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Abstract. This paper describes the stapl Parallel Graph Library, a
high-level framework that abstracts the user from data-distribution and
parallelism details and allows them to concentrate on parallel graph
algorithm development. It includes a customizable distributed graph con-
tainer and a collection of commonly used parallel graph algorithms. The
library introduces pGraph pViews that separate algorithm design from
the container implementation. It supports three graph processing algo-
rithmic paradigms, level-synchronous, asynchronous and coarse-grained,
and provides common graph algorithms based on them. Experimental re-
sults demonstrate improved scalability in performance and data size over
existing graph libraries on more than 16,000 cores and on internet-scale
graphs containing over 16 billion vertices and 250 billion edges.

1 Introduction

Processing large graphs is essential in many domains, from social network and
web-scale graphs to scientific meshes and nuclear reactor-design [2]. As the
graphs span billions of vertices and edges, they may not fit in the memory
of a single-processor system. Using a distributed data-structure allows massive
graphs to be processed quickly and concurrently.

There have been many attempts over the past decade [7,3,8] to allow pro-
grammers to easily express their graph computations in parallel. Despite this,
graph algorithms remain notoriously hard to scalably parallelize, and existing
graph libraries are restrictive in allowing users to express algorithms and require
them to manage many details regarding data-distribution and communication.

This paper describes the stapl Parallel Graph Library (sgl), a generic par-
allel graph library that provides a high-level framework that allows the user to
concentrate on parallel graph algorithm development and relieves them from
the details of the underlying distributed environment. It consists of the stapl
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pGraph pContainer, pGraph pViews that allow for the separation of the algo-
rithm design from the container implementation, and a collection of
parallel graph algorithms. In addition, the library supports level-synchronous,
asynchronous and coarse-grained algorithmic paradigms, which are designed to
support graph processing applications and algorithms. Further, it automates
load balancing and simplifies some locality-related optimizations.

The stapl Parallel Graph Library makes several contributions:

Programmability. One of the main goals of sgl is to provide a similar interface
and level of abstraction as sequential graph libraries by allowing seamless access
to local and remote elements through virtualization using Shared-Object Views,
while providing good performance.

Abstraction. The pGraph pView – a high-level graph abstraction – allows pro-
grammers to completely decouple the design of the graph algorithm from the
implementation of the graph container. Users are left free to express the graph
as is most natural to the problem, while the underlying data-structure and im-
plementation can be chosen to offer maximum performance.

Multiple Algorithmic Paradigms. We provide three paradigms for express-
ing graph algorithms, including two fine-grained (level-sync and async) and one
coarse-grained paradigm. These enable natural expression of algorithms while
extracting the best performance from different input graphs.

Scalable Performance. We demonstrate improved scalability in performance
and data size over tens of thousands of cores compared with existing graph
libraries on standard benchmarks. Moreover, we provide light-weight support for
load balancing through asynchronous data migration, and demonstrate improved
performance and scalability in a real-world production application by mitigating
load-imbalance through automatic redistribution of vertices.

2 STAPL Overview

The pGraph pContainer is built using the pContainer framework (pcf) pro-
vided by the Standard Template Adaptive Parallel Library (stapl). stapl
[4,5,13] is a framework for parallel C++ code development. stapl’s core is a
library of C++ components implementing parallel algorithms (pAlgorithms)
and distributed data structures (pContainers) that have interfaces similar to
the C++ standard library (stl) [10]. Analogous to stl algorithms that use iter-
ators, pAlgorithms are written in terms of pViews [4] so that the same algorithm
can operate on multiple pContainers. pViews facilitate parallel processing by
supporting independent random access to ranges (partitions) of a container’s
elements. The PARAGRAPH represents computations as parallel task graphs.

stapl abstracts the physical parallel elements to the notion of locations – units
of a parallel machine capable of performing computations that have a contiguous
memory address space. Asynchronous communication is allowed through remote
method invocations (RMIs) on shared objects. The stapl runtime system is
portable to different platforms and architectures without modifying other stapl
components.
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//create pgraph with 10 vertices :
p graph<Directed, Multiedges> pg(10);
size t V = pg.num vertices();
pg.add vertex (11);

parallel for each ( i = 0..E)
pg.add edge(rand() % V, rand() % V);

// get the out−degree of vertex 3
size t deg 3 = pg[3].edges (). size ();
// delete a specific edge between two vertices
bool success = pg.delete edge (3,2);

Fig. 1. Typical interaction with
the pGraph pContainer through
methods

// directed graph, multiple allowed edges b/w
// same source & target
p graph<Directed, Multiedges>

// graph with custom vertex and edge properties
p graph<Directed, Multiedges, vertex prop , edge prop>

// vertices block−partitioned ,
// with custom traits for graph
p graph<Directed, Multiedges, int , bool,

blocked partition , my traits>

Fig. 2. Example traits of the pGraph

3 The pGraph Container and Implementation

Graphs can be directed or undirected, with weighted or unweighted edges, and may
or may not allow multiple edges between the same source and target (multigraph)
or self-loops. Applications may associate information (properties/weights) with
vertices and edges.

API. The pGraph pContainer exports a uniform interface for accessing and
manipulating all types of graphs. Every vertex and edge in the graph is uniquely
identified by a vertex (or edge) descriptor that is used for accessing and refer-
encing the element, and for adding or deleting elements.

The pGraph API makes it simple to create graphs and perform common graph
operations (Fig. 1), such as adding, deleting or accessing vertices and edges,
applying functors on graph elements, etc. Issues of concurrency and consistency
are handled by the pGraph. Importantly, users do not have to reason or know
about the locality of the graph elements – they refer to vertices and edges using
descriptors and the pGraph handles the details of locality and forwarding requests
to the required location. This is not the case with many other graph libraries,
e.g., in pbgl, the user can only get the out-degree of a vertex from a local
process, whereas in our model this information is available from all locations.

Users can customize a pGraph by selecting properties and traits (e.g., di-
rectedness, graph representation, storage). sgl provides common options and
implementations for storages, etc., but users may provide their own, or imple-
ment bridges to adapt their data structures to our algorithms. These choices
may affect the performance. For example, a pGraph using vector storage may
be faster than one using map storage if the graph is static (i.e., the number of
vertices is known a priori). It is straightforward to customize a pGraph (Fig. 2).
Further customizations are possible through trait-classes.

Implementation. The pGraph is built using the stapl pContainer framework
(pcf), which provides base classes that handle issues dealing with data distribu-
tion and parallelism and allows the design of the pGraph pContainer to focus
on graph-specific concerns. The pGraph pContainer consists of a set of base
containers (bContainers) and the infrastructure to make them work together
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in parallel. For the pGraph, a bContainer is a base graph data structure that
exports the pGraph’s interface. The bContainer has three layers: the represen-
tation of the graph, the graph storage, and the underlying storage. The graph
storage is tied to the representation, exporting an interface that allows the rep-
resentation to work with the underlying storage. It provides the policies for the
type of underlying storage used by the graph (e.g., vector, hash map, map) for
vertices and edges. It also specifies the type for a vertex and type for an edge,
along with how properties are stored on these. The underlying storage may be
a sequential container unaware of parallelism that is used by the graph to store
vertices and edges, or possibly another pContainer.

The pcf provides a shared-object view [14] that allows users to address any
element globally. pGraph users interact with the container by method invocation,
which the framework forwards to the location where the needed graph elements
reside. Fig. 3 shows the internal base-class implementation for apply async,
which provides an example of address resolution for graph elements using asyn-
chronous communication. The apply async method is provided by the pcf for
applying a higher-order function object on an element of the container. This may
be used to implement methods such as add edge and set vertex property for the
pGraph. Internally, this forwarding is supported by a distributed directory ser-
vice – which is contained within the pGraph – that provides a two-level lookup
of the requested vertex’s location. This is described in the next section.

Shared-Object View Provided by Distributed Directory. The pGraph is a
dynamic container, where vertices may be added and removed, and so vertex IDs
need not be contiguous or even ordered. The pGraph uses a distributed directory
to provide a shared-object view to users and abstract them from dealing with the
details of distribution. While a distributed directory can increase access costs,
other solutions such as centralized models (e.g., the master-slave model employed
by Pregel [8]) which store the entire directory information in a single location,
or replicated directory on all locations, may not scale to large systems.

In this two-level distributed directory scheme, every vertex has a home location
associated with it, which may not be the location of the vertex, but is rather the
location that stores information about the vertex’s locality. It is calculated using
simple closed-form solution (a hash of the vertex’s descriptor), so any requesting
location knows quickly and precisely where to send the request.

In this mechanism, the pGraph first checks if the graph vertex is local, and
if so, then services the request immediately. If the vertex is not found locally,
the local directory computes the home location of that vertex and forwards the
request there. The home location is responsible for knowing the exact location of
the vertex. In some cases, the home location may own the vertex itself, at which
point, the requested action is performed on the vertex. However, in the case that
it does not, the request is forwarded to the location that owns the vertex, where
the request is serviced. As shown by Tanase et. al. [14], address resolution using
asynchronous forwarding provides improved performance over a directory that
determines the element’s location using synchronous communication.



50 Harshvardhan et al.

void base :: apply async( vertex descriptor s ,
Functor f )

if base container . contains(s)
base container .apply(s , f)

else
home = home location(s) // hash−based lookup
if my location == home
owner = directory .lookup(s)
async rmi (owner, apply async(s , f ))

else
async rmi (home, apply async(s , f ))

Fig. 3. Internal base-class implementa-
tion of apply async method illustrat-
ing address resolution

// asynchronous migration and redistribution :
g.migrate(vertex , location )
g. redistribute (cost map, action function =no op)

Source Destination

HomeInquirer

ack
intent

migrate

flush

update

queue
for e0 reqreqreqreqreqreq

req

req

req
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4
5

Fig. 4. Asynchronous migration proto-
col for pGraph

Vertex Migration. The sgl provides the novel ability to migrate vertices asyn-
chronously between locations during the execution of the program. An important
property of the migration protocol is that it ensures that sgl algorithms can be
oblivious to the data distribution and also to any migration occurring during
the execution of an algorithm.

The protocol for migration of graph elements implemented by the pGraph is
inspired by directory-based cache coherence techniques [6] and is described in
Fig. 4. When processing an element-migration request from a source location to
a destination location, the source first informs the home location of its intent to
migrate (1). The home location, upon receiving this request, marks the element
as in the process of migration and creates a queue for all requests addressed to
that element. It then sends an acknowledgement (2) to the source location al-
lowing the source to then proceed to migrate the element data to the destination
(3). When the destination receives the element’s data, it stores it and informs the
home location (4) to update its metadata to record that the destination is now
the owner of that element. Finally, the home location updates its metadata and
forwards all pending requests for that element to the destination location (5). If
at any point during migration a location requests access to the element that is
currently being migrated, the requests are forwarded to the home location for
that element, where they are buffered in the queue. The queue is flushed at the
end of migration and requests are forwarded to the new location of the element.

Redistribution. As users of sgl generally may be unaware of localilty, sgl
provides a convenient way to rebalance a pGraph.

Redistribution of a pGraph requires some process for determining the new
distribution. This can be user provided or it can be computed based on some
cost function. For many graph-based scientific applications, a cost function (cost
map) can be determined representing the expected computational costs asso-
ciated with vertices and edges. In sgl, such cost maps can be user provided,
or if no additional information is available, uniform costs can be assumed for
all elements. Given a cost map, a new partition that attempts to address the
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p graph<Directed, Multiedges> pg(N);
graph view view(pg);

strongly connected components(view);
connected components(undirected view(pg));
page rank( implicit view (N, binary tree func ()));

struct binary tree func
size t size ( size t parent) { return 2; }

size t operator()( size t parent , size t idx)
if ( idx == 0)
return 2∗parent+1;

else return 2∗parent+2;

Fig. 5. A few examples of creating and using pGraph pViews, with binary-tree functor

imbalance can be computed by an sgl graph partitioning algorithm. Given a
desired partition, each location computes the vertices that need to be migrated
to itself from other locations and invokes a migrate call on those vertices. Inter-
nally, the asynchronous directory forwards the migration request to the correct
location where the element is located and initiates the migration of that vertex.
Fig. 4 illustrates how redistribution is invoked, and the protocol used in sgl. sgl
allows application programmers to optionally provide callback functions that are
invoked along with each migration call on the corresponding element to allow
any action that needs to be performed during the process of migrating a single
element, such as updating auxiliary data structures.

4 pGraph pViews

pGraph algorithms are written in terms of pViews that export the full interface of
the pGraph and allow iteration over vertices and edges. While arbitrary partitions
can be specified, the default partition of a pGraph pView matches the physical
partition of the graph on the system. This is the pView that can offer the best
performance and it should be used unless it is not suitable for the algorithm.
The pGraph supports the standard pViews provided by stapl, as well as some
graph-specific pViews that are described in this section.

Useful pGraph pViews. The pGraph provides many useful views that can be
used to logically view and manipulate the structure of a graph. For example,
by applying an undirected pGraph pView to a directed graph, one can use an
algorithm that was designed for undirected graphs on a directed graph without
explicitly modifying the graph. Fig. 5 shows the creation of an undirected view
over a directed pGraph which is then used as input for a parallel connected com-
ponents algorithm. This is a particular need for a motion planning application
which constructs a digraph and uses this connectivity information to view the
results and as a stopping condition [16]. We also evaluate the performance of a
parallel connected components algorithm using this pView in Sec. 6.

As another example, some strongly connected components algorithms [9] need
access to the predecessors of a vertex in a digraph. For this, a predecessor pView
can be used to provide the predecessor information without modifying the un-
derlying graph. Or, in some cases, one may wish to work with the complement
of a graph which has the edges of the graph complemented. In this case, instead
of constructing another graph, one could simply apply a complement view.
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Implicit pGraph pViews. A pView is a partitioned collection of element de-
scriptors. While these collections are often explicit, with memory associated with
each element, stapl provides for the creation of pViews that do not have an under-
lying collection of elements, but instead evaluate expressions to provide vertices
and edges lazily. These views may be used when the graph structure can be de-
scribed by a series of formulae, with the benefit of having virtually no storage over-
head, e.g., users can specify the formula using a functor that, given the descriptor
of a vertex, returns the descriptor of its neighboring vertices. This is most useful in
scientific applications that work on regular meshes, where the structure may be
expressed by formulae. This allows the application to avoid storing the vertices
and edges of the graph, freeing up memory for larger problems, or allowing the
program to run on memory-constrained systems.

In Fig. 5, the PageRank algorithm is invoked on an implicit binary tree pView
by specifying the view size and the function object (binary tree func) that de-
scribes the parent-child relationship for a complete binary tree (Fig. 5). This
pView can be passed as input to any generic pGraph algorithm, the execution of
the algorithm lazily creates graph elements on which to operate. Similarly, an
n-dimensional hypercube, a mesh, a torus and other classes of regular graphs
can be generated by using the appropriate algrebraic expressions.

5 Parallel Graph Algorithms

The sgl provides three paradigms to help users design parallel graph algo-
rithms: the level-synchronous paradigm, the asynchronous paradigm and the
coarse-grained paradigm. Using these paradigms, the sgl provides standard
fundamental graph algorithms, including breadth-first search, connected compo-
nents, single-source shortest path, and topological sort, and also more specialized
algorithms such as page rank and particle-swarm optimization.

These paradigms are built on top of algorithmic primitives provided by stapl
(e.g., map func, map reduce) that execute higher-order functions (workfunction)
on elements of a view. To express a new parallel graph algorithm, users choose a
suitable paradigm and provide a workfunction that describes the computation,
either in a fine-grained manner for the level-sync and async paradigms, or in a
coarse-grained manner for the coarse-grained paradigm. Fig. 6 is an example
of a workfunction for sgl’s parallel breadth-first search (BFS).

The workfunction is generic and oblivious to the paradigm (either level-sync
or async). The differences between level-sync and async versions are taken care
of by the paradigm itself. For example, the generic BFS workfunction (bfs wf)
will use the visitor (visit wf) (Fig. 6), and may be used in both, the level-sync
or async paradigms. For fine-grained algorithms (workfunctions that operate on
individual vertices), the pViews provide optimizations that are transparent to
the user to better exploit data locality. Coarse-grained workfunctions receive a
partition of the graph on which to work.



The STAPL Parallel Graph Library 53

void BFS (graph view graph, vertex source)
source. color = GREY;
Paradigm(graph view, bfs wf (), bfs visitor ());

bool bfs visitor (Vertex v, int level )
if (v. level > level )
v. level = level ;
v. color = GREY;
return true ;

return false ;

bool bfs wf(Vertex v)
if (v. color == GREY)
for (u : v.neighbors ())
spawn(Visit( bfs visitor ( 1, v. level +1)), u)

v. color = BLACK;
return true ;

return false ;

Fig. 6. Pseudocode for generic BFS and workfunctions (bfs wf and bfs visitor)

Level-Synchronous Algorithms.The Level-synchronous paradigm iteratively
executes tasks on the active vertices of the graph in a BSP fashion [20], with a
global synchronization between each level. Iterative application of the map/re-
duce pattern is one way to express the level-sync paradigm.

The algorithm’s communication happens asynchronously during and after a
level, but is guaranteed to have completed before the next level. In this paradigm,
each level is a phase that works on some set of active vertices, which may change
through the levels. Level-synchronous algorithms tend to perform best when the
number of levels is small since each level requires a costly global synchronization.

Examples of level-sync algorithms are PageRank [11] and level-sync BFS [18].
To create a level-sync BFS, a user would plug-in the generic BFS workfunction
(Fig. 6) into the level-sync paradigm. The workfunction should return true if it
was active for a vertex, and false otherwise. This is used to decide the termination
condition, which occurs when all vertices are inactive (all vertices return false).

Asynchronous Algorithms. The async paradigm, on the other hand, has no
internal synchronizations, and therefore, may perform better on graphs with high
diameter. However, asynchronous algorithms may perform redundant work, as
there are no guarantees for the execution order. For example, an async BFS may
re-visit a vertex multiple times as shorter paths are discovered [12].

The algorithm typically starts with a few fine-grained source tasks over an
initial set of vertices. These may spawn additional tasks on their neighboring
vertices that are asynchronously forwarded to the location where the neighbor
target vertex is currently located (using task forwarding). The algorithm exe-
cution ends when there are no more tasks currently executing or in-flight, as
detected by a termination-detection algorithm. Termination detection is sup-
ported by internal mechanisms that track the number of tasks executing and in
waiting and that performs a reduction across locations.

Since most libraries for graph processing provide one of the two paradigms,
users either have to use different libraries for different input graphs, or potentially
settle for lower performance depending on their input graphs. sgl provides both
paradigms, such that the user workfunction is oblivious to the paradigm selected,
so it is easy to switch paradigms to obtain the best performance in different cases.

Coarse-Grained Algorithms. The coarse-grained paradigm is useful to ex-
press graph computations in which a pGraphmay be partitioned into subgraphs,
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each of which is processed separately. An example of this type of computation
is the coarse-grained connected components algorithm [21]. The first level of the
algorithm computes the connected-components of the local subgraph, ignoring
remote edges. In the second level, the local connected components are merged by
applying a level-synchronous connected components to the graph. Then, the CC
vertices are relabeled with the CC-identifier of their connected component. This
allows the algorithm to reduce communication by coarsening local computation.

As an example, the Motion-Planning applications [17] follow this paradigm,
where they build the graph locally in coarse-grained partitions, and then merge
the graphs to get the final result.

6 Results

We evaluate sgl using multiple input graphs and over multiple platforms and
show that our library performs better, both in terms of scalability and memory
used, than other available graph libraries, Parallel Boost Graph Library (pbgl)
(v0.7.0), Multi-Threaded Graph Library (mtgl) (v1.1.1), and the Graph500
MPI Reference Implementation (benchmark) (v1.2). (see Sec. 7).

We show scalability of sgl algorithms over a representative subset of in-
put graphs, including the Graph500 Benchmark-generated input (that simulates
internet-scale webgraphs and social-networks) and torus graphs (that simulate
scientific meshes). Our experimental studies are conducted on two massively par-
allel systems: a 153,216 core Cray XE6 (Hopper) and a 832 core Power5 cluster
(P5-cluster). For testing mtgl, we run strong-scaling on an 8-core node of a
2,400 core Opteron cluster (opteron). We also run a strong-scaling experiment
on a real-world production application using sgl on opteron.

Graph 500 Benchmark. We implemented the Graph 500 benchmark [1] for
sgl, using the level-sync BFS. We show the results and scalability on Hopper.

In our experiments, while pbgl and benchmark could only accomodate 217

vertices per core at scale, sgl was able to fit a maximum of 220 vertices per core
due to less memory needed for storing outstanding communication requests. We
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show a weak-scaling plot comparing the scalability of the Graph500 benchmark,
pbgl, and sgl for 217 and sgl for 220 vertices per location in Fig. 7(a). The
y-axis reports the throughput in Mega Traversed Edges Per Second (MTEPS).
Both the benchmark and pbgl suffered from memory bottlenecks. While the
Graph500 reference implementation was able to construct the graph, it crashed
during the execution of the algorithm on 1,024 cores and pbgl was unable to
run the algorithm beyond 4,096 cores. On a single core, pbgl performed similar
to sgl, whereas the Graph500 benchmark implementation was 5x faster due to
the use of Compressed Sparse-Row (CSR) representation of the graph, while
pbgl and sgl used the adjacency-list representation. While CSR is faster for
executing the algorithm, it takes a considerable amount of time to build the
graph (Fig. 7(b)) as edges need to be globally shuffled to maintain contiguous
access through the edgelist. The high overhead of generating the CSR prompted
us to use the adjacency-list representation (which is also timed by the Graph500
benchmark specification). We also observed that sgl scaled better than both
the benchmark and pbgl. This is more evident for larger inputs, as more local
work better hides the communication overhead.

The poor scalability of pbgl and the reference implementation may be ex-
plained in part due to insufficient aggregation of messages and the use of ghost
nodes for pbgl. The benchmark generates a large number of small messages
while executing the algorithm, which overloads the MPI buffers of the machine.
The stapl runtime-system aggregates messages by combining messages being
sent to the same location, as well as buffering them and then sends fewer mes-
sages, of bigger size through MPI. This helps achieve better performance – as is
more evident when going off-node (24 cores) – due to sending messages in bulk,
as well as prevents the communication sub-system from running out of memory.
This is also why sgl can run on larger graphs than pbgl and benchmark.

We also compare sgl’s level-sync BFS with mtgl’s BFS implementation using
Qthreads in Fig. 9. We can see that mtgl and sgl exhibit similar behavior on
a shared-memory node in terms of strong scaling.

Parallel Graph Algorithms. In this section, we analyze the performance of
several parallel graph algorithms for various input types.
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Level-Synchronous vs Asynchronous Paradigms. Fig. 10 compares sgl’s async
and level-sync BFS variants on a torus and a Graph500 Benchmark graph. The
async BFS spawns new computation (tasks) asynchronously as it reaches a re-
mote edge, whereas the level-sync algorithm (used in the Graph500 benchmark)
is a BSP-style [20] computation with asynchronous communication-phases. In
both cases, communication is proportional to the number of remote edges.

The torus graph represents the worst-case scenario for parallel BFS scalability
– the algorithm is serialized due to the topology of the torus, and its mapping on
the machine (blocked distribution, sliced vertically). In this worst-case scenario
(Fig. 10 (a)), the async BFS performs much better than the level-sync BFS, due
to the absence of synchronization-points. This trend continues at scale, (upto
4,096 cores shown in Fig. 11). However, for the Graph500 input graph, where
there are vertices with massive out-degree, the async BFS performs much worse
due to the large number of asynchronous tasks created that may need to be
re-created if the vertex is revisited in the traversal (with a smaller distance-
from-source, for example, as the ordering of tasks is not guaranteed). The level-
sync BFS performs well in this case due to the input graph’s low diameter, which
implies fewer synchronization points (one fence per level of BFS, i.e., the number
of global synchronizations is directly proportional to the diameter of the graph).

These experiments suggest that the async paradigm is better suited for large-
diameter graphs, while graphs with smaller diameters and high out-degrees are
better suited to the level-sync paradigm.

Coarse Grained Paradigm. To compare the fine-grained and coarse-grained

paradigms, we ran three versions of the connected components algorithm on a
torus graph: a naive fine-grained, level-sync algorithm, a fine-grained connected
components algorithm on an undirected view of a directed input graph (Sec. 4),
and the coarse-grained connected components algorithm.

Fig. 12 shows weak scaling results for these algorithms. The coarse-grained
algorithm provides better performance and scalability since it reduces the com-
munication and the graph size significantly for the subsequent phases by coars-
ening local connected-components. Up to four-cores, the level-sync paradigms
are faster due to communication-overhead being negligible and the overhead of
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Fig. 13. Evaluation of PageRank execution time (a) and memory usage (b) using
pGraph vs. Implicit View on a Torus graph

coarsening. However, at scale (>256 cores), the communication overhead starts
becoming more significant. In this scenario, doing extra local work to reduce
communication benefits the performance of the algorithm at high core-counts.
The performance for the level-sync paradigms degrades beyond 1,024 cores, while
the coarse-grained variant scales better. There is also no significant overhead of
the undirected-view over a digraph vs. using the undirected graph as input.

PageRank. We ran sgl PageRank on the input graph generated by the Graph
500 benchmark. Fig. 8 shows weak-scaling results for PageRank on the Graph500
input for pGraph compared to pbgl’s implementation. sgl scales better than
pbgl on Hopper up to 512 cores, after which pbgl crashes while executing the
algorithm, while sgl PageRank continues to scale to the tested 4,096 cores.

Implicit Views. We evaluate the performance and impact of Implicit Views in
(Fig. 13), which are based on evaluation of expressions and use negligible storage
(Sec. 4). We run the PageRank algorithm on a torus graph (weak-scaling), and
compare it with a view over a pGraph in terms of the throughput (Fig. 13(a)).
The Implicit View outperforms the pGraph, as the edges are generated with
simple formulae and do not have the overhead of accessing and traversing the
underlying container storage. In addition, the pGraph exhibits a slight increase in
execution time going from 8 to 16 cores. This can be attributed to the saturation
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of the memory bus on a node for this particular architecture. The performance
of the Implicit View is not affected by this phenomenon, as it does not need to
go to memory but evaluates formulae to generate temporary vertices and edges
instead. We can also observe that the amount of memory consumed (Fig. 13(b))
by Implicit Views is much less, as there is no memory used for storing the vertices
and edges of the graph. The only storage needed is for storing properties that
are written to by PageRank. Also shown is memory consumed by pbgl.

Redistribution: Application and Performance. Motion planning is the
problem of finding a path for a movable object through an environment from a
start to a goal configuration. Sampling-based motion planning is a probabilistic
method consisting of two phases: generation and connection of samples repre-
senting valid (e.g., collision-free) points in configuration space (C-space) of the
object, and querying of the roadmap for valid paths.

Jacobs et. al [17] introduced a scalable parallel application for sampling-based
motion planning that subdivides the C-space into regions and constructs inde-
pendent roadmaps for each region. The regions are then connected to form a
single roadmap. This algorithm was implemented using sgl where both the re-
gions and roadmap are pGraphs. In complex environments, regions could have
varying numbers of obstacles, creating regions with fewer nodes, and leading to
an imbalance in computation during the connection phase. Instrumenting this
real-world production application to invoke pGraph redistribution support on
the region graph helps the application scale, as well as run faster on unbalanced
inputs (Fig. 14) with minimal input from the application, as the application
needs only provide the costs it associates with each vertex.

7 Related Work

While much effort has been put into making array-based data structures suitable
for parallel programming, graphs have not received as much attention. This
section reviews some of the more relevant projects in this area.
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Graph500 [1] provides a reference implementation for its benchmark, but is
not intended to be a generic library. It provides a baseline for our performance
comparisons as it is how users naturally express parallel BFS in MPI.

The Parallel Boost Graph Library (pbgl) [7] is a stand-alone graph library
that is closest to the goals of sgl. An important difference from sgl is that since
pbgl does not have a shared-object view, it exposes users to explicit knowledge
of parallelism and data distribution details through the use of process groups.
pbgl’s interface requires the user to know explicitly the location of a vertex
before any operations may be performed on it. In particular, many methods in
pbgl require the vertex/edge they are operating on to be local to the process, and
therefore, there is no locality-agnostic way to access remote vertices and edges.
This added complexity affects the programmer’s ability to create scalable graph
algorithms. Another difference is that pbgl only provides the ability to express
level-sync algorithms. Further, pbgl is based on MPI, whereas sgl can use
different communication libraries through the portable stapl runtime system.

The Multi-Threaded Graph Library (mtgl) [3] is designed to work on Cray
XMP massively multithreaded machines, and utilize their unique architectural
features. It can be ported to other platforms using the QThreads library, which
requires the programmer to know the QThreads API, as well as details of multi-
threaded programming. However, mtgl is limited to shared-memory systems.

Google’s Pregel [8] is a library for processing graphs in parallel that empha-
sizes vertex-centric computation and algorithm design that only supports Bulk
Synchronous Processing (BSP) style [20] algorithms. It is restrictive in allowing
users to read remote vertices, as it does not provide a shared-memory view. Fur-
ther, the representation of the graph and its storage cannot be customized to suit
the needs of the application. Pregel is also a stand-alone framework that does
not provide other containers. Finally, Pregel employs a master-slave model which
may limit scalability. Neither Pregel, nor mtgl, nor pbgl provide asynchronous
or coarse-grained paradigms.

Green-Marl is a domain-specific language for graph analysis and provides an
implementation for shared-memory systems [19]. It allows users to write algo-
rithms naturally, while the compiler generates parallel code for different targets.

8 Conclusion

This work describes the stapl Parallel Graph Library, a generic, extensible and
scalable parallel graph library built on the stapl infrastructure. It provides a
highly customizable parallel graph container, support for various algorithmic
paradigms to express parallel graph algorithms, and useful abstractions in the
form of pGraph pViews. We presented the general design for the pGraph, along
with various features to improve the performance of graph applications. We
compared against relevant graph benchmarks and libraries, and showed that
sgl algorithms scale beyond tens of thousands of cores and are comparable to
a real-world tuned benchmark code implementation. Further, algorithms were
able to scale to more cores and run on larger graphs than comparable graph
libraries without sacrificing expressivity.
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