PRESENT [9, 21, 25], that the linear approximations consisting of
trails with one active Sbox at each round, yield the highest bias is not valid.
We also found many 16-round differential approximations activating at most 4
Sboxes per round with probability larger than 2−64, which could be used to
mount a differential attack on 18-round PRESENT similar to the ones in [2,29].

Outline of the paper: In Section 2, we give a brief description of PRESENT and
SPONGENT. Section 3 defines the basic concepts about linear and differential
cryptanalysis. Section 4 describes our sparse matrices approach for finding tight
linear and differential approximations and its time complexity. Section 5 shows
the linear and differential approximations in PRESENT and SPONGENT that
were found using our method. Finally, we conclude on Section 6.

2 A Short Description of PRESENT and SPONGENT

PRESENT is a 64-bit iterated block cipher. It consists of 31 rounds and supports
80-bit and 128-bit key lengths. It was mainly designed for hardware constrained
devices [5]. It has a very simple design as it consists of only three layers: the key
addition layer, the 4-bit Sbox layer (SboxLayer) and the bitwise permutation
layer (PLayer). This simple linear layer consisting of the bitwise permutation
only allows the existence of low-weight differential and linear characteristics.

SPONGENT is a new lightweight hash function [4], its core permutation is
inspired by PRESENT as it inherits its three layers. There are many variants
of SPONGENT here we are concerned with the permutation of SPONGENT-88
which runs for 45 rounds. The SPONGENT permutation can be seen as a cipher
using identical round keys (the key is almost the zero key xored with few bits
at the leftmost and the rightmost ends generated from a counter that is meant
to prevent sliding properties and invariant subspaces). In other words, the core

370 M.A. Abdelraheem

permutation of SPONGENT can be seen as a PRESENT-like cipher which is
a definition we borrowed from [6]. For more details about the description of
PRESENT and SPONGENT, we refer to [4, 5].

3 Preliminaries

Suppose we have a symmetric cipher defined by the permutation F , under a key
K ∈ Fn

2 , FK : Fn
2 → Fn

2 .
Differential cryptanalysis exploits the difference distribution under some alge-

braic group operation (usually ⊕) of a pair of plaintexts and their corresponding
ciphertexts, i.e. attacker finds a difference α in the plaintext pairs and a differ-
ence β in their corresponding ciphertexts such that Pr(FK(X⊕α)⊕FK(X) = β)
is higher than 21−n.

Linear cryptanalysis finds a linear relation between some plaintext bits and ci-
phertext bits (and also some secret key bits in the case of block ciphers) and then
exploits the bias or the correlation of this linear relation, i.e., attacker finds an
input mask α and an output mask β that yield a higher absolute bias εF (α, β) ∈
[− 1

2 ,
1
2]. In other words Pr(〈α,X〉 + 〈β, FK(X)〉 = 〈γ,K〉) = 1

2 + εF (α, β) is
deviated from half, where 〈·, ·〉 denotes an inner product. The correlation of a
linear approximation is defined as CF (α, β) := 2εF (α, β).

Linear and differential attacks are based on the so-called linear and differ-
ential characteristics (aka trails or paths) respectively, each characteristic is a
sequence of intermediate linear or difference relations for all rounds where the
probability of each element in this sequence determine the probability of a differ-
ential characteristic and the bias of a linear characteristic. The collection of all
the r-round differential characteristics with input α = α0 and output β = αr is
called the differential of the difference approximation (α0, αr), each r-round dif-
ferential characteristic can be seen as a sequence (α0, α1i, · · · , α(r−1)i, αr), where
i defines the i-th differential trail between α0 to αr. Similarly, the collection of
all the linear characteristics with input mask α = α0 and output mask β = αr

is often called the linear hull of the linear approximation (α0, αr), also each r-
round linear characteristic could be seen as a sequence (α0, α1i, · · · , α(r−1)i, αr),
where i defines the i-th linear trail between α0 to αr.

One class of these iterated ciphers defined in [20], is called Markov ciphers.
For such ciphers, under well established independence assumptions, the proba-
bility of a differential and the correlation of a linear relation can be computed
using a difference transition matrix and a correlation matrix respectively. In the
following, we briefly describe how to construct and use these matrices.

Difference Transition Matrix [20]: Given an r round Markov cipher and assum-
ing independent and uniformly random round keys. We estimate the probability
of an r-round differential (α0, αr) by considering the probability of each differen-
tial characteristic between α0 and αr. Thus, the probability of the i-th differential
characteristic (α0 = α0i, α1i, · · · , α(r−1)i, αr = αri) is pi =

∏r
j=1 Pr(FK(X) ⊕

FK(X ′) = αji|X ⊕ X ′ = α(j−1)i). Consequently the probability of an r-round

Estimating the Probabilities of Low-Weight Differential 371

differential (α0, αr) is the sum of all the probabilities of all the possible differ-

ential characteristics between (α0, αr), that is
∑Nd

i=1 pi, where Nd is the number
of all the possible differential characteristics between (α0, αr). Let D denote
the transition difference-probability matrix of an n-bit Markov cipher. D has
size (2n − 1) × (2n − 1), the (i, j) entry in D corresponds to the probability
of an output difference, say βj , when we have an input difference, say βi, i.e.,
Pr(Δ(FK(X)) = βj |Δ(X) = βi), where FK is the round function of the Markov

cipher. Now, for any r, the (i, j) entry of the matrix Dr, p
(r)
ij is equivalent to the

probability of the r-round differential (βi, βj).

Correlation Matrix [11, 12]: Given a composite function F : Fn
2 → Fn

2 such
that F = Fr ◦ · · · ◦ F2 ◦ F1. We estimate the correlation of an r-round lin-
ear approximation (α0, αr) by considering the correlation of each linear char-
acteristic between α0 and αr, the correlation of i-th linear characteristic (α0 =
α0i, α1i, · · · , α(r−1)i, αr = αri) is Ci =

∏r
j=1 CFj (α(j−1)i, αji). It is well known,

see e.g., [12], that the correlation of a linear approximation is the sum of all
correlations of linear trails starting with the same mask α and ending with the
same mask β, i.e., CF (α0, αr) =

∑Nl

i=1 Ci, where Nl is the number of all the
possible linear characteristics between (α0, αr).

The sign of the correlation of a linear trail depends on the round keys. In [12]
the following formulas were proven under the assumption that we have a key-
alternating cipher1: Ci = (−1)si

∏r
j=1 CFj (α(j−1)i, αji), where si ∈ F2 depends

on the i-th linear characteristic and the round keys. Therefore, the correlation of
the linear hull (α, β) is CF (α, β) =

∑Nl

i=1|αi=(α=α0i,··· ,α(r−1)i,β=αri)
(−1)si⊕di |Ci|,

where di ∈ F2 refers to the sign of the correlation, Ci.
Let C denote the correlation matrix of an n-bit key-alternating cipher. C has

size (2n − 1) × (2n − 1), the (i, j) entry in C corresponds to the correlation of
an input mask, say βi, and output mask, say βj , i.e. CF (βi, βj) = 2Pr(〈βi, x〉 =
〈βj , F (x)〉)−1, where F is the un-keyed composite function of the key-alternating
cipher and ‘x’ is its input. Now the correlation matrix for the keyed round
function is obtained by changing the signs of each row in C according to the
round subkey bits or the round constant bits involved.

Statistical Saturation Attacks: They are the first attacks proposed on the block
cipher PRESENT. Briefly the idea behind these attacks is to fix some input
bits to a certain value and study the distribution of some output bits, for more
details we refer to [10]. In [21] it was shown that it is closely related to the linear
multidimensional attack and especially the one on PRESENT [9]. The following
proposition formulated at [21] estimates the capacity of statistical saturation
attacks which is used to estimate the data complexity required to mount the
attack.

Proposition 1. Let F : Fr
2 × Fs

2 → Ft
2 × Fu

2 be an n-bit encryption function
where r + s = t + u = n, F is restricted by fixing s bits in the input and

1 Key-alternating ciphers are a subclass of Markov ciphers that alternate key addition
with key-independent rounds.

372 M.A. Abdelraheem

only t bits of the output are considered. Let U = Fs
2 ⊆ Fn

2 and V = Ft
2 ⊆ Fn

2

be the two subspaces corresponding to the input and output masks respectively.
Then the average capacity over all the possible s-bit fixations is estimated by
CF =

∑
u∈U,v∈V (CF (u, v))

2.

The data complexity of statistical saturation attacks is determined by the
squared Euclidean distance which is equivalent to 2tCF where t is the num-
ber of the output bits considered in the distribution. Statistical saturation at-
tacks perform well when we identify subspaces U and V that make the sum∑

u∈U,v∈V (CF (u, v))
2 big.

4 Description of Our Estimation Approach

Assuming that PRESENT-like ciphers are Markov ciphers [20,24], we make use
of submatrices of the correlation and the transition probability matrices of the
target ciphers to find the best linear and differential approximations. We focus
only on describing how to find better linear approximations.

4.1 Large Sparse Correlation and Difference Matrices

In [3, 4], a submatrix of the correlation matrix of size 4ns × 4ns was used to
estimate the correlation of a linear approximation, where ns is the number of
the 4-bit Sboxes used in the permutation where only input and output masks of
Hamming weight one are considered. We extend this approach by adding input
and output masks with Hamming weight ≤ 4. This results in having a large
correlation submatrix whose entries activate at most 4 active Sboxes. Suppose
that we use a correlation submatrix with input and output masks with Hamming
weight less than or equal tom. Then the size of the submatrix will be

∑m
i=1

(
n
i

)
×∑m

i=1

(
n
i

)
, where n is the block size of the cipher in bits. The submatrix size

is large but most of its entries are zeros. For instance, we see that for any
input element activating ‘s’ Sboxes (1 ≤ s ≤ m), all the other output elements
corresponding to the other Sboxes yield a zero correlation. Thus, there are more
than

∑m
i=1

(
n
i

)
− 15s zero output elements for any input activating ‘s’ Sboxes.

Thus, this submatrix has few non zero elements and therefore it can easily fit in
memory using a sparse matrix storage format (See Section 5).

The construction of the correlation submatrix is straightforward. For instance
to fill the submatrix entries from an input with Hamming weight 5, we proceed
as follows: for each possible input, we determine the number of activated Sboxes
which is in this case at least 2. Suppose we have i active Sboxes, then all the
possible ordered solutions of the inequality x1+x2+ · · ·+xi ≤ m determine the
Hamming weight of the output bits of each of the i active Sboxes. Then we fill
the submatrix entries corresponding to the specified input by considering all the
possible output bits of the specified Hamming weight. To estimate the cost of
filling these entries, we consider the simple case where we have two active Sboxes.
The time cost for filling the corresponding submatrix entries is

∑
2≤i+j≤5

(
4
i

)(
4
j

)

Estimating the Probabilities of Low-Weight Differential 373

and the number of all the possible inputs with Hamming weight 5 activating 2
Sboxes is N2 =

∑
w1+w2=5

(n
4
2

)(
4
w1

)(
4
w2

)
. Now by symmetry, the cost of filling

the corresponding entries that have outputs with Hamming weight 5 activating
2 Sboxes is similar but we only exclude the duplicated cases where i+ j = 5, so
the cost is

∑
2≤i+j<5

(
4
i

)(
4
j

)
. Therefore, the total construction time of input and

output with Hamming weight 5 activating 2 Sboxes is 2N2

∑
2≤i+j≤5

(
4
i

)(
4
j

)
−

N2

∑
i+j=5

(
4
i

)(
4
j

)
. One can see that the construction time can be generalized as

follows.

Proposition 2. The time cost for computing the correlations corresponding to
inputs and outputs of Hamming weight ‘w’, 1 ≤ w ≤ m is in the order of:
2(N1

∑
1≤i≤w

(
4
i

)
+N2

∑
2≤i+j≤w

(
4
i

)(
4
j

)
+· · ·+Nw−1

∑
w−1≤i+···+z≤w

(
4
i

)
· · ·
(
4
z

)
)

+Nw4
w−N2

∑
i+j=w

(
4
i

)(
4
j

)
−· · ·−Nw−1

∑
i+···+z=w

(
4
i

)
· · ·

(
4
z

)
, where N1+ · · ·+

Nw =
(
n
w

)
and Ni =

∑
w1+···+wi=w

(n
4
i

)(
4
w1

)
· · ·

(
4
wi

)
is the number of elements

with Hamming weight ‘w’ activating ‘i’ number of Sboxes.

Note that N1 = 0 when w ≥ 5 as in this case we have at least two active Sboxes.
The total construction time is in the order of the sum of construction times of all
the possible input and output weights (w), i.e. 1 ≤ w ≤ m, where the dominant
term is when w = m.

After constructing the correlation submatrix, C. The correlation approxima-
tions after r rounds is computed by Cr =

∏r
i=1Mi, where Mi is the correlation

submatrix at round i formed by changing the signs of C according to the round
key and the round constant used in the cipher. The maximum correlation after
r rounds is thus given by crmax := max |Cr

ij |. This works in the case of SPON-

GENT since we know that it uses an almost zero key at each round and thus
we can compute the actual correlation of each approximation but in the case
of PRESENT, we need to compute the average squared correlation (aka po-
tential linear approximation [23] or expected linear probability [13]) of a linear
approximation (the sum of the squares of the correlations of all trails) in order
to compute the capacity of the statistical saturation attack.

As the size of the correlation submatrix gets bigger when considering masks
with Hamming weight equal to 4, the matrix-matrix multiplications might not
be always possible for high number of rounds especially when there are many
trails for most of the approximations as these make the resulted submatrix Cr

very dense and consequently we might run out of memory. Thus, instead we
use successive matrix-vector multiplications as described by Algorithm 1 in the
Appendix.

Note that before Step 3 in Algorithm 1 when we are computing the maxi-
mum absolute correlation (for example in SPONGENT), we have to change the
signs at some entries of the correlation submatrix M at each round according
to the corresponding round constant. The time complexity of Algorithm 1 is
the order of l × (r − 1) matrix-vector multiplications where l is the number of
rows or columns of the submatrix. If l is a large number, then the most conve-
nient way is to consider correlation matrices with Hamming weight up to 2 or

374 M.A. Abdelraheem

3 bits depending on the size of the block cipher. Then, try to perform matrix-
matrix multiplications and find the active input and output Sboxes that yield the
maximum absolute value as they would probably be the Sboxes that yield the
maximum value when considering matrices using Hamming weight more than 3.
For instance, experiments on the PRESENT correlation submatrix with Ham-
ming weight up to 3, where we are able to perform matrix-matrix multiplication
and thus determine the correlations of all the approximations, showed us that
the best linear approximations often come from an input mask activating only
one Sbox and also an output mask activating only one Sbox (which get permuted
afterwards).

5 Improved Linear and Differential Approximations

We use the approach described in section 4.1 and report the best linear and
differential approximations we found in PRESENT and SPONGENT. Using the
time complexity formula, given at section 4.1, we show the times taken in con-
structing the sparse matrices in PRESENT and SPONGENT.

Table 1. n ≡ Cipher’s block size, m ≡ maximum Hamming weight used, size ≡
submatrix size, nnzC ≡ non zero elements of the correlation submatrix, nnzD ≡ non
zero elements of the difference submatrix, Time complexity of correlation or difference
submatrix construction ≡ O(t), − ≡ bounded by t since each step in t fills an entry in
the correlation or difference submatrix. The time complexity unit is simple arithmetic
operations.

Cipher n m log2(size) log2(nnzC) log2(nnzD) log2(t)

PRESENT 64 4 19.37 × 19.37 23.26 18.41 27.83

PRESENT 64 5 22.99 × 22.99 - - 33.85

PRESENT 64 6 26.31 × 26.31 - - 39.61

SPONGENT 88 4 21.22 × 21.22 23.63 19.18 29.58

SPONGENT 88 5 25.31 × 25.31 - - 36.04

As shown in Table 1, the number of elements in the correlation and dif-
ferences submatrices of both PRESENT and SPONGENT is huge. A standard
matrix representation would cost 241.74 and 245.44 bytes for the difference matrix
of PRESENT and SPONGENT respectively. This is more than 1 TB. Therefore,
we need to avoid running out of memory by using a sparse matrix representa-
tion which reduces memory by only allocating space for the nonzero elements.
This will also speed the matrix-vector or matrix-matrix multiplications which
we perform to find the best linear and difference approximations.

Table 1 shows us that our submatrices are very sparse, for instance the first
table entry indicates that the density (= nnz

Size×Size) of the difference transition
submatrix of PRESENT with input and output differences of Hamming weight
up to 4 is 7.56×10−7. This confirms that these large submatrices are considerably

Estimating the Probabilities of Low-Weight Differential 375

sparse. Therefore, using a sparse matrix storage format where we only allocate
storage for the nonzero elements, our large correlation submatrix could easily
fit in memory. The very general and simple format for storing sparse matrices
is called Compressed Column Storage (CCS). Using this format, the storage
cost of a sparse matrix depends on the number of its nonzero elements (nnz)
and its column size (ncol). More specifically, the cost of a real-valued sparse
matrix in CCS format is equivalent to the cost of nnz real-valued numbers and
(nnz+ncol+1) integers [27]. Thus, on a 64-bit machine, where we have 8 bytes for
both real and integer numbers, the total memory cost would be 8nnz+8(nnz+
ncol + 1) bytes. Using the numbers on Table 1, we see that the total memory
cost for a CCS sparse representation of PRESENT and SPONGENT difference
submatrices is 11014024 (≈ 223.4) and 29085768 (≈ 224.8) bytes respectively.
Also the memory cost for a CCS representation of PRESENT and SPONGENT

correlation submatrices is 165990920 (≈ 227.3) and 226974888 (≈ 227.8) bytes
respectively. Each of these submatrices costs less than 1 GB and thus would
easily fit in memory.

5.1 Application on SPONGENT

Here we find linear approximations that can be used to distinguish 23 rounds
of the SPONGENT-88 permutation using the whole code book and this is one
more round than what has been provided in [4]. We also give the maximum
differential characteristic probability we found on 16-round SPONGENT-88.

Differential Approximations: We constructed a difference transition submatrix
for SPONGENT-88 with input and output differences having Hamming weight
at most 4 bits. The maximum differential probability obtained by powering the
transition submatrix2 is a 16-round differential and it has probability 2−77.83.
One of the differentials having this probability is e1 ⊕ e4 ⊕ e17 ⊕ e20 → e9 ⊕
e33⊕ e75⊕ e77 and it consists of only one differential trail. This is one round less
than the best differential provided by the designers as their differential include
characteristics with differences having Hamming weight more than 4. It would
be interesting to see whether input and output differences with Hamming weight
at most 5 bits would yield better estimations. However, as noted in Table 1 the
time complexity is 236 arithmetic operations which have not tried due to the
lack of computing resources.

Linear Approximations: The SPONGENT Sbox was chosen carefully to avoid the
many linear trails with one active Sbox in each round existing on PRESENT [25].
For instance in SPONGENT-88, there is only one trail that have one active
Sbox at each round, which makes a linear distinguisher possible for not more
than 22 rounds. Now we use a correlation submatrix with input and output
masks of Hamming weight up to 4 to activate at most 4 Sboxes. As a result,

2 This is possible for the difference submatrices of PRESENT and SPONGENT but
not for their correlation matrices as they are dense.

376 M.A. Abdelraheem

we found many linear approximations with correlations larger than 2−44 for 23-
round of SPONGENT-88. Thus, we improved the linear distinguishers provided
by the designers one more round. Table 2 shows the correlations obtained along
with the corresponding number of trails written between parentheses. The table
shows that correlations obtained from using correlation matrices with masks of
Hamming weight at most 2 bits, 3 bits and 4 bits do not vary significantly and
this might indicate that linear characteristics covering more than 4 active Sboxes
per round do not have a significant effect in the total correlation. The table also
shows that it is difficult to accurately estimate the total correlation of some
linear approximations. For instance for 22 rounds, |C≤2(e70 ⊕ e71, e56 ⊕ e78)| is
smaller than |C≤3(e70⊕e71, e56⊕e78)| but bigger than |C≤4(e70⊕e71, e56⊕e78)|.
This suggests that the characteristics with Hamming weight 4 bits contributed
negatively to the total correlation.

Table 2. r ≡ number of rounds, α ≡ input mask, β ≡ output mask, |C≤i(α, β)| ≡
correlation using a submatrix with input and output masks with Hamming weight at
most i bits, − ≡ not applicable. ei ≡ the unit vector with single 1 at position i whose
length is 88 (SPONGENT-88’s block size). The values between parentheses represent
the log2 of the corresponding number of trails which are easily calculated by replacing
each nonzero entry with 1 in the correlation submatrix and then powering it to r.

r α β log2(|C≤2(α, β)|) log2(|C≤3(α, β)|) log2(|C≤4(α, β)|)
22 e6 ⊕ e7 e3 ⊕ e25 ⊕ e47 - -43.82 (20.52) -43.83 (36.04)
23 e6 ⊕ e7 e3 ⊕ e25 ⊕ e47 - -43.81 (21.91) -43.74 (38.44)

22 e6 ⊕ e7 e3 ⊕ e25 ⊕ e47 ⊕ e69 - - -43.83 (36.17)
23 e6 ⊕ e7 e3 ⊕ e25 ⊕ e47 ⊕ e69 - - -43.75 (38.56)

22 e70 ⊕ e71 e7 ⊕ e51 -42.06 (7.67) -42.05 (22.75) -42.05 (38.25)
23 e70 ⊕ e71 e7 ⊕ e51 -44.02 (7.95) -44.01 (24.13) -43.95 (40.65)

22 e70 ⊕ e71 e56 ⊕ e78 -42.03 (7.12) -42.03 (22.51) -42.04 (38.29)
23 e70 ⊕ e71 e56 ⊕ e78 -43.99 (6.94) -43.99 (23.89) -43.96 (40.69)

22 e70 ⊕ e71 e7 ⊕ e29 ⊕ e51 ⊕ e73 - - -42.04 (37.76)
23 e70 ⊕ e71 e7 ⊕ e29 ⊕ e51 ⊕ e73 - - -43.94 (40.16)

22 e9 ⊕ e10 ⊕ e11 e3 ⊕ e25 ⊕ e47 - -43.99 (19.73) -43.93 (35.35)
23 e9 ⊕ e10 ⊕ e11 e3 ⊕ e25 ⊕ e47 - -43.97 (21.14) -43.88 (37.75)

22 e46 ⊕ e47 ⊕ e48 e34 ⊕ e56 ⊕ e78 - -42.72 (22.49) -42.69 (39.23)
23 e46 ⊕ e47 ⊕ e48 e34 ⊕ e56 ⊕ e78 - -43.95 (23.86) -43.89 (41.62)

5.2 Application on PRESENT

The PRESENT block cipher has been analyzed in several publications. In [29],
a 16-round differential attack was mounted. Later a statistical saturation attack
was mounted and claimed to break 24 rounds [10]. In [25], the author showed
the existence of 32% of weak keys which have a higher bias that makes the
cipher using those weak keys distinguishable for up to 24 rounds. In [9], the
multidimensional attack was used to break 25 rounds and also 26 rounds where
the latter use the whole code book. Recently, a multiple differential attack was
mounted on 18-round of PRESENT [2]. Our focus here is to use the approach
described above to find better linear and differential approximations.

Estimating the Probabilities of Low-Weight Differential 377

Differential Approximations: We use a difference transition submatrix whose
input and output differences have Hamming weight less than or equal to four.
Now, in order to estimate the differential probability after r rounds, we raise
our transition submatrix to r and extract the maximum entry. The time and
memory costs of this are negligible. We found that the 2-round iterative charac-
teristic in [5] has probability 2−74 for 15-round PRESENT but the differential
containing this characteristic has a higher probability equivalent to 2−63.50 for
a 15-round PRESENT. We also found many differentials with probability larger
than 2−64 for 16 rounds PRESENT where the maximum one occurs with prob-
ability 2−62.58. Moreover, the maximum differential probability we found for 25
rounds is equal to 2−97.38. This is larger than the 2−100 differential characteristic
bound for 25 rounds given in [5]. Here we note that the analysis provided in [5]
is sound as the authors gave a bound for the differential characteristic and not
for the differential which is hard to bound. Nevertheless, this shows that our
approach can be useful in bounding the probability of a differential.

Linear Approximations and Statistical Saturation Attacks: All the previous lin-
ear attacks on PRESENT used linear trails activating only one Sbox at each
round. To find better linear approximations, we considered trails activating at
most 4 Sboxes. Thus, we constructed a correlation submatrix using input and
output masks of Hamming weight at most 4 bits. By searching for the best
approximations among input masks and output masks in one Sbox. We found
that there are many approximations whose squared correlation is larger than
2−64 when ≤ 24 rounds of PRESENT are used. As noted in [25], these approx-
imations follow the normal distribution with mean zero and variance equal to
their squared correlation. Thus, the squared correlation is higher for 32% of keys
compared to the whole key space for some approximations where each approx-
imation has a different path. Thus when using multiple linear approximations,
each key is more likely to yield a high correlation with respect to some input and
output masks [17]. Therefore statistical saturation distinguishers based on linear
approximations whose squared correlations are larger than 2−64 work exactly as
predicted for almost all the keys.

Table 4 described in the Appendix lists the 10 approximations spanned from
U11 and V1 and also the 10 approximations spanned from U11 and V3. All
these approximations have a squared correlation larger than 2−64 and they
give us two 24-round statistical saturation distinguishers. Using the input sub-
space U11 = span{e41, e42, e43, e44} which corresponds to fixing the 4 bits en-
tering the 11-th Sbox (counting from left to right) and the output subspace
V1 = span{e1, e17, e33, e49} which corresponds to the 4 bits resulted after ap-
plying the permutation on the output of the first Sbox, we get a statistical
saturation distinguisher on 24 rounds with an average capacity equal to 2−60.53.
Using the same input subspace with another different output subspace V3 =
span{e3, e19, e35, e51}, we also get a statistical saturation distinguisher with an
average capacity 2−60.53. Using another input subspace U10 = {e37, e38, e39, e40}

378 M.A. Abdelraheem

with each of the above two output subspaces we get distinguishers with the
same capacities. Now all these 24-round statistical saturation distinguishers can
be used to mount a key recovery attack for 16 bits of the last round key on 25
rounds of PRESENT using the whole code book.

Moreover, these 24-round distinguishers could be used to mount a 26-round
key recovery attack similar to [9] to recover 16 bits from the 1st round subkey
(4 bits from each of the 9th, 10th, 11th and 12th Sbox) and also 16 bits from
last round subkey (4 bits from each of the 1st, 5th, 9th and 13th Sbox) but still
estimating the success probability and data complexity is difficult. However, the
statistical framework developed in [16] in order to estimate the success proba-
bility and data complexity of the multidimensional attack could also be used to
estimate the success probability and data complexity of this attack, should we
assume the independence of the linear approximations used which is not true.
This is in fact what has been done in [9] as it has been noted in [17] that the lin-
ear approximations used in the 26-round multidimensional attack of PRESENT

can not be statistically independent as several approximations share the same
input mask.

Therefore, rather than giving the success probability and data complexity,
we list in Table 3 the estimated squared Euclidean distance of the statistical
saturation distinguisher with input subspace U11 and output subspace V1 for
various number of rounds along with the experimental Euclidean distance using
100 random master keys.

Table 3. The table shows the estimated Euclidean distance D together with the ex-
perimental Euclidean distance D′ averaged over 100 random keys with various amount
of plaintexts, namely 210 plaintexts are used for r = 2, 3, 212 for r = 4, 217 for r = 5, 6,
and 220 for r = 7, 8. D′

∗ ≡ the Euclidean distance for a wrong key guess.

r 2 3 4 5 6 7 8 23 24

log2(D) −∞ -8.00 -9.99 -12.81 -15.23 -17.79 -20.37 -55.52 -64.53

log2(D
′) -10.07 -7.70 -9.67 -12.74 -14.32 -17.09 -19.06 - -

log2(D
′
∗) -7.69 -9.03 -11.38 -14.34 -16.19 -19.49 -19.92 - -

Table 3 the Euclidean distance obtained via a wrong key guess which was sim-
ulated by encrypting one more round under the right key. The table also shows
clearly that the experimental Euclidean distances are close to the estimated ca-
pacities and the more plaintext we use the closer our experimental distances
get to the expected distances. Thus, using the above mentioned four statistical
distinguishers we could find 16 key bits from each of the first and last round keys
using the whole code book. We note that these statistical saturation distinguish-
ers are better than the distinguisher reported in the original attack [10] whose in-
put and output subspaces are U = V = span{e22, e23, e26, e27, e38, e39, e42, e43}.
This is because all the linear approximations spanned from U and V do not have
a single linear approximation with a squared correlation larger than 2−64 even
when considering input and output masks with Hamming weight at most 4 bits.

Estimating the Probabilities of Low-Weight Differential 379

6 Conclusion and Future Work

In this paper, we used sparse difference and correlation submatrices to estimate
the probabilities of low-weight differential and linear approximations respectively
in PRESENT-like ciphers. This estimation approach can also be used in any
cipher allowing low-weight differential and linear characteristics. Using these
sparse matrices, we found linear distinguishers for 23-round of SPONGENT-88.
While this is far from distinguishing the full 45 rounds of SPONGENT-88, it is
the best currently known result against SPONGENT. We also presented four 24-
round statistical saturation distinguishers which break 26-round of PRESENT

and that is more than the rounds attacked by the original statistical saturation
attack [10].

It would be interesting to investigate whether using large difference and corre-
lation submatrices for PRESENT and SPONGENT-88 with entries having Ham-
ming weight at most 5 would make some improvements over this work. Looking
at Table 1 we see that the time complexities for constructing these submatrices
take around 234 and 236 arithmetic operations for PRESENT and SPONGENT-
88 respectively which could be feasible using parallel computing.

Acknowledgements. For His uncountable blessings, unlimited thanks are to
ALLAH that are suitable for His majesty and His perfect attributes. Many
thanks go to Lars Knudsen, Gregor Leander and the anonymous reviewers for
many useful comments.

References

1. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.:Quark: A lightweight
hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
1–15. Springer, Heidelberg (2010)

2. Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: Theory and practice.
In: Joux (ed.) [19], pp. 35–54

3. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
Spongent: The design space of lightweight cryptographic hashing. IEEE Transac-
tions on Computers PP(99), 1 (2012)

4. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. Borghoff, J., Knudsen, L.R., Leander, G., Thomsen, S.S.: Cryptanalysis of present-
like ciphers with secret s-boxes. In: Joux (ed.) [19], pp. 270–289

7. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

8. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, Billet (eds.) [26], pp. 244–266

380 M.A. Abdelraheem

9. Cho, J.Y.: Linear cryptanalysis of reduced-round present. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

10. Collard, B., Standaert, F.-X.: A statistical saturation attack against the block
cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
195–210. Springer, Heidelberg (2009)

11. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

13. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. IACR Cryptology ePrint Archive, 2005:212 (2005)

14. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash func-
tions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer,
Heidelberg (2011)

15. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream
ciphers. In: Robshaw, Billet (eds.) [26], pp. 179–190

16. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of matsui’s al-
gorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

17. Hermelin, M., Nyberg, K.: Linear cryptanalysis using multiple linear approxima-
tions. Cryptology ePrint Archive, Report 2011/093 (2011)

18. ISO/IEC 29192-2:2012. Information technology Security techniques Lightweight
cryptography. Part 2: Block ciphers (2012)

19. Joux, A. (ed.): FSE 2011. LNCS, vol. 6733. Springer, Heidelberg (2011)
20. Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies,

D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

21. Leander, G.: On linear hulls, statistical saturation attacks, present and a crypt-
analysis of puffin. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 303–322. Springer, Heidelberg (2011)

22. Matsui, M.: On correlation between the order of s-boxes and the strength of des.
In: Santis (ed.) [28], pp. 366–375

23. Nyberg, K.: Linear approximation of block ciphers. In: Santis (ed.) [28], pp.
439–444

24. O’Connor, L., Golić, J.D.: A unified markov approach to differential and linear
cryptanalysis. In: Pieprzyk, J., Safavi-Naini, R. (eds.) ASIACRYPT 1994. LNCS,
vol. 917, pp. 387–397. Springer, Heidelberg (1995)

25. Ohkuma, K.: Weak keys of reduced-round PRESENT for linear cryptanalysis. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 249–265. Springer, Heidelberg (2009)

26. Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986.
Springer, Heidelberg (2008)

27. Saad, Y.: SPARSKIT: A basic tool kit for sparse matrix computation. Research
Institute for Advanced Computer Science, NASA Ames Research Center (1990)

28. De Santis, A. (ed.): EUROCRYPT 1994. LNCS, vol. 950. Springer, Heidelberg
(1995)

29. Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In:
Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer,
Heidelberg (2008)

Estimating the Probabilities of Low-Weight Differential 381

A Appendix

Algorithm 1. Finding the best the average squared correlation or absolute
correlation

Require: Submatrix M of size l × l, M is a submatrix of the average squared corre-
lation matrix (or of the correlation matrix).

Require: Two temporary vectors of length “l”, tempCorr and tempIndex.
Ensure: Finds the best average squared correlation (absolute correlation) with its

corresponding input mask a and output mask b.
1: counter = 0.
2: for j = 1 → l do
3: Extract the jth Column Cj from M .
4: repeat
5: Cj = M ×Cj

6: Increment counter
7: until counter equals r − 1.
8: tempCorr(j)=max(|Cj |).
9: tempIndex(j) = The index of max(|Cj |) gives us the corresponding input mask.
10: end for
11: return max(tempCorr) which yields the maximum average squared correlation

(absolute correlation) and its index yields the corresponding output mask b. Then
the corresponding input mask a = max(tempIndex(b)).

382 M.A. Abdelraheem

Table 4. (C≤4(α, β))2 ≡ squared correlation of a 24-round PRESENT linear approx-
imation with input mask α and output mask β computed via a correlation submatrix
with Hamming weight at most 4. The first 10 approximations correspond to the output
subspace V1 while the second 10 approximations correspond to the output subspace V3.
ei ≡ the unit vector with single 1 at position i whose length is 64 (PRESENT’s block
size). The values between parentheses represent the log2 of the corresponding number
of trails.

α β log2((C
≤4(α, β))2)

e41 ⊕ e43 e1 ⊕ e17 ⊕ e33 -63.98 (91.67)

e41 ⊕ e43 e1 ⊕ e33 ⊕ e49 -63.77 (90.62)

e41 ⊕ e43 e1 ⊕ e17 ⊕ e33 + e49 -63.97 (91.48)

e41 ⊕ e42 ⊕ e43 e1 ⊕ e17 ⊕ e33 -63.80 (91.00)

e41 ⊕ e42 ⊕ e43 e1 ⊕ e17 ⊕ e49 -63.97 (91.12)

e41 ⊕ e42 ⊕ e44 e1 ⊕ e17 ⊕ e33 -63.97 (91.52)

e41 ⊕ e42 ⊕ e43 e1 ⊕ e33 ⊕ e49 -63.60 (89.95)

e41 ⊕ e42 ⊕ e44 e1 ⊕ e33 ⊕ e49 -63.77 (90.47)

e41 ⊕ e42 ⊕ e43 e1 ⊕ e17 ⊕ e33 ⊕ e49 -63.80 (91.48)

e41 ⊕ e42 ⊕ e44 e1 ⊕ e17 ⊕ e33 ⊕ e49 -63.96 (91.33)

e41 ⊕ e43 e3 ⊕ e19 ⊕ e35 -63.98 (91.66)

e41 ⊕ e43 e3 ⊕ e35 ⊕ e51 -63.78 (90.62)

e41 ⊕ e43 e3 ⊕ e19 ⊕ e35 ⊕ e51 -63.97 (91.48)

e41 ⊕ e42 ⊕ e43 e3 ⊕ e19 ⊕ e35 -63.81 (91.00)

e41 ⊕ e42 ⊕ e43 e3 ⊕ e19 ⊕ e51 -63.97 (91.11)

e41 ⊕ e42 ⊕ e44 e3 ⊕ e19 ⊕ e35 -63.97 (91.51)

e41 ⊕ e42 ⊕ e43 e3 ⊕ e35 ⊕ e51 -63.60 (89.95)

e41 ⊕ e42 ⊕ e44 e3 ⊕ e35 ⊕ e51 -63.77 (90.47)

e41 ⊕ e42 ⊕ e43 e3 ⊕ e19 ⊕ e35 ⊕ e51 -63.80 (90.81)

e41 ⊕ e42 ⊕ e44 e3 ⊕ e19 ⊕ e35 ⊕ e51 -63.97 (91.33)

Security Evaluation of Cryptographic Modules

against Profiling Attacks

Yongdae Kim1, Naofumi Homma2, Takafumi Aoki2, and Heebong Choi1

1 The Attached Institute of Electronics and Telecommunications Research Institute
{kimyd,gold}@ensec.re.kr

2 Graduate School of Information Sciences, Tohoku University
homma@aoki.ecei.tohoku.ac.jp, aoki@ecei.tohoku.ac.jp

Abstract. Recently, profiling attacks have been attracting a great deal
of attention because of their increasing efficiency. Further investigations
are required to determine the potential threats of the profiling attacks.
This paper focuses on these attacks. Using hardware and software im-
plementations, we provide a security evaluation of three different types
of profiling attacks: template attack, stochastic model attack, and mul-
tivariate regression attack. Our experimental results show that multi-
variate regression attack outperforms other attacks in terms of profiling
efficiency and key extraction rates.

Keywords: profiling attack, multivariate regression analysis, template
attack, stochastic model attack, power analysis attack.

1 Introduction

Cryptographic algorithms are implemented in various forms: hardware, software,
firmware or sometimes in a combination of various forms. These forms are called
cryptographic modules. It was believed that cryptographic modules were secure
because the underlying cryptographic algorithms are theoretically unbreakable.
For this reason, security evaluations were restricted to the algorithm level.

However, a new category of cryptanalysis, power analysis attack has been
introduced by P. Kocher, et al. in 1999 [1]. Many cryptographic researchers have
begun to investigate not only cryptographic algorithms, but also their concrete
implementations.

One of the most efficient power analysis attacks is called the profiling attack,
which employs reference modules that have the same characteristics as those
of the target module [2], [3]. There are three methods in class of profiling at-
tacks: the template attack [4], the stochastic model attack [5] and multivariate
regression attack [6].

Testing methods for cryptographic modules have been developed in many
countries under the Cryptographic Module Validation Program (CMVP). How-
ever, the methodologies for conducting security evaluation with resistance to
side-channel attacks are still under discussion. Federal Information Processing
Standard (FIPS) 140-2 is one security requirement for cryptographic modules in

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 383–394, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

384 Y. Kim et al.

USA and Canada: however, it does not contain concrete metrics for side-channel
attacks. The current version of FIPS 140-2 deals with side-channel attacks as
mitigations of other attacks. Therefore, the testing methods relative to side-
channel attacks will be specified in the new version of the standard, FIPS 140-3.
However, it is more difficult to standardize testing methods for profiling attacks
than it is for other conventional side-channel attacks, such as correlation power
analysis attacks [7], differential power analysis attacks [1], etc.

Because profiling attacks have several issues to be considered: (i) the selection
of points that contain data-dependent variations, and (ii) the number of traces for
the profiling. These two parameters have significant impacts on profiling attacks.
Sometimes they lead to a decrease of performance, especially when there are a
limited number of available traces. This can cause unreliable security evaluation
of cryptographic modules.

To clear up these two issues, we perform security evaluation on the hardware
and software implementations of the Advanced Encryption Standard (AES) to
strengthen the security level of the cryptographic modules. In addition to that,
we also demonstrate the effect of hiding countermeasures on software imple-
mentation. Our experimental results indicate that we can use the multivariate
regression attack for an accurate and reliable security evaluation method to test
the hardware and software of cryptographic modules.

2 Profiling Attacks

Compared to correlation power analysis attacks [7], profiling attacks require a
far lower amount of side-channel information to retrieve the secret key, since
such attacks take advantage of prior information from the profiling phase. The
basic idea of this technique is to approximate the noise model rather than to
reduce or eliminate noise.

Profiling attacks are known to consist of two phases: (i) profiling phase, and
(ii) key extraction phase. Each phase uses different modules that have identical
physical characteristics. In the profiling phase, an adversary captures physical
leakage from a reference module. By analyzing that information, a property of
the signal and noise can be characterized. Next, in the key extraction phase,
maximum-likelihood estimation is used to determine the correct key using the
information built in the profiling phase.

2.1 Template Attack

Profiling Phase. The profiling phase collects a large number of waveforms
with different data di and key kj , given as

di ∈ {d1, d2, · · · , dD}, (1)

kj ∈ {k1, k2, · · · , kK}, (2)

Security Evaluation of Cryptographic Modules against Profiling Attacks 385

where D and K denote the number of possible pieces of data and keys, respec-
tively. Then, we group together the traces that correspond to the pair of (di, kj),
and estimate a mean vector, m, and a covariance matrix, C, of the multivariate
normal distribution.

However, for example in case of 128-bit AES, the number of possible data
and keys is 28 = 256. Thus, in total, 2562 = 65536 templates are required. It is
unrealistic to generate templates corresponding to all possible pairs of keys and
data.

Therefore, in practice, templates are generated based on hypothetical power
consumption for each pair of (di, kj), and are written as hdi,kj . Hence, the num-
ber of templates can be reduced. In the case of AES, we need to build only 9
templates corresponding to 9 possible Hamming distance or Hamming weight
values, which are dependent on the method of implementation.

Finally, templates (m,C)hdi,kj
that correspond to all possible hypothetical

power consumption values are built in this phase.
Thus, the characteristic of W sampling points power consumption trace w =

(w1, · · · , wW) can be described as the probability density function of the multi-
variate normal distribution as follows :

q = w −m, (3)

p(w; (m,C)hdi,kj
) =

exp
(
− 1

2q
TC−1q

)√
(2π)W det(C)

, (4)

where det(C) and qT denote the determinant of C and the transpose of
vector q.

Key Extraction Phase. When a power consumption trace is given, the prob-
ability p(kj | w) for j = 1, · · · ,K is written as follows using Bayes’ theorem.

p(kj | w) =
p(w | kj)p(kj)∑K

l=1(p(w | kl)p(kl))
(5)

Note that p(kj) = 1/K, since all possible keys are uniformly distributed. Given
a trace, w, Eq. (5) indicates a probability when the correct key is equal to kj .

The original template attack only provides a key extraction strategy based on
a single available trace. However, it is difficult in practice to retrieve the correct
key using only a trace. Thus, we use the following formula for given D traces:
wi(i = 1, · · · , D).

p(kj | w1,··· ,D) =

(∏D
i=1 p(wi | kj)

)
p(kj)∑K

l=1

((∏D
i=1 p(wi | kl)

)
p(kl)

) (6)

In Eq. (6), p(wi | kj) is set to p(wi; (m,C)hdi,kj
), which is obtained in the

profiling phase in Eq. (4).

386 Y. Kim et al.

Finally, we estimate the correct key kck using the maximum likelihood esti-
mation with the probability density function, Eq. (6) as follows :

kck = argmax
kj∈k∗

p(kj | w1,··· ,D), (7)

where k∗ is the set of all possible key candidates.

2.2 Stochastic Model Attack

In 2005, the stochastic model attack was introduced by W. Schindler, et al.
[5]. The fundamental idea of this attack is very similar to that of the template
attack. However, the stochastic model attack uses the key-independent noise
model instead of the usage noise model associated to all possible key candidates
in template attacks.

Profiling Phase. In stochastic model attack, a power trace at time t (t =
1, · · · ,W) is represented as,

It(di, k) = ht(di, k) + rt, (8)

with the i-th input di and a correct key (which is, however, known to an adver-
sary) k. And ht(di, k) denotes the deterministic part of the trace depending on
di and k. On the other hand, rt denotes a random part independent of di and
k. The profiling phase is divided into two steps in order to approximate the two
discrete terms.

In the first step, the deterministic part is profiled using N1 traces from a ref-
erence module. The deterministic part is approximated by a linear combination
of u-dimensional vector subspace spanned by the u known function gj,t,

ĥt(di, k) =

u−1∑
j=0

βj,t · gj,t(di, k), (9)

where the coefficients β0,t, · · · , βu−1,t are estimated value for each instant t.
In order to estimate the coefficients βt = (β0,t, · · · , βu−1,t), the function gj,t
is firstly determined in the u-dimensional subspace. For example, in the case
of AES, a 9 dimensional subspace is usually chosen as the function gj,t, which
leads to the best approximation [5]. An adversary generates a matrix, A using
N1 traces corresponding to input di and key k as follows:

A =

⎡⎢⎢⎢⎣
g0,t(d1, k) · · · gu−1,t(d1, k)
g0,t(d2, k) · · · gu−1,t(d2, k)

...
...

g0,t(dN1 , k) · · · gu−1,t(dN1 , k)

⎤⎥⎥⎥⎦ (10)

The estimated coefficients

βt = (β0,t, β0,1, · · · , βu−1,t), (11)

Security Evaluation of Cryptographic Modules against Profiling Attacks 387

are then denoted using the least square method,

βt = (ATA)−1ATwt, (12)

where the vector wt = (w1,t, w2,t, · · · , wN1,t) represents power consumption for
each instant t.

After having determined the approximators ĥt(di, k), different set of N2 traces
are used to profile the random part. We first calculate theW -dimensional random
vector r = (r1, r2, · · · , rW) as follows:

rt = It(di, k)− ĥt(di, k), (13)

We assume that the random vector is normally distributed with a covariance
matrix C. Therefore, C = (ci,j)1≤i,j≤W is computed as follows:

ci,j = E(rirj)− E(ri)E(rj) (14)

= E(rirj) (15)

where E(X) denotes the expected value of the variable X . Finally, we have

approximated the deterministic part, ĥt(di, k) and the noise model represented
as the covariance, C in this phase.

Key Extraction Phase. In this phase, traces from a target module are an-
alyzed using the model that have been obtained in the profiling phase. We as-
sume that N3 traces are captured from the target module corresponding to
di ∈ {d1, d2, · · · , dN3} and that there is a correct key, kck (unknown to an ad-
versary). A noise vector zi is first computed as follows:

zi = It(di, kck)− ĥt(di, kj), (16)

where kj ∈ {k1, k2, · · · , kK}. The noise vector follows a multivariate normal
distribution with the profiled covariance matrix C when j = ck. So, we can
estimate the correct key by computing the following probabilities:

p
(
zi; ĥt(di, kj)

)
=
exp

(
− 1

2z
T
i C

−1zi

)√
(2π)W det(C)

. (17)

The maximum likelihood estimation is applied to determine a correct key kck
using N3 traces as follows:

kck = argmax
kj∈k∗

ΠN3
i=1p

(
zi; ĥt(di, kj)

)
. (18)

We can simplify the Eq. (17) by applying the logarithm.

ln
(
p
(
zi; ĥt(di, kj)

))
= −1

2
zT
i C

−1zi −
1

2
ln
(
(2π)W det(C)

)
. (19)

388 Y. Kim et al.

The second term − 1
2 ln((2π)

W det(C)) in Eq. (19) is constant value. Therefore it
can be eliminated. As a result, the estimator can be simplified as a follows:

zT
i C

−1zi. (20)

Note that an adversary decides the correct key that minimized the sum of Eq.
(20) as follows:

kck = argmin
kj∈k∗

N3∑
i=1

zT
i C

−1zi. (21)

2.3 Multivariate Regression Attack

This type of profiling attack can improve profiling efficiency using multivariate
regression analysis. Even if an adversary can utilize several traces for profiling,
the adverse effects for the key extraction can be minimized.

Profiling Phase. In the profiling phase, we need to determine explanatory and
response variables to build a multivariate regression model.

Define Response Variable. We consider the response variable as the sum of
all hypothetical power consumption of the components (i.e. S-Boxes). Assum-
ing that M components are processed in parallel, we write the l-th component
(hypothetical power consumption) as hli,ck, given by the i-th input (1 ≤ i ≤ N ,
N is a number of inputs) and the correct key kck. We referred the sum of each
hypothetical power consumption to si, which is defined

si =

M∑
l=1

hli,ck. (22)

We defined the value of si as a response variable in the regression model. Note
that the value si is feasible only if the correct keys are known to the adversary.
It is possible that the adversary will use a reference module under full control.

Define Explanatory Variables. First of all, we calculate a squared Pearson
correlation coefficient vector, ρ′

B = (ρ2B,1, · · · , ρ2B,W) between wi and si consid-
ering both negative and positive correlation. If the squared coefficient is high
at the t-th time instant, it is usually assumed that the time instant is highly
related to the response value, si. Thus, the adversary select P (< W) instans
with the highest value of the squared correlation coefficient, and referred to as
a vector p = (p1, p2, · · · , pP). Each time instant is sorted in descending order of
the value of squared correlation. This means that the squared Pearson correla-
tion have the highest value at time instant, p1. Now, we select P time instants
from wi,t (1 ≤ t ≤W) corresponding to the interesting points. We define the the
explanatory variables as followings:

wi,p1 , wi,p2 , · · · , wi,pP (1 ≤ i ≤ N1), (23)

where N1 is the number of inputs for the profiling phase.

Security Evaluation of Cryptographic Modules against Profiling Attacks 389

Multivariate Regression Model. Next, we can calculate the estimator of
regression coefficients. Finally, the following multivariate regression model can
be obtained using the regression coefficients in the profiling phase, (1 ≤ i ≤ N1)

ŝi = β̂0 + β̂1wi,p1 + β̂2wi,p2 + · · ·+ β̂Pwi,pP , (24)

where ŝi stands for the fitted value using the model. Finally, we obtain the
regression coefficients in this phase corresponding to its interesting points.

Key Extraction Phase. In this phase, an adversary measures power traces
from a target cryptographic module corresponding to N2 inputs (known) and
secret key kck (unknown). We utilize the regression model in Eq. (24) to estimate
the sum of hypothetical power consumption, ŝi (1 ≤ i ≤ N2) given by the
measured traces. hli,kj

denotes the hypothetical power consumption of the l-th

component (S-Box) associated with each key candidates kj ∈ {k1, k2, · · · , kK}
and the i-th input. The correct key of the l-th component can be estimated using
the Pearson correlation coefficient between ŝi and hli,kj

as follows:

klck = argmax
kj∈{k1,k2,··· ,kK}

corr(ŝi, h
l
i,kj

). (25)

3 Experimental Analysis

For the hardware implementation, the side-channel attack standard evaluation
board (SASEBO) incorporating cryptographic FPGA and ASIC were used for
both the target and the reference module. We used an 8-bit AVR microcon-
troller from the Atmel Corporation for software implementation. In addition,
we implemented a hiding countermeasure on the software implementation to
investigate of effectiveness of the countermeasure. Ten delays before our target
operation (i.e. SubBytes) are inserted. Each delay is composed of several dummy
operations. The number of operations is uniformly generated between 0 and 8.
Therefore the longest possible delay time is 80 clock cycles.

3.1 Evaluation on Hardware Implementations

We used 15 interesting points and 20,000 traces for profiling for both FPGA and
ASIC implementations. In our analysis, the number of available power traces for
key extraction is 10,000 and 20,000 for FPGA and ASIC, respectively.

The result of all subkey estimation results are illustrated in Fig. 1. The hor-
izontal axis indicates the number of traces for key extraction: the vertical axis
shows the classification rate in percentage computed as follows:

Ri =
N ck

i

16
× 100, (26)

where Ri and N ck
i denote the classification rate and the number of correctly

estimated keys using i traces, respectively.

390 Y. Kim et al.

0 0.4 0.8 1.2 1.6 2

x 10
4

0

20

40

60

80

100

Number of traces for key extraction

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

(a) (b)

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Number of traces for key extraction

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Fig. 1. Classification rate (a) FPGA, and (b) ASIC implementation

(a) (b)

0.4 0.8 1.2 1.6 2

x 10
4

0

20

40

60

80

100

Number of traces for profiling

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

20

40

60

80

100

A

v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

0.4 0.8 1.2 1.6 2

x 10
4

Number of traces for profiling

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Fig. 2. Average classification rate of FPGA and ASIC implementations associated with
the number of traces for profiling (15 interesting points): (a) FPGA implementation
(b) ASIC implementation

As can be seen in the Fig. 1, the classification rate is increasing as the number
of traces for key extraction increases. However, the multivariate regression attack
has the least number of traces to estimate all the subkeys of AES in FPGA and
ASIC implementations. In other words, a straightforward AES implementation
on FPGA and ASIC is very vulnerable to multivariate regression attack.

In order to examine the effects of the number of traces for profiling and inter-
esting points, we first define an average value of classification rates, R̄ as follows:

R̄ =
1

D

D∑
i=1

Ri, (27)

where D represents the number of total available traces for key extraction. In
our case, D is 10,000 and 20,000 for FPGA and ASIC, respectively.

Figure 2 shows the average values of classification rates of FPGA and ASIC
implementations: the horizontal axis is the number of traces used in the profiling

Security Evaluation of Cryptographic Modules against Profiling Attacks 391

(a) (b)

Number of interesting points

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

Number of interesting points

5 15 25 35 45
0

20

40

60

80

100

5 15 25 35 45
0

20

40

60

80

100

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Fig. 3. Average classification rate of FPGA and ASIC implementations associated with
the number of interesting points (20,000 traces for profiling): (a) FPGA implementa-
tion, and (b) ASIC implementation

phase and the number of interesting points is fixed at 15 points. We do not focus
on the selection method of interesting points. However, we do only investigate
selection method impact on the classification rate, and thus we assumed that
an adversary had already obtained a fixed number of interesting points in the
profiling phase.

Figure 3 shows the average classification rates of FPGA and ASIC implemen-
tations associated with the number of interesting points: where the number of
traces for profiling is 20,000 for both implementations. The results indicate the
low average values of the classification rates for the template attack and stochas-
tic model attack as the number of interesting points is increased. The interesting
points cover the data dependent time instants. Sometimes, when an adversary
selects non-data dependent points as interesting points, the classification rate is
negatively affected by these points.

However, it can be clearly observed that the classification rates using multi-
variate regression attack does not decrease even when the number of interesting
points is increased comparing to other profiling attacks. This is because the
less data-dependent time instants have a less significant effect on the regression
model.

To observe the significance of each regression coefficient, we intentionally se-
lected 20 irrelevant time instants adding them to the 15 selected interesting
points, as shown in Fig. 4. The results show squared values of regression coef-
ficients corresponding to the 35 selected points. This clearly confirms that the
time instants corresponding to irrelevant points have relatively small values of
regression coefficients. This leads to a small impact on the response variable.
Thus, a profiling attack using the multivariate regression model takes less effort
to determine the time instants as interesting points in order to extract all keys
successfully.

392 Y. Kim et al.

(a) (b)

C
o

rr
e

la
ti
o

n

S
q

u
a

re
d

 v
a

lu
e

 o
f

re
g

re
s
s
io

n
 c

o
e

ff
ic

ie
n

t

Time (1GS/s) Interesting points

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35

20 irrelevant points 20 irrelevant points

15 data-dependent points

15 data-dependent points

Fig. 4. (a) correlation peaks and interesting points, and (b) squared value of regression
coefficient for FPGA implementations

0

20

40

60

80

100

Number of traces for key extraction

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

(a) (b)

0

20

40

60

80

100

Number of traces for key extraction

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

0 10 20 30 40 50 0 100 200 300 400 500

Template Attack

Stochastic Model Attack

Proposed Method

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Fig. 5. Classification rate (a) unprotected smart card, and (b) hiding countermeasure
implemented smart card

3.2 Evaluation on Software Implementations

Compared to the case of hardware implementations, in software implementations
all S-boxes are executed sequentially. Hence we determined different 15 different
interesting points for each target S-boxes.

In Fig. 5, we show the classification rates associated with the number of traces
for key extraction for an unprotected and hiding countermeasure implemented
smart card. For those results in Fig. 5, we used 15 interesting points for both
types of implementations: 2,000 and 5,000 traces are used for the profiling phase
on the unprotected and hiding countermeasure implemented smart cards, re-
spectively. For the unprotected smart card, it is enough to extract all subkeys
using fewer than 20 traces. As can be seen in Fig. 5 (b), even when we used
10 times more power traces than those used with the unprotected smart card,
it was impossible to retrieve all the secret keys successfully. This result shows
that hiding countermeasure is effective but not perfect method to hinder attacks.
Actually, the classification rate increases as the number of traces increases.

Security Evaluation of Cryptographic Modules against Profiling Attacks 393

(a) (b)

Number of traces for profiling

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

Number of traces for profiling

0 100 200 300

20

40

60

80

100

0

20

40

60

80

100

0
0 1000 2000 3000

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Fig. 6. Average classification rate associated with the number of traces for profiling
(15 interesting points): (a) unprotected smart card, and (b) hiding countermeasure
implemented smart card

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

0

20

40

60

80

100

 5 15 25 35 45 55

Number of interesting points

(a) (b)

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

0

20

40

60

80

100

5 15 25 35 45 55

Number of interesting points

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Template Attack

Stochastic Model Attack

Multivariate Regression Attack

Fig. 7. Average classification rate associated with the number of interesting points:
(a) unprotected smart card (20 traces for profiling), and (b) hiding countermeasure
implemented smart card (100 traces for profiling)

First, we examine a tendency between the number of traces for profiling and
the classification rates. The experimental procedure is the same as that of the
hardware implementations experiment. Figure 6 shows the results of this exper-
iment. These results clearly indicate the visible tendencies between the classi-
fication rates and the number of traces available for profiling. In addition, the
multivariate regression attack has a higher profiling efficiency than that of other
profiling attacks for both smart cards. As we already demonstrated experimen-
tal results for hardware implementations, we have found that profiling strategies
have almost the same performance when a certain number of traces are available
in software implementations.

Next, we focus on the efficiency of the profiling phase with the number of
interesting points. Figure 7 shows the average classification rate associated with
the number of interesting points. Note that we used exactly the same interest-
ing points for each number of traces for profiling. As can be seen in Fig. 7, with

394 Y. Kim et al.

respect to hiding countermeasure implementation, the average classification rates
show a high improvement as more interesting points are provided. This is because
the number of relevant time instants are increased with hiding countermeasures.

4 Conclusion

This paper presented a security evaluation of cryptographic modules against
profiling attacks. The profiling attack is one of the side-channel attacks that most
effectively expose weaknesses and secret information of cryptographic modules
using their physical leakages. However, profiling attacks require a large number
of traces to characterize of the power consumption and relevant time instants
correctly. The multivariate regression attack is able to compensate for those two
issues.

Our evaluation results of hardware and software implementations have shown
that multivariate regression attacks, pose a serious threat to the security level
of cryptographic modules. The results indicate that we need to consider multi-
variate regression attacks for a proper security evaluation of profiling attacks,
because the attack can perform successfully using a small number of traces in
the profiling phase. In addition, such attacks are robust to selection methods of
relevant time instants.

Acknowledgements. We would like to gratefully thank Dr. Takeshi Sugawara
for his useful support for performing the experiments.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Le, T.H., Canovas, C., Clédière, J.: An overview of side channel analysis attacks.
In: Proceedings of the 2008 ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS), pp. 33–43 (2008)

3. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison side-
channel distinguishers: An empirical evaluation of statistical tests for univari-
ate side-channel attacks against two unprotected CMOS devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer,
Heidelberg (2009)

4. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

5. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

6. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate
regression analysis. IEICE Electronics Express 7, 1139–1144 (2010)

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

Key-Dependent Weakness of AES-Based Ciphers

under Clockwise Collision Distinguisher

Toshiki Nakasone1,
, Yang Li1, Yu Sasaki2, Mitsugu Iwamoto1,
Kazuo Ohta1, and Kazuo Sakiyama1,

1 Dept. of Informatics, The University of Electro-Communications
1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan

{nakasone,liyang,mitsugu,kazuo.ohta,sakiyama}@uec.ac.jp
2 NTT Secure Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. In 2011, Li et al. proposed a series of side-channel attacks
that are related to a fundamental side-channel leakage source called
clockwise collision. This paper discloses the fact that hardware imple-
mentations of AES-based ciphers could have weak keys assuming that
the leakage of clockwise collision is distinguishable. In order to explain
this, we firstly set up an evaluation method by introducing a threshold-
based distinguisher that takes an advantage of the locality of Electro-
Magnetic (EM) measurements. Secondly, we discuss that the probability
of clockwise collision depends on the key values and the byte positions
in the AES states. Thirdly, based on practical EM measurements and
mathematical analysis, we quantitatively evaluate the relationship be-
tween the probability of clockwise collision and the vulnerability to the
side-channel attack. Finally, the discussion is extended to the design
methodology of AES-based ciphers, i.e., the parameter selection for S-
box and ShiftRows.

Keywords: Side-channel attack, Electromagnetic analysis, Clockwise
collision, Weak key, AES-based cipher.

1 Introduction

In recent years, many kinds of Side-Channel Attacks (SCAs) have been intro-
duced [1–7]. The vulnerability to the SCA threatens the security of practical
cryptographic implementations. The SCA utilizes physical information, e.g.,
ElectroMagnetic (EM) radiation and power consumption [6–10].

The SCA with a hypothetical leakage model such as Hamming Distance (HD)
model is one of the common approaches to exploit the intermediate value from
the physical leakage [1, 5]. As another approach, the template-based SCA was
proposed by Chari, Rao, and Rohatgi in 2002 [11]. The template-based SCA

� A part of this research was funded by Ministry of Economy, Trade, and Industry
(METI), Japan.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 395–409, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

396 T. Nakasone et al.

supposes that a template is created with a target device where the parameter
such as secret key and input value can be changed by an attacker. By compar-
ing the template with actual measurements, the template-based SCA retrieves
the secrets. On the other hand, as one of the SCAs without the template, the
collision-based SCA was proposed, which was used against DES firstly in [12],
and then applied to AES in [13, 14]. It detects the internal collision and retrieves
the intermediate values by exploiting the similarity in the side-channel leakage.
As an enhancement of the collision-based analysis, correlation collision analysis
was proposed in [15, 16].

In this paper, we explore a new side-channel leakage based on Clockwise Col-
lision (CC) as a further enhancement of collision-based analysis. CC is a funda-
mental but overlooked internal collision, which was introduced by Li et al. [17].
More precisely, when input values for two consecutive cycles collide, we see that
most of the calculations of the current cycle are already finished. In fact, Li et al.
verified that power consumption at the current cycle is quite low when CC hap-
pens. Nevertheless, power-based side-channel distinguisher is affected not only
by the target byte operation, but also by other ones. Accordingly, it is difficult to
distinguish whether or not CC occurs byte by byte from power traces, since we
only observe the total power consumption of all byte-oriented operations. In this
regards, it is a great challenge to ensure that CC happens in a byte operation
in the parallelized implementation.

ElectroMagnetic Analysis (EMA) can retrieve a position-specific side-channel
leakage, i.e., locality of the EM leakage, by appropriately setting the location
of an EM probe [18–20]. Due to such locality, we expect that byte-wise CC can
be detected efficiently even for a parallelized hardware implementation. After
detecting byte-wise CC, different from previously proposed collision-based anal-
yses, once we can detect byte-wise CC for the EM leakage, the CC leakage can
be connected to the secret key directly based on the hypothetical HD model, i.e.,
HD equals to 0. Hence, it is worth focusing on EMA to exploit the CC leakage
from the parallel AES, and discussing how precisely CC can be detected among
the data about the EM intensity (the EM traces for short).

In this paper, the AES implementation where 16 byte-oriented operations are
executed in parallel is denoted as the parallel AES. Since the probability of CC
is dependent on the byte operations in the AES algorithm, we also review the
mechanism of how often CC occurs in the parallel AES.

1.1 Our Contribution

Our contribution is fourfold. Firstly, we establish a new evaluation method for
CC, which is the collision-based distinguisher that does not require the profiling
on a known-key device. The proposed distinguisher utilizes a threshold value
of side-channel leakage, i.e., the EM leakage, to distinguish the measured EM
traces obtained by an EM probe. Due to the locality of the EM leakage, our
evaluation expects that the impact of byte-wise CC can be observed without
guessing the states in other bytes. Secondly, we find the key-dependent weakness
for AESciphers from the side-channel perspective. We show that, for a specific

Key-Dependent Weakness of AES-Based Ciphers 397

byte position of the parallel AES, the probability of CC is imbalanced depending
on the key value. Thirdly, in order to evaluate the SCA vulnerability due to
such imbalance, we quantify the key strength based on statistics from the EM
measurements where we approximate the probability density distributions of the
EM intensity. We show that we can calculate the relationship between the success
probability of detecting CCs and the required amount of measurements. At last,
we discuss a better design methodology for ShiftRows and S-box in AES-based
ciphers for avoiding the imbalance since such imbalance of key strength is usually
considered as weakness for ciphers.

1.2 Paper Organization

The rest of this paper is organized as follows. Section 2 explains the locality of
EM leakage and CC. Section 3 shows the mechanism of Clockwise Collision-based
EMA (CC-EMA) in detail. In Sect. 4, a new evaluation method is discussed for
CC. We demonstrate the experimental result of quantifying the key strength in
Sect. 5. Section 6 contains a discussion of the feedback to cipher design, and
conclusions are given in Sect. 7.

2 Preliminary

2.1 Clockwise Collision (CC)

Considering the phenomenon of CC, Li et al. proposed an attack scenario for
an AES implementation with power analysis and fault analysis [17]. When CC
occurs, the combinational circuit has no signal transitions because the signal
state of the combinational circuit after the previous cycle has already been the
state that should be achieved in the current cycle. Therefore, a combinational
circuit for HD = 0 leads to a much lower power consumption than HD �= 0 for
the loop architecture. In contrast, the conventional HD model [5] approximates
the power consumption to be proportional to the HD of the register.

2.2 Locality of EM Leakage

The EM leakage varies from the measurement points on a circuit layout, which is
inherently different from the power leakage that is measured as total power con-
sumption. The most advantageous point of the EM leakage is that the position-
dependent information leakage is available, i.e., locality of EM leakage [18–20].

Suppose that an EM probe is able to collect the information leakage only
for a certain operation, e.g., a byte operation. Considering that side-channel
attacks are based on an input guess of partial operation such as AES S-box,
secret information is retrieved byte by byte. In the parallel AES, the locality
of EM leakage is especially meaningful for attackers since the leakage derived
from a different location significantly reduces the signal to noise ratio [18, 20].
Therefore, EMA can be an analytic tool with the byte-wise locality, and is useful
when the suitable measurement position is known.

398 T. Nakasone et al.

3 Overview of CC-EMA

The followings are the list of notations used in this paper.

h : threshold value for separating the EM traces
t : the collision number of subkey candidates

THD=a : event that the EM traces are obtained when a target 8-bit register has
HD = a in two consecutive clock cycles, where a = 0, 1, . . . , 8

Tx≤h : event that the EM traces are obtained when a target EM intensity, x,
is equal to or less than h

μa : mean of the EM traces of THD=a

σa : standard deviation of the EM traces of THD=a

μ : mean of the EM traces of THD�=0

σ : standard deviation of the EM traces of THD�=0

Ncc : the number of CCs in the no-shift case when a subkey is fixed

3.1 Target Implementation

This paper focuses on the parallel AES based on the loop architecture. In order to
evaluate CC precisely, we use the parallel AES with a composite field S-box that
has no countermeasure against SCA. The ciphertext is calculated by a repeated
round function, which is usually synchronized with a clock signal. Our work also
supposes that AES encrypts unknown plaintexts, while ciphertexts are public.
When we provide a random plaintext to AES hardware, the input value for the
S-box is considered to be uniformly distributed. In the following discussion, we
aim to detect CC in the target byte at the AES last round.

CC and AES S-box. Due to the structure of AES, the mechanism of gener-
ating CC is classified into two cases depending on the target-byte positions as
illustrated in Fig. 1.

(i) No-shift case (ii) Shift case

S Same
Register

S S Same
Register

Fig. 1. Two cases of AES last round

Key-Dependent Weakness of AES-Based Ciphers 399

Algorithm 1. An example algorithm of CC-EMA against the last round of AES

Input: EM leakages xi, the target bytes in ciphertexts Ci
r and Ci

u, the threshold h,
and the necessary collision number of key candidates t, where i is the number of
measurements.

Output: The target subkey, Kr

1: Generate a zero array KeyList[k] for counting candidates of k;
2: i = 1;
3: while max(KeyList[k]) < t do
4: if xi ≤ h then
5: k ← S(Ci

u)⊕ Ci
r;

6: KeyList[k] ← KeyList[k] + 1;
7: end if
8: i ← i+ 1;
9: end while
10: Return Kr ← argmaxk KeyList[k]

(i) We focus on the byte position where the value in the register is used to
compute the rth byte in a round, and after the round transformation, the register
stores the results of the rth byte. In this case, the values of the register for two
consecutive cycles, Ir and Cr, have the relation Cr = S(Ir) ⊕ Kr, where S is
the AES S-box transformation. In order that CC happens, two values need to be
Cr = Ir, and hence we know that the probability of CC depends on the property
of the S-box and the key value. Hereafter, the case of (i) is called no-shift case.
(ii) We focus on the byte position where the value in the register is used to
compute the rth byte in a round, and after the round transformation, this register
stores the results of the uth byte, where u �= r. In this case, the values of the
register for two consecutive cycles, Ir and Cu, do not have any relation. To
obtain CC, the value of Cu needs to be the same as Ir . Because Cu and Ir are
independently determined, the probability of CC is 1/256. The case of (ii) is
called shift case.

In the no-shift case, the difference of the input and output, Ir⊕Cr could be 0
more often than that in the shift case. When an attacker recovers the byte-wise
subkey with CC, the key having a high probability of CC is regarded weaker than
the shift case. Therefore, the key-strength against CC distinguisher depends on
the key value in the no-shift case. The key with Pr[Ir = Cr] > 1/256 is called
weak key in this paper, and the detailed information is shown in Appendix A.

3.2 Evaluation Method for CC

The locality of EM leakage aims to detect CC in the target byte at the last
round. Therefore, we locate the EM probe so that the side-channel behavior of
a single 8-bit AES S-box at the last round can be observed. When CC occurs,
the value of Kr, which is constant, can be derived as Kr = S(Cr) ⊕ Cr for the
no-shift case, and Kr = S(Cu) ⊕ Cr for the shift case. That is to say, by using
Kr and a ciphertext, we can judge whether or not CC occurs.

400 T. Nakasone et al.

Here, we establish an evaluation method for CC in order to construct a simple
but efficient distinguisher. Algorithm 1 represents the detailed procedure of CC-
EMA in shift case. Note that the same algorithm can be used for the no-shift case
assuming that Cr = Cu. For steps 4 to 7, when the observed EM intensity is lower
than the threshold, we derive the corresponding key candidate k, and count up
the frequency. When the max(KeyList[k]) ≥ t where t is the necessary number
of key candidates categorized by a derived subkey, the algorithm is stopped
and outputs Kr. By taking k that leads to the highest number in KeyList[k],
we expect that the corresponding k is likely to be the correct one that was
embedded in the hardware. If this expectation is true, it can be said that we
could successfully distinguish the EM traces with CC from others. As long as CC
has accounted for more than random selection by step 4, theoretically detecting
the targeted subkey is feasible.

4 Side-Channel Distinguisher for CC

However, in the no-shift case, the probability of CC is divisible into 5 groups
according to the property of the S-box and the key value (See Table. 3 in Ap-
pendix A). The key strength for 5 groups are different, which is shown in Sect. 5.1
in detail. For simplicity, we deal with the shift case where S-box uses different
registers for storing input and output values in this section. In this case, the
probability distribution is determined as

Pa = Pr
[
THD=a] =

(
8
a

)
256

. (1)

Suppose that the EM traces are in accordance with a normal distribution de-
scribed by the conditional probability density function of

fa(x) =
1√
2πσ2

a

exp

(
− (x− μa)

2

2σ2
a

)
, (2)

where μa and σa are the mean and standard deviation for the case of HD = a,
respectively. In the conventional HD model, we assume that measured the EM
intensity is roughly proportional to the value of HD. This model is very general
and well-fit to the various implementations. In fact, a lot of implementations can
be broken by using the HD model.

In contrast, we focus on the fact that the EM intensity for HD = 0 is much
lower than the cases for HD �= 0 considering the nature of CC. Hence, it is
expected that the EM measurements corresponding to HD = 0 can be efficiently
separated among all EM measurements by setting an appropriate threshold.
Therefore, we only use the EM traces whose intensity are below the threshold h.

Here, we define the success probability Ps(t, h) when subkey candidates collide
t times. For instance, for t = 1, as we have only one EM trace for CC and the
success probability of Ps(1, h) can be derived as

Ps(1, h) = Pr
[
THD=0|Tx≤h] =

Pr
[
THD=0 ∩ Tx≤h]

Pr
[
Tx≤h]

=
S0∑8
a=0 Sa

, (3)

Key-Dependent Weakness of AES-Based Ciphers 401

where

Sa = Pa

∫ h

−∞
fa(x)dx. (4)

If we assume that μ = μ1 = · · · = μ8, σ = σ1 = · · · = σ8, and μ0 < μn, Eq. (3)
becomes

Ps(1, h) =
P0 · 12

(
1 + erf

(
h−μ0√
2σ2

))
P0 · 12

(
1 + erf

(
h−μ0√
2σ2

))
+
(∑8

a=1 Pa

)
· 12
(
1 + erf

(
h−μn√

2σ2

))
=

1 + erf
(
h−μ0√
2σ2

)
256 + erf

(
h−μ0√
2σ2

)
+ 255 · erf

(
h−μn√

2σ2

) . (5)

Intuitively, we have a higher probability of Ps(1, h) as decreasing the value of h
for μ0 < μn. However, the total number of EM measurements will increase in
order to satisfy the condition that the intensity of the EM traces is below h. The
amount of EM measurements M(t, h) that we need to perform is

M(t, h) =
t

Pr
[
THD=0 ∩ Tx≤h]

. (6)

Using the total number of the EM traces M(t, h), we collect the EM leakages
satisfying x ≤ h. We derive the key candidate with corresponding ciphertexts,
i.e., k = S(Cu) ⊕ Cr , and count up the key list until a key candidate collides t
times.

As for t ≥ 2, only if the wrong key candidates collide less than t with the
number of the EM traces, we can identify the correct candidate. Hence, in order
to derive success probability Ps(t, h), we need the probability that the wrong
key candidates collide t times, i.e., the multi-collision probability.

To the best of our knowledge, Suzuki et al.’s work on the multi-collision prob-
ability in [21] is the most strict. However, they use a recursive formula that
cannot lead to deriving the probability for arbitrary parameters. Accordingly,
we decide to use Monte Carlo simulation. From the simulation results, we deter-
mine parameters that minimize the number of side-channel measurements.

5 Experiments with CC-EMA

In this section, CC-EMA is demonstrated based on an actual experiment using
Side-channel Attack Standard Evaluation BOard (SASEBO) [22]. We derive the
success probability to recover the key value utilizing means and standard devia-
tions of EM measurements. Finally, we quantify the key strength by comparing
the success probabilities in shift case and no-shift case.

Table 1 summarizes the setting of our experimental environment. The AES
circuit is implemented on the cryptographic FPGA mounted on SASEBO-G.
The S-box of AES Comp [23] is without SCA countermeasures and based on
the composite field calculation. In order to verify the concept, we set up the
best position for collecting the CC leakage from a target byte. In the following
sections, the experimental results will be shown against the AES implementation.

402 T. Nakasone et al.

Table 1. Environment for experiments

Target FPGA Xilinx Virtex-II Pro Series XC2VP7-5FG456C
Clock frequency 8MHz
Oscilloscope Agilent DSO7032A
EM probe MORITA-TECH WM7000 Probe Series HC020
Amplifier MORITA-TECH YCK1000AMP

0 10 20 30 40 50 60 70 80

15

20

25

30

35

40

45

Time [ns]

E
M

 in
te

n
si

ty

�

�

EM trace of no clockwise collision
EM trace of clockwise collision

E
M

 in
te

n
si

ty

Time [ns]

Fig. 2. The EM traces at the last round
of AES

�

�

�

�

�

�

�

	

�

��

� �
 �� �� �� �� �
 �� �� ��

����

������

����

������

�
��
�
�
�
��
�	

�
��
�

�
��
�
�

�
��
�
�

��������	��
���
�
�

	
��
���
�

	�������
��� �
�

Fig. 3. Conditional probability distribu-
tions of the actual EM intensity and its
approximation

�

������

������

������

������

������

������

	�����

�����

������

�������

� � � �
 �� �� �� �� �
 �� �� �� �� �

���

���

����

����

����

��������	
��

�
�
�
��
�
�
	
�

�
�
��
�
�

��

�
�
�
�
��
��
�
��
��
�

Fig. 4. The total number of measure-
mentsM(t, h),, for threshold h when μ0 =
13, μ = 20, σ2

0 = 29, and σ2 = 33

�

��

��

��

��

��

��

	�

�

��

���

� � � �
 �� �� �� �� �
 �� �� �� �� �

���

���

����

����

����

�
��
�
��
��
�	

�

�

��
�
��
�
��
��
�
��
��
��

�

��������	
��

Fig. 5. The success probability Ps(t, h),
for threshold h when μ0 = 13, μ =
20, σ2

0 = 29, and σ2 = 33

5.1 Success Probability Using Experimental Data

Based on an actual experiment, we obtain the EM traces as shown in Fig. 2. We
observe the EM intensity x. Table 2 shows that means and standard deviations
of the EM intensities in each HD, which are calculated using 100 000 traces.
According to the values, we have μ0 = 13, μ = 20, σ2

0 = 29, and σ2 = 33. Both the
conditional probability distribution of HD = 0 and the HD �= 0 are illustrated in
Fig. 3. Using the means and the standard deviations, we approximate conditional
probability density functions that are also described in Fig. 3. With the proposed
distinguisher and the approximated probability density functions, we represent
the probability curve for Ps(t, h) and the number of necessary EM measurements
M(t, h), with respect to each threshold in Figs. 4 and 5.

Notice that M(t, h) is calculated with Eq. (6), and the result of Ps(t, h) is
based on Monte Carlo simulation, when t ≥ 2. We can find that the success

Key-Dependent Weakness of AES-Based Ciphers 403

Table 2. Means and standard deviations of EM intensity data for HD = a

a 0 1 2 3 4 5 6 7 8
μa 12.9 19.4 19.9 20.5 20.7 21.1 20.7 20.7 21.4
σ2
a 28.8 33.6 34.4 32.6 32.4 32.5 33.1 32.7 32.2

�

����

����

����

����

�����

�����

�����

� � � � �� �� �� �� �� ��

������

������

���	���

�
�
�
��
�
�
	
�

�
�
��
�
�

��

�
�
�
�
��
��
�
��
��
�

��������	
	�����
�����������	����
����

�	���

�	���

�	
��

Fig. 6. Relationship between M(t, h) and
t in shift case

�

����

����

����

����

�����

�����

�����

� � � � �� �� �� �� �� ��

�������	�

������

�������

�������

�������

�
�
�
��
�
�
	
�

�
�
��
�
�

��

�
�
�
�
��
��
�
��
��
�

��������	
	�����
�����������	����
����

��
���

Fig. 7. Relationship M(t, h) and t when
the success probability Ps(t, h) = 100%2

�

����

����

����

����

�����

�����

�����

� � � � �� �� �� �� �� ��

�������	�

������

�������

�������

�������

�
�
�
��
�
�
	
�

�
�
��
�
�

��

�
�
�
�
��
��
�
��
��
�

��������	
	�����
�����������	����
����

��
���

Fig. 8. Relationship M(t, h) and t when
the success probability Ps(t, h) = 90%

�

����

����

����

����

�����

�����

�����

� � � � �� �� �� �� �� ��

�������	�

������

�������

�������

�������

�
�
�
��
�
�
	
�

�
�
��
�
�

��

�
�
�
�
��
��
�
��
��
�

��������	
	�����
�����������	����
����

��
���

Fig. 9. Relationship M(t, h) and t when
the success probability Ps(t, h) = 50%

probability is increased when the value of h is decreased. However, M(t, h) is
also increased.

To check more details, we plot the relationship between M(t, h) and t in
Fig. 6. We verify the minimum number of measurements M(t, h) for identifying
the correct key. When we need the success probability to be more than 90%
in our environment, it is possible to identify the key with EM measurements of
M(8, 12.5) = 44311. From the results, we know that the optimal t exists, because
for the small t, e.g., t = 2, the correct the EM traces with CC might be mistaken
for the wrong ones.

As described in Sect. 3.1, the AES algorithm has two cases i.e., the shift
and no-shift cases. In the no-shift case, the probability of CC is imbalanced,
and it depends on the key value in the AES last round. Therefore, the no-shift
case is divided into 5 different groups depending on the probability of CC3.
Here, we investigate the success probability in the no-shift case, i.e., Ncc=1,

1 We have Ps(8, 12.5) = 91.2%.
2 Note that the case of Ncc = 1 cannot identify the correct key with M(t, h) ≤ 14000.
3 Appendix A explains the probability of CC of each group in detail.

404 T. Nakasone et al.

2, 3, or 4, where Ncc is the number of CCs. Although the Ncc=0 is out of
scope of this paper, it will be interest to consider the method to identify the
correct key when Ncc = 0. Figures 6, 7, 8 and 9 show the relationship between
M(t, h) and t in both the shift and the no-shift cases. When we need the success
probability, Ps(t, h) ≥ 90% for Ncc = 4, it is possible to identify the key with EM
measurements of M(4, 12.5) = 5454. From the result of Figs. 7, 8 and 9, we can
retrieve the weak keys with Ncc > 1 utilizing the less number of measurements
than the measurement in shift case.

As shown in Figs. 6, 7, 8 and 9, the success probability largely depends on
the probability of CC. Hence, the AES algorithm exists the imbalance of the key
strength from side-channel perspective. In addition, the result explains quanti-
tatively analyzed key strength with the success probability to recover its value.

6 Discussion: Feedback to Future Designs of AES-Based
Primitives

Designing new block ciphers and other symmetric-key primitives, e.g., hash func-
tions and MACs, is actively discussed even now. This is because the crypto-
graphic community needs not only ciphers for a generic purpose, but also light-
weight ciphers or new hash function standards. To design such new primitives,
borrowing the idea of the AES algorithm is very natural due to several reasons.

– The security of AES has already been analyzed very well.
– Many implementation techniques are known for AES. Besides, if designers

want to exploit the AES-NI [24], the new algorithm must be based on AES.

Therefore, we still have high demand for designing AES-based primitives. The
purpose of the discussion in this section is giving a feedback from our results on
AES to future AES-based algorithm designs. Such discussion would be useful.
For example, the AES-based hash function Grøstl, which is one of the final-
round candidates of the SHA-3 competition, explicitly says that the side-channel
analysis against MAC usage of Grøstl can be prevented in the same manner as
protecting AES.

As discussed in Sect. 3, AES has several weak keys for the no-shift case. In
general, the weak keys can be avoided by changing the implementation. In our
case, avoiding the parallel execution of 16 S-boxes can be a countermeasure.
However, besides the implementation, it is possible to prevent CC by slightly
modifying the algorithm without giving any impact to the performance nor the
security against theoretical (non-side-channel) analysis. We stress that we never
suggest changing the specification of the AES algorithm, but suggest considering
the resistance against CC when new AES-based primitives are designed.

An ideally designed cipher should be secure even if the weakest keys are
used. In other words, the security is considered by the weakest key rather than
the strongest key. Following this philosophy, cipher’s designers should avoid the

4 We have Ps(4, 12.5) = 90.7%.

Key-Dependent Weakness of AES-Based Ciphers 405

structure which yields weak keys in terms of CC. There are two possible direc-
tions. Note that achieving only one of them is enough.

1. Design an S-box so that all keys have the same strength, even if the no-shift
case occurs.

2. Design diffusion so that the no-shift case never occurs.

6.1 Feedback to S-Box Design Principle

As explained in the no-shift case, the probability of CC depends on the S-box
transformation, which is written by

Pr [Ir = Cr] =
#Cr|S(Cr)⊕Kr = Cr

256
, (7)

=
#Cr|S(Cr)⊕ Cr = Kr

256
. (8)

This means that if the value of S(Cr)⊕Cr , which is a difference between an input
and the corresponding output of the S-box, is biased and takes a particular value
more frequently than others, the corresponding Kr is a weak key. Therefore, to
avoid weak keys against CC, the S-box needs to satisfy the following property.

max
y

#{x|S(x) ⊕ x = y} = 1. (9)

Equation (9) is satisfied only when the number of solution is exactly 1 for all y.
Therefore the S-box must have a so-called fixed point, which means the value
x such that S(x) ⊕ x = 0. In many cases, the S-box is designed so that it does
not have a fixed point. However, with respect to CC, having one fixed point and
satisfying Eq. (9) is best. As far as we know, this is the first criteria for the S-box
design that focuses on how many kinds of differences are generated between the
input and output.

6.2 Feedback to ShiftRows Design Principle

Note that the shift case in Sect. 3.1 does not have weak keys. Hence, another de-
sign strategy is avoiding the no-shift case. One of the advantages of this strategy
is that previously known S-boxes can still be used. For example, the fixed point
can be avoided for the S-box and using the same S-box as AES for running the
AES-NI is also possible.

There are two methods to avoid the no-shift case. One is avoiding byte-to-byte
operation at the last round, e.g., performing the MixColumns operation at the
last round of AES. However, this breaks the symmetry in the encryption and
decryption and may lose the advantage for the implementation.

The other method is avoiding storing the S-box output in the same regis-
ter as the input, i.e., avoiding 0 for the parameter of the ShiftRows operation.

406 T. Nakasone et al.

•
•
•
•

↓ ShiftRow
•

•
•

•

Fig. 10. ShiftRow for Rijndael-192

•
•
•
•

↓ ShiftRow
•

•
•

•

Fig. 11. ShiftRow for Rijndael-256

Let us look the details of the Rijndael cipher as a case study. Rijndael [25]
is the cipher proposed by Daemen and Rijmen which is a base of the AES.
Different from AES, Rijndael supports larger block sizes; 192-bit and 256-bit
blocks. The ShiftRow operations are described in Figs. 10 and 11. According
to the specification, the parameters are chosen to resist the (truncated) differ-
ential cryptanalysis. It is explicitly mentioned that choosing 0 for the first row
is one of the design criteria. However the internal state is rectangle, avoiding
parameter 0 is possible. Moreover, avoiding parameter 0 only gives negligible
impact to the cipher’s performance and cost. As a result, avoiding parameter
0, e.g., parameter (1,2,3,4) for Rijndael-192, is more advantageous to increase
the resistance against CC-based analysis. The observation seems useful because
most of previously designed AES-based primitives use 0-byte rotation for the
ShiftRows parameter. Note that this method cannot be applied to AES-based
designs whose row numbers and column numbers are the same. However, also
note that the block size of AES-128 is often too small to build hash functions.
Hence, making the internal state size rectangle is a natural way to extend the
internal state size. For example, Grøstl-512 hash function adopts two AES-based
permutations whose internal state size is 8 rows and 16 columns.

7 Conclusions

This paper represented the key-dependent weakness of AES-based ciphers un-
der clockwise collision. Initially, we constructed the new evaluation method for
clockwise collision with the threshold-based distinguisher. This paper demon-
strated the proposed evaluation method against AES implementation with a
128-bit data path. During the evaluation, we discovered that the probability of
clockwise collision was imbalanced, which caused the key-dependent weakness.
In order to evaluate the weakness depending on the key value, we quantified the
key strength based on practical experimental data and mathematical analysis.
Finally, we provided feedback to the design philosophy of S-box and ShiftRows
in AES-based ciphers to avoid the imbalance of key strength. As a future work,
the clockwise collision distinguisher will be compared with other distinguishers
from side-channel perspective.

Key-Dependent Weakness of AES-Based Ciphers 407

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

3. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

4. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

5. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp.
16–29. Springer, Heidelberg (2004)

6. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining Smart-Card Security un-
der the Threat of Power Analysis Attacks. IEEE Trans. Computers 51(5), 541–552
(2002)

7. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp.
238–251. Springer, Heidelberg (2000)

8. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

9. Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Power and Electromagnetic Analy-
sis: Improved Model, Consequences and Comparisons. Integration, the VLSI Jour-
nal 40(1), 52–60 (2007)

10. Mateos, E., Gebotys, C.H.: Side Channel Analysis using Giant Magneto-Resistive
(GMR) Sensors. In: Proc. of Second International Workshop on Constructive Side-
Channel Analysis and Secure Design, COSADE 2011, pp. 42–49 (2011)

11. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Heidelberg (2003)

12. Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and Its
Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp.
206–222. Springer, Heidelberg (2003)

13. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Com-
bining Side Channel- and Differential-Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

14. Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer,
Heidelberg (2007)

15. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

16. Moradi, A.: Statistical Tools Flavor Side-Channel Collision Attacks. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
428–445. Springer, Heidelberg (2012)

408 T. Nakasone et al.

17. Li, Y., Nakatsu, D., Li, Q., Ohta, K., Sakiyama, K.: Clockwise Collision Analysis –
Overlooked Side-Channel Leakage Inside Your Measurements. Cryptology ePrint
Archive, Report 2011/579 (2011), http://eprint.iacr.org/

18. Kirschbaum, M., Schmidt, J.-M.: Learning from Electromagnetic Emanations - A
Case Study of iMDPL. In: Second International Workshop on Constructive Side-
Channel Analysis and Secure Design, COSADE 2011, pp. 50–55 (2011)

19. Dehbaoui, A., Lomne, V., Maurine, P., Torres, L., Robert, M.: Enhancing Elec-
tromagnetic Attacks Using Spectral Coherence Based Cartography. In: Becker, J.,
Johann, M., Reis, R. (eds.) VLSI-SoC 2009. IFIP AICT, vol. 360, pp. 135–155.
Springer, Heidelberg (2011)

20. Meynard, O., Réal, D., Flament, F., Guilley, S., Homma, N., Danger, J.-L.: En-
hancement of Simple Electro-Magnetic Attacks by Pre-characterization in Fre-
quency Domain and Demodulation Techniques. In: Proceedings of the Conference
on Design, Automation and Test in Europe, DATE 2011, pp. 1004–1009. IEEE
(2011)

21. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006)

22. National Institute of Advanced Industrial Science and Technology (AIST), Side-
channel Attack Standard Evaluation Board (SASEBO),
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

23. Tohoku University, Cryptographic Hardware Project: Project Webpage,
http://www.aoki.ecei.tohoku.ac.jp/crypto/

24. Gueron, S.: Intel’s New AES Instructions for Enhanced Performance and Secu-
rity. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 51–66. Springer,
Heidelberg (2009)

25. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998)

A Classification of Last-Round Subkey

In Sect. 3, we explain that the probability of CC is different depending on the key
value in the no-shift case. Based on our evaluation using the CC distinguisher, the
subkeys that have Ncc > 1 are recovered with the less number of measurements
than the subkeys in shift case. Here, Table 3 shows that the AES last-round
subkey value of the first row are classified according to the probability of CC.
The detailed relationship between the key values and the number of CCs, Ncc,
are represented in Table 4. Note that, the Ncc for each subkey is calculated by
#{Cr|S(Cr)⊕Kr = Cr}.

Table 3. Classification of subkey of the first row in AES last round

Ncc #key values Probability

0 93 36.3

1 91 35.5

2 54 21.1

3 15 5.9

4 3 1.2

http://eprint.iacr.org/
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
http://www.aoki.ecei.tohoku.ac.jp/crypto/

Key-Dependent Weakness of AES-Based Ciphers 409

Table 4. Relationship between the key value and the number of CCs, Ncc

Key value Ncc Key value Ncc Key value Ncc Key value Ncc

00 0 40 1 80 2 c0 0

01 2 41 1 81 0 c1 0

02 1 42 1 82 3 c2 3

03 1 43 0 83 0 c3 2

04 0 44 1 84 0 c4 1

05 1 45 3 85 1 c5 0

06 3 46 0 86 0 c6 1

07 0 47 0 87 1 c7 2

08 1 48 0 88 0 c8 1

09 0 49 1 89 0 c9 1

0a 0 4a 2 8a 0 ca 0

0b 0 4b 1 8b 0 cb 1

0c 1 4c 3 8c 2 cc 0

0d 0 4d 1 8d 4 cd 1

0e 0 4e 2 8e 1 ce 0

0f 0 4f 1 8f 1 cf 2

10 2 50 1 90 3 d0 1

11 2 51 3 91 1 d1 1

12 2 52 1 92 1 d2 1

13 1 53 0 93 2 d3 0

14 2 54 0 94 0 d4 2

15 0 55 1 95 1 d5 0

16 1 56 0 96 0 d6 2

17 0 57 1 97 2 d7 2

18 0 58 0 98 2 d8 1

19 1 59 1 99 0 d9 3

1a 3 5a 2 9a 0 da 3

1b 0 5b 0 9b 0 db 2

1c 3 5c 0 9c 2 dc 1

1d 0 5d 1 9d 0 dd 1

1e 1 5e 0 9e 0 de 2

1f 2 5f 1 9f 1 df 1

20 3 60 2 a0 2 e0 0

21 1 61 1 a1 0 e1 0

22 2 62 2 a2 0 e2 1

23 0 63 2 a3 2 e3 0

24 0 64 0 a4 0 e4 1

25 0 65 1 a5 1 e5 0

26 0 66 0 a6 0 e6 1

27 1 67 1 a7 0 e7 4

28 1 68 2 a8 0 e8 2

29 0 69 1 a9 3 e9 1

2a 0 6a 1 aa 0 ea 0

2b 2 6b 0 ab 0 eb 1

2c 1 6c 2 ac 0 ec 1

2d 1 6d 2 ad 2 ed 2

2e 1 6e 3 ae 1 ee 1

2f 0 6f 1 af 0 ef 2

30 1 70 1 b0 1 f0 2

31 0 71 0 b1 1 f1 1

32 2 72 2 b2 0 f2 2

33 1 73 2 b3 0 f3 0

34 1 74 1 b4 2 f4 2

35 0 75 1 b5 2 f5 1

36 0 76 0 b6 2 f6 2

37 0 77 1 b7 1 f7 1

38 2 78 1 b8 2 f8 2

39 1 79 2 b9 4 f9 0

3a 1 7a 3 ba 1 fa 0

3b 0 7b 1 bb 0 fb 1

3c 2 7c 1 bc 0 fc 2

3d 1 7d 1 bd 0 fd 0

3e 0 7e 0 be 2 fe 1

3f 1 7f 0 bf 1 ff 0

Efficient Group Signatures

in the Standard Model�

Laila El Aimani and Olivier Sanders

Technicolor, Security & Content Protection Labs
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France

Abstract. In a group signature scheme, group members are able to sign
on behalf of the group. Since the introduction of this cryptographic au-
thentication mechanism, several schemes have been proposed but only
few of them enjoy a security in the standard model. Moreover, those
provided in the standard model suffer the recourse to non standard-
assumptions, or the expensive cost and bandwidth of the resulting
signature.

We provide three practical group signature schemes that are provably
secure in the standard model under standard assumptions. The three
schemes permit dynamic enrollment of new members while keeping a
constant size for both keys and group signatures, and they improve the
state-of-the art by several orders of magnitude.

Keywords: Group signature, bilinear groups, standard model, non-
interactive zero-knowledge.

1 Introduction

Group signatures, introduced in 1991 by Chaum and Van Heyst [12] allow mem-
bers of a group to anonymously sign messages on behalf of the whole group.
However, to prevent abuses, the group is controlled by a group manager that has
the ability to open the group signature, i.e. to identify the signer of a message.
Group signatures have proved to be extremely useful in various applications, for
example keycard access to restricted areas, where it is necessary to secure areas
to only employees of the group without tracking individual employee’s move-
ments.

Related Works. Since their introduction, a great number of security properties
that group signatures should meet have been introduced until Bellare, Micciancio
and Warinschi [4] provided appropriate definitions and formalized the intuitive
informal requirements of previous works. In fact, they proposed two properties

� This is an extended abstract. The full version [14] is available at the Cryptology
ePrint Archive.

�� Laila El Aimani is now an independent researcher and Olivier Sanders is with Orange
Labs.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 410–424, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Efficient Group Signatures in the Standard Model 411

for static groups, namely full anonymity and full traceability, that captured all
previous requirements. Full anonymity requires that group signatures reveal no
information about the signer, even in the presence of a powerful adversary who
has access to an opening oracle and to all users secret keys. Full traceability
requires that the group manager is always able to identify the signer of a valid
group signature or a member of the coalition that issued it. Bellare, Shi and
Zhang [5] extended these notions to dynamic groups and added the notion of
non-frameability, which requires that even a dishonest group manager and a
coalition of group members cannot falsely accuse an honest user of having issued
some group signature.

Boneh and Shacham [7] proposed a weaker notion of anonymity, called selfless
anonymity, where signers can trace their own signatures. Further schemes ([8],
[9]) introduced another weak version of anonymity, namely the CPA-anonymity
where the adversary does not have access to an opening oracle. As mentioned
in [6], this is a much more serious limitation because the opening functionality
becomes virtually useless.

Most practical group signatures schemes ([6], [13]) that have been proposed
are proven secure in the random oracle model (ROM). Indeed, despite its inher-
ent flaws ([11], [3]), the ROM compares much better than the standard model
with respect to efficiency. Ateniese et al. [2] gave an efficient group signature
scheme in the standard model but proved its security under non-standard as-
sumptions. Moreover, the security proof of anonymity (lemma A.2 of their paper)
does not mention any access to opening oracles by the adversary and thus differs
from the standard CCA-anonymity experiment. Actually, this CCA-anonymity
seems hard to reach since their group signatures are partially re-randomizable,
so any adversary against the selfless anonymity is able to re-randomize the first
part of the challenge group signature and make an opening request on the result.
In 2007, Groth [15] gave the first efficient realization, achieving full anonymity
in the standard model, where the size of group signatures is about 50 elements.

Our Contributions. We propose three groups signatures schemes, proven se-
cure in the standard model under standard assumptions, that improve the size
of group signatures and the number of pairings required for the signature veri-
fication.

In our constructions, each user joining the group receives a certificate on a
key while the group manager receives some information allowing him to open
the group signatures produced by this user. To produce a group signature on a
message, the user will use his key to sign, with a digital signature scheme, the
message, a randomized part of the certificate and the verification key of a strong
one-time signature. Then he will produce a non-interactive zero-knowledge proof
(NIZK) to prove that the key used to sign the message is certified. Finally, to
prevent anyone else to randomize his group signature, the user will sign some of
its elements with the strong one-time signature scheme.

Our first group signature scheme, whose group signatures comprise only 22
group elements, achieves selfless anonymity without the need for encryption.

412 L. El Aimani and O. Sanders

Indeed, the use of the Camenish-Lysyanskaya signature scheme [10] makes it
possible to disclose the digital signature on the message in the group signature,
and thus to decrease the cost and size of the non-interactive proof of knowledge.
The scheme resorts however to a trusted party to set up the system parameters.
Moreover the cost of the opening algorithm is linear in the number of members.

Our second group signature scheme overcomes the drawbacks of the first
scheme but at the expense of a slight increase in the size of the group signature
(28 group elements). In fact, users certify now their verification keys (instead of
their signing keys), allowing the group manager to set up the system parameters
and to extract the identity of the group signature issuer using his extraction key.
Since the verification keys are group elements, we now require that our certificate
scheme is structure-preserving [1], which explains the extra-cost of the scheme.

Finally we propose a generic group signature scheme that generalizes Groth’s
scheme, and which achieves full anonymity. The construction makes use of an
encryption scheme in order to be able to use any EUF-CMA digital signature
scheme, which increases the size/cost of the group signature. An instantiation
of this construction results in a group signature with 30 group elements.

We summarize in Figure the signature sizes (number of group elements), the
verification costs (number of pairings) and the opening cost (as a function of the
number of participants, denoted r) of our contributions (GS1, GS2, GS3) and
compare them with the state of the art.

Scheme Signature size Verification cost Opening cost Standard model?

BCNSW [6] 5 2 O(r) No

DP [13] 9 1 O(1) No

Groth [15] 50 246 O(1) Yes

GS1 (Section 4) 22 73 O(r) Yes

GS2 (Section 5) 28 124 O(1) Yes

GS3 (Section 6) 30 92 O(r) Yes

Fig. 1. Comparison between group signatures performances

Outline of the Paper. The rest of this paper is organized as follows. In section
2 we recall definitions of the notions that we use in our schemes. Section 3 defines
the syntax and the security model of a secure group signature scheme. Following
sections present our group signature schemes. We defer the security proofs to
the full version [14].

2 Preliminaries

In this section we recall some necessary bricks that will be used throughout
the document, namely bilinear maps, Camenisch-Lysyanskaya’s signatures, and

Efficient Group Signatures in the Standard Model 413

signatures on committed values. Note that we defer in full version [14] the recall
of further primitives such as (one-time, structure-preserving) signatures, tag-
based encryption, and non-interactive proofs of knowledge.

2.1 Bilinear Groups

Our constructions use cyclic groups of prime order that have a non-degenerate
efficiently computable bilinear map e. We use the following notations:

– G1,G2,GT are cyclic groups of prime order q.
– We write the group operations multiplicatively in each group.
– A bilinear map e : G1 ×G2 → GT has the following properties:

1. For all x ∈ G1, y ∈ G2 and a, b ∈ Zq we have e(xa, yb) = e(x, y)ab.
2. For x �= 1G1 or y �= 1G2 , e(x, y) �= 1GT .
3. e is efficiently computable.

The Symmetric External Diffie-Hellman (SXDH) Assumption: We say
SXDH holds in the bilinear groups G1 and G2 if DDH is hard in both groups,
where DDH (Decisional Diffie-Hellman) is the following problem:

Given (g, ga, gb, gc) it is hard to decide whether c = ab mod q or random.

2.2 Camenisch-Lysyanskaya Signatures

Our group signature schemesmake use of the pairing-basedCamenish-Lysyankaya
signature schemes [10] (schemeA and schemeC in their paper), which are provably
secure under the LSRW assumption [16]. The two schemes operate in three cyclic
groupsG1,G2 andGT of prime order q, equipped with a pairing e : G1×G2 → GT ,
and two generators g ∈ G1 and g̃ ∈ G2.

Lysyanskaya-Sahai-Rivest-Wolf (LSRW) Assumption:
Let g̃ ∈ G2, x̃ = g̃α, ỹ = g̃β and Ox̃,ỹ(.) be an oracle that, on input a value
u ∈ Zq, outputs A = (a, aβ, aα+uαβ) ∈ G3

1 for a randomly chosen a ∈ G1. Then
for all probabilistic polynomial time adversaries A, the quantity ε is negligible:

ε = Pr[α, β ← Zq; x̃← g̃α, ỹ ← g̃β; (u, a, b, c)← AOx̃,ỹ (x̃, ỹ) :

u /∈ Q ∧ a ∈ G1 ∧ b = aβ ∧ cα+uαβ]

where Q is the set of queries asked by A to his oracle Ox̃,ỹ(.).

2.3 Re-randomizable Signatures on Committed Values

Our constructions use i.e. digital signature schemes Σ with the following
properties:

414 L. El Aimani and O. Sanders

[Key generation] Choose α, β
R←− Zd then compute X ← g̃α and Y ← g̃β

set pk ← {X,Y } and sk ← {α, β}.
[Signature on m] Choose a random a ∈ G1

and outputs : σ = (a, aβ , aα+mαβ)
[Verification] Given pk,m and σ = (a, b, c)

check if the following equations holds:
e(a, Y) = e(b, g̃) and e(a,X).e(b,X)m = e(c, g̃)

Fig. 2. Camenisch-Lysyanskaya’s signature A

[Key generation] Choose α, β, zi
R←− Zd then compute X ← g̃α, Y ← g̃β

and Zi ← g̃zi for 1 ≤ i ≤ l
set pk ← {X,Y, Zi}1≤i≤l and sk ← {α, β, zi}1≤i≤l.

[Signature on (m0, ..., ml)] Choose a random a ∈ G1

Ai = azi for 1 ≤ i ≤ l

b = aβ, Bi = (Ai)
β

c = aα+αβm0
l∏

i=1

Aαβmi

and outputs the signature σ = (a, {Ai}, b, {Bi}, c)
[Verification] Given pk,m and σ

check if the following verification equations holds:
e(a,Zi) = e(Ai, g̃)
e(a, Y) = e(b, g̃) and e(Ai, Y) = e(Bi, g̃)

e(a,X).e(b,X)m0
l∏

i=1

e(Bi, X)mi = e(c, g̃)

Fig. 3. Camenisch-Lysyanskaya’s signature C

– The signature scheme is re-randomizable i.e. it admits a function SigRand

such that for each signature σ on a message m, SigRand(σ) = σ′, where σ′

is a valid signature on m and such that no probabilistic polynomial time
adversary A, with access to a signing oracle, is able, given a signature σ, to
distinguish a randomized version of σ from a signature on a random element
of the message space.

– Σ admits an algorithm comSign to obtain signatures on committed val-
ues which, on input c (where (c, r) ← Commit(m)) and π ← POK{(m, r) :
(c, r) = Commit(m)}(c), outputs σ such that
Σ.verify(σ, (m, r)) = 1.

We define EUF-CMA security the same way as the standard digital signature
schemes (a re-randomizable signature scheme cannot obviously reach the SEUF-
CMA security). As shown in [10] the signature scheme described in figure 3 is
EUF-CMA secure and admits an efficient protocol (described in Fig. 4) for ob-
taining signature on committed value. Moreover, using a proof similar to that
of [6], this scheme is re-randomizable if the DDH-assumption holds in G1.

Efficient Group Signatures in the Standard Model 415

Signer (input: sk, pk) User (input: m1,m2, ...,mk and pk)
Ui ← gzi for 1 ≤ i ≤ k

Ui−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
l

R←− Zq

C ← gl
k∏

i=1

U
mi
i

π ← POK{(l,m1, ...,mk) : C = gl
k∏

i=1

U
mi
i }(C)

C, π←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x

R←− Zq

a ← gx

Ai = azi for 1 ≤ i ≤ k

b = aβ , Bi = (Ai)
β

c = aαCxαβ

σ ← (a, {Ai}, b, {Bi}, c)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 4. Protocol for obtaining a CL signature C on committed values

3 Defining Group Signatures

3.1 Syntax

A group signature scheme consists of a set of users, identified by a unique index
i, that can produce signatures on behalf of the group. Users must interact with
a certification authority and the group manager to join the group. At the end of
this interaction, each user obtains a signature key pair and the group manager
obtains some information that will allow him to identify the group signatures
issuers. The syntax that we require is as follows.

– Keygen(λ): This algorithm inputs a security parameter λ and outputs
(gpk, skcert, skM ,Sreg,reg), where gpk is the group public key, skcert is the
issuer’s secret key, skM is the group manager’s secret key, Sreg is the group
manager’s secret register and reg is a public register.

– Join(gpk, upki): The Join protocol is used to add a new user to the group.
It consists of one interactive protocol between the user and the issuer and
another one between the user and the group manager. The common inputs of
this protocol is gpk and the user’s public key upki. The private input of the
user is uski whereas the private inputs of the issuer and the group manager
are skcert and skM respectively. As a result of the first interaction, the user
obtains his group signing key ski, the verification key vki and a certificate,
σcert(i), proving membership of the group. Then he uses uski to compute σi,
a digital signature on vki. At the end of the second interaction, the group
manager obtains and stores vki and σi in Sreg[i] and publishes upki in reg[i].

– Sign(gpk, ski, σcert(i),m) : This algorithm inputs a message m, the user’s
secret key and certificate and outputs a group signature μ on m.

416 L. El Aimani and O. Sanders

– Verify(gpk, μ,m) : This algorithm inputs a message m and a group signa-
ture μ and outputs 1 if μ is a valid group signature on m, and 0 otherwise.

– Open(gpk,m, μ, skM) : This algorithm inputs a message m, a group signa-
ture μ and the group manager’s secret data skM and Sreg. If μ is a valid
group signature on m from user i it returns a proof τ of this statement and
the identity i, else it returns ⊥.

– Judge(gpk,m, μ, i, τ) : This algorithm inputs a messagem, a group signature
μ, an identity i and a proof of knowledge τ . It returns 1 if τ is a valid proof
that μ is a group signature on m, issued by user i. Otherwise it returns 0.

3.2 Security Model

In this section we give the security definitions that we require for group signature
schemes. We adhere to the model defined by [5], except that we use the selfless
anonymity notion from [7] instead of the full anonymity for our first two group
signature schemes. Informally, selfless anonymity, contrarily to full anonymity,
does not protect dishonest users, i.e. the adversary does not know the private
keys of the identities he wishes to be challenged on. As in [6], we consider a setting
with n users divided statically into setsHU andDU of honest and dishonest users
respectively (i.e an honest user cannot be corrupted during the experiment).
This static division implies, by guessing the indices of ”target” users in the
anonymity and non-frameability experiment, security in the dynamic corruption
case.
The security notions make use of the following oracles:

– OJoinUD(gpk, upki, skM) is an oracle that executes the user’s side of the
join protocol for the input user i ∈ HU . This oracle will be used by an ad-
versary playing the role of the corrupted group manager.

– OJoinDM (gpk, upki, uski) is an oracle that executes the join protocol with
the honest group manager. This oracle will be used by an adversary to reg-
ister a corrupted user.

– OSign(i,m) is an oracle that accepts as input an identity i and a message
m and returns a group signature μ if user i is honest and registered.

– OOpen(m,μ) inputs a message-signature pair (m,μ) and returns the result
of the function call
Open(Sreg, skM , μ,m). We use the notation OOpen¬(m,μ) when the query
(m,μ) is not allowed.

Correctness: We define the correctness of a group signature scheme through a
game in which an adversary is allowed to request a signature on some message

Efficient Group Signatures in the Standard Model 417

by any of the honest group members. The adversary wins if either the resulting
signature does not pass the verification test, the signature is opened as if it were
produced by a different user, or the judging algorithm returns 0. The group
signature scheme is correct if for any adversary A and any security parameter
λ (we keep this notation in the following experiments), Pr[Expcorr

A (λ) = 1] is
negligible in λ, where Expcorr

A (λ) is defined as follows:

1. HU ← {1..n}.
2. (gpk, skcert, skM)← Keygen(λ).
3. (ski, vki, σcert(i))← Join(gpk, skcert, skM) for each user i ∈ HU .
4. (i,m)← AOSign,OOpen(gpk).
5. If i /∈ HU then return 0.
6. μ← Sign(ski,m).
7. If Verify(gpk,m, μ) = 0 then return 1.
8. If Open(Sreg, skM , μ,m) = (j, τ) and j �= i then return 1.
9. If Judge(m,μ, τ, i) = 0 then return 1.

Anonymity: Informally, anonymity requires that group signatures do not re-
veal the signer’s identity. In the selfless-anonymity game the adversary’s goal
is to determine which of the two users generated the challenge signature. The
difference with the full anonymity of [5] consists in not giving the adversary A
access to either private key. As in [7] and [6] we define the selfless-anonymity
experiment Expanon−b

A (λ) as follows:

1. DU ← A(λ).
2. HU ← {1..n} \ DU .
3. (gpk, skcert, skM)← Keygen(λ).
4. (ski, vki, σcert(i))← Join(gpk, skcert, skM) for each user i ∈ HU .
5. (m, i0, i1)← AOSign,OOpen,OJoinDM (gpk) with (i0, i1 ∈ HU).
6. μ← Sign(skib ,m) for b

R←− {0, 1}.
7. b∗ ← AOSign,OOpen¬(m,μ),OJoinDM (gpk).
8. Return b∗.

We define Advanon−b
A (λ) = |Pr[b = b∗] − 1

2 |. The group signature scheme is
anonymous if for any probabilistic polynomial time adversary, this advantage
is a negligible function of λ. In the full-anonymity experiment, we no longer
require that i0, i1 ∈ HU , we then say that the group signature scheme is fully-
anonymous.

Traceability: Traceability requires that no adversary is able to create a valid
signature that cannot be traced to some user already registered. We define the
traceability experiment as follows:

1. DU ← {1..n}.
2. (gpk, skcert, skM)← Keygen(λ).
3. (m,μ)← AOOpen,OJoinDM (gpk).

418 L. El Aimani and O. Sanders

4. If Verify(gpk,m, μ) = 1 and Open(Sreg, skM , μ,m) =⊥ then return 1.
5. Return 0.

We define Advtrace
A (λ) = Pr[Exptrace

A (λ) = 1]. The group signature scheme is
traceable if for any probabilistic polynomial time adversary, this advantage is a
negligible function of λ.

Non-frameability: Informally, non-frameability requires that a cheating group
manager cannot falsely accuse an honest user of having signed a given message
m. We define the non-frameability experiment as follows:

1. DU ← A(λ).
2. HU ← {1..n} \ DU .
3. (gpk, skcert, skM)← Keygen(λ).
4. (ski, vki, σcert(i))← Join(gpk, skcert, skM) for each user i ∈ HU .
5. (i,m, μ)← AOSign,OJoinUD(skM , gpk).
6. If i /∈ HU or Verify(gpk,m, μ) = 0 then return 0.
7. If m was queried to OSign then return 0.
8. If Judge(m,μ, τ, i) = 0 then return 0.
9. Return 1.

We define Advnf
A (λ) = Pr[Expnf

A (λ) = 1]. The group signature scheme is non-
frameable if for any probabilistic polynomial time adversary, this advantage is a
negligible function of λ.

Remark: We can also define the strong non-frameability experiment in which
the adversary’s goal is to accuse an honest user of having created a given signa-
ture μ (we replace the line 7 by: if μ was produced by OSign then returns 0).

4 A Group Signature without Encryption

4.1 Description

The core of this group signature scheme is the combination of a re-randomizable
signature scheme Σcert and the signature scheme Σ1 described in Figure 2. We
assume that the system parameters are set up by a trusted party and that each
user i has a key pair (uski, upki) for a signature scheme Σ0 where upki is public
and associated to i. At the end of the Keygen algorithm, the issuer receives skcert.
When a new member joins the group, he creates a key pair (ski, vki) for Σ1, then
gets a certificate σcert(i) on ski (using the protocol for obtaining signatures on
committed values) and finally sends vki and a signature on it (using uski) to the
group manager who records it in his secret register Sreg. When making a group
signature on a message m, the member will first re-randomize his certificate and
generate a key pair (skots, vkots) for a strong one-time signature. Then he will
use his secret key ski to sign the concatenation ofm, the certificate and vkots and
give a non-interactive zero-knowledge proof of knowledge that the certificate is a

Efficient Group Signatures in the Standard Model 419

valid signature on ski. To prevent an adversary from randomizing the signature
or the non-interactive proof, the user will sign them with the strong one-time
signature. We use the following notations to describe our group signature scheme:

Notations:

– λ is the security parameter.
– G is a probabilistic polynomial time algorithm that, on input λ, generates

(G1,G2,GT , e, g, g̃) where g ∈ G1 and g̃ ∈ G2.
– KNI is a probabilistic polynomial time algorithm that, on input (G1,G2,GT ,
e, g, g̃), generates a common reference string crs for the Groth-Sahai proof
system.

– reg is a public register.
– Sreg is the secret register of the group manager.
– gpk is the group public key.

The algorithms defining our group signature scheme are described in figure 5.

Keygen(λ) Verify(m,μ)
gk ← G(λ) If VNI(crs, μ,m, π) = 1 ∧
crs ← KNI(gk) Σots.verify(vkots, σots, a‖π) = 1
(skcert, pkcert) ← Σcert.keygen(gk) then return 1
gpk ← (gk, pkcert, crs, reg) Else return 0.

Join(user: uski, issuer: skcert, group manager: Sreg) Open(Sreg,m,μ)
(ski, vki) ← Σ1.Keygen(gk) If Verify(m,μ) = 0
σcert(i) ← Σcert.comSign(skcert, Commit(ski), π) then return 0.
σi ← Σ0.sign(uski, vki) Parse μ as (m, vkots, σots, σ1, σcert, π)
Sreg[i]← (vki, σi) for vki in Sreg[i]:
reg[i] ← (i, upki) if Σ1.Verify(vki,m‖vkots‖σcert, σ1) = 1

return i and a proof τ .
Sign(ski, σcert(i),m) with τ ← POK{(vki, σi) :
σcert(i) ← Σcert.sigRand(σcert(i)) Σ1.Verify(vki,m‖vkots‖σcert, σ1) = 1 ∧
(skots, vkots) ← Σots.keygen Σ0.Verify(upki, vki, σi) = 1
(a, b, c) ← Σ1.sign(ski,m‖vkots‖σcert(i)) }(m,μ, reg)
π ← POK{(ski) :

(a, b, c) = Σ1.sign(ski,m‖vkots‖σcert(i)) ∧ Judge(m,μ, τ, i)
σcert(i) = Σcert.sign(skcert, ski) If VNIZK(crs,m,μ, τ, i) = 1
}(m, (a, b, c), σcert(i)) return 1.

σots ← Σots.sign(skots, a‖π) Else return 0.
μ ← (m, vkots, σots, (a, b, c), σcert(i), π)

Fig. 5. Group signature scheme 1

Theorem 1. If Σcert is a EUF-CMA secure signature scheme and (P, V) is a
sound zero-knowledge proof system, then the group signature is fully traceable.

Theorem 2. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a
strong one-time signature scheme and (P, V) is a sound, zero-knowledge proof
system, then the group signature scheme is strongly non-frameable.

420 L. El Aimani and O. Sanders

Theorem 3. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a
strong one-time signature and (P, V) is a sound, zero-knowledge proof system,
then the group signature scheme is anonymous.

The proofs are provided in the full version [14].

4.2 A Concrete Realization

We instantiate this system with the Λsxdh setting which refers to the case of
asymmetric pairings for which the DDH assumption holds in both G1 and G2.
We use the CL signature scheme described in Fig. 3 for Σcert, the weakly secure
Boneh-Boyen signature scheme described in Fig. 8 for Σots and the structure-
preserving signature described in Fig. 9 for Σ0.
We use the following notations to describe the proofs of knowledge:

Notations:

– (ski, pki)← ((αi, βi), (g̃
αi , g̃βi))

– (skcert, pkcert)← ((u, v, z1, z2), (U, V, Z1, Z2))

– (skM , pkM)← ((x1, x̃1, x2, x̃2), (X1, X̃1, X2, X̃2))
– σ1 ← (a1, b1, c1); σcert ← (a,A1, A2, b, B1, B2, c)
– η ← m‖vkots‖σcert

A group signature, (vkots, σots, (a, b, c), σcert(i)) involves 13 group elements, and
a proof π of the following equations (the variables are underlined):

e(a1, g̃)
βi = e(b1, g̃) (1)

(e(a1, g̃).e(b1, g̃)
η)αi = e(c1, g̃) (2)

e(c, g̃) = e(a, U).e(b, U)l .e(B1, U)αi .e(B2, U)βi (3)

where η is m‖vkots‖σcert and l is the randomness used by user i in the join stage
to obtain signature on the committed values αi and βi.
These equations involve 3 variables (αi, βi, l) and thus increase the size of the
proof by 6 group elements. Equations (1) and (2) proves that (a1, b1, c1) is a
valid Camenisch-Lysyanskaya signature from user i on η. These two equations
cost 1 group element each. Equation (3) proves that the certificate is a valid
signature on αi and βi and costs 1 group element. The total size of the proof is
then 9 group elements.

The total size of the group signature is thus 22 group elements, which amounts
to 700 Bytes if we consider an implementation using 256-bit groups sizes. Using
naive computations, equation (1) needs for the verification 18 pairings, equation
(2), 19 pairings and equation (3), 25 pairings. Checking the consistency of the
certificate and of the one-time signature adds 11 pairings. The total cost of the
Verify algorithm is then 73 pairings.

Efficient Group Signatures in the Standard Model 421

Remark: We can further reduce the size of the group signature if the group
manager and the certificate issuer are the same entity. Indeed, in the Join pro-
tocol we no longer need to use the hiding randomness l which decreases both
the size of the certificate and the size of the proof by two elements. The size of
the group signature is then 18 group elements.

5 A Group Signature without Encryption and without
Trusted Parties

5.1 Description

The main drawbacks of the previous scheme lie in requiring a trusted party
to set up the system parameters, and having the cost of the algorithm Open

linear in the number of users. To solve these two problems, users will now certify
their verification keys (instead of their signing keys), allowing thus the group
manager to set up the system parameters and to use the extraction keys ek of
the Groth-Sahai proofs to extract the identity behind a group signature.

This construction is similar to the previous scheme except that we require a
different signature scheme for Σcert. We now assume that any digital signature σ,
generated usingΣcert on an arbitrarymessagem can be efficiently transformed in
a reversible way to a pair (r, s) where r (r may be the empty string) is information
theoretically independent from m, i.e. there exists an algorithm Simulate that
inputs Σcert.sk and a message from the message space and outputs a string
indistinguishable from r. We require further the partial randomizability property
for Σcert, i.e. Σcert admits two algorithms SigPrand0 and SigPrand1, defined
as follows:

For each signature σ → (r, s) on a message m:

– (r′, state)← SigPrand0(r)
– s′ ← SigPrand1(s, state)

where r′ is unlinkable to r and σ′ ← (r′, s′) is a valid signature on m.
We use the same notations as in the previous scheme to define in figure 6 the

algorithms of our second group signature scheme. XNI will be the extraction
algorithm for the non-interactive Groth-Sahai proofs.

Theorem 4. If Σcert is a EUF-CMA secure signature scheme and (P, V) is a
sound zero-knowledge proof system, then the group signature is fully traceable.

Theorem 5. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a
strong one-time signature scheme and (P, V) is a sound, zero-knowledge proof
system, then the group signature scheme is strongly non-frameable.

Theorem 6. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a
strong one time signature and (P, V) is a sound, zero-knowledge proof system,
then the group signature scheme is anonymous.

The proofs are provided in the full version [14].

422 L. El Aimani and O. Sanders

Keygen(λ) Verify(m,μ)
gk ← G(λ) If VNI(crs, μ,m, π) = 1 ∧
(crs, ek) ← KNI(gk) Σots.verify(vkots, σots, a‖π) = 1
(skcert, pkcert) ← Σcert.keygen(gk) then return 1
gpk ← (gk, pkcert, crs, reg) Else return 0.

Join(user: uski, issuer: skcert, group manager: Sreg) Open(Sreg, ek,m,μ)
(ski, vki) ← Σ1.Keygen(gk) vki ← XNI (crs, μ)
σcert(i) ← Σcert.sign(skcert, vki) If vki is registered in Sreg
σi ← Σ0.sign(uski, vki) return i and τ
Sreg[i]← (vki, σi) Else return ⊥
reg[i] ← (i, upki) with τ ← POK{(vki, σi) :

Σ1.Verify(vki,m‖vkots‖r′, σ1) = 1 ∧
Sign(ski, σcert(i),m) Σ0.Verify(upki, vki, σi) = 1
(r, s) ← σcert(i) }(m,μ, reg)
(r′, state) ← SigPrand0(r)
s′ ← SigPrand1(s, state) Judge(m,μ, τ, i)
(skots, vkots) ← Σots.keygen(λ) If VNIZK (crs,m,μ, τ, i) = 1
(a, b, c) ← Σ1.sign(ski,m‖vkots‖r′) return 1.
π ← POK{(vki, s′) : Else return 0.

(a, b, c) = Σ1.sign(ski,m‖vkots‖r′) ∧
(r′, s′) = Σcert.sign(skcert, vki)
}(m, (a, b, c), r′)

σots ← Σots.sign(skots, a‖π)
μ ← (m, vkots, σots, (a, b, c), r

′, π)

Fig. 6. Group signature scheme 2

5.2 A Concrete Realization

We use the Λsxdh setting and the structure-preserving signature scheme de-
scribed in Fig. 9 for Σcert. We further use the weakly secure Boneh-Boyen sig-
nature scheme described in Fig 8 for Σots.
Using the same notations as in section 4 (with (X̃, Ỹ)← (g̃αi , g̃βi)) and [1], π is
a proof of the following equations:

e(a1, Y) = e(b1, g̃) (1)

e(a1, X).e(b1, X)η = e(c1, g̃) (2)

e(gz, z
′)e(gr, r

′)e(s′, t′)e(g1, X)e(g2, Y) = A (3)

e(hz, z
′)e(hu, u

′)e(v′, w′)e(h1, X)e(h2, Y) = B (4)

where σcert ← (z′, r′, s′, t′, u′, v′, w′) and η is m‖vkots‖(s′, t′, v′, w′). The authors
of [1] proved that (s′, t′, v′, w′) are information theoretically independent of the
signature element z′ and (X,Y).

These equations involve then 5 variables (X,Y, z′, r′, u′) and thus increase
the size of the proof by 10 group elements. Equations (1) and (2) prove that
(a1, b1, c1) is a valid Camenisch-Lysyanskaya signature from user i on η. These
two equations costs 2 group elements each. Equation (3) and (4) prove that the
certificate is a valid signature on X and Y and cost 2 group elements each. The
total size of the proof is then 18 group elements.

Efficient Group Signatures in the Standard Model 423

A group signature, (vkots, σots, (a, b, c), (s
′, t′, v′, w′)) involves 10 group ele-

ments, the total size is thus 28 group elements, which amounts to 900 Bytes if
we consider an implementation using 256-bit groups size. Using naive computa-
tions, equation (1) involves 22 pairings, equation (2), 27 pairings and equation
(3) and (4), 37 pairings each. Verifying the one-time signature adds 1 pairing.
The total cost of the Verify algorithm is then 124 pairings.

In the full version, we present a third construction which can be seen as a
generalization of Groth’s [15] group signature. Appropriate instantiation of this
construction results in a group signature consisting of 30 group elements, which
is more compact that the realization in [15] where the total size of the group
signature is 50 elements. Moreover, the verification cost of such a signature is
also much smaller than that of [15].

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. IACR Cryptology ePrint Archive, 2005:385
(2005)

3. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

6. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty
via group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.)
SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)

7. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 168–177. ACM (2004)

8. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

9. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

10. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: Vitter, J.S. (ed.) STOC, pp. 209–218. ACM (1998)

424 L. El Aimani and O. Sanders

12. Chaum, D.: Some weaknesses of “Weaknesses of undeniable signatures”. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 554–556. Springer,
Heidelberg (1991)

13. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006)

14. El Aimani, L., Sanders, O.: Efficient Group Signatures in the Standard Model.
Cryptology ePrint Archive (2012)

15. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

16. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym Systems (Extended
Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184–199. Springer, Heidelberg (2000)

Batch Verification Suitable for Efficiently

Verifying a Limited Number of Signatures

Keisuke Hakuta1,2, Yosuke Katoh2, Hisayoshi Sato1, and Tsuyoshi Takagi3

1 Hitachi, Ltd., Yokohama Research Laboratory,
292, Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0817, Japan

{keisuke.hakuta.cw,hisayoshi.sato.th}@hitachi.com
2 Graduate School of Mathematics, Kyushu University,

744, Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
k-hakuta@math.kyushu-u.ac.jp

3 Institute of Mathematics for Industry, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan

takagi@imi.kyushu-u.ac.jp

Abstract. Batch verification is a method for verifying digital signatures
at once. Batch verification can reduce the computational cost compared
to that of verifying each signature one by one, and in particular, batch
verification is especially appropriate for systems which are required to
verify a large amount of signatures. However, in addition to the above
requirement, several types of systems might also require verifying a lim-
ited number of digital signatures more and more efficiently in real-time.
For this purpose, to improve the efficiency of verifying a limited number
of signatures is presumably an important matter. This paper deals with
the second requirement and proposes an efficient batch verification tech-
nique suitable for verifying a limited number of signatures in real-time.
Our method can only be applied to elliptic curve based signatures, and
uses one of the two special families of elliptic curves.

Keywords: digital signature, batch verification, elliptic curve, Frobe-
nius expansion, endomorphism.

1 Introduction

A batch verification for digital signature scheme is a method to verify multiple
signatures simultaneously in order to significantly speed up signature verifica-
tion. If signatures are generated by multiple signers, we call it multi-signer batch
verification; otherwise, we call it single-signer batch verification in accordance
with [9]. Batch verification was firstly proposed by Naccache, M’Räıhi, Raphaeli,
and Vaudenay [22] and Yen and Laih [31], respectively. Although several batch
verification methods have been proposed (cf. [11,12,21,23]), almost all methods
were broken (cf. [4,7,15,29]).

In 1998, Bellare, Garay, and Rabin [3] introduced the notion of single-signer
batch verification (and also introduced screening which is a weaker notion of
batch verification) and proposed three general tests for discrete logarithm based

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 425–440, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

426 K. Hakuta et al.

signature schemes. The small exponents test was improved by Cheon and Lee
[6] to speed up batch verification for elliptic curve based signature schemes, and
proposed two batch verification tests. One is called the Sparse Exponent Test
and the other is called “the Complex Exponent Test” (CE test for short). So as
to achieve further improvement, Cheon and Yi [8] generalized the idea of CE
test in [6].

In 2007, Camenisch, Hohenberger, and Pedersen [5] extended the notion of
multi-signer batch verification. Moreover, Camenisch et al. applied the small
exponents test to some pairing-based signature schemes. An excellent overview
of batch verification can be found in [5].

1.1 Motivation

In this paper, we focus on single-signer batch verification for discrete logarithm
based signature schemes. Batch verification is especially appropriate for systems
which are required to verify a large amount of signatures. Namely, for many
applications of batch verification, it is an important requirement to verify a large
amount of signatures efficiently. However, in addition to the above requirement,
several types of systems might also require verifying a limited number of
digital signatures more and more efficiently. This means that it might be
a requirement to verify a limited number of digital signatures generated by a
signer, as fast as possible.

– IP camera surveillance system.

One such example which might need the above requirement is IP camera surveil-
lance system. In IP camera surveillance systems, each IP camera captures live
images and sends them directly to image storage servers over an IP network.
Digital signature provide an effective solution to prevent manipulation of live
images. In order to facilitate key management, all IP cameras which are moni-
toring the same area often use the same signing key.

A typical IP camera supports real time frame rate of 5 ∼ 30 frames per
second (fps). If the frame rate is 15 fps and an IP camera captures live images
throughout the day, more than one million images are stored in the storage
server(s). Normally the storage server verify the signatures which have already
stored in the storage server. Thus it is an important requirement to verify a large
amount of stored signatures efficiently.

On the other hand, the Internet is inherently insecure and is facing various
security threads. So one might verify the signatures immediately after the storage
server received the live images. Therefore, it might be an important requirement
to verify a limited number of live images immediately after the storage server
received the live images.

– Wireless sensor network.

Another example is wireless sensor network (WSN). Wireless sensor networks
are widely used in various kinds of fields. Wireless sensor network is typically
composed of a large number of sensor nodes and a base station [30]. In WSN,

Batch Verification Suitable for Efficiently Verifying 427

・
・
・

storage server

network switch

IP camera

monitoring PC

Internet

5～30 frames per second

sk1

sk1

Area 1

IP camera
sk2

sk2

Area 2 pk1

signature verification

sk1

signature generation

Image
data Sign

Image
data Sign

Fig. 1. A typical IP camera surveillance system

the sensed data is transmit to the base station through a multi-hop network
consisting of several sensor nodes. Because multi-hop networks are potentially
vulnerable to manipulation, digital signature is used to validate the data integrity
of the sensed data. As is the case with the above example, several sensor nodes
are used the same signing key. Each sensed data is verify by the base station. In
this situation, the base station might verify a limited number of sensed data for
some reasons such as efficient verification.

1.2 Contribution of this Paper

The contribution of this paper is to propose a new batch verification for discrete
logarithm based signature schemes. Whereas the CE test is suitable for systems
which need to verify a large amount of signatures, the proposed test is suitable for
verifying a limited number of signatures in real-time. The performance analysis
shows that the proposed test is faster than previous methods when a limited
number of signatures is verified (See Table 5). For example, our test with a
286 bit curve (Table 7) is faster than previous methods when the number of
sigantures is less than or equal to 18 (resp. 6) for security parameter 80 (resp.
140).

The rest of this paper is organized as follows. Section 2 prepares some nota-
tions. Section 3 reviews some batch verification tests. In Section 4, we propose
two new batch verification tests. Section 5 compares the computational costs of
several previous tests and our proposed test. Section 6 concludes the paper.

2 Notation

Throughout this paper, we use the following notation. For any field k, we de-
note by p = char(k) the characteristic of the field k. We use the symbols Z, C,

428 K. Hakuta et al.

and Fq to represent the integers, complex numbers, and a finite field with q
elements respectively, where q = pr (r ≥ 1), p = char(Fq). For a positive integer
n, we denote the residue class ring modulo n by Zn = Z/nZ. For x ∈ C, we denote
by |x| the absolute value of x. For a finite set S, we denote the cardinality of S
by #S.

For any non-zero complex number ψ ∈ C \ {0}, we denote ψ-adic expansion∑�−1
i=0 ciψ

i with ci ∈ Z by (c�−1, . . . , c0)ψ, and denote the number of non-zero
ci’s by wt((c�−1, · · · , c0)ψ). We call � the length of the ψ-adic expansion. Let E
be an elliptic curve defined over a finite field Fq, φ : E → E, (x, y) %→ (xq, yq)
be the qth-power Frobenius map on E. We put tm := qm+1−#E(Fqm), t := t1,
and call tm the trace of E(Fqm). We can regard φ as a complex number which
satisfies the characteristic equation φ2 − tφ + q = 0. We denote the cardinality
of the set of the Fqm -rational points of E by #E(Fqm) = hn (h: cofactor, n:
prime). We assume that the order of a point P ∈ E(Fqm) is n.
A, F stand for the computational cost of point addition on E(Fqm), qth-power

Frobenius map on E(Fqm), respectively. An elementary multiplication in Fqm will
be abbreviated by M.

3 Preliminaries

In this section we briefly review batch verification. For detail, refer to [3], [5], [6]
and [8].

3.1 Batch Verification

Let G be a cyclic group of prime order n, and g a generator of G. For a ∈ G,
ordG(a) is the order of a, namely, ordG(a) is the smallest non-negative integer
x that holds ax = 1G, where 1G is the identity element in the group G. X =
{(x1, y1), · · · , (xN , yN)} (xi ∈ Zn, yi ∈ G) is a batch instance which we would
like to check whether or not yi = gxi for all i = 1, · · · , N . We define a Boolean
relation R(·) on the set {(x, y)|x ∈ Zn, y ∈ G} by the following. We define
R(x, y) = 1 if gx = y, and R(x, y) = 0 otherwise. We say that the batch instance
X = {(x1, y1), · · · , (xN , yN)} (xi ∈ Zn, yi ∈ G) is correct if R(xi, yi) = 1 for
all i = 1, . . . , N , and incorrect if there exists an index i ∈ {1, . . . , N} such
that R(xi, yi) = 0. The following definition is the notion of single-signer batch
verification introduced by Bellare, Garay, and Rabin [3].

Definition 1. [Batch Verifier (Batch Verification Test) [3]] A batch ver-
ifier (also called a batch verification test) for relation R is a probabilistic algo-
rithm V that takes as input a batch instance X = {(x1, y1), . . . , (xN , yN)} for R
and kbv a security parameter for batch verification, and
(1) If X is correct then V outputs 1.
(2) If X is incorrect then the probability that V outputs 1 is at most 2−kbv . This
probability is called the error probability.

Batch Verification Suitable for Efficiently Verifying 429

3.2 Small Exponents Test

Bellare, Garay, and Rabin [3] proposed three general batch verification tests, the
(Atomic) Random Subset Test, the Small Exponents Test, and the Bucket Test.

The atomic random subset test checks whether g
∑N

i=1 sixi =
∏N

i=1 yi
si , where

each si is picked at random bit from {0, 1}. Note that the upper bound of the
error probability of the atomic random subset test is at most 1/2. The random
subset test is repetition of the atomic random subset test independently kbv
times in order to lower the error probability of the random subset test to 2−kbv .
The small exponents test is an extension of the atomic random subset test. The

small exponents test checks whether g
∑N

i=1 sixi =
∏N

i=1 yi
si , where each si is

picked at random bit from {0, 1}kbv .

3.3 Complex Exponent Test

Cheon and Lee [6] proposed two improved tests of the small exponents test,
one is the Sparse Exponent Test, and the other is the Complex Exponent Test.
The complex exponent test can only be applied to a special family of elliptic
curves whereas the sparse exponent test can be applied to elliptic curves over
prime/extension fields. In the complex exponent test, subfield elliptic curves (cf.
[17], [26], [28]) are used.

Digital signature schemes based on an elliptic curve over a finite field (e.g.,
ECDSA∗ [1] which is a modified version of ECDSA [20], EC-Schnorr signature
[27]), for x ∈ Zn, Q ∈ E, it is checked whether xP = Q or not. We consider how
to check xiP = Qi (i = 1, . . . , N) for a batch instance {(x1, Q1), . . . , (xN , QN)}.
We define a Boolean relation ScMulE,P (x,Q) as follows: ScMulE,P (x,Q) := 1 if
xP = Q, otherwise ScMulE,P (x,Q) := 0.

We prepare some notations to explain the complex exponent test. We define

S1(�1, k1, q) =
def

{
d =

�1−1∑
i=0

aiφ
i

∣∣∣∣ai ∈ Z, |ai| ≤ q − 1, ai+1ai = 0, wt(d) ≤ k1

}
,

S2(�2, k2, q) =
def

{
d=

�2−1∑
i=0

aiφ
i

∣∣∣∣ai ∈ Z, |ai| < q2/2, q � ai, ai+1ai=0, wt(d) ≤ k2

}
,

for an elliptic curve E defined over Fq. For all P ∈ E(Fm
q), we always have

(φm − 1)P = O, the point at infinity. So we sometimes identify φm and 1 as
elements in Z[φ], or we consider the endomorphisms on E in Z[φ]/(φm−1) instead
of Z[φ]. Thus we have to choose an appropriate value of �j in order to fulfill that
for any two different elements in Sj(�j , kj , q), these two elements are different

from each other as endomorphisms on G = 〈P 〉 (e.g.,
∑m−1

i=0 φi =
∑m−1

i=0 0φi = 0).
The following theorem guarantees the above situation if the range of �j is

chosen appropriately.

Theorem 1. [6, Theorem 3] For j = 1, 2 and 6 ≤ �j ≤ log2 n−2log2 Mj−log2 30
log2 q ,

each endomorphism on G as an element in Sj(�j , kj , q) is different from each
other, where M1 = 2(q − 1), M2 = 2	(q2 − 1)/2
, and kj ≤ �j.

430 K. Hakuta et al.

Under the condition of Theorem 1, the cardinalities of Sj(�j , kj , q) are given by
the following theorem.

Theorem 2. [6, Theorem 4] #S1(�1, k1, q) =
∑k1

i=0

(
�1+1−i

i

)
(2q − 2)i and

#S2(�2, k2, q) =
∑k2

i=0

(
�2+1−i

i

)
(q2 − q)i.

We fix an extension degree m, and we choose the maximal �j such that the
condition of Theorem 1 holds. Moreover, for each kbv ∈ Z, we choose the maximal
kj so that 2kbv ≥ #Sj(�j, kj , q). The complex exponents test check whether(

N∑
i=1

sixi mod n

)
P =

N∑
i=1

siQi (1)

or not for randomly chosen si ∈ Sj(�j , kj , q)(j = 1, 2). The naive test verifies
whether xiP = Qi or not for each i (i ∈ {1, . . . , N}), i.e., N scalar multipli-
cations with n bits long scalars. On the other hand, in order to reduce the
computational cost of the CE test, Cheon and Lee apply BGMW method ([2])
to their CE test (See [6, Fig. 3] for detail). If we rewrite step 4 of [6, Fig. 3]
(right-to-left BGMW method [2]) as the left-to-right version of BGMW method,
the computational costs are(

k1N + 2(q − 2)
)
A+ (q − 1)�1F + (1 scalar multiplication), (2)(

k2N + 2((q2 − 1)/2
+ 	(q − 1)/2
)
)
A

+ ((q2 − 1)/2
+ 	(q − 1)/2
)�2F + (1 scalar multiplication),
(3)

respectively. Remark that the dominant operation in Equation (1) is multi-scalar
multiplication (right hand side of Equation (1)). The computational cost of the
multi-scalar multiplication depends heavily on the number of signatures N and
q. If {(x1, Q1), . . . , (xN , QN)} is a correct batch instance, Equation (1) is always
true. The probability that the complex exponent test accepts an incorrect batch
instance {(x1, Q1), . . . , (xN , QN)} is at most 2−kbv (j = 1, 2) ([6, Theorem 1])D

3.4 Improved Complex Exponent Test

Cheon and Yi in [8] generalized the idea of the CE test. In order to improve
the efficiency of the CE test, they use the width-w τ-adic non-adjacent form
(cf. [13], [18], [28] for the explanation of τ -NAF and w-τ -NAF). Although the
improved CE test is quite fast for verifying a large amount of signatures, the
improved CE test is not suitable for verifying a limited number of signatures,
because the precomputation cost is relatively large compared to that of the CE
test. Therefore, we omit the details of the improved CE test, and we do not deal
with the improved CE test any more. See [8] for details.

Batch Verification Suitable for Efficiently Verifying 431

4 Proposed Methods

In this section, we propose two new methods. Due to space limitations, we only
describe one of the new batch verification tests and omit the description of the
other test. One can easily be obtained the other test in a similar way. For de-
tails, we refer to the preproceedings version of our paper ([16]). In Section 4.1,
we show some properties of two types of elliptic curves ([24]) which are used in
our proposed methods. In Section 4.2, we propose one of the new batch verifica-
tion tests. Moreover we analyze the security of our batch verification test, and
estimates the computational costs of the proposed method.

4.1 Properties of Two Types of Elliptic Curves

Proposition 1. [Endomorphism of elliptic curve Ep,b/Fp : y2 = x3 − b
[10,19,24,25]] Let p be a prime such that p ≡ 1 mod 3, and Ep,b : y2 = x3 − b
be the elliptic curve defined over Fp. Suppose that β ∈ Fp is an element of order
3. Then the curve Ep,b has the endomorphism ω : Ep,b → Ep,b, (x, y) %→ (βx, y).

Proposition 2. [Endomorphism of elliptic curve Ep,a/Fp : y2 = x3 + ax
[10,19,24,25]] Let p be a prime such that p ≡ 1 mod 4, and Ep,a : y2 = x3 + ax
be the elliptic curve defined over Fp. Suppose that α ∈ Fp is an element of order 4.
Then the curve Ep,a has the endomorphism λ : Ep,a → Ep,a, (x, y) %→ (−x, αy).

Park, Lee, and Park proved the existence of a Frobenius expansion on Ep,b

(resp. Ep,a). In the following, for an elliptic curve E over Fq, we regard an
endomorphism ψ as a complex number (See [25] for detail).

Proposition 3. [DE-Frobenius expansion [24, Theorem 2]] Let E7,b : y
2 =

x3− b be the elliptic curve defined over F7, β ∈ F7 be an element of order 3, and
φ be the 7th-power Frobenius map on E7,b. For any d ∈ Z[ω], we can write d =∑�−1

i=0 ciφ
i, where ci ∈ DE := {0,±1,±ω,±ω2}, � ≤ *2 log7

√
NZ[ω]/Z(d)�+ 1.

Proposition 4. [DG-Frobenius expansion [24, Theorem 1]] Let E5,a :
y2 = x3+ax be the elliptic curve defined over F5, α ∈ F5 be an element of order 4,
and φ be the 5th-power Frobenius map on E5,a. For any d ∈ Z[

√
−1], we can write

d =
∑�−1

i=0 ciφ
i, where ci ∈ DG := {0,±1,±λ}, � ≤ *2 log5

√
NZ[λ]/Z(d)�+ 1.

We define

SE(�ω, kω , q) :=

{
d =

�ω−1∑
i=0

aiφ
i

∣∣∣∣ai ∈ DE, wt(d) ≤ kω

}
, (4)

for an elliptic curve E7,b, and

SG(�λ, kλ, q) :=

{
d =

�λ−1∑
i=0

aiφ
i

∣∣∣∣ai ∈ DG, wt(d) ≤ kλ

}
, (5)

432 K. Hakuta et al.

for an elliptic curveE5,a. The proposed methods are modifications of the complex
exponent test.

Roughly speaking, our main observation is as follows. Since each number si
is randomly chosen from the set S1(�1, k1, q) (resp. S2(�2, k2, q)) in the complex
exponent test, the number of point additions in the right hand side of Equa-
tion (1) (dominant part) depends heavily on the number of signatures N and
q. However, each number si is randomly chosen from the set SE(�ω, kω, q) (resp.
SG(�λ, kλ, q)) in our proposed method, the number of point additions in the right
hand side of Equation (1) depends only on the number of signatures N .

In order to evaluate the security of our method, we have to evaluate an upper
bound of �ω (resp. �λ) which satisfies that each element in the set SE (resp. SD)
is different from each other as an element in G = 〈P 〉. We also have to calculate
the cardinality of the set SE (resp. SD). Namely, we need analogous results of
[6, Theorem 3] and [6, Theorem 4] in Section 3.3. In Section 4.2, we evaluate
#SE(�ω, kω, q).

4.2 Proposed Test Using the Curve E7,b

We show the classification of the elliptic curves of the form E7,b/F7 : y
2 = x3− b

in Table 1 (See [19] and [24] for details).

Table 1. Classification of elliptic curves of the form E7,b (cf. [19], [24])

b t φ relation between φ and ω

1 4 2±
√
−3 φ− 2ω = 3 or φ+ 2ω = 1

−1 −4 −2±
√
−3 φ− 2ω = −1 or φ+ 2ω = −3

2 1 1±3
√

−3
2

φ− 3ω = 2 or φ+ 3ω = −1

−2 −1 −1±3
√

−3
2

φ− 3ω = 1 or φ+ 3ω = −2

3 5 5±
√

−3
2

φ− ω = 3 or φ+ ω = 2

−3 −5 −5±
√

−3
2

φ− ω = −2 or φ+ ω = −3

Indeed, it can be shown that the Frobenius expansion with coefficients in DE

in Z[ω] have unique representation. For the proof of the uniqueness, we prepare
the following lemma.

Lemma 1. Let α = x + yω ∈ Z[ω] (x, y ∈ Z). Then, the following equivalences
hold:

– If b = 1, then φ|α ⇔ 7|(x+ 2y).

– If b = −1, then φ|α ⇔ 7|(2x+ y).

– If b = 2, then φ|α ⇔ 7|(x− 3y).

– If b = −2, then φ|α ⇔ 7|(3x− y).

– If b = 3, then φ|α ⇔ 7|(x− 3y).

Batch Verification Suitable for Efficiently Verifying 433

– If b = −3, then φ|α ⇔ 7|(x+ 2y).

In particular, for a rational integer α ∈ Z, we have φ|α ⇔ 7|x.

Proof. The proof can be found in [16]. ��

Proposition 5. [Uniqueness of theFrobenius expansionwith coefficients
DE] Every d ∈ Z[ω] has a unique Frobenius expansion with coefficients in DE.

Proof. The proof can be found in [16]. ��

Note that if b = ±3 then any DE-coefficients Frobenius expansion can be rewrit-
ten as Z-coefficients Frobenius expansion, and if b = ±1,±2 then any DE-
coefficients Frobenius expansion can be rewritten as Q-coefficients Frobenius
expansion. Moreover, if b = ±1, denominator of each coefficient of Q-coefficients
Frobenius expansion is 1 or 2. In a similar way, if b = ±2, denominator of each
coefficient of Q-coefficients Frobenius expansion is 1 or 3.

For any DE-coefficients Frobenius expansion with appropriate length, it can
be proven that each Frobenius expansion as above is different from each other
in Z[ω]/(φm − 1).

Proposition 6. Let M ∈ Z>0, �ω ≥ 4. Let Cb ∈ Z be a rational integer such
that if b = ±1 then Cb = 2, if b = ±2 then Cb = 3, and if b = ±3 then Cb = 1.
We put f(X) =

∑�ω−1
i=0 aiX

i ∈ C[X], ai ∈ DE and M = 8. We assume that
Cb × 68× 7�ω ×M2 ≤ n. Then f(φ)P = O implies that Cb × f(X) is divided by
X2 − tX + 7 in Z[X].

Proof. The proof can be found in [16]. ��

If �ω satisfies the condition of Proposition 6, each element in SE(�ω, kω, 7) is
different from each other.

Theorem 3. [Upper bound of the length of the DE-coefficients Frobe-

nius expansion] Let 4 ≤ �ω ≤ log2 n−2 log2 M−log2 68−log2 Cb

log2 7 , M = 8. Then each

element in SE(�ω, kω , 7) is different endomorphism on G.

Proof. The proof can be found in [16]. ��

By Theorem 3, if Cb× 68× 7�ω × 82 ≤ n, the cardinality of the set SE is given
by the following theorem.

Theorem 4. [Cardinality of the set SE]

#SE(�ω, kω, 7) =

kω∑
i=0

(
�ω
i

)
6i.

Proof. By elementary combinatorics, we obtain the above equation. ��

434 K. Hakuta et al.

Our proposed test using the curve E7,b is described in Algorithm 1.

Algorithm 1. Propsed Batch Verification Test using the curve E7,b

Input: batch instance {(x1, Q1), . . . , (xN , QN)}
Output: Accept or Reject
1: Choose N random elements s1, . . . , sN from SE(ω, kω, 7).

Write si =
∑�ω−1

j=0 ci,jφ
j and εi,j = 0 (if ci,j = 0), εi,j = 1 (if ci,j ∈ {1, ω, ω2}),

εi,j = −1 (if ci,j ∈ {−1,−ω,−ω2}) for nonzero ci,j for each i.
2: s ←

∑N
i=1 sixi mod (φm−1 + φm−2 + · · ·+ φ+ 1)

3: R[i] ← O for i ∈ {1, ω, ω2}
4: for j from 	ω − 1 downto 0 do
5: R[1] ← φ(R[1]), R[ω] ← φ(R[ω]), R[ω2] ← φ(R[ω2])
6: for i from 1 to N do
7: if ci,j �= 0 then
8: if ci,j = ±1 then
9: R[1] ← R[1] + εi,j(Qi)
10: else if ci,j = ±ω then
11: R[ω] ← R[ω] + εi,j(Qi)
12: else
13: R[ω2] ← R[ω2] + εi,j(Qi)
14: end if
15: end if
16: end for
17: end for
18: Q ← ω(R[ω2])
19: Q ← ω(R[ω] +Q)
20: Q ← Q+R[1]
21: if Q = sP then
22: return Accept
23: else
24: return Reject
25: end if

By the same argument as Section 3.3, the computational cost of the proposed
test using the Curve E7,b is given by(

kωN + 2
)
A+ 3�ωF + 2M + (1 scalar multiplication). (6)

5 Comparison

5.1 Timings

In order to evaluate the computational costs of the CE test and the proposed
test, we implement arithmetic operations a finite field F7103 (See Table 7 in
Appendix A). We use f(x) = x103 + x54 + 6 and E7,−3-103 (Table 7) for the
irreducible trinomial of degree 103 and the estimation of the computational costs,
respectively. The bit length of the prime order n of this curve is 286. For the
finite field implementation, we use polynomial basis.

Batch Verification Suitable for Efficiently Verifying 435

The platform was a IntelR© 1 Core
TM

2 Duo Processor E8400 (2.99GHz) with
2GB RAM computer, WindowsR© 2 XP. Programs were all written in ANSI C
language with gcc 3.4.4 compiler using the flags “-O3”.

In the case of p = 3, the three elements in F3 are represened by two bits, and
it is known that the method to construct the addition in F3 by using bitwise
operations such as “AND” operation or “XOR” operation (cf. [14])D In our
implementation, the seven elements in F7 are represened by three bits, and we
extend the method in [14] to implement the arithmetic operations in F7103 . The
timings are listed in Table 2.

Table 2. Timings of the Finite Field Operations

Finite Field Operations timing (in μsec)

Addition 0.063

Subtraction 0.063

7-th powering 1.400

Multiplication 15.230

5.2 Estimate

We estimate batch verification costs of the CE test and our proposed test in
the case of E7,−3-103 (See Table 7 in Appendix A). The computational cost of
the CE tests are given by (2)C(3), respectively. The computational cost of the
proposed test using E7,b is given by (6). From Theorem 1 and Theorem 3, for n
for E7,−3-103 in Table 7, the maximal value of �1, �2, �ω are �1 = 97, �2 = 96,
�ω = 98, respectively. We use the Jacobian coordinate for point addition (12
times finite field multiplications and four times squarings), and the Jacobian
coordinate for Frobenius map (three times 7th-powerings) for the estimation.
Moreover, it is assumed that

– the costs of finite field multiplication and finite field squaring are equal to
each other.

– the cost of a 7th powering and 0.092 times finite field multiplication are equal
(from the result in Table 2).

We show the numbers of finite field multiplications that need for the CE test
and the proposed test in Table 3 by using (2), (3), and (6) 3 .

1 Windows is a registered trademark of Microsoft Corporation in the United States
and other countries.

2 Intel, Core are trademarks or a registered trademarks of Intel Corporation in the
United States and other countries.

3 In order to simplify the computational costs of the algorithm in [6, Fig. 3] and our
proposed test (Algorithm 1), we use left-to-right version of BGMW method. How-
ever, even if we compare the computational costs of the algorithm in [6, Fig. 3] and
the right-to-left version of Algorithm 1, our algorithm is faster than the algorithm
[6, Fig. 3] for verifying a limited number of signatures because the number of the
Frobenius map in the right-to-left version of Algorithm 1 is larger than that of [6,
Fig. 3].

436 K. Hakuta et al.

Table 3. Estimate the computational costs of CE test and our test

Method # of M

CE test (S1) 16k1N + 284.21

CE test (S2) 16k2N + 1222.72

Our test (SE) 16kωN + 59.04

For �1 = 97, �2 = 96, �ω = 98 and for a given kbv, we describe the values
k1, k2, kω so that #Sj ≈ 2kbv , #SE ≈ 2kbv in Table 4.

Table 4. Values kj and kω such that #Sj ≈ 2kbv , #SE ≈ 2kbv

��������������Method
Security Param. kbv 40 60 80 100 120 140

CE test (S1) 5 8 11 14 18 22

CE test (S2) 4 6 9 11 14 16

Our test (SE) 6 9 12 16 21 25

For a given method in Table 3, a given number of signatures N , and a given
security parameter kbv, we can estimate the number of multiplications in F7103

by substituting N and kj or kω in Table 4 into the method in Table 3. Our
method is faster than the complex exponent test when the number of signatures
N satisfy Table 5:

Table 5. the number of signatures N for which our method is faster than CE test

Security Param. kbv 40 60 80 100 120 140

of signatures N ≤ 18 N ≤ 18 N ≤ 18 N ≤ 9 N ≤ 6 N ≤ 6

From Table 5, we can see that our test is faster than the CE test when the
number of signatures is relatively small, Thus, our proposed test is suitable
for verifying a limited number of signatures in real-time such as IP camera
surveillance systems.

6 Conclusion

In this paper, we described a new batch verification test based on elliptic curves
defined over fields with characteristics 5 and 7. Our proposed method is a mod-
ification of the complex exponent test (CE test) proposed by Cheon and Lee.
The difference between the new test and the CE test is that our test use an-
other digit set of Frobenius expansion in order to accelerate batch verification.
We evaluated the security of our new test, and the proof of the security of our
new test can be treated similar to the one of CE test. We also evaluated the
computational cost of the new test. Our estimation indicates that the proposed
test is suitable for verifying a limited number of signatures.

Batch Verification Suitable for Efficiently Verifying 437

References

1. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Ac-
celerated Verification of ECDSA Signatures. In: Preneel, B., Tavares, S. (eds.)
SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

2. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast Exponentiation
with Precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 200–207. Springer, Heidelberg (1993)

3. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponen-
tiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998),
http://www-cse.ucsd.edu/users/mihir

4. Boyd, C., Pavlovski, C.: Attacking and Repairing Batch Verification Schemes.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 58–71. Springer,
Heidelberg (2000)

5. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch Verification of Short Sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007)

6. Cheon, J.H., Lee, D.H.: Use of Sparse and/or Complex Exponents in Batch Veri-
fication of Exponentiations. IEEE Transactions on Computers 55(12), 1536–1542
(2006)

7. Coron, J.-S., Naccache, D.: On the Security of RSA Screening. In: Imai, H., Zheng,
Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 197–203. Springer, Heidelberg (1999)

8. Cheon, J.H., Yi, J.H.: Fast Batch Verification of Multiple Signatures. In: Okamoto,
T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg
(2007)

9. Guo, F., Mu, Y., Chen, Z.: Efficient Batch Verification of Short Signatures for
a Single-Signer Setting without Random Oracles. In: Matsuura, K., Fujisaki, E.
(eds.) IWSEC 2008. LNCS, vol. 5312, pp. 49–63. Springer, Heidelberg (2008)

10. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

11. Harn, L.: Batch Verifying Multiple DSA Digital Signatures. Electronics Let-
ters 34(9), 870–871 (1998)

12. Harn, L.: Batch Verifying Multiple RSA Digital Signatures. Electronics Let-
ters 34(12), 1219–1220 (1998)

13. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

14. Harrison, K., Page, D., Smart, N.P.: Software Implementation of Finite Fields of
Characteristic Three, for Use in Pairing-based Cryptosystems. LMS Journal of
Computation and Mathematics 5(1), 181–193 (2002)

15. Hwang, M.S., Lee, C.C., Lu, E.J.: Cryptanalysis of the Batch Verifying Multiple
DSA-Type Digital Signatures. Pakistan Journal of Applied Sciences 1(3), 287–288
(2001)

16. Hakuta, K., Katoh, Y., Sato, H., Takagi, T.: Batch Verification Suitable for Effi-
ciently Verifying A Limited Number of Signatures. In: Preproceedings of the 15th
Annual International Conference on Information Security and Cryptology, ICISC
2012 (2012)

17. Hakuta, K., Sato, H., Takagi, T.: Efficient arithmetic on subfield elliptic curves over
small finite fields of odd characteristic. J. Math. Cryptol. 4(3), 199–238 (2010)

http://www-cse.ucsd.edu/users/mihir

438 K. Hakuta et al.

18. Hakuta, K., Sato, H., Takagi, T.: Explicit lower bound for the length of minimal
weight τ -adic expansions on Koblitz curves. J. Math-for-Ind. 2A, 75–83 (2010)

19. Koblitz, N.: An Elliptic Curve Implementation of the Finite Field Digital Signature
Algorithm. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 327–337.
Springer, Heidelberg (1998)

20. National Institute for Standards and Technology, Digital Signature Standard
(DSS), Federal Information Processing Standards Publication 186-3 (June 2009),
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

21. Lee, S., Cho, S., Choi, J., Cho, J.: Efficient Identification of Bad Signatures in
RSA-Type Batch Signatures. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E89-A(1), 74–80 (2006)

22. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A be Improved?
Complexity trade-offs with the Digital Signature Standard. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)

23. Pastuszak, J., Micha�lek, D., Pieprzyk, J., Seberry, J.: Identification of Bad Signa-
tures in Batches. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp.
28–45. Springer, Heidelberg (2000)

24. Park, T.-J., Lee, M.-K., Park, K.: New Frobenius Expansions for Elliptic Curves
with Efficient Endomorphisms. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS,
vol. 2587, pp. 264–282. Springer, Heidelberg (2003)

25. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer (1986)
26. Smart, N.P.: Elliptic Curve Cryptosystems over Small Fields of Odd Characteristic.

Journal of Cryptology 12(2), 141–151 (1999)
27. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptol-

ogy 4(3), 161–174 (1991)
28. Solinas, J.A.: Efficient Arithmetic on Koblitz Curves. Des. Codes Cryptogr.

19(2-3), 195–249 (2000)
29. Stanek, M.: Attacking LCCC Batch Verification of RSA Signatures. International

Journal of Network Security 6(2), 238–240 (2008)
30. Kumar, V., Madria, S.: Secure Data Aggregation in Wireless Sensor Networks. In:

Hara, T., Zadorozhny, V.I., Buchmann, E. (eds.) Wireless Sensor Network Tech-
nologies for the Information Explosion Era. SCI, vol. 278, pp. 77–107. Springer,
Heidelberg (2010)

31. Yen, S.M., Laih, C.S.: Improved Digital Signature Suitable for Batch Verification.
IEEE Transactions on Computers 44(7), 957–959 (1995)

A Sample Parameters

Table 6 and Table 7 list sample parameters for an elliptic curve E5,a/F5 and an elliptic
curve E7,a/F7, respectively. The extension degree m’s are prime and are selected so that
there exists the elliptic curve E5,b/F5 or an elliptic curve E7,a/F7 having the cofactor
#E5,a(F5) or #E7,b(F7), respectively. The prime order n is presented in hexadecimal
form. A backslash at the end of a line indicates that the number (hexadecimal) is
continued in the next line.

m The extension degree of the finite field F5m (resp. F7m).
f(x) The irreducible trinomial of degree m in F5[x] (resp. F7[x]).
h The cofactor. h = #E(F5) (resp. #E(F7)).
n n = #E(F5m)/h (resp. #E(F7m)/h).

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

Batch Verification Suitable for Efficiently Verifying 439

Table 6. Sample Parameters for the elliptic curves E5,a/F5

E5,2-97: m = 97, f(x) = x97 + x58 + 2, a = 2, h = 2, |h| = 2, |n| = 225
n= 0x 00000001 2BA095DC 7701D9CB 7743E3A2 B0E3BDBC E284B04F\

367F1914 ED5FBA01

E5,2-107: m = 107, f(x) = x107 + x9 + 1, a = 2, h = 2, |h| = 2, |n| = 248
n= 0x 00AE67F1 E9AEC071 87ECD859 0680A3AA 02A9DFE5 BD41A836\

BA41FAF8 6F4E279D

E5,−2-151: m = 151, f(x) = x151 + x61 + 1, a = −2, h = 10, |h| = 4, |n| = 348
n= 0x 09C69A97 284B578D 7FF2A760 414536EF BCA758CB F4FBCB0A\

32CC8363 8555BB9A 84122DF7 C08209C8 5F656D4D

E5,−2-167: m = 167, f(x) = x167 + x66 + 1, a = −2, h = 10, |h| = 4, |n| = 385
n= 0x 00000001 5B4E5998 400A95D3 5EAC354F 34215CD4 6E417018\

FB1DC739 C5E736BD C153819F 71B64393 465FC46B F4AB38FF\
A407344D

E5,1-227: m = 227, f(x) = x227 + x53 + 1, a = 1, h = 4, |h| = 3, |n| = 526
n= 0x 000021C5 29DD78FA 571E196B 3EBB0D20 429C476A 1848CAB5\

E0E8A121 378DE187 888F99D2 99F404EE 4F9BC974 D5035A62\
AC9F5E1E 0DA29A51 0B4012E2 3ECD1590 9A4B1065

E5,−2-317: m = 317, f(x) = x317 + x24 + 4, a = −2, h = 10, |h| = 4, |n| = 733
n= 0x 1A8662F3 B3919708 2BF4C0D2 548C2A3D 779053F3 CF932023\

7E5EC14C 922CB561 85BD758D 2B99F28C ADBC9799 509367D4\
E379DA56 D0582105 28C0C11C 7B00363E 9042A70F 4F3A60D4\
8CE325D4 4171E2E9 68316505 D41F503A 36E361D1

E5,−2-439: m = 439, f(x) = x439 + 4x35 + 1, a = −2, h = 10, |h| = 4, |n| = 1017
n= 0x 0100CCFD 6D32E361 2A7F4535 9B775336 206E4053 5E362EC5\

7D5C0F1E B832C2D9 C2B8B468 3B54F5EC 018C1A10 A8DECBFE\
C96B211E E977B7C4 6DCEF7E2 C81A8F0E 7DDFC28A 051C3168\
8DA47D5C 7E6B890F F1F5A336 8CAFE22B 9A5A9357 7377B7A8\
342935DB 09E38487 A25E300C 5F681788 B3A4E79A 331AE55C\
5091770A DF9A5B4D

440 K. Hakuta et al.

Table 7. Sample Parameters for the elliptic curves E7,b/F7

E7,3-71: m = 71, f(x) = x71 + x10 + 4, b = 3, h = 3, |h| = 2, |n| = 198
n= 0x 00000035 57E6DA5B FB1EC95B 4614A377 DBAF4B91 89919638\

64505C87

E7,−3-103: m = 103, f(x) = x103 + x54 + 6, b = −3, h = 13, |h| = 4, |n| = 286
n= 0x 2BEDF1E0 41D10B7B 55B514D7 9FE59CB4 0B53BF6B 9DB9FE62\

3B89B385 159E5565 1BA268D5

E7,1-127: m = 127, f(x) = x127 + x2 + 6, b = 1, h = 4, |h| = 3, |n| = 355
n= 0x 00000005 CAC4104D 859A6DF5 82D57312 11D9947A 4AE9CFD1\

F4E36489 97D050DC E03624B8 91381F19 AA1824CF 98DE5637

E7,3-167: m = 167, f(x) = x167 + 3x39 + 1, b = 3, h = 3, |h| = 2, |n| = 468
n= 0x 0009783A 48EDC313 BA408497 7B4E4849 883BF3D0 8EC233E6\

2CB37954 33A61505 385CAF38 732C2337 EDA85316 2CA773D5\
1053D953 7248F3EA 7C290A47

E7,2-181: m = 181, f(x) = x181 + x5 + 3, b = 2, h = 7, |h| = 3, |n| = 506
n= 0x 0280DE7F 5E056B02 C82C2CFE C4038DDB 6CA57BF4 2FBB56FB\

F74DAADB 65B85853 0E19FF02 B0B2748C C32514A1 4F5975AB\
53254133 EC718BF1 50C86198 19A6FF59

E7,−3-191: m = 191, f(x) = x191 + 3x31 + 1, b = −3, h = 13, |h| = 4, |n| = 533
n= 0x 0016B21C CFE2FB4E 0B541889 60D8B31F 5711D7D5 A8AE5602\

AEEDEA73 33DAAC30 8706656A 62F57B75 1A9FFBD9 D470E482\
0D7CE237 021A828C B8BD9503 4AE2D557 ECD12537

E7,1-223: m = 223, f(x) = x223 + 4x16 + 6, b = 1, h = 4, |h| = 3, |n| = 625
n= 0x 00010739 5CC42964 0E1C6468 886BEC6F 6478026C 3BB31334\

297DC5EC 9BB482E1 748405E2 807FB6D7 1CB4BE06 F6CD1379\
5ABC7679 0E24ABC6 0B4CF9BB 65600766 528640F7 EE46D8EF\
61ECB724 6B049C97

E7,1-383: m = 383, f(x) = x383 + x24 + 6, b = 1, h = 4, |h| = 3, |n| = 1074
n= 0x 00025313 FC8FCB0A 1214B25F E5235E4E 98F78982 632A525B\

57FC01BB C71B6491 C54FFF95 E9822C33 9B81C0A3 57472671\
0F6B4A58 9FB61465 A3450E13 FF323D32 ECD4F0F5 EC177CD6\
6EA567B4 EC0BDD2F 6DF59C4C 2CC17741 373453DD 06EB3E66\
63D4D191 86294806 59E26EA1 20C39651 43F3B8AC 66FC3262\
7061D995 046ADEA9 198BB1B1 A1E92737

Linear Recurring Sequences for the UOV Key

Generation Revisited

Albrecht Petzoldt1 and Stanislav Bulygin2

1 Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany
apetzoldt@cdc.informatik.tu-darmstadt.de

2 Center for Advanced Security Research Darmstadt - CASED
Mornewegstraße 32, 64293 Darmstadt, Germany

Stanislav.Bulygin@cased.de

Abstract. Multivariate cryptography is one of the main candidates to
guarantee the security of communication in a post quantum era. While
multivariate signature schemes are very fast and require only modest
computational resources, the key sizes of such schemes are quite large.
In [17] Petzoldt et al. proposed a way to use Linear Recurring Sequences
(LRS’s) for the key generation of the Unbalanced Oil and Vinegar (UOV)
signature scheme by which they were able to reduce the public key size
of this scheme by a factor of 7. In this paper we describe a modification
of their scheme, which enables us not only to reduce the public key size,
but also to speed up the verification process of the UOV scheme by a
factor of 5.

Keywords: Multivariate Cryptography, UOV Signature Scheme, Key
Size Reduction, Fast Verification.

1 Introduction

When quantum computers arrive, classical public-key cryptosystems like RSA
and ECC will be broken [1]. The reason for this is Shor’s algorithm [18] which
solves number theoretic problems like integer factorization and discrete loga-
rithms in polynomial time on a quantum computer. So, to guarantee the security
of communication in a post quantum era, we need alternatives to those classi-
cal schemes. Besides lattice-, code-, and hash-based cryptosystems, multivariate
cryptography seems to be a candidate for this.

Additionally to its (believed) resistance against quantum computer attacks,
multivariate cryptosystems are very fast, especially for signatures [3, 5]. Fur-
thermore they require only modest computational resources, which makes them
attractive for the use on low-cost devices like smartcards and RFID chips. How-
ever, multivariate schemes are not widely used yet, mainly because of the large
size of their public and private keys.

In [17] Petzoldt et al. proposed to use Linear Recurring Sequences (LRS) for
the key generation of the Unbalanced Oil and Vinegar (UOV) Signature Scheme.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 441–455, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

442 A. Petzoldt and S. Bulygin

They did this by inserting a matrix B generated by an LRS into the coefficient
matrix of the public key. Therefore, the Macauley matrix of the public key has
the form MP = (B|C), where C is a matrix without visible structure. By doing
so, they were able to decrease the public key size of UOV by a factor of 7, namely
from 100 kB to about 14 kB.

In this paper we propose a variation of their scheme, which not only decreases
the size of the public key, but also enables us to speed up the verification process.
We show how to use the large structure of the matrix B to reduce the number of
field multiplications needed during the verification process by a factor of 5. We
derive our results both theoretically and show them using a C implementation
of the scheme.

The structure of this paper is as follows: Section 2 gives a very short introduc-
tion on Linear Recurring Sequences (LRS). In Section 3 we give an overview on
multivariate signature schemes and describe the UOV signature scheme. Section
4 reviews the approach of [16] to create UOV schemes with structured public
keys . In Section 5 we describe our new approach in detail. Furthermore we look
at the security of our scheme and consider the question how to choose the pa-
rameters of it. Section 6 demonstrates, how we can use the special structure of
our polynomials to speed up the verification process. Finally, Section 7 presents
the results of our computer experiments and Section 8 concludes the paper.

2 Linear Recurring Sequences (LRS)

In this section we repeat briefly results from the theory of linear recurring se-
quences (LRS’s) needed in the following sections. For a more detailed introduc-
tion we refer to [13].

Definition 1. Let L be a positive integer and γ1, . . . , γL be elements of a finite
field F. A Linear Recurring Sequence (LRS) of length L is a sequence {s1, s2, . . . }
of F-elements satisfying the relation

sj = γ1 · sj−1 + γ2 · sj−2 + · · ·+ γL · sj−L =

L∑
i=1

γi · sj−i (∀j > L). (1)

The values s1, . . . , sL are called the initial values of the LRS.

Definition 2. The connection polynomial of an LRS is defined as

C(X) = γL ·XL + γL−1 ·XL−1 + · · ·+ γ1 ·X + 1 =

L∑
i=1

γiX
i + 1.

The LRS S is uniquely determined by its initial values s1, . . . , sL and the con-
nection polynomial C (due to equation (1)). Therefore we denote the LRS by
S = LRS(s1, . . . , sL, C).

Linear Recurring Sequences for the UOV Key Generation Revisited 443

3 Multivariate Public Key Cryptography

The basic idea behind multivariate cryptography is to choose a system F of m
quadratic polynomials in n variables over a finite field F which can be easily
inverted (central map). After that one chooses two affine invertible maps S and
T to hide the structure of the central map. The public key of the cryptosystem
is the composed quadratic map P = S ◦ F ◦ T which is (hopefully) difficult to
invert. The private key consists of S, F and T and therefore allows to invert P .

Due to this construction, the security of multivariate cryptography is based
on two mathematical problems:

Problem MQ: Solve the system p1 = . . . = pm = 0, where each pi is a quadratic
polynomial in the n variables x1, . . . , xn with coefficients and variables in F.

The MQ-problem is proven to be NP-hard even for quadratic polynomials
over GF (2) [10].

Problem EIP (Extended Isomorphism of Polynomials): Given a class of central
maps C and a map P expressible as P = S ◦ F ◦ T , where S and T are affine
maps and F ∈ C, find a decomposition of P of the form P = S ′ ◦ F ′ ◦ T ′, with
affine maps S ′ and T ′ and F ′ ∈ C.

In this paper we concentrate on the case of multivariate signature schemes.
The standard process for signature generation and verification works as follows:

d �H h ∈ Fm � x ∈ Fm � y ∈ Fn � z ∈ Fn

�

P

S−1 F−1 T −1

Fig. 1. Signature generation and verification

Signature Generation. To sign a document d, we use a hash function H :
{0, 1}∗ → Fm to compute the value h = H(d) ∈ Fm. Then we compute x =
S−1(h), y = F−1(x) and z = T −1(y). The signature of the document is z ∈ Fn.
Here, F−1(x) means finding one (of the possibly many) pre-images of x under
the central map F .

Verification. To verify the authenticity of a document, one simply computes
h′ = P(z) and the hash value h = H(d) of the document. If h′ = h holds, the
signature is accepted, otherwise rejected.

444 A. Petzoldt and S. Bulygin

There are several ways how to build the central map F of multivariate schemes.
In this paper we concentrate on the so called SingleField constructions. In con-
trast to BigField schemes like Matsumoto-Imai [14] and MiddleField schemes
like �iC [8], here all the computations are done in one (relatively small) field. In
the following subsection we describe one well known example for such a scheme
in detail.

3.1 The UOV Signature Scheme

One way to create an easily invertible multivariate quadratic system is the prin-
ciple of Oil and Vinegar, which was first proposed by J. Patarin in [15].

Let F be a finite field. Let o and v be two integers and set n = o + v.
We set V = {1, . . . , v} and O = {v + 1, . . . , n}. We call x1, . . . , xv the Vine-
gar variables and xv+1, . . . , xn Oil variables and define o quadratic polynomials
f (k)(x) = f (k)(x1, . . . , xn) by

f (k)(x) =
∑

i∈V, j∈O

α
(k)
ij xixj+

∑
i,j∈V, i≤j

β
(k)
ij xixj+

∑
i∈V ∪O

γ
(k)
i xi+η

(k) (1 ≤ k ≤ o).

(2)

Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.

The map F = (f (1)(x), . . . , f (o)(x)) can be easily inverted. First, we choose
the values of the v Vinegar variables x1, . . . , xv at random. Thus we get a system
of o linear equations in the o variables xv+1, . . . , xn which can be solved e.g. by
Gaussian Elimination. If the system does not have a solution, one has to choose
other values of x1, . . . , xv and try again.

To hide the structure of F in the public key, one composes it with an affine
map T : Fn → Fn. Therefore, the public key has the form P = F ◦ T . The
private key consists of F and T and therefore allows to invert the public key.

Remark: In opposite to other multivariate schemes the second affine map S
is not needed for the security of UOV. So it can be dropped.

In his original paper [15] Patarin suggested to choose o = v (Balanced Oil and
Vinegar (OV)). After this scheme was broken by Kipnis and Shamir in [12], it
was recommended in [11] to choose v > o (Unbalanced Oil and Vinegar (UOV)).

The UOV signature scheme over GF (28) is commonly believed to be secure
for o ≥ 28 equations [19] and v = 2 · o Vinegar variables. For UOV schemes over
GF (24) we need at least o = 40 equations and v = 2 · o Vinegar variables.

Linear Recurring Sequences for the UOV Key Generation Revisited 445

4 Improved versions of UOV

In this section we review the approach of [16] to create UOV-based schemes with
a structured public key.

Recall that, in the case of the Unbalanced Oil and Vinegar signature scheme
[11], the public key P is given as the composition of the central UOV-map F
and an affine invertible map T (given by a matrix MT and a vector cT), i.e.

P = F ◦ T . (3)

In [16] it is observed, that this equation (after fixing the affine map T), leads to
a linear relation between the coefficients of the quadratic monomials of P and
F of the form

p
(k)
ij =

v∑
r=1

n∑
s=r

αrs
ij · f (k)

rs , (4)

where p
(k)
ij and f

(k)
ij are the coefficients of xixj in the k-th component of P and

F respectively and the αrs
ij are given as

αrs
ij =

{
tri · tsi (i = j)
tri · tsj + trj · tsi otherwise

. (5)

Here tij ∈ F denote the elements of the matrix MT . Let D := v·(v+1)
2 +ov be the

number of non-zero quadratic terms in any component of F and D′ := n·(n+1)
2

be the number of quadratic terms in the public polynomials. Let MP andMF be
the coefficient matrices of P and F respectively (w.r.t. the graded lexicographic
ordering of monomials). The matrices MP and MF are divided into submatrices
as shown in Figure 2. Note that, due to the absence of oil × oil terms in the
central polynomials, we have a block of zeros in the middle of MF .

Flin

Plin

Q

B

0

C

D D′

MP

MF

Fig. 2. Layout of the matrices MP and MF

446 A. Petzoldt and S. Bulygin

Furthermore, the authors of [16] defined the so called transformation matrix
AUOV ∈ FD×D containing the coefficients αrs

ij of equation (4)

AUOV =
(
αrs
ij

)
(1 ≤ r ≤ v, r ≤ s ≤ n for the rows, 1 ≤ i ≤ v, i ≤ j ≤

n for the columns), i.e.

AUOV =

⎛⎜⎜⎜⎝
α11
11 α11

12 . . . α
11
vn

α12
11 α12

12 . . . α
12
vn

...
...

αvn
11 αvn

12 . . . αvn
vn

⎞⎟⎟⎟⎠ . (6)

With this notation, equation (4) yields

B = Q ·AUOV . (7)

If the matrix AUOV is invertible, this equation has a solution for Q. Experiments
indicate that this condition is fulfilled with overwhelming probability. We can
then use Algorithm 1 to generate a key pair for UOV.

Algorithm 1. Alternative Key Generation for UOV schemes

Input: parameters (F, o, v)
Output: UOV keypair (F , T),P
1: D ← v·(v+1)

2
+ o · v

2: Choose an o×D matrix B (e.g. generated by an LRS).
3: Choose randomly an affine map T (represented by an n × n-matrix MT and an

n-vector cT). If MT is not invertible, choose again.
4: Compute for T the corresponding transformation matrix AUOV (using equations

(5) and (6)). If AUOV is not invertible, go back to step 2.
5: Solve the linear system given by equation (7) to get the matrix Q and therewith

the quadratic coefficients of the central polynomials.
6: Choose the linear and constant terms of the central map F at random.
7: Compute the public key as P = F ◦ T .
8: return (F , T),P

5 Our Choice of B

The authors of [17] used a matrix B, whose elements were given by a single
Linear Recurring Sequence, i.e. for a given LRS S = (s1, s2, . . .) the matrix B
was of the form

B(PB11) =

⎛⎜⎜⎜⎝
s1 s2 . . . sD

sD+1 sD+2 . . . s2·D
...

...
s(o−1)·D+1 s(o−1)·D+2 . . . so·D

⎞⎟⎟⎟⎠ (8)

To guarantee the security of the scheme, they had to choose a Linear Recurring
Sequence of length L ≥ o.

Linear Recurring Sequences for the UOV Key Generation Revisited 447

In our new scheme, we use not only one, but o different Linear Recurring
Sequences. The goal of this strategy is to reduce the lengths of the single LRS’s,
which will later help us to speed up the verification process of the scheme (see
Section 6). In fact, we will use Linear Recurring Sequences of length 1.

We choose randomly two vectors α, γ ∈ Fo and define for each i = 1, . . . , o
a univariate polynomial Ci by Ci(X) = γi ·X + 1. For i = 1, . . . , o we compute

the first D elements of the Linear Recurring Sequence S(i) = (s
(i)
1 , s

(i)
2 , . . .) =

LRS(αi, Ci) and put this sequence into the i-th row of the matrix B. Therefore,
the matrix B will have the following structure:

B =

⎛⎜⎜⎜⎜⎝
s
(1)
1 s

(1)
2 . . . s

(1)
D

s
(2)
1 s

(2)
2 . . . s

(2)
D

...
...

s
(o)
1 s

(o)
2 . . . s

(o)
D

⎞⎟⎟⎟⎟⎠ . (9)

We denote the scheme obtained by using this matrix B and Algorithm 1 by
UOVLRS2.

5.1 Choice of α and γ

First, we look at the question what happens if two elements of the vector γ,
say γi and γj (i �= j) are equal.

Theorem 1. If γi = γj for i �= j ∈ {1, . . . , o}, the homogeneous quadratic parts
of the polynomials p(i) and p(j) are linearly dependent.

Proof. If γi = γj for i �= j ∈ {1, . . . , o}, the two rows B[i] and B[j] are linearly
dependent. Since we have Q = B ·A−1 (c.f. equation (7)), the same holds for Q[i]
and Q[j] (see Figure 2). Note that this matrix contains all the private coefficients
of quadratic terms, which means that the homogeneous quadratic parts of the
i-th and j-th central polynomials are linearly dependent. Since during the key
generation of UOV the rows of the central map F are not mixed, the same holds
for the homogeneous quadratic part of the i-th and j-th public polynomial. ��

Theorem 1 states that by computing p(i)− αi

αj
· p(j) the attacker will get a linear

equation in the system variables, which means that he can reduce the number
of variables in the quadratic system by 1. We can conclude

Corollary 1. Attacking an instance of UOVLRS2 with m equations and t < m
different values in the vector γ is only as hard as solving a (UOVLRS2) system
of t equations.

To check this theoretical result, we created instances of UOVLRS2 for different
values of o and v and different types of vectors γ and solved the resulting public
systems with MAGMA v.2-13.10 (with fixing of v variables to create determined
systems).

448 A. Petzoldt and S. Bulygin

Table 1. Running time of direct attacks with MAGMA

t 1 (o, v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)
9 time (s) 5.4 5.7 5.7 5.8 5.8 5.9
10 time (s) ——— 38.9 40.8 41.8 43.0 44.6
11 time (s) ——— ——— 287.3 301.4 309.8 315.2

1 number of different values in γ

To achieve the optimal security level, the elements of the vector γ must be
pairwise distinct. Furthermore, all the elements have to be �= 0.

Remark: The above condition gives a lower bound to the cardinality of the
underlying field. In particular, we can not define our scheme over GF (24).

On the contrary, there seem to be no major conditions for the choice of the
vector α. We have to ensure only that αi ∈ F \ {0} ∀i = 1, . . . , o. For simplicity
we choose α = (1, . . . , 1).2 Therefore, we get a matrix B of the Vandermonde-
type:

B =

⎛⎜⎜⎜⎝
1 γ1 γ

2
1 . . . γ

D−1
1

1 γ2 γ
2
2 . . . γ

D−1
2

...
...

1 γo γ
2
o . . . γ

D−1
o

⎞⎟⎟⎟⎠ (10)

which can be used in Algortihm 1 to generate a key pair of UOVLRS2.

5.2 Security

As mentioned above, the matrix B of our scheme is of the Vandermonde type. If
the elements of the vector γ are pairwise distinct, there is not any relationship
between the rows of B at all. This is in contrast to the schemes of [16] and [17]
and prevents therefore possible attacks against schemes of this type which use
such relationships. Furthermore this is very similar to the case of standard UOV,
which seems to show that direct attacks against our scheme are as difficult as
direct attacks against standard UOV. Further evidence for this result was given
by experiments with MAGMA [2].

Furthermore we checked experimentally the security of our scheme against
other attacks affecting UOV-like schemes, including

– UOV attack of Kipnis and Shamir [11]
– UOV Reconciliation attack [7]

and found that these attacks cannot use the structure in our systems. Details
on these experiments can be found in the appendix of this paper.

2 In fact, the attacker is allowed to multiply each public polynomial p(i) (i = 1, . . . , o)
by a number ai ∈ F \ {0} of his choice. By doing so, he can produce a vector α′ of
this form.

Linear Recurring Sequences for the UOV Key Generation Revisited 449

6 The Verification Process

The central part of the verification process for multivariate signature schemes is
the evaluation of the public polynomials. Normally this is done as follows: For
a given (valid or invalid) signature z = (z1, . . . , zn) ∈ Fn one first computes an
(n+1)·(n+2)

2 vector mon, which contains the values of all monomials of degree
≤ 2, i.e.

mon = (z21 , z1z2, . . . , z
2
n, z1, . . . , zn, 1). (11)

Then we have

P(z) =

⎛⎜⎝MP [1] ·monT

...
MP [o] ·monT

⎞⎟⎠ , (12)

with MP [i] being the i-th row of the Macauley matrix MP .

For our new scheme, the following strategy seems to be more promising:

6.1 Notations

Let h = (h1, . . . , ho) be the hash value of the signed message.
The public polynomials can be written as

p(k)(x1, . . . , xn) =
n∑

i=1

n∑
j=i

p
(k)
ij · xixj +

n∑
i=1

p
(k)
i · xi + p

(k)
0 (k = 1, . . . , o). (13)

For k = 1, . . . , o we define upper triangular matrices MP (k) by

MP (k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n p

(k)
1

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n p

(k)
2

0 0 p
(k)
33 p

(k)
3n p

(k)
3

...
. . .

...
...

0 0 . . . 0 p
(k)
nn p

(k)
n

0 0 . . . 0 0 p
(k)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

For a (valid or invalid) signature z = (z1, . . . , zn) of the message we define the
extended signature vector

sign = (z1, . . . , zn, 1). (15)

With this notation we can write the verification process in the following form

accept the signature z⇐⇒ sign ·MP (k) · signT = hk ∀k ∈ {1, . . . , o}. (16)

In the following subsection we consider the question how we can evaluate this
equation more efficiently for our scheme.

450 A. Petzoldt and S. Bulygin

6.2 Verification of UOVLRS2

In the case of UOVLRS2, the matrices MP (k) are of the form shown in
Figure 3.

MP (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 γk γ2
k . . . γv−2

k γv−1
k γv

k . . . γn−2
k γn−1

k �
0 γn

k γn+1
k . . . γn+v−3

k γn+v−2
k γn+v−1

k . . . γ2n−3
k · γ2n−2

k �
0 0 γ2n−1

k . . . γ2n+v−5
k γ2n+v−4

k γ2n+v−3
k . . . γ3n−5

k γ3n−4
k �

...
. . .

...
...

...
...

...
...

0 . . . 0 γD−2o−2
k γD−2o−1

k γD−2o
k . . . γD−o−4

k γD−o−3
k �

0 . . . 0 γD−o−1
k γD−o

k . . . γD−2
k γD−1

k �
0 . . . 0 � . . . � � �
...

. . .
...

...
...

...
. . .

...
...

...
0 0 � �
0 0 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v

Fig. 3. Matrices MP (k) for UOVLRS2

We have

MP
(k)
ij = γk ·MP

(k)
i,j−1 ∀i ∈ {1, . . . , v}, j ∈ {i+ 1, . . . , n}, k ∈ {1, . . . , o}. (17)

Therefore we get

(sign1, . . . , signi) ·

⎛⎜⎜⎜⎜⎝
MP

(k)
1,j

MP
(k)
2,j
...

MP
(k)
i,j

⎞⎟⎟⎟⎟⎠ = γk · (sign1, . . . , signi) ·

⎛⎜⎜⎜⎜⎝
MP

(k)
1,j−1

MP
(k)
2,j−1
...

MP
(k)
i,j−1

⎞⎟⎟⎟⎟⎠ (18)

∀i ∈ {1, . . . v}, j ∈ {i+ 1, . . . , n}, k ∈ {1, . . . , o}.

The boxes in Figure 3 illustrate this equation: Boxes with continuous lines show

the vector (MP
(k)
1,j−1, . . . ,MP k

i,j−1)
T on the right hand side of equation (18),

while the boxes with dotted lines show the vector (MP
(k)
1,j , . . . ,MP

(k)
i,j)T on the

left hand side. Any box with dotted lines can be computed by multiplying the
corresponding box with continuous lines by γk.

We can use this fact to speed up the verification process of UOVLRS2 by
a large factor (see Algorithm 2).

Algorithm 2 works as follows:
From line 2 to 14 the public polynomials are evaluated. From line 3 to 12 we

hereby compute the matrix vector product sign ·MP (k)· whose result is stored

Linear Recurring Sequences for the UOV Key Generation Revisited 451

Algorithm 2. Verification process for UOVLRS2

Input: signature z ∈ Fn, hash value h ∈ Fm

Output: Boolean value TRUE or FALSE
1: sign ← (z1, . . . , zn, 1)
2: for k = 1 to o do
3: temp1 ← sign1

4: for j = 2 to v do
5: tempj ← γk · tempj−1 +MP

(k)
jj · signj

6: end for
7: a ← tempv

8: for j = v + 1 to n do
9: a ← γk · a
10: tempj ← a+

∑j
i=v+1 MP

(k)
ij · signi

11: end for
12: tempn+1 ←

∑n+1
i=1 MP

(k)
i,n+1 · signi

13: h′
k ←

∑n+1
i=1 tempi · signi

14: end for
15: if hk = h′

k ∀k ∈ {1, . . . , o} then
16: return TRUE
17: else
18: return FALSE
19: end if

in the vector temp. In line 5 and line 9-10 we hereby use the special structure of
our public key, which allows us to compute each tempi (i = 2, . . . , n) using only
two multiplications. Finally, in line 13 of the algorithm, we compute the scalar
product of temp and sign.

In line 15 to 19 we test, if the result is equal to the hash value of the message.

Computational Effort. To evaluate P in the standard way (i.e. by using
equations (11) and (12)), one needs

n+ 1

2
· (n+ o · (n+ 2)) field multiplications. (19)

Algorithm 2 needs (for each iteration of the main loop)

– in the first loop (step 4 to 6) 2 · (v − 1) field multiplications,

– in the second loop (step 8 to 11) o+ o·(o+1)
2 field multiplications,

– in step 12 n+ 1 field multiplications,
– and in step 13 again n+ 1 field multiplications.

Therefore, to evaluate equation (16) (o iterations of the main loop), Algorithm
2 needs

o ·
(
3 · n+ v +

o · (o+ 1)

2

)
field multiplications. (20)

452 A. Petzoldt and S. Bulygin

For F = GF (28), (o, v) = (28, 56) this means a reduction of the number of field
multiplications needed during the verification process by a factor of 5.3.

7 Parameters and Experiments

Based on our security analysis (see Subsection 5.2 and Appendix A), we propose
for our scheme the same parameters as for the standard UOV scheme, namely

F = GF (256), (o, v) = (28, 56).

The elements of the vector γ ∈ Fo are chosen pairwise distinct and we set
α = (1, . . . , 1) ∈ Fo.

To check our theoretical results regarding the verification process, we cre-
ated a straightforward C implementation of our scheme and the standard UOV.
Table 2 shows the results:

Table 2. Comparison of our scheme with standard UOV

private key hash length signature public key verification time
Scheme size (kB) (bit) length (bit) size (kB) red. factor ms red. factor

UOV(28, 28, 56) 96.6 224 672 99.9 - 0.99 -

UOVLRS2(28, 28, 56) 96.6 224 672 13.5 7.4 0.18 5.5

UOV(28, 30, 60) 117.0 240 720 122.6 - 1.21 -

UOVLRS2(28, 30, 60) 117.0 240 720 16.4 7.5 0.21 5.7

8 Conclusion and Future Work

In this paper we proposed a variation of the UOVLRS scheme of [17], which
not only achieves a similar reduction of the public key size but also speeds up
the verification process of UOV by a large factor. In particular, we achieved a
reduction of the public key size of UOV by a factor of 7.5 and a speed up factor
of 5.5 for the verification process. We showed the latter both theoretically and
by a C implementation of the schemes. Furthermore, experiments seem to show
that the security of UOV is not weakened by our modifications.

Future work includes the extension of our ideas to the Rainbow Signature
scheme [6] and the implementation of the scheme on hardware. Furthermore we
want to apply our techniques to the QUAD stream cipher [4] to speed up its key
stream generation process.

Acknowledgements. We thank the anonymous reviewers for their comments
which helped to improve the paper. The first author thanks the Horst-Görtz
Foundation for financial support, while the second author is funded by DFG
grant BU630/22-1.

Linear Recurring Sequences for the UOV Key Generation Revisited 453

References

[1] Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009)

[2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

[3] Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: -cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008)

[4] Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 109–128. Springer, Heidelberg (2006)

[5] Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate pkcs on modern
x86 cpus. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009)

[6] Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 164–175. Springer, Heidelberg (2005)

[7] Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New
Differential-Algebraic Attacks and Reparametrization of Rainbow. In:
Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008.
LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)

[8] Ding, J., Wolf, C., Yang, B.-Y.: 	-invertible Cycles for Multivariate Quadratic
Public Key Cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 266–281. Springer, Heidelberg (2007)

[9] Faugère, J.C.: A new efficient algorithm for computing Groebner bases (F4). Jour-
nal of Pure and Applied Algebra 139, 61–88 (1999)

[10] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

[11] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature
Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222.
Springer, Heidelberg (1999)

[12] Kipnis, A., Shamir, A.: Cryptanalysis of the Oil and Vinegar Signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

[13] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications.
Cambridge University Press (1986)

[14] Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for effi-
cient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.)
EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

[15] Patarin, J.: The oil and vinegar signature scheme. Presented at the Dagstuhl
Workshop on Cryptography (September 1997)

[16] Petzoldt, A., Bulygin, S., Buchmann, J.: A Multivariate Signature Scheme with a
partially cyclic public key. In: Proceedings of SCC 2010, pp. 229–235 (2010)

[17] Petzoldt, A., Bulygin, S., Buchmann, J.: Linear Recurring Sequences for the UOV
Key Generation. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 335–350. Springer, Heidelberg (2011)

454 A. Petzoldt and S. Bulygin

[18] Shor, P.: Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509

[19] Thomae, E., Wolf, C.: Solving underdetermined Systems of Multivariate Quadratic
Equations Revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012)

A Details of the Experiments

In this section we present the results of our experiments with known attacks
against the UOV scheme. In particular, we test the security of our scheme against

– Direct attacks

– UOV-Reconciliation attack

– UOV-attack

A.1 Direct Attacks

In a direct attack an attacker tries to solve the public system P(x) = h by a sys-
tem solver like XL or a Gröbner Basis method. Direct attacks can be used against
each multivariate scheme as a message recovery attack (encryption schemes) or
a signature forgery attack (signature schemes). To check the security of the
UOVLRS2 scheme under direct attacks, we carried out a number of experi-
ments with MAGMA [2] v.2-13.10, which contains an efficient implementation
of Faugère’s F4 algorithm [9] to compute Gröbner Bases. For each of the param-
eter sets listed in Table 3 we created 100 instances of UOV and UOVLRS2 and
solved the public systems using the MAGMA command Variety.

Table 3. Running time of the direct attack against UOV and UOVLRS2

parameters (28, o, v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)

UOV 5.5 s 40.0 s 289.2 s 2,383 s 18,928 s 196,638 s

UOVLRS2 5.4 s 39.9 s 288.6 s 2,378 s 18,917 s 195,963 s

A.2 UOV-Reconciliation Attack

In the UOV-Reconciliation attack [7] the attacker tries to find an affine trans-
formation which brings the public key in the form of a UOV central map (i.e.
no Oil × Oil terms). To do this, the attacker has to solve a number of multi-
variate quadratic systems. The complexity of the attack is mainly given by the
complexity of solving the first of these systems, which contains o equations in v
variables. Table 4 shows the time, MAGMA needs for solving this first system
for standard UOV and UOVLRS2.

Linear Recurring Sequences for the UOV Key Generation Revisited 455

Table 4. Running time of the UOV-Reconciliation attack against UOV and UOVLRS2

parameters (28, o, v) (9,18) (10,20) (11,22) (12,24) (13,26) (14,28)

UOV 5.5 s 40.1 s 289.3 s 2,381 s 18,924 s 196,712 s

UOVLRS2 5.4 s 39.9 s 286.8 s 2,379 s 18,923 s 196,683 s

A.3 UOV Attack

In the UOV attack of Kipnis and Shamir [12] the attacker tries to reconstruct
the essential parts of the affine transformation T (i.e. the parts which mix Oil
and Vinegar variables). To do this, he tries to find the space T −1(O), where O
is the so called Oil space

O = {x ∈ Fn : x1 = . . . = xv = 0}.

This can be done by looking at the invariant subspaces of the linear maps
W = P−1

i ·
∑o

j=1 Pj , where Pj is the symmetric matrix associated with the
homogeneous part of the j-th public polynomial. Table 5 shows the base 2-
logarithm of the number of matrices W we had to test until finding a basis of
T −1(O).

Table 5. Results of the experiments with the UOV attack

parameters (28, o, v) (2,4) (3,6) (4,8) (5,10)

UOV 16.1 24.3 32.2 40.0

UOVLRS2 16.0 24.1 32.0 39.9

As the Tables 3 - 5 show, known attacks against the UOV signature scheme
cannot use the special structure of our public keys. Of course, this is no proof
that no dedicated attacks against our scheme exist. However, as long as no such
attack is known, we believe our scheme to be secure and propose for it the same
parameters as for the standard UOV scheme (see Section 7).

Galindo-Garcia Identity-Based Signature

Revisited

Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Dept. of Computer Science and Automation,
Indian Institute of Science,

Bangalore
{sanjit,chethan0510,vikaskumar}@csa.iisc.ernet.in

Abstract. In Africacrypt 2009, Galindo-Garcia [12] proposed a lightwei-
ght identity-based signature (IBS) scheme based on the Schnorr signa-
ture. The construction is simple and claimed to be the most efficient IBS
till date. The security is based on the discrete-log assumption and the se-
curity argument consists of two reductions: B1 and B2, both of which use
the multiple-forking lemma [4] to solve the discrete-log problem (DLP).

In this work, we revisit the security argument given in [12]. Our con-
tributions are two fold: (i) we identify several problems in the original
argument and (ii) we provide a detailed new security argument which
allows significantly tighter reductions. In particular, we show that the
reduction B1 in [12] fails in the standard security model for IBS [1],
while the reduction B2 is incomplete. To remedy these problems, we
adopt a two-pronged approach. First, we sketch ways to fill the gaps
by making minimal changes to the structure of the original security ar-
gument; then, we provide a new security argument. The new argument
consists of three reductions: R1, R2 and R3 and in each of them, solving
the DLP is reduced to breaking the IBS. R1 uses the general forking
lemma [2] together with the programming of the random oracles and
Coron’s technique [8]. Reductions R2 and R3, on the other hand, use
the multiple-forking lemma along with the programming of the random
oracles. We show that the reductions R1 and R2 are significantly tighter
than their original counterparts.

Keywords: Identity-based signatures, Galindo-Garcia identity-based
signature, Schnorr signatures, Forking lemma, Discrete-log assumption.

1 Introduction

The notion of identity-based signatures (IBS) is an extension of the idea of digi-
tal signatures to the identity-based setting. As in traditional signature schemes,
the signer uses her secret key to sign a message. However, the signature can
be verified by anyone using the signer’s identity and public parameters of the
private-key generator (PKG). IBS or more generally, identity-based cryptosys-
tems [18] do not require any certificates to be exchanged and hence can be
advantageous over the traditional PKI based systems in certain scenarios.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 456–471, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Galindo-Garcia Identity-Based Signature Revisited 457

Several RSA based IBS [10,13] have been proposed in the literature after
the notion of IBS was introduced by Shamir in 1984 [18]. In recent times, a
few pairing based constructions were also proposed [7,14,15,9]. Galindo-Garcia
[12], on the other hand, used the technique of concatenated Schnorr’s signature
to propose an identity-based signature that works in the discrete-log setting
but does not require pairing. The authors came up with a security proof of
the proposed IBS scheme in the so-called EU-ID-CMA model using the random
oracle methodology [3] and a variant of the forking lemma [2,4,16]. The security
is based on the discrete-log problem in any prime order group. The authors
suggest to implement their scheme in a suitable elliptic curve group and after
a comparative study concluded that the proposed construction has an overall
better performance than the existing RSA-based and pairing-based schemes.
The Galindo-Garcia IBS, due to its efficiency and simplicity, has been used as a
building block for a couple of other cryptosystems [17,20].

Our Contribution. Critical examination of the security argument of a crypto-
graphic construction to see whether the claimed security is indeed achieved or
not is an important topic in cryptographic research. Two such well-known exam-
ples are Shoup’s work on OAEP [19] and Galindo’s work on Boneh-Franklin IBE
[11]. Another important question in the area of provable security is to obtain
tighter security reduction for existing construction. One such classical example
is Coron’s analysis of FDH [8]. In this work we revisit the security argument of
Galindo-Garcia IBS [12] with the above two questions in mind.

The security argument of Galindo-Garcia IBS consists of two reductions, B1

and B2, the choice of which is determined by an event E. The authors construct
B1 to solve the DLP when the event E occurs. Similarly, B2 is used to solve the
DLP in case the complement of E occurs. Both the reductions use the multiple-
forking lemma [4] to show that the DLP is reduced to breaking the IBS scheme.

In this work, we make several observations about the security argument in [12].
In particular, we show that the reduction B1 fails to provide a proper simulation
of the unforgeability game in the standard security model for IBS [1], while B2 is
incomplete. We adopt a two-pronged approach to address these problems. First,
we sketch ways to fill the gaps by making minimal changes to the structure
of original security argument; then, we provide a new security argument. The
new argument consists of three reductions: R1, R2 and R3. At a high level,
our first reduction, R1, addresses the problems identified in the original B1 in
[12], while R2 and R3 together address the incompleteness of the original B2.
The reduction R1 uses the general forking lemma [2] and the technique first
introduced by Coron [8] to prove the security of FDH. We show that this results
in a significantly tighter security reduction. On the other hand, both R2 and
R3 are structurally similar to B2 but uses two different versions of the multiple
forking lemma [4], together with an algebraic technique similar to one adopted
by Boneh-Boyen in [5]. The security reduction R2 is also significantly tighter
than the original B2 (see Table 1 for a comparison). All the three reductions use
the programmability of the random oracles in a crucial way.

458 S. Chatterjee, C. Kamath, and V. Kumar

Notations. We adopt the notations commonly used in the literature. In addition,
for an oracle H, #H(x) indicates the index on which the oracle query for input
x was made. Also, in a group G, the discrete-log to a base g is denoted by logGg .

2 Revisiting the Galindo-Garcia Security Argument

We now describe some of the problems that we observed with the original security
argument. We reproduce the original reductions from §4 of [12] in the full version
of this paper [6]. In the following, Bi.j refers to the jth step in the construction
of Bi, i ∈ {1, 2}.

2.1 Observations on B1

We now note the following points about the reduction B1. We also mention ways
to fix the problems.

(i) Correctness of signatures on îd: In B1.4, when A makes a signature query

on îd, B1 returns (A,B,R) ∈ G3 as the signature. However, in the protocol
definition, the signatures are elements of G × Zp ×G. Therefore, the signatures

on îd will fail the verification in the general group setup – i.e., G is any cyclic
group of prime order p, and in particular, in the elliptic curve setting – as the
operation gB is not defined in G. What the authors could have intended in B1.4
is

– When A makes a call to the signature oracle Os for (id,m) with id = îd,
B1 chooses t, b ∈R Zp, sets B := gb, R := g−zc(gα)t, c := H(id, R) and
A := B(gαgzc)−d. Then it returns the signature (A, b,R) to A.

Even after the above correction is applied, the signatures on îd fail the verification
algorithm. For the signatures to verify, the following equality should hold.

gb = A(R · (gα)c)d

= gb(gαgzc)−d(g−zc(gα)tgzc)d

1 = g(α+zc)(−d)gαtd

However, it holds only if (αt− zc− α) d ≡ 0 mod p. It is easy to check that the

LHS is a random element of Zp. Hence, the signatures on îd given by B1 will fail
to verify with an overwhelming probability of 1− 1

p . The equality holds if we set
t := 1+ zc

α , instead of selecting t uniformly at random from Zp. However, setting
t := 1 + zc

α results in R being set to the problem instance gα, removing t from
the picture altogether. Thus, B1.4 would finally look like:

– When A makes a call to the signature oracle Os for (id,m) with id = îd, B1

chooses b, d ∈R Zp, sets B := gb, R := gα, c := H(id, R), A := B(gαgzc)−d

and programs the random oracle in such a way that d := G(id, A,m). Then
it returns the signature (A, b,R) to A.

Galindo-Garcia Identity-Based Signature Revisited 459

Although it may appear that the reduction B1 can be rescued with the modifi-
cation mentioned above, the line of argument in B1 has another inherent – much
more serious – problem, which we describe next.

(ii) Ambiguity due to the choice of îd: B1 sets the identity involved in the îth

G-oracle query as the target identity îd (see B1.1). Hence, the target identity
can be fixed only after the îth query to the G-oracle has been made. However,
whenever a signature query is made on any identity, B1 has to decide whether
the identity is the target identity or not. Therefore, when A makes a signature
query before the îth G-oracle call, B1 has no way to decide whether to proceed to
B1.3 or B1.4 (as it depends on whether id = îd or not). B1 can provide a proper
simulation of the protocol environment only if no signature query is made on the
target identity îd before the îth G-oracle call. However, B1 cannot really restrict
the adversarial strategy this way. In fact, B1 will fail to give a proper simulation
of the protocol environment if A makes one signature query on îd before the îth

G-oracle query and one more signature query on îd after the îth G-oracle query.
One way to fix the problem noted above is to guess the “index” of the target

identity instead of guessing the index of the G-oracle query in which the target
identity is involved. Suppose n distinct identities are involved in the queries to
the G-oracle, where 1 ≤ n ≤ qG.

1 The strategy would be to guess the index î
of the target identity îd among all the identities, i.e. if {id1, . . . , idn} were the
distinct identities involved in the queries to the G-oracle (in that order), we set idî
with 1 ≤ î ≤ n as the target identity. Now, by assumption no identity queried to
the G-oracle prior to idî can be the target identity. Hence, the ambiguity noted
before can be avoided. Although this strategy works well with the “mended”
reduction which we ended up in Observation (i), it will still incur a tightness
loss of the order O

(
q3G
)
.

In our alternative security argument given in §3, we show how to get around
the problem in B1 by using Coron’s technique, together with some algebraic ma-
nipulation and non-trivial random oracle programming. In addition to correcting
the errors in B1, we end up with a much tighter reduction as a result.

2.2 Observations on B2.

We now note the following points about the reduction B2 and, as in B1, we
discuss the possible fixes.

(i) Incorrect solution of the DLP instance : In Step B2.4 (see [6] for details), the
reduction obtains the solution of the DLP instance by solving the four equations
given in (2) of [6]. However, on substituting the values of bks from those equations
in (3) of [6], we get

b2 + b1 − b0 − b3
c1(d2 − d3)− c0(d0 − d1)

= α+ logGg R ·
d2 + d1 − d0 − d3

c1(d2 − d3)− c0(d0 − d1)
, (1)

1 B1 will maintain a counter and increment it by 1 each time a new identity is queried
to the G-oracle.

460 S. Chatterjee, C. Kamath, and V. Kumar

which is not the correct solution to the DLP instance. Note that the simulator
does not know the value of logGg R and hence cannot extract α from the above
expression. However, it is not difficult to get the correct solution. The more
fundamental problem is that B2 fails to capture all possible adversarial strategies
as we show next.

(ii) Incompleteness of B2 : In Step B2.4, B2 runs MY,3
2 to get four forged

signatures as shown in (2) of [6]. The bk component of the forged signatures,
though, need not always have this particular structure. The structure depends
on the precise order in which A makes the oracle calls: G(id, A,m) and H(R, id),
during the simulation. (Here, (id,m) corresponds to the target identity and the
message pair in the forgery while (A,R) are part of the forged signature.) Thus,
only one of the two possible adversarial behaviors is covered in B2. We call this
Case 1:– A calling the H-oracle before the G-oracle. But one cannot rule out the
second case, i.e. Case 2:– A calling the G-oracle before the H-oracle.

Let’s look into the structure of the forged signatures in Case 2. As a result of
the ordering of the oracle calls, Y returns J0 as the index of the G-oracle call
on (id, A,m) and I0 as the index of the H-oracle call on (R0, id), at the end of
Run 0. As G-oracle is forked before the H-oracle, we get d1 = d0, d3 = d2 and
R1 = R0, R3 = R2 in the subsequent forkings, while all the cis, 0 ≤ i ≤ 3 will be
different. On the other hand, the value A returned as part of the forged signature
remains the same in all the four runs. Hence, the signatures returned by MY,3

will contain bks of the form

b0 = logA+ (logR0 + c0α)d0 , b1 = logA+ (logR0 + c1α)d0,

b2 = logA+ (logR2 + c2α)d2 and b3 = logA+ (logR2 + c3α)d2. (2)

When the signatures have the structure as in (2), we cannot use the original
equation to get a solution of the DLP. This is because d1 = d0 and d3 = d2
makes the denominator part in the corresponding expression zero. As we cannot
rule out this particular adversary, the reduction does not address all the cases,
rendering it incomplete.

To summarize, the same strategy to solve the DLP will not work for the two
aforementioned complementary cases. Still it is possible to distinguish between
the two cases, Case 1 and Case 2, simply by looking at the structure of the forged
signatures. In Case 1, all the Rs will be equal, i.e. R3 = R2 = R1 = R0; on the
other hand, in Case 2, all the As will be equal, i.e. A3 = A2 = A1 = A0. We could
then use the appropriate relations to solve for the DLP instance. However, this
results in an unnecessary forking being executed in Case 2. We address this in §3
by splitting B2 into two reductions R2 and R3, with R2 involving only a single
forking. The single forking, in turn, leads to a significantly tighter reduction (see
Table 1).

2 See the full version of the paper [6] for explanation of the general forking algorithm
FY and the multiple-forking algorithm MY,n.

Galindo-Garcia Identity-Based Signature Revisited 461

3 New Security Argument

On the basis of the observations made in the previous section, we now proceed to
provide a detailed security argument for Galindo-Garcia IBS. In a nutshell, we
have effectively modularised the security argument into three mutually exclusive
parts so that each of the three situations mentioned in the previous section can
be studied in more detail. We also show that it is possible to obtain significantly
tighter reductions in two of the three cases.

In order to address the problem in B1 we redefine the event E and to address
the incompleteness of B2 we introduce another event F. The security argument
involves constructing three algorithms: R1, R2 and R3 and in each of them
solving the DLP is reduced to breaking the IBS. R1, unlike its counterpart B1,
uses the general forking algorithm, whereas R2 and R3, the counterparts of B2,
still use the multiple-forking algorithm. The new reductions R1 and R2 are also
tighter than their counterparts in [12]. We refer the reader to the full version
of this paper [6] for a comprehensive explanation on the working of the general
forking algorithm FY [2] and the multiple-forking algorithm MY,n [4].

Theorem 1. Let A be an (ε, t, qε, qs, qH, qG)-adversary against the IBS in the
EU-ID-CMA model. If H and G are modelled as random oracles, we can construct
either

(i) Algorithm R1 which (ε1, t1)-breaks the DLP, where

ε1 ≥
ε2

exp(1)qGqε
and t1 ≤ t+ 2(qε + 3qs)τ, (3)

(ii) Algorithm R2 which (ε2, t2)-breaks the DLP, where

ε2 ≥ ε

(
ε

(qH + qG)2
− 1

p

)
and t2 ≤ t+ 2(2qε + 3qs)τ, (4)

(iii) Algorithm R3 which (ε3, t3)-breaks the DLP, where

ε3 ≥ ε

(
ε3

(qH + qG)6
− 3

p

)
and t3 ≤ t+ 4(2qε + 3qs)τ. (5)

Here qε and qs denote the upper bound on the number of extract and signature
queries, respectively, that A can make; qH and qG denote the upper bound on the
number of queries to the H-oracle and G-oracle respectively. τ is the time taken
for an exponentiation in the group G and exp is the base of natural logarithm.

Proof. A is successful if it produces a valid forgery σ̂ = (Â, b̂, R̂) on (îd, m̂).
Consider the following event in the case that A is successful.

E:– A makes at least one signature query on îd and R̂ was returned by the
simulator as part of the output to a signature query on îd.

462 S. Chatterjee, C. Kamath, and V. Kumar

The complement of this event is

Ē:– Either A does not make any signature queries on îd or R̂ was never
returned by the simulator as part of the output to a signature query on îd.

Note that the definition of the new event E (and Ē) is slightly different from the
one given in the security argument of [12], i.e. event E (and NE).

In order to come up with the forgery σ̂ with a non-negligible probability, the
adversary, at some point during its execution, has to make the two random oracle
calls: H(R̂, îd) and G(îd, Â, m̂). Depending on the order in which A makes these
calls, we further subdivide the event Ē into an event F and its complementary
event F̄, where

F:– The event that A makes the call G(îd, Â, m̂) before the call H(R̂, îd).
F̄:– The event that A makes the call H(R̂, îd) before the call G(îd, Â, m̂).

In the case of the events E, Ē∧F and Ē∧ F̄, we give the reductions R1, R2 and
R3 respectively. They are described in the subsequent sections.

Simulating the Random Oracles. A random oracle query is defined to be fresh
if it is the first query involving that particular input. If a query is not fresh for
an input, in order to maintain consistency, the random oracle has to respond
with the same output as in the previous query on that input. We say that a
fresh query does not require programming if the simulator can simply return a
random value as the response. The crux of most security arguments involving
random oracles, including ours, is the way the simulator answers the queries that
require programming. In our case, random oracle programming is used to resolve
the circularity involved while dealing with the implicit random oracle queries. A
random oracle query is said to be implicit if it is not an explicit query from the
adversary or the simulator. As usual, to simplify the book-keeping, all implicit
random oracle queries involved in answering the extract and signature queries
are put into the account of A.

3.1 Reduction R1

R1 uses the so-called “partitioning strategy”, first used by Coron in the security
argument of FDH [8]. The basic idea is to divide the identity-space I into two
disjoint sets, Iε and Is, depending upon the outcome of a biased coin. The simu-
lator is equipped to respond to both extract and signature queries on identities
from Iε. But it fails if the adversary does an extract query on any identity from
Is; it can answer only to signature queries on identities from Is. Finally, the
simulator hopes that the adversary produces a forgery on an identity from Is.
The optimal size of the sets is determined on analysis.

In R1 the problem instance is embedded in the randomiser R, depending on
the outcome of a biased coin. As R1 maintains a unique R for each identity, the
structure of R decides whether an identity belongs to Iε or Is. The details follow.

Let Δ := (G, p, g, gα) be the given DLP instance. R1 sets z ∈R Zp as the
master secret key. The public parameters mpk := (G, p, g, gz,H,G) are released

Galindo-Garcia Identity-Based Signature Revisited 463

to the adversary. The hash functions H and G are modelled as random oracles.
This is done with the aid of two tables, LH and LG.

Handling the Queries.

H-oracle Query. LH contains tuples of the form

〈R, r, id, c, β〉 ∈ G × Zp ∪ {⊥} × {0, 1}∗ × Zp × {0, 1, φ}.
Here, (R, id) is the query to the H-oracle and c is the corresponding output.
Therefore, a query H(R, id) is fresh if there exists no tuple 〈Ri, ri, idi, ci, βi〉 in
LH such that (idi = id) ∧ (Ri = R). If such a tuple exists, then the oracle has to
return ci as the output.

The r-field is used to store additional information related to the R-field. The
tuples corresponding to the explicit H-oracle queries, made by A, are tracked by
storing ‘⊥’ in the r-field. This indicates that R1 does not have any additional
information regarding R. In these tuples, the β-field is irrelevant and this is
indicated by storing ‘φ’. In tuples with r �= ⊥, the field β indicates whether the
DLP instance is embedded in R or not. If β = 0 then R = (gα)r for some known
r ∈ Zp, which is stored in the r-field. On the other hand, β = 1 implies R = gr

for some known r ∈ Zp, which is, again, stored in the r-field. We now explain
how the fresh H-oracle queries are handled.

H(R, id):– The query may be
(i) H1, Explicit query made by A:– In this case R1 returns c ∈R Zp as the

output. 〈R,⊥, id, c, φ〉 is added to LH.
(ii) H2, Explicit query made by R1:– As in the previous case, R1 returns

c ∈R Zp as the output. As R1 knows r = logGg R, 〈R, r, id, c, 1〉 is added
to LH.

(iii) H3, Implicit query by R1 in order to answer a signature query made by
A:– See Sign (iii) on how to program the random oracle in this situation.

G-oracle Query. LG contains tuples of the form

〈id, A,m, d〉 ∈ {0, 1}∗ ×G × {0, 1}∗ × Zp.

Here, (id, A,m) is the query to the G-oracle and d is the corresponding output.
Therefore, a random oracle query G(id, A,m) is fresh if there exists no tuple
〈idi, Ai,mi, di〉, in LG such that (idi = id)∧ (Ai = A)∧ (mi = m). If such a tuple
exists, then the oracle has to return di as the output. We now explain how the
fresh G-oracle queries are handled.

G(id, A,m):– The query may be
(i) G1, Explicit query made by the either A or R1:– In this case R1 returns

d ∈R Zp as the output. 〈id, A,m, d〉 is added to LG.
(ii) G2, Implicit query by R1 in order to answer a signature query made

by A:– See Sign (i), (iii) on how to program the random oracle in this
situation.

Now that R1 can handle the random oracle queries, the extract and signature
queries are answered as follows.

464 S. Chatterjee, C. Kamath, and V. Kumar

Extract Query. Oε(id):–

If there exists a tuple 〈Ri, ri, idi, ci, βi〉 in LH such that (idi = id) ∧ (ri �= ⊥)
(i) If βi = 0, R1 aborts (abort1,1).
(ii) Otherwise, βi = 1 and R1 returns usk := (ri + zci, Ri) as the secret key.
Otherwise
(iii) R1 chooses r ∈R Zp, sets R := gr and asks the H-oracle for c := H(R, id).

It returns usk := (r + zc, R) as the secret key.

Signature Query. Os(id,m):–

If there exists a tuple 〈Ri, ri, idi, ci, βi〉 in LH such that (idi = id) ∧ (ri �= ⊥)
(i) If βi = 0, R1 selects s, d ∈R Zp and sets A := gs(gα)−rid. Then

(id, A,m, d) is added to LG (Deferred case G2)
3. The signature returned

is σ := (A, s+ zcd,Ri).
(ii) Otherwise, βi = 1 and the secret key for id is usk = (y,Ri), where

y = ri + zci and Ri = gri . R1 selects a ∈R Zp, sets A := ga and asks G-
oracle for d := G(id, A,m). The signature returned is σ := (A, a+yd,Ri).

Otherwise, R1 tosses a coin β with a bias δ (i.e, Pr[β = 0]=δ). The value of
δ will be quantified on analysis.
(iii) If β = 0, R1 selects c, d, s, r ∈R Zp and sets R := (gα)r, A := gs(gα)−rd.

Next, it adds 〈(gα)r, r, id, c, 0〉 to LH (Deferred case H3) and 〈id, A,m, d〉
to LG (Deferred case G2).

4 The signature returned is σ := (A, s+zcid,R).
(iv) Otherwise, β = 1 and R1 selects a, r ∈R Zp and sets A := ga, R := gr. It

then asks the respective oracles for c := H(R, id) and d := G(id, A,m).
The signature returned is σ := (A, a+ (r + zc)d,R).

Correctness. For β = 0, the signature given by R1 is of the form (A, b,R), where
A = gs(gα)−rd, b = s + zcd and R = (gα)r. R1 also sets c := H(R, id) and
d := G(id, A,m). The signature verifies as shown below.

gb = gs+zcd = gs−αrd+αrd+zcd

= gs(gα)−rd((gα)r(gz)c)d = A(R(gz)c)d.

For β = 1, the signatures are generated as in the protocol. Therefore they fun-
damentally verify.

To conclude the queries section, we calculate the probability of the event
¬abort1,1. R1 aborts only when A does an extract query on an identity from
Is, i.e. an identity with β = 0. Therefore, R1 does not abort if all the extract
queries are from Iε and we have

Pr [¬abort1,1] = (1− δ)qε . (6)

3 If there exists a tuple 〈idi, Ai,mi, di〉 in LG with idi = id ∧ Ai = A ∧ mi = m but
di �= d then G(id, A,m) cannot be set to d. In that case R1 can simply choose a
fresh set of randomisers s, d and repeat the process.

4 R1 chooses different randomisers if there is a collision as explained in Footnote 3.

Galindo-Garcia Identity-Based Signature Revisited 465

Solving the DLP. R1 now uses the general forking algorithm FY to solve the
DLP challenge. It runs FY on the given DLP instance Δ, with the G-oracle
involved in the replay attack. If FY fails, R1 aborts (abort1,2). On the other
hand, if FY is successful, it gets two valid forgeries

σ̂0 = (Â, b̂0, R̂0) and σ̂1 = (Â, b̂1, R̂1)

on (îd, m̂). R1 now retrieves two tuples

ti := 〈Ri, ri, idi, ci, βi〉 | (idi = îd) ∧ (Ri = R̂0) and

tj := 〈Rj , rj , idj , cj , βj〉 | (idj = îd) ∧ (Rj = R̂1)

from LH. R1 aborts (abort1,3) if both βi and βj are equal to 1. Otherwise it solves

for α as shown below. Note that d0 and d1 represent the value of G(îd, Â, m̂) in
the two runs. Let â := logGg Â.

(i) (βi = 1) ∧ (βj = 0):– In this case, R̂0 = gri and R̂1 = grjα. Thus we have

b̂0 = â+ (ri + zci)d0 and b̂1 = â+ (rjα+ zcj)d1.

α =
z(cid0 − cjd1) + rid0 − (b̂0 − b̂1)

rjd1
. (7)

(ii) (βi = 0) ∧ (βj = 1):– In this case, R̂0 = griα and R̂1 = grj . Thus we have

b̂0 = â+ (riα+ zci)d0 and b̂1 = â+ (rj + zcj)d1.

α =
z(cjd1 − cid0) + rjd1 − (b̂1 − b̂0)

rid0
. (8)

(iii) (βi = 0) ∧ (βj = 0):– In this case, R̂0 = griα and R̂1 = grjα. Thus we have

b̂0 = â+ (riα+ zci)d0 and b̂1 = â+ (rjα+ zcj)d1.

α =
(b̂0 − b̂1)− z(cid0 − cjd1)

(rid0 − rjd1)
. (9)

Remark 1. The equations (7), (8) and (9) hold even if R̂1 = R̂0 (and con-
sequently rj = ri and cj = ci). Note that this can happen if the adversary

makes the random oracle query H(R̂0, îd) before the query G(îd, Â, m̂) in Run 0.
Hence, the order in which A makes the aforementioned random oracle calls is not
relevant.

We conclude by calculating the probability of abort1,3 provided abort1,2 has not
occurred. It is same as the probability with which (βi = 1) ∧ (βj = 1), i.e.

Pr [abort1,3 | ¬abort1,2] = (1− δ)2. (10)

Let gfrk be the probability with which FY is successful. Since abort1,2 occurs if
FY fails, we have

Pr [¬abort1,2] = gfrk. (11)

466 S. Chatterjee, C. Kamath, and V. Kumar

Analysis. The probability analysis is done in terms of the aborts abort1,1,
abort1,2 and abort1,3 from (6), (11) and (10). FY is successful during Run 0 if
there is no abort during the query phase (¬abort1,1) and A produces a valid
forgery. We denote this probability by acc1. Thus

acc1 ≥ Pr [¬abort1] · ε ≥ (1 − δ)qε · ε.

Applying the general forking lemma with | S |= p and γ = qG, we get

gfrk ≥ acc1 ·
(
acc1
qG

− 1

p

)
≥ (1− δ)qεε ·

(
(1− δ)qεε

qG
− 1

p

)
.

If we assume p' 1, the above expression approximates to

gfrk ≥ (1 − δ)2qεε2

qG
.

Now, R1 is successful in solving DLP if neither of the aborts, abort1,2 and
abort1,3, occur. Thus the advantage it has is

ε1 = Pr [¬abort1,3 ∧ ¬abort1,2] = Pr [¬abort1,3 | ¬abort1,2] · Pr [¬abort1,2]

≥ (1− (1 − δ)2) · gfrk ≥ (2δ − δ2)
(1 − δ)2qεε2

qG
.

The above expression is maximised when δ =
(
1−

√
qε−2
qε−1

)
, at which we get

ε1 ≥
1

exp(1)(qε − 1)

(
1− 1

qε − 1

)
ε2

qG
.

Here, exp is the base of natural logarithm. Assuming qε ' 1, we get the approx-
imation

ε1 ≥
ε2

exp(1)qGqε
.

Remark 2. The above reduction is tighter than the original reduction B1 given
in [12]. This can be attributed to two reasons: (i) R1 using the general forking
algorithm FY instead of the multiple-forking algorithmMY,1 and (ii) B1 in [12]
randomly chooses one of the identities involved in the G-oracle call as the target
identity which contributes a factor of qG to the degradation in B1. In contrast,
we apply Coron’s technique in R1 to partition the identity space in some optimal
way.

Time Analysis. If τ is the time taken for an exponentiation in G then the
time taken by R1 is t1 ≤ t + 2(qε + 3qs)τ . It takes at most one exponentiation
for answering the extract query and three exponentiations for answering the
signature query. This contributes the (qε+3qs)τ factor in the running time. The
factor of two comes from the forking algorithm, since it involves running the
adversary twice.

Galindo-Garcia Identity-Based Signature Revisited 467

3.2 Reductions R2 and R3

The reduction R2 is similar in some aspects to the (incomplete) reduction B2 in
[12]. However, a major difference is that R2 uses the multiple-forking algorithm
MY,1 instead of MY,3 to solve the DLP challenge. Therefore, only one forking
is involved leading to a much tighter reduction than B2. This is described in
Appendix A. As for the reduction R3, the approach used is the same as in the
reduction B2 in [12]. Therefore, we refer the reader to the full version of the
paper [6] for the description.

3.3 A Comparison with the Original Reduction.

Recall that we replaced the reduction B1 in the original security argument with
the new reduction R1. Similarly, B2 was replaced with the two reductions R2

and R3. The resulting effect on tightness is tabulated below. The security degra-
dation involved in original B1 is of the order O

(
q3G
)
. In comparison, R1 incurs

a degradation of order O (qGqε) which is much lower than that of B1. Note that
qG ' qε, i.e. the bound on the number of random oracle queries is much greater
than the bound on the number of extract queries. For example, for 80-bit secu-
rity one usually assumes qG ≈ 260 while qε ≈ 230. The degradation involved in
the original B2 would be of the order of O

(
(qGqH)

6
)
(as pointed out in Footnote

5). In comparison, the security degradation involved in R2 and R3 is of order
O
(
(qG + qH)

2
)
and O

(
(qG + qH)

6
)
respectively.

Table 1. A comparison of degradation in the original [12] and the new argument

Original reductions [12] B1 B2

Degradation O
(
q3G

)
O

(
(qGqH)

6
)

Our new reductions R1 R2 R3

Degradation O (qGqε) O
(
(qG + qH)

2
)
O

(
(qG + qH)

6
)

4 Conclusion

In this work we have identified certain shortcomings in the original security
argument of the Galindo-Garcia IBS. Based on our observations we provide a
new elaborate security argument for the same scheme. Two of the reductions are
significantly tighter than their counterparts in the original security argument
in [12]. However, all the reductions are still non-tight. We would like to pose
the question of constructing an identity-based signature scheme in discrete-log
setting (without pairing) with a tighter security reduction as an interesting open
research problem.

Acknowledgements. We thank the anonymous reviewers for their helpful
suggestions.

468 S. Chatterjee, C. Kamath, and V. Kumar

References

1. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, pp. 390–399. ACM, New York (2006)

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

4. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for del-
egation of signing rights. Journal of Cryptology 25, 57–115 (2012)

5. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

6. Chatterjee, S., Kamath, C., Kumar, V.: Galindo-Garcia identity-based signature
revisited. Cryptology ePrint Archive, Report 2012/646 (2012)

7. Choon, J., Cheon, J.H.: An identity-based signature from gap Diffie-Hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

8. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

9. Sharmila Deva Selvi, S., Sree Vivek, S., Pandu Rangan, C.: Identity-based de-
terministic signature scheme without forking-lemma. In: Iwata, T., Nishigaki, M.
(eds.) IWSEC 2011. LNCS, vol. 7038, pp. 79–95. Springer, Heidelberg (2011)

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

11. Galindo, D.: Boneh-franklin identity based encryption revisited. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 791–802. Springer, Heidelberg (2005)

12. Galindo, D., Garcia, F.D.: A Schnorr-like lightweight identity-based signature
scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp.
135–148. Springer, Heidelberg (2009)

13. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

14. Herranz, J.: Deterministic identity-based signatures for partial aggregation. The
Computer Journal 49(3), 322–330 (2005)

15. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg
(2003)

16. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13, 361–396 (2000)

17. Radhakishan, V., Selvakumar, S.: Prevention of man-in-the-middle attacks using
id-based signatures. In: Second International Conference on Networking and Dis-
tributed Computing - ICNDC 2011, pp. 165–169 (2011)

18. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

Galindo-Garcia Identity-Based Signature Revisited 469

19. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 239–259. Springer, Heidelberg (2001)

20. Xie, M., Wang, L.: One-round identity-based key exchange with perfect forward
security. Information Processing Letters 112(14-15), 587–591 (2012)

A Reduction R2

Let Δ := (G, p, g, gα) be the given DLP instance. R2 sets (G, p, g, gα,H,G) as
public parameters mpk and releases it to A. Note that R2 does not know the
master secret key msk, which is α, the solution to the DLP challenge. The hash
functions H and G are modelled as random oracles. This is done with the aid of
two tables, LH and LG.

A.1 Handling the Queries

H-oracle Query. LH contains tuples of the form

〈R, id, c, y〉 ∈ G × {0, 1}∗ × Zp × Zp ∪ {⊥}.

Here, (R, id) is the query to the H-oracle and c the corresponding output. The
y-field stores either the corresponding component of the secret key for id or ‘⊥’
if the field is invalid. A random oracle query H(R, id) is fresh if there exists no
tuple 〈Ri, idi, ci, yi〉 in LH such that (idi = id)∧ (Ri = R). If such a tuple exists,
then the oracle has to return ci as the output. We now explain how the H-oracle
queries are answered.

H(R, id):– The query may be
(i) H1, Explicit query made by A:– In this case R2 returns c ∈R Zp as the

output. 〈R, id, c,⊥〉 is added to LH.
(ii) H2, Implicit query by R2 in order to answer an extract query made

by A:– See Extract (ii) on how to program the random oracle in this
situation.

G-oracle Query. LG has the same structure as in R1 (See §3.1). The queries to
G-oracle are handled as shown below.

G(id, A,m):– R2 returns d ∈R Zp as the output. 〈id, A,m, d〉 is added to LG.

Signature and Extract Queries. Since R2 does not know the master secret key
α, it has to use the algebraic technique used in R1 to come up with the secret
key corresponding to an identity. The choice of R and c enables it to give the
secret key. The circularity involved in this choice is resolved by programming the
H-oracle appropriately. Signature queries are answered by generating the usk as
in the extract query, followed by calling S.

470 S. Chatterjee, C. Kamath, and V. Kumar

Extract query. Oε(id):–
(i) If there exists a tuple 〈Ri, idi, ci, yi〉 in LH such that (idi = id)∧(yi �= ⊥),

R2 returns usk := (yi, Ri) as the secret key.
(ii) Otherwise, it chooses c, y ∈R Zp, sets R := (gα)−cgy and adds 〈R, id, c, y〉

to LH(Deferred case H2). It returns usk := (y,R) as the secret key.

Signature query. Os(id,m):–
(i) If there exists a tuple 〈Ri, idi, ci, yi〉 in LH such that (idi = id)∧(yi �= ⊥),

then usk = (yi, Ri). R2 now uses the knowledge of usk to run S and
returns the signature.

(ii) Otherwise, R2 generates the usk as in Extract(ii) and runs S to return
the signature.

We conclude the queries section with the remark that R2 never aborts during
the query stage.

A.2 Solving the DLP

R2 now uses the multiple-forking algorithm MY,1 to solve the DLP challenge.
It runs MY,1 on mpk, with both H and G-oracle involved in the replay attack.
IfMY,1 fails, R2 aborts (abort2,1). On the other hand, ifMY,1 is successful, R2

gets two valid forgeries

σ̂0 = (Â, b̂0, R̂) and σ̂1 = (Â, b̂1, R̂) (12)

on (îd, m̂) with

b̂0 = â+ (r̂ + αc0)d̂ and b̂1 = â+ (r̂ + αc1)d̂, (13)

where â := logGg Â and r̂ := logGg R̂. Note that c0 and c1 represent the value of

H(R̂, îd) in the two runs. Also, the event F guarantees that A makes the G-oracle

call G(îd, Â, m̂), before the H-oracle call H(R̂, îd). Finally it outputs the solution
to the DLP instance,

α =
b̂0 − b̂1

d̂(c0 − c1)
. (14)

Structure of the forgeries. Now we justify the structure of the component b of the
forgeries given in (13). Recall that the signature queries are answered by doing
an extract query on the identity followed by calling S. Therefore, the resultant
secret keys are of the form usk = (y,R), where R = (gα)−cgy and we have

r = −αc+ y.

If a forgery is produced using the same R as given by R2 as part of the signature
query on id, then b will be of the form b = a+(−αc+y+αc)d = a+yd. Therefore,
it will not contain the solution to the DLP challenge α, and such forgeries are
of no use to R2. But the event Ē guarantees that A does not forge using an

Galindo-Garcia Identity-Based Signature Revisited 471

R which was given as part of the signature query on id and hence, for the
forgery to be valid b will necessarily be of the form:

b = a+ (r + αc)d. (15)

We conclude with the remark that the event abort2,1 does not occur if the
multiple-forking algorithm is successful (let this probability be mfrk). Therefore

Pr [¬abort2,1] = mfrk. (16)

A.3 Analysis

The only abort involved in R2 is abort2,1, which occurs whenMY,1 fails. There-
fore R2 is successful if MY,1 is and from (16) we have

ε2 = Pr [¬abort2,1] = mfrk.

We denote the probability with which MY,1 is successful during Run 0 as acc2.
Since there is no abort involved during query phase, MY,1 is successful during
Run 0 if A produces a valid forgery, i.e. acc2 = ε. Applying the multiple-forking
lemma with n := 1, γ := qH + qG,

5 and | S |= p, we have

ε2 = mfrk ≥ acc2 ·
(

acc2
(qH + qG)2

− 1

p

)
≥ ε

(
ε

(qH + qG)2
− 1

p

)
.

Time Analysis. Drawing analogy from the time analysis of R1, the time taken
by R2 is easily seen to be bounded by t2 ≤ t+ 2(2qε + 3qs)τ .

5 In the analysis of B2 in [12], γ was assumed to be qH ·qG. However, γ actually denotes
the size of the set of responses to the random oracle queries involved in the replay
attack. As both H and G-oracle is involved in the replay attack in B2, the size of the
set is qH + qG rather than qH · qG.

Private Over-Threshold Aggregation Protocols

Myungsun Kim1,
, Abedelaziz Mohaisen2, Jung Hee Cheon3,
, and Yongdae Kim4

1 University of Suwon, Suwon, South Korea
msunkim@suwon.ac.kr
2 VeriSign Labs, VA, USA

amohaisen@verisign.com
3 Seoul National University, Seoul, South Korea

jhcheon@snu.ac.kr
4 Korea Advanced Institute of Science and Technology, Daejeon, South Korea

yongdaek@ee.kaist.ac.kr

Abstract. In this paper, we revisit the private κ+ data aggregation problem, and
formally define the problem’s security requirements as both data and user privacy
goals. To achieve both goals, and to strike a balance between efficiency and func-
tionality, we devise a novel cryptographic construction that comes in two schemes;
a fully decentralized construction and its practical but semi-decentralized variant.
Both schemes are provably secure in the semi-honest model. We analyze the com-
putational and communication complexities of our construction, and show that it
is much more efficient than the existing protocols in the literature.

Keywords: Privacy-preservation, over-threshold, data privacy, user privacy.

1 Introduction

Of particular interest in many applications is the problem of computing the over-
threshold elements, elements whose count is greater than a given value, in a private
manner. A typical application that involves such primitive is network traffic distribu-
tion, where n network sensors need to jointly analyze the security alert broadcasted
by different sources in order to find suspect sites. In such an application, and without
losing generality, each of such sensors has a set of suspects and would like to collabo-
ratively compute the most frequent on each of these sets (e.g., the count greater than κ,
referred to as κ+) without revealing the set of suspects to other sensors with whom she
collaborates.

Problem Definition: Let there be n users denoted by ui, 1 ≤ i ≤ n, and each of them
has a private (multi-)set Xi of cardinality k. For simplicity, assume that the cardinality
of each multiset is equal to each other. (We can efficiently handle the case where the
cardinality of all multisets are different from each other by adding random elements.)
There may exist one or more elements such that αi,j = αi,j′ for some j �= j′.

PRIVATE κ+ AGGREGATION PROBLEM: By the multiplicity of an element of a multiset
we mean the number of times it appears in the multiset. Let κ ∈ N, and assume κ

� This work was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MEST) (No. 2012-0001243).

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 472–486, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Private Over-Threshold Aggregation Protocols 473

has been implicitly predefined among all users. Then the problem at hand is defined
as follows: Given n multisets of cardinality k, find a set Z = {α1, . . . , ακ} ⊂ U =⋃n

i=1 Xi such that (i) for all elements α ∈ U, if α has a multiplicity greater than or equal
to κ, then α ∈ Z , (ii) no polynomial-time algorithm can learn any element other than
the output of a κ+ protocol, and (iii) no polynomial-time algorithm should know which
output of the execution belongs to which user [15].

One straightforward technique to solve the problem is to use a trusted third party
(TTP), where each user sends his private set to such TTP which performs the κ+ aggre-
gation task and reports the result back to each user. However, finding such TTP is not
always possible in many applications. Moreover, compromising the TTP could lead to
a complete privacy loss for all participating users.

Another approach is to use secure multiparty computation (SMC), which allows to
securely compute a function over private data where users only learn the result of the
function and nothing else. However, despite recent advances in their efficiency, SMC
methods still require substantial computation and communication costs, making them
impractical for real-world applications that mainly operate on large datasets.

A final approach is to use existing private set-operation protocols such as [14,21,13],
especially multiset union protocols. These protocols securely compute all elements ap-
pearing in the union of input multisets at least τ times. Here all of them demand a
priori-knowledge of the threshold value τ .

Remark 1. There have been many results [22,23,25,26] in the literature with titles con-
taining the term “top-κ”. We stress that these protocols produce the greatest κ elements
in the union of the given sets in a private manner, and thus are different in their end
results from our protocol. For example, there is a secure method for finding the κ-th
ranked element in multiple multisets by Aggarwal et al. [1]. Repeatedly applying this
protocol we can efficiently find the biggest κ elements in a distributed list.

Our Approach—Informal Descriptions: The most non-trivial part of κ+ protocols
is that we should satisfy two privacy requirements, namely the data privacy and user-
privacy, at the same time. First let us take a closer look at e-voting protocols. In e-
voting protocols, each ballot is mixed with a shuffle scheme which plays a crucial role
in removing linkability between voters and ballots, which would hint user privacy. In
fact, in e-voting literature this notion is called unlinkability. In order to emphasize the
difference with e-voting protocols, we use the term user privacy. Now assuming that
each element in multisets is encrypted and shuffled as in e-voting protocols, all en-
crypted elements can be decrypted, especially in a threshold manner, while satisfying
user privacy. However, all non-κ+ elements also are revealed, which violates data pri-
vacy in our application. Thus we need a way to keep data privacy even when all en-
crypted elements were decrypted. For this purpose we introduce an efficient function
E that commutes with an underlying public-key encryption. More specifically, let Enc
be a public-key encryption algorithm and Dec be the corresponding decryption algo-
rithm. We demand that: (i) for all s and for all pk, Es ◦ Encpk = Encpk ◦ Es, and
(ii) for all elements α, given Decsk(Encpk(Es(α))) no algorithm can efficiently find
α without s. We call this notion double encryption. In conclusion, our main technique
is to shuffle doubly encrypted elements by each user. We should notice that all shuffle

474 M. Kim et al.

algorithms used in e-voting protocols rely on the re-randomizable property of underly-
ing homomorphic encryption (e.g. see [8,17,18,12,11]), but its re-randomization algo-
rithm does not change the plaintexts of input ciphertexts. However, in our protocol a
double encryption scheme will change the plaintexts of input ciphertexts, which is the
main difference from existing shuffle algorithms.

Summary of Our Results: In this paper, we present a formal definition of private κ+

protocol and its security. Our operation setting is fully decentralized among n users over
non-partitioned data. For the efficiency of our protocol, we refrain from using secure
multiparty computation and construct an efficient private κ+ protocol which is both
data-private and user-private. Our construction strikes a real balance in the consumed
resources and achieved security, and satisfies both privacy requirements. In particular, in
its efficiency, our construction is comparable to the work in [3], which achieves its effi-
ciency by giving up decentralized communication model, and in its security guarantees
it is comparable to the work [4], which is secure but resources exhaustive. Our protocol
on the other hand overcome the limitations and shortcomings of those protocols.

More specifically, our scheme does not requires a trusted party to set up the keys.
Note that using Paillier cryptosystem [20] in a threshold manner demands some trusted
setup. Moreover, our proposed protocol has several desirable features as follows: (1)
It has O(n2k) computational complexity where n is the number of users and k is the
cardinality of each user’s set, assuming κ ≤ k, (2) It hasO(n2k) communication com-
plexity, and (3) It has a linear round complexity in the number of users.

In general, real-world applications has n much smaller than k, which further justi-
fies the efficiency of our protocol. This is, our protocol is beneficial in such real-world
applications where the number of participating users is small but the size of their mul-
tisets is large. It remains an important open problem to devise a protocol whose round
complexity does not depend on the number of users. Then we could make our protocol
haveO(nk) computation and communication complexity.

Organization. The rest of this paper is organized as follows. In Section 2, we discuss
the related work with extensive analysis and comparison to our work. In Section 3,
we outline the preliminaries required for understanding the rest of the paper, including
double encryption, our formalism of κ+ protocol and its security, and cryptographic
primitives used in the context of computing the κ+. In Section 4, we introduce our
construction that comes into two forms with different requirements and guarantees and
meets data privacy and user privacy. In Sections 5 and 6 we analyze the security and
complexity of our work, by proving its security and showing its resources consumption
requirements. Finally, we draw concluding remarks and point future work in Section 7.

2 Related Work

There has been plenty of work in the literature to solve the problem of private data
aggregation. Such schemes can be classified under three schools of thoughts: fully cen-
tralized, fully decentralized, and semi-decentralized. While the centralized schemes as-
sume the existence of a trusted third party (TTP), which makes them of less interest
from the cryptographic and practical point of views, the fully decentralized schemes
utilize cryptographic primitives and protocols to replace the centralized TTP. Finally,

Private Over-Threshold Aggregation Protocols 475

semi-decentralized schemes try to bridge the functional and security gap between other
directions. As they are of particular relevance to our work, we limited our discussion to
the decentralized and semi-decentralized protocols.

Decentralized solutions to the problem try to replace the centralized TTP with cryp-
tographic constructions, which comes in different forms leading to several directions of
research. One direction is based on SMC, as it is the case in [4]. However, at the core
of that protocol’s drawbacks is its inefficiency: since it uses Yao’s garbled circuits [24],
the computational resources required for ordinary data sizes is overwhelmingly high.
Furthermore, as the datasets become disjoint, the efficiency of such construction de-
creases sharply. In [4], Burkhart and Dimitropoulos—in what we consider to be the
most relevant work to ours—have devised a construction in which the round complexity
is linear to the number of bits in the data elements. However, due to using sketches to
improve the efficiency of subprotocols, the aggregate results are probabilistic. Further-
more, while the work in [4] is efficient in terms of its computational complexity, this
efficiency comes at the expense of high round complexity. Kissner and Song [14] de-
vised an over-threshold set union protocol—where a threshold value τ should be given
in advance—to find all elements appearing in the union of input multisets at least τ
times. The protocol requires a priori knowledge of the threshold, although operates in a
decentralized manner. We compare it to our work in Section 6.

Finally, semi-decentralized constructions, represented by the work of Applebaum et
al. in [3], aim to enhance the efficiency of fully-decentralized instantiations by adding
new entities: proxy and database (DB). However the proxy and the DB are assumed
to be semi-honest restricting the possibility of coalition between proxy and DB. This
allows to obtain a constant round protocol. While the authors claim that both proxy and
DB are expected to act as semi-honest, it might be a strong assumption both theoreti-
cally and practically. Furthermore, their scheme extensively relies on oblivious transfer
(OT) [16], which is a very expensive public-key primitive since it may require two
modular exponentiations per invocation, and run for each bit of the user’s data element.

To sum up, Table 1 summarizes properties and efficiency of existing solutions com-
pared with our proposed protocol. Computational complexity is expressed in terms of
the number of multiplications over modulo p. For simplicity, we assume that multisets
have values less than the prime p. Note that Applebaum et al.’s protocol requires both
ElGamal encryption [7] and Goldwasser-Micali encryption [10], but we assume that
both encryption systems use the same size modulus.

Table 1. Summary and Comparison

Comm. Model Round Cpx Comp. Cpx Comm. Cpx

Ours Fully decentralized O(n) O(n2k log p) O(n2k log p)

[4] Fully decentralized O(n(n+ k log k) log p) O(n2k) O(n2k log p)

[3] Semi-decentralized O(1) O(nk log2 p) O(nk log p)

3 Preliminaries

Notation. Let us denote F (α) for the multiplicity (also known as frequency) of an ele-
ment α in a multiset X and F (X) for the collection of multiplicities for all elements in

476 M. Kim et al.

the multiset X—here the multiplicity F (α) of an element α refers to how many times
the element appears in X. For n ∈ N, [1, n] denotes the set {1, . . . , n}. If A is a prob-
abilistic polynomial-time (PPT) machine, we use a ← A to denote A which produces

output according to its internal randomness. In particular, if U is a set, then r
$←− U is

used to denote sampling from the uniform distribution on U . A function g : N → R
is negligible if for every positive polynomial μ(·) there exists an integer L such that
g(η) < 1/μ(η) for all η > L.

3.1 Definitions

Informally, a double encryption is a pair of encryption schemes E = (KG,Enc,Dec)
and E = (G,E,D) such that Enc(E(a)) = E(Enc(a)). We demand that an encryption
scheme E be deterministic. The reason is that we need to know a complete distribution
of multisets while hiding their elements. See Appendix A for a formal definition of
public-key cryptosystem and its standard security definition.

Definition 1 (Double Encryption). Let E = (KG,Enc,Dec) be a public-key encryp-
tion scheme defined as in Definition 4 with a pair of keys (pk, sk) ← KG(1λ) and
a message space (resp., ciphertext space) Mpk (resp., Cpk). A pair (E ,E) is called
double encryption if there exists a triple of polynomial-time computable functions,
E = (G,E,D), that satisfies the following properties:

– A probabilistic function G(1λ) takes as input a parameter λ, and outputs (s, s′) s.t.
∀s, s′ and for any m ∈Mpk, m = Ds′(Es(m)), E and D are deterministic.

– Commutativity: For all pk, s and for allm ∈Mpk,Encpk(Es(m))=Es(Encpk(m))
up to the randomness of Encpk(·).

– For all c← Enc(m), Es(m) = Decsk(Es(c)).

We give an instantiation of a double encryption scheme in the following example.

Example 1. Let p be a large prime of the form p = 2q + 1, where q is also prime.
Let Gq be a subgroup of Z×

p of order q with a generator g. Then a standard CPA-secure

ElGamal encryption E = (KG,Enc,Dec) is defined as follows: Selecting x
$←− Zq ,

KG(1λ) outputs (pk, sk) where pk := (p, q, g, y = gx (mod p)) and sk := (p, q, g, x).
Given a message m ∈ Gq, the encryption algorithm Enc outputs c = (gr,m · yr) for a

randomness r
$←− Zq . Given an ElGamal ciphertext c = (u, v), the decryption algorithm

Dec computes v ·u−x using the secret key x. Now E = (G,E,D) is defined as follows:

– A probabilistic functionG(1λ) outputs (s, s′) ∈ (Zq)
2 such that ss′ = 1 (mod q).

– Given α ∈ Gq, E : Gq → Gq is given by α %→ αs (mod p).
– A deterministic function Ds′(β) computes βs′ (mod p).

Then, (E ,E) is a double encryption:

– For all values m ∈ Gq, m = (ms)s
′
(mod p).

– For any messagem∈Gq, there exists r′=rs s.t.
(
gr

′
, (ms) · yr′

)
=((gr)s, (myr)s).

– For any ElGamal ciphertext c = (u, v) ∈ (Gq)
2, where u = gr and v = myr,

ms = vs · (us)−x (mod p).

Private Over-Threshold Aggregation Protocols 477

We use a standard definition of shuffle given by Nguyen et al. [18]; see details of the
definition in [18, Def. 3 & Def. 4] and its extend version. As we mentioned before, our
shuffle algorithm takes as input a list of ciphertexts, and outputs a list of permuted and
doubly encrypted ciphertexts. Since a double encryption scheme leads to change the
plaintexts of input ciphertexts, we need to devise proving the correctness of the shuffle.

Now we define κ+ protocol and give its algorithmic description. Throughout the
paper, we use Σn to denote the set of all permutations on [1, n]. A private κ+ protocol
consists of five computable (in polynomial time) algorithms, (Setup, DEncrypt, Shuffle,
Aggregate, Reveal), over a double encryption (E ,E), which are explained as follows:

(pk, sk, s, s′)← Setup(1λ): The setup algorithm takes as an input the security param-
eter λ, and outputs the public and secret parameters for doubly encrypting input
ciphertexts, by invoking (pk, sk)← KG(1λ) and (s, s′)← G(1λ).

(Es(c1), . . . , Es(cn))← DEncrypt(pk, s, c1, . . . , cn): The algorithm DEncrypt takes
as input system parameters (pk, s) and a list of ciphertexts (c1, . . . , cn), and pro-
duces a list of doubly encrypted ciphertexts (Es(c1), . . . , Es(cn)).(

Es(cπ(1)), . . . , Es(cπ(n))
)
← Shuffle(π,Es(c1), . . . , Es(cn)): The algorithmShuffle

chooses a random permutation π ∈ Σn and shuffles the doubly encrypted cipher-
texts (Es(c1), . . . , Es(cn)), and then outputs the mixed list.

(Es(α1), . . . , Es(ακ))← Aggregate
(
pk, sk, Es

(
cπ(1)

)
, . . . , Es

(
cπ(n)

))
: The algo-

rithm Aggregate takes as input a pair of keys (pk, sk) and a list of permuted, dou-
bly encrypted ciphertexts, and for all i ∈ [1, n] computes Decsk

(
Es

(
cπ(i)

))
=

Es

(
απ(i)

)
. Finally it computesF

(
Es

(
απ(i)

))
, i ∈ [1, n] and outputs only the ele-

ments whose multiplicity is greater than or equal thanκ. Here{Es(α1), . . . , Es(ακ)}
=
{
Es

(
απ(i)

) ∣∣F (Es

(
απ(i)

))
≥ κ

}
.

(α1, . . . , ακ)← Reveal (pk, s′, Es(α1), . . . , Es(ακ)): The algorithm Reveal outputs
the most frequent κ+ elements by computing Ds′ (Es(αj)) for all j ∈ [1, κ].

In the next section, we will define the meaning of secure κ+ protocol. Then we describe
cryptographic building blocks for constructing a secure κ+ protocol under proper cryp-
tographic assumptions.

3.2 Security Definition

Ideal Functionality. we define the ideal functionality Ftopk for the κ+ protocol

Definition 2. There are a set of n users, U = {ui}ni=1, a trusted party T , and an ideal
adversary S controlling a set of corrupted users Υt = {uij}tj=1 for some t ∈ [0, n− 1].

Let Xi = {αi,j}ki

j=1 be a multiset of user ui∈[1,n].

1. Each user ui sends Xi to T .

2. T computes the following functionality, and returns the output Zl to each ul∈[1,n]:

Zl =
{
αi,j ∈

⋃
i∈[1,n]Xi

∣∣∣F (αi,j) ≥ κ
}
.

478 M. Kim et al.

Data Privacy. Informally, data privacy requires that no user, or coalition of users,
should learn anything about honest users’ inputs except what can be trivially derived
from the output itself. We can easily derive the formal definition for data privacy in κ+

protocols following the standard privacy definition of existing protocols in the litera-
ture; an excellent reference on that is Goldreich’s textbook in [9]. More specifically, we
use Definition 7.5.1 (resp., Definition 7.5.3) in [9] for the semi-honest model (resp. the
malicious model). Roughly speaking, this is formalized by considering an ideal world
where T receives the inputs of the users and outputs the result of the defined function-
ality. We demand that in the real world application of the protocol–that is, one without
the T –no user should learn more information than in the ideal world.
User Privacy. The remaining part to conclude our definitions is user privacy. Let
Z = {α1, . . . , ακ} be an output of a κ+ protocol. Roughly speaking, no user or coali-
tion of users should gain a non-negligible advantage in distinguishing, for all α ∈ Z ,
an honest user ui such that α ∈ Xi.

Definition 3 (User Privacy). Let Πκ,E,E be a κ+ protocol defined as in Section 3.1
over a double encryption scheme (E ,E) andA = (A1,A2) be an adversary.

Experiment Expκ
+

A (Πκ,E,E, λ)

(pk, sk, s, s′)← Setup(λ);

(state, Υt,m1, . . . ,mn−t)← A1(pk, n, t) s.t. Υt is a set of corrupted t users;

σ
$←− Σn and assign mσ(i) to each honest i-th user ui �∈ Υt;

(α1, . . . , ακ)← Πκ,E,E, where A1 interacts with the n− t honest users;

(i, j)← A2(pk,m1, . . . ,mn−t, state);

We define the advantage of an adversary A, running in probabilistic polynomial time:

Advκ
+

A (Πκ,E,E, λ) =

∣∣∣∣Pr[σ(i) = j]− 1

n− t

∣∣∣∣ .
A κ+ protocol is user-private if the advantage Advκ

+

A (Πκ,E,E, λ) is negligible in the
security parameter λ.

3.3 Cryptographic Assumptions and Tools

Next we outline the cryptographic tools and assumptions we use in our protocol. Let G
be a finite cyclic group of prime order q, and let g ∈ G be a generator. Given h ∈ G, the
discrete logarithm problem requires us to compute x ∈ Zq such that gx = h. We denote
this (unique) x by logg h. In particular groups G and for q large, it is assumed hard to
compute x, which is said to be the Discrete Logarithm (DL) assumption.

A stronger assumption is the Decisional Diffie-Hellman (DDH) assumption. Here,
given G, a generator g of G, and three elements a, b, c ∈ G, we are asked (informally) to
decide whether there exist x, y such that a = gx, b = gy, and c = gxy. More formally,
the DDH assumption states that the following two distributions are computationally

indistinguishable: {G, g, gx, gy, gxy} and {G, g, gx, gy, gz} where x, y, z
$←− Zq .

Private Over-Threshold Aggregation Protocols 479

We extensively use ElGamal encryption defined in Example 1. This scheme secure
against CPA attack in a DDH group G; see Appendix A for the CPA security. In ad-
dition, we need an efficient scheme which works as follows: When each user holds a
shared secret key si such that s =

∏n
i=1 si, the scheme allows each user to have a share

s′i satisfying s′ =
∏n

i=1 s
′
i and s′ = s−1 (mod q) for a public modulus q. Indeed, we

may realize the scheme by techniques studied by Algesheimer et al. [2, §5].

4 Our Construction

In this section, we describe our construction for computing the κ+ elements privately.
We begin by considering a basic setting of n users, denoted by u1, . . . , un. Let Xi =
{αi,1, . . . , αi,k} for all i ∈ [1, n]. Each user ui has its private multiset Xi, and the
users wish to jointly compute

{
α ∈

⋃n
i=1 Xi

∣∣F (α) ≥ κ
}

. For simplicity, assume that
all elements are in the proper message domain Mpk of an ElGamal encryption scheme,
e.g., a finite cyclic subgroup Gq of Zp in which the DDH assumption holds. For a
multiset X = {α1, . . . , αk}, we denote Xs as {αs

1, . . . , α
s
k} for some s ∈ Zq . With such

notation in mind, we proceed to describe our construction.

4.1 Description

Let λ be a security parameter, p be a λ-bit prime such that for some prime q, p = 2q+1,
and Gq be a finite cyclic subgroup of Z×

p whose order is q, and g be a generator of Gq.

Setup(1λ). Each user agrees to a threshold ElGamal encryptionEwith a public/private
key pair (pk, sk), which are computed as follows. Define params := (p, q, g,Gq).

Each user selects a value xi
$←− Zq , computes yi = gxi , and sets sk = (params, xi);

the public key is then given by pk :=
(
params, y=

∏n
i=1 yi=g

∑
i∈[1,n] xi (mod p)

)
.

In addition, all users are distributed a share (si, s
′
i) such that s =

∏n
i=1 si, s

′ =∏n
i=1 s

′
i, and s ·s′ = 1 (mod q). Notice that in threshold decryption schemes, users

generally produce shares of the decrypted element, and during the operation of the
schemes if one user sends a uniformly generated share instead of a valid one the de-
crypted element is uniform. Also, if the decrypted element is uniform, the resulting
decryption reveals no information to the users.

DEncrypt. Let I = {1, . . . , n} be a set of indices, and let the power function
Esi(α)=α

si (mod p) which is deterministic.
1. Every user ui encrypts his multiset Xi as follows:

Encpk(Xi) = {Encpk(αi,1), . . . ,Encpk(αi,k)}

where Encpk(αi,j) = (gri,j , αi,j · yri,j) for some randomizer ri,j ∈ Zq , and
sends Encpk(Xi) to u1.

2. User u1 computes {Es1(Encpk(X1)), . . . , Es1(Encpk(Xn))}, which is denoted
by Y0.

Shuffle & DEncrypt. For i ∈ [1, n], ui receives vector Yi−1 and computes a per-
muted, doubly encrypted version Yi as follows:

480 M. Kim et al.

1. ui�=1 computes

Esi(Yi−1) = {c1, . . . , cnk}
=
{
Esi

(
Esi−1

(
· · ·Es1

(
απi−1(1)

)
· · ·

))
, . . . ,

Esi

(
Esi−1

(
· · ·Es1

(
απi−1(nk)

)
· · ·

))}
.

More precisely, here απi−1(�) = απi−1◦···◦π1(�) for all � ∈ [1, nk].
2. ui chooses a random permutation πi ∈ Σnk, and applies πi to the list of

c�∈[1,nk] computed above; denote the result by Yi.
3. ui sends Yi to ui+1; the last user un sends Yn to all users.

Aggregate. Let U =
⋃n

i=1 Xi. Every user has Es(Encpk(U)).
1. Every user participates in a group decryption and obtains

Es(U) =
{
Es

(
απ(1)

)
, . . . , Es

(
απ(nk)

)}
where π = πn ◦ · · · ◦ π1.

2. Every user computes Z = {Es(α) ∈ Es(U)
∣∣F (Es(α)) ≥ κ}.

Reveal.
1. For every Es(α) ∈ Z , user ui sends its share of Ds′i

(Es(α)) to ui′ .
2. After receiving all the shares, every user ui computesα = Ds′(Es(α)), thereby

recovering the κ+, {α ∈ U|F (α) ≥ κ}.

Efficiency. The advantage of the above protocol is multifold. First, compared to Kiss-
ner and Song’s protocol [14], our protocol provides the functionality of finding a thresh-
old value and computing the “over threshold” at the same computation and communi-
cation cost—whereas they incur different and higher costs in [14]. Second, compared
to the κ+ protocol described in [4], our protocol has a much better computational com-
plexity. See details in Section 5. In order to present a fair comparison between our
proposed protocol and Applebaum et al.’s protocol [3] we devise our protocol for a
semi-decentralized model in the next section. The other purpose of our modification is
to reduce the round complexity to a constant.

4.2 Semi-decentralized Construction

The most crucial drawback of the previous protocol is its O(n) round complexity. To
avoid this problem, Applebaum et al. introduced two semi-honest users: a proxy which
shuffles a list of input ciphertexts, and a database which aggregates κ+ elements. Ap-
plying the same technique to our protocol, we obtain a constant-round κ+ protocol.

– Assume that there are n1 proxies and n2 databases described as in [3].
– Each database engages in setting up a threshold ElGamal encryption and publishes

a public key. Instead of users, all proxies are distributed secret shares (sl, s′l)l∈[1,n1].
– Each user computes a list of ElGamal ciphertexts and sends it to a proxy.
– Each proxy runs DEncrypt and Shuffle, and returns the result to all databases.
– Databases perform group decryption, and get the list of encrypted κ+ elements
– Finally, all proxies decrypt the encrypted κ+ list and return the κ+ to all users.

Private Over-Threshold Aggregation Protocols 481

Compared to [3], our protocol does not require OT operations, nor an extra encryp-
tion scheme. Recall that Applebaum et al.’s protocol requires ElGamal encryption and
Goldwasser-Micali (GM) encryption: ElGamal encryption is used to encrypt elements
in multisets and GM encryption is used to encrypt their multiplicity.

5 Security Analysis

Theorem 1 (Correctness). In the private top-κ protocol in sec. 4.1, every honest user
learns the joint set distribution of all users’ private inputs, i.e., each elementEs(α) such
that α ∈

⋃n
i=1 Xi and the number of times it appears, with overwhelming probability.

Proof. Each player learns a randomly permuted joint multisetEs(U)=
{
Es

(
απ(1)

)
, . . . ,

Es

(
απ(nk)

)}
. We know that |Us| = nk. Since π is a permutation, for each Es

(
απ(�)

)
and for all � ∈ [1, nk], there exist a pair of the unique index �∗ such that

�∗ = π−1(�)

= π−1
n (�) ◦ · · · ◦ π−1

1 (�).

Namely, Es

(
απ(�)

)
is a unique blinded version of α�∗ ∈

⋃n
i=1 Xi. Moreover, ∀�, �∗ ∈

[1, nk], α� = α�∗ if and only if Es (α�) = Es (α�∗) with overwhelming probability. �

Corollary 1. In the private top-κ protocol in Section 4.1, every honest user learns the
κ+ in the union of private multisets with overwhelming probability.
Now we show that our protocol satisfies the privacy requirements in the semi-honest
model. Let T be a trusted party in the ideal world which receives the private input
multiset Xi of size k from user ui for i ∈ [1, n], and then returns to every user the joint
multiset distribution {F (α)} for all α ∈

⋃n
i=1 Xi.

Theorem 2 (Data Privacy). Assume that the threshold ElGamal encryption E =
(KG,Enc,Dec) is secure against CPA. In the private top-κ protocol in Section 4.1,
any coalition of less than n semi-honest users learn no more information than would be
given by using the same private inputs in the ideal-world model with T .

Proof. We assume that the ElGamal encryption scheme is CPA-secure, and so each user
learns only

Encpk (X1) , . . . ,Encpk (Xn) ;

Es1(Encpk(X1)), . . . , Es1(Encpk(X1)), . . . , Esi−1(Encpk(X1)), . . . , Esi−1(Encpk(Xn));

...

Esi−1(· · ·Es1(Encpk(X1)) · · ·), . . . , Esi−1(· · ·Es1(Encpk(Xn)) · · ·)

during an execution. At the end of the protocol all users further know Es(Encpk(U))
where U =

⋃n
i=1 Xi, and for some γ�∈[1,nk] ∈ Zq

Es(Encpk(U)) = {Es(Encpk(X1)), . . . , Es(Encpk(Xn))}
=
(
gγ1 ,

(
απ(1)

)s · yγ1
)
, . . . ,

(
gγnk ,

(
απ(nk)

)s · yγnk
)
.

482 M. Kim et al.

Note that π is a composition of random permutations and is unknown to all users, as the
maximum coalition size is smaller than n. That is, if there exists at least an honest user,
then a composition of random permutations π = πn ◦ · · · ◦ π1 is a random permutation
because at least a permutation πi∈[1,n] is secure. What is more, note that s is uniformly
distributed and unknown to all users for the same reason. As s is uniformly distributed
for any user inputs and π is random, no user or coalition can learn more than a set of
re-randomized ElGamal encryptions. As s is uniformly distributed, a group decryption
of ElGamal encryptions reveals no more than

{Es(α�)}�∈[1,nk] = Es

(
n⋃

i=1

Xi

)
= Es(U).

We know the fact that F (α) = F (αs) for two multisets X and Es(X) ∈ (Gq)
k , for all

s ∈ Zq and for all α ∈ X. Hence we see that

F (Es(U)) = F

(
Es

(
n⋃

i=1

Xi

))
= F

(
n⋃

i=1

Xi

)
= F (U),

which can be derived from the output returned by T in the ideal-world model. �

Theorem 3 (User Privacy). Assume that the threshold ElGamal encryption Enc is
CPA-secure. The private top-κ protocol in Section 4.1 is user-private against any coali-
tion of less than n semi-honest users.

Proof. Assume that there is at least an honest user in the system, and that the threshold
ElGamal encryption E = (KG,Enc,Dec) is CPA-secure. After performing DEncrypt
and Shuffle algorithms, every user obtains a collection of ElGamal encryptions
{c1, . . . , cnk}. By the second assumption, the adversary cannot learn any further in-
formation except that which encryptions have been sent from which users. Running
these algorithms, each user should raise the power of the received encryptions with his
shared secret si. Namely, each user holds the modified list of the encryptions,

{Esi(c1), Esi(c2), . . . , Esi(cnk)} .

Next the user should apply his private permutation πi to the list to transform it to{
Esi

(
cπ(1)

)
, Esi

(
cπ(2)

)
, . . . , Esi

(
cπ(nk)

)}
.

At the end of running the algorithms, all users get a permuted and doubly encrypted list{
Es

(
cπ(1)

)
, Es

(
cπ(2)

)
, . . . , Es

(
cπ(nk)

)}
where the permutation π = πn ◦ · · · ◦ π1 and s =

∏n
i=1 si. As there exists at least an

honest user, even when n− 1 users collude, s is uniformly distributed and unknown to
all users and π is a random permutation. This completes the proof of the claim. �

Theorem 4. Assuming that the threshold ElGamal encryption is CPA-secure and the
DL assumption holds, the proposed top-κ protocol is secure in the semi-honest model.

Proof. We complete the proof of security by Theorem 2 and Theorem 3. �

Private Over-Threshold Aggregation Protocols 483

6 Efficiency Analysis

The privateκ+ protocol has not yet been implemented, but we give a detailed analysis of
the running time and space requirements as follows. We base our protocol on ElGamal
encryption and the power function with primes |p| = 1024, |q| = 160. To measure
users’ overhead, we count the number of exponentiations using a 1024-bit modulus.

Table 2. Complexity Analysis

Comp. Cpx (expo.) Comm. Cpx (bits) Rounds Cpx

Setup n n log p 1

DEncrypt & Shuffle 4nk + 2n2k 2(n− 1)k log p+ 2n2k log p n

Aggregate n2k 2n2k log p 1

Reveal nκ nκ log p n− 1

In Table 2 we show a summary of the complexity result for our proposed protocol.
The total computational complexity is dominated by DEncrypt and Shuffle algorthms.
Putting the computational complexities together shows that total computation complex-
ity is O(n2k) in O(n) rounds. The proposed protocol has O(n2k log p) bits in total. It
is impossible to directly compare our protocol with Applebaum et al.’s protocol, since
it runs in the semi-decentralized model, we just present the computational complexity.

Comparison. We consider three protocols: Kissner and Song (KS) protocol [14],
Burkhart and Dimitropoulos (BD) protocol [4], and Applebaum et al. protocol.

Based on KS Protocol. We first compare our work with a KS-based κ+ protocol. As
mentioned earlier, since it does not provide a way for finding τ , we do not know com-
putational and communication complexity in computing τ . Assuming τ is given,
their protocol has O(n2k) computation complexity in O(n) rounds.

BD Protocol. In turn, we give a comparison with BD protocol. To our knowledge, it
is the only fully decentralized κ+ protocol that does not use Yao’s garbled circuit
evaluation. Their protocol utilizes two special-purpose sub-protocols–equality
and lessthan (see [6,19]), but in [5] as the authors pointed out, comparison of
two shared secrets is very expensive and computational intensive. Thus, they use a
computationally efficient version of the basic sub-protocols as follows: equality
requires log p rounds and lessthan requires (2 log p+ 10) rounds. Their protocol
consists of two key ingredients as follows:

– Finding the correct τ : takes (log k(2 log p+ 10) + log p+ 2 log p+ 10)nk
rounds.

– Resolving collisions: Requires n(n−1)
2 log p+2(n−1) log p+10(n−1) rounds.

Note that BD protocol also should know τ as in KS protocol. Hence, the total round
complexity is O(n(n+ k log k) log p) for hash tables of size log k and U of nk.

We find their protocol takes 4
(

n(n−1)
2 k + k(n− 1)

)
multiplications in Z×

p .

484 M. Kim et al.

Applebaum et al. Protocol. Let us use Op(·) to denote complexity using modulus
prime p and ON (·) complexity using modulus composite N . Assume all elements
are integers less than p and the maximum multiplicity is less than log log p.
Their major computation-intensive parts are as follows:

– Interactive computation between Users and Proxy: First, users should run a
protocol for oblivious evaluation of pseudorandom function by communicating
with proxies, then encrypt the result with ElGamal encryption. This requires
n(k(2 log p + 2) + 2k) exponentiations over Z×

p . Also, users should encrypt
the multiplicity of each element with GM encryption, requiring nk log log p
multiplications over Z×

N . Finally each user doubly encrypts their elements us-
ing ElGamal encryption. This requires 2nk exponentiations over Z×

p .
– Aggregation by Database: The most computationally-intensive part is ElGa-

mal and GM decryption. Since database receives two types of ElGamal ci-
phertexts, it performs 2nk exponentiations over Z×

p . GM decryption requires
2nk log log p exponentiations over Z×

N .

Thus, the complexity is Op(nk log p) +ON (nk log log p) exponentiations.

7 Conclusion

In this paper we have looked at the problem of finding the κ+ element securely, and
formally defined what it means for a protocol to be a secure κ+ protocol. We developed
two protocols, with varying operation overhead, analyzed their security, and demon-
strated their practicality. In the near future, we will investigate two directions. First,
since our constructions’ security is proven in the semi-honest model—which is ratio-
nalized by the application domain, we will investigate constructions that are provably
secure in the malicious model, and their potential applications. Second, as the shuffling
algorithm in our current construction requires sending messages among players in a
relay manner, we will consider the practical and security aspects of a construction that
relies on sending such messages in a broadcast manner.

Acknowledgement. We thank Burt Kaliski for his feedback on an earlier version.

References

1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked element.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40–55.
Springer, Heidelberg (2004) 473

2. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared secret with
application to the generation of shared safe-prime products. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002) 479

3. Applebaum, B., Ringberg, H., Freedman, M.J., Caesar, M., Rexford, J.: Collaborative,
privacy-preserving data aggregation at scale. In: Atallah, M.J., Hopper, N.J. (eds.) PETS
2010. LNCS, vol. 6205, pp. 56–74. Springer, Heidelberg (2010) 474, 475, 480, 481

4. Burkhart, M., Dimitropoulos, X.: Fast privacy-preserving top-k queries using secret sharing.
In: IEEE ICCCN (2010) 474, 475, 480, 483

Private Over-Threshold Aggregation Protocols 485

5. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-preserving aggre-
gation of multi-domain network events and statistics. In: USENIX Security (2010) 483

6. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)
483

7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18.
Springer, Heidelberg (1985) 475

8. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001) 474

9. Goldreich, O.: The foundations of cryptography. Cambridge University Press (2004) 478
10. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. (1984) 475, 486
11. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. of Cryptology (2010)

474
12. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang, X. (eds.)

PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007) 474
13. Hong, J., Kim, J.W., Kim, J., Park, K., Cheon, J.H.: Constant-round privacy preserving mul-

tiset union. In: Cryptology ePrint Archive, 2011/138 (2011) 473
14. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005.

LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005) 473, 475, 480, 483
15. Mohaisen, A., Hong, D., Nyang, D.: Privacy in location based services: Primitives toward

the solution. In: NCM (2008) 473
16. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO

1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999) 475
17. Neff, C.: A verifiable secret shuffle and its application to e-voting. In: ACM Conference on

Computer and Communications Security, pp. 116–125 (2001) 474
18. Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: A formal model and a

paillier-based efficient construction with provable security. In: Jakobsson, M., Yung, M.,
Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 61–75. Springer, Heidelberg (2004) 474,
477

19. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without
bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 343–360. Springer, Heidelberg (2007) 483

20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999) 474

21. Sang, Y., Shen, H.: Efficient and secure protocols for privacy-preserving set operations. ACM
Transactions on Information and System Security (TISSEC) 13(1), 9:1–9:35 (2009) 473

22. Vaidya, J., Clifton, C.: Privacy-preserving top-k queries. In: ICDE (2005) 473
23. Xiong, L., Chitti, S., Liu, L.: Topk queries across multiple private databases. In: International

Conference on Distributed Computing Systems (ICDCS), pp. 145–154 (2005) 473
24. Yao, A.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982) 475
25. Zhang, R., Shi, J., Liu, Y., Zhang, Y.: Verifiable fine-grained top-k queries in tiered sensor

networks. In: INFOCOM, pp. 2633–2641 (2010) 473
26. Zhang, R., Zhang, Y., Zhang, C.: Secure top-k query processing via untrusted location-based

service providers. In: INFOCOM, pp. 1170–1178 (2012) 473

486 M. Kim et al.

A Basic Definitions

We first give a formal definition of a public key cryptosystem and then its standard
security definition. We shall write

Pr[x1
$←− X1, x2

$←− X2(x1), . . . , xn
$←− Xn(x1, . . . , xn−1) : ϕ(x1, . . . , xn)]

to denote the probability that when x1 is drawn from a certain distributionX1, and x2 is
drawn from a certain distribution X2(x1), possibly depending on the particular choice
of x1, and so on, all the way to xn, the predicate ϕ(x1, . . . , xn) is true.

Definition 4. A public-key cryptosystemE is a 3-tuple of PPT algorithms (KG,Enc,Dec)
such that

1. The key generation algorithm KG takes as input the security parameter λ and out-
puts a pair of keys (pk, sk). For given pk, the message space Mpk and the random-
ness space Rpk are uniquely determined.

2. The encryption algorithm Enc takes as input a public key pk and a message m ∈
Mpk, and outputs a ciphertext c ∈ Cpk where Cpk is a finite set of ciphertexts. We
write this as c ←− Encpk(m). We sometimes write Encpk(m) as Encpk(m, r) when
the randomness r ∈ Rpk used by Enc needs to be emphasized. .

3. The decryption algorithm Dec takes as input a private key sk and a ciphertext c,
and outputs a message m or a special symbol ⊥ which means failure.

We say that a public-key cryptosystem E is correct if, for any key-pair (pk, sk) ←−
KG(λ) and any m ∈Mpk, it is the case that: m← Decsk(Encpk(m)).

Definition 5 ([10]). A public-key cryptosystem E = (KG,Enc,Dec) with a security
parameter λ is called to be semantically secure (IND-CPA secure) if after the stan-
dard CPA game being played with any PPT adversary A = (A1,A2), the advantage
AdvcpaE,A(λ), formally defined as∣∣∣∣∣Prb,r

[
(pk, sk)←− KG(λ), (state,m0,m1)←− A1(pk),

c = Encpk(mb; r) : b←− A2(state,m0,m1, c)

]
− 1

2

∣∣∣∣∣ ,
is negligible in λ for all sufficiently large λ.

In the experiment above, when we allow A1 to query the decryption oracle, if the ad-
vantageAdvcca2E,A(λ) is negligible, we say E is IND-CCA1 secure, in short, CCA1 secure.

Re
tra
cte
d

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 487–494, 2013.
© Springer-Verlag Berlin Heidelberg 2013

and Key Exchange Scheme Using Smartcard

Kyung-kug Kim and Myung-Hwan Kim

ISaC and Department of Mathematical Sciences,
Seoul National University, Seoul 151-747, Korea

gggim1231000@gmail.com, mhkim@math.snu.ac.kr

Abstract. Nowadays, anonymity property of user authentication scheme be-
comes important. In 2003, Park et al. proposed an authentication and key ex-
change scheme using smart card. However, Juang et al. pointed out that Park et
al.’s scheme did not provide the user anonymity. Then, they presented an ano-
nymous authenticated key exchange protocol using smart cards in 2008. They
argued that their scheme provided identity privacy, mutual authentication, and
half-forward secrecy. In 2009, however, Lee et al. showed that Juang et al.’s
scheme is not secure against stolen-verifier attack. Moreover, Juang’s scheme
does not satisfy the user anonymity. To solve this problem, we proposed an im-
proved anonymous authentication and key exchange scheme. Then, we show
that the proposed scheme is secure against various well-known attacks.

Keywords: anonymous, user authentication, password key exchange protocol.

1 Introduction

In 1981, Lamport presented the password based user authentication scheme [1]. After
Lamport’s scheme, many researchers have been proposed various security schemes
[2-12]. As Juang et al. and Lee et al. mentioned, since then, all of those protocols
were not suitable for the public wireless LAN services. Unlike general services, the
public wireless LAN services should satisfy its unique characteristics such as billing,
roaming and security. Especially, security in public wireless LAN service is an essen-
tial issue. The security requirements of the public wireless LAN services are as fol-
lows. First, it should ensure the user anonymity. If the user anonymity is not ensured,
the location information of the respective user is totally exposed to an attacker. Once
a user's sensitive information such as location information is collected by an attacker,
it leads to a violation of privacy. Here, the user anonymity means that not only a us-
er's identity should be protected from being exposed to an attacker but also to the
server. To protect a user's privacy, user information must not be exposed even to
servers. That is because there are chances that a server may abuse the user informa-
tion. It is called anonymous communication to prevent exposing user's identity only
during communication [13]. Second, a mutual authentication between a user and a
server should be possible. If it is not guaranteed, an attacker may impersonate as an
authenticated user or server. Third, a public wireless LAN service should satisfy the

Retracted: An Enhanced Anonymous Authentication

Re
tra
cte
d

488 K. Kim and M.-H. Kim

forward secrecy. If it does not satisfy the forward secrecy, an attacker is able to com-
pute a session key based on the intercepted information. In 2003, Park et al. proposed
an authentication and key exchange protocol satisfying the above requirements [14].
However, in 2008, Juang et al. proved that the protocol proposed by Park et al. did not
ensure the user anonymity and proposed a new protocol ensuring the user anonymity
[15]. The protocol proposed by Juang et al. had a merit to require less computational
overhead than the existing protocol while ensuring the anonymity, but we discover
that their protocol does not satisfy the user anonymity and is vulnerable to the stolen-
verifier attack. Moreover, it will be showed a shortcoming that the server has high
computational overhead. In this paper, we analyze the vulnerability of the protocol
proposed by Juang et al. and propose an improved protocol to ensure not only the
anonymous communication but also the user anonymity. The structure of this paper is
organized as follows. In Section 2, we demonstrate out proposed protocol. In Section
3, we discuss the efficiency and security of our protocol. Finally, we make conclu-
sions in Section 4.

2 Proposed Protocol

In this section, we propose an improved anonymous authentication and key exchange
protocol. While maintaining the merits of the existing protocol, our protocol provides
the user anonymity, is secure against the stolen-verifier attack, and has low computa-
tional overhead than Juang et al.'s protocol.

Re
tra
cte
d

An Enhanced Anonymous Authentication and Key Exchange Scheme Using Smartcard 489

2.1 Notations

- p: a large prime number

- q: a prime divisor of (p −1)

- g: an element of order q in ܼכ௣

- b: a private key of the server

 ௦: a public key of the server (= ݃ୠmod p)ݕ -

- A: the user

- B: the server

- π: the password of the user

- t: the shared symmetric key between the user and the server for symmetric key

encryption

- i: the index of the session

 ஺: the user's identificationܦܫ -

- h(): a secure one-way hash function

 ௄(): a symmetric encryption function with the symmetric key Kܧ -
 ௄(): a symmetric decryption function with the symmetric key Kܦ -

- sk: a session key generated by the user and the server

 ((஺,௜ିଵ⊕skܦܫܲ)஺,௜= hܦܫܲ=) ஺,௜: a temporary ID of the userܦܫܲ -

2.2 Registration Stage

A and B share a password π and a symmetric key t. A remembers π and stores t and ܲܦܫ஺,௜ in a smart card. B stores ܲܦܫ஺,௜, v =h(π ⊕t), f =h(π ,t, ܦܫ஺) in a storage.

Moreover, B selects a random number b as a private key and computes ݕ௦ = ݃௕mod

p and sets it as a public key. b must be securely stored in B's database.

2.3 Precomputation Stage

A selects a random value x in ܼ௤ and computes ݕ௨ = ݃௫mod p. Then, to reduce the

computational overhead in the authentication and key exchange stage, A calculates

c = ݃௕௫
 mod p and stores it.

Re
tra
cte
d

490 K. Kim and M.-H. Kim

2.4 Authentication and Key Exchange Stage

In this stage, a mutual authentication between a user and the server is performed and a
session key is established.

(1) A computes ஺݂= h(π ,t, ܦܫ஺), e=ܧ௙ಲ(ݕ௨) and sends e and ܲܦܫ஺,௜ to B.

(2) B acquires v and f by verifying ܲܦܫ஺,௜. Based on f, B computes ݕ௨= ܦ௙ಲ(e).

After decryption, B computes c = ሺ݃௫ሻ௕ mod p and selects a random number r. B

computes sk= h(c, r) and ܯ஻= h(sk, ݒ) . Now, B sends r and ܯ஻ to A.

(3) A computes a session key sk= h(c, r). Now, A and B share the session key sk.

Then A calculates ܯ஻= h(sk, h(π ⊕t)) and compares it with the ܯ஻ sent by B. If so,

A authenticates B as a legitimate server. To ensure the user anonymity, A computes ܲܦܫ஺,௜ାଵ= h(ܲܦܫ஺,௜⊕sk) and replaces ܲܦܫ஺,௜ stored in the smart card with ܲܦܫ஺,௜ାଵ.

Finally A computes ܯ஺= ܧ௦௞(π ⊕t) and sends it to B.

(4) B decrypts ܯ஺ using sk and gets π ⊕t. With this value, B computes ݒ஺= h(π ⊕t) and verifies whether right ݒ஺ comes out, then B authenticates A as a

legitimate user. Then B computes ܲܦܫ஺,௜ାଵ = h(ܲܦܫ஺,௜ ⊕sk) and replaces ܲܦܫ஺,௜
stored in the server's database with ܲܦܫ஺,௜ାଵ.

3 Efficiency and Security Analysis

3.1 Efficiency Analysis

To analyze the efficiency, we assumed the following environment.

- Hash function: SHA-1 (Hash size: 160 bits)
- Symmetric key algorithm: AES (Key length: 128 bits)

- r(nonce) : 128 bits

- b(long-term secret key) : 128 bits
- ID length: 32 bits
- Number of users registered in the server: n

In the above environment, the following is the result of the efficiency analysis of each
scheme.

In case of user's computation cost, the proposed protocol showed the least number
of hash functions with 4 compared to other protocols but it has one more encryption
process added. All protocols show same number of exponentiation computation. In
case of server's computation cost, especially number of hash function computation, the

protocol proposed by Juang et al. must try until right SID comes out by substituting

Re
tra
cte
d

An Enhanced Anonymous Authentication and Key Exchange Scheme Using Smartcard 491

Table 1. Efficiency analysis proposed protocol

Schemes User’s
computation cost

Server’s
Computation cost

Communi-
cation

Cost
Park et al.’s

scheme
[14]

5 Hash+
1 Encryption+
2 Exponentiation

O(n) Hash+
1 Decryption+
1 Exponentiation

1664 bits

Juang et al.’s
scheme

[15]

5 Hash+
1 Encryption +
2 Exponentiation

O(n) Hash+
1 Decryption+
1 Exponentiation

1684 bits

Proposed scheme 4 Hash+
2 Encryption +
2 Exponentiation

4 Hash+
2 Decryption+
1 Exponentiation

1632 bits

every π and t that the server has to h(π ,t, i) to verify the SID. In the worst case, for a

user to verify itself in a single session, it must perform as many hash functions as the
number of users registered in the server. This results in too high computational over-
head. On the other hand, the proposed protocol does not have a step to substitute a
specific value into a hash function and it only has to perform 4 hash function computa-
tions. However, it performs one more decryption process than other protocols. In case
of communication cost, the proposed protocol has the smallest with 1632 bits. As a
conclusion, although all protocols have similar numbers of encryption/decryption,
exponentiation computations, and communication cost, the proposed protocol is more
efficient than the others since the computational cost of the server's hash function is
very low.

3.2 Security Analysis

The followings are the security analysis results of each scheme.

(1) User Anonymity: In this protocol, users' ID is not exposed during communica-

tion and it is not stored in the server but stored in temporary ID, PID forms. There-

fore, it satisfies the user anonymity.

(2) Mutual Authentication: Since an attacker cannot know sk and π ⊕t, it cannot

compute ܯ஺ and ܯ஻. That is, only legitimate users and the server can compute ܯ஺
and ܯ஻. Therefore, users and the server can mutually authenticate each other through ܯ஺ and ܯ஻.

 (3) Half-forward Secrecy: Half Forward Secrecy means the loss of one side's
long-lived key should not be damaging to the previous sessions [16]. Let's assume

that an attacker figured out a user's secret information (ID, π, t). The attacker may

Re
tra
cte
d

492 K. Kim and M.-H. Kim

Table 2. Efficiency analysis of proposed protocol

Park et al.

[14]
Juang et al.

[15]
Proposed
protocol

Providing the user anonymity � � �

Providing the mutual authentication � � �

Providing the half-forward secrecy � � �

Secure against the user impersonation attack � � �

Secure against the server impersonation attack � � �

Secure against the replay attack � � �

Secure against the stolen-verifier attack � � �

Secure against the guessing attack � � �

find out ݃௫mod p by decrypting ܧ௙(݃௫mod p). However, since the attacker does not

know b, it cannot compute c, and cannot compute the session key. Therefore, the user

side satisfies the forward secrecy. Again, let's assume the attacker find out the server's

secret information (ID, π, t, b). The attacker may find out ݃௫mod p by decrypting ܧ௙(݃௫mod p), and since it knows b, it can compute c. Finally, the attacker can com-

pute the session key. Therefore, since this protocol satisfies the forward secrecy only
from the user side, it satisfies the half-forward secrecy.

(4) User Impersonation Attack: For an attacker impersonates as the legitimate user,
it must transmit correct ܯ஺ to the server. However, since the attacker cannot com-

pute the session key sk without knowing c, it cannot figure out the correct ܯ஺. There-

fore, this protocol is secure against the user impersonation attack.
(5) Server Impersonation Attack: For an attacker impersonates as the legitimate

server, it must send correct ܯ஻. However, since the attacker cannot compute the ses-

sion key sk without knowing c, it cannot figure out the correct ܯ஻. Therefore, this

protocol is secure against the server impersonation attack.

(6) Replay Attack: A user randomly creates x on each session. Therefore, a differ-

ent value is created every time for the e. Moreover, since a different value is created

each time for ܯ஺ and ܯ஻ due to a random value r, this protocol is secure against the
replay attack.

(7) Stolen-verifier Attack: An attacker is able to get PID, v = h(π ⊕t) and f = h(π,

t, ܦܫ஺) by attacking the server's database. However, it cannot find out users' ID,

password and symmetric key only with those information. An attacker may imperso-
nate as the legitimate user based on the acquired information using the stolen-verifier

Re
tra
cte
d

An Enhanced Anonymous Authentication and Key Exchange Scheme Using Smartcard 493

attack. In this case, an attacker should find out ܯ஺, but since it cannot compute π ⊕t,

it is unable to compute ܯ஺. Therefore, an attacker cannot impersonate as the legiti-
mate user. An attacker may also impersonate as a legitimate server based on the ac-
quired information through the stolen-verifier attack, but it must know the secret key

b to succeed an attack. However, b is secret information, which cannot be acquired

through the stolen verifier attack, so an attacker cannot impersonate as the legitimate
server. Therefore, this protocol is secure against the stolen-verifier attack.

(8) Guessing Attack: The secret information for an attacker to try guessing attack is

v, ܯ஺, ܯ஻ and f. To analogize the password π based on those information, it must

know t, ID and c. However, there is no way for an attacker to find out those values.

Moreover, the attacker may perform the guessing attack by trying XOR with the ac-
quired values. If there is secret information separately with low entropy such as pass-
word or ID in the combined values by the attacker, the attacker may find out the
password by performing the guessing attack. However, as a result of analyzing the
combinations of every information that an attacker can get, we confirmed that there is
no information combination separately including password or ID. We also confirmed
that some other information do not include secret information at all and they are
nonce or meaningless information. Therefore, this protocol is secure against the
guessing attack. The table 1 in the Appendix describes possible combinations of the
values to break our protocol using a guessing attack.

4 Conclusion

In this paper, we have pointed out that the Juang's protocol was vulnerable to the sto-
len-verifier attack and did not satisfy the user anonymity, and proposed an improved
protocol. The proposed protocol ensures the user anonymity, is secure against the
stolen-verifier attack and satisfies the half-forward secrecy.

References

1. Lamport, L.: Password authentication with insecure communication. Communications of
the ACM 24(11), 770–772 (1981)

2. Awasthi, A., Lal, S.: A remote user authentication scheme using smart cards with forward
secrecy. IEEE Trans. Consumer Electronic 49(4), 1246–1248 (2003)

3. Awasthi, A., Lal, S.: An enhanced remote user authentication scheme using smart cards.
IEEE Trans. Consumer Electronic 50(2), 583–586 (2004)

4. Juang, W.: Efficient password authenticated key agreement using smart card. Computers &
Security 23, 167–173 (2004)

5. Ku, W., Chen, S.: Weaknesses and improvements of an efficient password based remote
user authentication scheme using smart cards. IEEE Trans. Consumer Electronic 50(1),
204–207 (2004)

6. Kumar, M.: New remote user authentication scheme using smart cards. IEEE Trans. Con-
sumer Electronic 50(2), 597–600 (2004)

Re
tra
cte
d

494 K. Kim and M.-H. Kim

7. Kwon, T., Park, Y., Lee, H.: Security analysis and improvement of the efficient password-
based authentication protocol. IEEE Communications Letters 9(1), 93–95 (2005)

8. Park, Y., Park, S.: Two factor authenticated key exchange (TAKE) protocol in public wire-
less LANs. IEICE Trans. Communications E87-B(5), 1382–1385 (2004)

9. Sun, H.: An efficient use authentication scheme using smart cards. IEEE Trans. Consumer
Electronic 46(4), 958–961 (2000)

10. Wang, X., Zhang, W., Zhang, J., Khan, M.: Cryptanalysis and improvement on two effi-
cient remote user authentication scheme using smart cards. Computer Standards & Inter-
faces 29(5), 507–512 (2007)

11. Yang, C., Hwang, M.: Cryptanalysis of simple authenticated key agreement protocols.
IEICE Trans. Communications E87-A(8), 2174–2176 (2004)

12. Yang, C., Wang, R.: Cryptanalysis of a user friendly remote authentication scheme with
smart cards. Computer Security 23, 425–427 (2004)

13. Chai, Z., Cao, Z., Lu, R.: Efficient Password-Based Authentication and Key Exchange
Scheme Preserving User Privacy. In: Cheng, X., Li, W., Znati, T. (eds.) WASA 2006.
LNCS, vol. 4138, pp. 467–477. Springer, Heidelberg (2006)

14. Park, Y.M., Park, S.K.: Two factor authenticated key exchange(TAKE) protocol in public
wireless LANs. IEICE Trans. Communications E87-B(5), 1382–1385 (2004)

15. Juang, W.-S., Wu, J.-L.: Two efficient two-factor authenticated key exchange protocols in
public wireless LANs. Computers and Electrical Engineering 10, 1–8 (2008)

16. Yeh, T.-C., Shen, H.-Y., Hwang, J.-J.: A Secure One-Time Password Authentication
Scheme Using Smart Cards E85-B(11), 2515–2518 (2002)

17. Lee, H., Choi, D., Lee, Y., Won, D., Kim, S.: Cryptanalysis of Two-Factor Authenticated
Key Exchange Protocol in Wireless LANs. World Academy of Science, Engineering and
Technology 59, 390–393 (2009)

Efficient Proofs for CNF Formulas on Attributes

in Pairing-Based Anonymous Credential System

Nasima Begum, Toru Nakanishi, and Nobuo Funabiki

Department of Communication Network Engineering, Okayama University, Japan
nasima@sec.cne.okayama-u.ac.jp, {nakanisi,funabiki}@cne.okayama-u.ac.jp

Abstract. To enhance user privacy, anonymous credential systems al-
low the user to convince a verifier of the possession of a certificate issued
by the issuing authority anonymously. In the systems, the user can prove
relations on his/her attributes embedded into the certificate. Previously,
a pairing-based anonymous credential system with constant-size proofs
in the number of attributes of the user was proposed. This system sup-
ports the proofs of the inner product relations on attributes, and thus
can handle the complex logical relations on attributes as the CNF and
DNF formulas. However this system suffers from the computational cost:
The proof generation needs exponentiations depending on the number
of the literals in OR relations. In this paper, we propose a pairing-based
anonymous credential system with the constant-size proofs for CNF for-
mulas and the more efficient proof generation. In the proposed system,
the proof generation needs only multiplications depending on the num-
ber of literals, and thus it is more efficient than the previously proposed
system. The key of our construction is to use an extended accumulator,
by which we can verify that multiple attributes are included in multiple
sets, all at once. This leads to the verification of CNF formulas on at-
tributes. Since the accumulator is mainly calculated by multiplications,
we achieve the better computational costs.

1 Introduction

1.1 Backgrounds

Electronic identification has been widely applied to access authorization to build-
ings, use of facilities, Web services, etc. Currently, electronic identity (eID) such
as eID card is often used. The eID is issued by a trusted organization such as
the government, company, or university, and is used for its service. Trusted ID is
attractive for secondary use in commercial services. The eID includes attributes
of the user such as the gender, the occupation, and the date of birth. In commer-
cial cases, the attribute-based authentication is desired. For example, a service
provider can deny access to kids, by checking the age in the eID. One of serious
issues in the existing eID systems is user’s privacy. In the systems, the eID may
reveal the user’s identity. The service provider can collect the use history of each
user. Anonymous credential systems [8,6,7,13,10] are one of the solutions.

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 495–509, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

496 N. Begum, T. Nakanishi, and N. Funabiki

Anonymous credential systems allow an issuer to issue a certificate to a user.
Each certificate is a proof of membership, qualification, or privilege, and contains
user’s attributes. The user can anonymously convince a verifier of the possession
of the certificate. In the proof protocol of the anonymous credential system,
only selected attributes can be disclosed without revealing any other information
about the user’s privacy. Proofs of more complex relation on attributes are also
available. The AND relation is used when proving the possession of all of the
multiple attributes. For example, the user can prove that he belongs to the
department and that he is a professor, when entering the room of examination
papers. The OR relation represents the proof for possession of one of multiple
attributes. For example, he can prove that he is a technical staff, an assistant,
or a professor when using a copy machine in a laboratory. An implementation
on a standard Java card is shown in [3].

1.2 Previous Works

In [6], an RSA-based anonymous credential system with proofs for the AND and
OR relation was proposed, where the proofs have the constant size in the number
of attributes. Thus, this system provides the practicality for the ID card applica-
tion. In [13], the pairing-based system with the constant-size proofs was proposed
to achieve the short data size by excluding the RSA-related assumptions. How-
ever, both the RSA-based system and pairing-based one have a drawback: They
allow us to prove only simple AND or OR relations on attributes. Namely, we
cannot prove any combination of AND and OR relations simultaneously. In lots
of applications, the proofs of such a combination are needed.

In [10], a pairing-based system with the constant-size proofs was proposed,
where inner-product relations on attributes can be proved. This means that
we can handle CNF or DNF formulas on attributes via the polynomial-based
encoding shown in [11]. However, this system has a problem of the computational
cost: The proof generation needs exponentiations depending on the number of
the literals in OR relations. In usual cases that the formulas include OR relations
for lots of literals, the user devices with limited computational power such as
electronic ID cards need lots of time.

1.3 Our Contributions

We propose a pairing-based anonymous credential system with the constant size
of proofs, where the combinations of AND and OR relations on attributes can
be proved as CNF formulas. In our system, the proof generation cost is more
efficient than the system [10], since only multiplications depending on the number
of literals are needed. We extend the efficient accumulators in [7,13] to handle
the proof of the CNF formula for the construction. Using the accumulator, lots
of attributes are accumulated to one value, and we can verify that a value (or
multiple values) is included in the accumulator. In our extended accumulator,
we can verify that multiple attributes are included in multiple sets, all at once.
This leads to the verification of CNF formulas on attributes. As the underlying

Efficient Proofs for CNF Formulas on Attributes 497

anonymous credential system, our system is derived from the group signature
scheme [12], which adopts structure-preserving signature in [2] as the certificate
and Groth-Sahai proofs [9] as non-interactive witness-indistinguishable proofs.
As a result, our system is secure in the standard model, as in [10]. In addition,
due to the non-interactive proofs, our system is non-interactive where a user can
generate the proof on certified attributes by himself and the verifier can verify
the proof by himself, as in [10].

A demerit of our system is the increase of public parameters. Let V� be the set
of attributes in the �-th OR clause in the proved CNF formula, and let U be the
set of user’s certified attributes. This increase happens when the maximum of
|V�∩U | is large for multiple �. In Section 6, we can demonstrate that the increase
of the public parameters is not so huge in a likely example of CNF formula in
eID applications.

2 Preliminaries

2.1 Bilinear Groups

Our scheme utilizes the following bilinear groups:

1. G and T are multiplicative cyclic groups of prime order p,
2. g is a randomly chosen generator of G,
3. e is an efficiently computable bilinear map: G×G → T , i.e., (1) for all u, v ∈ G

and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g, g) �= 1T .

2.2 Assumptions

As in the underlying system [12], the security of our system is based on the
DLIN (Decision LINear) assumption [4], and the q-SFP (Simultaneous Flexible
Pairing) assumption [2]. We also adopt n-DHE (DH Exponent) assumption [7]
for the accumulator.

Definition 1 (DLIN assumption). For all PPT algorithm A, the probability

|Pr[A(g, ga, gb, gac, gbd, gc+d) = 1]− Pr[A(g, ga, gb, gac, gbd, gz) = 1]|

is negligible, where g ∈R G and a, b, c, d, z ∈R Zp.

Definition 2 (q-SFP assumption). For all PPT algorithm A , the probability

Pr[A(gz, hz, gr, hr, a, ã, b, b̃, {(zj , rj , sj , tj , uj, vj , wj)}qj=1)

= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7

∧e(a, ã) = e(gz, z
∗)e(gr, r

∗)e(s∗, t∗) ∧ e(b, b̃) = e(hz, z
∗)e(hr, u

∗)e(v∗, w∗)

∧z∗ �= 1G ∧ z∗ �= zj for all 1 ≤ j ≤ q]

is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples {(zj, rj , sj , tj , uj,
vj , wj)}qj=1) satisfy the above relations.

498 N. Begum, T. Nakanishi, and N. Funabiki

Definition 3 (n-DHE assumption). For all PPT algorithm A , the probability

Pr[A(g, ga, . . . , ga
n

, ga
n+2

, . . . , ga
2n

) = ga
n+1

]

is negligible, where g ∈R G and a ∈R Zp.

2.3 Structure-Preserving Signatures (AHO Signatures)

We utilize the structure-preserving signatures, since the knowledge of the sig-
nature can be proved by Groth-Sahai proofs. As in [12], we adopt the AHO
signature scheme in [2,1]. Using the AHO scheme, we can sign multiple group
elements to obtain a constant-size signature. In our construction, a single group
element is signed, and thus we describe the case of single message to be signed.

AHOKeyGen: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g,Gr, Hr ∈R G, and μz, νz, μ, ν, αa, αb ∈R Zp. Compute Gz =
Gμz

r , Hz = Hνz
r , G = Gμ

r , H = Hν
r , A = e(Gr, g

αa), B = e(Hr, g
αb). Output

the public key as pk = (G, T , p, e, g, Gr, Hr, Gz , Hz, G,H,A,B), and the
secret key as sk = (αa, αb, μz, νz, μ, ν).

AHOSign: Given message M together with sk, choose β, ε, η, ι, κ ∈R Zp, and
compute θ1 = gβ, and

θ2 = gε−μzβM−μ, θ3 = Gη
r , θ4 = g(αa−ε)/η,

θ5 = gι−νzβM−ν, θ6 = Hκ
r , θ7 = g(αb−ι)/κ.

Output the signature σ = (θ1, . . . , θ7).
AHOVerify: Given the message M and the signature σ = (θ1, . . . , θ7), accept

these if the following equations hold:

A = e(Gz , θ1) · e(Gr, θ2) · e(θ3, θ4) · e(G,M),

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) · e(H,M).

This signature is existentially unforgeable against chosen-message attacks under
the q-SFP assumption [2].

Using the re-randomization algorithm in [2], this signature can be publicly
randomized to obtain another signature (θ′1, . . . , θ

′
7) on the same message. As

a result, in the following Groth-Sahai proof, (θ′i)i=3,4,6,7 can be safely revealed,
while (θ′i)i=1,2,5 have to be committed, as mentioned in [12].

2.4 Groth-Sahai (GS) Proofs

To prove the secret knowledge in relations of the bilinear maps, we utilize Groth-
Sahai (GS) proofs [9]. As in [12], we adopt the instantiation based on DLIN
assumption. For the bilinear groups, the proof system needs a common reference
string (f1,f2,f3) ∈ G3 for f1 = (f1, 1, g),f2 = (1, f2, g) for some f1, f2 ∈ G.

Efficient Proofs for CNF Formulas on Attributes 499

The commitment to an element X is computed as C = (1, 1, X) · fr
1 · f s

2 · f t
3 for

r, s, t ∈R Z∗
p . In case of the CRS setting for perfectly sound proofs, f3 = fξ1

1 ·f
ξ2
2

for ξ1, ξ2 ∈R Z∗
p . Then, the commitment C = (f r+ξ1t

1 , f s+ξ2t
2 , Xgr+s+t(ξ1+ξ2)) is

the linear encryption in [4]. On the other hand, in the setting of the witness
indistinguishability, f1,f2,f3 are linearly independent, and thus C is perfectly
hiding. The DLIN assumption implies the indistinguishability of the CRS. To
prove that the committed variables satisfy the pairing relations, the prover pre-
pares the commitments, and replaces the variables in the pairing relations by
the commitments. The GS proof allows us to prove the set of pairing product
equations:

n∏
i=1

e(Ai, Xi) ·
n∏

i=1

n∏
j=1

e(Xi, Xj)
aij = t

for variables X1, . . . , Xn ∈ G and constants A1, . . . , An ∈ G, aij ∈ Zp, t ∈ T .

3 Extended Accumulator for Inclusions in Multiple Sets

In [7], an efficient pairing-based accumulator is proposed. The accumulator is
generated from a set of values, and we can verify that a single value is included
in the set. In [13], the extended version is proposed, where we can verify that
multiple values are included in the specified set, all at once. This paper fur-
thermore extends the accumulator, where we can verify that, for a set U , for all
multiple sets V1, . . . , VL, a value from U is included in each V�, i.e., U∩V� �= ∅, all
at once. The verification of this type is applied to our construction of anonymous
credential system with proofs for CNF formulas on attributes.

3.1 Proposed Construction

Let V1, . . . , VL be L subsets of {1, . . . , n}. Define V = (V1, . . . , VL). Let U be a
subset of {1, . . . , n} of size L′ satisfying U ∩ V� �= ∅ for all 1 ≤ � ≤ L. For any
instance of V , we need to fix L. For any instance, we set the maximum of |V�| as
η for all 1 ≤ � ≤ L. For any instance, we set the maximum of |U ∩ V�| as ζ� for
each 1 ≤ � ≤ L. These conditions are needed to apply this accumulator to our
anonymous credential system.

Then, the following accumulator allows us to confirm U ∩ V� �= ∅ for all
1 ≤ � ≤ L, all at once.

AccSetup: This is the algorithm to output the public parameters. For all
1 ≤ � ≤ L, compute c� = (η + 1)�−1 and set C = (c1, . . . , cL). We assume
that (η + 1)cL < p. Select bilinear groups G, T with a prime order p and a
bilinear map e. Select g ∈R G. Select γ ∈R Zp, and compute and publish

500 N. Begum, T. Nakanishi, and N. Funabiki

{ζ�}1≤�≤L, C, p,G, T , e, g, g1 = gγ
1

, . . . , gn = gγ
n

, gn+2 = gγ
n+2

, . . . , g2n =

gγ
2n

and z = e(g, g)γ
n+1

as the public parameters.

AccGen: This is the algorithm to compute the accumulator using the public
parameters. The accumulator accV of V is computed as

accV =
∏

1≤�≤L

(
∏
j∈V�

gn+1−j)
c� .

AccWitGen: This is the algorithm to compute the witness that U ∩V� �= ∅ for
all 1 ≤ � ≤ L, using the public parameters. Given U , V , and the accumulator
accV , the witness is computed as W =

∏
i∈U

∏
1≤�≤L(

∏j �=i
j∈V�

gn+1−j+i)
c� .

Furthermore, the auxiliary parameters are computed as δ� = |U ∩ V�| for all
1 ≤ � ≤ L.

AccVerify: This is the algorithm to verify that U ∩ V� �= ∅ for all 1 ≤ � ≤
L, using the witness, the auxiliary parameters, and the public parameters.
Given accV , U , W and {δ�}1≤�≤L, set u = δ1c1 + . . .+ δLcL. Then, accept if

e(
∏

i∈U gi, accV)

e(g,W)
= zu, 1 ≤ δ� ≤ ζ�,

for all 1 ≤ � ≤ L.

3.2 Security

We can show the correctness and the security.

Theorem 1. Assume that AccSetup, AccGen, AccWitGen correctly com-
pute all parameters. Then, AccVerify accepts U, accV ,W, {δ�}1≤�≤L that they
outputs.

Theorem 2. Under the n-DHE assumption, any adversary cannot output (U,V
= {V�}1≤�≤L, W, {δ�}1≤�≤L) where U, V1, . . . , VL are subsets of {1, . . . , n} and
δ� ∈ Zp, on inputs {ζ�}1≤�≤L, C, p,G, T , e, g, g1, . . . , gn, gn+2, ..., g2n and z s.t.
AccVerify accepts U, accV ,W, {δ�}1≤�≤L but there exists some V� satisfying U ∩
V� = ∅.

The proof of Theorem 1 is in Appendix A. The proof of Theorem 2 will be shown
in the full paper.

Remark 1. Note that, in Theorem 2, the adversary is allowed to output δ� �=
|U ∩ V�|, since the condition in AccVerify is only 1 ≤ δ� ≤ ζ�. This implies
that, under the n-DHE assumption, for any u′ = δ1c1 + · · ·+ δLcL s.t. u′ �= u =
|U ∩V1|c1+ · · ·+ |U ∩VL|cL and 1 ≤ δ� ≤ ζ�, the adversary cannot output (U,V ,
W, {δ�}1≤�≤L) s.t.

e(
∏

i∈U gi,accV)

e(g,W) = zu
′
, when there exists some V� satisfying

U ∩ V� = ∅.

Efficient Proofs for CNF Formulas on Attributes 501

4 Syntax and Security Model of Anonymous Credential
System

We consider non-interactive anonymous credential system, where a user can
generate the proof on certified attributes by himself and the verifier can verify
the proof by himself. This is similar concept to the group signature scheme, and
thus our security model is derived from that of the group signature scheme.

The security model of the group signature scheme consists of traceability,
non-frameability, and anonymity. The traceability means that once a group sig-
nature is opened, it identifies a group member who joined the group. The non-
frameability means that no one except a group member can issue a valid group
signature that can be identified to the member. In this paper, since we concen-
trate on the function of the anonymous attribute proof, we do not care about
the tracing. Thus, in the following model, we omit the functions on the tracing.
This is why the non-frameability is omitted, and the traceability is replaced by
the similar requirement misauthentication resistance. The misauthentication re-
sistance means the soundness of the attribute proof. Note that the combination
of our construction and the construction of the group signature scheme [12] can
achieve the tracing.

4.1 Syntax

The attribute value is indexed by an integer from {1, . . . , n}, where n is the total
number of attribute values. As in [13], all attribute values in all attribute types
are indexed by using the universal set {1, . . . , n}. We describe CNF formula Ψ
on attributes using the indexes as follows: (a11∨a12∨· · ·)∧(a21∨a22∨· · ·)∧· · ·
with a11, a12, . . . , a21, a22, . . . ∈ {1, . . . , n}. Each literal a11, a21, · · · means that
the proving user owns the attribute of the index. Set V1 = (a11, a12, . . .) and
V2 = (a21, a22, . . .) Set U be the set of attributes (indexes) of the proving
user. We assume that |V�| has the upper bound, η, for all 1 ≤ � ≤ L, and assume
that the size of |U ∩ V�| has the upper bound, ζ�, for each 1 ≤ � ≤ L. Also, we
assume the maximum number of clauses in any CNF formula, L.

The anonymous credential system consists of the following algorithms:

IssuerKeyGen: The inputs of this algorithm are n, L, η, ζ� for all 1 ≤ � ≤ L.
The outputs are issuer’s public key ipk and issuer’s secret key isk.

CertObtain: This is an interactive protocol between a probabilistic algorithm
CertObtain-Uk for the k-th user and a probabilistic algorithmCertObtain-
I for an issuer, where the issuer issues the certificate including the attributes
to the user. CertObtain-Uk, on input ipk and Uk ⊂ {1, . . . , N} that is in-
dexes corresponding to the attribute values of the user, outputs the certificate
certk ensuring the attributes of the user. On the other hand, CertObtain-I
is given ipk, isk as inputs.

ProofGen: This probabilistic algorithm, on inputs ipk, Uk, certk, Ψ that is the
predicate on attributes to be proved, outputs the proof σ.

502 N. Begum, T. Nakanishi, and N. Funabiki

Verify: This is a deterministic algorithm for verification. The input is ipk, a
proof σ, and the predicate Ψ . Then the output is ’valid’ if the attributes in
Uk satisfy Ψ , or ’invalid’ otherwise.

4.2 Security Model

The security model consists of misauthentication resistance and anonymity. The
misauthentication resistance requirement captures the soundness of the attribute
proof. This means that an adversaryA cannot try to forge a proof for a predicate,
where the attributes of any user corrupted by A do not satisfy the predicate.
The anonymity requirement captures the anonymity and unlinkability of proofs,
as in the group signatures. The formal definitions are in Appendix B.

5 Proposed Anonymous Credential System

5.1 Construction Idea

For the verification of CNF formulas, we use our extended accumulator. Consider
the following CNF formula: (a11∨a12∨. . .)∧(a21∨a22 . . .)∧. . ., where a11, a12 . . .
a21, a22 . . .∈ {1, . . . , n} means that the proving user owns the corresponding
attribute. Set V1 = (a11, a12, . . .) and V2 = (a21, a22, . . .) Let U be the set of
attributes (indexes) of the proving user. Then, using the accumulator, we can
confirm that U ∩V� �= ∅ for any V�. This means that the attributes in U satisfies
this CNF formula, since some attribute in U is one of attributes in every OR
clause expressed by V�.

Our construction is based on the anonymous credential system using the AHO
signatures and GS proofs. This is derived from the construction of a group
signature scheme in [12], which is secure in the standard model. In the underlying
system, the certificate is an AHO signature, where attributes of the user are
unified to one element and embedded as

∏
i∈U gi, to apply it to the verification

of accumulator.

In our system, a part of accumulator verification,
e(
∏

i∈U gi,accV)

e(g,W) = zu, can be

proved without revealing secret information by directly using the GS proof for
the pairing relation. However, the other part of the verification, 1 ≤ δ� ≤ ζ where
u = δ1c1 + . . . + δLcL, needs another technique. We utilize the set membership
proof technique [5] to prove this relation, while hiding parameters δ�. Since δ�
may indicate some secret information (i.e., |U∩V�|) of the user, we need the zero-
knowledge type of proof. As the preparation, the issuer publishes signatures on
possible values as gu1 , denoted by set Φ. In the attribute proof, the user proves
the knowledge of the signature on a committed value to convince the verifier
that the committed value is gu1 such that u satisfies the conditions.

To use the accumulator, L, which is the number of V�, has to be fixed. On
the other hand, in the CNF formula of the input, the number of clauses, L′, is
less than or equal to L. Then, we introduce a special attribute aSP that every
user always owns. To the CNF formula with L′ clauses, aSP is added such as

Efficient Proofs for CNF Formulas on Attributes 503

the number of clauses becomes L. Namely, given formula Ψ = (a11 ∨a12 ∨ · · ·)∧
(a21 ∨ a22 ∨ · · ·) ∧ · · · (aL′1 ∨ aL′2 ∨ · · ·) is extended to Ψ ′ = (a11 ∨ a12 ∨ · · ·) ∧
(a21 ∨ a22 ∨ · · ·)∧ · · · (aL′1 ∨ aL′2 ∨ · · ·)∧ aSP ∧ · · · aSP. The literal aSP is always
true, this extended formula is the same as the original.

5.2 Proposed Construction

IssuerKeyGen. It is given n, L, η, and ζ� for all 1 ≤ � ≤ L.

1. Select bilinear groups G, T with the same order p and the bilinear map e,
and g ∈R G.

2. Generate public parameters of the extended accumulator: For all 1 ≤ � ≤ L,
compute c� = (η + 1)�−1 and set C = (c1, . . . , cL). Select γ ∈R Zp, and
compute

pkacc = (C, g1 = gγ
1

, . . . , gn = gγ
n

, gn+2 = gγ
n+2

, . . . , g2n = gγ
2n

,

z = (g, g)γ
n+1

).

3. Generate two key pairs for the AHO signature:

pk
(d)
AHO = (G(d)

r , H(d)
r , G(d)

z , H(d)
z , G(d), H(d), A(d), B(d)),

sk
(d)
AHO = (α(d)

a , α
(d)
b , μ(d)

z , ν(d)z , μ, ν),

where d ∈ {0, 1}.
4. Generate a CRS for the GS NIWI proof: select f = (f1,f2,f3), where

f1 = (f1, 1, g), f2 = (1, f2, g), f3 = fξ1
1 ·f

ξ2
2 for f1, f2 ∈R G and ξ1, ξ2 ∈R Z∗

p .

5. For C, define set Φ = {u =
∑L

�=1 δ�c�|1 ≤ δ� ≤ ζ� for all 1 ≤ � ≤ L}, where
|Φ| =

∏
1≤�≤L ζ�. For every u ∈ Φ, generate the AHO signature on gu1 . The

signature is denoted as σ̃u = (θ̃u1, . . . , θ̃u7).
6. Output the issuer public key

ipk = (p,G, T , e, g, pk(0)acc, pk
(1)
acc, pkAHO,f , {σ̃u}u∈Φ),

and the issuer secret key isk = (sk
(0)
AHO, sk

(1)
AHO).

CertObtain. This is an interactive protocol between CertObtain-Uk (user)
and CertObtain-I (issuer). The common inputs of this protocol consist of
ipk, and Uk that is the indexes of attribute values of the user. The input of
CertObtain-I is isk. We introduce a special attribute value aSP. Every user
has aSP.

1. CertObtain-I: Generate Pk =
∏

i∈Uk
gi.

2. CertObtain-I: Using sk(1)AHO, generate an AHO signature σk = (θ1, . . . , θ7)
on message Pk. Return σk to CertObtain-Uk as the certificate.

3. CertObtain-Uk: Compute Pk =
∏

i∈Uk
gi, and verify the AHO signature

σk on Pk. Output certk = (Pk, σk).

504 N. Begum, T. Nakanishi, and N. Funabiki

ProofGen. The inputs are ipk, Uk, certk, and the CNF formula Ψ . For given
formula Ψ = (a11 ∨ a12 ∨ · · ·) ∧ (a21 ∨ a22 ∨ · · ·) ∧ · · · (aL′1 ∨ aL′2 ∨ · · ·) with
a11, a12, . . . , a21, a22, . . . ∈ {1, . . . , n}, define V1 = {a11, a12, . . .}, V2 = {a21, a22,
. . .}, If L′ < L, define VL′+1 = · · · = VL = {aSP}.

1. Compute the accumulator: accV =
∏

1≤�≤L(
∏

j∈V�
gn+1−j)

c� .

2. Compute the witness WV =
∏

i∈Uk

∏
1≤�≤L(

∏j �=i
j∈V�

gn+1−j+i)
c� that Uk sat-

isfies V for accV , and sets u = δ1c1 + . . .+ δLcL, where δ� = |Uk ∩ V�| for all
1 ≤ � ≤ L.

3. Set τu = gu1 . From ipk, select the AHO signature σ̃u = (θ̃u1, . . . , θ̃u7)
on the gu1 .

4. Compute GS commitments comPk
, comWV , comτu to Pk,WV , τu. Then, re-

randomize the AHO signature σk to obtain σ′
k = {θ′1, . . . , θ′7}, and compute

GS commitments {comθ′
i
}i∈{1,2,5} to {θ′i}i∈{1,2,5}. Similarly, re-randomize

the AHO signature σ̃u to obtain σ̃′
u = {θ̃′u1, . . . , θ̃′u7}, and compute GS

commitments {comθ̃′
ui
}i∈{1,2,5} to {θ̃′ui}i∈{1,2,5}.

5. Generate the GS proofs {πi}5i=1 s.t.

1T = e(Pk, accV) · e(g,WV)
−1 · e(τu, gn)−1, (1)

A · e(θ′3, θ′4)−1 = e(Gz, θ
′
1) · e(Gr, θ

′
2) · e(G,Pk), (2)

B · e(θ′6, θ′7)−1 = e(Hz, θ
′
1) · e(Hr, θ

′
5) · e(H,Pk), (3)

A · e(θ̃′u3, θ̃′u4)−1 = e(Gz, θ̃′u1) · e(Gr, θ̃′u2) · e(G, τu), (4)

B · e(θ̃′u6, θ̃′u7)−1 = e(Hz, θ̃′u1) · e(Hr, θ̃′u5) · e(H, τu), (5)

6. Output σ = ({θ′i}i=3,4,6,7, {θ̃′ui}i=3,4,6,7, comPk
, comWV , comτu , {comθ′

i
}

i=1,2,5, {comθ̃′
ui
}i=1,2,5, {πi}5i=1).

The equation (1) shows one of verification relations of accumulator:

e(
∏

i∈Uk
gi, accV)

e(g,WV)
= e(gu1 , gn) = zu,

where Pk =
∏

i∈Uk
gi and τu = gu1 . The equations (2), (3) show the knowledge

of the AHO signature of Pk, i.e., the certificate certk. The equations (4), (5)
show the knowledge of the AHO signature of τu. This ensures that 1 ≤ δ� ≤ ζ
where u = δ1c1+ . . .+ δLcL. Thus, together with the equation (1), it ensures the
verification of the accumulator. This is why the verifier is ensured that Uk∩V� �=
∅, i.e, attributes in Uk satisfies the CNF formula Ψ .

Verify. The inputs are ipk, the proof σ, and the CNF formula Ψ .

1. Compute the accumulator accV , as in ProofGen.

2. Accept σ, if the verifications of all GS proofs {πi}5i=1 are successful.

Efficient Proofs for CNF Formulas on Attributes 505

5.3 Security

We can prove the following security of our construction.

Theorem 3. The proposed system satisfies the misauthentication resistance un-
der the security of the AHO signatures and the extended accumulators.

Theorem 4. The proposed system satisfies the anonymity under the DLIN
assumption.

The proofs of these theorems will be shown in the full paper.

5.4 Protection against Reply Attack

In the authentication, the re-use of the proof should be prevented. In our system,
the proof depends on the predicate, as the signature depends on the message.
Thus, to prevent the re-use, we can make the predicate include a random nonce,
as follows. Consider T -bit nonce b1 · · · bT with bt ∈ {0, 1}. Then, we introduce
virtual attributes ã1,0, ã1,1, . . . , ãT,0, ãT,1. To original CNF formula Ψ , we append
the following OR clause, (aSP∨ ã1,b1 ∨· · ·∨ ãT,bT). Since this clause includes aSP,
this clause is meaningless in the attribute proof (i.e,. this clause is satisfied any-
time). On the other hand, an appended formula is different from other appended
formulas, due to the random nonce. In this method, the public parameters of the
accumulator for the virtual attributes are additionally required. The number of
the parameters is only 2T .

6 Comparisons

We compare our system with the system in [10] that allows us to prove inner
product relations on attributes. Since both systems achieve constant-size proofs,
we mainly concentrate on the computational costs for generating proofs.

As mentioned in [10], using the inner product relations and suitable attribute
encoding, CNF formulas (also DNF formulas) can be expressed (the encoding
is shown in [11]). As the encoding, a polynomial is used. Consider polynomial
f(x) = cdx

d + · · · + c0x
0 and the coefficients vector p = (cd, . . . , c0). In the

system of [10], the user’s attribute is expressed by ω ∈ Zp. Let ω = (ωd mod
p, . . . , ω0 mod p). Using the inner product proof system, the user can proveω·p =
0. This means that f(ω) = cdω

d + · · · + c0ω
0 = 0. In the computations of the

system, each element of the vector is set as the exponent on some base parameter.
This means that an exponentiation for each element is needed, and thus the
computational cost depends on the size of the vector. In the encoding of OR
relation, for example, (x = a1) ∨ (x = a2) can be encoded as the univariate
polynomial (x− a1) · (x − a2). The case of more literals is similar. Let d be the
number of attribute values that are used in the OR relation. Then, this encoding
needs d coefficients and the vector size becomes d. Thus, the computational cost
of the proof is d exponentiations. Consider a CNF formula such that the �-th

506 N. Begum, T. Nakanishi, and N. Funabiki

OR clause has d� literals (1 ≤ � ≤ L), where L is the number of OR clauses.
Then, by the encoding for AND relation in [11], the computational cost becomes∑

1≤�≤L d� exponentiations.
In our system, the computations of accV and WV need only O(d) multiplica-

tions, while L exponentiations by c� are needed. In cases that some OR clauses
have lots of literals, the cost of our system is much more efficient than the
system [10].

On the other hand, our system has disadvantages against the system [10]:
The inner product proofs can be converted to proofs of DNF formulas, while our
system cannot support the DNF formulas directly. In some applications, DNF
formulas may be better. Another disadvantage is the public key size. In our
system, we need to publish signatures for set Φ, where the size |Φ| is

∏
1≤�≤L ζ�.

The size may become large.
To show the effectiveness of our system, we will discuss a concrete applica-

tion. Consider the eID application as mentioned in Introduction. In such an
application, a user often proves the following CNF formula on user’s attributes.

gender = male ∧ birth year ∈ {1900, . . . , 1992}

∧profession ∈ {student, teacher, professor, . . .} ∧ · · · .

Namely, for each attribute type, the user’s attribute value is included in a set
of attribute values. This example considers that a service provider grasps user’s
profile that can be useful for marketing, while serious private data are concealed.
By the OR relation of birth year, the user proves that he is adult, but the con-
crete age is concealed. As in this example, for the proof including OR relations
with lots of literals, the system [10] needs heavy computations of

∑
1≤�≤L d�

exponentiations. On the other hand, as shown above, our system has the addi-
tional public key size. However, in this eID application, ζ� (i.e., the maximum
of |U ∩ V�|) can be 1 for the attribute types such that the user owns a single
attribute value such as gender and birth year. For the attribute types such as
the user owns multiple attribute values such as the professions, ζ� can be more
than 1. Most attribute types are former, and for the latter type, a user does
not own lots of attribute values. Thus, in this application, the public key size
depending on

∏
1≤�≤L ζ� is not so huge.

7 Conclusions

In this paper, we have proposed a pairing-based anonymous credential system
with the constant-size proofs of CNF formulas. Using our extended accumula-
tor, the proof generation cost is more efficient than the system [10], since only
multiplications depending on the number of literals are needed. The compensa-
tion is the increase of public parameters. We have demonstrated that, for CNF
formulas that can be often used in eID applications, the increase is not so huge.

Our future works include the evaluation based on the implementation, and
the applications to the electronic ID card devises or in the mobile environments.

Efficient Proofs for CNF Formulas on Attributes 507

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010),
http://eprint.iacr.org/

3. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard java card. In: Proc. ACM Conference on Computer and Communications
Security 2009 (ACM-CCS 2009), pp. 600–610 (2009)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

6. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Proc.
ACM Conference on Computer and Communications Security 2008 (ACM-CCS
2008), pp. 345–356 (2008)

7. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

9. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

10. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise p-signatures and non-
interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.)
IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011)

11. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

12. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012)

13. Sudarsono, A., Nakanishi, T., Funabiki, N.: Efficient proofs of attributes in pairing-
based anonymous credential system. In: Fischer-Hübner, S., Hopper, N. (eds.)
PETS 2011. LNCS, vol. 6794, pp. 246–263. Springer, Heidelberg (2011)

http://eprint.iacr.org/

508 N. Begum, T. Nakanishi, and N. Funabiki

A Proof for Extended Accumulator

Theorem 1. Assume that AccSetup, AccGen, AccWitGen correctly com-
pute all parameters. Then, AccVerify accepts U, accV ,W, {δ�}1≤�≤L that they
outputs.

Proof. We have

accV =
∏

1≤�≤L

(
∏
j∈V�

gn+1−j)
c� , W =

∏
i∈U

∏
1≤�≤L

(

j �=i∏
j∈V�

gn+1−j+i)
c� .

Thus, the left hand of the verification equation is as follows.

e(
∏

i∈U gi, accV)

e(g,W)
=

e(
∏

i∈U gi,
∏

1≤�≤L(
∏

j∈V�
gn+1−j)

c�)

e(g,
∏

i∈U

∏
1≤�≤L(

∏j �=i
j∈V�

gn+1−j+i)c�)

=
e(g,

∏
i∈U

∏
1≤�≤L(

∏
j∈V�

gn+1−j+i)
c�)

e(g,
∏

i∈U

∏
1≤�≤L(

∏j �=i
j∈V�

gn+1−j+i)c�)

= e(g,
∏
i∈U

∏
1≤�≤L

(

j=i∏
j∈V�

gn+1−j+i)
c�).

Set δ� = |U ∩ V�| for 1 ≤ � ≤ L. Then, the above expression is equal to
e(g,

∏
1≤�≤L g

δ�c�
n+1) = e(g, gn+1)

u = zu for u = δ1c1+. . .+δLcL. Due to U∩V� �= ∅
and δ� ≤ ζ�, we obtain 1 ≤ δ� ≤ ζ�, for all 1 ≤ � ≤ L. ��

B Security Model of Anonymous Credential System

B.1 Misauthentication Resistance

Consider the following misauthentication resistance game.

Misauthentication Resistance Game: The challenger runs IssuerKeyGen, and
obtains ipk and isk. He provides A with ipk, and run A. He sets CU with
empty, where CU denotes the set of IDs of users corrupted by A. In the run,
A can query the challenger about the following issuing query:
C-Issuing: A can request the k-th user’s certificate on Uk. Then, A as the

user executes CertObtain protocol with the challenger as the issuer.
The challenger adds k to CU .

Finally, A outputs a predicate Ψ∗, and a proof σ∗.

Then, A wins if

1. Verify(ipk, σ∗, Ψ∗) = valid, and
2. for all k ∈ CU , Uk does not satisfy Ψ .

Misauthentication resistance requires that for all PPT A, the probability that
A wins the misauthentication resistance game is negligible.

Efficient Proofs for CNF Formulas on Attributes 509

B.2 Anonymity

Consider the following anonymity game.

Anonymity Game: The challenger runs IssuerKeyGen, and obtains ipk, isk.
He provides A with ipk, isk, and run A. He sets HU with empty. In the run,
A can query the challenger, as follows.

H-Issuing: A can request the k-th user’s certificate on Uk. Then, A as the
issuer executes CertObtain protocol with the challenger as the user.
The challenger adds k to HU .

Proving: A can request the k-th user’s proof on predicate Ψ . Then, the
challenger responds the proof on Ψ of user k, if k ∈ HU .

During the run, as the challenge, A outputs a predicate Ψ∗, and two users
k0 and k1, such that both Uk0 and Uk1 satisfy Ψ∗. If k0 ∈ HU and k1 ∈ HU ,
the challenger chooses φ ∈R {0, 1}, and responds the proof on Ψ∗ of user kφ.
After that, similarly, A can make the queries.
Finally, A outputs a bit φ′ indicating its guess of φ.

If φ′ = φ, A wins. We define the advantage of A as |Pr[φ′ = φ]− 1/2|.
Anonymity requires that for all PPT A, the advantage of A on the anonymity

game is negligible.

Erratum: An Enhanced Anonymous Authentication
and Key Exchange Scheme Using Smartcard

Kyung-kug Kim and Myung-Hwan Kim

ISaC and Department of Mathematical Sciences,
Seoul National University, Seoul 151-747, Korea

gggim1231000@gmail.com, mhkim@math.snu.ac.kr

T. Kwon, M.-K. Lee, and D. Kwon (Eds.): ICISC 2012, LNCS 7839, pp. 487–494, 2013.
© Springer-Verlag Berlin Heidelberg 2013

DOI 10.1007/978-3-642-37682-5_36

The paper “An Enhanced Anonymous Authentication and Key Exchange Scheme
Using Smartcard” authored by Kyung-kug Kim and Myung-Hwan Kim, DOI
10.1007/978-3-642-37682-5_34, appearing on pages 487–494 of this publication has
been retracted at the request of the authors and the volume editor due to duplicate
publication. By mistake, the paper was simultaneously submitted to and published
first in the Proceedings of the CUBE International Information Technology
Conference, CUBE 2012, DOI 10.1145/2381716.2381857, ACM New York.

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-37682-5_34

Author Index

Abdelraheem, Mohamed Ahmed 368
Aoki, Takafumi 383
Aslam, Mudassar 309

Bagchi, Deblin 293
Begum, Nasima 495
Bogdanov, Andrey 126
Bulygin, Stanislav 441

Chatterjee, Sanjit 456
Chattopadhyay, Anupam 293
Chen, Jiazhe 126, 170
Cheon, Jung Hee 472
Chida, Koji 202
Choi, Heebong 383
Coppens, Bart 65
Corniaux, Christian L.F. 184
Coron, Jean-Sébastien 22

Danhieux, Pieter 65
De Bosschere, Koen 65
De Sutter, Bjorn 65
Dubrova, Elena 278

El Aimani, Laila 410

Feldmann, Florian 110
Feng, Dengguo 337
Funabiki, Nobuo 495

Gao, Debin 92
Gehrmann, Christian 309
Ghodosi, Hossein 184
Graepel, Thore 1
Gu, Dawu 126

Hakuta, Keisuke 425
Hamada, Koki 202
Hanaoka, Goichiro 247
Homma, Naofumi 383

Ikarashi, Dai 202
Im, Eul Gyu 37
Imai, Hideki 247
Iwamoto, Mitsugu 395

Jing, Jiwu 78

Kamath, Chethan 456
Kang, BooJoong 37
Kasamatsu, Kohei 247
Katoh, Yosuke 425
Khalid, Ayesha 293
Kikuchi, Ryo 202
Kim, Hye Seon 37
Kim, Kyung-kug 487
Kim, Myung-Hwan 487
Kim, Myungsun 472
Kim, Yongdae 383
Kim, Yongdae 472
Kordy, Barbara 49
Koyama, Takuma 352
Kumar, Vikas 456
Kunihiro, Noboru 352

Lauter, Kristin 1
Le, Duc-Phong 262
Lei, Lingguang 78
Li, Yang 395
Li, Zhenqi 141
Liang, Kaitai 231
Lin, Dongdai 141
Liu, Ya 126
Liu, Zhen 231

Mansouri, Shohreh Sharif 278
Matsuda, Takahiro 247
Mauw, Sjouke 49
Meyer, Christopher 110
Ming, Jiang 92
Mohaisen, Abedelaziz 472
Morenius, Fredric 309

Naccache, David 22
Naehrig, Michael 1
Nakanishi, Toru 495
Nakasone, Toshiki 395

Ohta, Kazuo 395

512 Author Index

Paladi, Nicolae 309
Pan, Meng 92
Paul, Goutam 293
Petzoldt, Albrecht 441

Raman, Daan 65
Rechberger, Christian 33
Rijmen, Vincent 126

Sakiyama, Kazuo 395
Sanders, Olivier 410
Sasaki, Yu 156, 352, 395
Sato, Hisayoshi 425
Schweitzer, Patrick 49
Schwenk, Jörg 110
Shi, Zhenqing 337
Stumpf, Frederic 324

Takagi, Tsuyoshi 425
Takahashi, Katsumi 202
Tan, Chik How 262
Tan, Xiao 231

Tang, Chunming 231
Tibouchi, Mehdi 22

Van Buggenhout, Erik 65
Velten, Michael 324
Volckaert, Stijn 65

Wang, Lei 156
Wang, Meiqin 170
Wang, Qingju 126
Wang, Yuewu 78
Wong, Duncan S. 231
Wu, Wenling 337

Yang, Ji Su 37
Yao, Yuan 141
Yu, Xingjie 78

Zhang, Bin 141, 337
Zhang, Lei 217
Zhang, Zhongwen 78
Zhao, Jingyuan 170
Zheng, Yuliang 170

	Cover

	Title

	Preface
	Organization

	Table of Contents
	Invited Papers

	ML Confidential:
Machine Learning on Encrypted Data
	Introduction
	The ML Confidential Protocol and Security Considerations
	Polynomial Machine Learning
	Classification
	Division-Free Integer Algorithms for Classification
	Other Machine Learning Tasks and Generalization Properties

	A Homomorphic Encryption Scheme
	Proof of Concept and Experimental Results
	Choice of Parameters
	Timings for Basic HE Operations
	Linear Means Classifier
	Fisher's Linear Discriminant Classifier
	Comparing the Accuracy of Exact and DFI Versions of Gradient Descent

	Conclusions and Future Work
	References

	Another Look at Affine-Padding RSA Signatures
	Introduction
	Brier-Clavier-Coron-Naccache's Algorithm
	Minimal Entropy Forgeries
	Message Entropy

	Sub-exponential Strategies
	Further Research
	The Case of Two Interchangeable Padding Patterns
	Allowing the Attacker To Influence n

	References

	On Bruteforce-Like Cryptanalysis: New Meet-in-the-Middle Attacks
in Symmetric Cryptanalysis
	Overview
	Bruteforce-Like Cryptanalysis
	Conclusions
	References

	Attack and Defense

	Balanced Indexing Method
for Efficient Intrusion Detection Systems
	Introduction
	Related Work
	Aho-Corasick Based Approaches
	DFA or NFA Based Approaches
	Signature Grouping

	Our Proposed Method
	Experiments
	Conclusions
	References

	Quantitative Questions on Attack–Defense Trees
	Introduction
	Attack–Defense Scenarios Intuitively
	Classification of Questions
	Questions Referring to One Player
	Defining a Formal Model for Questions of Class 1
	Pruning
	From a Question to an Attribute Domain

	Questions Where Answers for Both Players Can Be Deduced from Each other
	Questions Relating to an Outside Third Party
	Methodological Advancements for Attack Trees
	Prototype Tool
	Conclusions
	References

	DNS Tunneling for Network Penetration
	Introduction
	Background and Related Work
	Domain Name System Tunneling
	Prior Implementations
	DNS Anomaly Detection
	Metasploit

	Our Staged Attack
	Stage 1: DNS Stager
	Stage 2: DLL Stager

	Evaluation
	Throughput
	Packet Sizes

	Conclusions and Future Work
	References

	MeadDroid: Detecting Monetary Theft Attacks
in Android by DVM Monitoring
	Introduction
	The Design of MeadDroid
	The Principles of MeadDroid Design
	The Architecture of MeadDroid
	FSM of Monetary Theft Attacks

	System Implementation
	Monitoring Points Selecting
	API Calls Detecting and Parameters Parsing
	UI Inputs Tagging and Tracking

	Evaluation
	Experiment Sample Set Generation
	Effectiveness Evaluation
	Efficiency Evaluation

	Related Work
	Conclusion
	References

	Software and Web Security

	iBinHunt: Binary Hunting
with Inter-procedural Control Flow
	Introduction
	Existing Binary Diffing Tools and Function Obfuscation
	Existing Binary Diffing Tools Based on Control-Flow Structure
	Function Obfuscation

	Diffing Binary Programs with Inter-Procedural Control-Flow Graphs
	Overview of iBinHunt
	Deep Taint for Basic Block Comparison
	Automatic Generation of Program Inputs

	Implementation and Evaluation
	Implementation of iBinHunt
	Evaluation
	Discussions

	Conclusion
	References

	Sometimes It’s Better to Be STUCK! SAML Transportation Unit for Cryptographic
Keys
	Introduction
	Related Work
	Motivation
	Advantages of the Proposal

	Technological Foundations
	Get STUCK - The SAML Transportation Unit for Cryptographic Keys
	Goals of the Contribution
	Identification of Extension Point
	XML Key Data Structure
	Putting the Pieces Together - Extended SAML Assertion
	Usage in the SAML Assertion Query and Request Protocol

	Case Study
	Sec2 Research Project

	Conclusion
	References

	Cryptanalysis I

	Improved Impossible Differential Attacks
on Large-Block Rijndael
	Introduction
	Description of Rijndael and Notations
	Improved Impossible Differential Attacks on Rijndael-256
	New 6-Round Impossible Differential on Rijndael-256
	9-Round Attack on Rijndael-256 with Lower Data Complexity
	9-Round Attack on Rijndael-256 with Lower Time Complexity
	10-Round Impossible Differential Attack on Rijndael-256

	Improved Impossible Differential Attacks on Rijndael-224
	Conclusion
	References

	Cube Cryptanalysis of LBlock
with Noisy Leakage
	Introduction
	Description of LBlock
	Encryption Algorithm
	Key Scheduling

	Cube Attacks
	Cube Attack on LBlock
	The Attack Round and Bit Position
	Diffusion of Key Bits
	Attack in the Single Bit Leakage Model
	Attack in the Hamming Weight Leakage Model

	Error Tolerance Side Channel Cube Attack
	Dinur-Shamir Model
	Side Channel Cube Attacks on LBlock with Noisy Leakage

	Conclusion
	References

	Comprehensive Study of Integral Analysis
on 22-Round LBlock
	Introduction
	Preliminaries
	LBlock Specification
	Notations for Integral Attack
	Partial-Sum Technique
	Previous Integral Analysis on LBlock

	Combining Exhaustive Search for Data-Time Trade-Off
	21-Round and 22-Round Attacks on LBlock
	Overview without Considering the Key Schedule Function
	Analysis of Key Schedule Function
	7-Round Key-Recovery Phase for 22-Round Attack

	Concluding Remarks
	References

	New Impossible Differential Attack
on SAFER+ and SAFER++
	Introduction
	Brief Descriptions of SAFER+ and SAFER++
	The Keyed Non-linear Layer
	The Linear Layer
	The Key Schedule

	Impossible Differentials of SAFER+ and SAFER++
	Notations
	Impossible Differentials of SAFER+ and SAFER++

	Impossible Differential Attacks on SAFER+
	Impossible Differential Attack on SAFER+/128
	Impossible Differential Attack on SAFER+/256

	Impossible Differential Attacks on SAFER++
	Impossible Differential Attack on SAFER++/128
	Impossible Differential Attack on SAFER++/256

	Conclusion
	References

	Cryptographic Protocol

	An Information-Theoretically Secure Threshold
Distributed Oblivious Transfer Protocol
	Introduction
	Background
	Preliminaries
	Notations and Definitions
	Security Model

	Protocol Description
	Security of the Protocol
	Formal Model
	Correctness
	Receiver's Privacy against a Coalition of Servers
	Sender's Security against a Coalition of the Receiver and Servers
	Sender's Security against a ``Greedy'' Receiver

	Efficiency Consideration
	References

	Practically Efficient Multi-party Sorting Protocols
from Comparison Sort Algorithms
	Introduction
	Obstacle for Using Well-known Algorithms
	Contributions
	Related Work

	Preliminaries
	Assumptions and Notations
	Security Model
	Complexity Metrics in MPC
	Secret-Sharing Scheme
	Shuffling, Comparison, and Reveal Protocols

	MPC Sorting Protocols
	Our Approach of Constructing Efficient Sorting Protocols
	Quicksort Protocol
	Sorting Duplicated Values
	 Further Extensions

	Evaluation
	Complexity Analysis
	Experimental Results

	Conclusion
	References

	Provably Secure Certificateless One-Way and Two-Party Authenticated Key Agreement
Protocol
	Introduction
	Preliminaries
	Bilinear Maps
	Mathematical Problems
	Certificateless One-Way and Two-Party Authenticated Key Agreement Protocol

	Security Model
	Desirable Attributes
	The Model

	Our Protocol
	Security Analysis
	Conclusion
	References

	Identity-Based Encryption

	A CCA-Secure Identity-Based Conditional
Proxy Re-Encryption without Random Oracles
	Introduction
	Our Contributions
	Related Work

	Definition and Security Models
	Definition of Identity-Based Conditional Proxy Re-Encryption
	Security Models

	Constructions
	Preliminaries
	Identity-Based Encryption Scheme
	A New Unidirectional Single-Hop IBCPRE Scheme

	Concluding Remarks
	References

	Ciphertext Policy Multi-dimensional Range
Encryption
	Introduction
	Background
	Our Contribution
	Related Work

	Preliminaries
	Forward-Secure Encryption
	Decisional -wBDHI Assumption

	Our Basic Idea
	Our Basic Construction of Range Encryption
	Definition of Ciphertext-Policy Multi-dimensional Range Encryption
	Basic Construction

	Discussion
	Immediate Applications
	Comparison with Functional Encryption

	References

	Efficient Implementation

	Speeding Up Ate Pairing Computation
in Affine Coordinates
	Introduction
	Background on Pairings
	The Ate Pairing

	Improvements for the Even Twisted Curves
	4-ary Miller Algorithm

	Improvements for the Cubic Twisted Curves
	Updating Miller Function
	Choice of Curves
	Final Exponentiation
	Discussion

	Conclusion
	References

	An Improved Hardware Implementation
of the Grain-128a Stream Cipher
	Introduction
	The Grain-128a Cipher
	Keystream Generator
	Authentication Section
	Cipher Phases

	Implementation and Analysis Methodology
	Straightforward Implementation
	Isolating the Authentication Section
	Fibonacci to Galois Transformation
	Throughput Optimization
	Area Optimization

	Final Optimization
	First Approach: Dual Frequency Implementation
	Second Approach: Transformed hy Function

	Final Comparison
	Conclusion
	References

	Optimized GPU Implementation and Performance Analysis of HC Series
of Stream Ciphers
	Introduction
	Limitations in Parallelization of HC Ciphers
	Intra-S-Box Dependency in Self Update Step of S-Boxes
	Inter-S-Box Dependency in Keystream Generation
	Data-Intensiveness

	Optimization Strategies for GPU Implementation of HC Series of Stream Ciphers
	Single Data-Stream Optimizations
	Multiple Data-Streams Optimization

	Experimental Results
	Encryption of Single Data-Stream
	Encryption of Multiple Data-Streams in Parallel
	Throughput Comparison of HC Series of Stream Ciphers on Various Platforms

	Conclusion and Future Work
	References

	Cloud Computing Security

	Trusted Launch of Virtual Machine Instances
in Public IaaS Environments
	Introduction
	Trust and Attack Models, Problem Description and Requirements
	Trust and Attack Models
	Virtual Machine Images
	Requirements for a Trusted VM Launch Protocol

	A Trusted Launch Protocol for Virtual Machine Images in IaaS Environments
	Platform-Agnostic Protocol Description

	Protocol Security Analysis
	TTP Verification Model
	Protocol Caveats

	Protocol Implementation
	OpenStack IaaS Platform
	Prototype Implementation

	Related Work
	Conclusion
	References

	Secure and Privacy-Aware Multiplexing of Hardware-Protected TPM Integrity
Measurements among Virtual Machines
	Introduction
	Concept
	Overview of Multiplexed Storage and Attestation
	Assumptions and Threat Model
	Integrity Measurement Transformation and Storage
	Integrity Reporting
	Integrity Validation

	Security Analysis
	Implementation
	Evaluation
	Related Work
	Conclusion
	References

	Cryptanalysis II

	Improved Key Recovery Attacks
on Reduced-Round Salsa20 and ChaCha
	Introduction
	Description of Salsa20 and ChaCha
	Salsa20
	ChaCha

	Aumasson et al's Attacks on Salsa20 and ChaCha
	First-Order Differential Analysis of Salsa20 and ChaCha
	Key Recovery Attacks on Salsa20 and ChaCha

	Our Attacks
	Chaining Distinguishers
	Second-Order Differential Analysis on Salsa20 and ChaCha
	Probabilistic Neutral Vectors
	Experimental Results with CCD

	Conclusions
	References

	Multi-differential Cryptanalysis on Reduced DM-PRESENT-80: Collisions and Other
Differential Properties
	Introduction
	Previous Work
	Iterative Linear Characteristic of Key Recovery Attack
	Rebound Attack
	Second Preimage Attack on MD4

	12-Round Collision Attack on Compression Function
	Analysis of Differential Properties of S-box
	Entire Differential Characteristic
	Multi-differential Characteristics for Collisions
	Attack Overview
	Attack Procedure
	Complexity Evaluation

	Application for other Attacks
	18-Round Distinguisher
	12-Round Second Preimage Attack on Compression Function

	Concluding Remarks
	References

	Estimating the Probabilities of Low-Weight Differential and Linear Approximations
on PRESENT-Like Ciphers
	Introduction
	A Short Description of PRESENT and SPONGENT
	Preliminaries
	Description of Our Estimation Approach
	Large Sparse Correlation and Difference Matrices

	Improved Linear and Differential Approximations
	Application on SPONGENT
	Application on PRESENT

	Conclusion and Future Work
	References

	Side Channel Analysis

	Security Evaluation of Cryptographic Modules
against Profiling Attacks
	Introduction
	Profiling Attacks
	Template Attack
	Stochastic Model Attack
	Multivariate Regression Attack

	Experimental Analysis
	Evaluation on Hardware Implementations
	Evaluation on Software Implementations

	Conclusion
	References

	Key-Dependent Weakness of AES-Based Ciphers
under Clockwise Collision Distinguisher
	Introduction
	Our Contribution
	Paper Organization

	Preliminary
	Clockwise Collision (CC)
	Locality of EM Leakage

	Overview of CC-EMA
	Target Implementation
	Evaluation Method for CC

	Side-Channel Distinguisher for CC
	Experiments with CC-EMA
	Success Probability Using Experimental Data

	Discussion: Feedback to Future Designs of AES-Based Primitives
	Feedback to S-Box Design Principle
	Feedback to ShiftRows Design Principle

	Conclusions
	References

	Digital Signature

	Efficient Group Signatures
in the Standard Model
	Introduction
	Preliminaries
	Bilinear Groups
	Camenisch-Lysyanskaya Signatures
	Re-randomizable Signatures on Committed Values

	Defining Group Signatures
	Syntax
	Security Model

	A Group Signature without Encryption
	Description
	A Concrete Realization

	A Group Signature without Encryption and without Trusted Parties
	Description
	A Concrete Realization

	References

	Batch Verification Suitable for Efficiently
Verifying a Limited Number of Signatures
	Introduction
	Motivation
	Contribution of this Paper

	Notation
	Preliminaries
	Batch Verification
	Small Exponents Test
	Complex Exponent Test
	Improved Complex Exponent Test

	Proposed Methods
	Properties of Two Types of Elliptic Curves
	Proposed Test Using the Curve E7, b

	Comparison
	Timings
	Estimate

	Conclusion
	References

	Linear Recurring Sequences for the UOV Key
Generation Revisited
	Introduction
	Linear Recurring Sequences (LRS)
	Multivariate Public Key Cryptography
	The UOV Signature Scheme

	Improved versions of UOV
	Our Choice of B
	Choice of and
	Security

	The Verification Process
	Notations
	Verification of UOVLRS2

	Parameters and Experiments
	Conclusion and Future Work
	References

	Galindo-Garcia Identity-Based Signature
Revisited
	Introduction
	Revisiting the Galindo-Garcia Security Argument
	Observations on [1]B
	Observations on [2]B.

	New Security Argument
	Reduction [1]R
	Reductions [2]R and [3]R
	A Comparison with the Original Reduction.

	Conclusion
	References

	Privacy Enhancement

	Private Over-Threshold Aggregation Protocols
	Introduction
	Related Work
	Preliminaries
	Definitions
	Security Definition
	Cryptographic Assumptions and Tools

	Our Construction
	Description
	Semi-decentralized Construction

	Security Analysis
	Efficiency Analysis
	Conclusion
	References

	An Enhanced Anonymous Authentication
and Key Exchange Scheme Using Smartcard
	Introduction
	Proposed Protocol
	Notations
	Registration Stage
	Precomputation Stage
	Authentication and Key Exchange Stage

	Efficiency and Security Analysis
	Efficiency Analysis
	Security Analysis

	Conclusion
	References

	Efficient Proofs for CNF Formulas on Attributes
in Pairing-Based Anonymous Credential System
	Introduction
	Backgrounds
	Previous Works
	Our Contributions

	Preliminaries
	Bilinear Groups
	Assumptions
	Structure-Preserving Signatures (AHO Signatures)
	Groth-Sahai (GS) Proofs

	Extended Accumulator for Inclusions in Multiple Sets
	Proposed Construction
	Security

	Syntax and Security Model of Anonymous Credential System
	Syntax
	Security Model

	Proposed Anonymous Credential System
	Construction Idea
	Proposed Construction
	Security
	Protection against Reply Attack

	Comparisons
	Conclusions
	References

	Author Index

