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Abstract. High-level synthesis is a design process that takes an un-
timed, behavioral description in a high-level language like C and produces
register-transfer-level (RTL) code that implements the same behavior in
hardware. In this design flow, the quality of the generated RTL is greatly
influenced by the high-level description of the language. Hence it follows
that both source-level and IR-level compiler optimizations could either
improve or hurt the quality of the generated RTL. The problem of or-
dering compiler optimization passes, also known as the phase-ordering
problem, has been an area of active research over the past decade. In
this paper, we explore the effects of both source-level and IR optimiza-
tions and phase ordering on high-level synthesis. The parameters of the
generated RTL are very sensitive to high-level optimizations. We study
three commonly used source-level optimizations in isolation and then
propose simple yet effective heuristics to apply them to obtain a rea-
sonable latency-area tradeoff. We also study the phase-ordering problem
for IR-level optimizations from a HLS perspective and compare it to a
CPU-based setting. Our initial results show that an input-specific order
can achieve a significant reduction in the latency of the generated RTL,
and opens up this technology for future research.

Keywords: CompilerOptimization,Design space exploration,High-level
synthesis, Phase ordering.

1 Introduction

The field of compiler optimizations has been an area of active research for more
than fifty years. Numerous optimizations have been proposed and deployed over
the course of time, each trying to optimize a certain aspect of an input program.
Optimizations play a key role in evaluating a compiler.

A well-known fact in literature [17] is that optimizations have enabling and
disabling interactions among themselves, and the best order is dependent on the
program, target and the optimization function. As the solution space is huge,
compiler researchers have tried a plethora of methods over the past decade based
on searching techniques ([7] [13] [12], [3]), analytical models ([22], [25], [20], [24]),
empirical approaches based on statistical data ([19], [18] [2]), and a mixture of
all of these ([9], [21], [16]). However, it is to be noted that all aforementioned
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approaches have been used in a CPU-based setting. In this case, decisions re-
garding optimization orders are implicitly or explicitly influenced by execution
parameters such as the processor pipeline, size of the instruction window, pres-
ence of hardware-managed caches etc. How different would such optimization
orders be if the code being optimized was not going to be ‘executed’ on a pro-
cessor, but is a behavioral description to be synthesized into some customized
hardware itself?

int add(int a[20], int o[2])
{
   int i;
   o[0] = 0;
   o[1] = 1;
   for(i = 1; i < 20; i++) {
       if(a[i]%2 == 0) {
           o[0] += a[i];
           o[1] *= a[i];
       }
   }
}

Fig. 1. (a) Example design. (b) CPU vs. HLS setting. CPU best sequence differs from
HLS best sequence.

Consider the simple design in Fig. 1. Also, let us consider a set of three opti-
mizations1: global value numbering (g), memory to register promotion (m) and
induction variable canonicalization (i). The table in Fig. 1(b) summarizes the
performance of two sequences gim and img. The CPU numbers were obtained
using Simics, an out-of-order processor simulator, while HLS numbers were ob-
tained using xPilot [4], a research tool for high-level synthesis. We can clearly
observe that the sequence gim wins in the HLS setting while sequence img wins
in the CPU setting. We find that img produces smaller code with fewer loads,
because ‘g’ applied after ‘m’ is exposed to a greater number of opportunities,
thereby performing well on CPU. However, while img reduced the loads by re-
using computed values, it increased the length of the data dependency chain.
This led to the img design having one extra state in its finite state machine
created during scheduling due to data constraints, thus increasing its latency in
the HLS setting.

This simple example shown above demonstrates that there are very subtle de-
tails and side effects that can have different impacts on CPU code and HLS de-
signs. The impact of one optimization can be more pronounced in an HLS setting
than in a CPU design. A typical CPU has many hardware features that enhance
the performance of code that is being executed. For example, multiple levels of
caches, out-of-order execution and load/store queues drastically reduce the cost
of a single load. Branch prediction and speculative execution can hide the cost of
evaluating a branch most of the times in case of loops. High-level synthesis is a
different area in that way where each load corresponds to a read from a memory
block, and each load costs the same number of cycles. Every branch instruction is
dependent on another instruction that computes the exit condition, and branch

1 We use the letters within brackets to refer to the respective optimizations in this
section.



Compiler Optimizations on HLS 145

prediction mechanisms have to be specified in software manually by the designer
if needed. Also, HLS can potentially exploit greater ILP limited only by the phys-
ical resources available on the target platform. On a typical processor, only the
ILP available within the instruction window is exploited.

In this paper we perform an initial investigation into the impact of compiler
transformations in a high-level synthesis setting (HLS). High-level synthesis is
an automated design process that takes an un-timed, behavioral description of
a circuit in a high-level language like C, and generates a register-transfer-level
(RTL) net-list that implements the same behavior. The RTL generated by a HLS
process is heavily influenced by the way the design is specified at the high level,
making high-level optimizations very significant in the design flow. Works like
[10] have tried solving similar problems in the HLS community in the past. We
describe and use a set of simple, yet effective heuristics to quickly search the space
of the described optimizations and study their effects on several benchmarks.

We also study the impact of classical IR-level optimizations on high-level syn-
thesis. We evaluate several approaches, and suggest a new approach based on
lookahead for optimizations. We also analyze two real-world benchmarks in a
CPU-based and HLS-based setting and show how optimizations can have con-
trasting side effects. Our initial experiments show that latency improvements
of more than 3X can be achieved by choosing the right order for an input be-
havioural description.

The rest of this paper is organized as follows. We provide some necessary
background information regarding HLS and xPilot in Section 2. Our study on
high-level optimizations is described in Section 3. We describe our methodology
to search the space of IR-level optimizations in Section 4. We provide a detailed
evaluation of our approaches in Section 5. We conclude with comments on future
work in Section 6.

2 Background

High-level synthesis (HLS), or behavioral synthesis, is the process of automati-
cally generating cycle-accurate RTL models from behavioral specifications. The
behavioral specifications are typically in a high-level language, like C/C++/
Matlab. The generated RTL models can then be accepted by the downstream
RTL synthesis flow for implementation using ASICs or FPGAs. Compared to the
traditional RTL-based design flow, potential advantages of HLS include better
management of design complexity, code reuse and easy design-space exploration.

HLS has been an active research topic for more than 30 years. Early attempts
to deploy HLS tools began when RTL-based design flows were well adopted. In
1995, Synopsys announced Behavioral Compiler, which accepts behavioral HDL
code and connects to downstream flows. Since 2000, a new generation of HLS
tools have been developed in both academia and industry. Unlike many prede-
cessors, many of them use C-based languages to capture the design. This makes
them more accessible to algorithm and system designers. It also enables hardware
and software to be specified in the same language, facilitating software/hardware
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co-design and co-verification. The use of C-based languages also makes it easy to
leverage new techniques in software compilers for parallelization and optimiza-
tion. As of 2012, notable commercial C-based tools include Cadence C-to-Silicon
Compiler, Calypto Catapult C (formerly a product of Mentor Graphics), Synop-
sys Synphony C and Xilinx AutoESL (originating from the UCLA xPilot project
[4]). More detailed surveys on the history and progress of HLS are available from
sources such as [8] [5].

xPilot [4] is an academic HLS tool developed at UCLA. It takes as input a C
function and generates an RTL Verilog module to implement the functionality.
Compiler transformations are first performed on the source code using LLVM [14]
to obtain an optimized IR, which can be translated to a control-data flow graph
(CDFG). Scheduling is then performed on the CDFG to generate a finite-state
machine with data path (FSMD) model, where each operation is assigned to a
state in the FSM. Binding is then performed on the FSMD to allocate functional
units, storage units and interconnects, and then the RTL net-list is decided.

For a given CDFG, the scheduler in xPilot tries to minimize worst-case latency
by default, under the constraints of data dependency, control dependency, clock
frequency, and resource limits [6]. The scheduler tries to insert clock boundaries
on certain edges of the dependency graph, in order to guarantee that the delay
and resource constraints are met. In a simplified model, operations in the same
basic block are scheduled into consecutive control states; branches (including
loops) are implemented as state transitions in the FSM. Thus, the resulting
FSM is somewhat similar to the control-flow graph of the input function. If the
control-flow graph of the input function is reducible, it is possible to estimate
the worst-case latency of the module given the trip counts of loops.

3 Source-Level Optimizations

In this section, we describe our study of high-level optimization interactions. We
consider three optimizations - array partitioning, loop unrolling and loop pipelin-
ing. We have chosen these optimizations as they are most commonly employed
in standard high-level synthesis flow [1]. All the experiments in this section have
been performed using AutoESL v1.0, 2011. [23]

3.1 Array Partitioning

Array structures in high-level design descriptions are implemented as memory
blocks by default. However, mapping arrays to a single RAM resource can create
resource constraints as each RAM block has only a few read and write ports.
Mapping arrays to multiple RAM blocks can alleviate the resource constraint
problem, provided the right number of banks are chosen. In this study, we con-
centrate only on cyclic distribution of array elements to different partitions. For
example, consider a simple, contrived design as shown in Fig. 2(a). Fig. 2(b)
shows the effect of partition factors on the latency and area. We make the obser-
vation that the best choices for the number of partitions are powers of 2. When
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void testAP(int a[10], int i)
{
    a[i] = i;
}

Fig. 2. (a) Example design to study array partitioning. DSP: No. of DSP blocks, FF:
No. of Flip-Flops, LUT: No. of Look-up tables.(b) Comparison of latency and area
numbers for different partitions for design in (a).

an array is partitioned, additional code is inserted that performs mod operation
on the index to select the right bank. Implementing mod on a power-of-2 number
n just involves extracting the least significant log2(n) bits in the binary repre-
sentation of n and truncating the rest, while for other numbers full 32-bit mod
operation has to be realised in hardware. Such an operation is slow and occupies
a lot of area.

3.2 Loop Unrolling

Loop unrolling is a popular optimization used to reduce loop overhead and in-
crease ILP. It also exposes more opportunities to other optimizations like scalar
replacement and dead code elimination. Consider two simple kernel loops shown

#define N 500
void daxpy(int a[N], int b[N], int k, int c)
{

int i;
L1:for(i=0;i<N;i++) 
{

a[i] = b[i] * k + c;
}

}
    

#define N 500
void prefix(int a[N+1], int b[N+1], int k, int c)
{

int i;
L1:for(i=1;i<N+1;i++) {

a[i] = a[i-1] + a[i];
}

}

     

Fig. 3. Two simple kernels subject to loop unrolling

in Fig. 3. Fig. 4(a) and 4(b) show the latency and area numbers of the loops
in Fig. 3. We make the following observations – (1) The best performing un-
roll factors in both the kernels considered are 2,4,5,8,10,16,20. In general, the
set of best unroll factors consists of both the factors of the loop trip-count as
well as all powers of 2 lesser than the trip count. Unrolling a loop with a num-
ber that is not a factor of the trip-count adds the overhead of additional exit
checks and branches. For non-power-of-2 unroll factors, the exit checks need a
full 32-bit comparators which are much slower, making them poor choices. Due
to these reasons, the FSM created for this design during the scheduling phase
is larger and complicated, thereby needing greater area to be implemented. (2)
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Fig. 4. Latency and area numbers for (a) Fig. 3(a) and (b) Fig. 3(b)

Area consumption increases linearly with unroll factor as it increases the size
of one iteration and also the size of the FSM. (3) Unrolling loops with a car-
ried dependency enables optimizations like scalar replacement and global value
numbering. (4) Latency gain from unrolling quickly flattens out, while area does
not. From the observations above, we form the following conclusions:

– The set of good unroll factors S for a loop L with a trip-count of n can be
defined as follows:

S = {fi|mod(fi, n) = 0}
⋃

{2k|(k ∈ N) ∧ (2k ≤ n)} (1)

– Starting from the lowest unroll factor si in S, we iterate through the unroll
factors and measure the relative drop in latency as well as relative increase
in area. We continue our iterative search until we arrive at an unroll factor
whose slope of area increase is greater than the slope of latency decrease,
and return the previous best unroll factor at this stage. We use AutoESL’s
estimates to steer the algorithm as it is faster and accurate enough.

3.3 Loop Pipelining

Software pipelining is another popular loop transformation that also attempts to
exploit ILP by re-ordering instructions across iterations and overlapping execu-
tion of consecutive iterations. Pipelining a loopwith low initiation interval yields a
high throughput. However, software pipelining can be constrained by the available
memory bandwidth. Consider Fig. 5(a) for instance, where resource constraints is
inhibiting pipelining. With appropriate array partitioning (Fig. 5(b)), software
pipelining combined with loop unrolling proves to be a powerful combination.

Fig. 5. Pipelining with unrolling loop in Fig. 3(a) for 65536 iterations in (a) without
memory partitioning (b) with memory partitioning
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3.4 Approach to Search Optimization Space

We use the algorithm described in section 3.2 to obtain the unroll factor ui giv-
ing best performance to area. The loop is unrolled ui number of times and then
pipelined. If the II is constrained due to memory resources, the appropriate array
is subjected to partitioning. The partition factor starts at 2 and is then doubled
in subsequent iterations if the previous partition factor was insufficient to resolve
the resource constraint. We discuss and evaluate our approach in section 5.

4 IR-Level Optimizations

In this section, we describe our study on the effects of phase-ordering of IR-level
optimizations.

Optimizations Considered. By default, xPilot applies close to 250 trans-
formations from a set of 55 unique optimizations. The optimization space is
very discrete as can be seen in Fig. 6, which was obtained after evaluating 1000
random sequences of length 200 from the same optimization set. We first re-
duce the search domain in order to obtain greater insight. For this purpose,
we randomly chose 100 sequences and examined the effect of each optimization

Fig. 6. Scatterplot of latencies for
matrixmul

in the sequence. Table 1 gives a brief de-
scription of all the short-listed optimiza-
tions. From here on in this paper, we
restrict all our experiments to this re-
stricted subset of optimizations.

Random Search. In our implementation
of random search, we generate random se-
quences containing upto 25 optimizations
each allowing repetitions. We generated and
evaluated 5000 random sequences for each
of the benchmarks considered.

Genetic Algorithm. We implement a ge-
netic algorithm to search the space of op-
timization sequences using latency as the
minimization cost function. In our implementation, we chose to have a randomly
generated initial population of 20 sequences, each of which can have upto 25 op-
timizations. We repeat the iterative search process for 500 generations. In each
iteration, all the sequences in the population are evaluated and ranked. At the
end of evaluation, sequences in the population undergo mutation and crossover.
The best sequence is preserved as it is. Finally, 8 to 10 sequences are randomly
chosen and mutated. Our implementation chooses sequences at the bottom with
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a higher probability to be mutated by changing flags randomly. Finally, duplicate
sequences are replaced with random sequences. The best solution found after 500
generations is reported.

Table 1. Subset of optimizations and descriptions

Name Description
adce (a) Aggressive dead code elimination
bitwidthmin (b) Bitwidth minimization
condprop (p) Conditional propagation
constprop (k) Constant propagation
dse (e) Dead store elimination
gcse (c) Global common subexpression elimination
gvn (n) Global value Numbering
indvars (v) Canonicalize induction variables
instcombine (i) Combine redundant instructions
inst-simplify (t) Operator strength reduction
loop-deletion (d) Delete dead loops
loop-preproc (o) Loop preprocess
loop-simplify (l) Canonicalize natural loops
mem2reg (m) Promote memory to register
ptr-legalization (r) Convert pointers to array indices
simplifycfg (s) Simplify the control-flow graph
xunroll (x) Partially unroll loops

n-Lookahead Scheme.
The n-lookahead scheme
attempts to construct an
optimization sequence by
progressively deciding on
the best subsequence of
length n. It is based on an
observation that the num-
ber of optimizations en-
abled or disabled by each
optimization is relatively
small. We are effectively
looking ahead by n steps
and choosing the subse-
quence that gives the best
overall benefit at each step.
Therefore, a 0-lookahead
scheme is a greedy ap-
proach that chooses the best optimization successively and an N -lookahead
scheme (where N is the length of the target sequence) is an exhaustive search.
The parameter n provides a tradeoff between the amount of global information
considered and number of comparisons. If we have to construct a sequence of
length k with n levels of look ahead, and we have N number of unique optimiza-
tions, the number of combinations to be evaluated is ( kn ) ∗ Nn. Larger values
of n increases number of sequences exponentially. In section 5, we evaluate the
effectiveness of 0-lookahead and 1-lookahead schemes.

MSIR. We also evaluate an approach called Multi- Start Iterative Refine-
ment (MSIR). In this approach, we generate N random sequences. Each se-
quence (a1, a2...an) is subjected to an iterative refinement process as follows:
Starting from the first pair (a1, a2), we generate two sequences starting with
(a1, a2) and (a2, a1) choose the better sequence. We then move to the next pair
in the chosen sequence (i.e., to the second position) and perform a similar eval-
uation. We continue iterating through pairs as long as we see improvement.
The iterative search stops when no improvement is obtained upon one iteration
through the entire sequence. The best sequence obtained from all the random
sequences is returned. Section 5 evaluates and compares MSIR with the other
described approaches.
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5 Evaluation

5.1 Experiment Design Flow

Fig. 7. Broad design flow used in all our ex-
periments

Fig. 7 describes the architecture of
our flow. Source-level transforma-
tions are studied using AutoESL.
The final area numbers reported are
from Xilinx’s back-end tools. We
use xPilot to study IR-level trans-
formations and their impact on the
latency of the RTL generated. As
AutoESL is does not provide the
user such fine-grained control to
specify IR-level optimizations, AutoESL is not a suitable tool to study such lower
level optimizations. We have modified xPilot to specify arbitrary optimization
sequences. Also, as we do not study area utilization for IR-level transformations
we do not go through the Xilinx back-end.

5.2 High-Level Optimizations

For purposes of evaluation, we use AutoESL v1.0, an industry-standard high-
level synthesis tool. We obtain area numbers from the EDA tool-chain provided
by Xilinx. The target platform we consider here is Xilinx Virtex-5.

Results. We tested our approach on five different kinds of kernels taken from
the Open Accelerator repository [1] and MiBench [11]. We have hand-chosen
different kernels in order to achieve a broader evaluation coverage. The bench-
marks are described in Table 2. Overall, we achieve a mean reduction in latency

Table 2. Benchmarks for evaluation of high-level optimizations

Benchmark Description
adpcm decoder Kernel function of the ADPCM decoding algorithm.
daxpy kernel function performing the vector operation A = Bk + c
prefix kernel function calculating prefix sum on a vector of integers
segmentation Compute step in an image segmentation algorithm
smithwaterman Smith-Waterman algorithm

of 50.42% over xPilot’s default setting. Table 3 shows the factor obtained from
our approach, number of partitions required, latency and area numbers for all
benchmarks. Each benchmark is reported under three configurations: Baseline
– where the benchmark was run without any high-level optimization; Baseline
+ PP – baseline with pipelining, where the main loop was pipelined with the
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Table 3. Comparison between baseline and optimized benchmark versions against
latency and area using ER

Benchmark
Unroll factor No. of partitions Numbers

Slice LUT FF II Depth Latency ER

adpcm decoder
4 1 Baseline 200 588 217 - - 2502 1

1 Baseline + PP 224 741 234 2 5 1006 2.22
1 U4 + PP 619 2009 471 8 11 1006 0.8035

daxpy
8 1 Baseline 21 80 62 - - 1501 1

1 Baseline + PP 26 92 75 1 3 504 2.405
4 U8 + PP 89 324 315 1 3 67 5.286

prefix
8 1 Baseline 29 113 80 - - 1501 1

1 Baseline + PP 43 166 91 2 3 1003 1.009
8 U8 + PP 109 307 375 2 4 130 3.072

segmentation
32 1 Baseline 31 110 65 - - 8321 1

1 Baseline + PP 43 153 88 1 2 4100 1.463
16 U32 + PP 173 522 160 1 3 132 11.296

smithwaterman2
4 1 Baseline 26 102 46 - - 52281 1

1 Baseline + PP 19 73 46 2 3 11708 6.110
1 U4 + PP - - - - - - -

required number of array partitions; and U(num) + PP – unroll by obtained
unroll factor with pipelining along with required number of array partitions.

We define the efficiency ratio ER as the latency-area product, as follows:

ER =
latencyb ∗ areab
latency ∗ area (2)

Here, latencyb and areab are the latency and area numbers of the baseline re-
spectively. We use the number of slices occupied as the representative for area
of a design. We make the following observations:

– adpcm decoder does not benefit from unrolling due to a scalar loop-carried
dependency. Due to a scalar carried constraint, unrolling the loop does not
increase ILP. Hence the best result for this benchmark is when unrolling is
at its minimum i.e., the loop is completely rolled.

– Segmentation achieves a remarkable benefit with its configuration with an
ER of around 11. As the core loop is data parallel, the only constraint to
achieve minimal II would be array resources, and a partitioning factor of 16
resolves all resource constraints.

– smithwaterman benefits from pipelining with an ER of 6, and also shows
impressive area usage. Using our heuristics, an unroll factor of 4 was found
to give the best performance to area value. However, pipelining the unrolled
loop resulted in an AutoESL crash due to an internal bug in the tool.

5.3 IR-Level Optimizations

In this section, we evaluate our approaches described in section 4. Table 4 lists
and describes the set of benchmarks that we consider in our evaluation process.
We have chosen a few different benchmarks in this section because xPilot is not
as mature a tool as AutoESL and failed to synthesize some of the benchmarks.
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Table 4. Benchmarks and description

Benchmark Description
binarysearch Iterative binary search
cftmdl Kernel region in 1D FFT computation
chem DSP algorithm in a chemical plant
dir Direct implementation of 1D DCT
fft Fast fourier tranform from MiBench [11]
honda DSP filter application
jacobi Jacobi method to solve linear equations
lee Lee’s algorithm for 1D DCT [15]
matrixmul Tiled matrix multiplication
sha SHA-1 encryption algorithm
smithwaterman Smith-Waterman algorithm

Random Sampling vs. xPi-
lot. Fig. 8 shows the com-
parison between the results of
random search and the default
optimization setting in xPi-
lot. It can be seen that
there are significant gains that
can be achieved with an op-
timization order that is
benchmark-specific. Overall, we
achieve a mean reduction in la-
tency of 50.42% over xPilot’s
default setting.

Fig. 8. Comparison of normalized latencies. De-
fault : xPilot’s default sequence.

Comparison of Approaches.
We compare the performances
of various approaches discussed
in Section 4. We include only
one small benchmark (binary-
search) for brevity as a rep-
resentative example for all the
other smaller benchmarks in all
our further analyzes.

We can observe from Table 5
that random search and genetic
algorithm match up to each other in most cases except fft. We can also observe
that a similar trend exists between random search and 1-lookahead. We consider
this a promising result, as we can achieve the same result as random search in
lesser comparisons. We can observe thatmem2reg is the sole critical optimization
for sha. Also, we found that jacobi suffered with the default sequence due to a
disabling interaction between -scalarrepl and -gvn.

Comparison with CPU Performance In order to compare the HLS setting
with a CPU-based setting, we picked 200 of the randomly generated optimization
sequences for two benchmarks, sha and smithwaterman. 200 executables were
created, labeled with their sequence and simulated using Simics to get accurate
cycle counts. Each sequence was given a CPU rank and an xPilot rank based on
their execution time and latency respectively.

Fig. 9 shows the rank disparity between xPilot and CPU for the same op-
timization sequence. Consider a specific example. It is surprising to see that
Sequence 1101 for benchmark Sha has an xPilot rank of 2 but a CPU rank of
175: ldaomboptcxrp

Our analysis shows that the HLS-specific bitwidth optimization was adding
a lot of overhead instructions to obtain the operands of the appropriate width,
thereby increasing the instruction count. Such side-effects do not exist in HLS
because an operator of a specific bit-width can be realized in hardware. We
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Table 5. Comparison of different approaches. The Gen: field shows the number of
generations taken to converge. MSIR has been evaluated with N=10 random sequences.
We generated 5000 sequences to evaluate random search.

Benchmark Approach Benchmark Approach

fft

Random
Latency: 2361

jacobi

Random
Latency: 492

Sequence: srnaln Sequence: cbaemkxemsbsdtntsem
GA Latency: 1896 GA Latency: 492
Gen: 186 Sequence: kmnsosbcsenainr Gen: 33 Sequence: bmciensi

0-lookAhead
Latency: 2359

0-lookAhead
Latency: 48358

Sequence: nktadnxpslbcoemns Sequence: mxbtpsealodk

1-lookAhead
Latency: 2339

1-lookAhead
Latency: 492

Sequence: mnriksbtvbosknkacr Sequence: kmnsossbcsebnaiinr

MSIR
Latency: 5359

MSIR
Latency: 66116

Sequence: pmkasr Sequence: mxbeon

matrixmul

Random
Latency: 49

sha

Random
Latency: 1442

Sequence: aooeakbesmdsttvocaosa Sequence: mxxasdotxrlxlbrmnt
GA Latency: 49 GA Latency: 1442
Gen: 28 Sequence: mceosi Gen: 1 Sequence: iiiiiiim

0-lookAhead
Latency: 80119

0-lookAhead
Latency: 1442

Sequence: rnevxbntoldamssss Sequence: mxnapseixrnacsmo

1-lookAhead
Latency: 669

1-lookAhead
Latency: 1442

Sequence: rpnevxbpdeboomisiceb Sequence: kmsipekrbrrpemoker

MSIR
Latency: 368094

MSIR
Latency: 1442

Sequence: kbrmae Sequence: cltpmx

smithwaterman

Random
Latency: 23

binarysearch

Random
Latency: 12

Sequence: kbvdsbbtmeosmn Sequence: etaneb
GA Latency: 23 GA Latency: 12
Gen: 51 Sequence: inemsobs Gen: 1 Sequence: iiiiiiin

0-lookAhead
Latency: 844

0-lookAhead
Latency: 12

Sequence: kneimmissnirnxxxp Sequence: mtsnprciebvsdsak

1-lookAhead
Latency: 23

1-lookAhead
Latency: 12

Sequence: neamiaosaaaa Sequence: kmpkrsnciienaebmts

MSIR
Latency: 2765

MSIR
Latency: 12

Sequence: vsamdn Sequence: obrnxs

Fig. 9. Rank comparison for CPU vs xPilot. (a) Sha. (b) SmithWaterman.

generated another binary using the same sequence without the -bitwidthmin
optimization, and observed that the CPU cycle count dropped from 70790 to
55981, which is very close to the lowest value of 48673. We also found that most
of the lower-ranked sequences for CPUs had -bitwidthmin optimization included
in them. Consider the opposite case in optimization sequence 118, which has a
CPU rank of 9 and an xPilot rank of 191: npxvervadkxnrnlx

The disparity in ranks is caused due to an interesting interplay between -
gvn and -indvars in the CPU-based and HLS-based settings. We performed
additional experiments summarized in Table 6. We can see that the pair -gvn
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Table 6. Comparison of CPU and HLS settings with optimization sequences involving
-gvn and -indvars

Optimization sequence xPilot latency CPU cycle count
(none) 1844 54710
-indvars 1844 54709
-indvars -gvn 1444 54959
-gvn 1444 54958
-gvn -indvars 4024 53644

and -indvars affect the CPU and HLS setting in opposite ways. Intuitively -gvn
decreases number of instructions and our simulation runs confirm that. While
-gvn removes redundant code, it can have a potential side effect of introducing
data dependency due to re-use. Also, if the data to be re-used is in memory,
-gvn can slightly increase the number of loads in the program, as is the case in
our example. The combined effect leads to an increased number of pipeline stalls
which explains the increased cycle count. The -indvars pass increases code size
and also tends to promote certain memory values to registers, thereby reducing
the number of loads. Running an -indvars pass after -gvn pass effectively un-
does the damage caused by -gvn. Hence we see that in the CPU setting, -indvars
has a positive effect after -gvn.

In the HLS setting, however, there is no instruction execution pipeline. The
design can be seen as a data and control-flow driven application where a finite
set of instructions can be scheduled to run in every cycle. Hence, fewer instruc-
tions need fewer cycles to run. This explains the positive effect of -gvn on the
xPilot latency. Running an -indvars pass after -gvn introduces many additional
instructions and dependencies, increasing the number of FSM states and latency.
We re-ran xPilot using sequence 118 without the -indvars option and observed
that the latency dropped from 4024 to 1444.

The above experiments show convincingly that applying good transformations
for a CPU may not lead to good HLS results, and HLS-specific code optimization
sequences and transformations are needed.

6 Conclusions

Given the rise in popularity in high-level synthesis as a popular design choice
in the system design community, we believe that having a sound compilation
technology in high-level synthesis is very essential. In this paper, we have pre-
sented a first study on the impact of compiler optimization phase ordering on
design space exploration and the quality of the generated RTLs. We have pre-
sented studies on three important high-level optimizations - loop unrolling, soft-
ware pipelining and array partitioning. We have described simple heuristics to
quickly eliminate bad choices early. We have also presented a detailed study of
the IR-level optimization phase ordering on high-level synthesis where a variety
of techniques were discussed and evaluated. We reported a mean reduction in
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latency of 50.42% against xPilot’s default setting. We compare our study to a
CPU-based setting and provide several insights into the subtle variations that
causes pairs of optimizations to have different effects.

We believe that our work opens up many interesting future directions. An
interesting direction for future work would be to consider more high-level op-
timizations. With the vast amount of data that we have collected, the idea of
building a predictive model using program featurs seems attractive as well. With
our promising initial results, we believe that research in this direction would ben-
efit the high-level synthesis community.
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