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Abstract. The polyhedral model is now a well established and effec-
tive formalism for program optimization and parallelization. However,
finding optimal transformations is a long-standing open problem. It is
therefore important to develop tools that, rather than following prede-
fined optimization criteria, allow practitioners to explore different choices
through script-driven or user-guided transformations. More than practi-
tioners, such flexibility is even more important for compiler researchers
and auto-tuner developers. In addition, tools must also raise the level of
abstraction by representing and manipulating reductions and scans ex-
plicitly. And third, the tools must also be able to explore transformation
choices that consider memory (re)-allocation.

AlphaZ is a system that allows exploration of optimizing transforma-
tions in the polyhedral model that meets these goals. We illustrate its
power through two examples of optimizations that existing paralleliza-
tion tools cannot perform, but can be systematically applied using our
system. One is time-tiling of a code from PolyBench that resembles the
Alternating Direction Implicit (ADI) method, and the other is a trans-
formation that brings down the algorithmic complexity of a kernel in
UNAfold, a sequence alignment software, from O(N4) to O(N3).

1 Introduction

The recent emergence of many-core architectures has given a fillip to automatic
parallelization, especially through “auto-tuning” and iterative compilation, of
compute- and data-intensive kernels. The polyhedral model is a formalism for auto-
matic parallelization of an important class of programs. This class includes affine
control loops which are the important target for aggressive program optimizations
and transformations. Many optimizations, including loop fusion, fission, tiling,
and skewing, can be expressed as transformation of polyhedral specifications.
Vasillache et al. [21, 28] make a strong case that a polyhedral representation of
programs is especially needed to avoid the blowup of the intermediate program
representation (IR) when many transformations are repeatedly applied, as is be-
coming increasingly common.
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A number of polyhedral tools and components for generating efficient code
are now available [2, 3, 7, 9–11, 17, 22]. Typically, they are source-to-source, and
first extract a section of code amenable to polyhedral analysis, then perform a
sequence of analyses and transformations, and finally generate output.

Many of these tools are designed to be fully automatic. Although this is a
very powerful feature, and is the ultimate goal of the automatic parallelization
community, it is still a long way away. Most existing tools give little control to the
user, making it difficult to reflect application/domain specific knowledge and/or
to keep up with the evolving architectures and optimization criteria. Some tools
(e.g., CHiLL [3]) allow users to specify a set of transformations to apply, but the
design space is not fully exposed.

In particular, few of these systems allow for explicit modification of the mem-
ory (data-structures) of the original program. Rather, most approaches assume
that the allocation of values to memory is an inviolate constraint that paralleliz-
ers and program transformation systems must always respect. There is a body of
work towards finding the “optimal” memory allocation [4, 23, 25, 26]. However,
there is no single notion of optimality, and existing approaches focus on finding
memory allocation given a schedule or finding a memory allocation that is legal
for a class of schedules. Therefore, it is critical to elevate data remapping to
first-class status in compilation/transformation frameworks.

To motivate this, consider a widely accepted concept, reordering, namely
changing the temporal order of computations. It may be achieved through tiling,
skewing, fusion, or a plethora of traditional compiler transformations. It may be
used for parallelism, granularity adaptation, or locality enhancement. Regard-
less of the manner and motivation, it is a fundamental tool in the arsenal of the
compiler writer as well as the performance tuner.

An analogous concept is “data remapping,” namely changing the memory lo-
cations where (intermediate as well as final) results of computations are stored.
Cases where data remapping is beneficial have been noted, e.g., in array pri-
vatization [16] and the manipulation of buffers and “stride arrays” when so-
phisticated transformations like time-skewing and loop tiling are applied [30].
However, most systems implement it in an ad hoc manner, as isolated instances
of transformations, with little effort to combine and unify this aspect of the
compilation process into loop parallelization/transformation frameworks.

In this paper, we present an open source polyhedral program transformation
system, called AlphaZ, that provides a framework for prototyping analyses and
transformations. We illustrate possible uses of our system through two examples
that benefit from explicit representation of reductions and memory re-mapping.

2 Background

In this section we provide the necessary background of the polyhedral model,
and summarize related work that use it for compiler optimization.
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2.1 The Polyhedral Model

The strength of the polyhedral model as a framework for program analysis and
transformation are its mathematical foundations for two aspects that should be
(but are often not) viewed separately: program representation/transformation
and analysis. Feautrier [5] showed that a class of loop nests called Affine Control
Loops (or Static Control Parts) can be represented in the polyhedral model.
This allows compilers to extract regions of the program that are amenable to
analyses and transformations in the polyhedral model, and to optimize these
regions. Such code sections are often found in kernels of scientific programs,
such as dense linear algebra, stencil computations, or dynamic programming.

In the model, each instance of each statement in a program is represented as
an iteration point, in a space called iteration domain of the statement. Each such
point is hence, an operation. The iteration domain is described by a set of linear
inequalities forming a convex polyhedron using the following notation, where z
is iteration point, A is a constant matrix, and b is a constant vector.

D = {z |Az + b ≥ 0, z ∈ Zn}
Dependences are affine functions, expressed as1 (z → z′), where z′ consists of
affine expressions of z. What a program computes is completely specified by
the set of operations and the (flow) dependences between them. As noted by
Feautrier, program memory and data-structures need not figure in this repre-
sentation.

2.2 Memory-Based Dependences

The results of array dataflow analysis are based on the values computed by in-
stances of statements, and therefore do not need any notion of memory. There-
fore, program transformation using dataflow analysis results usually requires
re-considering memory allocation of the original program. Most existing tools
have made the decision to preserve the original memory allocation, and include
memory-based dependences as additional dependences to be satisfied.

2.3 Polyhedral Equational Model

The AlphaZ system adopts an equational view, where programs are described
as mathematical equations using the Alpha language [15]. After array dataflow
analysis of an imperative program, the polyhedral representation of the flow de-
pendences can be directly translated to an Alpha program. Furthermore, Alpha
has reductions as first-class expressions [12] providing a richer representation.

We believe that application programmers (i.e., non computer scientists), can
benefit from being able to program with equations, where performance consid-
erations like schedule or memory remain unspecified. This enables a separation

1 In the literature of the polyhedral model, the word dependence is sometimes used
to express flow of data, but here the arrow is from the consumer to the producer.
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of what is to be computed, from the mechanical, implementation details of how
(i.e., in which order, by which processor, thread and/or vector unit, and where
the result is to be stored).

To illustrate this, consider a Jacobi-style stencil computation, that iteratively
updates a 1-D data grid over time, using values from the previous time step. A
typical C implementation would use two arrays to store the data grid, and update
them alternately at each time step. This can be implemented using modulo
operations, pointer swaps, or by explicitly copying values. Since the former two
are difficult to describe as affine control loops, the Jacobi kernel in PolyBench/C

3.2 [20] uses the latter method, and the code (jacobi 1d imper) looks as follows:

for (t = 0; t < T; t++)

for (i = 1; i < N-1; i++)

A[i] = foo(B[i-1] + B[i] + B[i+1]);

for (i = 1; i < N-1; i++)

B[i] = A[i];

When written equationally, the same computation would be specified as:

A(t, i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t = 0 : Binit(i);

t > 0 ≤ i < N − 1 : foo(A(t− 1, i− 1), A(t− 1, i), A(t− 1, i+ 1));

t > 0 = i : A(t− 1, i);

t > 0 ∧ i = N − 1 : A(t− 1, i);

where A is defined over {t, i|0 ≤ t < T ∧ 0 ≤ i < N}, and Binit provides the
initial values of the data grid. Note how the loop program is already influenced
by the decision to use two arrays, an implementation decision, not germane to
the computation.

2.4 Related Work

The polyhedral model has a long history, and there are many existing tools that
utilize its power. Moreover, it is now used internally in the IBM XL compiler
family. We now contrast AlphaZ with such tools. The focus of our framework
is to provide an environment to try many different ways of transforming a pro-
gram. Since many automatic parallelizers are far from perfect, manual control of
transformations can sometimes guide automatic parallelizers as we show later.

PLuTo is a fully automatic polyhedral source-to-source program optimizer tool
that takes C loop nests and generates tiled and parallelized code [2]. It uses
the polyhedral model to explicitly model tiling and to extract coarse grained
parallelism and locality. Since it is automatic, it follows a specific strategy in
choosing transformations.

Graphite is an optimization framework for high-level optimizations that are be-
ing developed as part of GCC now integrated to its trunk [19]. Its emphasis is
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to extract polyhedral regions from programs that GCC encounters, significantly
more complex task than what research tools address, and to perform loop opti-
mizations that are known to be beneficial.

AlphaZ is not intend to be full fledged compiler. Instead, we focus on in-
termediate representations that production compilers may eventually be able
to extract. Although codes produced from our system can be integrated into a
larger application, we do not insist that the process has to be fully automatic,
thus expanding the scope of transformations.

PIPS is a framework for source-to-source polyhedral optimization using inter-
procedural analysis [8]. Its modular design supports prototyping of new ideas by
developers. However, the end-goal is an automatic parallelizer, and little control
over choices of transformations are exposed to the user.

Polyhedral Compiler Collections (PoCC) is another framework for source-to-
source transformations, designed to combine multiple tools that utilize the
polyhedral model [22]. POCC also seeks to provide a framework for develop-
ing tools like Pluto, and other automatic parallelizers. However, their focus
is oriented towards automatic optimization, and they do not explore memory
(re)-allocation.

MMAlpha is another system with similar goals to AlphaZ [9]. It is also based
on the Alpha language. The significant differences between the two are that
MMAlpha emphasizes hardware synthesis. It does not treat reductions as first
class , and does no tiling. MMAlpha does provide memory reuse in principle,
but in its context, simple projections that directly follow processor allocations
are all that it needs to explore.

RStream from Reservoir Labs performs automatic optimization of C pro-
grams [17]. It uses the polyhedral model to translate C programs into efficient
code targeting multi-cores and accelerators. Vasillache et al. [27] recently gave an
algorithm to perform a limited form of memory (re)-allocation (the new mapping
must extend the one in the original program).

Omega Project has led to development of a collection of tools [10, 24] that cover
a larger subset of the design space than most other tools. The Omega calculator
partially handles uninterpreted function symbols, which no other tools support.
Their code generator can also re-allocate memory [24]. However, reductions are
not handled by Omega tools.

CHiLL is a high-level transformation and parallelization framework using the
polyhedral model [3]. It also allows users to specify transformation sequences
through scripts. However, it does not expose memory allocation.

POET is a script-driven transformation engine for source-to-source transforma-
tions [31]. One of its goals is to expose parameterized transformations via scripts.
Although this is similar to AlphaZ, POET relies on external analysis to verify
the transformations in advance.

Finally, we note that none of these tools do anything with reductions.
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3 The AlphaZ System

In this section we present an overview of AlphaZ, focusing, due to space limita-
tions, on only the specific features needed for the examples in later sections (see
our technical report [32] for more details).

AlphaZ is designed to manipulate Alpha equations, either written directly
or extracted from an affine control loop. It does this through a sequence of
commands, written as a separate script. The program is manipulated through
a sequence of transformations, as specified in the script. Typically, the final
command in the script is a call to generate code (OpenMP parallel C, with
support for parameterized tiling [7, 11]). The pen-ultimate set of commands
specify, to the code generator, the (i) schedule, (ii) memory allocation, and (iii)
additional (i.e., tiling related) mapping specifications.

The key design difference from many existing tools is that AlphaZ gives the
user full control of the transformations to apply. Our ultimate goal is to develop
techniques for automatic parallelizers, and the system can be used as an engine
to try new strategies. This allows for trying out new program optimizations that
may not be performed by existing tools with high degree of automation. The
key benefits for this are:

– Users can systematically apply sequences of transformations without re-
writing the program by hand.

– Compiler writers can prototype new transformations/code generators. New
compiler optimizations may eventually be re-implemented for perfor-
mance/robustness, but prototyping requires much less effort.

In the following, we use two examples to illustrate benefits of the ability to re-
consider memory allocation, and to manipulate reductions. Section 4 illustrates
the importance of memory re-mapping, with a benchmark from PolyBench/C

3.2 [20], and Section 5, presents an application of a very powerful transforma-
tion on reductions, called Simplifying Reductions. We show that the algorithmic
complexity of an implementation of RNA secondary structure prediction align-
ment algorithm from UNAfold package [14] can be reduced from O(N4) to O(N3)
through a systematic application of AlphaZ transformations.

4 Time-Tiling of ADI-like Computation

The Alternating Direction Implicit method is used to solve partial differen-
tial equations (PDEs). One of the stencil kernels in PolyBench/C 3.2 [20],
adi/adi.c resembles ADI computation.2

ADI with 2D discretization solves two sets of tridiagonal matrices in each
time step. The idea behind ADI method is to split the finite difference system of

2 There is an error in the implementation, and time-tiling would not be legal for a cor-
rect implementation of ADI. The program in the benchmark nevertheless illustrates
our point that existing tools are incapable of extract the best performance, largely
because of lack of memory remapping.
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equations of a 2D PDE into two sets: one for the x-direction and another for y.
These are then solved separately, one after the other, hence the name alternating
direction implicit.

Shown below is a code fragment from PolyBench, corresponding to the solu-
tion for one direction in ADI. When this code is given to PLuTo [2] for tiling and
parallelization, PLuTo fails to find that all dimensions can be tiled, and instead,
tiles the inner two loops individually. The key reason is as follows: the value writ-
ten by S0 is later used in S3, since computing S3 at iteration [t,i1,i2] (written
S3[t,i1,i2]) depends on the result of S0[t,i1,i2] and S0[t,i1,i2-1]. Since
the dependence vector is in the negative orthant, this value-based dependence
does not hinder tiling in any dimension.

for (t = 0; t < tsteps; t++) {

for (i1 = 0; i1 < n; i1++)

for (i2 = 1; i2 < n; i2++) {

S0: X[i1][i2] = X[i1][i2] - X[i1][i2 -1] * A[i1][i2]

/ B[i1][i2 -1];

S1: B[i1][i2] = B[i1][i2] - A[i1][i2] * A[i1][i2]

/ B[i1][i2 -1];

}

S2 ... // 1D loop updating X[*,n-1] (details irrelevant here)

for (i1 = 0; i1 < n; i1++)

for (i2 = n-1; i2 >= 1; i2 --)

S3: X[i1][i2] = (X[i1][i2] - X[i1][i2 -1]

* A[i1][i2 -1]) / B[i1][i2 -1];

... //second pass for i1 direction

}

However, the original C code reuses the array X to store the result of S0 as well
as S3. This creates a memory-based dependence S3[t, i1, i2]→ S3[t, i1, i2+ 1]
because S3[t,i1,i2] overwrites X[i1,i2] used by S3[t,i1,i2+1]. Hence, S3
must iterate in a reverse order to reuse array X as in the original code, whereas
allocating another copy of X allows all three dimensions to be tiled.

4.1 Additional Complications

The memory-based dependences are the critical reason why the PLuTo
scheduler (actually, we use a variation implemented in Integer Set Library by
Verdoolaege [29]) cannot find all three dimensions to be tilable in the above code.
Moreover, two additional transformations are necessary to enable to scheduler
to identify this. These transformations can be viewed as partially scheduling
the polyhedral representation before invoking the scheduler. AlphaZ provides a
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command, called Change of Basis (CoB), to apply affine transforms to statements
of polyhedral domains.3

One of them embeds S2 which nominally has a 2D domain (and the corre-
sponding statement in the second pass) into 3D space, aligning it to be adjacent
to a boundary of the domain of S1. The new domain of S2 becomes (note the
last equality) {t, i1, i2 | 0 ≤ t < tsteps∧ 0 ≤ i1 < N ∧ i2 == n− 1}.

The other complication is that because of the reverse traversal of the i2 loop
of S3, dependences obtained by dataflow analysis [5] are affine, not uniform:
S3[t, i1, i2]→ S2[t, i1, n− i2− 1]. If a CoB (t, i1, i2 → t, i1, n− i2− 1) is
applied to the domain of S3 we get a uniform dependence. After these three
transformations (removing memory-based dependences, and the two CoBs) the
PLuTo scheduler discovers that all loops are fully permutable.

We are not sure of the precise reason why PLuTo scheduling is not able to
identify all dimensions are tilable without these transformations. Parts of PLuTo
scheduling is driven by heuristics, and our conjecture is that these cases are not
well handled. We expect these difficulties can be resolved, and that it is not an
inherent limitation of PLuTo. However, a fully automated tool, prevents a smart
user from so guiding the scheduler. We believe that guiding automated analyses
can significantly help refining automated components of tools.

4.2 Performance of Time Tiled Code

Since PLuTo cannot tile the outer time loop, or fuse many of the loops due to
the issues described above, PLuTo parallelized code contains 4 different parallel
loops within a time step. On the other hand, AlphaZ generated code with time-
tiling consists of a single parallel loop, executing wave-fronts of tiles in parallel.
Because of this we expect the new code to perform significantly better.

We measured the performance of the transformed code on a workstation,
and also on a node in Cray XT6m. The workstation uses two 4 core Xeon5450
processors (8 cores total), 16GB of memory, and running 64-bit Linux. A node
in the Cray XT6m has two 12 core Opteron processors, and 32GB of memory.
We used GCC/4.6.3 with -O3 -fopenmp options on the Xeon workstation, and
CrayCC/5.04with -O3 option on the Cray. PLuTo was used with options --tile
--parallel --noprevector, since prevector targets ICC.

AlphaZ was supplied with the original C code along with a script file specify-
ing pre-scheduling transformations described above, and then used the PLuTo
scheduler to complete the scheduling. Memory allocation was specified in the
script as well, and additional copies of X were allocated to avoid the memory-
based dependences discussed above.

For all generated programs, only a limited set of tile sizes were tried (8, 16,
32, 64 in all dimensions), and we report the best performance out of these. The

3 This is similar to the preprocessing of code generation from unions of polyhedra [1],
where affine transforms are applied such that the desired schedule is followed by lex-
icographic scan of unions of polyhedra. Since the program representation in AlphaZ

is equational, any bijective affine transformation is a legal CoB.
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Speedup of Optimized Code on Xeon
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Fig. 1. Speedup of adi.c parallelized with PLuTo and AlphaZ, with respect to the
execution time of the unmodified adi.c from PolyBench/C 3.2. Observe that coarser
grained parallelism with time-tiling leads to significantly better scalability with higher
core count on the Cray.

problem size was selected to have cubic iteration space that runs for roughly 60
seconds with the original benchmark on Xeon environment (tsteps = n = 1200).

The results are summarized in Figure 1, confirming that the time-tiled version
performs much better. On the Cray, we can observe diminishing returns of adding
more cores with PLuTo parallelized codes, since only the inner two loops are
parallelized. AlphaZ generated code does require more memory (this can actually,
be further reduced), but at the same time, time-tiling exposes temporal reuse of
the memory hierarchies.

5 Reducing Complexity of RNA Folding

In this section, we outline steps to reduce the complexity of an application for
RNA folding. Complete details, including the source Alpha program as well as
the script, can be found in related Master’s thesis and technical report [18, 33].
RNA secondary structure prediction, or RNA folding, is a widely used algorithm
in bio-informatics. The original algorithm has O(N4) complexity, but an O(N3)
algorithm has been proposed by Lyngso et. al [13]. However, no implementation
of the O(N3) algorithm is publicly available.4 This example illustrates one of
the most powerful transformations in AlphaZ that is enabled through explicit

4 Discussion with the original authors elicited the response that (i) the algorithm was
“too complicated to implement” except in an early prototype, and (ii) limiting one
of the parameters to 30 was “good enough” in practice.
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representation of reductions. Specifically, we show how the equations that de-
scribe the algorithm can be systematically transformed to derive the O(N3)
algorithm.

5.1 Reductions in AlphaZ

Reductions, associative and commutative operators applied to collections of val-
ues, are first class Alpha expressions [12]. It is well known that reductions are
important patterns and have important performance implications. Moreover, re-
ductions raise the level of abstraction over chains of dependences.

Alpha reductions are written as reduce(op, fp, E), where op is the reduction
operator, fp is a projection function, and E is the expression being reduced.
The projection function fp is an affine function that maps points in Zn to Zm,
where m is usually smaller than n. When multiple points in Zn is mapped to
the same point in Zm, the values of E at these points are combined using the
reduction operator. For example, commonly used mathematical notations such as

Xi =
n∑

j=0

Ai,j is expressed as X(i) = reduce(+, (i, j → i), A(i, j)). This is more

general than mathematical notations, allowing us to easily express reductions
with non-canonic projections, such as (i, j → i+ j).

5.2 Simplifying Reductions

Simplifying Reductions [6] is the key transformation for reducing complexity
of programs. We first explain the key idea behind this transformation with a
simple (almost trivial) example. Consider an Alpha program computing a single
variable, Xi, over a domain {i | 0 ≤ i < N} using the following equation

X [i] = reduce(+, {j < i} : A[j])

where each element is the sum of subsets of values Aj , 0 ≤ j < i < N . Viewed
naively, this would specify that each element of X is an (independent) reduction,
and this would take O(N2) time to compute. Of course this is actually a prefix
(scan) computation, and can be written as:

Xi =

{
i = 0 : Ai

i > 0 : Ai +Xi−1

Automatically detecting scans is the core of the reduction simplification algo-
rithm [6]. The key idea is based on the observation that the expression inside the
reduction (i.e., the reduction body) exhibits reuse: for the example above, at all
points in a 2D space the value of the expression is X [j] so there is reuse along the
i direction. Reuse in the body of a reduction and its interaction with the domain
boundaries leads to a scan. All the required transformations are implemented
as AlphaZ commands. Some of the analyses performed are also implemented,
but applying simplifying reductions to RNA folding requires additional human
analysis, and thus human guided transformation.
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5.3 RNA Folding in UNAfold

UNAfold computes the RNA secondary structure through a dynamic program-
ming algorithm, that uses a prediction model based on thermodynamics [14] and
finds a structure with minimal free energy. For an RNA sequence of length N ,
the algorithm computes, for each subsequence from i to j, three tables (arrays)
of free energy such that 1 ≤ i ≤ j ≤ N . The tables Q(i, j), Q′(i, j), and QM(i, j)
represent the free energy for three different substructures that may be formed.
The following equation is the part of the original formulation corresponding to
the dominant term that makes the algorithm O(N4).

Q′(i, j) = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

...

mini<i′<j′<j

{
EBI(i, j, i

′, j′)
Q′(i′, j′)

...

(1)

Notice that the term uses four free variables i,j,i′ and j′, and since the constraints
on these indices constitute the domain {i, j, i′, j′|1 ≤ i < i′ < j′ < j ≤ N}, it
is easy to see the O(N4) complexity. The term corresponds to a substructure
called internal loops.

5.4 Simplification

We focus on the dominating term in calculating the energy to illustrate the
simplification. The term rewritten as a separate equation in Alpha is as follows

Q′(i, j) = reduce(min, (i, j, i′, j′ → i, j), EBI(i, j, i
′, j′) +Q′(i′, j′));

where, the function EBI is defined as follows:

EBI(i, j, i
′, j′) = Asym(i′−i−j+j′)+SP (i

′−i+j−j′−2)+ES(i, j)+ES(i
′, j′)

The body of the reduction does not exhibit any reuse, so we need to first inline
the energy function EBI . Doing this, and distributing out ES(i, j) gives the
following:

Q′(i, j) = ES(i, j) + reduce

⎛
⎜⎝min, (i, j, i′, j′ → i, j),

⎧⎪⎨
⎪⎩

Asym(i′ − i− j + j′) +

SP (i
′ − i+ j − j′ − 2) +

ES(i
′, j′) +Q′(i′, j′)

⎞
⎟⎠

(2)

The reduction still cannot be simplified, and the simplification algorithm [6]
algorithm attempts to decompose the reduction from into two reductions (like
expressing a double summation as a sum of a sum). The algorithm uses a dynamic
programming algorithm to search through possible decompositions. One of the
decompositions that lead to complexity reduction is the following:
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Q′(i, j) = ES(i, j) + reduce (min, (i, j, d → i, j), Q′′(i, j, d))

Q′′(i, j, d) = reduce

⎛

⎜
⎜
⎝min, (i, j, i′, j′ → i, j, j′ − i′),

⎧
⎪⎪⎨

⎪⎪⎩

Asym(i′ − i− j + j′) +

SP (i
′ − i+ j − j′ − 2) +

ES(i
′, j′) +

Q′(i′, j′)

⎞

⎟
⎟
⎠

After the decomposition, the expression SP (i
′ − i + j − j′) can be distributed

out from the inner reduction. This can be found through analysis using null
spaces of projection and access functions, which is also part of the simplifying
reduction algorithm. In short, the analysis finds that null space of the access
Sp(i

′−i+j−j′−2) contains the null space of the projection function (i, j, i′, j′ →
i, j, j′ − i′). Thus, Sp term can be factored out from the reduction.

Then the remaining expressions evaluate to the same value for all points
[i′, j′, x];x = j − i. Taking advantage of this reuse and the property of the
〈min,+〉 semi-ring allows the reduction to be simplified.

5.5 Need for Human Guidance

The above steps leading to reduction simplification can be mostly automated. In
fact, once we have Equation 2, all the analyses required to apply the sequence of
transformations are available. However, extracting Equation 2 from Equation 1
requires separating out boundary cases and other branches. In addition, EBI

must be inlined for the algorithm to detect reuse in the reduction.
Although our eventual goal would be fully automatic these steps, the current

implementation of AlphaZ provides a powerful set of transformations that enable
the user to systematically derive the lower complexity program. For RNA folding,
the presence of reuse in the reduction was known [13], and such domain specific
knowledge can be utilized by our system that gives the users flexible control
over different transformations when needed. The specific semantics preserving
transformations that we used are:

– SimplifyingReduction This is the key transformation that replaces a re-
duction with reuse by a scan.

– Inline (Inline EBI)
– FactorOutFromReductionUse distributivity to factor out terms from within

reductions, where possible.
– ReductionDecomposition Decomposition of multidimensional reductions

into a reduction of (sub) reductions.

In addition, some pre-processing transformations were also used.

5.6 Validation

We have applied the above transformation using AlphaZ to the UNAfold 3.8 [14].
The function fillMatrices 1 in hybrid-ss-min.c was written in Alpha, and
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Fig. 2. Execution Time of UNAfold after simplifying reduction compared with the
original implementation. The two lines shown are with slopes 4 and 3.

the simplifying transformation was applied. The sequential code generator in
AlphaZ code was used to generate the simplified version of fillMatrices 1 and
replaced with the original function. Both the original and the simplified versions
were compiled with GCC/4.5.1, with -O3 option and the execution times were
measured on a machine with Core2Duo 1.86GHz and 6GB of memory.

Figure 2 shows the measured performance (raw and log-log). It clearly shows
the reduction in complexity, and, as expected, the speedups with transformed
code becomes greater and greater as the sequence length grows.

6 Conclusions and Future Work

We have presented a system for exploring analyses and transformations in the
polyhedral model. The two key features in our system are (i) the ability to
re-consider memory allocations, and (ii) explicit representation of reductions.

Polyhedral representations of programs are expressed as systems of equations;
which can either be extracted from loop nests, or programmed directly in an
equational language. These polyhedral programs are manipulated using script
driven transformations, to reflect human analyses or domain specific knowledge
to help guide optimizing translations. Then executable code is generated by
specifying schedule, memory allocation, and other implementation details.

AlphaZ has a number of transformations and code generators, and others are
actively being developed. In addition to what previous tools have focused on,
we believe that exploring memory allocations is very important. We expect it to
become even more important as we target distributed memory machines.
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While many tools focus on fully automated program transformations, a tool
like AlphaZ that expose as much control to the user is helpful in developing and
prototyping new ideas.

Although we have not presented details of our code generators, our code gen-
erators are highly modularized and extensible, enabling exploration of code gen-
erators as well. Our ongoing efforts are towards extending the code generators
to other platforms such as CUDA, OpenCL, etc., and in implementing high level
optimizations involving reductions, and many more.
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