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Abstract. Implementing correct and deterministic parallel programs is
challenging. Even though concurrency constructs exist in popular pro-
gramming languages to facilitate the task of deterministic parallel pro-
gramming, they are often too low level, or do not compose well due to
underlying blocking mechanisms. In this paper, we present the design
and implementation of a fundamental data structure for composable de-
terministic parallel dataflow computation through the use of functional
programming abstractions. Additionally, we provide a correctness proof,
showing that the implementation is linearizable, lock-free, and determin-
istic. Finally, we show experimental results which compare our FlowPool
against corresponding operations on other concurrent data structures,
and show that in addition to offering new capabilities, FlowPools reduce
insertion time by 49− 54% on a 4-core i7 machine with respect to com-
parable concurrent queue data structures in the Java standard library.

Keywords: dataflow, concurrent data-structure, deterministic
parallelism.

1 Introduction

Multicore architectures have become ubiquitous– even most mobile devices now
ship with multiple core processors. Yet parallel programming has yet to enter
the daily workflow of the mainstream developer. One significant obstacle is an
undesirable choice programmers must often face when solving a problem that
could greatly benefit from leveraging available parallelism. Either choose a non-
deterministic, but performant, data structure or programming model, or sacrifice
performance for the sake of clarity and correctness.

Programming models based on dataflow [1, 2] have the potential to simplify
parallel programming, since the resulting programs are deterministic. Moreover,
dataflow programs can be expressed more declaratively than programs based on
mainstream concurrency constructs, such as shared-memory threads and locks,
as programmers are only required to specify data and control dependencies. This
allows one to reason sequentially about the intended behavior of their program,
meanwhile enabling the underlying framework to effectively extract parallelism.
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In this paper, we present the design and implementation of FlowPools, a
fundamental dataflow collections abstraction which can be used as a building
block for larger and more complex deterministic and parallel dataflow programs.
Our FlowPool abstraction is backed by an efficient non-blocking data structure.
As a result, our data structure benefits from the increased robustness provided
by lock-freedom [12], since its operations are not blocked by delayed threads.
We provide a lock-freedom proof, which guarantees progress regardless of the
behavior, including the failure, of concurrent threads.

In combining lock-freedom with a functional interface, we go on to show that
FlowPools are composable. That is, using prototypical higher-order functions
such as foreach and aggregate, one can concisely form dataflow graphs, in
which associated functions are executed asynchronously in a completely non-
blocking way, as elements of FlowPools in the dataflow graph become available.

Finally, we show that FlowPools are able to overcome practical issues, such
as out-of-memory errors, thus enabling programs based upon FlowPools to run
indefinitely. By using a builder abstraction, instead of something like iterators or
streams (which can lead to non-determinism) we are able to garbage collect parts
of the data structure we no longer need, thus reducing memory consumption.

Our contributions are the following:

1. The design and Scala [19] implementation1 of a parallel dataflow abstraction
and underlying data structure that is deterministic, lock-free, & composable.

2. Proofs of lock-freedom, linearizability, and determinism.
3. Detailed benchmarks comparing the performance of our FlowPools against

other popular concurrent data structures.

2 Model of Computation

FlowPools are similar to a typical collections abstraction. Operations invoked on
a FlowPool are executed on its individual elements. However, FlowPools do not
only act as a data container of elements. Unlike a typical collection, FlowPools
also act as nodes and edges of a directed acyclic computation graph (DAG), in
which the executed operations are registered with the FlowPool.

Nodes in this directed acyclic graph are data containers which are first class
values. This makes it possible to use FlowPools as function arguments or to
receive them as return values. Edges, on the other hand, can be thought of
as combinators or higher-order functions whose user-defined functions are the
previously-mentioned operations that are registered with the FlowPool. In addi-
tion to providing composability, this means that the DAG does not have to be
specified at compile time, but can be generated dynamically at run time instead.

This structure allows for complete asynchrony, allowing the runtime to extract
parallelism as a result. That is, elements can be asynchronously inserted, all
registered operations can be asynchronously executed, and new operations can
be asynchronously registered. Put another way, invoking several higher-order
functions in succession on a given FlowPool does not add barriers between nodes

1 See http://www.assembla.com/code/scala-dataflow/git/nodes
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in the DAG, it only extends the DAG. This means that individual elements
within a FlowPool can flow through different edges of the DAG independently.

Properties of FlowPools. In our model, FlowPools have certain properties
which ensure that resulting programs are deterministic.

1. Single-assignment - an element added to the FlowPool cannot be removed.
2. No order - data elements in FlowPools are unordered.
3. Purity - traversals are side-effect free (pure), except when invoking FlowPool

operations.
4. Liveness - callbacks are eventually asynchronously executed on all elements.

We claim that FlowPools are deterministic in the sense that all execution sched-
ules either lead to some form of non-termination (e.g., some exception), or the pro-
gram terminates and no difference can be observed in the final state of the resulting
data structures. This definition is practically useful, because in the case of non-
termination it is guaranteed that on some thread an exception is thrown which
aids debugging, e.g., by including a stack trace. For a more formal definition and
proof of determinism, see section 5.

3 Programming Interface

A FlowPool can be thought of as a concurrent pool data structure, i.e., it can be
used similarly to a collections abstraction, complete with higher-order functions,
or combinators, for composing computations on FlowPools. In this section, we
describe the semantics of several of those functional combinators and other basic
operations defined on FlowPools.

Append (<<). The most fundamental of all operations on FlowPools is the
concurrent thread-safe append operation. As its name suggests, it simply takes
an argument of type Elem and appends it to a given FlowPool.

Foreach and Aggregate. A pool containing a set of elements is of little use if
its elements cannot be manipulated in some manner. One of the most basic data
structure operations is element traversal, often provided by iterators or streams–
stateful objects which store the current position in the data structure. However,
since their state can be manipulated by several threads at once, using streams
or iterators can result in nondeterministic executions.

Another way to traverse the elements is to provide a higher-order foreach op-
erator which takes a user-specified function as an argument and applies it to ev-
ery element. For it to be deterministic, it must be called for every element that
is eventually inserted into the FlowPool, rather than only on those present when
foreach is called. Furthermore, determinism still holds even if the user-specified
function contains side-effecting FlowPool operations such as <<. For foreach to be
non-blocking, it cannot wait until additional elements are added to the FlowPool.
Thus, the foreach operation must execute asynchronously, and be eventually ap-
plied to every element. Its signature is def foreach[U](f:T => U): Future[Int],
and its return type Future[Int] is an integer value which becomes available once
foreach traverses all the elements added to the pool. This integer denotes the
number of times the foreach has been called.
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The aggregate operation aggregates the elements of the pool and has the fol-
lowing signature: def aggregate[S](zero: =>S) (cb: (S, S) => S)

(op: (S, T) => S): Future[S], where zero is the initial aggregation, cb is
an associative operator which combines several aggregations, op is an operator
that adds an element to the aggregation, and Future[S] is the final aggrega-
tion of all the elements which becomes available once all the elements have been
added. The aggregate operator divides elements into subsets and applies the
aggregation operator op to aggregate elements in each subset starting from the
zero aggregation, and then combines different subset aggregations with the cb

operator. In essence, the first part of aggregate defines the commutative monoid
and the functions involved must be non-side-effecting. In contrast, the operator
op is guaranteed to be called only once per element and it can have side-effects.

While in an imperative programming model, foreach and aggregate are
equivalent in the sense that one can be implemented in terms of the other,
in a single-assignment programming model aggregate is more expressive. The
foreach operation can be implemented using aggregate, but not vice versa.

Builders. The FlowPool described so far must maintain a reference to all the el-
ements at all times to implement the foreach operation correctly. Since elements
are never removed, the pool may grow indefinitely and run out of memory. How-
ever, it is important to note that appending new elements does not necessarily
require a reference to any of the existing elements. This observation allows us to
move the << operation out of the FlowPool and into a different abstraction called
a builder. Thus, a typical application starts by registering all the foreach oper-
ations, and then it releases the references to FlowPools, leaving only references to
builders. In a managed environment, the GC then can automatically discard the
no longer needed objects.

Seal. After deciding that no more elements will be added, further appends can
be disallowed by calling seal. This has the advantage of discarding the registered
foreach operations. More importantly, the aggregate can complete its future–
this is only possible once it is known there will be no more appends.

Simply preventing append calls after the point when seal is called, however,
yields a nondeterministic programming model. Imagine a thread that attempts
to seal the pool executing concurrently with a thread that appends an element.
In one execution, the append can precede the seal, and in the other the append
can follow the seal, causing an error. To avoid nondeterminism, there has to be
an agreement on the current state of the pool. A convenient and sufficient way
to make seal deterministic is to provide the expected pool size as an argument.
The semantics of seal is such that it fails if the pool is already sealed with a
different size or the number of elements is greater than the desired size. Note
that we do not guarantee that the same exception always occurs on the same
thread– rather, if any thread throws some exception in some execution schedule,
then in all execution schedules some thread will throw some exception.

Higher-Order Operators. We now show how these basic abstractions can
be used to build higher-order abstractions. To start, it is convenient to have
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generators that create certain pool types. In a dataflow graph, FlowPools created
by generators can be thought of as source nodes. As an example, tabulate
(below) creates a sequence of elements by applying a user-specified function f to
natural numbers. One can imagine more complex generators, which add elements
from a network socket or a file, for example.

def tabulate[T]
(n: Int, f: Int => T)
val p = new FlowPool[T]
val b = p.builder
def recurse(i: Int) {
b << f(i)
if i < n recurse(i + 1)

}
future { recurse(0) }
p

def map[S](f: T => S)
val p = new FlowPool[S]
val b = p.builder
for (x <- this) {
b << f(x)

} map {
sz => b.seal(sz)

}
p

def foreach[U](f: T => U)
aggregate(0)(_ + _) {

(acc, x) =>
f(x)
acc + 1

}

The tabulate generator starts by creating a FlowPool of an arbitrary type T

and creating its builder instance. It then starts an asynchronous computation
using the future construct (see the companion technical report [20] for expla-
nation and examples), which recursively applies f to each number and adds it
to the builder. The reference to the pool p is returned immediately, before the
asynchronous computation completes.

A typical higher-order collection operator map is used to map each element of
a dataset to produce a new dataset. This corresponds to chaining or pipelining
the dataflow graph nodes. Operator map traverses the elements of this FlowPool
and appends each mapped element to the builder. The for loop is syntactic sugar
for calling the foreach method on this. We assume that the foreach return
type Future[Int] has map and flatMap operations, executed once the future
value becomes available. The Future.map above ensures that once the current
pool (this) is sealed, the mapped pool is sealed to the appropriate size.

As argued before, foreach can be expressed in terms of aggregate by accu-
mulating the number of elements and invoking the callback f each time. However,
some patterns cannot be expressed in terms of foreach. The filter combinator
filters out the elements for which a specified predicate does not hold. Appending
the elements to a new pool can proceed as before, but the seal needs to know
the exact number of elements added– thus, the aggregate accumulator is used
to track the number of added elements.

def filter
(pred: T => Boolean)
val p = new FlowPool[T]
val b = p.builder
aggregate(0)(_ + _) {
(acc, x) => if pred(x) {

b << x
1

} else 0
} map { sz => b.seal(sz) }
p

def flatMap[S]
(f: T => FlowPool[S])
val p = new FlowPool[S]
val b = p.builder
aggregate(future(0))(add) {

(af, x) =>
val sf = for (y <- f(x))

b << y
add(af, sf)

} map { sz => b.seal(sz) }
p

def add(f: Future[Int], g: Future[Int]) =
for (a <- f; b <- g) yield a + b

def union[T]
(that: FlowPool[T])
val p = new FlowPool[T]
val b = p.builder
val f = for (x <- this) b << x
val g = for (y <- that) b << y
for (s1 <- f; s2 <- g)

b.seal(s1 + s2)
p
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type Terminal {
sealed: Int
callbacks: List[Elem => Unit]

}

type Elem

type Block {
array: Array[Elem]
next: Block
index: Int
blockindex: Int

}

type FlowPool {
start: Block
current: Block

}
LASTELEMPOS = BLOCKSIZE - 2
NOSEAL = -1

Fig. 1. FlowPool data-types

The flatMap operation retrieves a pool for each element of this pool and
adds its elements to the resulting pool. Given two FlowPools, it can be used to
generate the Cartesian product of their elements. The implementation is similar
to that of filter, but we reduce the size on the future values of the sizes– each
intermediate pool may not yet be sealed. The operation q union r, as one might
expect, produces a new pool which has elements of both pool q and pool r.

The last two operations correspond to joining nodes in the dataflow graph.
Note that if we could somehow merge the two different foreach loops to imple-
ment the third join type zip, zip would be nondeterministic. The programming
model does not allow us to do this, however. The zip function is better suited
for data structures with deterministic ordering, such as Oz streams, which would
in turn have a nondeterministic union.

4 Implementation

We now describe the FlowPool and its basic operations. In doing so, we omit the
details not relevant to the algorithm2 and focus on a high-level description of a
non-blocking data structure. One straightforward way to implement a growing
pool is to use a linked list of nodes that wrap elements. Since we are concerned
about the memory footprint and cache-locality, we store the elements into arrays
instead, which we call blocks. Whenever a block becomes full, a new block is allo-
cated and the previous block is made to point to the next block. This way, most
writes amount to a simple array-write, while allocation occurs only occasionally.
Each block contains a hint index to the first free entry in the array, i.e. one that
does not contain an element. An index is a hint, since it may actually reference
an entry that comes earlier than the first free entry. Additionally, a FlowPool
also maintains a reference to the first block called start. It also maintains a
hint to the last block in the chain of blocks, called current. This reference may
not always be up-to-date, but it always points to some block in the chain.

Each FlowPool is associated with a list of callbacks which have to be called
in the future as new elements are added. Each FlowPool can also be in a sealed
state, meaning there is a bound on the number of elements it can have. This
information is stored as a Terminal value in the first free array entry. At all times,
we maintain the invariant that the array in each block starts with a sequence
of elements, followed by a Terminal delimiter. From a higher-level perspective,
appending an element starts by copying the Terminal value to the next entry
and then overwriting the current entry with the element being appended.

2 Specifically the builder abstraction and the aggregate operation. The aggregate

can be implemented using foreach with a side-effecting accumulator.
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def create()1

new FlowPool {2

start = createBlock(0)3

current = start4

}5

6

def createBlock(bidx: Int)7

new Block {8

array = new Array(BLOCKSIZE)9

index = 010

blockindex = bidx11

next = null12

}13

14

def append(elem: Elem)15

b = READ(current)16

idx = READ(b.index)17

nexto = READ(b.array(idx + 1))18

curo = READ(b.array(idx))19

if check(b, idx, curo) {20

if CAS(b.array(idx+1), nexto, curo) {21

if CAS(b.array(idx), curo, elem) {22

WRITE(b.index, idx + 1)23

invokeCallbacks(elem, curo)24

} else append(elem)25

} else append(elem)26

} else {27

advance()28

append(elem)29

}30

31

def check(b: Block, idx:Int, curo:Object)32

if idx > LASTELEMPOS return false33

else curo match {34

elem: Elem =>35

return false36

term: Terminal =>37

if term.sealed = NOSEAL return true38

else {39

if totalElems(b,idx)<term.sealed40

return true41

else error("sealed")42

}43

null =>44

error("unreachable")45

}46

47

def advance()48

b = READ(current)49

idx = READ(b.index)50

if idx > LASTELEMPOS51

expand(b, b.array(idx))52

else {53

obj = READ(b.array(idx))54

if obj is Elem WRITE(b.index, idx + 1)55

}56

57

def expand(b: Block, t: Terminal)58

nb = READ(b.next)59

if nb is null {60

nb = createBlock(b.blockindex + 1)61

nb.array(0) = t62

if CAS(b.next, null, nb)63

expand(b, t)64

} else {65

CAS(current, b, nb)66

}67

def totalElems(b: Block, idx: Int)68

return b.blockindex * (BLOCKSIZE - 1) + idx69

70

def invokeCallbacks(e: Elem, term: Terminal)71

for (f <- term.callbacks) future {72

f(e)73

}74

75

def seal(size: Int)76

b = READ(current)77

idx = READ(b.index)78

if idx <= LASTELEMPOS {79

curo = READ(b.array(idx))80

curo match {81

term: Terminal =>82

if ¬tryWriteSeal(term, b, idx, size)83

seal(size)84

elem: Elem =>85

WRITE(b.index, idx + 1)86

seal(size)87

null =>88

error("unreachable")89

}90

} else {91

expand(b, b.array(idx))92

seal(size)93

}94

95

def tryWriteSeal(term: Terminal, b: Block,96

idx: Int, size: Int)97

val total = totalElems(b, idx)98

if total > size error("too many elements")99

if term.sealed = NOSEAL {100

nterm = new Terminal {101

sealed = size102

callbacks = term.callbacks103

}104

return CAS(b.array(idx), term, nterm)105

} else if term.sealed �= size {106

error("already sealed with different size")107

} else return true108

109

def foreach(f: Elem => Unit)110

future {111

asyncFor(f, start, 0)112

}113

114

def asyncFor(f:Elem => Unit, b:Block, idx:Int)115

if idx <= LASTELEMPOS {116

obj = READ(b.array(idx))117

obj match {118

term: Terminal =>119

nterm = new Terminal {120

sealed = term.sealed121

callbacks = f ∪ term.callbacks122

}123

if ¬CAS(b.array(idx), term, nterm)124

asyncFor(f, b, idx)125

elem: Elem =>126

f(elem)127

asyncFor(f, b, idx + 1)128

null =>129

error("unreachable")130

}131

} else {132

expand(b, b.array(idx))133

asyncFor(f, b.next, 0)134

}135

Fig. 2. FlowPool operations pseudocode
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The append operation starts by reading the current block and the index of
the free position. It then reads nexto after the first free entry, followed by a read
of the curo at the free entry. The check procedure checks the conditions of the
bounds, whether the FlowPool was already sealed or if the current array entry
contains an element. In either of these events, the current and index values need
to be set– this is done in the advance procedure. We call this the slow path of
the append method. Notice that there are several situations which trigger the
slow path. For example, if some other thread completes the append method but
is preempted before updating the value of the hint index, then the curo will
have the type Elem. The same happens if a preempted thread updates the value
of the hint index after additional elements have been added, via unconditional
write in line 23. Finally, reaching an end of block triggers the slow path.

Otherwise, the operation executes the fast path and appends an element. It
first copies the Terminal value to the next entry with a CAS instruction in line
21, with nexto being the expected value. If it fails (e.g. due to a concurrent CAS),
the append operation is restarted. Otherwise, it proceeds by writing the element
to the current entry with a CAS in line 22, the expected value being curo. On
success, it updates the b.index value and invokes all the callbacks (present when
the element was added) with the future construct. In the implementation, we
do not schedule an asynchronous computation for each element. Instead, the
callback invocations are batched to avoid the scheduling overhead– the array is
scanned for new elements until the first free entry is reached.

Interestingly, note that inverting the order of the reads in lines 18 and 19 would
cause a race in which a thread could overwrite a Terminal value with some older
Terminal value if some other thread appended an element in between.

The seal operation continuously increases the index in the block until it finds
the first free entry. It then tries to replace the Terminal value there with a new
Terminal value which has the seal size set. An error occurs if a different seal size
is set already. The foreach operation works in a similar way, but is executed
asynchronously. Unlike seal, it starts from the first element in the pool and calls
the callback for each element until it finds the first free entry. It then replaces the
Terminal value with a new Terminal value with the additional callback. From
that point on the append method is responsible for scheduling that callback for
subsequently added elements. Note that all three operations call expand to add
an additional block once the current block is empty, to ensure lock-freedom.

Multi-lane FlowPools.Using a single block sequence (i.e. lane) to implement a
FlowPool does not take full advantage of the lack of ordering guarantees and may
cause slowdowns due to collisions when multiple concurrent writers are present.
Multi-Lane FlowPools overcome this limitation by having a lane for each CPU,
where each lane has the same implementation as the normal FlowPool.

This has several implications. First of all, CAS failures during insertion are
avoided to a high extent and memory contention is decreased due to writes
occurring in different cache-lines. Second, aggregate callbacks are added to
each lane individually and aggregated once all of them have completed. Finally,
seal needs to be globally synchronized in a non-blocking fashion.
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Once seal is called, the remaining free slots are split amongst the lanes
equally. If a writer finds that its lane is full, it writes to some other lane in-
stead. This raises the frequency of CAS failures, but in most cases happens only
when the FlowPool is almost full, thus ensuring that the append operation scales.

5 Correctness

We give an outline of the correctness proof here. More formal definitions, and a
complete set of lemmas and proofs can be found in the tech report [20].

We define the notion of an abstract pool A = (elems, callbacks, seal) of ele-
ments in the pool, callbacks and the seal size. Given an abstract pool, abstract
pool operations produce a new abstract pool. The key to showing correctness is
to show that an abstract pool operation corresponds to a FlowPool operation–
that is, it produces a new abstract pool corresponding to the state of the Flow-
Pool after the FlowPool operation has been completed.

Lemma 5.1. Given a FlowPool consistent with some abstract pool, CAS in-
structions in lines 21, 63 and 66 do not change the corresponding abstract pool.

Lemma 5.2. Given a FlowPool consistent with an abstract pool
(elems, cbs, seal), a successful CAS in line 22 changes it to the state con-
sistent with an abstract pool ({elem} ∪ elems, cbs, seal). There exists a time
t1 ≥ t0 at which every callback f ∈ cbs has been called on elem.

Lemma 5.3. Given a FlowPool consistent with an abstract pool
(elems, cbs, seal), a successful CAS in line 124 changes it to the state
consistent with an abstract pool (elems, (f, ∅) ∪ cbs, seal) There exists a time
t1 ≥ t0 at which f has been called for every element in elems.

Lemma 5.4. Given a FlowPool consistent with an abstract pool
(elems, cbs, seal), a successful CAS in line 105 changes it to the state
consistent with an abstract pool (elems, cbs, s), where either seal = −1∧ s ∈ N0

or seal ∈ N0 ∧ s = seal.

Theorem 5.5. [Safety] Operations append, foreach and seal are consistent
with the abstract pool semantics.

Theorem 5.6. [Linearizability] Operations append and seal are linearizable.

Lemma 5.7. After invoking a FlowPool operation append, seal or foreach,
if a non-consistency changing CAS in lines 21, 63, or 66 fails, they must have
already been completed by another thread since the FlowPool operation began.

Lemma 5.8. After invoking a FlowPool operation append, seal or foreach, if
a consistency changing CAS in lines 22, 105, or 124 fails, then some thread has
successfully completed a consistency changing CAS in a finite number of steps.

Lemma 5.9. After invoking a FlowPool operation append, seal or foreach, a
consistency changing instruction will be completed after a finite number of steps.
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t ::= terms
create p pool creation
p << v append
p foreach f foreach
p seal n seal
t1 ; t2 sequence

p ∈ {(vs, σ, cbs) | vs ⊆ Elem,σ ∈ {−1} ∪ N,
cbs ⊂ Elem ⇒ Unit}
v ∈ Elem
f ∈ Elem ⇒ Unit
n ∈ N

Fig. 3. Syntax

Theorem 5.10. [Lock-freedom] FlowPool operations append, foreach and seal
are lock-free.

Determinism. We claim that the FlowPool abstraction is deterministic in the
sense that a program computes the same result (possibly an error) regardless of
the interleaving of execution steps. Here we give an outline of the determinism
proof. A complete formal proof can be found in the technical report [20].

The following definitions and the determinism theorem are based on the lan-
guage shown in Figure 3. The semantics of our core language is defined using
reduction rules which define transitions between execution states. An execution
state is a pair T | P where T is a set of concurrent threads and P is a set of Flow-
Pools. Each thread executes a term of the core language (typically a sequence of
terms). State of a thread is represented as the (rest of) the term that it still has
to execute; this means there is a one-to-one mapping between threads and terms.
For example, the semantics of append is defined by the following reduction rule
(a complete summary of all the rules can be found in the appendix):

t = p << v ; t′ p = (vs, cbs,−1) p′ = ({v} ∪ vs, cbs,−1)

t, T | p, P −→ t′, T | p′, P (Append1)

Append simply adds the value v to the pool p, yielding a modified pool p′. Note
that this rule can only be applied if the pool p is not sealed (the seal size is −1).
The rule for foreach modifies the set of callback functions in the pool:

t = p foreach f ; t′ p = (vs, cbs, n)
T ′ = {g(v) | g ∈ {f} ∪ cbs, v ∈ vs} p′ = (vs, {f} ∪ cbs, n)

t, T | p, P −→ t′, T, T ′ | p′, P (Foreach2)

This rule only applies if p is sealed at size n, meaning that no more elements will
be appended later. Therefore, an invocation of the new callback f is scheduled
for each element v in the pool. Each invocation creates a new thread in T ′.

Programs are built by first creating one or more FlowPools using create. Con-
current threads can then be started by (a) appending an element to a FlowPool,
(b) sealing the FlowPool and (c) registering callback functions (foreach).

Definition 5.11. [Termination] A term t terminates with result P if its reduc-
tion ends in execution state {t : t = {ε}} | P .
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Definition 5.12. [Interleaving] Consider the reduction of a term t: T1 | P1 −→
T2 | P2 −→ . . . −→ {t : t = {ε}} | Pn. An interleaving is a reduction of t
starting in T1 | P1 in which reduction rules are applied in a different order.

Definition 5.13. [Determinism] The reduction of a term t is deterministic iff
either (a) t does not terminate for any interleaving, or (b) t always terminates
with the same result for all interleavings.

Theorem 5.14. [FlowPool Determinism] Reduction of terms t is deterministic.

6 Evaluation

We evaluate our implementation (single-lane and multi-lane FlowPools)
against the LinkedTransferQueue [14] for all benchmarks and the Concur-
rentLinkedQueue [17] for the insert benchmark, both found in JDK 1.7, on three
different architectures; a quad-core 3.4 GHz i7-2600, 4x octa-core 2.27 GHz Intel
Xeon x7560 (both with hyperthreading) and an octa-core 1.2GHz UltraSPARC
T2 with 64 hardware threads. In this section, we focus on the scaling properties
of the above-mentioned data structures, Figures 4 & 5.

In the Insert benchmark, Figure 4, we evaluate concurrent insert operations,
by distributing the work of inserting N elements into the data structure concur-
rently across P threads. In Figure 4, it’s evident that both single-lane FlowPools
and concurrent queues do not scale well with the number of concurrent threads,
particularly on the i7 architecture. They quickly slow down, likely due to cache
line collisions and CAS failures. On the other hand, multi-lane FlowPools scale
well, as threads write to different lanes, and hence different cache lines, mean-
while also avoiding CAS failures. This appears to reduce execution time for
insertions up to 54% on the i7, 63% on the Xeon and 92% on the UltraSPARC.

The performance of higher-order functions is evaluated in the Reduce, Map
(both in Figure 4) and Histogram benchmarks (Figure 5). It’s important to note
that the Histogram benchmark serves as a “real life” example, which uses both
the map and reduce operations that are benchmarked in Figure 4. Also note that
in all of these benchmarks, the time it takes to insert elements into the FlowPool
is also measured, since the FlowPool programming model allows one to insert
elements concurrently with the execution of higher-order functions.

In the Histogram benchmark, Figure 5, P threads produce a total of N ele-
ments, adding them to the FlowPool. The aggregate operation is then used
to produce 10 different histograms concurrently with a different number of
bins. Each separate histogram is constructed by its own thread (or up to P ,
for multi-lane FlowPools). A crucial difference between queues and FlowPools
here, is that with FlowPools, multiple histograms are produced by invoking sev-
eral aggregate operations, while queues require writing each element to several
queues– one for each histogram. Without additional synchronization, reading a
single queue is not an option, since elements have to be removed from the queue
eventually, and it is not clear to each reader when to do this. With FlowPools,
elements are automatically garbage collected when no longer needed.
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Fig. 4. Execution time vs parallelization across three different architectures on three
important FlowPool operations; insert, map, reduce

Finally, to validate the last claim of garbage being automatically collected, in
the Communication/Garbage Collection benchmark, Figure 5, we create a pool
in which a large number of elements N are added concurrently by P threads.
Each element is then processed by one of P threads through the use of the
aggregate operation. We benchmark against linked transfer queues, where P
threads concurrently remove elements from the queue and process it. For each
run, we vary the size of the N and examine its impact on the execution time.
Especially in the cases of the Intel architectures, the multi-lane FlowPools per-
form considerably better than the linked transfer queues. As a matter of fact, the
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Fig. 5. Execution time vs parallelization on a real histogram application (top), & com-
munication benchmark (bottom) showing memory efficiency, across all architectures.

linked transfer queue on the Xeon benchmark ran out of memory, and was un-
able to complete, while the multi-lane FlowPool scaled effortlessly to 400 million
elements, indicating that unneeded elements are properly garbage collected.

7 Related Work

An introduction to linearizability and lock-freedom is given by Herlihy and
Shavit [13]. A detailed overview of concurrent data structures is given by Moir
and Shavit [18]. To date, concurrent data structures remain an active area of
research– we restrict this summary to those relevant to this work.

Concurrently accessible queues have been present for a while, an implemen-
tation is described by [16]. Non-blocking concurrent linked queues are described
by Michael and Scott [17]. This CAS-based queue implementation is cited and
used widely today, a variant of which is present in the Java standard library.
More recently, Scherer, Lea and Scott [14] describe synchronous queues which
internally hold both data and requests. Both approaches above entail blocking
(or spinning) at least on the consumer’s part when the queue is empty.
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While the abstractions above fit well in the concurrent imperative model,
they have the disadvantage that the programs written using them are inherently
nondeterministic. Roy and Haridi [21] describe the Oz programming language,
a subset of which yields programs deterministic by construction. Oz dataflow
streams are built on top of single-assignment variables and are deterministically
ordered. They allow multiple consumers, but only one producer at a time. Oz
has its own runtime which implements blocking using continuations.

The concept of single-assignment variables is used to provide logical variables
in concurrent logic programming languages [23]. It is also embodied in futures
proposed by Baker and Hewitt [11], and promises first mentioned by Friedman
and Wise [7]. Futures were first implemented in MultiLISP [10], and have been
employed in many languages and frameworks since. Scala 2.10 futures [9] and
Twitter futures [6] are of interest, because they define monadic operators and
a number of high-level combinators that create new futures. These APIs avoid
blocking. Futures have been generalized to data-driven futures, which provide
additional information to the scheduler [24]. Many frameworks have constructs
that start an asynchronous computation and yield a future holding its result, for
example, Habanero Java [3] (async) and Scala [19] (future).

A number of other models and frameworks recognized the need to embed the
concept of futures into other data-structures. Single-assignment variables have
been generalized to I-Structures [1] which are essentially single-assignment ar-
rays. CnC [4, 2] is a parallel programming model influenced by dynamic dataflow,
stream-processing and tuple spaces [8]. In CnC the user provides high-level oper-
ations along with the ordering constraints that form a computation dependency
graph. FlumeJava [5] is a distributed programming model which relies heavily
on the concept of collections containing futures. An issue that often arises with
dataflow programming models are unbalanced loads. This is often solved using
bounded buffers which prevent the producer from overflowing the consumer.

Opposed to the correct-by-construction determinism described thus far, a
type-systematic approach can also ensure that concurrent executions have de-
terministic results. Recently, work on Deterministic Parallel Java showed that a
region-based type system can ensure determinism [15]. X10’s constrained-based
dependent types can similarly ensure determinism and deadlock-freedom [22].

8 Conclusion

The abstraction for concurrent dataflow programming we presented provides
a composable deterministic programming model. It can be implemented in a
provably non-blocking manner and is efficient as well, as shown in experiments.

As future work, we plan developing other concurrent collection types with de-
terministic semantics, which enrich the correct-by-construction single-assignment
model, such as bounded buffers, streams and maps. On the implementation level,
we anticipate the need of embedding the callbacks within the data-structure
itself, as is the case with callback-based futures and FlowPools – this has a
particular benefit on platforms which do not support efficient continuations.
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