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Abstract. The Sparse Polyhedral Framework (SPF) extends the Poly-
hedral Model by using the uninterpreted function call abstraction for the
compile-time specification of run-time reordering transformations such as
loop and data reordering and sparse tiling approaches that schedule ir-
regular sets of iteration across loops. The Polyhedral Model represents
sets of iteration points in imperfectly nested loops with unions of poly-
hedral and represents loop transformations with affine functions applied
to such polyhedra sets. Existing tools such as ISL, Cloog, and Omega
manipulate polyhedral sets and affine functions, however the ability to
represent the sets and functions where some of the constraints include un-
interpreted function calls such as those needed in the SPF is non-existant
or severely restricted. This paper presents algorithms for manipulating
sets and relations with uninterpreted function symbols to enable the
Sparse Polyhedral Framework. The algorithms have been implemented in
an open source, C++ library called IEGenLib (The Inspector/Executor
Generator Library).

1 Introduction

Particle simulations, irregular mesh based applications, and sparse matrix com-
putations are difficult to parallelize and optimize with a compiler due to indirect
memory accesses such as x[k-1][col[p]] Saltz et al. [1, 2] pioneered inspec-
tor/executor strategies for creating parallel communication schedules for such
computations at run time. An inspector/executor strategy involves generating
inspector and executor code at compile time. At runtime an inspector traverses
index arrays to determine how loop iterations are accessing data, create com-
munication and/or computation schedules, and/or reorder data. An executor is
the transformed version of the original code. The executor re-uses the schedules
and/or reordered data created by the inspector multiple times.

In the late 90s and early 2000s, researchers developed additional inspector/ex-
ecutor strategies to detect fully parallel loops at runtime [3], expose wavefront
parallelism [4], improve data locality [5–9], improve the locality in irregular pro-
ducer/consumer parallelism [10, 11], and schedule sparse tiles across loops so
as to expose a level of course-grain parallelism with improved temporal local-
ity [12–14]. The Sparse Polyhedral Framework (SPF) research [15, 16, 13] seeks
to provide a compilation framework for automating the application of inspector
/executor strategies and their many possible compositions.
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for (k=1; k<=m; k++) {

for (p=0; p<nz; p++) {

x[k][row[p]] += a[p]*x[k-1][col[p]];

} }

Fig. 1. Matrix powers kernel where the matrix is stored in coordinate storage (COO).
The Matrix Powers kernel computes a set of vectors {A0x, A1x, ..., Amx}. This loop is
performing k sparse matrix vector products.

for (t=0; t<Nt; t++) {

for (k=1; k<=m; k++) {

for (i=0; i<N; i++) {

for (p=0; p<nz; p++) {

if (sigma[row[p]]==i && tile(k,i)==t))

x[k][ sigma[row[p]]]

+= a[p]*x[k -1][sigma[col[p]]];

} } } }

Fig. 2. The transformed matrix powers kernel after the second dimension of x has been
reordered and a full sparse tiling has been performed. Note that further optimizations
are done to remove the conditional from the inner loop and remove double indirections,
but such optimizations are not within the scope of this paper.

Transformation frameworks such as the polyhedral framework [17–22] enable
the specification and exploration of a space of possible compile-time reordering
transformations for static control parts [23]. Static control parts (SCoP) require
that the loop bounds and array accesses in the loops being transformed be affine
functions of the loop iterators and variables that do not change in the loops.

A portion of the matrix powers, Amx, kernel in Figure 1 falls within the
polyhedral model, specifically the iteration space that contains all integer tuples
[k, p] within the specified loop bounds. However, the indirect memory accesses
x[k-1][col[p]] and x[k][row[p]] do not fall directly within the polyhedral
model. In previous work, the polyhedral model has been extended to handle in-
direct memory references by using uninterpreted function calls to represent such
memory accesses and using this information to make data dependence analysis
more precise [24], approximate data dependences in spite of indirect memory
references [25, 26], and handle while loops [22].

A problem arose when the Sparse Polyhedral Framework [15, 16] extended the
polyhedral framework further by using uninterpreted function calls to represent
run-time reordering transformations. We are aware of only one loop transfor-
mation tool that attempts to deal with uninterpreted function calls: omega [27]
and a newer version of omega called omega+ [28, 29]. Omega uses uninterpreted
function calls to aid in the precision of data dependence analysis.



Set and Relation Manipulation for the Sparse Polyhedral Framework 63

However, Omega does not use uninterpreted function calls to represent run-
time reordering transformations and, therefore, manipulations of the interme-
diate representations for the computation and for the transformations are not
precise enough. For example, the conversion of the memory access x[k][row[p]]
in Figure 1 to x[k][sigma[row[p]]] in Figure 2 is not possible with omega.

Transforming code with the SPF requires composing relations, inverting rela-
tions, and applying relations to sets when both the relation(s) and the set can
have uninterpreted function call constraints as well as affine constraints. In this
paper, we make the following contributions:

– Practical algorithms for performing compositions and applying relations to
sets based on the relations typically used in the SPF.

– An open source library that makes the algorithm implementation available
for general use.

Section 2 reviews the Sparse Polyhedral Framework terminology revolving around
sets and relations and the compose and apply operations. Section 3 presents the
compose and apply algorithms. Section 4 presents the IEGenLib software pack-
age available at http://www.cs.colostate.edu/hpc/PIES that implements the
presented algorithms. In Section 5 we conclude.

2 The Sparse Polyhedral Framework (SPF)

Within a polyhedral transformation framework such as Omega [20], Pluto [30],
Orio [31], Chill [32, 29], AlphaZ [33], or POET [34], the intermediate represen-
tation includes an iteration space set to represent all of the iterations in the
loop, a function that maps each iteration in the loop to an array index for each
array access, data dependence relations between iterations in the loop, and some
representation of the statements themselves.

We originally introduced the sparse polyhedral framework in [15] where it
was described as a compile-time framework for composing run-time reordering
transformations. In this section, we provide a basic introduction to the SPF: how
to represent computations in the SPF, how to transform these computations,
and describe the problem of projecting out existential variables that arises in
this context.

2.1 Sets and Relations in SPF

Sets and relations are the fundamental building blocks for the SPF. Data and
iteration spaces are represented with sets, and access functions, data depen-
dences, and transformations are represented with relations. Sets are specified as
s = {[x1, . . . , xd] : c1 ∧ . . .∧ cp}, where each xi is an integer tuple variable/itera-
tor and each cj is a constraint. The arity of the set is the dimensionality of the
tuples, which for the above is d.

The constraints in a set are equalities and inequalities. Each equality and in-
equality is a summation expression containing terms with constant coefficients,
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where the terms can be tuple variables xi, symbolic constants, or uninterpreted
function calls. A symbolic constant represents a constant value that does not
change during the computation, but may not be known until runtime. An un-
interpreted function call f(p1, p2, ..., p3) is a function, therefore, p = q implies
that f(p) = f(q), however the actual output values are not known until compile
time. We also allow the actual parameters pv passed to any uninterpreted func-
tion symbol to be affine expressions of the tuple variables, symbolic constants,
free variables, or uninterpreted function symbols, whereas in omega [24] unin-
terpreted function calls are not allowed as parameters to other uninterpreted
function calls. We represent the iteration space I in Figure 1 as a set with only
affine constraints, I = {[k, p] | 1 ≤ k < Nk ∧ 0 ≤ p < nz}.

A relation represents a set of integer tuple pairs, where the first tuple in
the pair is called the input tuple (often the relation is a function) and the
second tuple in the pair is called the output tuple. Relations are specified as
r = {[x1, . . . , xm] → [y1, . . . , yn] : c1 ∧ . . . ∧ cp}, where each xi is an input tuple
variable in Z, each yj is an output tuple variable in Z, and each cv is a constraint.
The constraints of a relation follow the same restrictions as set constraints and
additionally the relation needs to include equalities that make the relation a
function or the inverse of a function (see Section 3 for more details).

It is possible to represent the array access functions in Figure 1
(A1: x[k-1][col[p]] and A2: x[k][row[p]]) as follows:

A1I→X = {[k, p] → [v, w] | v = k − 1 ∧ w = col(p)}
A2I→X = {[k, p] → [v, w] | v = k ∧ w = row(p)}.

As a notational convenience we subscript the names of abstract relations to
indicate which sets are the domain and range of the relation. For example, the
array access function A1I→X has the iteration space set I as its domain and
data space set X as its range.

2.2 Transforming Iteration and Data Spaces

The SPF uses relations to represent transformation functions for iteration and
data spaces. Given sets that express iteration and data spaces, relations that
specify how an iteration space accesses data spaces (access functions), and re-
lations that represent dependences between iteration points (data dependence
relations), we can express how data and/or iteration reordering transformations
affect these entities by performing certain set and relation operations.

For the matrix powers kernel computation Akx in Figure 1, assume we plan
to reorder the rows and columns of the sparse matrix by reordering the rows
of the x array to improve the data locality [35]. This run-time data reordering
transformation can be specified as follows:

RX→X′ = {[k, i] → [k, i′] | i′ = σ(i)},
where σ() is an uninterpreted function that represents the permutation for the
data that will be created by a heuristic in the inspector at runtime.
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The data reordering transformation affects the data space for the array x,
therefore, any access functions that target the data space X need to be modified.
We use relation composition to compute the new access function:

A1I→X′ = RX→X′ ◦A1I→X = {[k, p] → [v, w] | v = k − 1 ∧ w = σ(col(p))}.

An iteration-reordering transformation is expressed as a mapping between the
original iteration space and the transformed iteration space. The new execution
order is given by the lexicographic order of the iterations in I ′. In the example,
we transform Figure 1 to Figure 2 using full-sparse tiling, a run-time reordering
transformation [13] (also equivalent to the “implicit sequential algorithm” in [14])
that provides task graph asynchronous parallelism [36]. The tile() function ag-
gregates iteration points into atomically executable groups of computation.

TI→I′ = {[k, p] → [t, k, i, p] | t = tile(k, i) ∧ i = σ(row(p))

∧1 ≤ t < Nt ∧ 0 ≤ i < Nr}.

This requires modifying the access functions A1I′→X′ = A1I→X′ ◦ TI′→I

= A1I→X′ ◦ T−1
I→I′ and A2I′→X′ = A2I→X′ ◦ TI′→I = A2I→X′ ◦ T−1

I→I′ , and
transforming the iteration space I ′ = TI→I′(I). Given the transformed ac-
cess functions, scheduling functions, and dependences, we can specify further
run-time reordering transformations (RTRTs).

2.3 Necessary Set and Relation Operations

Modifying the iteration space and access functions to reflect the impact of run-
time reordering transformations requires the following set of operations:

– relation inverse r = r−1
1 = (x → y ∈ r) ⇐⇒ (y → x ∈ r1),

– relation composition
r = r2 ◦ r1 = (x → y ∈ r) ⇐⇒ (∃z | x → z ∈ r1 ∧ z → y ∈ r2),

– and applying a relation to a set
s = r1(s1) = (x ∈ s) ⇐⇒ (∃z | z ∈ s1 ∧ z → x ∈ r1).

2.4 The Problem: Implementing Compose and Apply Is Difficult

The inverse operation can easily be implemented by swapping the input and
output tuple variables in a relation. However, implementing relation composi-
tion and applying a relation to a set is difficult due to the existential variables
(i.e. the vector z in Section 2.3) introduced while computing both. These exis-
tential variables need to be projected out of the resulting set or relation so that
the remaining constraints only involve tuple variables, symbolic constants, and
uninterpreted function calls.

When all of the constraints are affine, then each conjunct is a polyhedron. It
is possible to use integer versions of Fourier Motzkin [27, 37] to project out any
existential variables. The Omega library and calculator [27] enable the expression
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of constraints with uninterpreted function calls, but it has two key limitations
in terms of manipulating uninterpreted function calls. One limitation is that
the arguments to an uninterpreted function have to be a prefix of the input or
output tuples. Therefore, the following input and output occurs (the example
uses omega+, which was built on omega and has similar behavior with respect
to uninterpreted function calls):

Omega+ and CodeGen+ v2.2.3 (built on 08/15/2012)

Copyright (C) 1994-2000 the Omega Project Team

Copyright (C) 2005-2011 Chun Chen

>>> symbolic col(1);

>>> A1_I_to_X := { [k,p] -> [k,w] : w=col(p) };

arguments to function must be prefix of input or output tuple ...

Even when working around this constraint by using a prefix of the input or out-
put tuple as input to the uninterpreted function call, when a compose or apply
operation results in an existential variable that is the parameter to an uninter-
preted function call, the UNKNOWN term is included within the conjunct thus
making the resulting set or relation lose its precision.

>>> symbolic col(2),row(2);

>>> A1_I_to_X := { [k,p] -> [k,w] : w=col(k,p) };

>>> symbolic sigma(2);

>>> R_X_to_X’ := {[k,i] -> [k,i’] : i’=sigma(k,i)};

>>> R_X_to_X’ compose A1_I_to_X;

{[k,p] -> [k,i] : UNKNOWN}

Since in the SPF we are representing computation with iteration spaces and
access functions, this level of precision loss is problematic.

Previously, we developed heuristics for eliminating existential variables in-
volved in uninterpreted function call constraints [16]. The heuristics involved
solving for existential variables and then substituting the resulting expression
in an attempt to remove such existential variables from the constraints. The
approach we present in Section 3 is much simpler to explain and prove correct,
but is more restrictive in the kinds of relations handled.

3 Algorithms for Implementing Compose and Apply

In the Sparse Polyhedral Framework (SPF), relations and sets have certain char-
acteristics because of what they represent and how the relations are used. A
relation can represent (1) a function mapping an iteration point to a memory
location integer tuple (access function), (2) the mapping of an iteration point
for a statement to a shared iteration space that represent space and lexicograph-
ical time (scheduling/scattering function [38]), or (3) a transformation function
mapping each iteration (or data point) to a new shared iteration space (or data
layout). For (1), (2), and (3), the output tuple is a function of the input tuple.
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Based on the above uses of relations in SPF, a relation in SPF is either a
function {x → y | y = F (x) ∧ C} or the inverse of a function {x → y | x =
G(y) ∧ C} such that x is the input tuple, y is the output tuple, F and G
are affine or uninterpreted functions, and C is a set of constraints involving
equalities, inequalities, linear arithmetic, and uninterpreted function calls. We
can use this information to develop algorithms for relation composition and
applying a relation to a set.

This section shows that there are closed form solutions for composing rela-
tions and applying a relation to a set that do not involve existential variables
when the relations satisfy certain assumptions. The algorithms can be imple-
mented directly by using the closed form solution provided in each theorem and
implementing a routine that solves for one set of tuple variables with respect to
another set and provides substitution for a set of tuple variables.

3.1 Relation Composition Theorems

Our algorithms for implementing relation composition requires that either both
relations must be functions or both relations must be the inverse of a function.
By making this assumption, the relation resulting from a composition will be
either a function and/or the inverse of a function.

Theorem 1 (Case 1: Both Relations are Functions). Let x, y, v, and z
be integer tuples where |y| = |v|, F1() and F2() be either affine or uninterpreted
functions, and C1 and C2 be sets of constraints involving equalities, inequalities,
linear arithmetic, and uninterpreted function calls in

{v → z | z = F1(v) ∧ C1} ◦ {x → y | y = F2(x) ∧ C2}.
The result of the composition is {x → z | ∃y,v | y = v ∧ z = F1(v) ∧C1 ∧ y =
F2(x) ∧ C2}, which is equivalent to

{x → z | z = F1(F2(x)) ∧C1[v/F2(x)] ∧ C2[y/F2(x)]}
where C1[v/F2(x)] indicates that v should be replaced with F2(x) in the set of
constraints C1.

Proof
Starting from {x → z | ∃y,v | y = v ∧ z = F1(v) ∧ C1 ∧ y = F2(x) ∧ C2}, we
first substitute y with v to obtain {x → z | ∃v s.t. ∧ z = F1(v) ∧ C1 ∧ v =
F2(x)∧C2[y/v]}. Then we substitute v with F2(x) to obtain the forward equiv-
alence {x → z | z = F1(F2(x)) ∧C1[v/F2(x)] ∧C2[y/F2(x)]}. The backward
direction of the equivalence requires performing the reverse substitutions in the
reverse order where instead of removing existential variables we are introducing
them.

From the running example, both the access relation A1I→X′ and the transforma-
tion TI→I′ are functions. Therefore, to compute the effect of the transformation on
A1 (A1I′→X′ = A1I→X′ ◦TI′→I), we can use Theorem 1. ForA1I→X′ , the output
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tuple variables are a function of the input tuple variables: [v, w] = F1([k, p]) =
[k−1, σ(col(p))]. For TI′→I , we have the following function: [k, p] = F2([t, k, i, p])
= [k, p]. Therefore the result of the composition is

A1I′→X′ = {[t, k, i, p] → [v, w] | v = k − 1 ∧ w = σ(col(p))}.

Theorem 2 (Case 2: The Inverses of both Relations are Functions).
Let x, y, v, and z be integer tuples where |y| = |v|, G1() and G2() be either
affine or uninterpreted functions, and C1 and C2 be sets of constraints involving
equalities, inequalities, linear arithmetic, and uninterpreted functions in

{v → z | v = G1(z) ∧ C1} ◦ {x → y | x = G2(y) ∧ C2}.

The result of the Case 2 composition is {x → z | ∃y,v s.t. y = v ∧v = G1(z)∧
C1 ∧ x = G2(y) ∧ C2}, which is equivalent to

{x → z | x = G2(G1(z)) ∧ C1[v/G1(z)] ∧ C2[y/G1(z)]}.

Proof. As with Theorem 1, we can perform substitutions to show the equiv-
alence. For Theorem 2, we substitute y with v and then substitute v with
G1(z).

3.2 Relation Application to Set Theorem

For applying a relation to a set, the relation must be the inverse of a function.
This is necessary because the existential variables resulting from the application
are replaced by functions of the output tuple variables. The below theorem shows
why this is the case.

Theorem 3 (Relation to Set Application). Let x, y, and z be integer tuples
where |x| = |z|, G() be either an affine or uninterpreted function, and C and
D be sets of constraints involving equalities, inequalities, linear arithmetic, and
uninterpreted function calls in

{x → y | x = G(y) ∧ C}({z | D}).

The result of applying the relation to the set is {y | ∃x, z | z = x ∧ x =
G(y) ∧ C ∧D}, which is equivalent to

{y | C[x/G(y)] ∧D[z/G(y)]}.

Proof. As with Theorem 1, we can perform substitutions to show the equiv-
alence. For Theorem 3, we substitute z with x and then substitute x with
G(y).
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4 The Inspector/Executor Generator Library

The Inspector/Executor Generator Library (IEGenLib) enables the program-
matic manipulation of sets and relations with constraints involving affine expres-
sions where terms can be uninterpreted function calls for the use in specifying
run-time reordering transformations. This section provides an overview of typi-
cal IEGenLib usage and functionality. Release 1 of the IEGenLib along with a
user manual and API documentation can be found at
http://www.cs.colostate.edu/hpc/PIES.

The IEGenLib is similar to the Omega library [27] in that IEGenLib provides
a C++ API for manipulating sets and relations with inequality and equality con-
straints. The main differences are that IEGenLib enables uninterpreted function
calls to have any affine expressions as arguments including those with uninter-
preted function calls, and IEGenLib maintains more detail when performing re-
lation to set application and relation composition when the constraints involved
include uninterpreted function calls.

IEGenLib Release 1 has fewer features than the current Omega library and
new versions of that library such as Omega+ [28]. For example, the IEGenLib
calculator iegenlib calc does not generate code at this time. Additionally the
IEGenLib calculator and library provide a subet of set and relation operations.
IEGenLib does provide the following operations: composition of two relations,
applying a relation to a set, union, and relation inverse.

4.1 Typical Usage of IEGenLib

The IEGenLib ships with three convenient interfaces: the IEGenLib API avail-
able through a C++ library, the IEGenLib calculator (a sample program using

Release 1: IEGenLib

Interactive Python interface

User/ HPC Research Developer

Output dot file:
Sparse Constraints Object
to be used for visualization
by GraphViz

IEGenLib calculator
(iegenlib_calc)

Operations:
• define set, relation
• apply relation to set
• union sets or relations
• inverse relation
• compose relation

IEGenLib
Sparse 

Constraints 
Object

Set & Relation
Manipulation

>>> print S2 
 '[N,T] >{[i1,t,j1] : 
 t f(j1)=0 and N i1 1>=0 
 and N j1 1>=0 and j1>=0 and i1>=0}'

>>> S = iegenlib.Set("[N] > { [i,j] : 
    0<=i and i<N and 0<=j and j<N }")

>>> R = iegenlib.Relation("[T] > 
    {[i,j] > [i,t,j] : t = f(j) }")

>>> S2 = R.Apply(S)

Tool supplied as part of PIES-IEGen
project

Operations/functions

Intermediate representation or
important internal data structure Uses

Input/Output edges

Fig. 3. Shows how the iegenlib is typically used
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Table 1. Set and Relation Operations

Operation Notation Semantics
Syntax using Python Bindings

constant Apply s = r1(s1) (x ∈ s) ⇐⇒ (∃y s.t. y ∈ s1 ∧ y → x ∈ r1)
Iprime = T I to Iprime.Apply( I )

Union s = s1 ∪ s2 (x ∈ s) ⇐⇒ (x ∈ s1 ∨ x ∈ s2)
r = r1 ∪ r2 (x → y ∈ r) ⇐⇒ (x → y ∈ r1 ∨ x → y ∈ r2)

Inverse r = r−1
1 (x → y ∈ r) ⇐⇒ (y → x ∈ r1)

T I to I = T I to Iprime.Inverse()

Compose r = r2 ◦ r1 (x → y ∈ r) ⇐⇒ (∃z s.t. x → z ∈ r1 ∧ z → y ∈ r2)
A1 I to Xprime = R X to Xprime.Compose(A1 I to X)

the library that enables interactive experimentation), and the interactive Python
interface (i.e. python bindings). Section 4.2 provides an overview of the IEGenLib
API and underlying class structure. The IEGenLib calculator and Python inter-
face are each supplied to allow users quick access to the IEGenLib capabilities.

The IEGenLib calculator (iegenlib calc) is a C++ programwritten using
the IEGenLib. It is both useful as a standalone tool and the source code is
provided as an example of how to use the library API.

The interactive Python interface is automatically created using SWIG.
After the application of SWIG it is possible to access the C++ library directly
from Python scripts and the interactive Python interface. All of the examples
in the following section are written using the Python syntax. Figure 3 shows
the usage relationship between the three interfaces and gives a brief example of
using the Python interface.

4.2 Class Structure of IEGenLib

This section gives an overview of both the programmatic interface exposed by the
IEGenLib and the class structure that supports the given interface. The interface
is designed to be easily accessible and at the same time enable advanced users
direct access to the internal structures.

The primary function of the IEGenLib is to provide a programmatic inter-
face for the manipulation of sets and relations, therefore, the primary high-level
objects are exposed as two classes, Set and Relation (each in the iegenlib names-
pace). Sets and Relations are each instantiated using a constructor that takes
a string as a parameter. As an example, instantiating the Relations used in the
example in Section 1 is done as follows.

A1I→X = {[k, p] → [v, w] | v = k − 1 ∧w = col(p)}
# Python code to represent access function for x[k-1][col[p]]

import iegenlib

A1 I to X = Relation("{[k,p] → [v,w] : v=k-1 && w=col(p)}")



Set and Relation Manipulation for the Sparse Polyhedral Framework 71

A2I→X = {[k, p] → [v, w] | v = k ∧w = row(p)}
# Python code to represent access function for x[k][row[p]]

A2 I to X = Relation("{[k,p] → [v,w] : v=k && w=row(p) }")
TI→I′ = {[k, p] → [t, k, i, p] | t = tile(k, i) ∧ i = sigma(row(p))
∧0 ≤ t < Nt ∧ 0 ≤ i < Nr}
# Python code to represent sparse tiling transformation

T I to Iprime = Relation("{[k,p] → [t,k,i,p] : t=tile(k,i)

&& i=sigma(row(p)) && 0 ≤ t && t < N t && 0 ≤ i && i < N r }")
Table 1 lists the high-level operations available for the Set and Relation

classes: apply, union, inverse, and compose. The table shows the syntax used
to use these functions through the Python bindings. The examples in the table
use the objects that result from the above construction examples.

An internal class structure supports the Set and Relation class operations. The
class structure is centralized around Expressions. Expressions (class name Exp)
consist of at least one Term. A Term can fall into one of four categories. First, a
Term may be an integer constant, in that case it is implemented using the Term
class directly. In the other three cases a Term may be coefficient multiplied by a
variable (VarTerm), a coefficient multiplied by a tuple variable (TupleVarTerm),

Relation R_X_to_Xprime(2 ,2);

Conjunction *c = new Conjunction(2+2);

c->setTupleElem(0,"k");

c->setTupleElem(1,"i");

c->setTupleElem(2,"k");

c->setTupleElem(3,"i’");

// Create the expression

Exp* exp = new Exp();

exp ->addTerm(new VarTerm("i’"));

std::list <Exp*> *args = new std::list <Exp*>;

Exp *arg0 = new Exp();

arg0 ->addTerm(new VarTerm("i"));

args ->push_back(arg0);

exp ->addTerm(new UFCallTerm(-1, "sigma", args));

// add the equality to the conjunction

c->addEquality(exp);

// add the conjunction to the relation

R_X_to_Xprime.addConjunction(c);

Fig. 4. Building the Relation in Figure 5 manually
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Relation R_X_to_Xprime =

Relation("{[k,i] -> [k,i’] : i’ = sigma(i) }")

Fig. 5. Building the Relation in Figure 4 using the parser

or a coefficient multiplied by an uninterpreted function call (UFCallTerm). A
UFCallTerm contains a list of parameters that are instances of the Exp class.

While it is possible to utilize the IEGenLib to create Sets and Relations using
the class structure directly a parser is included in the library that allows for
much more simple construction. A built-in parser enables constructors in the
Set and Relation classes that accept a string. The string can use the Omega or
ISL syntax. The parser does all of the internal work to build the appropriate
underlying structure that represents the Set or Relation desired. Figures 4 and
5 demonstrate the significant reduction in user code size that results from using
this feature.

Another helpful capability of the IEGenLIb is that each class implements a
function that writes a representation of that object to dot. Dot is a syntax for
creating “hierarchical” or layered drawings of directed graphs. Tools such as

Relation
mInArity=2

mOutArity=2

Conjunction
[k, p, v, w]

Equalities
...=0

Exp
...+...

Exp
...+...

TupleVarTerm
 __tv0

TupleVarTerm
 -__tv2

Term
 -1

TupleVarTerm
 __tv3

UFCallTerm
 -col(...)

Exp
...

TupleVarTerm
 __tv1

Fig. 6. The dot visualization for the relation A1I→X
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Graphviz create images using the dot files as input. The visual representations
of sets and relations is a quick way to understand the underlying structure for a
specific Set or Relation. Figure 6 shows an example taken from the introduction.

5 Conclusions

This work is another step in automating the process of generating inspector/ex-
ecutor code. We present algorithms for composing relations and applying rela-
tions to sets, when the relation(s) and set involved in those operations include
affine constraints and constraints involving uninterpreted function calls. The
IEGenLib software package implements the presented algorithms. This paper
also shows how a user of IEGenLib can specify and perform relation composi-
tion and the application of a relation to a set.
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