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Preface

It is our pleasure to present the papers accepted for the 25th Anniversary Inter-
national Workshop on Languages and Compilers for Parallel Computing (LCPC)
held during September 11-13, 2012, at Waseda University in Tokyo, Japan, as
the first workshop held outside the North American continent. Since 1988, the
LCPC has been an established workshop that provides opportunities to share
state-of-the-art research on all aspects of parallel computing, including parallel
languages, compilers, runtime systems, tools, and computer architectures. This
year’s LCPC workshop marked its 25th anniversary and continued this tradi-
tion. The scope of the workshop spans parallel programming models, compiler
and runtime optimizations, practical applications, and heterogeneous comput-
ing. This year’s LCPC was attended by 89 registrants from across the globe.
The conference tour to K Supercomputer Center located in Kobe was held on
September 14, 2012.

This year, the workshop received 39 submissions from all over the world – 17
from Europe, 16 from North America, 4 from Asia, and 2 from Africa. Of these
submissions, the Program Committee (PC) selected 16 papers for presentation at
the workshop, representing an acceptance rate of 41%. Each selected paper was
presented in a 30-minute slot during the workshop. In addition, six submissions
were selected for presentation as posters during a 90-minute poster session. Each
submission received at least three reviews. The PC held an all-day meeting
on July 19, 2012, to discuss the papers. When each paper was discussed, PC
members who had a conflict of interest with the paper were asked to temporarily
leave the meeting. Decisions for all PC-authored submissions were made by PC
members who were not coauthors of any submissions.

We were fortunate to have three superior keynote speakers at this 25th An-
niversary LCPC Workshop. Arvind, Professor of Computer Science and Engi-
neering at the Massachusetts Institute of Technology, gave a keynote talk ti-
tled “Programming in the Brave New World of Systems-on-a-Chip.” The second
keynote talk titled “Modeling Computation for HW/SW Codesign” was given
by David Kuck, Intel Fellow and Professor Emeritus of the University of Illinois
at Urbana-Champaign. The third keynote talk, “To Err Is Human; To Forgive,
Divine,” was given by Yoichi Muraoka, Professor of Computer Science at Waseda
University.

We were also fortunate to be able to invite six distinguished speakers for tech-
nical sessions: David Padua from the University of Illinois at Urbana-Champaign,
Lawrence Rauchwerger from Texas A&M University, Alex Nicolau from the
University of California, Irvine, Professor Monica Lam from Stanford Univer-
sity, Professor Rudolf Eigenmann from Purdue University, and Utpal Baner-
jee from the University of California, Irvine. The presentation slides of these
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keynote and invited talks are available at the LCPC 2012 workshop website,
http://www.kasahara.cs.waseda.ac.jp/lcpc2012.

We would like to conclude by thanking the many people whose dedicated
time and effort helped make LCPC 2012 a success. We first want to thank all
authors who contributed papers to the workshop. The hard work invested by
the PC members and external reviewers in reviewing the submissions helped en-
sure a high-quality technical program for the workshop. The founding members,
the Steering Committee members, and the LCPC 2011 Organizing Committee
provided valuable guidance that greatly helped the preparation of the 25th com-
memorable LCPC. All participants in the workshop contributed directly to the
technical vitality of the event either as presenters or as audience members. We
would also like to thank the workshop sponsor Multicore Processor Research In-
stitute. Finally, the workshop would not have been possible without the tireless
efforts of the local arrangements staff at the Green Computing Systems Research
& Development Center at Waseda University.

September 2012 Hironori Kasahara
Keiji Kimura
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Just in Time Load Balancing

Rosario Cammarota, Alexandru Nicolau, and Alexander V. Veidenbaum

University of California Irvine

Abstract. Leveraging Loop Level Parallelism (LLP) is one of the most
attractive techniques for improving program performance on emerging
multi-cores. Ordinary programs contain a large amount of parallel and
DOALL loops, however emerging multi-core designs feature a rapid in-
crease in the number of on-chip cores and the ways such cores share
on-chip resources - such as pipeline and memory hierarchy, leads to an
increase in the number of possible high-performance configurations. This
trend in emerging multi-core design makes attaining peak performance
through the exploitation of LLP an increasingly complex problem.

In this paper, we propose a new iteration scheduling technique to
speedup the execution of DOALL loops on complex multi-core systems.
Our technique targets the execution of DOALL loops with a variable
cost per iteration and exhibiting either a predictable or an unpredictable

behavior across multiple instances of a DOALL loop. In the former case
our technique implements a quick run-time pass - to identify chunks of
iterations containing the same amount of work - followed by a static
assignment of such chunks to cores. If the static parallel execution is not
profitable, our technique can decide to run such a loop either sequentially
or in parallel, but using dynamic scheduling and an appropriate selection
of the chunk size to optimize performance.

We implemented our technique in GNU GCC/OpenMP and demon-
strate promising results on three important linear algebra kernels - ma-
trix multiply, Gauss-Jordan elimination and adjoint convolution - for
which near-optimal speedup against existing scheduling techniques is at-
tained. Furthermore, we demonstrate the impact of our approach on the
already parallelized program 470.lbm from SPEC CPU2006, implement-
ing the Lattice Boltzman Method. On 470.lbm, our technique attains a
speedup up of to 65% on the state-of-the-art 4-cores, 2-way Symmetric
Multi-Threading Intel Sandy Bridge architecture.

1 Introduction

Parallel loops are the largest source of parallelism in ordinary programs - the
coverage of parallel loops in SPEC CFP2000 and CFP2006[1, 2] is high (≈ 90%)
and many of these loops are inherently parallel or DOALL [3].The execution
of DOALL loops in parallel can significantly speedup ordinary programs. Sev-
eral dynamic [4–9] and static [10] techniques have been proposed for scheduling
iterations of DOALL loops on parallel machines. However, scheduling DOALL
loops on modern multi-cores - with complex memory hierarchy organizations
and multiple levels of parallelism, such as instructions level parallelism, vector

H. Kasahara and K. Kimura (Eds.): LCPC 2012, LNCS 7760, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 R. Cammarota, A. Nicolau, and A.V. Veidenbaum

units, symmetric multi-threading etc. - may not deliver peak performance [11].
On one hand, while free of run-time overheads, static techniques are either too
simple ( e.g., the OpenMP [12] implementations in GNU GCC [13] and Intel
ICC [14]) to cope with cases where the cost per iteration is variable, or too com-
plex, e.g., profile-based techniques [10], to be implemented as part of run-time
systems. Dynamic techniques, on the other hand, may reduce the benefit of the
parallel execution when, for example, the run-time synchronization overhead is
relatively large compared with the execution time (cost) of the serial loop, but
can attain better load balancing with an appropriate selection of the chunk size.

This paper proposes a new scheduling technique to speedup the execution of
DOALL loops on modern complex multi-core systems. Our technique targets
the execution of DOALL loops with a variable cost per iteration - e.g., loops
performing triangularization, that constitutes a fundamental step for many linear
algebra solvers. The proposed technique relies on the assumption that parallel
loops are invoked multiple times during the execution of an ordinary program, as
exemplified by the number of instances of hot loops in SPEC OMP2001 [15, 16]
(> 50 per hot loop) and NAS parallel benchmarks (from 100 to > 1000 times
per hot loop). At run-time, our technique first attempts to find a static schedule
such that the work is ”optimally” distributed among cores. If such a schedule is
not profitable and/or unattainable - because the behavior of present instances of
the loop is not predictive of the behavior of future instances - our technique can
decide to run such a loop either sequentially or in parallel, but using dynamic
scheduling techniques with an appropriate selection of the number of iterations
to schedule at once - referred to as a chunk size.

Specifically, our technique implements a quick pass at run-time, which at-
tempts to determine chunks of iterations - that are expressed as a percentage of
the total number of iterations - such that each chunk contains an equal part of
the total cost of the loop. Such chunks are subsequently statically assigned to
the p cores. Given that the assignment of chunks of iterations to cores is static,
once the schedule is ready the proposed technique does not suffer of additional
run-time overheads. Performance improves when the behavior of previous in-
stances of the loops is predictive of the behavior of subsequent instances and the
outermost loop is performs many iterations.

When a parallel loop does not exhibit a variable cost per iteration, our tech-
nique outputs chunks of equal size. For example, while scheduling a parallel loop
with constant cost per iteration - such as the case of a basic implementation
of matrix multiply - on two cores, our technique determines that 50% of the
iterations must be assigned to one core and the remaining 50% must be assigned
to the another core. On the contrary, in the case of a loop with a decreasing/in-
creasing or exhibiting arbitrary variations in the cost per iteration, our technique
will determine the percentage of iterations to assign to each cores such that each
core will execute the same amount of work.

When the behavior of previous instances of a parallel loop is not predictive
of the behavior of future instances, our technique can decide to execute the
instances of such a loop in parallel, but opting for a dynamic scheduling strategy.
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In this case, an estimation of the number of iterations to schedule at once,
i.e., the chunk size is attempted. The determination of the chunk size uses an
heuristic based on the average cost per iteration and the cost of synchronization
overhead. The average cost per iteration is determined at run-time, whereas the
cost of synchronization overhead is estimated offline using micro-benchmarking
[17] on the architecture in use. The chunk size is determined dividing the cost
of synchronization overhead by the average cost per iteration - refer to Section
2.2. Alternatively, if dynamic scheduling is not profitable, our technique opts to
run the loop sequentially.

We implemented our technique in GNU GCC OpenMP and show promising
results on three important linear algebra kernels - matrix multiply, Gauss-Jordan
elimination and adjoint convolution implemented as in [5] - and 470.lbm from
SPEC CPU2006 on 4-cores, 2-way Symmetric Multi-Threading (SMT) cores In-
tel Sandy Bridge architecture. Specifically, our technique attains nearly optimal
speedup for the three kernels above and up to 65% performance improvement
for 470.lbm against the use of prior scheduling techniques.

The rest of the paper is organized as follows: our technique is detailed in
Section 2; Experimental results are presented in Section 3; Prior and related
work are discussed in Section 4; The conclusion is presented in Section 5.

2 Just in Time Load Balancing

The technique proposed in this paper is motivated by the observation that in or-
dinary programs many instances of a parallel DOALL loop are usually executed
within a serial loop [16]. Therefore, a few of these instances can be leveraged to
learn properties of the parallel loop and prepare a schedule that optimizes pro-
gram performance. Our initial goal is to prepare a schedule that distributes uni-
form chunks of iterations to the available cores. When the threads involved in the
parallel execution start nearly at the same time (this situation typically occur for
program executing parallel loops according to a fork-join execution model) such
threads are also likely to complete their executions nearly at the same time and
overall the number of elapsed cycles of the parallel execution is minimized.

The typical scenario considered in this paper is shown in Listing 1.1, where a
sequence of many instances of a DOALL loop - the inner loop - are executed. The
assumption made on Listing 1.1 about the body of the parallel loop are: (a) the
body of the loop must contain re-entrant/thread-safe code; (b) the statements
in the body of the loop are at most a function of the indexes of the loops
surrounding it - in the example the body of the loop depends on the indexes xx
and tt; (c) the loop bounds and the stride are constant (a relaxation of such an
assumption is discussed later on in this section). 1

The basic idea of our technique is to transform - at compile-time - the loop of
Listing 1.1 into that of Listing 1.2. The outermost serial loop is ”distributed” in

1 Note that, the assumptions made on the body of the loop admit the presence of
nested (parallel/serial) perfect or multi-way loops with conditional, functions calls,
indirect references, etc.
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three consecutive passes, as shown in Listing 1.2. 2 The first two instances of the
parallel loop are executed sequentially whereas the subsequent instances are exe-
cutedwith a schedule determined by our technique.Overall, performance improves
when the behavior of previous instances of the loops is predictive of the behavior
of subsequent instances and the outermost loop performs many iterations.

Listing 1.1. Loop model

/∗ Ser ia l loop i t e r a t i n g over time s t eps ∗/
for ( t t =0; tt<time max ; t t++)
{

/∗ Para l l e l loop automat ica l ly p a r a l l e l i z e d with OpenMP ∗/
#pragma omp p a r a l l e l for
for ( xx=s t a r t ; xx<end ; x+=s t r i d e )
{

/∗ Body of the loop ∗/
Body( xx , t t ) ;

}
}

Listing 1.2. Transformed, adaptive instrumented loop
. . .
/∗ parameters of the schedu l ing algorithm

where p i s the number of threads ∗/
int ∗ parts ;
int i i ;
long long d , C;
. . .

/∗ Ser ia l loop i t e r a t i n g over time s t eps ∗/
/∗ Pass 1 − Compute the t o t a l cost per i t e r a t i on ∗/
s t a r t p r ob e c o s t (&C) ;
for ( xx=s t a r t ; xx<end ; x+=s t r i d e )
{

Body(xx , 0 ) ;
}
g e t p r ob e c o s t (&C) ;

/∗ Pass 2. a − Compute the schedu le ∗/
s t a r t d i f f p r o b e c o s t (&d , &i i , p , C, part s ) ;
for ( xx=s t a r t ; xx<end ; x+=s t r i d e )
{

Body(xx , 1 ) ;
g e t d i f f p r o b e c o s t (&d , &i i , part s ) ;

}
/∗ Pass 2. b − Configure the schedu ler ∗/
omp set schedu le r (p , part s ) ;

/∗ Pass 3 − execute the remaining instances of the
p a r a l l e l loop in p a r a l l e l ∗/

for ( t t =2; tt<time max ; t t++)
{

/∗ Para l l e l loop automat ica l ly p a r a l l e l i z e d with OpenMP ∗/
#pragma omp p a r a l l e l for
for ( xx=s t a r t ; xx<end ; x+=s t r i d e )
{

/∗ Body of the loop ∗/
Body( xx , t t ) ;

}
}

2 That the code in Listing 1.2 illustrates a principle implementation.
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The first instance of the parallel loop is instrumented to compute the overall
cost of the parallel loop - expressed in terms of the total number of elapsed cycles.
The function start probe cost(·) initializes the variable C that will contain the
total cost of executing the serial loop, whereas the function get probe cost(·)
reads the elapsed cycles after the execution of the loop and assigns the number
of cycles to C. This pass also counts the total number of iterations - referred
to as # iterations and derives the average cost per iteration as the total cost
divided by the number of iterations.

The second instance of the loop is instrumented to profile the cost per iteration
and determine the percentages of iterations - taken in lexicographic order - that
contain 1

p of the total cost of the loop. p is the number of available cores. In
particular, the function start diff probe cost(·,·,·,·) initializes the following
counters: (a) d - for each iteration, it will contain the cost per iteration; (b) the
iteration number ii; and (c) the vector parts - which contains as many entries
as the number of threads/cores. For example, in the case of four threads, the
vector parts will be initialized as parts={0, 0, 0, 0} . During the execution
of the second instance of the loop, the cost per iteration d is computed by
subtracting the current cycles count from the count of cycles annotated at the
previous iteration - such cycles counts are taken from the beginning of the loop.
For example, let cii−1 be the elapsed cycles from the beginning of the loop until
the iteration ii−1 and cii be the cost accumulated from the beginning of the loop
until iteration ii. The value of the counter d is defined according to Equation 1.

d = cii − cii−1 (1)

The function get diff probe cost(·,·,·) implements the steps in Equations 2
and 3. In particular, for each s = 1, 2, · · · , p such a function finds the percentage
of the iteration space containing 1

p of the total elapsed cycles and assign such

percentage to the position s of the array parts (to compensate for the ceiling

operation, for s = p, parts[p] = 100−∑p−1
s=1 parts[s]):

∀s = 1, 2, · · · , p find iis :

iis∑
ii=iis−1

dii < s× C

p
<

iis∑
ii=iis−1

dii + diis+1 (2)

parts[s] = � iis

#iterations
� × 100 (3)

When a parallel loop exhibits a variable cost per iteration, the fraction of it-
erations containing a certain percentage, x%, of the overall cost of the loop is
no longer proportional to x, as it would be in the case of a loop with uniform
cost per iteration. Furthermore, in the case of a loop with an uniform cost per
iteration, the passes in Equations 2 and 3 provide parts to contain the equal
elements. For example, let p = 2 and let us assume that the parallel loop have
nearly-equal cost per iteration, then the array parts will be equal to parts={50,
50}. Likewise, for p = 4, parts={25,25,25,25} etc.
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The next step in our run-time technique is the deployment of the schedule. If
the number of operating threads are allocated to individual cores and nearly start
at the same time, the run-time partitioning technique described above results
in the minimum completion time - e.g., in the case of the OpenMP construct
parallel for.

2.1 Instrumentation and Profiling Overhead

The definition of d given in Equation 1 is useful in practice. Such a definition
allows (a) measuring the cost per iteration accurately and (b) estimating the
accuracy with which the cost per iteration is measured - refer to Equation 4.

The sum of the costs per iteration, that is measured using the procedure
get diff probe cost(·,·,·), is an estimator of the whole cost of the serial loop.
Therefore, at run-time the total count of elapsed cycles C can be compared with
the quantity

∑#iterations
ii=1 dii to estimate the accuracy of our profiling technique.

Likewise, for such a comparison, the total number of instructions executed (in-
structions retired in the case of speculative out-of-order cores) can be used. We
define the accuracy of the profiling as in Equation 4. The lower is ε%, the lower
is the contribution of the instrumentation overhead to the run-time behavior of
the parallel loop and the more the partitions of the iteration space convey the
same amount of work to each core.

ε% =

∣∣∣C−∑#iterations
ii=1 dii

∣∣∣
C

× 100 (4)

2.2 Extension to More Variable and Non Profitable Cases

There exist cases violating the assumptions that we made at the beginning of
this section. For example, the bounds and the stride of the parallel loop can
be functions of the outermost serial loop and/or functions of the input data. A
typical illustration is provided by multi-grid kernels, that improve the resolution
of raster images by varying the size of the image grid. In such a case, we relax our
assumptions of constant bounds and strides and admit the possibility that the
parallel loop bounds and/or stride can vary across instances of the parallel loop.
However, our technique requires such a variation to be slow. That is, a given
value of the loop bounds and/or stride spans for (i.e., is the same or similar)
several subsequent instances of the parallel loop. We refer to such instances with
similar behavior as phases. Such phases can either occur systematically, such
as in the case of multi-grid kernels - where phase changes are triggered by the
outermost loop, or in an unpredictable way - e.g., the behavior of the body of
the loop depends on the input data. In the former case, our technique can be
programmed to be triggered by phase changes, as the occurrence of a phase
change can be predicted. In the latter case our technique can be re-invoked
periodically and attempt to optimize performance.

Either way, admitting a slow variation of the bounds and/or stride of the par-
allel loop implies that the elapsed time of the parallel loop vary across phases.
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This means that there can be instances of the parallel loop where the paral-
lel execution is not profitable (e.g., when the body of the parallel loop is too
small compared with the parallelization overhead) and instances of the paral-
lel loop with a large number of iterations and a small uniform cost per itera-
tion, where a dynamic iteration scheduling technique may perform better than a
static technique when the chunk size is selected properly. Furthermore, dynamic
scheduling techniques are important as they can cope with adversary conditions
of the system underneath - multi-programming conflicts or over/bad utilization
of architectural resource, including under utilization of the memory hierarchy.

Arbitrary variable and unprofitable cases mentioned above are taken into
account in the following extension of our technique, where the source code of
Listing 1.1 is transformed in that of Listing 1.3. Such code extends our tech-
nique with a set of conditions to enable/disable its passes in order to trigger the
exploration of static and dynamic iteration scheduling techniques. The code in
Listing 1.3 has the ability to adapt to different phases in which instances of the
parallel loop can execute. Such an extension allows for the possibility to switch
from the proposed static iteration scheduling schema to a dynamic scheduling
schema, where the determination of the chunk size is fundamental to optimize
performance.

Listing 1.3. Transformed, instrumented loop

/∗ Ser ia l loop i t e r a t i n g over time s t eps ∗/
for ( t t =0; tt<time max ; t t++)
{

i f ( c ond i t i on pas s1 ( t t ) or sw i t ch schedu l i ng ) {
/∗ Pass 1 − Compute the t o t a l and the average

cost per i t e r a t i on ∗/
. . .

}
i f ( c ond i t i on pas s2 ( t t ) or sw i t ch schedu l i ng ) {

/∗ Pass 2. a − Compute the schedu le ∗/
. . .
/∗ Evaluate when to switch or to keep the schedu le to :

sequent ia l , p a r a l l e l s t a t i c or dynamic ∗/
. . .
/∗ Pass 2. b − Compute chunk s i z e and conf igure the schedu ler ∗/
. . .

}
i f ( c ond i t i on pas s3 ( t t ) or sw i t ch schedu l i ng ) {

/∗ Pass 3 − execute the remaining instances of the
p a r a l l e l loop in p a r a l l e l ∗/

. . .
}

}

In this work, the determination of the chunk size is performed in the follow-
ing steps. Micro-benchmarks are used offline [17] to measure synchronization
overheads - that are subsequently factored into our technique.3 The chunk size
is determined such that the average cost per iteration (which is computed in
pass 1 of Listing 1.3) times the chunk size is greater than the synchronization
overhead. Such a rule for selecting the chunk size guarantees that the resulting
synchronization overhead is lower than the cost of the serial loop. Therefore the
parallel execution on a number of cores p > 2 is profitable. Let n be the number

3 Note that, run-time overheads are tightly coupled to the architecture underneath.
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Table 1. System level setup

Model Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

L1 I/D cache [KB] 32

L2 cache [kB] 256

LLC [MB] 8

Memory [GB] 8

Compilers/linker, options GNU GCC 4.6.2, -O3 -fopenmp

Operating system Linux kernel 3.0.0

of iterations and a = C
n the average cost per iteration. Let δ be the cost of

synchronization. The total cost of executing the parallel version of the loop on
a single core, with a certain chunk size will be equal to C + δ × n

chunk size
- as

the threads will be executed in a serial fashion. Imposing δ × n
chunk size

< C,
provides the total cost of execution on one core being less than 2C. Therefore,
the total cost of execution on p cores will be less than 2

p × C, which guaran-
tees a speedup larger than one when p > 2. Eventually, δ × n

chunk size
< C is

equivalent to C
n × chunk size > δ, which is equivalent to a× chunk size > δ,

or otherwise chunk size > δ
a . In this work we select the chunk size such as

chunk size = � δ
a�.

Finally, during a phase when the total cost of the loop is small compared
to the parallelization overhead - for example because the number of iterations
and the cost of the body of the parallel loop are relatively small, our extended
technique can decide to run the serial version of the loop - refer to the pass 1 in
Listing 1.2.

3 Experiments

We implemented our technique in the GNU GCC compiler as an extension of
its OpenMP implementation [12, 18] - referred to as GOMP. GOMP includes a
static scheduler that distributes equal chunks of iterations to the available cores,
and two dynamic schedulers in each of which an idle core gains exclusive access to
the queue of iterations and fetches the next available chunk of iterations. Fixed
chunk size scheduling and Guided [4] are the two dynamic scheduling strategies
implemented in GOMP. In addition, we implemented two other popular dynamic
scheduling strategies: Factoring [5] and Trapezoid [7].

We use PAPI [19] to access the hardware performance counters and measure
elapsed cycles. Our experiments are conducted on the state-of-the art Intel Sandy
Bridge architecture - the system level configuration illustrated in Table 1. The
dynamic frequency scaling was disabled to provide dependable time and counters
measurements.

As benchmarks, we use OpenMP implementations in C [20] of three linear
algebra kernels: Matrix Multiply; Gauss-Jordan elimination; and Adjoint Convo-
lution 4 - and the program 470.lbm from SPEC CPU2006 [2], which implements

4 Our implementation resembles the parallel form of such kernels as illustrated in [5].
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the Lattice Boltzman Method as illustrated in [21]. Fifty instances of matrix
multiply and adjoint convolution were executed for each experiment. The number
of times the parallel loop in Gauss-Jordan elimination is iterated is a function
of its outermost serial loop [5]. The first few - up to 5 - instances are leveraged
by our technique to find a profitable schedule.

We selected the three kernels above to verify that the profiling method in-
cluded in our technique effectively provides accurate estimates of the cost per
iteration and thus that our technique can accurately compute partitions of iter-
ations with equal costs during the training phase. A more in depth description
of the run-time properties per iteration of these kernels is discussed below. Such
kernels are also utilized to verify basic scalability properties in the performance
results attained with our technique against the use of prior scheduling tech-
niques, when the number of threads increases. Eventually, the program 470.lbm

is used as a real world example to test our technique.

Table 2. Average cost per iteration and standard deviation

Matrix Multiply Gauss-Jordan elimination Adjoint convolution

Average # cycles per iteration 26786087 1936474 9346

Standard deviation 22683 860399 5337

A summary of the variability of the cost per iteration for the kernels matrix
multiply, Gauss-Jordan elimination and adjoint convolution is shown in Table 2 -
each column reports the average cost per iteration of one instance of each kernel
and the corresponding standard deviation.

For matrix multiply and Gauss-Jordan elimination, we adopted matrices of
type double whose size is 1024× 1024 - a single matrix has the same size as the
last level of cache in our architecture. Matrix multiply exhibits a constant cost
per iteration. The small variability in the cost per iteration is due to the variable
latency in the accesses to memory compared with the larger iteration cost. Gauss-
Jordan elimination exhibits a cost per iteration that is slightly variable because
of a conditional in the body of the parallel loop. This kernel executes multiple
instance of its innermost parallel loop. The cost per iteration within each instance
of the parallel loop has a trapezoidal shape, which vary slowly - from nearly
rectangular to nearly triangular - across subsequent instances of the parallel
loop. For adjoint convolution, we adopted vectors of type double whose size of
102400. The cost per iteration decreases with a constant rate and falls in a large
range of costs. More importantly, iterations with larger cost are not uniformly
distributed across the iteration space. Most of the whole cost of the loop is
concentrated within the first few iterations. As we will see in this section, such
a biased distribution of the cost per iteration is a limiting factor for dynamic
schedulers.

The program 470.lbm, using the reference dataset in SPEC CPU2006, calls
frequently (> 100 times) the function LBM performStreamCollide, that ac-
counts for most of the execution time of the program. Such a function includes
a singly nested parallel loop with conditionals - the loop is hand-optimized as
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illustrated in [21]. The cost per iteration is constant although very small (each
iteration executes in ≈ 3 ns). The number of iterations in the corresponding
reference input data set [2] is very large (it amounts to 26, 000, 000 iterations).

3.1 Profiling Accuracy and Micro-benchmarking Summary

The iteration cost profiling method employed in the pass 2 of our technique
(refer to Listing 1.2) provides accurate estimates of the cost per iteration - refer
to Table 3. For each benchmark ε% is very small - negligible in the case of
matrix multiply and adjoint convolution. The worse case estimation happens
in the case of the kernel adjoint convolution, because of the presence of a few
iterations with large costs followed by plenty of iterations with progressively
small costs. Profiling of the former type of iterations is more accurate than that
of the latter type of iterations, nevertheless ε% < 2% is fairly small.

Table 3. Relative estimation error - refer to Equation 4

Matrix Multiply Gauss-Jordan elimination Adjoint convolution

ε% 0.04 0.03 1.9

On the architecture in use - refer to Table 1 - we characterize the overhead
costs involved with the use of the OpenMP constructs for scheduling and syn-
chronization using the suite of Open MP micro-benchmarks proposed in [17].
The overhead involved in the parallel execution of a parallel loop on p cores is
empirically defined as O(p) = Tp − Ts

p , where Ts is the number of cycles needed
for the sequential execution and Tp is the number of cycles need for the parallel
execution. Our experimental results - conducted for p = 2, 4, 6, 8 can be summa-
rized as follows: (a) the overhead involved with static scheduling is ≈ 0.25μs for
up to four threads and bumps up to ≈ 3μs for more than four threads - because
of the presence of two hardware threads sharing the same core in a symmetric
multi-threading fashion. Such an overhead is independent from the number and
the sizes of the chunks; (b) the overhead involved with dynamic fixed chunk
scheduling increases with the number of threads - it raises from ≈ 0.25 to 17μs.
However, this overhead drops significantly when the chunk size increases - the
trend is that the overhead decreases as ≈ 1

chunk size
; (c) the overhead involved

with guided scheduling increases with the number of threads - it raises from
≈ 0.25 to 4.5μs, and decreases nearly linearly when the chunk size increases.

3.2 Experimental Results

We present a first set of results aimed to compare static and dynamic iteration
scheduling schemes, including the one proposed as a part of our technique - which
we refer as nuStatic. nuStatic schedules statically chunks of itera- tions with
equal cost - in terms of elapsed cycles - to cores.We recall that in nuStatic chunks
contains the same number of iterations in the case of loops with constant cost per
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(a) Matrix multiply (b) Gauss-Jordan elimination

(c) Adjoint convolution (d) Adjoint convolution analysis

Fig. 1. Performance evaluation/analysis of individual scheduling techniques for
multiple threads

iterations, whereas chunks contain different numbers of iterations when the cost
per iteration vary. In the case of constant cost per iteration nuStatic is equiva-
lent to the classic scheduler implemented in conven- tional OpenMP implemen-
tations. We refer to the case of classic static scheduling as nuStatic uniform

chunk, whereas we use the term nuStatic non uniform chunk to refer the case
of static scheduling when non uniform chunks are determined at run-time by our
technique.

For matrix multiply all the iteration scheduling techniques attain nearly the
same cost. Performance is shown in Figure 1(a). nuStatic uniform chunk and
nuStatic non uniform chunk determine the same vectors of parts and the
parts are equal. For example, p = 2 implies that parts={50, 50}.

For Gauss-Jordan elimination - refer to Figure 1(b), we re-execute the de-
termination of the vector parts three times - at the beginning, at 1

3 and at
2
3 of the iterations of the outer-most loop. For example, when p = 4 and dur-
ing each training phase, the following vectors of parts are learned by our tech-
nique: first parts = {25, 25, 25, 25}; subsequently parts = {15, 20, 25, 40}; and
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finally parts = {10, 15, 25, 45}. While performance attained by nuStatic non

uniform chunk is slightly lower than that attained with Trapezoid, the for-
mer significantly outperforms the other schedulers, because of its relatively low
synchronization overhead. Performance of nuStatic non uniform chunk size

can conceivably approach performance of Trapezoid by providing the former
with more re-invocations of the pass 1 in our technique.

Among the three kernels considered in this paper, the most interesting is ad-
joint convolution. For adjoint convolution, neither static nor dynamic scheduling
strategies are able to deliver good performance - refer to Figure 1(c). The issue
with dynamic scheduling is either that synchronization costs are large compared
with the cost per iteration and/or severe load imbalance occurs because itera-
tions with large cost fall in large initial chunks - see the cases of Factoring and
Guided. Unfortunately, an increase of the chunk size does not help reduce the size
of the first few chunks for both Factoring and Guided. On the contrary, the fact
that the first few chunk sizes are smaller in the case Trapezoid determines its
success when compared with the other techniques. Nevertheless, to learn at run-
time the parameters of Trapezoid for any kind of loop would be expensive. On
the contrary, nuStatic provides equal or better performance than Trapezoid

and the training phase of nuStatic is simple and efficient. Note that on an
alternative implementation of adjoint convolution, when the cost per iteration
increases, Trapezoid would have been unable to deliver best performance.

For adjoint convolution, an analysis of the capabilities of nuStatic compared
with classic static and dynamic scheduling is presented in Figure 1(d). In the
case of static scheduling, when equal chunks of iterations are distributed among
the cores, performance is reduced because of load imbalance. For example, when
p = 2, the thread assigned with the first chunk of iterations executes much
more work than the other thread - because 50% of the whole cost of the loop
is contained in the first 30% of the iterations. Likewise, when a smaller chunk
size is used, threads are assigned multiple chunks of iterations in a round robin
fashion. For example, the first threads will execute 60% of the iterations in two
chunks, whereas the second thread will execute 40% in two chunks. However,
independently from the cost associated with re-scheduling chunks on threads,
60% of the iterations containing much more than 50% of the total cost of the
loop. The issue with dynamic fixed chunk scheduling is that the synchronization
overhead becomes large when the number of threads increases - refer to Figure
1(d). While performance of dynamic fixed chunk scheduling is comparable with
that of nuStatic on two threads - giving the appearance that dynamic scheduling
could cope with all the cases nuStatic can, nuStatic significantly outperforms
dynamic on four threads.

Overall, 1(c) shows that nuStatic performs as well as Trapezoid and out-
performs other iteration schedulers. For different number of threads nuStatic
determines the following parts of the iterations space: {30, 70} when p = 2;
{13, 16, 21, 50} when p = 4 and {6, 7, 8, 9, 11, 15, 36} when p = 8.

Finally, we present an analysis of the program 470.lbm - Figure 2. We fo-
cus our attention on the performance of the parallel section in the function
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LBM performStreamCollide - within which the program spends a significant
percentage of its execution cycles (> 90%). Our technique selects dynamic
scheduling with a chunk size of 40, which is determined as follows. From the
micro-benchmarking experiments, the minimum synchronization overhead is at-
tained for 8 threads - this overhead is ≈ 0.12μs. 3 × 10−9 × chunk size =
0.12 × 10−6, which corresponds to a chunk size=40. Such a chunk size repre-
sents a conservative choice for a lower number of threads. In the case of two
threads, Guided 40 is selected, whereas when the number of threads increases
to four and eight, our technique switches to Fixed chunk, with a chunk size
equal to 40, and attains significant speedups over the baseline. Note that, in the
case of Fixed chunk, a chunk size equal to 40 means that idle threads attempt
to fetch 40 iterations at a time. In the case of Guided, a chunk size equal to 40
indicates the minimum number of iterations that can be fetched. Figure 2 shows
performance improvements up to 65% for 470.lbm. In Figure 2, the baseline is
the sequential execution time. When p = 2, Guided 40 is selected by our tech-
nique as it outperforms both Dynamic 40 and nuStatic 5, whereas, for p > 2,
Dynamic 40 is selected by our technique. For p > 2, Dynamic 40 significantly
outperforms the other techniques.

Fig. 2. Speedup 470.lbm

3.3 Future Work on the Determination of the Number of Threads

The determination of the number of threads/cores to use is also a fundamental
point for balancing performance versus load imbalance versus power consump-
tion during the execution of a DOALL loop. While the determination of the
number of threads can be attempted using corollaries of Amdahl’s law, e.g., [22],
such corollaries do not account for the complex system/software interactions
happening on real systems - an example is provided by the case of 470.lbm
explained above, where a combination of the number of threads, the schedul-
ing technique and an appropriate selection of the chunk size are both necessary
to attain a significant speedup. We plan to extend the technique proposed in
this paper to select at run-time both the number of threads and the iteration
schedule for speeding up the performance of parallel loops.

5 In this particular case, where the cost per iteration is constant, we remark that
nuStatic is equivalent to classic static scheduling.
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4 Related Work

Parallel loops and in particular DOALL loops are pervasive in ordinary programs,
e.g.,≈ 90% [10] of the loops present in SPECCPU2000 [1] are parallel andDOALL
loops or can be restructured to expose parallelism [23, 24]. As implemented in the
OpenMP pass of modern compilers, scheduling techniques for executing DOALL
loops can be roughly divided in two categories: static - where the scheduler is re-
sponsible to assign chunks of iterations to the available cores; dynamic (fixed chunk
or self-scheduling) - where idle cores first use synchronization (mutex/locks) to
earn an exclusive access to the queue of iterations and second fetch a chunk of it-
eration to execute [4, 5, 7]. The time spent by idle threads to acquire/release the
queue of iterationsmultiplied by the number of exclusive accesses and times the av-
erage number of cores attempting to fetch iterations concurrently constitutes the
synchronization overhead for dynamic scheduling strategies. Such an overhead can
either reduce significantly or annihilate the benefits of a parallel execution. Several
dynamic scheduling techniques allow the cores to fetch chunks with a progressively
small chunk size [4, 5, 7, 25] to reduce scheduling overhead and improve load bal-
ancing. Yue and Liljia in [8] proposed the generation of chunking heuristics using
genetic algorithms and show performance improvements against guided [4], fac-
toring [5] and trapezoid [7] self-scheduling. However, performance attained using
dynamic and in particular self-scheduling techniques is shown to be negatively im-
pacted by the presence of a relatively large standard deviation in the cost per it-
erations [8]. Under the assumption that iterations with large cost are distributed
according to well known statistical distributions, e.g., normal distribution, there
exist dynamic scheduling techniques [6, 9] aimed to improve performance of par-
allel loops. The technique proposed in this paper addresses the case of variability
of the cost per iteration independently from the distribution of such costs. This is
especially important for such cases when iterations with large cost occur in bursts.

Kejariwal et al. in [10] proposed an offline profile-based iteration space parti-
tioning technique, where the profile is based on cache miss count. Such a profile-
based technique is rigorous, but fairly expensive. Partitioning requires: storing
the sequence of cost per iterations - which can be arbitrarily large depending
on the input size; numerical interpolation of such a sequence; numerical inte-
gration to compute parts of the iteration space convey nearly-equal costs. The
technique proposed in this work is fairly simple to implement and execute at
run-time. Furthermore, expressing the partitions in terms of percentages of the
iteration space releases the partitions from the particular instance of a parallel
loop. This is particularly useful in the case of parallel loops with a fixed geome-
try of the iteration space, such as the case of the kernel adjoint convolution. The
partitioning found for a given input size can be applied for any input size and
still provides nearly-optimal work sharing. Similarly to Just-in-Time compilation
[26], our technique attempts to optimize code execution from past observations.
Differently from such techniques, past observations are utilized to determine a
schedule able to optimize performance of DOALL loops. Rauchwerger et al. [27]
proposed a technique for finding an optimal schedule to execute partially par-
allel loops. That is, loops whose parallel execution requires synchronization to
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ensure the correct execution order of the iterations of the loop. In this work
we focus on DOALL loops. While iterations of DOALL loops can be executed
in any order, different schedules can attain significantly different performance
on modern multi-core systems. In particular, we acknowledge the importance
of both static and dynamic scheduling techniques, and propose a new run-time
technique that (a) accurately profiles the iteration space; (b) partitions the iter-
ation space in non uniform chunks of iterations containing equal portions of the
execution time; (c) attempts to schedule such chunks of iterations or to find the
dynamic schedule that is more suitable for the particular instances of the loop
on a given architecture.

5 Conclusion

We proposed a new scheduling technique to speedup DOALL loops in ordinary
programs on modern complex multi-core systems. Our technique targets the ex-
ecution of DOALL loops with variable cost per iterations and exhibiting either
a predictable or an unpredictable behavior across multiple instances of a loop.
In the former case our technique implements a quick run-time pass to deter-
mine chunks of iterations containing the same amount of work to cores, which
is followed by a static assignment of such chunks to core. At run-time, the per-
formance of such a static schedule is compared with the performance of both
the sequential execution and the parallel execution using dynamic scheduling
techniques - with an appropriate selection of the chunk size to optimize perfor-
mance. The best scheduling technique is subsequently employed for executing
subsequent instances of the parallel loop.

We implemented our technique in GNU GCC OpenMP and show promising
results on the linear algebra kernel adjoint convolution and the program 470.lbm

from SPEC CPU2006 - implementing the Lattice Boltzman Method - on the
state-of-the-art 4, 2-way SMT cores Intel Sandy Bridge architecture. Specifically,
our technique attains nearly optimal speedup for the adjoint convolution and up
to 65% performance improvement for 470.lbm.

Acknowledgments. This work was partially supported by the NSF grant
number CCF-0811882 and the NSF Variability Expedition Grant number CCF-
1029783.
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Abstract. The polyhedral model is now a well established and effec-
tive formalism for program optimization and parallelization. However,
finding optimal transformations is a long-standing open problem. It is
therefore important to develop tools that, rather than following prede-
fined optimization criteria, allow practitioners to explore different choices
through script-driven or user-guided transformations. More than practi-
tioners, such flexibility is even more important for compiler researchers
and auto-tuner developers. In addition, tools must also raise the level of
abstraction by representing and manipulating reductions and scans ex-
plicitly. And third, the tools must also be able to explore transformation
choices that consider memory (re)-allocation.

AlphaZ is a system that allows exploration of optimizing transforma-
tions in the polyhedral model that meets these goals. We illustrate its
power through two examples of optimizations that existing paralleliza-
tion tools cannot perform, but can be systematically applied using our
system. One is time-tiling of a code from PolyBench that resembles the
Alternating Direction Implicit (ADI) method, and the other is a trans-
formation that brings down the algorithmic complexity of a kernel in
UNAfold, a sequence alignment software, from O(N4) to O(N3).

1 Introduction

The recent emergence of many-core architectures has given a fillip to automatic
parallelization, especially through “auto-tuning” and iterative compilation, of
compute- and data-intensive kernels. The polyhedral model is a formalism for auto-
matic parallelization of an important class of programs. This class includes affine
control loops which are the important target for aggressive program optimizations
and transformations. Many optimizations, including loop fusion, fission, tiling,
and skewing, can be expressed as transformation of polyhedral specifications.
Vasillache et al. [21, 28] make a strong case that a polyhedral representation of
programs is especially needed to avoid the blowup of the intermediate program
representation (IR) when many transformations are repeatedly applied, as is be-
coming increasingly common.

� This work was funded in part by the National Science Foundation, Award Number:
0917319.

H. Kasahara and K. Kimura (Eds.): LCPC 2012, LNCS 7760, pp. 17–31, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A number of polyhedral tools and components for generating efficient code
are now available [2, 3, 7, 9–11, 17, 22]. Typically, they are source-to-source, and
first extract a section of code amenable to polyhedral analysis, then perform a
sequence of analyses and transformations, and finally generate output.

Many of these tools are designed to be fully automatic. Although this is a
very powerful feature, and is the ultimate goal of the automatic parallelization
community, it is still a long way away. Most existing tools give little control to the
user, making it difficult to reflect application/domain specific knowledge and/or
to keep up with the evolving architectures and optimization criteria. Some tools
(e.g., CHiLL [3]) allow users to specify a set of transformations to apply, but the
design space is not fully exposed.

In particular, few of these systems allow for explicit modification of the mem-
ory (data-structures) of the original program. Rather, most approaches assume
that the allocation of values to memory is an inviolate constraint that paralleliz-
ers and program transformation systems must always respect. There is a body of
work towards finding the “optimal” memory allocation [4, 23, 25, 26]. However,
there is no single notion of optimality, and existing approaches focus on finding
memory allocation given a schedule or finding a memory allocation that is legal
for a class of schedules. Therefore, it is critical to elevate data remapping to
first-class status in compilation/transformation frameworks.

To motivate this, consider a widely accepted concept, reordering, namely
changing the temporal order of computations. It may be achieved through tiling,
skewing, fusion, or a plethora of traditional compiler transformations. It may be
used for parallelism, granularity adaptation, or locality enhancement. Regard-
less of the manner and motivation, it is a fundamental tool in the arsenal of the
compiler writer as well as the performance tuner.

An analogous concept is “data remapping,” namely changing the memory lo-
cations where (intermediate as well as final) results of computations are stored.
Cases where data remapping is beneficial have been noted, e.g., in array pri-
vatization [16] and the manipulation of buffers and “stride arrays” when so-
phisticated transformations like time-skewing and loop tiling are applied [30].
However, most systems implement it in an ad hoc manner, as isolated instances
of transformations, with little effort to combine and unify this aspect of the
compilation process into loop parallelization/transformation frameworks.

In this paper, we present an open source polyhedral program transformation
system, called AlphaZ, that provides a framework for prototyping analyses and
transformations. We illustrate possible uses of our system through two examples
that benefit from explicit representation of reductions and memory re-mapping.

2 Background

In this section we provide the necessary background of the polyhedral model,
and summarize related work that use it for compiler optimization.
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2.1 The Polyhedral Model

The strength of the polyhedral model as a framework for program analysis and
transformation are its mathematical foundations for two aspects that should be
(but are often not) viewed separately: program representation/transformation
and analysis. Feautrier [5] showed that a class of loop nests called Affine Control
Loops (or Static Control Parts) can be represented in the polyhedral model.
This allows compilers to extract regions of the program that are amenable to
analyses and transformations in the polyhedral model, and to optimize these
regions. Such code sections are often found in kernels of scientific programs,
such as dense linear algebra, stencil computations, or dynamic programming.

In the model, each instance of each statement in a program is represented as
an iteration point, in a space called iteration domain of the statement. Each such
point is hence, an operation. The iteration domain is described by a set of linear
inequalities forming a convex polyhedron using the following notation, where z
is iteration point, A is a constant matrix, and b is a constant vector.

D = {z |Az + b ≥ 0, z ∈ Zn}
Dependences are affine functions, expressed as1 (z → z′), where z′ consists of
affine expressions of z. What a program computes is completely specified by
the set of operations and the (flow) dependences between them. As noted by
Feautrier, program memory and data-structures need not figure in this repre-
sentation.

2.2 Memory-Based Dependences

The results of array dataflow analysis are based on the values computed by in-
stances of statements, and therefore do not need any notion of memory. There-
fore, program transformation using dataflow analysis results usually requires
re-considering memory allocation of the original program. Most existing tools
have made the decision to preserve the original memory allocation, and include
memory-based dependences as additional dependences to be satisfied.

2.3 Polyhedral Equational Model

The AlphaZ system adopts an equational view, where programs are described
as mathematical equations using the Alpha language [15]. After array dataflow
analysis of an imperative program, the polyhedral representation of the flow de-
pendences can be directly translated to an Alpha program. Furthermore, Alpha
has reductions as first-class expressions [12] providing a richer representation.

We believe that application programmers (i.e., non computer scientists), can
benefit from being able to program with equations, where performance consid-
erations like schedule or memory remain unspecified. This enables a separation

1 In the literature of the polyhedral model, the word dependence is sometimes used
to express flow of data, but here the arrow is from the consumer to the producer.
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of what is to be computed, from the mechanical, implementation details of how
(i.e., in which order, by which processor, thread and/or vector unit, and where
the result is to be stored).

To illustrate this, consider a Jacobi-style stencil computation, that iteratively
updates a 1-D data grid over time, using values from the previous time step. A
typical C implementation would use two arrays to store the data grid, and update
them alternately at each time step. This can be implemented using modulo
operations, pointer swaps, or by explicitly copying values. Since the former two
are difficult to describe as affine control loops, the Jacobi kernel in PolyBench/C

3.2 [20] uses the latter method, and the code (jacobi 1d imper) looks as follows:

for (t = 0; t < T; t++)

for (i = 1; i < N-1; i++)

A[i] = foo(B[i-1] + B[i] + B[i+1]);

for (i = 1; i < N-1; i++)

B[i] = A[i];

When written equationally, the same computation would be specified as:

A(t, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t = 0 : Binit(i);

t > 0 ≤ i < N − 1 : foo(A(t− 1, i− 1), A(t− 1, i), A(t− 1, i+ 1));

t > 0 = i : A(t− 1, i);

t > 0 ∧ i = N − 1 : A(t− 1, i);

where A is defined over {t, i|0 ≤ t < T ∧ 0 ≤ i < N}, and Binit provides the
initial values of the data grid. Note how the loop program is already influenced
by the decision to use two arrays, an implementation decision, not germane to
the computation.

2.4 Related Work

The polyhedral model has a long history, and there are many existing tools that
utilize its power. Moreover, it is now used internally in the IBM XL compiler
family. We now contrast AlphaZ with such tools. The focus of our framework
is to provide an environment to try many different ways of transforming a pro-
gram. Since many automatic parallelizers are far from perfect, manual control of
transformations can sometimes guide automatic parallelizers as we show later.

PLuTo is a fully automatic polyhedral source-to-source program optimizer tool
that takes C loop nests and generates tiled and parallelized code [2]. It uses
the polyhedral model to explicitly model tiling and to extract coarse grained
parallelism and locality. Since it is automatic, it follows a specific strategy in
choosing transformations.

Graphite is an optimization framework for high-level optimizations that are be-
ing developed as part of GCC now integrated to its trunk [19]. Its emphasis is
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to extract polyhedral regions from programs that GCC encounters, significantly
more complex task than what research tools address, and to perform loop opti-
mizations that are known to be beneficial.

AlphaZ is not intend to be full fledged compiler. Instead, we focus on in-
termediate representations that production compilers may eventually be able
to extract. Although codes produced from our system can be integrated into a
larger application, we do not insist that the process has to be fully automatic,
thus expanding the scope of transformations.

PIPS is a framework for source-to-source polyhedral optimization using inter-
procedural analysis [8]. Its modular design supports prototyping of new ideas by
developers. However, the end-goal is an automatic parallelizer, and little control
over choices of transformations are exposed to the user.

Polyhedral Compiler Collections (PoCC) is another framework for source-to-
source transformations, designed to combine multiple tools that utilize the
polyhedral model [22]. POCC also seeks to provide a framework for develop-
ing tools like Pluto, and other automatic parallelizers. However, their focus
is oriented towards automatic optimization, and they do not explore memory
(re)-allocation.

MMAlpha is another system with similar goals to AlphaZ [9]. It is also based
on the Alpha language. The significant differences between the two are that
MMAlpha emphasizes hardware synthesis. It does not treat reductions as first
class , and does no tiling. MMAlpha does provide memory reuse in principle,
but in its context, simple projections that directly follow processor allocations
are all that it needs to explore.

RStream from Reservoir Labs performs automatic optimization of C pro-
grams [17]. It uses the polyhedral model to translate C programs into efficient
code targeting multi-cores and accelerators. Vasillache et al. [27] recently gave an
algorithm to perform a limited form of memory (re)-allocation (the new mapping
must extend the one in the original program).

Omega Project has led to development of a collection of tools [10, 24] that cover
a larger subset of the design space than most other tools. The Omega calculator
partially handles uninterpreted function symbols, which no other tools support.
Their code generator can also re-allocate memory [24]. However, reductions are
not handled by Omega tools.

CHiLL is a high-level transformation and parallelization framework using the
polyhedral model [3]. It also allows users to specify transformation sequences
through scripts. However, it does not expose memory allocation.

POET is a script-driven transformation engine for source-to-source transforma-
tions [31]. One of its goals is to expose parameterized transformations via scripts.
Although this is similar to AlphaZ, POET relies on external analysis to verify
the transformations in advance.

Finally, we note that none of these tools do anything with reductions.
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3 The AlphaZ System

In this section we present an overview of AlphaZ, focusing, due to space limita-
tions, on only the specific features needed for the examples in later sections (see
our technical report [32] for more details).

AlphaZ is designed to manipulate Alpha equations, either written directly
or extracted from an affine control loop. It does this through a sequence of
commands, written as a separate script. The program is manipulated through
a sequence of transformations, as specified in the script. Typically, the final
command in the script is a call to generate code (OpenMP parallel C, with
support for parameterized tiling [7, 11]). The pen-ultimate set of commands
specify, to the code generator, the (i) schedule, (ii) memory allocation, and (iii)
additional (i.e., tiling related) mapping specifications.

The key design difference from many existing tools is that AlphaZ gives the
user full control of the transformations to apply. Our ultimate goal is to develop
techniques for automatic parallelizers, and the system can be used as an engine
to try new strategies. This allows for trying out new program optimizations that
may not be performed by existing tools with high degree of automation. The
key benefits for this are:

– Users can systematically apply sequences of transformations without re-
writing the program by hand.

– Compiler writers can prototype new transformations/code generators. New
compiler optimizations may eventually be re-implemented for perfor-
mance/robustness, but prototyping requires much less effort.

In the following, we use two examples to illustrate benefits of the ability to re-
consider memory allocation, and to manipulate reductions. Section 4 illustrates
the importance of memory re-mapping, with a benchmark from PolyBench/C

3.2 [20], and Section 5, presents an application of a very powerful transforma-
tion on reductions, called Simplifying Reductions. We show that the algorithmic
complexity of an implementation of RNA secondary structure prediction align-
ment algorithm from UNAfold package [14] can be reduced from O(N4) to O(N3)
through a systematic application of AlphaZ transformations.

4 Time-Tiling of ADI-like Computation

The Alternating Direction Implicit method is used to solve partial differen-
tial equations (PDEs). One of the stencil kernels in PolyBench/C 3.2 [20],
adi/adi.c resembles ADI computation.2

ADI with 2D discretization solves two sets of tridiagonal matrices in each
time step. The idea behind ADI method is to split the finite difference system of

2 There is an error in the implementation, and time-tiling would not be legal for a cor-
rect implementation of ADI. The program in the benchmark nevertheless illustrates
our point that existing tools are incapable of extract the best performance, largely
because of lack of memory remapping.
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equations of a 2D PDE into two sets: one for the x-direction and another for y.
These are then solved separately, one after the other, hence the name alternating
direction implicit.

Shown below is a code fragment from PolyBench, corresponding to the solu-
tion for one direction in ADI. When this code is given to PLuTo [2] for tiling and
parallelization, PLuTo fails to find that all dimensions can be tiled, and instead,
tiles the inner two loops individually. The key reason is as follows: the value writ-
ten by S0 is later used in S3, since computing S3 at iteration [t,i1,i2] (written
S3[t,i1,i2]) depends on the result of S0[t,i1,i2] and S0[t,i1,i2-1]. Since
the dependence vector is in the negative orthant, this value-based dependence
does not hinder tiling in any dimension.

for (t = 0; t < tsteps; t++) {

for (i1 = 0; i1 < n; i1++)

for (i2 = 1; i2 < n; i2++) {

S0: X[i1][i2] = X[i1][i2] - X[i1][i2 -1] * A[i1][i2]

/ B[i1][i2 -1];

S1: B[i1][i2] = B[i1][i2] - A[i1][i2] * A[i1][i2]

/ B[i1][i2 -1];

}

S2 ... // 1D loop updating X[*,n-1] (details irrelevant here)

for (i1 = 0; i1 < n; i1++)

for (i2 = n-1; i2 >= 1; i2 --)

S3: X[i1][i2] = (X[i1][i2] - X[i1][i2 -1]

* A[i1][i2 -1]) / B[i1][i2 -1];

... //second pass for i1 direction

}

However, the original C code reuses the array X to store the result of S0 as well
as S3. This creates a memory-based dependence S3[t, i1, i2]→ S3[t, i1, i2+ 1]
because S3[t,i1,i2] overwrites X[i1,i2] used by S3[t,i1,i2+1]. Hence, S3
must iterate in a reverse order to reuse array X as in the original code, whereas
allocating another copy of X allows all three dimensions to be tiled.

4.1 Additional Complications

The memory-based dependences are the critical reason why the PLuTo
scheduler (actually, we use a variation implemented in Integer Set Library by
Verdoolaege [29]) cannot find all three dimensions to be tilable in the above code.
Moreover, two additional transformations are necessary to enable to scheduler
to identify this. These transformations can be viewed as partially scheduling
the polyhedral representation before invoking the scheduler. AlphaZ provides a
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command, called Change of Basis (CoB), to apply affine transforms to statements
of polyhedral domains.3

One of them embeds S2 which nominally has a 2D domain (and the corre-
sponding statement in the second pass) into 3D space, aligning it to be adjacent
to a boundary of the domain of S1. The new domain of S2 becomes (note the
last equality) {t, i1, i2 | 0 ≤ t < tsteps∧ 0 ≤ i1 < N ∧ i2 == n− 1}.

The other complication is that because of the reverse traversal of the i2 loop
of S3, dependences obtained by dataflow analysis [5] are affine, not uniform:
S3[t, i1, i2]→ S2[t, i1, n− i2− 1]. If a CoB (t, i1, i2 → t, i1, n− i2− 1) is
applied to the domain of S3 we get a uniform dependence. After these three
transformations (removing memory-based dependences, and the two CoBs) the
PLuTo scheduler discovers that all loops are fully permutable.

We are not sure of the precise reason why PLuTo scheduling is not able to
identify all dimensions are tilable without these transformations. Parts of PLuTo
scheduling is driven by heuristics, and our conjecture is that these cases are not
well handled. We expect these difficulties can be resolved, and that it is not an
inherent limitation of PLuTo. However, a fully automated tool, prevents a smart
user from so guiding the scheduler. We believe that guiding automated analyses
can significantly help refining automated components of tools.

4.2 Performance of Time Tiled Code

Since PLuTo cannot tile the outer time loop, or fuse many of the loops due to
the issues described above, PLuTo parallelized code contains 4 different parallel
loops within a time step. On the other hand, AlphaZ generated code with time-
tiling consists of a single parallel loop, executing wave-fronts of tiles in parallel.
Because of this we expect the new code to perform significantly better.

We measured the performance of the transformed code on a workstation,
and also on a node in Cray XT6m. The workstation uses two 4 core Xeon5450
processors (8 cores total), 16GB of memory, and running 64-bit Linux. A node
in the Cray XT6m has two 12 core Opteron processors, and 32GB of memory.
We used GCC/4.6.3 with -O3 -fopenmp options on the Xeon workstation, and
CrayCC/5.04with -O3 option on the Cray. PLuTo was used with options --tile
--parallel --noprevector, since prevector targets ICC.

AlphaZ was supplied with the original C code along with a script file specify-
ing pre-scheduling transformations described above, and then used the PLuTo
scheduler to complete the scheduling. Memory allocation was specified in the
script as well, and additional copies of X were allocated to avoid the memory-
based dependences discussed above.

For all generated programs, only a limited set of tile sizes were tried (8, 16,
32, 64 in all dimensions), and we report the best performance out of these. The

3 This is similar to the preprocessing of code generation from unions of polyhedra [1],
where affine transforms are applied such that the desired schedule is followed by lex-
icographic scan of unions of polyhedra. Since the program representation in AlphaZ

is equational, any bijective affine transformation is a legal CoB.
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Fig. 1. Speedup of adi.c parallelized with PLuTo and AlphaZ, with respect to the
execution time of the unmodified adi.c from PolyBench/C 3.2. Observe that coarser
grained parallelism with time-tiling leads to significantly better scalability with higher
core count on the Cray.

problem size was selected to have cubic iteration space that runs for roughly 60
seconds with the original benchmark on Xeon environment (tsteps = n = 1200).

The results are summarized in Figure 1, confirming that the time-tiled version
performs much better. On the Cray, we can observe diminishing returns of adding
more cores with PLuTo parallelized codes, since only the inner two loops are
parallelized. AlphaZ generated code does require more memory (this can actually,
be further reduced), but at the same time, time-tiling exposes temporal reuse of
the memory hierarchies.

5 Reducing Complexity of RNA Folding

In this section, we outline steps to reduce the complexity of an application for
RNA folding. Complete details, including the source Alpha program as well as
the script, can be found in related Master’s thesis and technical report [18, 33].
RNA secondary structure prediction, or RNA folding, is a widely used algorithm
in bio-informatics. The original algorithm has O(N4) complexity, but an O(N3)
algorithm has been proposed by Lyngso et. al [13]. However, no implementation
of the O(N3) algorithm is publicly available.4 This example illustrates one of
the most powerful transformations in AlphaZ that is enabled through explicit

4 Discussion with the original authors elicited the response that (i) the algorithm was
“too complicated to implement” except in an early prototype, and (ii) limiting one
of the parameters to 30 was “good enough” in practice.
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representation of reductions. Specifically, we show how the equations that de-
scribe the algorithm can be systematically transformed to derive the O(N3)
algorithm.

5.1 Reductions in AlphaZ

Reductions, associative and commutative operators applied to collections of val-
ues, are first class Alpha expressions [12]. It is well known that reductions are
important patterns and have important performance implications. Moreover, re-
ductions raise the level of abstraction over chains of dependences.

Alpha reductions are written as reduce(op, fp, E), where op is the reduction
operator, fp is a projection function, and E is the expression being reduced.
The projection function fp is an affine function that maps points in Zn to Zm,
where m is usually smaller than n. When multiple points in Zn is mapped to
the same point in Zm, the values of E at these points are combined using the
reduction operator. For example, commonly used mathematical notations such as

Xi =
n∑

j=0

Ai,j is expressed as X(i) = reduce(+, (i, j → i), A(i, j)). This is more

general than mathematical notations, allowing us to easily express reductions
with non-canonic projections, such as (i, j → i+ j).

5.2 Simplifying Reductions

Simplifying Reductions [6] is the key transformation for reducing complexity
of programs. We first explain the key idea behind this transformation with a
simple (almost trivial) example. Consider an Alpha program computing a single
variable, Xi, over a domain {i | 0 ≤ i < N} using the following equation

X [i] = reduce(+, {j < i} : A[j])

where each element is the sum of subsets of values Aj , 0 ≤ j < i < N . Viewed
naively, this would specify that each element of X is an (independent) reduction,
and this would take O(N2) time to compute. Of course this is actually a prefix
(scan) computation, and can be written as:

Xi =

{
i = 0 : Ai

i > 0 : Ai +Xi−1

Automatically detecting scans is the core of the reduction simplification algo-
rithm [6]. The key idea is based on the observation that the expression inside the
reduction (i.e., the reduction body) exhibits reuse: for the example above, at all
points in a 2D space the value of the expression is X [j] so there is reuse along the
i direction. Reuse in the body of a reduction and its interaction with the domain
boundaries leads to a scan. All the required transformations are implemented
as AlphaZ commands. Some of the analyses performed are also implemented,
but applying simplifying reductions to RNA folding requires additional human
analysis, and thus human guided transformation.
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5.3 RNA Folding in UNAfold

UNAfold computes the RNA secondary structure through a dynamic program-
ming algorithm, that uses a prediction model based on thermodynamics [14] and
finds a structure with minimal free energy. For an RNA sequence of length N ,
the algorithm computes, for each subsequence from i to j, three tables (arrays)
of free energy such that 1 ≤ i ≤ j ≤ N . The tables Q(i, j), Q′(i, j), and QM(i, j)
represent the free energy for three different substructures that may be formed.
The following equation is the part of the original formulation corresponding to
the dominant term that makes the algorithm O(N4).

Q′(i, j) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
...

mini<i′<j′<j

{
EBI(i, j, i

′, j′)
Q′(i′, j′)

...

(1)

Notice that the term uses four free variables i,j,i′ and j′, and since the constraints
on these indices constitute the domain {i, j, i′, j′|1 ≤ i < i′ < j′ < j ≤ N}, it
is easy to see the O(N4) complexity. The term corresponds to a substructure
called internal loops.

5.4 Simplification

We focus on the dominating term in calculating the energy to illustrate the
simplification. The term rewritten as a separate equation in Alpha is as follows

Q′(i, j) = reduce(min, (i, j, i′, j′ → i, j), EBI(i, j, i
′, j′) +Q′(i′, j′));

where, the function EBI is defined as follows:

EBI(i, j, i
′, j′) = Asym(i′−i−j+j′)+SP (i

′−i+j−j′−2)+ES(i, j)+ES(i
′, j′)

The body of the reduction does not exhibit any reuse, so we need to first inline
the energy function EBI . Doing this, and distributing out ES(i, j) gives the
following:

Q′(i, j) = ES(i, j) + reduce

⎛
⎜⎝min, (i, j, i′, j′ → i, j),

⎧⎪⎨
⎪⎩
Asym(i′ − i− j + j′) +

SP (i
′ − i+ j − j′ − 2) +

ES(i
′, j′) +Q′(i′, j′)

⎞
⎟⎠
(2)

The reduction still cannot be simplified, and the simplification algorithm [6]
algorithm attempts to decompose the reduction from into two reductions (like
expressing a double summation as a sum of a sum). The algorithm uses a dynamic
programming algorithm to search through possible decompositions. One of the
decompositions that lead to complexity reduction is the following:
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Q′(i, j) = ES(i, j) + reduce (min, (i, j, d → i, j), Q′′(i, j, d))

Q′′(i, j, d) = reduce

⎛
⎜⎜⎝min, (i, j, i′, j′ → i, j, j′ − i′),

⎧⎪⎪⎨
⎪⎪⎩
Asym(i′ − i− j + j′) +

SP (i
′ − i+ j − j′ − 2) +

ES(i
′, j′) +

Q′(i′, j′)

⎞
⎟⎟⎠

After the decomposition, the expression SP (i
′ − i + j − j′) can be distributed

out from the inner reduction. This can be found through analysis using null
spaces of projection and access functions, which is also part of the simplifying
reduction algorithm. In short, the analysis finds that null space of the access
Sp(i

′−i+j−j′−2) contains the null space of the projection function (i, j, i′, j′ →
i, j, j′ − i′). Thus, Sp term can be factored out from the reduction.

Then the remaining expressions evaluate to the same value for all points
[i′, j′, x];x = j − i. Taking advantage of this reuse and the property of the
〈min,+〉 semi-ring allows the reduction to be simplified.

5.5 Need for Human Guidance

The above steps leading to reduction simplification can be mostly automated. In
fact, once we have Equation 2, all the analyses required to apply the sequence of
transformations are available. However, extracting Equation 2 from Equation 1
requires separating out boundary cases and other branches. In addition, EBI

must be inlined for the algorithm to detect reuse in the reduction.
Although our eventual goal would be fully automatic these steps, the current

implementation of AlphaZ provides a powerful set of transformations that enable
the user to systematically derive the lower complexity program. For RNA folding,
the presence of reuse in the reduction was known [13], and such domain specific
knowledge can be utilized by our system that gives the users flexible control
over different transformations when needed. The specific semantics preserving
transformations that we used are:

– SimplifyingReduction This is the key transformation that replaces a re-
duction with reuse by a scan.

– Inline (Inline EBI)
– FactorOutFromReductionUse distributivity to factor out terms from within

reductions, where possible.
– ReductionDecomposition Decomposition of multidimensional reductions

into a reduction of (sub) reductions.

In addition, some pre-processing transformations were also used.

5.6 Validation

We have applied the above transformation using AlphaZ to the UNAfold 3.8 [14].
The function fillMatrices 1 in hybrid-ss-min.c was written in Alpha, and
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Fig. 2. Execution Time of UNAfold after simplifying reduction compared with the
original implementation. The two lines shown are with slopes 4 and 3.

the simplifying transformation was applied. The sequential code generator in
AlphaZ code was used to generate the simplified version of fillMatrices 1 and
replaced with the original function. Both the original and the simplified versions
were compiled with GCC/4.5.1, with -O3 option and the execution times were
measured on a machine with Core2Duo 1.86GHz and 6GB of memory.

Figure 2 shows the measured performance (raw and log-log). It clearly shows
the reduction in complexity, and, as expected, the speedups with transformed
code becomes greater and greater as the sequence length grows.

6 Conclusions and Future Work

We have presented a system for exploring analyses and transformations in the
polyhedral model. The two key features in our system are (i) the ability to
re-consider memory allocations, and (ii) explicit representation of reductions.

Polyhedral representations of programs are expressed as systems of equations;
which can either be extracted from loop nests, or programmed directly in an
equational language. These polyhedral programs are manipulated using script
driven transformations, to reflect human analyses or domain specific knowledge
to help guide optimizing translations. Then executable code is generated by
specifying schedule, memory allocation, and other implementation details.

AlphaZ has a number of transformations and code generators, and others are
actively being developed. In addition to what previous tools have focused on,
we believe that exploring memory allocations is very important. We expect it to
become even more important as we target distributed memory machines.
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While many tools focus on fully automated program transformations, a tool
like AlphaZ that expose as much control to the user is helpful in developing and
prototyping new ideas.

Although we have not presented details of our code generators, our code gen-
erators are highly modularized and extensible, enabling exploration of code gen-
erators as well. Our ongoing efforts are towards extending the code generators
to other platforms such as CUDA, OpenCL, etc., and in implementing high level
optimizations involving reductions, and many more.
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Abstract. Software engineers are highly dependent on compiler technol-
ogy to create efficient programs. Optimal execution time is currently the
most important criteria in the HPC field; to achieve this the user applies
the common compiler option -O3. The following paper extensively tests
the other performance options available and concludes that, although old
compiler versions could benefit from compiler flag combinations, modern
compilers perform admirably at the commonly used -O3 level.

The paper presents the Universal Learning Machine (ULM) frame-
work, which combines different tools together to predict the best flags
from data gathered offline. The ULM framework evaluates three hundred
kernels extracted from 144 benchmark applications. It automatically pro-
cesses more than ten thousand compiler flag combinations for each kernel.
In order to perform a complete study, the experimental setup includes
three modern mainstream compilers and four different architectures. For
62% of kernels, the optimal flag is the generic optimization level -O3.

For the remaining 38% of kernels, an extension to the ULM framework
allows a user to instantly obtain the optimal flag combination, using a
static prediction method. The prediction method examines four known
machine learning algorithms, Nearest Neighbor, Stochastic Gradient De-
scent, and Support Vector Machines (SVM). ULM used SVM for the
best results of a 92% accuracy rate for the considered kernels.

Keywords: compilers, optimization, machine, learning, performance,
modeling, high, performance, computing.

1 Introduction and Motivation

During the last decade, hardware and compilers have changed dramatically,
which is why it is necessary to revise the existing optimization methods [1–
5] and propose new ones. Unlike previous studies, this study shows for 62% of
cases, the code achieves the best performance with -O3 and no further tweaking
of compiler flags helps. The precise evaluation methodology and accurate flag
selection procedure presents reproducible results.

Compiler optimization efficiency depends not only the code, but also on the ar-
chitecture, workload, and other parameters. Unpredictable dependencies between
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optimizations only complicate the problem. In an attempt to find a solution, com-
piler developers couple useful optimizations in groups, also called levels. Default
optimization levels like -O3 and -fast are the most common combination of flags
among users. Generally efficient, -O3 can be a potential cause of sub-optimal per-
formance, thus careful evaluation is vital to achieving maximum performance.

The compiler research community proposed a practical approach. For exam-
ple, Bodin et al. [6] describe the flag selection as an optimization problem in the
transformation space. They introduced an iterative compilation technique and
demonstrated a way to find an optimal combination after exploring less than 1%
of the transformation space. Unfortunately, transformation space for modern
compilers is large and keeps growing. Therefore, it is infeasible to exhaustively
explore even 1% of the whole transformation space; because for example, the
GNU compiler has more than 208 independent options and the size of the ex-
ploration space is 2208, i.e. 1% is close to 2201. Moreover, in the last five years,
the total number of GNU compiler options grew from sixty to more than two
hundred! To speedup the search, researchers apply modern machine learning
techniques. Machine learning for selecting compiler flags is a mainstream con-
cept [2–5, 7]. Using pre-trained model machine learning based solution allows
the user to infer optimal flags on-demand.

The major contributions of the paper are:

– a diverse set of 144 industrial applications with 326 kernels; evaluated with
three optimizing compiler on four mainstream architectures

– an application model for comparison with fifty-six static and twenty-three
dynamic features

– frequently, performance with -O3 is optimal or near optimal
– for the exceptional applications the created framework predicts optimal flags

with 92% accuracy

The initial step to characterizing applications is to consider static and dynamic
features. Section 2 presents the chosen features to characterize applications. Once
the initial study was performed, Section 3 describes the framework and its con-
tributions. Evaluating three compilers on four architectures led to the conclusion
that a classification phase is necessary. Section 4 explains how different applica-
tion classes divide the considered 326 kernels. For about 38% of the kernels, -O3
does not provide the best performance. Therefore, Section 5 describes a machine
learning based method to predict the optimal flag, which results in 92% of correct
compiler flag selection. Finally, Sections 6 and 7 present related works on machine
learning techniques applied to the compilation field and conclude the paper.

2 Application Characterization and Analysis

The Universal Learning Machine (ULM) framework is a fully automated tool to
extract and analyze applications. As a result ULM derives optimal combination
of flags from the analyzed data using machine learning. While the next section
presents a complete evaluation of ULM, this section introduces its application
characterization and analysis.
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To predict optimal compiler flags, the ULM framework uses a combination
of program internal properties and behavioral characteristics, which compose a
feature space. The training sample of vectors in the feature space construct a pre-
diction model. A model’s efficiency is its prediction accuracy rate. The accuracy
rate directly depends on the chosen feature space and prediction method.

Feature space vectors consist of internal properties and behavioral character-
istics, which construct an application vector feature space. Each vector consists
of floating-point numbers, logical, or categorical values. Finding a representative
set of features is a well-known problem in the machine learning field[8].

It is important to keep the feature space as small as possible to improve
classification accuracy and reduce a model’s training time. There are two main
approaches to characterize an application. First, the ULM framework extracts
static features from the source or the compiler’s intermediate, or low level pro-
gram representation. Features reflect inner properties of an application and are
independent from the hardware, workload, and other execution conditions. Static
features do not require any execution. Contrary to static features, dynamic fea-
tures are a result of measurement. Dynamic features are highly dependent on
execution conditions. In terms of a training time dynamic features are more
costly to extract than static features, but at the same time dynamic features
can dramatically improve the prediction accuracy.

2.1 Static Features

The classic approach to static feature selection is based on the general knowledge
of compiler construction and program optimizations fields. The presented work
reuses static features from the MILEPOST GCC project [5, 9, 10]. MILEPOST
GCC extracts fifty-six static features from an application’s intermediate repre-
sentation reused in the work [5, 10]. The grouped representation is illustrated in
Table 1. Groups represent characteristics of basic blocks, edges between them,
variables dependencies through phi-nodes, number of variables, their types, and
etc. Finally, all groups are combined in a fifty-six feature vector and further used
in the machine learning algorithms to predict flags for optimal performance.

In the work by Namolaru et al. [10], the authors used deductive methods,
and Datalog-like language, to infer characteristics dependent on optimizations.

Table 1. The static semantic feature groups

Group Description

Plain Basic Blocks number and type of basic blocks
Edges number and type of edges
Number of Instructions normalization metric to render the comparison

between different programs [5, 10]
Phi-Nodes different types of dependencies in the code
Constants number and type of constants
Variables number, type, and scope of variables
Branches number and type of branches in the method



Compiler Optimizations: Machine Learning versus O3 35

Fig. 1. Principal component analysis applied to static features illustrates program
clusters

Even though the original study presents work for a custom embedded system,
it was further evaluated on a general purpose desktop and server systems [5],
which proved to be useful to represent different applications. In order to compare
different applications, the extracted features should be normalized, as large codes
tend to have large absolute values, but might be relatively similar to smaller
codes. Similar to works by Fursin et al. [5, 10], the normalization metric is the
number of instructions.

The scatter plot of the first two principal components for static features space
is illustrated in Figure 1. The Principal Component Analysis (PCA) is a tech-
nique of orthogonal transformations to convert observations from the original
feature space into a set of uncorrelated and independent variables, called princi-
pal components [8]. There are two large clusters and a few single outliers visible
in Figure 1. Even though the codelets come from a diverse domain set, from
the static features point of view the majority of kernels are sensitive to com-
piler transformations. Further, experimental evaluation confirms this sensitivity
hypothesis in Section 3.

2.2 Dynamic Features

Static features are not enough to capture dynamic behavior. For example, a
dramatic changes in modern memory systems hide some performance problems.
Workload, execution environment, and hardware architecture precisely charac-
terize the application’s behavior. Without dynamic features it would be impossi-
ble to detect such changes and correct the model accordingly. The overall optimal
flags prediction accuracy improves with dynamic features. To capture dynamic
behavior the ULM framework uses hardware performance counters as dynamic
features. The use of hardware performance counters for application performance
analysis and tuning became mainstream almost a decade ago [11].
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Counter names vary from architecture to architecture complicating counter
gathering. In order to complete the task, ULM uses the Like I Knew What
I am Doing (LIKWID) tool to gather hardware performance counters, which
ships groups of counters and metrics for a set of architectures [12]. Each group
corresponds to one or more performance problems. For each group, on all four ar-
chitectures, listed in the experimental evaluation section, ULM gathers hardware
performance counters. The counter name depends on the microarchitecture. To
compare different applications with performance counters the framework uses
the metrics from the counters, which are microarchitecture independent. The
system derives metrics from the hardware performance counters listed in Ta-
ble 2. Similar to static features, dynamic features compose the dynamic feature
vector space with a distance function.

Table 2. The list of dynamic feature groups

Group Description

Cycle Count Group count core cycles
Branch Prediction the branch miss prediction
Data Cache Performance data cache miss and cache utilization

ratios for L1, L2, and L3
Vectorization Group number of single and double precision

floating-point operations per second

ULM uses both static and dynamic features to classify applications. Using
such classification and training results, ULM instantly predicts optimal flags. The
next section describes the created framework and the classification procedure.

3 The ULM Framework

ULM automatically predicts the optimal combination of flags for any given
application, using offline trained models and requiring no execution. It only
uses compiler flags to optimize applications. To predict optimal compiler flags
for a given application, the framework first needs to recognize the application’s
class. Each application has its optimal combination as a class label. For any
new application, ULM predicts optimal flags by searching for a similar classified
application and reuses the class label, e.g. an optimal combination of flags.

ULM uses three optimization strategies to select compiler flags for evalua-
tion. The first strategy is the compiler’s approach - the ULM framework selects
default compiler optimization levels -O0, -O1, -O2, -O3, and -fast to optimize
hot functions. The second strategy is the performance engineer approach - a
collection of performance engineer recipes for optimization based on the kernel
knowledge, optimization manuals [13, 14], and personal experience. ULM se-
lects flags for loop unrolling optimization and further vectorization with -O3 to
optimize kernels. The third strategy is the auto-tuning researcher’s approach.
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ULM randomly selects different compiler flags and, through trial and error, de-
termines the best combination. After selecting ten thousand different randomly
generated combinations of flags, ULM prunes each to the minimum, while main-
taining the performance. All three methods result in more than ten thousand
different flags, which ULM applies to applications and selects the one with the
highest performance.

The evaluation methodology the ULM framework uses to compute applica-
tion execution time is a reproducible process. Reproducibility is important for
reusing the experimental results and applying them to real world codes. Exe-
cution time value implicitly drives ULM’s decisions on the flag combination to
apply. Prediction quality depends not only on the feature space and classification
method, but also on the training set. The quality improves, when the training
set covers the most possible cases. Thus, it is important to construct a model
from a large and diverse set of kernels.

3.1 Applications and Codelets

The ULM framework uses a large training set of kernels for training and valida-
tion. Each kernel together with its data set form a codelet. A codelet is a pure
function with data. Here, a pure function is a function with a single entry, single
exit, and without side effects. The difference between the execution time of a
codelet and the original application could be of one order of magnitude.

ULM uses the Automatic Speculative Thread EXtractor (ASTEX) [15] tool
to extract codelets from applications. ASTEX extracts codelets by capturing
hot paths with static analysis and profiling the application. Then, ASTEX saves
the memory state and provides wrapper functions to load the memory back on
demand. From the considered 144 applications, the ASTEX tool extracted 326
codelets, approximately two codelets per application. The full list of applications
used and the number of kernels extracted from the application is presented in
Table 3. The considered applications represent a diverse domain set from bit
manipulation to complex graph problems.

Using the ASTEX tool, the ULM framework focuses on codelet optimization
without paying the price for full application execution. The execution time is a
result of the following factors: the compiler, runtime environment, architecture,
and workload. In order to present a complete view, ULM performs iterative
compilation for four different architectures and three optimizing compilers.

3.2 Experimental Setup

Modern compilers rapidly evolve, adapting to new architectures. In order to
present the most up to date results, ULM evaluates recent versions of the main
industrial and open source compilers, such as Intel Parallel Studio version 12.1,
GNU Compiler Collection version 4.6.1, and LLVM version 2.9. The Intel Paral-
lel Studio version 12.1 is an industrial optimizing compiler set for C, C++, and
FORTRAN programming languages. For Intel Parallel Studio, eighty-six differ-
ent options are available for tuning. The GNU Compiler Collection version 4.6.1
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Table 3. The list of evaluated applications and the associated number of extracted
codelets

MiBench NAS UTDSP

Math and bit manipulation 5 Conjugate gradient (CG) 1 Multimedia 8
Multimedia 6 Embarrassingly parallel (EP) 1 Video codecs 3
Graphs and trees 2 FFT (FT) 1 Graph 6
Text manipulation 4 Lower-up Gauss-Seidel (LU) 1 Compression 6
Cryptography 6 Scalar pentadiagonal (SP) 1 FFT 5
Telecommunication 4 Block triagonal (BT) 1 Lattice filter 8

LMS FIR filter 9

SPEC 2000 SPEC 2006 SNU-RT

177.mesa 1 445.gobmk engine 1 Video codec 3
179.art 1 462.libquantum 1 Graph 6
188.ammp 1 458.sjeng 1

464.h264ref 1
401.bzip 1
429.mcf 1
433.milc 1

Powerstone Miscellaneous

Bit manipulation 2 libquantum 0.2.4 and 0.9.1 2
Graphics 2
Encoding/decoding 1
Control 1
Integer arithmetic 1
Encryption 1
Pattern recognition 1

is a standard open source set of compilers for a broad range of programming
languages like C, C++, and FORTRAN, which has more than two hundred dif-
ferent options available for the compiler suite. Among the possibilities are eighty
parameters with logical or integer values. LLVM version 2.9 is an alternative
open source compiler famous for its clean and prototyping-friendly source code.
Version 2.9 provides about one hundred different compiler options. For each
compiler, ULM randomly generates ten thousand unique combinations.

The ULM framework removes flags, which do not contribute any observable
performance gain, from all selected combinations of flags. Different flag com-
binations may still result in the same binaries. After pruning, ULM compiles
the application with a flag combination and executes the generated binary, if

Table 4. The test machines configurations

Processor Frequency L1 L2 L3

Atom 1.66 GHz 32Kb 512Kb -
Core 2 Duo 2.40 GHz 64Kb 3Mb -
Nehalem 1.86 GHz 64Kb 256Kb 12Mb
Sandy Bridge 3.30 GHz 64Kb 256Kb 8Mb
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a check-sum for the binary is not found in the already tested binaries. The
list of experimental architectures is presented in Table 4. Nehalem and Sandy
Bridge are current architectures. The Core2 is an old architecture, thus the op-
timization heuristics are well-tuned for producing optimal code. Finally, Atom
is a low-power in-order architecture and is closer to embedded systems than the
other three architectures. The test machines run the Debian GNU/Linux operat-
ing system for x86 64-bit architecture, with a 2.6.38.8 kernel version. Indeed, the
presented evaluation setup covers the vast majority of architectures commonly
used at the moment.

3.3 Measurement Methodology

The measurement methodology is an accurate procedure, with precise metrics
and parameters. The main performance metric is the number of processor cycles.
The measurement process organization is presented in Figure 2. First, the ULM
framework’s execution harness implements the measurement methodology from
Figure 2. The harness calls the codelet a fixed amount of times to smooth side
effects, such as operating system’s context switches. The result is the execution
time metrics, the total execution time divided by the number of repetitions.
A repetition of a repetition is a metarepetition. The metarepetition result is
an execution time series. Furthermore, for each series the execution harness
computes statistical metrics: average, median, min, max, and variance. Finally,
ULM repeats the whole process thirty times to gather statistically rigorous

Metarepetition

Start Measure

Stop Measure

Repetition

Codelet

... 
movl -16(%ebp), %eax

 sall $2, %eax

 addl -20(%ebp), %eax

 movl %edx, (%eax)

...    

Measure / Repetitions 
= 

Actual Codelet Time

Fig. 2. Measurement process diagram
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execution data. ULM repeats the whole process thirty times to gather statisti-
cally rigorous execution data.

One of the biggest problems in performance optimization is reproducibility. To
reuse the performance optimization knowledge for an application, it is important
for results to be reproducible. The experimental setup configuration keeps the
variance of execution time at less than 0.3%. The low variance allows ULM to
apply tuning data obtained for one application to optimize another with a high
confidence in achieved result.

3.4 Results and Analysis

According to the experimental data, 62% of codelets compiled with Intel Parallel
Studio, 65% of codelets compiled with gcc, and 100% of codelets compiled with
LLVM, the -O3 optimization level is the optimal flag combination. For the rest of
the codes, the ULM framework is able to achieve a significant performance gain
from 1.15 to 2.2 times. According to Figure 3, most codelets achieve no more
than 20% speedup. Additionally, for a majority of the codelets it is not possible
to improve the performance compared to -O3 only by tweaking compiler flags.
Using the pre-trained data, ULM is able to instantly predict the optimal flags.
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4 Predicting Optimal Flags

At the classification phase, ULM predicts a class for a given application. The class
is optimal flag combination for a given application. The prediction might result
with several classes for a given application. If so, the ULM framework selects the
class with the smallest combination of flags within 5% of the best speedup. The
majority of applications belong to the -O3 class. For these applications -O3 is
the optimal flag and no prediction is needed. However, for other applications, it
is possible to achieve a substantial performance gain by tweaking compiler flags.
For such applications ULM predicts optimal compiler flags based on the trained
classes and application characteristics.

The prediction quality depends on the feature space and the classification
method. TheULM frameworkmeasures the efficiency of each classificationmethod
and selects the most efficient one. Classification methods efficiency, or the accu-
racy ratio, is the number of correctly predicted cases to the total number of
cases. Next, ULM calculates the accuracy level using the standard leave-one-out
validation method [8]. Finally, ULM automatically recommends user the most
accurate prediction method.

Most previous works concentrate on one prediction method. Unlike these [1–
5] previous works, The ULM framework compares popular classification meth-
ods from the previous studies: support vector machines, nearest neighbor, and
stochastic gradient descent [8]. Each classification method is evaluated with
leave-one-out method.

The leave-one-out method is one of the most precise methods to validate a
classification algorithm and calculate its accuracy rate. The principle of leave-
one-out validation procedure selects one observation and builds a model for
all other observations except the selected one, then computes the error. The
procedure continues for each available observation. The result of such a procedure
is an accumulated error. However, the leave-one-out validation method is slow
and requires a large amount of time and computational resources. The total
validation time is proportional to the number of observations and depends on
the time spent building a model.

First, for each architecture, application, and compiler, the framework compiles
an application with all the selected flags: default optimization levels, flags with
unrolling, and ten thousand randomly generated flags. Then, ULM executes the
application, computes the execution time according to the measurement method-
ology, selects beneficial combinations, and uses them as class labels. Finally,
ULM groups applications by class. The accuracy rates for Intel icc compiler

Table 5. Average Classification for Intel icc compiler

Classification Method Sandy Bridge Atom
Nehalem Core 2

Nearest Neighbor 53% 50%
SGD 60% 55%
SVM 92% 90%
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are presented in Table 5. Gcc compiler had almost identical values as the ones
showed in Table 5. The results for LLVM compiler do not appear in Table 5 as
the prediction is always correct for any method. In fact, for the LLVM compiler
-O3 is the optimal combination for 100% of kernels. Using dynamic features the
average prediction accuracy is higher than using static features. ULM achieves
the highest accuracy level using multi-class support vector machines with Gaus-
sian Radial Bases Function [8].

5 Related Work

Currently, iterative compilation techniques are almost the standard approach
to select the best flags. The researchers proposed different methods to reduce
flag combination search time: genetic algorithms [4, 16], iterative algorithms
like Combined Elimination [17], and even manually constructed models [18, 19].
The main drawback of iterative compilation is its long time to derive optimal
flags. In order to reduce the search time, researchers construct models offline.
Similar to genetic algorithms, decision based schemes [2, 20, 21] analyze the
micro-architecture independent characteristics and infer beneficial optimizations
from these characteristics. Finally, manually constructed models [18, 19] use
a human expert’s knowledge to select the best flags. Existing solutions rarely
reuse models constructed for one application to optimize another application.
Building a model for each new application makes the whole process too costly
to be practically applied. Using pre-trained models, the ULM framework can
instantly propose the best options, by simply looking for an application similar
to the given one.

Fursin et al. [5] used pre-trained models to predict flags for a new application
implemented in the MILEPOST GCC project. Contrary to MILEPOST GCC,
the created ULM framework is not limited to static features and selects the best
machine learning algorithm, thus achieving higher prediction accuracy.

Some previous work uses static features [9] and performance counters [1] to
build a model and predict optimization combinations. According to the results
by Cavazos et al. [1] an approach with performance counters outperforms a
method based on static features. Cavazos et al. [1] use multiplexing to gather
more counters with less executions. The multiplexing is a useful technique, but
imprecise, thus degrading prediction accuracy. The ULM framework does not
use multiplexing, but precise counter values. Gathering precise counter values
requires more executions, but using codelets instead of the whole applications
dramatically reduces the overhead. The focus on hot functions allows the frame-
work to gather all the hardware performance counters with low overhead and
high precision.

Recently, there are two machine learning compilers available: MILEPOST
GCC, an open source compiler[5] and IBMTestarossa, a proprietary JIT compiler
[7]. TheMILEPOSTGCC authors evaluated their compiler on themulti-objective
optimization of MiBench benchmarks and industrial database Berkeley DB. The
MILEPOST’s results opened opportunities for machine learning in compilers and
performance optimization.
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The presented study reuses features from MILEPOST GCC [5, 10] to build a
model, but also improves the feature space with performance counters. Similar
to IBM Testarossa [7] the ULM framework uses SVM to select the best flags.
The framework presented in this paper is not limited to SVM, but evaluates
several machine learning algorithms to select the best one. Contrary to previous
studies, the presented evaluation process focuses on kernels, rather than whole
applications, which allows ULM to examine large experimental data for more
architectures, compilers, and compiler options. Thus providing practical results
for a user.

6 Conclusions

This work demonstrates the quality of the code produced by the modern optimiz-
ing compilers. Indeed, for 62% of considered kernels, four different architectures,
and all three compilers -O3 is enough. However, for the other 38% of applications
the default compiler heuristics are not even near optimal and it is possible to
produce a better code with a combination of flags, found with iterative compi-
lation.

For any given application the proposed ULM framework instantly predicts
the optimal combination of flags from a pre-trained model In this study, ULM
evaluated a large set of more than three hundred codelets extracted from 144
benchmark applications. Finally, using Support Vector Machines ULM achieved
found the best optimization flag for 92% of kernels with a low overhead. The
ULM framework thus provides the user with an easy to use tool to determine
the best compiler flags before compiling. Doing so augments the usability of the
tool since the user is no longer required to go through the long and complex
procedures of iterative compilation once the initial classification is performed.

Future work consists in considering different architectures to augment ULM’s
coverage and augment the codelet test set to improve application coverage.
Though the initial 300+ codelets provide a solid coverage due to the chosen
applications’ diversity, there is still room to add new applications to the test
suite. There is also a direction that pushes ULM directly into the compiler by
defining a new optimization flag. The new flag will automatically determine the
best compiler flag using ULM’s methodology. Finally, ULM will shift from a
prototype project to a user open-source project in the near future.
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Abstract. This paper describes the stapl Parallel Graph Library, a
high-level framework that abstracts the user from data-distribution and
parallelism details and allows them to concentrate on parallel graph
algorithm development. It includes a customizable distributed graph con-
tainer and a collection of commonly used parallel graph algorithms. The
library introduces pGraph pViews that separate algorithm design from
the container implementation. It supports three graph processing algo-
rithmic paradigms, level-synchronous, asynchronous and coarse-grained,
and provides common graph algorithms based on them. Experimental re-
sults demonstrate improved scalability in performance and data size over
existing graph libraries on more than 16,000 cores and on internet-scale
graphs containing over 16 billion vertices and 250 billion edges.

1 Introduction

Processing large graphs is essential in many domains, from social network and
web-scale graphs to scientific meshes and nuclear reactor-design [2]. As the
graphs span billions of vertices and edges, they may not fit in the memory
of a single-processor system. Using a distributed data-structure allows massive
graphs to be processed quickly and concurrently.

There have been many attempts over the past decade [7,3,8] to allow pro-
grammers to easily express their graph computations in parallel. Despite this,
graph algorithms remain notoriously hard to scalably parallelize, and existing
graph libraries are restrictive in allowing users to express algorithms and require
them to manage many details regarding data-distribution and communication.

This paper describes the stapl Parallel Graph Library (sgl), a generic par-
allel graph library that provides a high-level framework that allows the user to
concentrate on parallel graph algorithm development and relieves them from
the details of the underlying distributed environment. It consists of the stapl
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pGraph pContainer, pGraph pViews that allow for the separation of the algo-
rithm design from the container implementation, and a collection of
parallel graph algorithms. In addition, the library supports level-synchronous,
asynchronous and coarse-grained algorithmic paradigms, which are designed to
support graph processing applications and algorithms. Further, it automates
load balancing and simplifies some locality-related optimizations.

The stapl Parallel Graph Library makes several contributions:

Programmability. One of the main goals of sgl is to provide a similar interface
and level of abstraction as sequential graph libraries by allowing seamless access
to local and remote elements through virtualization using Shared-Object Views,
while providing good performance.

Abstraction. The pGraph pView – a high-level graph abstraction – allows pro-
grammers to completely decouple the design of the graph algorithm from the
implementation of the graph container. Users are left free to express the graph
as is most natural to the problem, while the underlying data-structure and im-
plementation can be chosen to offer maximum performance.

Multiple Algorithmic Paradigms. We provide three paradigms for express-
ing graph algorithms, including two fine-grained (level-sync and async) and one
coarse-grained paradigm. These enable natural expression of algorithms while
extracting the best performance from different input graphs.

Scalable Performance. We demonstrate improved scalability in performance
and data size over tens of thousands of cores compared with existing graph
libraries on standard benchmarks. Moreover, we provide light-weight support for
load balancing through asynchronous data migration, and demonstrate improved
performance and scalability in a real-world production application by mitigating
load-imbalance through automatic redistribution of vertices.

2 STAPL Overview

The pGraph pContainer is built using the pContainer framework (pcf) pro-
vided by the Standard Template Adaptive Parallel Library (stapl). stapl
[4,5,13] is a framework for parallel C++ code development. stapl’s core is a
library of C++ components implementing parallel algorithms (pAlgorithms)
and distributed data structures (pContainers) that have interfaces similar to
the C++ standard library (stl) [10]. Analogous to stl algorithms that use iter-
ators, pAlgorithms are written in terms of pViews [4] so that the same algorithm
can operate on multiple pContainers. pViews facilitate parallel processing by
supporting independent random access to ranges (partitions) of a container’s
elements. The PARAGRAPH represents computations as parallel task graphs.

stapl abstracts the physical parallel elements to the notion of locations – units
of a parallel machine capable of performing computations that have a contiguous
memory address space. Asynchronous communication is allowed through remote
method invocations (RMIs) on shared objects. The stapl runtime system is
portable to different platforms and architectures without modifying other stapl
components.
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//create pgraph with 10 vertices :
p graph<Directed, Multiedges> pg(10);
size t V = pg.num vertices();
pg.add vertex (11);

parallel for each ( i = 0..E)
pg.add edge(rand() % V, rand() % V);

// get the out−degree of vertex 3
size t deg 3 = pg[3].edges (). size ();
// delete a specific edge between two vertices
bool success = pg.delete edge (3,2);

Fig. 1. Typical interaction with
the pGraph pContainer through
methods

// directed graph, multiple allowed edges b/w
// same source & target
p graph<Directed, Multiedges>

// graph with custom vertex and edge properties
p graph<Directed, Multiedges, vertex prop , edge prop>

// vertices block−partitioned ,
// with custom traits for graph
p graph<Directed, Multiedges, int , bool,

blocked partition , my traits>

Fig. 2. Example traits of the pGraph

3 The pGraph Container and Implementation

Graphs can be directed or undirected, with weighted or unweighted edges, and may
or may not allow multiple edges between the same source and target (multigraph)
or self-loops. Applications may associate information (properties/weights) with
vertices and edges.

API. The pGraph pContainer exports a uniform interface for accessing and
manipulating all types of graphs. Every vertex and edge in the graph is uniquely
identified by a vertex (or edge) descriptor that is used for accessing and refer-
encing the element, and for adding or deleting elements.

The pGraph API makes it simple to create graphs and perform common graph
operations (Fig. 1), such as adding, deleting or accessing vertices and edges,
applying functors on graph elements, etc. Issues of concurrency and consistency
are handled by the pGraph. Importantly, users do not have to reason or know
about the locality of the graph elements – they refer to vertices and edges using
descriptors and the pGraph handles the details of locality and forwarding requests
to the required location. This is not the case with many other graph libraries,
e.g., in pbgl, the user can only get the out-degree of a vertex from a local
process, whereas in our model this information is available from all locations.

Users can customize a pGraph by selecting properties and traits (e.g., di-
rectedness, graph representation, storage). sgl provides common options and
implementations for storages, etc., but users may provide their own, or imple-
ment bridges to adapt their data structures to our algorithms. These choices
may affect the performance. For example, a pGraph using vector storage may
be faster than one using map storage if the graph is static (i.e., the number of
vertices is known a priori). It is straightforward to customize a pGraph (Fig. 2).
Further customizations are possible through trait-classes.

Implementation. The pGraph is built using the stapl pContainer framework
(pcf), which provides base classes that handle issues dealing with data distribu-
tion and parallelism and allows the design of the pGraph pContainer to focus
on graph-specific concerns. The pGraph pContainer consists of a set of base
containers (bContainers) and the infrastructure to make them work together
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in parallel. For the pGraph, a bContainer is a base graph data structure that
exports the pGraph’s interface. The bContainer has three layers: the represen-
tation of the graph, the graph storage, and the underlying storage. The graph
storage is tied to the representation, exporting an interface that allows the rep-
resentation to work with the underlying storage. It provides the policies for the
type of underlying storage used by the graph (e.g., vector, hash map, map) for
vertices and edges. It also specifies the type for a vertex and type for an edge,
along with how properties are stored on these. The underlying storage may be
a sequential container unaware of parallelism that is used by the graph to store
vertices and edges, or possibly another pContainer.

The pcf provides a shared-object view [14] that allows users to address any
element globally. pGraph users interact with the container by method invocation,
which the framework forwards to the location where the needed graph elements
reside. Fig. 3 shows the internal base-class implementation for apply async,
which provides an example of address resolution for graph elements using asyn-
chronous communication. The apply async method is provided by the pcf for
applying a higher-order function object on an element of the container. This may
be used to implement methods such as add edge and set vertex property for the
pGraph. Internally, this forwarding is supported by a distributed directory ser-
vice – which is contained within the pGraph – that provides a two-level lookup
of the requested vertex’s location. This is described in the next section.

Shared-Object View Provided by Distributed Directory. The pGraph is a
dynamic container, where vertices may be added and removed, and so vertex IDs
need not be contiguous or even ordered. The pGraph uses a distributed directory
to provide a shared-object view to users and abstract them from dealing with the
details of distribution. While a distributed directory can increase access costs,
other solutions such as centralized models (e.g., the master-slave model employed
by Pregel [8]) which store the entire directory information in a single location,
or replicated directory on all locations, may not scale to large systems.

In this two-level distributed directory scheme, every vertex has a home location
associated with it, which may not be the location of the vertex, but is rather the
location that stores information about the vertex’s locality. It is calculated using
simple closed-form solution (a hash of the vertex’s descriptor), so any requesting
location knows quickly and precisely where to send the request.

In this mechanism, the pGraph first checks if the graph vertex is local, and
if so, then services the request immediately. If the vertex is not found locally,
the local directory computes the home location of that vertex and forwards the
request there. The home location is responsible for knowing the exact location of
the vertex. In some cases, the home location may own the vertex itself, at which
point, the requested action is performed on the vertex. However, in the case that
it does not, the request is forwarded to the location that owns the vertex, where
the request is serviced. As shown by Tanase et. al. [14], address resolution using
asynchronous forwarding provides improved performance over a directory that
determines the element’s location using synchronous communication.
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void base :: apply async( vertex descriptor s ,
Functor f )

if base container . contains(s)
base container .apply(s , f)

else
home = home location(s) // hash−based lookup
if my location == home
owner = directory .lookup(s)
async rmi (owner, apply async(s , f ))

else
async rmi (home, apply async(s , f ))

Fig. 3. Internal base-class implementa-
tion of apply async method illustrat-
ing address resolution

// asynchronous migration and redistribution :
g.migrate(vertex , location )
g. redistribute (cost map, action function =no op)

Source Destination

HomeInquirer

ack
intent

migrate

flush

update

queue
for e0 reqreqreqreqreqreq

req

req

req

1
2

3

4
5

Fig. 4. Asynchronous migration proto-
col for pGraph

Vertex Migration. The sgl provides the novel ability to migrate vertices asyn-
chronously between locations during the execution of the program. An important
property of the migration protocol is that it ensures that sgl algorithms can be
oblivious to the data distribution and also to any migration occurring during
the execution of an algorithm.

The protocol for migration of graph elements implemented by the pGraph is
inspired by directory-based cache coherence techniques [6] and is described in
Fig. 4. When processing an element-migration request from a source location to
a destination location, the source first informs the home location of its intent to
migrate (1). The home location, upon receiving this request, marks the element
as in the process of migration and creates a queue for all requests addressed to
that element. It then sends an acknowledgement (2) to the source location al-
lowing the source to then proceed to migrate the element data to the destination
(3). When the destination receives the element’s data, it stores it and informs the
home location (4) to update its metadata to record that the destination is now
the owner of that element. Finally, the home location updates its metadata and
forwards all pending requests for that element to the destination location (5). If
at any point during migration a location requests access to the element that is
currently being migrated, the requests are forwarded to the home location for
that element, where they are buffered in the queue. The queue is flushed at the
end of migration and requests are forwarded to the new location of the element.

Redistribution. As users of sgl generally may be unaware of localilty, sgl
provides a convenient way to rebalance a pGraph.

Redistribution of a pGraph requires some process for determining the new
distribution. This can be user provided or it can be computed based on some
cost function. For many graph-based scientific applications, a cost function (cost
map) can be determined representing the expected computational costs asso-
ciated with vertices and edges. In sgl, such cost maps can be user provided,
or if no additional information is available, uniform costs can be assumed for
all elements. Given a cost map, a new partition that attempts to address the
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p graph<Directed, Multiedges> pg(N);
graph view view(pg);

strongly connected components(view);
connected components(undirected view(pg));
page rank( implicit view (N, binary tree func ()));

struct binary tree func
size t size ( size t parent) { return 2; }

size t operator()( size t parent , size t idx)
if ( idx == 0)
return 2∗parent+1;

else return 2∗parent+2;

Fig. 5. A few examples of creating and using pGraph pViews, with binary-tree functor

imbalance can be computed by an sgl graph partitioning algorithm. Given a
desired partition, each location computes the vertices that need to be migrated
to itself from other locations and invokes a migrate call on those vertices. Inter-
nally, the asynchronous directory forwards the migration request to the correct
location where the element is located and initiates the migration of that vertex.
Fig. 4 illustrates how redistribution is invoked, and the protocol used in sgl. sgl
allows application programmers to optionally provide callback functions that are
invoked along with each migration call on the corresponding element to allow
any action that needs to be performed during the process of migrating a single
element, such as updating auxiliary data structures.

4 pGraph pViews

pGraph algorithms are written in terms of pViews that export the full interface of
the pGraph and allow iteration over vertices and edges. While arbitrary partitions
can be specified, the default partition of a pGraph pView matches the physical
partition of the graph on the system. This is the pView that can offer the best
performance and it should be used unless it is not suitable for the algorithm.
The pGraph supports the standard pViews provided by stapl, as well as some
graph-specific pViews that are described in this section.

Useful pGraph pViews. The pGraph provides many useful views that can be
used to logically view and manipulate the structure of a graph. For example,
by applying an undirected pGraph pView to a directed graph, one can use an
algorithm that was designed for undirected graphs on a directed graph without
explicitly modifying the graph. Fig. 5 shows the creation of an undirected view
over a directed pGraph which is then used as input for a parallel connected com-
ponents algorithm. This is a particular need for a motion planning application
which constructs a digraph and uses this connectivity information to view the
results and as a stopping condition [16]. We also evaluate the performance of a
parallel connected components algorithm using this pView in Sec. 6.

As another example, some strongly connected components algorithms [9] need
access to the predecessors of a vertex in a digraph. For this, a predecessor pView
can be used to provide the predecessor information without modifying the un-
derlying graph. Or, in some cases, one may wish to work with the complement
of a graph which has the edges of the graph complemented. In this case, instead
of constructing another graph, one could simply apply a complement view.
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Implicit pGraph pViews. A pView is a partitioned collection of element de-
scriptors. While these collections are often explicit, with memory associated with
each element, stapl provides for the creation of pViews that do not have an under-
lying collection of elements, but instead evaluate expressions to provide vertices
and edges lazily. These views may be used when the graph structure can be de-
scribed by a series of formulae, with the benefit of having virtually no storage over-
head, e.g., users can specify the formula using a functor that, given the descriptor
of a vertex, returns the descriptor of its neighboring vertices. This is most useful in
scientific applications that work on regular meshes, where the structure may be
expressed by formulae. This allows the application to avoid storing the vertices
and edges of the graph, freeing up memory for larger problems, or allowing the
program to run on memory-constrained systems.

In Fig. 5, the PageRank algorithm is invoked on an implicit binary tree pView
by specifying the view size and the function object (binary tree func) that de-
scribes the parent-child relationship for a complete binary tree (Fig. 5). This
pView can be passed as input to any generic pGraph algorithm, the execution of
the algorithm lazily creates graph elements on which to operate. Similarly, an
n-dimensional hypercube, a mesh, a torus and other classes of regular graphs
can be generated by using the appropriate algrebraic expressions.

5 Parallel Graph Algorithms

The sgl provides three paradigms to help users design parallel graph algo-
rithms: the level-synchronous paradigm, the asynchronous paradigm and the
coarse-grained paradigm. Using these paradigms, the sgl provides standard
fundamental graph algorithms, including breadth-first search, connected compo-
nents, single-source shortest path, and topological sort, and also more specialized
algorithms such as page rank and particle-swarm optimization.

These paradigms are built on top of algorithmic primitives provided by stapl
(e.g., map func, map reduce) that execute higher-order functions (workfunction)
on elements of a view. To express a new parallel graph algorithm, users choose a
suitable paradigm and provide a workfunction that describes the computation,
either in a fine-grained manner for the level-sync and async paradigms, or in a
coarse-grained manner for the coarse-grained paradigm. Fig. 6 is an example
of a workfunction for sgl’s parallel breadth-first search (BFS).

The workfunction is generic and oblivious to the paradigm (either level-sync
or async). The differences between level-sync and async versions are taken care
of by the paradigm itself. For example, the generic BFS workfunction (bfs wf)
will use the visitor (visit wf) (Fig. 6), and may be used in both, the level-sync
or async paradigms. For fine-grained algorithms (workfunctions that operate on
individual vertices), the pViews provide optimizations that are transparent to
the user to better exploit data locality. Coarse-grained workfunctions receive a
partition of the graph on which to work.
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void BFS (graph view graph, vertex source)
source. color = GREY;
Paradigm(graph view, bfs wf (), bfs visitor ());

bool bfs visitor (Vertex v, int level )
if (v. level > level )
v. level = level ;
v. color = GREY;
return true ;

return false ;

bool bfs wf(Vertex v)
if (v. color == GREY)
for (u : v.neighbors ())
spawn(Visit( bfs visitor ( 1, v. level +1)), u)

v. color = BLACK;
return true ;

return false ;

Fig. 6. Pseudocode for generic BFS and workfunctions (bfs wf and bfs visitor)

Level-Synchronous Algorithms.The Level-synchronous paradigm iteratively
executes tasks on the active vertices of the graph in a BSP fashion [20], with a
global synchronization between each level. Iterative application of the map/re-
duce pattern is one way to express the level-sync paradigm.

The algorithm’s communication happens asynchronously during and after a
level, but is guaranteed to have completed before the next level. In this paradigm,
each level is a phase that works on some set of active vertices, which may change
through the levels. Level-synchronous algorithms tend to perform best when the
number of levels is small since each level requires a costly global synchronization.

Examples of level-sync algorithms are PageRank [11] and level-sync BFS [18].
To create a level-sync BFS, a user would plug-in the generic BFS workfunction
(Fig. 6) into the level-sync paradigm. The workfunction should return true if it
was active for a vertex, and false otherwise. This is used to decide the termination
condition, which occurs when all vertices are inactive (all vertices return false).

Asynchronous Algorithms. The async paradigm, on the other hand, has no
internal synchronizations, and therefore, may perform better on graphs with high
diameter. However, asynchronous algorithms may perform redundant work, as
there are no guarantees for the execution order. For example, an async BFS may
re-visit a vertex multiple times as shorter paths are discovered [12].

The algorithm typically starts with a few fine-grained source tasks over an
initial set of vertices. These may spawn additional tasks on their neighboring
vertices that are asynchronously forwarded to the location where the neighbor
target vertex is currently located (using task forwarding). The algorithm exe-
cution ends when there are no more tasks currently executing or in-flight, as
detected by a termination-detection algorithm. Termination detection is sup-
ported by internal mechanisms that track the number of tasks executing and in
waiting and that performs a reduction across locations.

Since most libraries for graph processing provide one of the two paradigms,
users either have to use different libraries for different input graphs, or potentially
settle for lower performance depending on their input graphs. sgl provides both
paradigms, such that the user workfunction is oblivious to the paradigm selected,
so it is easy to switch paradigms to obtain the best performance in different cases.

Coarse-Grained Algorithms. The coarse-grained paradigm is useful to ex-
press graph computations in which a pGraphmay be partitioned into subgraphs,
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each of which is processed separately. An example of this type of computation
is the coarse-grained connected components algorithm [21]. The first level of the
algorithm computes the connected-components of the local subgraph, ignoring
remote edges. In the second level, the local connected components are merged by
applying a level-synchronous connected components to the graph. Then, the CC
vertices are relabeled with the CC-identifier of their connected component. This
allows the algorithm to reduce communication by coarsening local computation.

As an example, the Motion-Planning applications [17] follow this paradigm,
where they build the graph locally in coarse-grained partitions, and then merge
the graphs to get the final result.

6 Results

We evaluate sgl using multiple input graphs and over multiple platforms and
show that our library performs better, both in terms of scalability and memory
used, than other available graph libraries, Parallel Boost Graph Library (pbgl)
(v0.7.0), Multi-Threaded Graph Library (mtgl) (v1.1.1), and the Graph500
MPI Reference Implementation (benchmark) (v1.2). (see Sec. 7).

We show scalability of sgl algorithms over a representative subset of in-
put graphs, including the Graph500 Benchmark-generated input (that simulates
internet-scale webgraphs and social-networks) and torus graphs (that simulate
scientific meshes). Our experimental studies are conducted on two massively par-
allel systems: a 153,216 core Cray XE6 (Hopper) and a 832 core Power5 cluster
(P5-cluster). For testing mtgl, we run strong-scaling on an 8-core node of a
2,400 core Opteron cluster (opteron). We also run a strong-scaling experiment
on a real-world production application using sgl on opteron.

Graph 500 Benchmark. We implemented the Graph 500 benchmark [1] for
sgl, using the level-sync BFS. We show the results and scalability on Hopper.

In our experiments, while pbgl and benchmark could only accomodate 217

vertices per core at scale, sgl was able to fit a maximum of 220 vertices per core
due to less memory needed for storing outstanding communication requests. We
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show a weak-scaling plot comparing the scalability of the Graph500 benchmark,
pbgl, and sgl for 217 and sgl for 220 vertices per location in Fig. 7(a). The
y-axis reports the throughput in Mega Traversed Edges Per Second (MTEPS).
Both the benchmark and pbgl suffered from memory bottlenecks. While the
Graph500 reference implementation was able to construct the graph, it crashed
during the execution of the algorithm on 1,024 cores and pbgl was unable to
run the algorithm beyond 4,096 cores. On a single core, pbgl performed similar
to sgl, whereas the Graph500 benchmark implementation was 5x faster due to
the use of Compressed Sparse-Row (CSR) representation of the graph, while
pbgl and sgl used the adjacency-list representation. While CSR is faster for
executing the algorithm, it takes a considerable amount of time to build the
graph (Fig. 7(b)) as edges need to be globally shuffled to maintain contiguous
access through the edgelist. The high overhead of generating the CSR prompted
us to use the adjacency-list representation (which is also timed by the Graph500
benchmark specification). We also observed that sgl scaled better than both
the benchmark and pbgl. This is more evident for larger inputs, as more local
work better hides the communication overhead.

The poor scalability of pbgl and the reference implementation may be ex-
plained in part due to insufficient aggregation of messages and the use of ghost
nodes for pbgl. The benchmark generates a large number of small messages
while executing the algorithm, which overloads the MPI buffers of the machine.
The stapl runtime-system aggregates messages by combining messages being
sent to the same location, as well as buffering them and then sends fewer mes-
sages, of bigger size through MPI. This helps achieve better performance – as is
more evident when going off-node (24 cores) – due to sending messages in bulk,
as well as prevents the communication sub-system from running out of memory.
This is also why sgl can run on larger graphs than pbgl and benchmark.

We also compare sgl’s level-sync BFS with mtgl’s BFS implementation using
Qthreads in Fig. 9. We can see that mtgl and sgl exhibit similar behavior on
a shared-memory node in terms of strong scaling.

Parallel Graph Algorithms. In this section, we analyze the performance of
several parallel graph algorithms for various input types.
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the Graph 500 Benchmark graph

Level-Synchronous vs Asynchronous Paradigms. Fig. 10 compares sgl’s async
and level-sync BFS variants on a torus and a Graph500 Benchmark graph. The
async BFS spawns new computation (tasks) asynchronously as it reaches a re-
mote edge, whereas the level-sync algorithm (used in the Graph500 benchmark)
is a BSP-style [20] computation with asynchronous communication-phases. In
both cases, communication is proportional to the number of remote edges.

The torus graph represents the worst-case scenario for parallel BFS scalability
– the algorithm is serialized due to the topology of the torus, and its mapping on
the machine (blocked distribution, sliced vertically). In this worst-case scenario
(Fig. 10 (a)), the async BFS performs much better than the level-sync BFS, due
to the absence of synchronization-points. This trend continues at scale, (upto
4,096 cores shown in Fig. 11). However, for the Graph500 input graph, where
there are vertices with massive out-degree, the async BFS performs much worse
due to the large number of asynchronous tasks created that may need to be
re-created if the vertex is revisited in the traversal (with a smaller distance-
from-source, for example, as the ordering of tasks is not guaranteed). The level-
sync BFS performs well in this case due to the input graph’s low diameter, which
implies fewer synchronization points (one fence per level of BFS, i.e., the number
of global synchronizations is directly proportional to the diameter of the graph).

These experiments suggest that the async paradigm is better suited for large-
diameter graphs, while graphs with smaller diameters and high out-degrees are
better suited to the level-sync paradigm.

Coarse Grained Paradigm. To compare the fine-grained and coarse-grained

paradigms, we ran three versions of the connected components algorithm on a
torus graph: a naive fine-grained, level-sync algorithm, a fine-grained connected
components algorithm on an undirected view of a directed input graph (Sec. 4),
and the coarse-grained connected components algorithm.

Fig. 12 shows weak scaling results for these algorithms. The coarse-grained
algorithm provides better performance and scalability since it reduces the com-
munication and the graph size significantly for the subsequent phases by coars-
ening local connected-components. Up to four-cores, the level-sync paradigms
are faster due to communication-overhead being negligible and the overhead of
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coarsening. However, at scale (>256 cores), the communication overhead starts
becoming more significant. In this scenario, doing extra local work to reduce
communication benefits the performance of the algorithm at high core-counts.
The performance for the level-sync paradigms degrades beyond 1,024 cores, while
the coarse-grained variant scales better. There is also no significant overhead of
the undirected-view over a digraph vs. using the undirected graph as input.

PageRank. We ran sgl PageRank on the input graph generated by the Graph
500 benchmark. Fig. 8 shows weak-scaling results for PageRank on the Graph500
input for pGraph compared to pbgl’s implementation. sgl scales better than
pbgl on Hopper up to 512 cores, after which pbgl crashes while executing the
algorithm, while sgl PageRank continues to scale to the tested 4,096 cores.

Implicit Views. We evaluate the performance and impact of Implicit Views in
(Fig. 13), which are based on evaluation of expressions and use negligible storage
(Sec. 4). We run the PageRank algorithm on a torus graph (weak-scaling), and
compare it with a view over a pGraph in terms of the throughput (Fig. 13(a)).
The Implicit View outperforms the pGraph, as the edges are generated with
simple formulae and do not have the overhead of accessing and traversing the
underlying container storage. In addition, the pGraph exhibits a slight increase in
execution time going from 8 to 16 cores. This can be attributed to the saturation
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of the memory bus on a node for this particular architecture. The performance
of the Implicit View is not affected by this phenomenon, as it does not need to
go to memory but evaluates formulae to generate temporary vertices and edges
instead. We can also observe that the amount of memory consumed (Fig. 13(b))
by Implicit Views is much less, as there is no memory used for storing the vertices
and edges of the graph. The only storage needed is for storing properties that
are written to by PageRank. Also shown is memory consumed by pbgl.

Redistribution: Application and Performance. Motion planning is the
problem of finding a path for a movable object through an environment from a
start to a goal configuration. Sampling-based motion planning is a probabilistic
method consisting of two phases: generation and connection of samples repre-
senting valid (e.g., collision-free) points in configuration space (C-space) of the
object, and querying of the roadmap for valid paths.

Jacobs et. al [17] introduced a scalable parallel application for sampling-based
motion planning that subdivides the C-space into regions and constructs inde-
pendent roadmaps for each region. The regions are then connected to form a
single roadmap. This algorithm was implemented using sgl where both the re-
gions and roadmap are pGraphs. In complex environments, regions could have
varying numbers of obstacles, creating regions with fewer nodes, and leading to
an imbalance in computation during the connection phase. Instrumenting this
real-world production application to invoke pGraph redistribution support on
the region graph helps the application scale, as well as run faster on unbalanced
inputs (Fig. 14) with minimal input from the application, as the application
needs only provide the costs it associates with each vertex.

7 Related Work

While much effort has been put into making array-based data structures suitable
for parallel programming, graphs have not received as much attention. This
section reviews some of the more relevant projects in this area.
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Graph500 [1] provides a reference implementation for its benchmark, but is
not intended to be a generic library. It provides a baseline for our performance
comparisons as it is how users naturally express parallel BFS in MPI.

The Parallel Boost Graph Library (pbgl) [7] is a stand-alone graph library
that is closest to the goals of sgl. An important difference from sgl is that since
pbgl does not have a shared-object view, it exposes users to explicit knowledge
of parallelism and data distribution details through the use of process groups.
pbgl’s interface requires the user to know explicitly the location of a vertex
before any operations may be performed on it. In particular, many methods in
pbgl require the vertex/edge they are operating on to be local to the process, and
therefore, there is no locality-agnostic way to access remote vertices and edges.
This added complexity affects the programmer’s ability to create scalable graph
algorithms. Another difference is that pbgl only provides the ability to express
level-sync algorithms. Further, pbgl is based on MPI, whereas sgl can use
different communication libraries through the portable stapl runtime system.

The Multi-Threaded Graph Library (mtgl) [3] is designed to work on Cray
XMP massively multithreaded machines, and utilize their unique architectural
features. It can be ported to other platforms using the QThreads library, which
requires the programmer to know the QThreads API, as well as details of multi-
threaded programming. However, mtgl is limited to shared-memory systems.

Google’s Pregel [8] is a library for processing graphs in parallel that empha-
sizes vertex-centric computation and algorithm design that only supports Bulk
Synchronous Processing (BSP) style [20] algorithms. It is restrictive in allowing
users to read remote vertices, as it does not provide a shared-memory view. Fur-
ther, the representation of the graph and its storage cannot be customized to suit
the needs of the application. Pregel is also a stand-alone framework that does
not provide other containers. Finally, Pregel employs a master-slave model which
may limit scalability. Neither Pregel, nor mtgl, nor pbgl provide asynchronous
or coarse-grained paradigms.

Green-Marl is a domain-specific language for graph analysis and provides an
implementation for shared-memory systems [19]. It allows users to write algo-
rithms naturally, while the compiler generates parallel code for different targets.

8 Conclusion

This work describes the stapl Parallel Graph Library, a generic, extensible and
scalable parallel graph library built on the stapl infrastructure. It provides a
highly customizable parallel graph container, support for various algorithmic
paradigms to express parallel graph algorithms, and useful abstractions in the
form of pGraph pViews. We presented the general design for the pGraph, along
with various features to improve the performance of graph applications. We
compared against relevant graph benchmarks and libraries, and showed that
sgl algorithms scale beyond tens of thousands of cores and are comparable to
a real-world tuned benchmark code implementation. Further, algorithms were
able to scale to more cores and run on larger graphs than comparable graph
libraries without sacrificing expressivity.
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Abstract. The Sparse Polyhedral Framework (SPF) extends the Poly-
hedral Model by using the uninterpreted function call abstraction for the
compile-time specification of run-time reordering transformations such as
loop and data reordering and sparse tiling approaches that schedule ir-
regular sets of iteration across loops. The Polyhedral Model represents
sets of iteration points in imperfectly nested loops with unions of poly-
hedral and represents loop transformations with affine functions applied
to such polyhedra sets. Existing tools such as ISL, Cloog, and Omega
manipulate polyhedral sets and affine functions, however the ability to
represent the sets and functions where some of the constraints include un-
interpreted function calls such as those needed in the SPF is non-existant
or severely restricted. This paper presents algorithms for manipulating
sets and relations with uninterpreted function symbols to enable the
Sparse Polyhedral Framework. The algorithms have been implemented in
an open source, C++ library called IEGenLib (The Inspector/Executor
Generator Library).

1 Introduction

Particle simulations, irregular mesh based applications, and sparse matrix com-
putations are difficult to parallelize and optimize with a compiler due to indirect
memory accesses such as x[k-1][col[p]] Saltz et al. [1, 2] pioneered inspec-
tor/executor strategies for creating parallel communication schedules for such
computations at run time. An inspector/executor strategy involves generating
inspector and executor code at compile time. At runtime an inspector traverses
index arrays to determine how loop iterations are accessing data, create com-
munication and/or computation schedules, and/or reorder data. An executor is
the transformed version of the original code. The executor re-uses the schedules
and/or reordered data created by the inspector multiple times.

In the late 90s and early 2000s, researchers developed additional inspector/ex-
ecutor strategies to detect fully parallel loops at runtime [3], expose wavefront
parallelism [4], improve data locality [5–9], improve the locality in irregular pro-
ducer/consumer parallelism [10, 11], and schedule sparse tiles across loops so
as to expose a level of course-grain parallelism with improved temporal local-
ity [12–14]. The Sparse Polyhedral Framework (SPF) research [15, 16, 13] seeks
to provide a compilation framework for automating the application of inspector
/executor strategies and their many possible compositions.
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c© Springer-Verlag Berlin Heidelberg 2013
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for (k=1; k<=m; k++) {

for (p=0; p<nz; p++) {

x[k][row[p]] += a[p]*x[k-1][col[p]];

} }

Fig. 1. Matrix powers kernel where the matrix is stored in coordinate storage (COO).
The Matrix Powers kernel computes a set of vectors {A0x, A1x, ..., Amx}. This loop is
performing k sparse matrix vector products.

for (t=0; t<Nt; t++) {

for (k=1; k<=m; k++) {

for (i=0; i<N; i++) {

for (p=0; p<nz; p++) {

if (sigma[row[p]]==i && tile(k,i)==t))

x[k][ sigma[row[p]]]

+= a[p]*x[k -1][sigma[col[p]]];

} } } }

Fig. 2. The transformed matrix powers kernel after the second dimension of x has been
reordered and a full sparse tiling has been performed. Note that further optimizations
are done to remove the conditional from the inner loop and remove double indirections,
but such optimizations are not within the scope of this paper.

Transformation frameworks such as the polyhedral framework [17–22] enable
the specification and exploration of a space of possible compile-time reordering
transformations for static control parts [23]. Static control parts (SCoP) require
that the loop bounds and array accesses in the loops being transformed be affine
functions of the loop iterators and variables that do not change in the loops.

A portion of the matrix powers, Amx, kernel in Figure 1 falls within the
polyhedral model, specifically the iteration space that contains all integer tuples
[k, p] within the specified loop bounds. However, the indirect memory accesses
x[k-1][col[p]] and x[k][row[p]] do not fall directly within the polyhedral
model. In previous work, the polyhedral model has been extended to handle in-
direct memory references by using uninterpreted function calls to represent such
memory accesses and using this information to make data dependence analysis
more precise [24], approximate data dependences in spite of indirect memory
references [25, 26], and handle while loops [22].

A problem arose when the Sparse Polyhedral Framework [15, 16] extended the
polyhedral framework further by using uninterpreted function calls to represent
run-time reordering transformations. We are aware of only one loop transfor-
mation tool that attempts to deal with uninterpreted function calls: omega [27]
and a newer version of omega called omega+ [28, 29]. Omega uses uninterpreted
function calls to aid in the precision of data dependence analysis.
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However, Omega does not use uninterpreted function calls to represent run-
time reordering transformations and, therefore, manipulations of the interme-
diate representations for the computation and for the transformations are not
precise enough. For example, the conversion of the memory access x[k][row[p]]
in Figure 1 to x[k][sigma[row[p]]] in Figure 2 is not possible with omega.

Transforming code with the SPF requires composing relations, inverting rela-
tions, and applying relations to sets when both the relation(s) and the set can
have uninterpreted function call constraints as well as affine constraints. In this
paper, we make the following contributions:

– Practical algorithms for performing compositions and applying relations to
sets based on the relations typically used in the SPF.

– An open source library that makes the algorithm implementation available
for general use.

Section 2 reviews the Sparse Polyhedral Framework terminology revolving around
sets and relations and the compose and apply operations. Section 3 presents the
compose and apply algorithms. Section 4 presents the IEGenLib software pack-
age available at http://www.cs.colostate.edu/hpc/PIES that implements the
presented algorithms. In Section 5 we conclude.

2 The Sparse Polyhedral Framework (SPF)

Within a polyhedral transformation framework such as Omega [20], Pluto [30],
Orio [31], Chill [32, 29], AlphaZ [33], or POET [34], the intermediate represen-
tation includes an iteration space set to represent all of the iterations in the
loop, a function that maps each iteration in the loop to an array index for each
array access, data dependence relations between iterations in the loop, and some
representation of the statements themselves.

We originally introduced the sparse polyhedral framework in [15] where it
was described as a compile-time framework for composing run-time reordering
transformations. In this section, we provide a basic introduction to the SPF: how
to represent computations in the SPF, how to transform these computations,
and describe the problem of projecting out existential variables that arises in
this context.

2.1 Sets and Relations in SPF

Sets and relations are the fundamental building blocks for the SPF. Data and
iteration spaces are represented with sets, and access functions, data depen-
dences, and transformations are represented with relations. Sets are specified as
s = {[x1, . . . , xd] : c1 ∧ . . .∧ cp}, where each xi is an integer tuple variable/itera-
tor and each cj is a constraint. The arity of the set is the dimensionality of the
tuples, which for the above is d.

The constraints in a set are equalities and inequalities. Each equality and in-
equality is a summation expression containing terms with constant coefficients,



64 M.M. Strout, G. Georg, and C. Olschanowsky

where the terms can be tuple variables xi, symbolic constants, or uninterpreted
function calls. A symbolic constant represents a constant value that does not
change during the computation, but may not be known until runtime. An un-
interpreted function call f(p1, p2, ..., p3) is a function, therefore, p = q implies
that f(p) = f(q), however the actual output values are not known until compile
time. We also allow the actual parameters pv passed to any uninterpreted func-
tion symbol to be affine expressions of the tuple variables, symbolic constants,
free variables, or uninterpreted function symbols, whereas in omega [24] unin-
terpreted function calls are not allowed as parameters to other uninterpreted
function calls. We represent the iteration space I in Figure 1 as a set with only
affine constraints, I = {[k, p] | 1 ≤ k < Nk ∧ 0 ≤ p < nz}.

A relation represents a set of integer tuple pairs, where the first tuple in
the pair is called the input tuple (often the relation is a function) and the
second tuple in the pair is called the output tuple. Relations are specified as
r = {[x1, . . . , xm] → [y1, . . . , yn] : c1 ∧ . . . ∧ cp}, where each xi is an input tuple
variable in Z, each yj is an output tuple variable in Z, and each cv is a constraint.
The constraints of a relation follow the same restrictions as set constraints and
additionally the relation needs to include equalities that make the relation a
function or the inverse of a function (see Section 3 for more details).

It is possible to represent the array access functions in Figure 1
(A1: x[k-1][col[p]] and A2: x[k][row[p]]) as follows:

A1I→X = {[k, p] → [v, w] | v = k − 1 ∧ w = col(p)}
A2I→X = {[k, p] → [v, w] | v = k ∧ w = row(p)}.

As a notational convenience we subscript the names of abstract relations to
indicate which sets are the domain and range of the relation. For example, the
array access function A1I→X has the iteration space set I as its domain and
data space set X as its range.

2.2 Transforming Iteration and Data Spaces

The SPF uses relations to represent transformation functions for iteration and
data spaces. Given sets that express iteration and data spaces, relations that
specify how an iteration space accesses data spaces (access functions), and re-
lations that represent dependences between iteration points (data dependence
relations), we can express how data and/or iteration reordering transformations
affect these entities by performing certain set and relation operations.

For the matrix powers kernel computation Akx in Figure 1, assume we plan
to reorder the rows and columns of the sparse matrix by reordering the rows
of the x array to improve the data locality [35]. This run-time data reordering
transformation can be specified as follows:

RX→X′ = {[k, i] → [k, i′] | i′ = σ(i)},
where σ() is an uninterpreted function that represents the permutation for the
data that will be created by a heuristic in the inspector at runtime.
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The data reordering transformation affects the data space for the array x,
therefore, any access functions that target the data space X need to be modified.
We use relation composition to compute the new access function:

A1I→X′ = RX→X′ ◦A1I→X = {[k, p] → [v, w] | v = k − 1 ∧ w = σ(col(p))}.

An iteration-reordering transformation is expressed as a mapping between the
original iteration space and the transformed iteration space. The new execution
order is given by the lexicographic order of the iterations in I ′. In the example,
we transform Figure 1 to Figure 2 using full-sparse tiling, a run-time reordering
transformation [13] (also equivalent to the “implicit sequential algorithm” in [14])
that provides task graph asynchronous parallelism [36]. The tile() function ag-
gregates iteration points into atomically executable groups of computation.

TI→I′ = {[k, p] → [t, k, i, p] | t = tile(k, i) ∧ i = σ(row(p))

∧1 ≤ t < Nt ∧ 0 ≤ i < Nr}.

This requires modifying the access functions A1I′→X′ = A1I→X′ ◦ TI′→I

= A1I→X′ ◦ T−1
I→I′ and A2I′→X′ = A2I→X′ ◦ TI′→I = A2I→X′ ◦ T−1

I→I′ , and
transforming the iteration space I ′ = TI→I′(I). Given the transformed ac-
cess functions, scheduling functions, and dependences, we can specify further
run-time reordering transformations (RTRTs).

2.3 Necessary Set and Relation Operations

Modifying the iteration space and access functions to reflect the impact of run-
time reordering transformations requires the following set of operations:

– relation inverse r = r−1
1 = (x → y ∈ r) ⇐⇒ (y → x ∈ r1),

– relation composition
r = r2 ◦ r1 = (x → y ∈ r) ⇐⇒ (∃z | x → z ∈ r1 ∧ z → y ∈ r2),

– and applying a relation to a set
s = r1(s1) = (x ∈ s) ⇐⇒ (∃z | z ∈ s1 ∧ z → x ∈ r1).

2.4 The Problem: Implementing Compose and Apply Is Difficult

The inverse operation can easily be implemented by swapping the input and
output tuple variables in a relation. However, implementing relation composi-
tion and applying a relation to a set is difficult due to the existential variables
(i.e. the vector z in Section 2.3) introduced while computing both. These exis-
tential variables need to be projected out of the resulting set or relation so that
the remaining constraints only involve tuple variables, symbolic constants, and
uninterpreted function calls.

When all of the constraints are affine, then each conjunct is a polyhedron. It
is possible to use integer versions of Fourier Motzkin [27, 37] to project out any
existential variables. The Omega library and calculator [27] enable the expression
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of constraints with uninterpreted function calls, but it has two key limitations
in terms of manipulating uninterpreted function calls. One limitation is that
the arguments to an uninterpreted function have to be a prefix of the input or
output tuples. Therefore, the following input and output occurs (the example
uses omega+, which was built on omega and has similar behavior with respect
to uninterpreted function calls):

Omega+ and CodeGen+ v2.2.3 (built on 08/15/2012)

Copyright (C) 1994-2000 the Omega Project Team

Copyright (C) 2005-2011 Chun Chen

>>> symbolic col(1);

>>> A1_I_to_X := { [k,p] -> [k,w] : w=col(p) };

arguments to function must be prefix of input or output tuple ...

Even when working around this constraint by using a prefix of the input or out-
put tuple as input to the uninterpreted function call, when a compose or apply
operation results in an existential variable that is the parameter to an uninter-
preted function call, the UNKNOWN term is included within the conjunct thus
making the resulting set or relation lose its precision.

>>> symbolic col(2),row(2);

>>> A1_I_to_X := { [k,p] -> [k,w] : w=col(k,p) };

>>> symbolic sigma(2);

>>> R_X_to_X’ := {[k,i] -> [k,i’] : i’=sigma(k,i)};

>>> R_X_to_X’ compose A1_I_to_X;

{[k,p] -> [k,i] : UNKNOWN}

Since in the SPF we are representing computation with iteration spaces and
access functions, this level of precision loss is problematic.

Previously, we developed heuristics for eliminating existential variables in-
volved in uninterpreted function call constraints [16]. The heuristics involved
solving for existential variables and then substituting the resulting expression
in an attempt to remove such existential variables from the constraints. The
approach we present in Section 3 is much simpler to explain and prove correct,
but is more restrictive in the kinds of relations handled.

3 Algorithms for Implementing Compose and Apply

In the Sparse Polyhedral Framework (SPF), relations and sets have certain char-
acteristics because of what they represent and how the relations are used. A
relation can represent (1) a function mapping an iteration point to a memory
location integer tuple (access function), (2) the mapping of an iteration point
for a statement to a shared iteration space that represent space and lexicograph-
ical time (scheduling/scattering function [38]), or (3) a transformation function
mapping each iteration (or data point) to a new shared iteration space (or data
layout). For (1), (2), and (3), the output tuple is a function of the input tuple.
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Based on the above uses of relations in SPF, a relation in SPF is either a
function {x → y | y = F (x) ∧ C} or the inverse of a function {x → y | x =
G(y) ∧ C} such that x is the input tuple, y is the output tuple, F and G
are affine or uninterpreted functions, and C is a set of constraints involving
equalities, inequalities, linear arithmetic, and uninterpreted function calls. We
can use this information to develop algorithms for relation composition and
applying a relation to a set.

This section shows that there are closed form solutions for composing rela-
tions and applying a relation to a set that do not involve existential variables
when the relations satisfy certain assumptions. The algorithms can be imple-
mented directly by using the closed form solution provided in each theorem and
implementing a routine that solves for one set of tuple variables with respect to
another set and provides substitution for a set of tuple variables.

3.1 Relation Composition Theorems

Our algorithms for implementing relation composition requires that either both
relations must be functions or both relations must be the inverse of a function.
By making this assumption, the relation resulting from a composition will be
either a function and/or the inverse of a function.

Theorem 1 (Case 1: Both Relations are Functions). Let x, y, v, and z
be integer tuples where |y| = |v|, F1() and F2() be either affine or uninterpreted
functions, and C1 and C2 be sets of constraints involving equalities, inequalities,
linear arithmetic, and uninterpreted function calls in

{v → z | z = F1(v) ∧ C1} ◦ {x → y | y = F2(x) ∧ C2}.
The result of the composition is {x → z | ∃y,v | y = v ∧ z = F1(v) ∧C1 ∧ y =
F2(x) ∧ C2}, which is equivalent to

{x → z | z = F1(F2(x)) ∧C1[v/F2(x)] ∧ C2[y/F2(x)]}
where C1[v/F2(x)] indicates that v should be replaced with F2(x) in the set of
constraints C1.

Proof
Starting from {x → z | ∃y,v | y = v ∧ z = F1(v) ∧ C1 ∧ y = F2(x) ∧ C2}, we
first substitute y with v to obtain {x → z | ∃v s.t. ∧ z = F1(v) ∧ C1 ∧ v =
F2(x)∧C2[y/v]}. Then we substitute v with F2(x) to obtain the forward equiv-
alence {x → z | z = F1(F2(x)) ∧C1[v/F2(x)] ∧C2[y/F2(x)]}. The backward
direction of the equivalence requires performing the reverse substitutions in the
reverse order where instead of removing existential variables we are introducing
them.

From the running example, both the access relation A1I→X′ and the transforma-
tion TI→I′ are functions. Therefore, to compute the effect of the transformation on
A1 (A1I′→X′ = A1I→X′ ◦TI′→I), we can use Theorem 1. ForA1I→X′ , the output
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tuple variables are a function of the input tuple variables: [v, w] = F1([k, p]) =
[k−1, σ(col(p))]. For TI′→I , we have the following function: [k, p] = F2([t, k, i, p])
= [k, p]. Therefore the result of the composition is

A1I′→X′ = {[t, k, i, p] → [v, w] | v = k − 1 ∧ w = σ(col(p))}.

Theorem 2 (Case 2: The Inverses of both Relations are Functions).
Let x, y, v, and z be integer tuples where |y| = |v|, G1() and G2() be either
affine or uninterpreted functions, and C1 and C2 be sets of constraints involving
equalities, inequalities, linear arithmetic, and uninterpreted functions in

{v → z | v = G1(z) ∧ C1} ◦ {x → y | x = G2(y) ∧ C2}.

The result of the Case 2 composition is {x → z | ∃y,v s.t. y = v ∧v = G1(z)∧
C1 ∧ x = G2(y) ∧ C2}, which is equivalent to

{x → z | x = G2(G1(z)) ∧ C1[v/G1(z)] ∧ C2[y/G1(z)]}.

Proof. As with Theorem 1, we can perform substitutions to show the equiv-
alence. For Theorem 2, we substitute y with v and then substitute v with
G1(z).

3.2 Relation Application to Set Theorem

For applying a relation to a set, the relation must be the inverse of a function.
This is necessary because the existential variables resulting from the application
are replaced by functions of the output tuple variables. The below theorem shows
why this is the case.

Theorem 3 (Relation to Set Application). Let x, y, and z be integer tuples
where |x| = |z|, G() be either an affine or uninterpreted function, and C and
D be sets of constraints involving equalities, inequalities, linear arithmetic, and
uninterpreted function calls in

{x → y | x = G(y) ∧ C}({z | D}).

The result of applying the relation to the set is {y | ∃x, z | z = x ∧ x =
G(y) ∧ C ∧D}, which is equivalent to

{y | C[x/G(y)] ∧D[z/G(y)]}.

Proof. As with Theorem 1, we can perform substitutions to show the equiv-
alence. For Theorem 3, we substitute z with x and then substitute x with
G(y).
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4 The Inspector/Executor Generator Library

The Inspector/Executor Generator Library (IEGenLib) enables the program-
matic manipulation of sets and relations with constraints involving affine expres-
sions where terms can be uninterpreted function calls for the use in specifying
run-time reordering transformations. This section provides an overview of typi-
cal IEGenLib usage and functionality. Release 1 of the IEGenLib along with a
user manual and API documentation can be found at
http://www.cs.colostate.edu/hpc/PIES.

The IEGenLib is similar to the Omega library [27] in that IEGenLib provides
a C++ API for manipulating sets and relations with inequality and equality con-
straints. The main differences are that IEGenLib enables uninterpreted function
calls to have any affine expressions as arguments including those with uninter-
preted function calls, and IEGenLib maintains more detail when performing re-
lation to set application and relation composition when the constraints involved
include uninterpreted function calls.

IEGenLib Release 1 has fewer features than the current Omega library and
new versions of that library such as Omega+ [28]. For example, the IEGenLib
calculator iegenlib calc does not generate code at this time. Additionally the
IEGenLib calculator and library provide a subet of set and relation operations.
IEGenLib does provide the following operations: composition of two relations,
applying a relation to a set, union, and relation inverse.

4.1 Typical Usage of IEGenLib

The IEGenLib ships with three convenient interfaces: the IEGenLib API avail-
able through a C++ library, the IEGenLib calculator (a sample program using

Release 1: IEGenLib

Interactive Python interface

User/ HPC Research Developer

Output dot file:
Sparse Constraints Object
to be used for visualization
by GraphViz

IEGenLib calculator
(iegenlib_calc)

Operations:
• define set, relation
• apply relation to set
• union sets or relations
• inverse relation
• compose relation

IEGenLib
Sparse 

Constraints 
Object

Set & Relation
Manipulation

>>> print S2 
 '[N,T] >{[i1,t,j1] : 
 t f(j1)=0 and N i1 1>=0 
 and N j1 1>=0 and j1>=0 and i1>=0}'

>>> S = iegenlib.Set("[N] > { [i,j] : 
    0<=i and i<N and 0<=j and j<N }")

>>> R = iegenlib.Relation("[T] > 
    {[i,j] > [i,t,j] : t = f(j) }")

>>> S2 = R.Apply(S)

Tool supplied as part of PIES-IEGen
project

Operations/functions

Intermediate representation or
important internal data structure Uses

Input/Output edges

Fig. 3. Shows how the iegenlib is typically used
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Table 1. Set and Relation Operations

Operation Notation Semantics
Syntax using Python Bindings

constant Apply s = r1(s1) (x ∈ s) ⇐⇒ (∃y s.t. y ∈ s1 ∧ y → x ∈ r1)
Iprime = T I to Iprime.Apply( I )

Union s = s1 ∪ s2 (x ∈ s) ⇐⇒ (x ∈ s1 ∨ x ∈ s2)
r = r1 ∪ r2 (x → y ∈ r) ⇐⇒ (x → y ∈ r1 ∨ x → y ∈ r2)

Inverse r = r−1
1 (x → y ∈ r) ⇐⇒ (y → x ∈ r1)

T I to I = T I to Iprime.Inverse()

Compose r = r2 ◦ r1 (x → y ∈ r) ⇐⇒ (∃z s.t. x → z ∈ r1 ∧ z → y ∈ r2)
A1 I to Xprime = R X to Xprime.Compose(A1 I to X)

the library that enables interactive experimentation), and the interactive Python
interface (i.e. python bindings). Section 4.2 provides an overview of the IEGenLib
API and underlying class structure. The IEGenLib calculator and Python inter-
face are each supplied to allow users quick access to the IEGenLib capabilities.

The IEGenLib calculator (iegenlib calc) is a C++ programwritten using
the IEGenLib. It is both useful as a standalone tool and the source code is
provided as an example of how to use the library API.

The interactive Python interface is automatically created using SWIG.
After the application of SWIG it is possible to access the C++ library directly
from Python scripts and the interactive Python interface. All of the examples
in the following section are written using the Python syntax. Figure 3 shows
the usage relationship between the three interfaces and gives a brief example of
using the Python interface.

4.2 Class Structure of IEGenLib

This section gives an overview of both the programmatic interface exposed by the
IEGenLib and the class structure that supports the given interface. The interface
is designed to be easily accessible and at the same time enable advanced users
direct access to the internal structures.

The primary function of the IEGenLib is to provide a programmatic inter-
face for the manipulation of sets and relations, therefore, the primary high-level
objects are exposed as two classes, Set and Relation (each in the iegenlib names-
pace). Sets and Relations are each instantiated using a constructor that takes
a string as a parameter. As an example, instantiating the Relations used in the
example in Section 1 is done as follows.

A1I→X = {[k, p] → [v, w] | v = k − 1 ∧w = col(p)}
# Python code to represent access function for x[k-1][col[p]]

import iegenlib

A1 I to X = Relation("{[k,p] → [v,w] : v=k-1 && w=col(p)}")
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A2I→X = {[k, p] → [v, w] | v = k ∧w = row(p)}
# Python code to represent access function for x[k][row[p]]

A2 I to X = Relation("{[k,p] → [v,w] : v=k && w=row(p) }")
TI→I′ = {[k, p] → [t, k, i, p] | t = tile(k, i) ∧ i = sigma(row(p))
∧0 ≤ t < Nt ∧ 0 ≤ i < Nr}
# Python code to represent sparse tiling transformation

T I to Iprime = Relation("{[k,p] → [t,k,i,p] : t=tile(k,i)

&& i=sigma(row(p)) && 0 ≤ t && t < N t && 0 ≤ i && i < N r }")
Table 1 lists the high-level operations available for the Set and Relation

classes: apply, union, inverse, and compose. The table shows the syntax used
to use these functions through the Python bindings. The examples in the table
use the objects that result from the above construction examples.

An internal class structure supports the Set and Relation class operations. The
class structure is centralized around Expressions. Expressions (class name Exp)
consist of at least one Term. A Term can fall into one of four categories. First, a
Term may be an integer constant, in that case it is implemented using the Term
class directly. In the other three cases a Term may be coefficient multiplied by a
variable (VarTerm), a coefficient multiplied by a tuple variable (TupleVarTerm),

Relation R_X_to_Xprime(2 ,2);

Conjunction *c = new Conjunction(2+2);

c->setTupleElem(0,"k");

c->setTupleElem(1,"i");

c->setTupleElem(2,"k");

c->setTupleElem(3,"i’");

// Create the expression

Exp* exp = new Exp();

exp ->addTerm(new VarTerm("i’"));

std::list <Exp*> *args = new std::list <Exp*>;

Exp *arg0 = new Exp();

arg0 ->addTerm(new VarTerm("i"));

args ->push_back(arg0);

exp ->addTerm(new UFCallTerm(-1, "sigma", args));

// add the equality to the conjunction

c->addEquality(exp);

// add the conjunction to the relation

R_X_to_Xprime.addConjunction(c);

Fig. 4. Building the Relation in Figure 5 manually
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Relation R_X_to_Xprime =

Relation("{[k,i] -> [k,i’] : i’ = sigma(i) }")

Fig. 5. Building the Relation in Figure 4 using the parser

or a coefficient multiplied by an uninterpreted function call (UFCallTerm). A
UFCallTerm contains a list of parameters that are instances of the Exp class.

While it is possible to utilize the IEGenLib to create Sets and Relations using
the class structure directly a parser is included in the library that allows for
much more simple construction. A built-in parser enables constructors in the
Set and Relation classes that accept a string. The string can use the Omega or
ISL syntax. The parser does all of the internal work to build the appropriate
underlying structure that represents the Set or Relation desired. Figures 4 and
5 demonstrate the significant reduction in user code size that results from using
this feature.

Another helpful capability of the IEGenLIb is that each class implements a
function that writes a representation of that object to dot. Dot is a syntax for
creating “hierarchical” or layered drawings of directed graphs. Tools such as

Relation
mInArity=2

mOutArity=2

Conjunction
[k, p, v, w]

Equalities
...=0

Exp
...+...

Exp
...+...

TupleVarTerm
 __tv0

TupleVarTerm
 -__tv2

Term
 -1

TupleVarTerm
 __tv3

UFCallTerm
 -col(...)

Exp
...

TupleVarTerm
 __tv1

Fig. 6. The dot visualization for the relation A1I→X
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Graphviz create images using the dot files as input. The visual representations
of sets and relations is a quick way to understand the underlying structure for a
specific Set or Relation. Figure 6 shows an example taken from the introduction.

5 Conclusions

This work is another step in automating the process of generating inspector/ex-
ecutor code. We present algorithms for composing relations and applying rela-
tions to sets, when the relation(s) and set involved in those operations include
affine constraints and constraints involving uninterpreted function calls. The
IEGenLib software package implements the presented algorithms. This paper
also shows how a user of IEGenLib can specify and perform relation composi-
tion and the application of a relation to a set.
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1 Introduction

Networks are increasingly used to model mechanisms and interactions in a wide
range of application areas such as social network analysis, web search, product
recommendation, and computational biology. Not surprisingly, the study of large,
complex networks has attracted considerable attention from computer scientists,
physicists, biologists, and social scientists. Networks are highly dynamic objects;
they grow and change quickly over time through the additions of new vertices and
edges, signifying the appearance of new interactions in the underlying structure.
For example, a specific network analysis problem is link prediction, where the
task is to predict the presence or absence of a link between certain pairs of
vertices, based on observed links in other parts of the networks [15].

One of the most important issues in addressing such network analysis prob-
lems is the sheer size of the data sets; for example, Facebook has over 900
million monthly active users, and even relatively small networks may have mil-
lions of vertices and edges. One solution to deal with these large scale networks
is dimensionality reduction, which aims to find more compact representations of
data without much loss of information. Principal Component Analysis (PCA)
and low-rank approximation by truncated Singular Value Decomposition (SVD)
are well-known techniques for dimensionality reduction [14,10]. ISOMAP [28]
and locally linear embedding [24] are also widely used when we need to retain
the non-linear property or manifold structure of the data.

However, these global dimensionality reduction techniques do not necessarily
take into account local structure such as clusters in the network that are crucial
for network analysis. Specifically, global techniques are likely to extract infor-
mation from only the largest or a few dominant clusters, excluding information
about smaller clusters. This is not desirable since different clusters usually have
distinct meanings. We need to extract some information from every cluster re-
gardless of its size to preserve important structural information of the original
network in a low-dimensional representation. This is the motivation of a recently
proposed method called clustered low-rank approximation [25], which reflects the
clustering structure of the original network in the low-rank representation of the
network. It extracts clusters, computes a low-rank approximation of each clus-
ter, and then combines together the cluster approximations to approximate the
entire network.

Unfortunately, the only available implementation of the clustered low-rank
approximation is a sequential implementation, which precludes its use for pro-
cessing large scale data sets for two reasons: (1) when the network size is huge,
the network usually does not fit into the memory of a single machine, and (2)
the running time can be substantial.

In this paper, we describe the first parallel implementation of clustered low-
rank approximation, and show its application to link prediction on large scale
social networks. It is a challenging problem to develop a parallel algorithm for
the clustered low-rank approximation since it requires computing with very di-
verse data structures ranging from extremely sparse matrices to dense matrices.
Experimental results show that our parallel implementation scales well on large
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distributed-memory machines; for example, on a Twitter graph, a standard data
set in the social networks area with roughly 11 million vertices and 63 million
edges, our implementation scales by a factor of 86 on 128 processes. The whole
procedure, including link prediction, takes less than 2300 seconds on 128 pro-
cesses. On a much larger Twitter graph with 41 million vertices and 1.2 billion
edges, our current algorithm produces encouraging results with a scalability of
203 on 256 processes. In this case, the running time is about 4800 seconds.

The rest of this paper is organized as follows. In Section 2, we present the
clustered low-rank approximation algorithm in detail, and introduce the link
prediction problem. In Section 3, we describe our parallel algorithm. We present
our experimental results in Section 4, and we briefly review some related work
in Section 5. Finally, we state our conclusions in Section 6.

2 Preliminaries

In this section, we describe the clustered low-rank approximation method pro-
posed in [25], and introduce the problem of link prediction in social network
analysis. Throughout the paper, we use capital letters to represent matrices,
lower-case bold letters to represent vectors, and lower-case italics to represent
scalars. Note that the terms graph and network are used interchangeably.

2.1 Clustered Low-Rank Approximation

A graph G = (V , E) is represented by a set of vertices V = {1, . . . ,m} and a set
of edges E = {eij |i, j ∈ V} where eij denotes an edge weight between vertices i
and j. The corresponding adjacency matrix of G is represented by A = [aij ] such
that aij = eij if there is an edge between vertices i and j, and 0 otherwise. Note
that A is an m×m matrix. For simplicity, we focus our discussion on undirected
graphs, which implies that the adjacency matrix of the graph is symmetric.

One of the standard and very useful methods for dimensionality reduction is
obtained by spectral or SVD analysis of the adjacency matrix A. For example,
if the graph is undirected (A is symmetric), the rank-k spectral approximation
of A can be computed by eigendecomposition as follows:

A ≈ V ΛV T , (1)

where V = [v1, . . . ,vk], Λ = diag(λ1, . . . , λk) is a k × k diagonal matrix, and
λ1, . . . , λk are the largest eigenvalues (in magnitude) of A, v1, . . . ,vk are the cor-
responding eigenvectors of A. One benefit of the spectral approximation is that
it gives a globally optimal low-rank approximation of A for a given rank. On the
other hand, a drawback with spectral analysis and SVD is that they do not neces-
sarily take into account local structures, such as clusters, of the network that are
important for network analysis. These local structures (clusters) of the network
are usually discovered by graph clustering which seeks to partition the graph into
c disjoint clusters V1, . . . ,Vc such that

⋃c
i=1 Vi = V . Suppose that A is an m ×m

adjacencymatrix, and that we cluster the graph into c disjoint clusters.We usemi
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to denote the number of vertices in the cluster i. By reordering vertices in order of
their cluster affiliations, we can represent them×m adjacencymatrixA as follows:

A =

⎡
⎢⎣
A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

⎤
⎥⎦ , (2)

where each diagonal block Aii, for i = 1, . . . , c, is an mi × mi matrix that can
be considered as a local adjacency matrix for cluster i. The off-diagonal blocks
Aij with i �= j, represent the set of edges between vertices belonging to cluster
i and cluster j. Note that Aij is mi ×mj matrix. Figure 1 shows the adjacency
matrix of an arXiv network in the block form of (2). In the figure, a blue dot
represents a non-zero entry of the matrix. Observe that the non-zeros (links)
in the adjacency matrix are concentrated in the diagonal blocks Aii, while the
off-diagonal blocks are much more sparse.

Fig. 1. Clustering structure of an arXiv network. Note that the diagonal blocks are
much denser than the off-diagonal blocks.

In the clustered low-rank approximation framework, we first cluster a given
network. Then, we independently compute a low-rank approximation of each
cluster which corresponds to a diagonal block Aii. With a symmetric matrix A
as in (2), we can compute the best rank-k approximation of each Aii as follows:

Aii ≈ ViDiiV
T
i , i = 1, · · · , c, (3)

where Dii is a diagonal matrix with the k largest (in magnitude) eigenvalues of
Aii, and Vi is an orthogonal matrix with the corresponding eigenvectors.

Subsequently, the different cluster-wise approximations are combined together
to obtain a low-rank approximation of the entire adjacency matrix. That is,

A ≈

⎡
⎢⎣
V1 · · · 0
...

. . .
...

0 · · · Vc

⎤
⎥⎦
⎡
⎢⎣
D11 · · · D1c

...
. . .

...
Dc1 · · · Dcc

⎤
⎥⎦
⎡
⎢⎣
V1 · · · 0
...

. . .
...

0 · · · Vc

⎤
⎥⎦
T

≡ V̄ D̄V̄ T, (4)

where Dij = V T
i AijVj , for i, j = 1, . . . , c, which makes D̄ optimal in the least

squares sense.
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Fig. 2. Left panel shows an illustration of the regular spectral approximation A ≈
V ΛV T. Right panel shows an illustration of the clustered low-rank approximation A ≈
V̄ D̄V̄ T from (4). In both cases V and V̄ are “long-thin” and they both use the same
amount of memory as only the diagonal blocks of V̄ are stored.

With a rank-k approximation of each cluster Aii, we can observe that the
clustered low-rank approximation has rank ck. As a result, compared with a
regular rank-k approximation of A, we see that the rank in the clustered low-
rank approximation is increased by a factor of c. However, a key observation is
that V̄ is a block diagonal matrix and uses exactly the same amount of memory
as a regular rank-k approximation of A, as only the non-zero Vi blocks are stored
while zero blocks of V̄ are not stored. A pictorial representation of a regular rank-
k approximation and the clustered low-rank approximation is given in Figure 2.

There are a number of benefits of clustered low rank approximation com-
pared to spectral regular low-rank approximation: (1) the clustered low-rank
approximation preserves important structural information of a network by ex-
tracting a certain amount of information from all of the clusters; (2) it has been
shown that the clustered low-rank approximation achieves a lower relative er-
ror than the truncated SVD with the same amount of memory [25]; (3) it also
has been shown that even a sequential implementation of clustered low rank
approximation [25] is faster than state-of-the-art algorithms for low-rank matrix
approximation [20]; (4) improved accuracy of clustered low-rank approximation
contributes to improved performance of end tasks, e.g., prediction of new links
in social networks [26] and group recommendation to community members [29].

2.2 Link Prediction in Social Networks

Link prediction [21] is one of the important tasks in social network analysis.
Link prediction is the problem of predicting formation of new links in networks
that evolve over time. This problem arises in applications such as friendship
recommendation in social networks [26], affiliation recommendation [29], and
prediction of author collaborations in scientific publications [23].

In social network analysis, the Katz measure [18] is a widely used proximity
measure between the vertices (actors). In an undirected social network A, the
Katz measure can be represented as a matrix function Katz(A), where the (i,j)-
th element represents the value of a proximity between actor i and actor j, as
follows:
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Katz(A) = βA+ β2A2 + β3A3 + ... =

∞∑
k=1

βkAk, (5)

where β < 1/‖A‖2 is a damping parameter.
Given a network, we sort all the pairs of vertices according to the Katz scores

in descending order. By selecting top-k pairs which do not appear in the cur-
rent network, we predict k links that are likely to be formed in the future. Note
that this Katz computation is infeasible when the network size is very large,
since it requires O(m3) time where m is the number of vertices in the network.
However, the computation becomes feasible to approximate by leveraging the
clustered low-rank approximation. Suppose that A is represented as (4) by using
the clustered low-rank approximation. Then, the Katz measure can be approxi-
mated by:

Katz(A) ≈ K̂ =

kmax∑
k=1

βk(V̄ D̄V̄ T )
k
= V̄ (

kmax∑
k=1

βkD̄k)V̄ T ≡ V̄ P̄ V̄ T (6)

3 Parallelization Strategy

In this section, we describe the parallelization strategy for each major phase
of the clustered low-rank approximation algorithm: (i) graph clustering, (ii) ap-
proximation of diagonal blocks (clusters), and (iii) approximation of off-diagonal
blocks (inter-cluster edges). We also describe how the parallel low-rank approx-
imation algorithm can be used to solve a parallel link prediction problem on
social networks.

On distributed memory machines, a graph is stored across different processes
such that each process owns a subset of vertices and their adjacency lists. We
use the term local vertices to designate the vertices each process owns.

3.1 Parallel Graph Clustering

Recall that for a given graph G = (V , E), graph clustering (also called graph
partitioning) seeks to partition the graph into c disjoint clusters V1, . . . ,Vc such
that

⋃c
i=1 Vi = V . We use the term clusters and partitions, interchangeably.

Parallelization of graph clustering algorithms has long been recognized as a
difficult problem. The state-of-the-art parallel library for graph clustering and
partitioning is ParMetis [17], which is designed to deal with large scale graphs
on distributed memory machines. However, ParMetis was designed for clustering
and partitioning graphs that arise in computational science applications, and it
does not perform well on social network graphs, which have a very different
structure. For example, ParMetis could not cluster one of our data sets which
has 40 million vertices and 1 billion edges due to lack of memory. Therefore, as
one variation of the algorithm proposed in [30], we developed a custom parallel
graph clustering algorithm which (i) scales well for social network graphs, and
(ii) produces comparable quality clusters with ParMetis for graphs on which
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ParMetis is successful. We name our new parallel graph clustering algorithm
PEK1. PEK consists of four phases: (1) extraction of a representative subgraph,
(2) initial partitioning, (3) partitioning propagation and refinement, and (4)
recursive partitioning.

Extraction of a Representative Subgraph. From a given graph, we first
select vertices whose degrees are greater than a certain threshold. These vertices
induce a representative subgraph of the original graph, which is constructed with
these selected vertices and the edges between them. Note that we can typically
designate a degree threshold so that a desired number of vertices is included in
the subgraph.

This step is easy to parallelize. First of all, each process scans its local ver-
tices to select vertices and then communicates with other processes to decide
the location of the selected vertices. According to the location information, a
subgraph is created and distributed across different processes.

Initial Partitioning. The extracted subgraph is clustered using ParMetis. The
runtime of this initial partitioning step only takes a small fraction of the total run-
time if the extracted subgraph is very small compared to the original graph.When
a network follows a power-law degree distribution, which is a well-known property
of social networks, a very small number of high-degree vertices cover a large por-
tion of the edges in the entire network. So, we usually extract a small number of
vertices from the original graph, which are likely to govern the overall structure of
the entire network, and then cluster this small network using ParMetis.

Partitioning Propagation and Refinement. At this point, the vertices of
the extracted subgraph have been assigned to clusters. These vertices are consid-
ered to be the “seeds” for clustering the entire graph. Starting from vertices of
the extracted subgraph, we visit the rest of the vertices in the original graph in
a breadth-first order. To reduce communication among processes, each process
only considers its local vertices when doing a breadth-first traversal. When we
visit a vertex, we assign the vertex to some cluster by applying a weighted kernel
k-means (WKKM) algorithm. We will explain the WKKM algorithm in detail
below. Once we assign all the vertices of the original graph to some clusters, we
refine the clustering using the WKKM algorithm repeatedly.

It has been shown that a general weighted kernel k-means objective is mathe-
matically equivalent to a weighted graph clustering objective [13]. Therefore, we
can optimize a weighted graph clustering objective by running the WKKM algo-
rithm. At a high level, this algorithm computes the distance between a vertex and
the centroid of each of the clusters, and assigns each vertex to its closest cluster.

To describe the WKKM algorithm in detail, we introduce some notation. Re-
call that for a given graph G = (V , E), where V = {1, . . . ,m} and E = {eij |i, j ∈
V}, the corresponding adjacency matrix of G is represented by A = [aij ] such
that aij = eij , the edge weight between i and j, if there is an edge between

1 The abbreviation PEK represents two key concepts of our Parallel graph clustering
algorithm: Extraction of graph, and weighted Kernel k -means.
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i and j, and 0 otherwise. Now, let us define links(Vp,Vp) to be the sum of
the edge weights between vertices in Vp for p = 1, ..., c, i.e., links(Vp,Vp) =∑

i∈Vp,j∈Vp
aij . Similarly, links(x̂,Vp) denotes the sum of the edge weights be-

tween a vertex x̂ and the vertices in Vp. Also, we define degree(Vp) to be the
sum of the edge weights of vertices in Vp, i.e., degree(Vp) = links(Vp,V). Finally,
we use x̂ to denote a vertex, and ŵ to denote the degree of the corresponding
vertex.

There can be many variations of the WKKM algorithm when applying it
to a graph clustering problem. In our experiments, we measure the distance
between a vertex x̂ and a cluster Vp, denoted by dist(x̂,Vp), using the following
expressions (detailed explanation about how this distance measure is derived is
stated in [30]):

dist(x̂,Vp) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ŵ · degree(Vp)

(degree(Vp)− ŵ)

(
links(Vp,Vp)

degree(Vp)
2 − 2links(x̂,Vp)

ŵ · degree(Vp)

)
, if x̂ ∈ Vp,

ŵ · degree(Vp)

(degree(Vp) + ŵ)

(
links(Vp,Vp)

degree(Vp)
2

− 2links(x̂,Vp)

ŵ · degree(Vp)

)
, if x̂ /∈ Vp.

(7)

Once we compute the distance between a vertex and the clusters, we assign the
vertex to the closest cluster. If a vertex moves from its current cluster to an-
other cluster, the centroids of the current cluster and the new cluster need to be
updated immediately. However, since the cluster centroids are globally shared,
the updates will serialize the algorithm. To avoid this serialization, we synchro-
nize the cluster centroids less frequently. In our experiments, we synchronize
the centroids of clusters once all of the processes finish considering their local
vertices.

In summary, given the current cluster information, each process assigns its
local vertices to their closest clusters. After this, the cluster information is up-
dated. This procedure is repeated until the change in the WKKM objective value
is sufficiently small or the maximum number of iterations is reached.

Recursive Partitioning. If we observe very large clusters, we can further
partition the clusters by recursively applying the above procedures until all the
clusters are small enough. To do the recursive partitioning on the large clusters,
we need to extract the large clusters from the original graph. Usually, each
extracted cluster is not necessarily a single connected component. Therefore, we
first find all components in the extracted clusters. If the size of a component
is larger than a certain threshold, we recursively partition it using the WKKM
procedure. If the size of a component is near the threshold (i.e., a moderate-sized
component), we just leave it as a new cluster. Finally, we form new clusters by
merging small components. At the end, each cluster contains a reasonably large
number of vertices.

This recursive partitioning is required since subsequently each cluster is ap-
proximated using eigendecomposition of the corresponding submatrix (described
in Section 3.2). If a cluster is too large, the memory consumption increases
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significantly in the eigendecomposition step. Therefore we partition each cluster
until every cluster is small enough to be handled by a single process. In our
experiments, we recursively partition the graph until each cluster contains less
than 100,000 vertices.

3.2 Approximation of Diagonal Blocks

The clustering step is followed by a reordering of the vertices so vertices in the
same cluster are contiguously numbered. The adjacency matrix of the resulting
graph G has a block structure as in (2). Each Aii is the local adjacency ma-
trix of cluster i, and off-diagonal blocks Aij contain the edges between cluster i
and cluster j. Then each process computes the rank-k eigendecomposition ap-
proximation for each of the diagonal matrices Aii it owns according to (3); for
example, A11 ≈ V1D11V

T
1 .

Since each process can only access a limited amount of memory and computing
the eigen-decomposition requires fairly large amount of memory, it is better to
compromise the balance of the memory usage and the computation time across
processes. Therefore, we assign clusters to processes using a static list scheduling
approach. All the clusters are put into an ordered list where the priority of each
cluster Aii is determined by (the number of non-zero entries in Aii) × k. Each
process is associated with a weight. The clusters are repeatedly extracted from
the list and assigned to the process with the current minimum weight. Whenever
a cluster is assigned to a process, its weight is increased by an amount equal to
the cluster’s priority. Since this computation is so small that every process can
simultaneously compute the assignment. After the assignment, we redistribute
the graph so that the vertices belonging to the same cluster are aggregated into
the same process.

The matrices Vi in the low-rank approximation (see Figure 2) will, in general,
be dense matrices. They are typically small enough so that they fit on any node
of the distributed-memory machine, so we do not distribute individual Vi’s across
processes, reducing communication further.

3.3 Approximating Off-Diagonal Blocks

The approximations of the off-diagonal blocks Aij is given by Aij ≈ ViDijV
T
j

where Dij = V T
i AijVj . Given that all Vi are computed in the previous step,

what remains is to compute Dij for i, j = 1, 2, . . . , c and i �= j. Recall that
all Vi are dense matrices and off-diagonal blocks Aij are sparse matrices. It
follows that matrix products of the type V T

i Aij or AijVj result in dense matrices.
Consequently, computation of eachDij involves two multiplications: one between
a dense matrix and a sparse matrix, and the other between two dense matrices.

Since the graph G is undirected, we can exploit the symmetry of its adjacency
matrix representation. In this case, we only need to compute Dij or Dji, as the
other can be easily obtained with a transpose operation. We define job(i, j) as

computing Dij (i < j), so the total number of jobs is c(c−1)
2 . From Section 3.2,
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Fig. 3. An example where a pair (pi, pj) represents a job shared by processes pi and
pj in approximation of off-diagonal blocks

it is easy to see that each process contains Aij and Vi for the clusters it owns. In
order to compute Dij , we require the matrices Vi, Aij , and Vj . In the easy case,
where a process which owns Aij and Vi, also owns the matrix Vj as well, Dij

can be computed without any communication. Otherwise, some communication
is required between the process owning Vi (and Aij) and the process owning
Vj . Therefore, the jobs can be categorized as the ones which can be performed
independently and those which need some communication between processes. For
the former type, all of Vi, Vj , Aij , and Aji are located in the same process and
we call them private jobs of the owner process. The latter is a more complicated
scenario in which Aij and Vi are co-located in one process while Aji and Vj

are co-located in another process. Therefore, either process can execute job(i, j)
by fetching the required matrices from the other process. We call these shared
jobs between the two processes. Since jobs take different amounts of time, a
challenging problem that arises here is to evenly divide the shared jobs between
every pair of processes, with the aim of minimizing communication and achieving
an ideal load balance.

Figure 3 is an example to illustrate this problem. Figure 3 shows a matrix
representing the block view of A. Each entry of this matrix represents Aij . In
this example, graph A is partitioned into four clusters. Each row of the matrix
can be regarded as a cluster including edges that connect to other clusters,
denoted as ci. There are three processes p1, p2, and p3. Process p1 owns cluster
c1, p2 owns cluster c2, and p3 owns clusters c3 and c4. The pair (pi,pj) inside
each entry in Figure 3 represents that the job (approximation of this entry) can
be computed by either process i or process j.

We build a dynamic load balancing framework for performing the jobs. For
each pair of processes, we create a job queue storing the shared jobs between
them. A job queue is a priority queue where jobs are ordered by the amount
of work. Each process first works on its private jobs. Once its private jobs are
finished, the process starts to ask for jobs from a master process pmaster dedi-
cated to scheduling jobs. Whenever a process p asks for a new job, pmaster goes
through all job lists that involve p, picks the job queue with the most jobs, ex-
tracts the largest job in that job list, and then hands it to the process p. When
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the process p receives the job, it fetches the corresponding Vj from the process
owning Vj using RDMA (Remote Direct Memory Access).

Once this stage is complete, we have computed all necessary factors to ap-
proximate A, i.e., A ≈ Â = V̄ D̄V̄ T, as in (4). In particular, the approximation
of each block Aij in (2) is given by Aij ≈ Âij = ViDijV

T
j , for i, j = 1, . . . , c.

3.4 Parallel Computation of the Katz Measure and Link Prediction

Now, we describe how we compute the Katz measure in parallel, and perform
parallel link prediction. Recall (6). The computation of the term

∑kmax

k=1 βkD̄k

requires a distributed dense matrix multiplication since D̄ is a dense matrix.
Parallel dense matrix multiplication has been fairly well understood and there are
several efficient libraries available. We use the Elemental Matrix class library [2]
to perform this step and we set kmax = 6 in the experiments. In terms of the
block-wise view as in (4), we can rewrite (6) as follows:

K̂ = V̄ P̄ V̄ T ≡

⎡
⎢⎣
V1 · · · 0
...

. . .
...

0 · · · Vc

⎤
⎥⎦
⎡
⎢⎣
P11 · · · P1c

...
. . .

...
Pc1 · · · Pcc

⎤
⎥⎦
⎡
⎢⎣
V1 · · · 0
...

. . .
...

0 · · · Vc

⎤
⎥⎦
T

, (8)

Then, K̂ij is computed as follows: K̂ij = ViPijV
T
j , for i, j = 1, . . . , c. We dis-

tribute Pij to the same process as Aij . Due to the symmetry of P̄ , computing K̂
is very similar to the approximation of off-diagonal matrices in Section 3.3, so we
adopt a similar parallelization stratgy. Since K̂ is a m×m matrix, it is infeasible
to compute the whole matrix if m is very large. Therefore, we only compute a
subset of K̂ and predict links based on the sampled subset. The details of our
sampling method is stated in Section 4.

4 Experimental Results

In this section, we present and analyze experimental results on a large-scale par-
allel platform at the Texas Advanced Computing Center (TACC), Ranger [5].
Ranger has 3,936 nodes, and each node is equipped with a 16-core AMD Opteron
2.2GHz CPU and 32GB memory. Ranger uses InfiniBand networks with 5GB/s
point-to-point bandwidth. The MPI library on Ranger is Open MPI 1.3. Our
implementation is written in C++. We use ARPACK++ [1] for the eigendecom-
positions of diagonal blocks, GotoBLAS 1.30 [3] for the dense matrix multipli-
cations involving the off-diagonal blocks, and Elemental Matrix class library [2]
for the dense matrix multiplications for the Katz measure.

4.1 Data Sets

We use three different social graphs which are summarized in Table 1. LiveJour-
nal is a free online community with almost 10 million members, and it allows
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members to select other members as their friends. Twitter is an online social
networking website where members follow other members they are interested
in. In our experiments, we extract the largest connected component from each
of the network. Originally, each of these networks were directed networks. So,
we transformed them into undirected graphs by adding additional edges. In
the experiments, the degree thresholds for PEK are 42 (Soc-LiveJournal), 200
(Twitter-10M) and 2500 (Twitter-40M). The number of vertices of the extracted
subgraph is less than 5% of the original graph in all cases.

Table 1. Detailed information of the graph data sets

Data set #Vertices #Edges Description

soc-LiveJournal 3,828,682 39,870,459 LiveJournal on social network [6].
Twitter-10M 11,316,799 63,555,738 Crawled Twitter graph from [7].
Twitter-40M 41,652,230 1,202,513,046 Crawled Twitter graph from [19].

4.2 Parallel Performance Evaluation

We use one process as the scheduling server and the other processes as the
workers in the phases of computing the approximation of off-diagonal blocks
and link prediction. In other phases, the scheduling process stays idle and does
not participate in computation in any phase. The graphs are initially randomly
distributed among all the processes other than the scheduling process.

Figure 4 shows the performance of our parallel implementation of the clustered
low-rank approximation, on the soc-LiveJournal, Twitter-10M and Twitter-40M
graphs. All these social network graphs are too large to be processed in a single
node of Ranger. Therefore, we run each graph on the smallest number of nodes
on which the program finishes successfully, and then measure the performance
as the number of nodes increases. We use only one MPI process on each node to
enable us to measure performance without interference from other processes in
the same node. From Figure 4, we see that our implementation scales very well
on the three different sizes of real social graphs. A speedup of 68 is achieved on
64 processes for soc-LiveJournal, a speedup of 86 is achieved on 128 processes
for Twitter-10M and 203 on 256 processes for Twitter-40M. The super-linear
speedup is mainly due to the cache effects of matrix multiplication. For soc-
LiveJournal and Twitter-10M, performance levels off after 64 nodes, but this
is mainly because the problem size is relatively small compared to the number
of processes. This is clear from the performance of Twitter-40M: it consistently
scales up to 256 processes.

Figure 5 shows how much time is spent on each of the major phases of the
algorithm: (i) partitioning, (ii) computing diagonal blocks, (iii) computing the
off-diagonal blocks Dij ’s, and (iv) link prediction. We divide the link predic-
tion phase into two steps: (a) computing the P̄ matrix in (6) which requires
dense matrix multiplication, and (b) computing K̂ij = ViPijV

T
j in (8). We la-

bel (a) as MatrixPower, and label (b) as ScoreComputation in Figure 5.
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Fig. 4. Runtime and Speedup for soc-LiveJournal, Twitter-10M, and Twitter-40M
graphs, where c = 500 and k = 100 for soc-LiveJournal and Twitter-10M, and c = 1000
and k = 100 for Twitter-40M

The MatrixPower dominates the running time since this step involves large
dense matrix multiplication (square matrix, each dimension is c × k where c is
the number of clusters and k is the number of eigenvalues). To make the runtime
of other phases visible in the graph, we show MatrixPower time in a separate
figure from other phases.

From Figure 5, we see that most of the phases scale well with increasing num-
bers of processes, especially with our new parallel graph partitioning algorithm.
For soc-LiveJournal and Twitter-10M, the runtime of the diagonal phase does not
decrease beyond 32 processes.There are two reasons: first, the clustering algorithm
is not deterministic, so running with different number of processes may cluster
the graph differently. Cluster sizes will affect the runtime significantly since the
complexity of eigendecomposition in the diagonal phase does not increase linearly
with cluster size. Second, since the number of eigendecompositions is equal to the
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number of clusters, the average number of clusters assigned to each process will
become smaller when the number of processes becomes large. So, the space avail-
able for load balancing among processes to hide unbalanced clustering effects will
be less. This problem may be alleviated by dynamic load balancing which we will
explore in the future. On the other hand, in the MatrixPower step, the Ele-
mental library [2] we use for parallel dense matrix multiplication does not scale
well after 64 processes for small matrix sizes (50, 000× 50, 000 for soc-LiveJournal
and Twitter-10M), while it can scale consistently to 256 processes for larger sizes
(100, 000×100, 000 forTwitter-40M).This phase dominates the total runtime, and
it is themain reasonwhy the running time of soc-LiveJounrnal is not improved after
128 nodes.

Load Balancing. Figure 6 shows the load balancing results of three phases:
diagonal, off-diagonal and link prediction. The red and green bars denote the
maximum and minimum time processes take, respectively. The dynamic load
balancing framework is effective in most of the cases for approximating off-
diagonal blocks and link prediction. For small number of processes, the diagonal
phase is also balanced. When the number of processes increases, the load among
processes starts to become unbalanced. As mentioned before, this is mainly due
to the very unbalanced partitions.

4.3 Evaluation of Clustering Algorithm

Figure 7 compares our clustering algorithm (PEK) with ParMetis on soc-Live
Journal and Twitter-10M, using two measures: (i) the quality of the partition,
and (ii) the running time of the algorithm. ParMetis fails to cluster Twitter-40M
graph on Ranger because the memory at each node is not enough. To evaluate the
quality of clusters, we use two standardmeasures: the normalized cut measure and
the cut-size measure. These measures are defined as:

NormCut =
c∑

k=1

links(Vk,V\Vk)

degree(Vk)
,Cut-Size =

c∑
k=1

links(Vk,V\Vk). (9)

where c is the number of clusters, A is the adjacency matrix of a graph
G=(V , E), links(Vk,V\Vk) =

∑
i∈Vk,j∈{V\Vk} aij , and degree(Vk) = links(Vk,V)

for k = 1, 2, ..., c. By definition, the normalized cut is upper-bounded by the num-
ber of clusters. Lower normalized cut value indicates better quality of clusters.
In Figure 7, we divide the normalized cut by the total number of clusters since
PEK probably makes more clusters than the designated number of clusters due
to its recursive partitioning phase. We see that PEK performs a little better than
ParMetis on both of soc-LiveJournal and Twitter-10M in terms of the normal-
ized cut. We also divide the cut-size by the total number of clusters, and present
the results in Figure 7. Note that lower cut-size indicates better quality of clus-
ters. We can see that the cluster quality of PEK and ParMetis are comparable
in terms of the cut-size.
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Fig. 7. Comparison between our clustering algorithm (PEK) with ParMetis on soc-
LiveJournal and Twitter-10M. The number of clusters is 500. Since our implementation
needs one scheduling server for later phases, we leave one process to handle that for
both clustering algorithms in the experiments.

We see that PEK is much faster than ParMetis. For soc-LiveJournal, PEK
is two times faster than ParMetis on 128 processes. For Twitter-10M, PEK is
about seven times faster than ParMetis on 128 processes. Overall, PEK achieves
similar quality as ParMetis but can scale better than ParMetis to larger number
of processes and larger graphs.
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4.4 Evaluation of Link Prediction

We perform our experiments as follows. Given a network G = (V,E), a network
G′ = (V,E′) is obtained by randomly removing 30% of the links of G. We call
the removed links test links. Then, we compute the Katz scores on the network
G′. Since the networks we use are very large, we cannot compute the Katz scores
for all the vertex pairs. So, we sample a set of vertex pairs from G′, and compute
Katz scores on these sampled links. Let S denote the set of these sampled links.
We randomly sample a subset of the links which are incident to vertices that
are in the same cluster and whose degrees are larger than some threshold. The
justification for this sampling method is as follows: new links are more likely to
be formed within the same cluster and are more likely to be formed between
vertices whose degrees are larger than a certain threshold.

Let R denote the set of top-k scoring links (top-k recommended links). Then,
we evaluate our link prediction results by computing precision and recall which
are defined as follows:

Precision =
number of correctly predicted links

top-k recommendations
=

|(E − E′)
⋂

R|
|R| , (10)

Recall=
number of correctly predicted links

number of overlapped links between test and sampled links
=

|(E −E′)
⋂

R|
|(E − E′)

⋂
S| .

(11)

By definition, the upper bound of the recall measure is obtained by setting the
numerator as |R| (i.e., k). Higher precision and recall indicate better perfor-
mance. Table 2 shows precision and recall for the soc-LiveJournal and Twitter-
10M graphs with different ranks of approximations. We partition each graph
into 500 clusters. The only difference among the three rows is the rank of each
cluster. For soc-LiveJournal, we achieve 100% precision for predicting the top-
10 and top-100 links and 98% precision for predicting the top-1000 links using

Table 2. Link prediction evaluation on soc-LiveJournal and Twitter-10M. We compare
the precision and recall with different ranks of approximations. The graph is always
partitioned into 500 clusters. Three different rows represent different ranks of each
cluster, which results in different rank approximations of the whole graph. UB is the
upper bound for the recall. Note the upper bound differs in the experiments since we
use a new sample set for each case.

Graph Top-k Rank Precision Recall(UB) Graph Top-k Rank Precision Recall(UB)

SocLive 10 c500r50 100 0.002(0.002) Twitter-10M 10 c500r50 0 0(0.39)
c500r100 100 0.002(0.002) c500r100 100 0.389(0.389)
c500r200 0 0(0.002) c500r200 100 0.431(0.431)

100 c500r50 100 0.024(0.024) 100 c500r50 10 0.431(4.310)
c500r100 90 0.019(0.021) c500r100 30 1.167(3.891)
c500r200 30 0.006(0.021) c500r200 10 0.431(4.310)

1000 c500r50 98 0.234(0.239) 1000 c500r50 3 1.293(43.103)
c500r100 46 0.096(0.209) c500r100 10 3.891(38.910)
c500r200 40 0.083(0.208) c500r200 6 2.586(43.103)
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rank 500 × 50 (500 indicates the number of clusters, 50 indicates the rank of
each cluster). The recall is also very close to the upper bound. For Twitter-10M
graph, precision and recall measures are not as good as for soc-LiveJournal. A
contributing factor to this is that the overlap between E − E′ and S for the
Twitter-10M graph is very small, around 2600 overlapping links with a sample
size of 70 millions. (The overlap for soc-LiveJournal is around 500,000.) Even on
this setting, we can see that the precision for top-10 is still 100%, and top-100
is 30% for rank 500 × 100. This reflects the effectiveness of clustered low-rank
approximation approach.

5 Related Work

The study of parallel graph partitioning, which is a key component of parallel
clustered low-rank approximation, has a long history. The most commonly used
library is ParMetis [17]. However, ParMetis is not suitable for social networks
because ParMetis utilizes a multilevel coarsening approach which is not effective
in social networks. This multilevel coarsening is primarily designed for graphs
in scientific computing (e.g. finite element meshes) [8,27]. In order to overcome
this problem, we develop PEK which is described in Section 3. While PEK is
closely related to PGEM which is presented in [30], PEK is a custom cluster-
ing algorithm for clustered low-rank approximation framework. PEK includes
a recursive partitioning step which allows us to proceed to the next phase of
clustering phase. Furthermore, PEK utilizes ParMetis to cluster an extracted
graph while PGEM uses weighted kernel k-means.

Cong et al. [12] studied the problem of parallel connected components
implemented in UPC for distributed-memory systems. They started from a
PRAM-based algorithm and applied several optimizations for sparse graphs. We
implemented similar algorithm using MPI in our clustering algorithm. It takes
very small fraction of the total clustering time so we do not report it.

Low-rank approximation has been applied to the task of link prediction and
has been shown to be successful in practice [22]. Parallel eigendecomposition for
dense matrices on multiple machines has been well studied in, e.g., [11,9]. But
they are not suitable for large social networks because the adjacency matrices for
them are too large to be represented as dense matrices. Recently, [4,16] studied
the problem of large scale sparse eigensovler based on Hadoop.

Yoo et al. [31] studied level-synchronized breadth-first search on the Blue-
Gene machine. They performed 2D partitions. By optimizing message buffer
size and utilizing the processor topology, they achieved scalability of 2

√
p with p

processors on a very large graph. Their work indicates that exploring processor
topology information may be an important aspect for efficiency that we have
not explored in this paper.

6 Conclusions

In this paper, we present the first parallel implementation of clustered low-rank
approximation. We conduct experiments on distributed-memory machines, and
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the experimental results show that this parallel implementation is effective in
processing large-scale social network graphs with tens of millions of vertices and
hundreds of millions of edges. In particular, our parallel implementation scales
well according to the number of processes.

Our parallel implementation of clustered low rank approximation provides a
critical routine that is a key enabler for efficient analyses of social network graphs.
Presently, such analyses are performed in a brute-force manner on the entire
graph by using parallel processing in large data-centers; in contrast, low rank
approximations of these graphs enable analyses to be performed more efficiently
on a smaller graph that distills the essence of the original graph. However, most
current low rank approximation techniques compute a global approximation of
the graph, and ignore local structure, such as clusters, that must be preserved
in the low rank approximation for accurate analysis. Fortunately, the clustered
low rank approximation permits the computation of a structure-preserving low
rank approximation. Our parallel implementation of this algorithm enables the
full power of clustered low rank approximation to be brought to bear on huge
social networks for the first time.
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Abstract. The advent of heterogeneous computing has forced program-
mers to use platform specific programming paradigms in order to achieve
maximum performance. This approach has a steep learning curve for
programmers and also has detrimental influence on productivity and
code re-usability. To help with this situation, OpenCL an open-source,
parallel computing API for cross platform computations was conceived.
OpenCL provides a homogeneous view of the computational resources
(CPU and GPU) thereby enabling software portability across different
platforms. Although OpenCL resolves software portability issues, the
programming paradigm presents low programmability and additionally
falls short in performance. In this paper we focus on integrating OpenCL
framework with the OmpSs task based programming model using Nanos
run time infrastructure to address these shortcomings. This would en-
able the programmer to skip cumbersome OpenCL constructs including
OpenCL plaform creation, compilation, kernel building, kernel argument
setting and memory transfers, instead write a sequential program with
annotated pragmas. Our proposal mainly focuses on how to exploit the
best of the underlying hardware platform with greater ease in program-
ming and to gain significant performance using the data parallelism of-
fered by the OpenCL run time for GPUs and multicore architectures.
We have evaluated the platform with important benchmarks and have
noticed substantial ease in programming with comparable performance.

1 Introduction

Microprocessor vendors have switched to the many core paradigm to effectively
utilize the transistor count afforded by Moore’s Law. In accordance with this
trend, we are seeing an increase in the number of cores with every successive
product generation. It is also predicted that this trend is likely to continue into
the future. The software development effort needed to harness the immense com-
puting power, is however growing over the roof and hence presents the developers
with a tedious challenge . In addition, with the emergence of heterogeneous com-
puting models, it is imperative that expressive programming models be made
available to the programmers to make proper use of the computational resource
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available and also ease the task of programming. Although lot of research is be-
ing carried out in this direction a clear solution to address this issue is still far
from sight. Emerging accelerator architectures address this issue by providing
platform specific programming model. Two notable examples of this are GPUs
from Nvidia (that use the CUDA programming model) [4] and the CELL proces-
sor from IBM (CELL programming API)[5]. Although these models provide the
potential to get maximum performance out of the system (after exhaustive pro-
gramming effort), the portability of applications developed using these models is
largely limited. This restricts the application of this programming model to niche
domains. Some believe that the trend of using platform specific programming
models and development tools is here to continue.

An alternate approach to address the programmability issue involves design of
plaform indepèndent paradigms in order to ease off the burden on the developers
(by improving portability and code reuse). This approach has received a lot of
attention lately. One such initiative currently being undertaken by the Khronos
research consortium is OpenCL (Open Computing Language)[1]. OpenCL pro-
vides a platform independent programming APIs and is targeted towards de-
velopers to promote the concept of portability and reusability. OpenCL offers
support to both Data and Task parallel execution model. The main drawback of
this approach is that programs written using this model are cumbersome when
compared to programs written using the platform specific model. This is primar-
ily because the designers have traded-off programming efficiency for portability.
In addition to the low programmability the development time involved here is
quite overwhelming. In this paper we put forward a proposal to simplify the pro-
gramming effort to develop applications using the portable programming model.
The attempt is to integrate the OpenCL runtime with OmpSs, a Task Based pro-
gramming model[2] as a back-end execution platform. The pursuit is to offer the
programmers a sequential programming flow with annotated pragmas specifying
the key attributes for the code which is to be accelerated or the section which
is needed to be parallelized for a target architecture. The OmpSs model com-
prises of Mercurium[2], a source to source compiler and Nanos runtime library[2]
for effectively garnering the computing power of the hardware. The source code
with pragmas is compiled with mercurium which links with the Nanos runtime
hence forming a task-graph based on dependencies available for scheduling. This
is scheduled in a appropriate way depending on the target archiecture and uses
the OpenCL runtime as a backend for executing the tasks in a data-parallel fash-
ion. The Integration works well with both Data/Task parallel execution model
of OpenCL but our focus in the paper would be on data parallel execution as
OpenCL task parallel model poorely uses the compute hardware. The key aspect
is that GPU hardware is very unfriendly to exploitation of pure task-level paral-
lellism thereby using a single compute unit of the hardware for execution which
produces huge performance penalties. Whereas in CPUs, the concept of Device
Fission [13] can make way to use task parallel execution model over the entire
hardware. To make our integration more robust and competent, device fission or
device partitioning of CPUs have also been exercised into the OmpSs-OpenCL
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programming model. With this we try to offer the programmer a straightfoward
way to exploit heterogeneous architecture supporting code portability, reusabil-
ity and with minimal development time. This work will benefit the programmer
to have no knowledge of OpenCL programming constructs and program in con-
ventional way. In this paper we discuss the details of integrating OpenCL with
OmpSs programming model and demonstrate how this proposed approach lib-
erates the programmer from laborious development process.

The paper is divided into seven sections. In the Section 2 we give a overview
of the OpenCL programming API. Following that in Section 3, we discuss the
OmpSs programming model developed at BSC and its key features. In sec-
tion 4, integration of OpenCL with OmpSs is discussed in detail, giving in-
sight to Nanos-OpenCL execution and memory model. Section 5 demonstrates
our evaluation of the plaform with key benchmarks followed by an insight into
task parallel OmpSs-OpenCL performance in section 6. Section 7 concludes the
paper and discusses possible extensions to this work.

2 OpenCL Overview

OpenCL (Open Computing Language), a Open standard parallel pragramming
model introduced by khronos to provide protability and code reusability across
heterogeneous plaforms (DSPProcessors,CPUsandGPUs)[8]. Its a cross platform
programming language with a robust API capable of doing data parallel and task
parallel computations across various architectures. It encloses a hierarchy com-
prising of the platformmodel, memory model, execution model and programming
model[8]. The design essentially is a classical host-client systemwith ahost and oth-
ers considered as OpenCL devices. The OpenCL devices are further divided into
compute units and they are directed by the commands from theHost to do the com-
putations. The computations executed on the compute units is fundamentally the
portion of the application(kernel code) which needs to be accelerated.

Fig. 1. OpenCL Programing model and OmpSs-OpenCL Integration Perspective
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This design involves several complicated steps as shown in figure 1 inorder to
execute the kernel in any heterogeneous device. To start with, first the OpenCL
platform is created and the device is identified and then corresponding context is
created for the device with command queues. All the data transfers have to be ac-
complished with creation of OpenCL data buffers in the devices. The key aspect of
portability here is the kernel code is being compiled and built at runtime [8] to cre-
ate a executable for the corresponding device (GPU orCPU). Further it is required
to set the corresponding kernel arguments for the kernel object created. Then the
kernel is enqueued for execution using clEnqueueNDRangeKernel – Data Parallel
Launch or clEnqueueTask – TaskParallel launch. This eventuallymakes the devel-
opment more tedious and demanding leaving alone the performance optimization.
Our contribution largely addresses this issuewithOpenCLprogramming.The inte-
gration of OpenCLwith OmpSsmakes the development process a lot more simpler
and subsequently writing a sequential program with added pragmas. OmpSs pro-
grammingmodel developed at BSC is a combination of openMP and StarSs which
is elaborated in the following section. Due to page constraints, we have provided
reference links at appropriate places which covers the details of Language design
and in depth explanation for the various concepts of OpenCL.

3 OmpSs-OpenCL Model

OmpSs is an adaptation of OpenMP with extensions based on the StarSs pro-
gramming model[3]. It was designed to simplify programming for heterogeneous
architectures using a unified development framework comprising the Mercurium
compiler and the Nanos runtime. The OmpSs model currently encompasses the
feature set provided by SMPSs[3], CellSs and GpuSs[7], each of which was devel-
oped keeping a specific architecture in mind. Since OpenCL offers cross platform
portability and is starting to be recognized by multiple hardware vendors as a
viable programming model for the future, we extend and integrate OmpSs with
OpenCL to leverage on it. A brief perspective of the integration is shown in
figure 1. The OmpSs-OpenCL plaform follows the similar style of representa-
tion along with its previous feature sets. The parallel regions of the application
are expressed in the form annotated pragmas which are considered to be Tasks
by the model. The syntax of specifying the task includes the target device for
execution and the neccessary data required for it execution.

#pragma omp target device [clauses]

#pragma omp task [clauses]

The list of main clauses is the following :

input ([ list of parameters ])

output ([ list of parameters ])

inout ([ list of parameters ])

The clauses to be specified for target device should be OpenCL Device (CPUs,
GPUs) and for task is essentially the neccessary data transfers as mentioned
above. The clauses input, output and inout primarily express the datatype on
which the task performs its computation along with size of data required. In
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addition their can be as many tasks as possible (eg: iterative task calls (same
kernel code)) and as many number of task type (eg: multiple tasks with different
kernel code)). A example code of a OmpSs-OpenCL program is mentioned below
with 2 kernel calls (vector add (data parallel) and vector sub (task parallel)).

#include <stdio.h>

#pragma omp target device (opencl -cpu) copydeps /* Target a

OpenCL Device (CPU/GPU) */

#pragma omp task input ([ size] A) output( [size] B) /* Input/

Output Parameters for the Task/Kernel */

void vec_Add(float *A, float *B)

#pragma omp target device (opencl -cpu) copydeps /* Target a

OpenCL Device (CPU/GPU) */

#pragma omp task input ([ size] A) output( [size] B) /* Input/

Output Parameters for the Task/Kernel */

void vec_Sub(float *A, float *B, int size)

int main(int argc , char ** argv)

{

int size = 512;

double *A; /**< Array of random numbers */

double *B; /**< Array of random numbers */

A = (double*) malloc(size * sizeof(double));

B = (double*) malloc(size * sizeof(double));

for(int j = 0; j < size; j++)

a[j] = rand (); /* Initialize with random values */

vec_Add (a,b); /* Calling Vector addition (OpenCL

Kernel Call)*/

vec_Sub (a,b,size); /* Calling Vector subtraction (OpenCL

Kernel call ) */

#pragma omp taskwait /* Wait for tasks to finish

Execution */

return 0;

}

/* OpenCL Data -Parallel Kernel Code */

__kernel void vec_Add ( __global double * A, __global double

* B)

{

int I = get_global_id (0);

B[I] = A[I] + A[I];

}

/* OpenCL Task -Parallel Kernel Code */

__kernel void vec_Sub ( __global double * A, __global double

* B, __const int size)

{

for (int i = 0; i<size; i++)

B[i] = A[i] - 4.0;

}
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The task here is fundamentally the OpenCL kernel, coded according to the
OpenCL C99 standard[8] with the appropriate parameters matching with the
task data clauses. As we can see above the vector add kernel is written in data
parallel style whereas vector sub in task parallel. This is being highlighted here
to show that programmer needs basic understanding of the architecture and
OpenCL execution model to write data parallel kernels to harness the hardware
in the best posssible way. While for task-parallel kernels, the developer needs to
have no knowledge of the hardware and is similar to sequential execution(uses
single compute unit) with almost no OpenCL constructs hence with understand-
able performance loses with task parallel model. Moreover the OpenCL kernel
can be written in a separate file (for eg .cl file) and can be passed as a command
line argument during compilation (multiple .cl files incase of multiple tasks).
This annotated sequential program above is compiled by mercurium and gener-
ates executable with coresponding calls to the Nanos runtime. Along with this,
mercurium makes sure the correctness of the specification and also passing the
kernel code to the runtime for compilation. From here the Nanos runtime using
the OpenCL data/task execution model tries to bring about the best possible
parallel execution of tasks on the device. In the interest of better utilization of
hardware for OpenCL task parallelism model we have also integrated the concept
of device fission wherein the hardware is divided into multiple sub-devices each
capable of running independent OpenCL kernels. The details of the integration
with Nanos and mechanisms used for data/task parallelism are explained in the
next section.

4 Nanos - OpenCL Model

Nanos is the asynchronous runtime environment used in OmpSs. It is based on
a thread-pool execution model where the master thread coordinates and man-
ages multiple slave threads. The executable generated by the compiler includes
embedded calls that invoke different runtime services in Nanos for execution.
Some of the key services provided by the Nanos runtime include task creation,
dependency graph generation, memory transfer management and kernel execu-
tion management. Task creation service is responsible for creation and addition
of task description to each of new tasks (typical example of descriptions include
updating the target device, execution state, copy data information etc.). Follow-
ing this, dependency graph generation service is responsible for generating the
data dependency graph based on the task clauses specified in the application.
Once the dependency graph is constructed, data dependencies are tracked and
requests are sent to the software cache engine when appropriate to initiate the
necessary transfers. Based on the dependency graph flow the task is set to be
available for execution and is moved to the ready queue. The slave threads pick
up tasks from the ready queue ( on the basis of a specified scheduling algorithm)
for execution. The slave threads use OpenCL runtime calls to execute the tasks.
The integration is diagramatically described in figure 3.

The baseline Nanos runtime environment supports three modes namely Per-
formance, Debug and Instrumentation. Environment variables can be used to
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choose between any of these modes. Performance mode generally enables appli-
cation execution in a performance optimal manner. Debug mode is generally used
by developers to assist with the identification of issues like memory leaks. Intru-
mentation mode is used to generate detailed execution traces for further analysis
and optimizations. Nanos is linked with instrumentation library paraver[6] in-
order to accomplish this. The Nanos-OpenCL model extends support to all the
aforementioned modes (with additional support for trace generation to monitor
OpenCL runtime activity). In in follwing sub sections we explain how Nanos
environment is linked with the OpenCL runtime for doing memory transfers and
execution of kernels.

4.1 Execution Model

The master thread as discussed previously is responsible for creating the tasks,
generating dependency graph, scheduling tasks for execution and more impor-
tantly for creating the OpenCL runtime plaform for Nanos. This happens im-
mediately after the runtime is informed that the tasks are targetted towards
an OpenCL device as shown in figure3. Once the platform is created the device
is identified and the OpenCL context is created for the corresponding device.
The slave thread correspond to a single computing device (eg:1 Nvidia GPU
on a board of 4 GPUs) and OpenCL command queues for execution and data
transfers are created to the device. In addition to handling execution, the slave
threads are responsible for compiling, building and argument setting by calling
respective OpenCL calls. The slave thread interact directly with the OpenCL
runtime using its constructs. Work flow of slave thread is shown in figure 2. Af-
ter the slave thread completes execution data is transfered back using OpenCL
memory transfer calls initiated by the cache engine and the task state is changed
to indicate completion. These data transfers are maintained by the cache engine
which keeps detailed track of the inter task depedencies.

Fig. 2. Nanos Thread Execution Model
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4.2 Memory Model

Data dependencies specified using pragmas in the source code help Nanos to
maintain a data dependency graph across the tasks. This service in Nanos is
managed by the software based cache engine. When a task is created the copy
over information is directly sent to the cache engine for each task inorder to
maintain the data consistency. Once the task is available in the ready queue, it
is ready to be scheduled for execution. The slave thread picks up tasks and send
in calls to the cache engine to do the neccessary data transfers prior to slave
thread executing its task. The software based cache engine is integrated with
the OpenCL runtime and performs allocation of buffers, data transfers using
OpenCL runtime calls, for eg clcreatebuffer() to the device memory. The cache
engine works with the OpenCL runtime with a separate command queue different
from the one being used for launching the kernels by the slave threads, hence
making it independent supporting computation-communication overlap. This
engine utilizes two different caching strategies: write back and write through.
The user can choose any strategy based on the application requirement. Write
back policy copies back the data from the device once the application has finished
execution so that future tasks can reuse the data hence avoiding unnecessary
data transfers whereas write through copies back the data once the task is over.
Further the Cache engine also interacts with the slave threads to facililate the
OpenCL call of clSetKernelArgs() for each task as shown in figure 3.

4.3 OpenCL Kernel Compilation

The key aspect of OpenCL is the runtime compilation of the kernel and this
needs to be carefully handled by the Nanos runtime. With each task that is
created it associates a parallel region of the code (kernel code). Since the compiler
passes the kernel code to the runtime, each slave thread when picking a task
will eventually have the kernel code associated with it. This code is retrived,
compiled and build into a kernel object for execution. Incase of compilation
failure Nanos throws the corresponding errors in the kernel code (task)to the user
asking for debugging. Besides compilation it also tries to vectorize the kernel code
for the device architecture (if available with the device package). Once the kernel
object is build successfully the slave thread contacts the cache system to set the
arguments of the task and eventually enqueue the task for execution. Nanos
makes sure that kernel code/task is compiled only once and if repeated or called
iteratively, it uses the precompiled kernel hence bypassing compilation. This
mechanism is maintained based on the unique kernel name, based on which tasks
are built as shown in figure 2. Moreover if multiple slave threads picks the same
task(identical kernel code) but with different data addresses (eg: tasks called
iteratively with non blocking data) the runtime ensures that only a single thread
compiles and the rest locks. After a single thread compiles and builds the other
threads use the same kernel object but setting the appropriate kernel arguments
for their respective tasks hence maintaining program correctness. Besides this
strategy, parallel compilation among mutiple slave threads is achieved when
having different tasks with distinct kernel code are scheduled to them.
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Fig. 3. Nanos-OpenCL Integration - Working Model

4.4 Device Partitioning

By definition the task parallelism offered by OpenCL uses a single OpenCL
thread and hence a single compute unit which corresponds to a single core in
a multicore architecture. Using clenqueueTask() for executing kernels uses only
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one core of the multicore machine making it a performance bottleneck. With
task-parallel OpenCL behaving in this manner puts forth a hurdle to OmpSs
inorder to utilize the machine to its maximum computing power. However, in-
order to use all the cores of the system, each logical CPU cores of the system
can be visualized into one physical processor which can be implemented using
clCreateSubDevices () from OpenCL API extensions at runtime. This call can
be used to partition the device into mutiple sub-devices. This allows tasks to
run parallel in different sub-devices and hence providing an oppurtunity to uti-
lize them better. Moreover device partitioning can be done inorder to use the
computational resources in a much better way, enabling task parallelism being
one, this feature also helps in partitioning the device based on cache sharing
to leaverage data sharing and to reuse data[13]. This concept is implemented
in Nanos creating sub-devices (based on cache, affinity and count) equal to the
number of slave threads instantiated which can be expressed by the user as a
environment variable. Each slave thread is associated to a command queue and
with device partitioning feature we associate both to each sub-device. With this
each slave thread enqueues tasks using its own command queue to its associ-
ated sub device. Consequently we try to use all the available cores of the device
maintaining data synchroncy among the different sub-devices. This is similar in
spirit to concurrent kernel execution across the multiple cores in the machine.
This scheme tries to use the all the available cores and hence making the run-
time more scalable. In addition it also helps to keep the user away from the
tedious process of creating subdevices and programming accordingly. However
this techinique is still in development stage with many hardware vendors and
it is implemented as an OpenCL extension construct in the current OpenCL
packages. To add to this it does not work with GPUs at all which makes it hard
to do an extensive analysis of its behaviour with CPUs and GPUs in this paper
and we continue our focus on the evalution of data parallel OmpSs with key
benchmarks in the next section. Further we also try giving a glimpse to task
parallel OmpSs performance in section 6.

5 Evaluation

We evaluate our runtime system by analyzing different benchmarks with a OmpSs
version against a standard OpenCL one. The OmpSs version follows sequential
programming style with annotated pragmas targetting OpenCL device. This in-
turn uses the Nanos runtime for executing the parallel region (kernel code). We
compare the execution time of OmpSs and with the original OpenCL data parallel
version.We have found comparable performance with greater ease in programma-
bility. The benchmarks were run with different problems sizes to check scalability
and also experimented with multi-kernel application. The benchmarks launch ker-
nels in data parallel model using clEnqueueNDRangeKernel with globalworksize,
localworksize and work dimensions for each kernel mentioned as a command line
argument by the user, as the programmer only knows the way in which the kernel
has been coded.
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We have carried out our investigation in both GPUs and CPUs machines.
Our CPU platform, 2 Intel Xeon CPU E5649 at 2.53GHz (12 CPU Cores/Open-
CLCompute Units) and a Nvidia Tesla M2090 (20 OpenCLcomputeUnits), the
GPU platform. In the CPU we use OpenCL 1.1(Intel Implementation with Auto-
vectorization), however in GPU OpenCL version 1.0(Nvidia implementation) is
used. Mercurium and Nanos-OpenCL runtime were retained to be the same ver-
sion for both the machines. Moreover, In both the systems Nanos was confined
to performance mode so as to experience maximum optimizations in executing
tasks.

5.1 Benchmarks

We choose to experiment the platform using five benchmarks from various com-
puting domains. Typical double precision dense matrix multiplication of two
square matrices with varying problem size. With growing use of GPUs in sci-
entific computing we decided to use N-Body simulation and Convolution as a
benchmark for our comparison. Likewise Black scholes algorithm measuring op-
tion pricing from financial engineering is also taken for study. Further Stream
benchmark with 4 different kernels namely copy-task, scale-task, triad-task and
add-task doing respective vector operations with varying sizes were used to study
the runtime system. Also Blocked matrix multiplication is also used to express
the advantages of the nanos runtime system.

NBody simulation works with a large number of particles and in OmpSs ver-
sion we create a task for all particles. OmpSs and OpenCL GPU/CPU versions
are almost indistinguishable even with increase in number of particles. OmpSs
version of Normal Matrix Multiplication is alike the OpenCL verision with the
kernel specified as a task. The execution of a single task(kernel) completes the
multiplication. OmpSs verision initialize the matrix and call the task/kernel and
the rest of the process is carried out by nanos. We can see in the graph (figure
4) that for the GPU version the difference in execution time is very negligible
and CPU version offering almost 90 % or more matching performance compared
with the original OpenCL code. Whereas the blocked version of matrix multi-
plication, creates multiple tasks based on the block size with the initial tasks
providing the data for latter tasks to work upon thereby benefitting on having
lesser data communication. Interestingly, this can be expressed in a partitioned
manner with plenty of independent data parallel tasks which makes nanos to
best utilize the hardware. As we can notice blocked Matrix Mutiplication of-
fers much better performance compared to the normal OpenCL matmul version
used in the previous normal matmul example. This is predominately because
the tasks are created for specified blocked data and allowing the asynchronous
task parallel Nanos system[3] to take advantage hence saving on data transfer
time which can be evidently seen with GPU results. This needs some effort from
the programmer to understand the algorithm and partition accordingly and the
remaining is well anchored by the Nanos runtime presenting better performance.
In addition, this better performance is also because of the cache engine which
transfers the data to the device before the task needs it. This can be realized by
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Fig. 4. Evaluation of OmpSs against OpenCL on CPUs and GPUs

having data transfers and kernel launches enqueued in different queues to make
it overlapped and asynchronous. This method of partitioning data and writing
OmpSs source code with many tasks transforms into runtime optimizations can
be seen in the graph in figure 4. With increasing problem sizes which is with
more tasks (independent data) and the OmpSs blocked version outperforms the
original OpenCL version with both having identical kernel codes.

Black scholes iterates over the sample stock prices to find a optimum pricing.
A task is created for the entire stock prices and the kernel is run, calculating the
option pricing using floating point operations. As we can see the graph(figure 4)
shows the difference is very small till 16 million stock prices and almost a second
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Table 1. Lines of code

Benchmark Matmul Nbody BlackScholes Convolution Stream Blocked
MatMul

Original
OpenCL

298 308 364 312 485 298

OmpSs 51 71 58 68 87 81

slower is OmpSs for 32 million for the CPUs. We can also notice that OmpSs
and OpenCL GPU versions performs almost identically.

OmpSs Stream benchmark consist of 4 different tasks doing different vector
operations. This implies that 4 OmpSs tasks have to created with their de-
scriptions and the dependency across them. These constitute majorly the nanos
overhead time and hence we can see irrespective of the increase in problem size
the execution time of OmpSs doesn´t seem to change much as the overhead is
because of the nanos task creation and dependency graph generation. In Convo-
lution, a maskinput matrix is kept constant(65X65) for all 3 different problems
sizes. From the graph (figure 4) we can see that OmpSs is almost equivalent with
original OpenCL version for both CPUs and GPUs irrespective of problem sizes.

From this evaluation we can say OmpSs-OpenCL integration offers satisfac-
tory results with very less time spent on development. An insight into the number
of lines of code programmed for these benchmarks is shown in table 1. As we can
see there is almost 5 fold decrease in lines of code in all applications for OmpSs
verision. Stream benchmark with 4 different kernels makes the best difference in
lines of code for OmpSs as we need not compile, build, do data transfer and set
arguments for 4 different kernels.
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6 Task-Parallel OpenCL

An experiment with task parallelism offered by OpenCL was done with black
scholes application as is easy to partition with no inter data dependence. The
sample stock prices where partitioned across different subdevices and task par-
allel kernels where launched on each sub device. The graph (figure 5) shows the
execution time for each of the problem size and number of subdevices on the Intel
12 Core Xeon machine. This is compared with the original task-parallel OpenCL
verision. Black scholes performs well with 12 subdevices on bigger problem size
as the overhead involved in creation of subdevices and its corresponding nanos
thread creation undermines the performance of 4,6 subdevices. With 12 count
partitioning each sub device will be a single core processor and we use the com-
plete CPU machine for the benchmark hence we can achieve better performance
with bigger problem sizes. On the whole we can conclude that with increase
in problem size and more subdevices, faster is the application. Our analysis of
device fission for task parallel OpenCL is superficial as this is still under de-
velopment with many vendors and is yet to be supported by GPUs. With the
current software development scenario strongly adopting data parallel OpenCL
model our results focus more on the OmpSs-OpenCL data parallel model.

7 Related Work

With hetergeneous computing coming into main stream research, several re-
search groups and industry labs are involved in developing better programming
models. OpenCL a open source programming API targetted at various architec-
tures have inclined researchers to investigate deeper into the model aiming for
better performance. In [10] a static partitioning of data parallel task are carried
out for hetergeneous arhitecture. Based on prediction a portable partitioning
scheme is proposed for dividing data parallel tasks for GPUs. Similarly [12] the
data parallel tasks are dynamically schdeuled to a CPU or GPU based on the
contention state (metadata during runtime) and historical data (during profil-
ing). In [11] talks about Hybrid OpenCL for distributed computing. The paper
proposes the combined use of OpenCL and MPI for multiple node architecture.
Further in [9] supports OpenCL execution with a software cache for architec-
tures with no cache(CELL processor). Summarizing, we find that researchers
have restricted themselves to the data parallel OpenCL model and have ne-
glected to address the laborious development time involved in it. Our approach
mainly reduces the strenuous programming process in OpenCL targetting Data/
Task-based OpenCL execution model.

8 Conclusion and Future Work

In this paper we propose an approach to integrate OmpSs and OpenCL program-
ming models with an emphasis on reducing programmer effort and improving
code portability and reusability. OpenCL programming model which is widely
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adopted as an industry standard provides a portable platform for programming
heterogeneous architectures but falls short when it comes to programmability
(Lot of effort is required). We present the integration of OpenCL with OmpSs
programming model which can help eliminate the laborious programming pro-
cess by empowering programmers with simple annotated pragmas. The approach
is to use data parallel OpenCL model with asynchronous Nanos runtime system
which takes advantage of the hardware. We also discuss interactions between
Nanos runtime environment and OpenCL in detail. Our experiments show com-
parable performance with programs written only using OpenCL thereby making
a strong case for using OmpSs-OpenCL model. We believe that current industry
trends hold lot of promise for the proposed approach. With OpenCL 1.2 release
supporting device partitioning, it would be possible to execute different tasks in
each core of the machine and realize concurrent kernel execution in CPUs. In
the GPU domain, product roadmaps predict GPUs with concurrent execution
features by the end of the year thereby creating demand for robust programming
models that offer good performance and reduces development effort. As part of
future work we plan to extend the model to support multiple devices (both CPUs
and GPUs) and run simultaneous tasks using both data and task parallel opencl
model on hetergeneous plaforms with effective scheduling strategies.

Acknowledgement. We thankfully acknowledge the support of the European
Commission through the TERAFLUX project (FP7-249013) and the HiPEAC-
2 Network of Excellence (FP7/ICT 217068),the support of the Spanish Min-
istry of Education (TIN2007-60625, CSD2007-00050 and FI program) and the
Generalitat de Catal unya (2009-SGR-980).

References

1. OpenCL programming, http://www.khronos.org/registry/cl/
specs/OpenCL-1.1.pdf
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Abstract. Graphical Processing Units (GPUs) have shown acceleration
factors over multicores for structured mesh-based Computational Fluid
Dynamics (CFD). However, the value remains unclear for dynamic and
irregular applications. Our motivating example is HYDRA, an unstruc-
tured mesh application used in production at Rolls-Royce for the simu-
lation of turbomachinery components of jet engines. We describe three
techniques for GPU optimization of unstructured mesh applications: a
technique able to split a highly complex loop into simpler loops, a kernel
specific alternative code synthesis, and configuration parameter tuning.
Using these optimizations systematically on HYDRA improves the GPU
performance relative to the multicore CPU. We show how these opti-
mizations can be automated in a compiler, through user annotations.
Performance analysis of a large number of complex loops enables us to
study the relationship between optimizations and resource requirements
of loops, in terms of registers and shared memory, which directly affect
the loop performance.
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1 Introduction

Unstructured mesh (or grid) applications are widely used in Computational Fluid
Dynamics (CFD) simulationswhen complex geometries are involved.They achieve
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a higher degree of correctness by enabling critical components of the geometry to
be finely discretized.

This comes at the cost of increased difficulty in achieving high memory system
utilization. In structured mesh applications, compilers can leverage the topology
of the mesh which is explicit in the program structure. In contrast, in unstruc-
tured mesh applications, the mesh topology is not known at compile-time. It
may include elements (e.g. triangular faces) of widely different sizes to reflect
the modeller’s interest in specific sections of the geometry, and consequentially
the adjacency relationship is non-uniform. To support this flexibility, implemen-
tations depend on indirections between adjacent mesh elements, which prevent
many structured mesh compiler optimizations. A typical instance of this be-
haviour is when a program visits all edges of the mesh and accesses data associ-
ated to vertices. To do so, it uses a mapping between edges and vertices, which
represents the grid structure itself and expresses a non-affine access to arrays
holding mesh data.

In this paper we consider a motivating example – HYDRA, an unstructured
mesh finite-volume CFD application used at Rolls Royce for the simulation of
inner turbomachinery components of jet engines. It consists of 50,000 lines of
code, including more than 1,000 parallel loops over the mesh, and it supports
the simulation of a wide range of CFD problems, including linear, non-linear and
adjoint cases.

Our research aim is the acceleration of HYDRA through both strong and weak
scaling, i.e. decreasing simulation times and increasing the size of the geometries
modelled. For this purpose, HYDRA has been modified to use our unstructured
mesh library, called OP2, which is supported by a compiler and run-time library.
OP2 supports a wide range of architectures, including clusters of CPUs andGPUs.
In this paper we focus on the acceleration of HYDRA on a single GPU node.

In a preliminary optimization phase, we studied the performance of HYDRA
on a single multicore node using MPI, against that of a single GPU node. Our
results showed that a baseline GPU implementation, featuring only standard
unstructured mesh optimizations, is not sufficient to achieve performance com-
parable to the execution on a single CPU. To improve this situation, we identi-
fied pathological patterns in the HYDRA code. We used three optimizations to
address those patterns: loop fission, an improved colouring strategy, and loop-
specific tuning of partition size and CUDA thread block size. We applied these
optimizations manually to four specific loops of HYDRA having low performance
on a GPU. These results are shown in Figure 1: the execution of HYDRA on
Intel Westmere and Sandybridge processors, using different numbers of cores
using MPI, are compared to execution on an NVIDIA Fermi C2070.

In this paper we build on the experience and techniques gathered from our
preliminary optimization steps. The described optimizations are automated in
the compiler by extending the OP2 language with annotations. These are used by
the programmer to signal the compiler that the optimizations can be applied to
the annotated loops. This reduced significantly the compiler design complexity,



114 C. Bertolli et al.

0

50000

100000

150000

200000

2 4 6 8 10 12

E
xe

cu
tio

n
tim

e
(m

ili
-s

ec
on

ds
)

Number of cores (1 MPI process per core)

MPI (westmere)
MPI (sandy bridge)

CUDA-Baseline
CUDA-Optimized

Fig. 1. Comparison of HYDRA performance on single CPU and GPU. The starting
point for this paper is the lower, manually-optimised performance.

as it does not need to analyze the entire user kernel code, but only the loop
parameters and annotations.

As the described optimizations are composable for the same loop, the com-
piler is given tools to select the best combination of optimizations to be applied
to each loop. We take a step forward understanding what (composition of) opti-
mizations actually deliver better performance. By taking advantage of the large
number of complex OP2 loops available in HYDRA, we can put the perfor-
mance improvement due to optimizations into relation with the loop features,
and their resource requirements for GPUs. This represents a key step towards
a fully-automatic optimizing compiler for unstructured mesh applications. The
contributions of this paper are the following:

– We present an annotation-based scheme that allows our compiler to split
complex loops over unstructured meshes in a way that optimises effective
use of shared memory.

– We present performance analysis for this and other optimisations, separately
and in combination, on a wide variety of OP2 loops from a substantial
application case study.

– From this experimental work we characterise the properties of loops that
most impact their performance. We show how OP2’s access descriptors, in
combination with quantitative compile-time metrics of shared-memory and
register requirements, can be used to determine where these optimisations
are valid and profitable.

2 Related Work

A huge literature exists related to optimisations for unstructured grid applica-
tions, or, in more general terms, for irregular applications. Most optimizations
attempt to improve data locality through mesh renumbering, with the goal of
improving cache usage (e.g. [1, 2]). Our run-time library is currently able to use
either PT-Scotch [3], and METIS [4]. However, the performance results shown
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in this paper is based on well-ordered meshes. The optimisations that we present
do not require the analysis of the iteration order, and they are based on input
program transformations, alternative code syntheses, and run-time tuning.

The optimization strategy that we aim at developing shares similar goals
with the work presented by Strout et al. in [5]. This introduces a framework
for composing optimisations for irregular applications, where examples of such
optimisations include iteration and data re-ordering, and loop tiling. The frame-
work enables modelling of optimizations at compile-time in terms of undefined
functions, which are then applied at run-time by analysing the mesh in the in-
spection phase. The result of the mesh inspection is the instantiation of the loop
execution phase, with improved performance as a consequence of optimisations.
The compiler framework allows sound composition of the undefined optimization
functions, effectively providing an abstraction for composing optimizations.

A number of development projects include elegant abstractions for parallel
computing on unstructured meshes using MPI. The most prominent research ef-
fort targeting intra-node parallelisation is theg Liszt project [6], which has many
similarities with our work. Liszt is a domain specific language for programming
unstructured mesh applications, and it targets performance portability across
multiple different architectures. Unlike the OP2 compiler, the Liszt compiler
synthesizes stencil information by analyzing user kernels, with the aim of apply-
ing platform-specific optimizations. Performance results from a range of systems
(GPU, multi-core CPU, and MPI based cluster) executing a number of appli-
cations written using Liszt have been presented in [6]. We are not aware of any
industrial applications developed using Liszt.

3 The OP2 Library

In this section we give a brief description of the mesh abstraction that is exposed
by OP2, and we relate it to its user interface. The reader is invited to refer to [7,
8] for a full description of the interface. A mesh is modelled as a graph and it
includes a collection of interconnected sets. In a typical CFD program, the mesh
includes the following sets: edges, vertices, and cells. A set is a programming
abstraction of the OP2 library (op set) and it is used to build an iteration space.
To declare an op set, the user is provided with the op decl set call, which requires
the iteration space cardinality (or size), i.e. the number of elements in the set.

The connectivity between sets expresses the mesh topology, and it specifies
how a generic element of a set maps to elements in another set. For instance,
the user can specify for each edge what are the incident vertices. This trans-
lates in OP2 with the op map data structure and with a call for declaring it
(op decl map). The call takes as input: the from and to sets of the mapping;
the arity (or dimension) of the mapping, i.e. the number of elements in the to
associated to each element in the from set (this number must be homogeneous
for all mapped elements); an array of indices implementing the mapping.

Data in OP2 is associated to mesh sets. A dataset associates a tuple to each
element of a set, and is abstracted in OP2 through the op dat data structure
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1 @op_inc_id(v1Data, v2Data)
2 void incrVertices (double * eData, double * v1Data, double * v2Data) {
3 ...
4 *v1Data += t;
5 *v2Data += t;
6 }
7 op_par_loop (incrVertices, edges,
8 op_arg_dat (edgeData, -1, OP_ID, OP_READ),
9 op_arg_dat (vertData, 0, edges2Verts, OP_INC),

10 op_arg_dat (vertData, 1, edges2Verts, OP_INC));

Fig. 2. Example of user kernel and OP2 op par loop. The first line is an annotation
extension which we will describe in Section 4.

and declared with the op decl dat function. This function takes as input the set
to which the op dat is associated, the cardinality (or dimension) of the tuples
(i.e. the number of data items associated to each set element, that must be
homogeneous), and the array of tuples. For instance, an op dat contains the 3D
spatial coordinates for each vertex.

In OP2, computation is expressed through parallel loops, which apply a user-
programmed kernels to all elements of a chosen iteration op set. An example
of a user kernel, which reads data associated to an edge and modifies the data
associated with the two connected vertices, is illustrated in Figure 2. We also
show the related op par loop call, expressing the application of the user kernel
to all edges. The first two arguments of the op par loop are the user kernel
and the iteration set. Then, the user is required to specify how datasets are
accessed to instantiate actual arguments for the user kernel. For this purpose,
the op par loop takes as input further arguments (called op args), one for each
parameter of the user kernel. For each op arg, the user specifies:

– The dataset, or op dat, from which the actual argument is to be retrieved
(first parameter).

– If the dataset is associated with the iteration set (edges in Figure 2), then no
indirection is necessary. In this case the second and third parameters assume
the values -1 and OP_ID. For a given iteration, the dataset is accessed directly
using the iteration identifier.

– If the dataset is associated to a set different from the iteration set, then an
op map is needed. The third parameter is a reference to the op map to be used
to translate iteration set identifiers to op dat associated set identifiers. The
second parameter is an integer specifying which mapped element is to be con-
sidered. For instance, for the mapping from edges to vertices the user has to
specify 0 or 1, to address the first or second vertex associated to each edge.

– The access modality: read (OP_READ), write (OP_WRITE), increment (OP_INC),
read and write (OP_RW). The user kernel must reflect the access modality
expressed for the op par loop parameters.

This information is called the access descriptor and it exposes the loop’s data-
access pattern to the OP2 compiler. It is important to notice that an access
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descriptor implicitly contains information related to the cardinality of the in-
volved op dat and the arity of the op map used (if any). This information is
extracted by the compiler by analysing op dat and op map declarations, and
can be used to compute the memory requirements for a specific iteration of an
op par loop.

To maximise parallelism for op par loops, OP2 assumes that the loop itera-
tion ordering does not influence the final result. Some combinations of access
descriptors, i.e. when indirectly modifying a dataset, might incur data races if
not properly controlled. The OP2 implementation guarantees data race avoid-
ance when incrementing (OP_INC) a dataset accessed indirectly. For all other cases
(OP_WRITE, OP_RW) it is responsibility of the user to express parallelism control by
constructing and, if necessary, partitioning the mesh to ensure no conflicts exist.

3.1 Compiler and Run-Time Support

The current implementation of OP2 includes: a source-to-source translator that
implements a OP2 program to multiple target languages, such as CUDA,
OpenMP, OpenCL and MPI; a run-time library which performs unstructured
mesh optimizations, such as mesh partitioning and coloring (see below). We give
a description of the CUDA implementation of OP2.

For GPUs, the size of the mesh is constrained to be small enough to fit en-
tirely within the GPU’s memory. This means that for non-distributed memory
implementations (i.e. single node) data transfer only happens at the time of data
declaration, and possibly at the end of the computation. For CUDA, the com-
piler parallelizes an op par loop by partitioning its iteration set and assigning
each partition to a Streaming Multiprocessor (SM)1. In this section we discuss
two main features of the implementation: coalescing memory accesses and a col-
oring strategy to prevent data races. The implementation distinguishes between
op par loops that use at least one op map, called indirect loops, and those that
do not, called direct loops.

For direct op par loops, we partition the iteration set in chunks of the same
size, and each thread in a CUDA block works on at most � n

m� elements of
the partition, where m and n are the sizes of the thread block and partition.
Observe that this execution model is sufficient to avoid data races because, by
definition, none of the data is accessed indirectly and therefore each thread can
only update data belonging to its iteration set elements. The main concern is
to avoid non-coalesced accesses into device memory. This is achieved by staging
data between device memory and the shared memory, in two stages. (1) Before
the user kernel executes, any dataset read whose cardinality per set element
exceeds one is brought into the shared memory. The rationale behind this is
that unary data will be accessed during execution through a naturally coalesced
transfer. (2) After the user kernel, any modified dataset is moved back from
shared into device memory.

For indirect op par loops, we chose a different strategy, where we distinguish
between op dats accessed directly or indirectly. Indirectly accessed op dats are
staged between device and shared memory. The data can be scattered in the
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device memory because of mappings, even if proper renumbering algorithms are
used to minimise the dispersion of data. For contiguos regions, memory accesses
are coalesced. The stage in phase coalesces device memory data into shared
memory locations mapping successive memory addresses into successive thread
identifiers. Directly accessed op dats are instead left in device memory. This
reduces the shared memory requirements for the CUDA kernel and relies on the
L1 cache.

Additionally to memory access coalescing, for indirect op par loops we need to
avoid data races between threads. That is, allowing threads to operate on distinct
elements of the iteration set does not guarantee an absence of data dependencies
due to indirect accesses, as previously discussed. The implementation is based
on coloring the iteration set in an inter- and intra-partition fashion to resolve
this issue. The inter-partition coloring is used to avoid conflicts between the data
shared at partition boundaries. Since the library ensures partitions with the same
color do not share elements retrieved through a mapping, these can proceed in
parallel. Intra-partition coloring is needed to prevent threads in the same thread
block from data race conflicts. In OP2 increments are computed in a fully-parallel
way by threads in the same block using local private thread variables. Colors
are followed when applying the increments to the shared memory variables, to
prevent conflicts.

4 Optimizations

An application programmer writing an OP2 loop is insulated from the details
of the implementation on the back-end architectures which OP2 supports. As
such, there is no restriction on how many sets, maps and datasets are used in the
loop, their size or access pattern. Thus, given specific back-end hardware, the
OP2 code transformation framework needs to take into consideration not only
how an op par loop can be optimized, but also the limitations of the underlying
hardware that degrade performance. This is a key issue that we encountered
when utilizing OP2 for accelerating HYDRA.

We consider an example loop of HYDRA, called EDGECON, which is rep-
resentative of the key loops that make up over 90% of the runtime in HYDRA
on a GPU. EDGECON computes the gradient contribution on edges, by iterat-
ing over edges accessing datasets associated to both edges and vertices (using a
mapping from edges to vertices). This scheme is common in CFD code, and its
pattern is shown in Figure 2. The input of the loop includes both indirectly and
directly accessed op dats. Each iteration of the loop accesses directly 24 bytes (1
op dat), and indirectly a total of 544 bytes (10 op dats). Of these, two op dats
are accessed indirectly and incremented, and their total size is 384 bytes per it-
eration. As these incremented op dats are allocated to shared memory and local
thread variables, they represent a main source of shared memory and register
pressure. The elemental user kernel used by EDGECON is made of 102 double
precision floating point operations, and about 200 integer operations. The PGI
compiler reports the use of 41 registers per thread, which is larger than the 31
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available for double precision on the NVIDIA C2070 GPU. The largest itera-
tion size available for execution is 64, which requires 34KB of shared memory (a
Fermi GPU supports 48KB).

From this analysis it can be noted that the loop suffers from two main issues
when mapped to a GPU. Firstly, as the partition size is small, the available
parallelism within each SM is limited. To improve this, shared-memory require-
ments need to be reduced. For instance, to employ partitions of 128 iterations,
we need to fit all indirectly accessed arguments into shared memory. When the
iterations in a same partition do not share any data (i.e. in the worst case), this
requires a partition with 64 iterations to use no more than 24KB in shared mem-
ory, as the shared memory requirements roughly double with the partition size.
Conversely, an effect of high shared memory requirements is a poor CUDA block
occupancy. Secondly, the registers required for each iteration are more than the
maximum available on a Fermi GPU. This hardware resource shortage prevents
the dynamic SM scheduler from allocating all 32 threads per warp.

4.1 Compiler Support for Loop Fission

Loop fission is an effective means to address the high register pressure and high
shared memory requirements exhibited in the EDGECON loop. Splitting a loop
manually requires the developer to analyze the kernel for valid splitting points
and to explicitly refactor the kernel to pass data across sub-kernels. This task is
tedious and error-prone.

As discussed, the EDGECON loop follows a widely used loop scheme in un-
structured mesh CFD. It iterates over edges of the mesh (line 9) and increments
two arguments through an indirection (lines 11 and 12). The user kernel typ-
ically computes a unique contribution value on a local function variable (i.e.,
t), which is then used to apply the increment through the indirection to the
two vertices of the edge (lines 5 and 6). This scheme is widely used in HYDRA
by all performance-critical loops, which together account for the 90% of execu-
tion time. It also exists in a few variants: for example, one vertex data value is
incremented while the other is unchanged or decremented.

Because this scheme is critical and opens up a natural splitting point between
the contribution computation and the dispatch to the vertices, we extended the
OP2 abstractions with annotations to categorize kernels. Using these, developers
can drive the OP2 compiler as depicted in Figure 2, line 1. We extended the
OP2 compiler to leverage annotated code with automatic OP2 to OP2 loop
splitting. Our transformation replaces the original loop with three loops, depicted
in Figure 3, with equivalent semantics:

– The first loop computes the contributions for each edge and stores them
into a new op dat associated with the edges (lines 14-16). The kernel code
is obtained from the original kernel by moving the argument corresponding
to the second vertex data to a local variable (line 3). In doing so, the sec-
ond increment no longer has any effect and can be safely eliminated by the
compiler.
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1 void incrVerticesAlt (double * eData, double * v1Data) {

2 double v2Data [1];

3 ...

4 *v1Data += t;

5 *v2Data += t;

6 }

7 void incrVerticesCpy (double * e, double * v) {

8 *v += *eData;

9 }

10 op_par_loop ( incrVerticesAlt, edges,

11 op_arg_dat ( edgeData, -1, OP_ID, OP_READ),

12 op_arg_dat ( incrVerticesTemp, -1, OP_ID, OP_WRITE));

13 op_par_loop ( incrVerticesCpy, edges,

14 op_arg_dat ( incrVerticesTemp, -1, OP_ID, OP_READ),

15 op_arg_dat ( vertData, 0, edges2Verts, OP_INC));

16 op_par_loop ( incrVerticesCpy, edges,

17 op_arg_dat ( incrVerticesTemp, -1, OP_ID, OP_READ),

18 op_arg_dat ( vertData, 1, edges2Verts, OP_INC));

Fig. 3. Source to source loop fission of the example shown in Figure 2

– The second and third loops iterate over edges and apply the increment,
passed in the new op dat, to the vertices (lines 17-22). The corresponding
kernel code (lines 9-12) is generated according to the kernel annotation and
the types of the vertex data.

This distribution of one loop into three allows the number of op args to be re-
duced for each loop w.r.t. the original loop. For the first loop, it also transforms
two indirect op arg accesses into a single directly accessed op arg. As directly
accessed op args for indirect loops are not staged into shared memory, this re-
duces the shared memory requirements for the first loop. The increment loops
are generally simpler loops, with a smaller number of input parameters and small
kernels, and can be thus easily accelerated.

4.2 Alternative Coloring Schemes

In Section 3 we showed that OP2 guarantees absence of data races by using a
two-level coloring technique. The optimization presented here provides an alter-
native strategy for intra-partition coloring. In the current OP2 implemention the
following scheme is applied. First, the user kernel is evaluated for all iterations in
the partition. The parallelism degree for this stage is the minimum between the
number of iterations in the partition, and the number of threads in the CUDA
block. In this phase, the increment contributions are not applied directly to
the op dat in shared memory, to prevent data races between threads, but local
private thread variables are used to store the increments. There is one such vari-
able for each thread and for each incremented op dat. After executing the user
kernel, the increments are applied to the shared memory by following colors.



Optimizations for Unstructured Mesh Applications 121

This strategy maximizes the parallelism when evaluating the user kernel, at the
cost of a larger register pressure due to the additional thread private variables.

An alternative to this is to program threads to compute and apply the in-
crements to shared memory when executing the user kernel. The user kernel is
passed a shared memory address, instead of private thread variable references.
To prevent data races while executing the user kernel, the thread execution must
follow colors. This reduces the amount of total parallelism when evaluating the
kernel, but it also reduces the register requirements due to the eliminated pri-
vate variables. The implementation of this alternative strategy is confined to
the CUDA kernels synthesized for OP2 loops. This behavior can be selected by
the user through annotations on the loop, similar to the ones used for fission.
However, this is a short term solution, and we aim at understanding when this
alternative synthesis actually delivers better performance. In Section 5 we dis-
cuss how this can be deduced by combining information from access descriptors
and CUDA compiler reports.

4.3 Tuning Partition and Thread Block Size

The final optimization that we extensively applied to HYDRA loops is the tuning
of the partition and thread block size. These two parameters are inter-dependent:
the partition size is the number of iterations that are mapped to the same SM,
while the thread block size is the number of threads that are used in the CUDA
program to execute the iterations.

Both the partition and thread block size represent an upper bound on the
amount of parallelism that can be achieved by a SM when executing a parti-
tion. The execution consists in the following phases, as discussed in Section 3:
(i) stage in of input data from device to shared memory, one dataset at a time;
(ii) execution of the user kernel; (iii) stage out from shared to device memory,
one dataset at a time. When executing the user kernel the maximum parallelism
achievable is equal to the number of iterations in the partition; in the staging
phases the parallelism is instead limited by the number of elements to be staged,
multiplied by the dataset cardinality. With no data re-use, this is equal to the
partition size multiplied by the cardinality of the dataset. Using a larger CUDA
thread block size permits more parallelism in the staging phases, without losing
the coalescing property. As a general rule, a larger partition size, constrained
by the shared memory size, is always preferred to provide more parallelism to
the SM. However, the optimal block size depends on the size of the op dats and
the kind of access. Section 5 studies the relation between multiple loops with
different access descriptors and the optimal block size.

5 Experiments

In this section we show the results of performance analysis of the optimizations
described in the previous section applied to several loops in HYDRA. The sim-
ulation used is a standard CFD test problem used for validation of correctness
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and performance called NASA Rotor 37, that models a blade of a turbomachin-
ery component. In our tests we replicate the blade twice to set up a mesh size
including: 2.5M edges, 860K vertices, and 54K wall edges. The simulation solves
the Navier-Stokes equation to evaluate the flow through one passage of the two
NASA Rotor 37 blades and it is the same application used in the performance
graph of Section 1. In previous tests, we also used a larger mesh, including 4
NASA Rotor 37 blades, and we obtained similar performance results of the case
used here, scaled by a factor of 2.

The configuration of HYDRA required for this simulation uses 33 op par loops
some of which are extremely complex. In our tests, we used an NVIDIA Fermi
C2070 including 14 SMs (i.e. 448 CUDA cores), 6 GB of main memory and 48/16
KB of shared memory and L1 cache, respectively. The full simulation runs for
tens of minutes, but we limited performance analysis to 30 time steps to reduce
the total performance analysis time. To compile the CUDA code generated by
the OP2 compiler we used the PGI Fortran CUDA compiler version 12.2, with
CUDA 4.0, and the NVIDIA CUDA compiler version 4.0.17. The optimization
options are, respectively, -O4 and -O3. The experiments focus on the effects
of optimizations on all loops involved in the simulation. For each loop, there
are a limited number of optimizations that can be applied, and that can be
composed together. We analyze the performance of each loop when applying the
optimizations individually, and in all their possible compositions. The aim of
these experiments is to put into relation: (1) The features of an op par loop in
terms of its input arguments including: the type and cardinality (or dimension)
of the related op dat ; the arity (or dimension) of the related op map, if used. (2)
The GPU resource requirements, in terms of the number of registers needed for
each thread and the shared memory size required given a specific partition size.
(3) The performance in terms of execution time for the CUDA kernel section.

5.1 Fission, Block Tuning and Coloring

A number of OP2 loops in NASA Rotor 37 can be subject to all the three op-
timizations discussed in the previous section. For space reasons, we study the
following relevant loops: accumulation of contributions on edges (ACCU), gra-
dient contribution on edges (EDGECON), viscous flux calculation (VFLUX),
inviscid flux calculation (IFLUX), viscous wall flux calculation (WFFLUX), and
summation of near wall edge contributions (SUMWALLS). The first five loops
adhere to the requirements of the fission optimization, by incrementing equiva-
lent amounts to two op dats. Unlike the previous loops, the last one has a single
incremented op dat. We used this case as an experiment to understand if loop
fission increases performance. This explores the general idea that smaller kernels
are always better parallelized on a GPU than larger ones.

Table 1 illustrates the main features of the loops, by inspecting their access de-
scriptors.All loops feature an average to large number of input op dats, eachwith a
large cardinality, resulting in a large amount of sharedmemory required to execute
each iteration. The first four loops iterate over the largest mesh set (edges), while
the last two iterate on the wall edge set that is two orders of magnitudes smaller.
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Table 1. Loop properties resulting from access descriptor analysis for loops which can
be subject to fission and alternative coloring

ACCU EDGECON VFLUX IFLUX WFFLUX SUMWALLS

Iteration set edges edges edges edges wall edges wall edges
No. of op arg dats 13 11 19 9 15 8
No. of indirect op arg dats 12 10 18 8 12 5
Size of op arg dats (bytes) 712 568 776 296 628 228
Size of increments (bytes) 200 288 96 96 96 48

This is reflected in the average performance of the loops, as we detail below. The
size of the input data for each iteration can be used to define the maximum permit-
ted partition size that a loop can use. As a partition is mapped to a single stream-
ing multiprocessor (SM), all iteration data for that partition must fit into shared
memory, i.e. into 48KB on the C2070 GPU. The run-time profiling of OP2, which
analyses the mesh, computes the average data re-use, and with these results, the
kernel configuration can be tuned to maximize the partition size.

Figure 4 shows the results of applying each optimization to the described
loops. Table 2 shows the resource requirements for each loop when applying
different optimization schemes. For each optimization, we always choose the
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Fig. 4. Performance results when applying optimizations alone and in composition.
The Y-axis is in log-2 scale.
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Table 2. Resource usage for OP2 optimizations. In ‘Split’ columns there are 3 values
as each loop is split into 3 loops.

(a) Register Usage

Loop Baseline,
Block

Color Split
(+block)

Split +
Color
(+block)

ACCU 63 63 63, 28, 28 63, 18, 23
EDGEC. 41 46 37,32, 32 37, 34, 34
VFLUX 63 63 63, 27, 31 63, 29, 34
IFLUX 63 63 63, 28, 29 63, 29, 32
WFFLUX 63 63 63, 28, 28 63, 18, 18
SUMW. 37 41 34, 28 34, 15

(b) Shared Memory Usage

Loop Baseline,
Color,
Block

Split (all
compounds)

ACCU 43 36, 25, 25
EDGEC. 34 20, 24, 24
VFLUX 47 41, 6, 6
IFLUX 34 22, 6, 6
WFFLUX 36 30, 12, 12
SUMW. 24 18, 6

maximum partition size achievable or the one delivering better performance.
For all cases, except the block tuning optimizations, the CUDA thread block
size is equal to the partition size: this assigns one thread per iteration.

The analysis of the results shows:

– Splitting a loop reduces both shared memory and register pressure, and
should thus be applied extensively. In some cases, it also permits larger
partition sizes to be achieved, thus improving the available parallelism.

– For split loops, the alternative coloring strategy delivers slightly better per-
formance in nearly all cases. This is related to a reduction in the average
number of colors for split loops. If applied to original loops, this strategy
can deliver significantly worse performance, when associated with a larger
number of intra-partition colors. Thus, it should only be used in tandem
with splitting.

– Block and partition tuning improves the performance for all loops, both split
and original ones, and should be applied extensively.

As highlighted, the alternative coloring strategy does not necessarily reduce reg-
ister usage, but it sometimes increases it slightly. This is somewhat unexpected,
and we believe that it is related to the way in which the low-level CUDA compiler
treats different control-flow organizations.

As expected, loop fission improves performance by a large factor, even when
the user kernel includes a relatively small number of floating point operations.
Also, the choice of the alternative colouring strategy should be taken when reg-
ister requirements are actually reduced. We can do this by synthesizing the two
versions at OP2 compile-time, with and without alternative coloring strategy,
and by choosing the best one by looking at the register requirements for the two
kernels as reported by the low-level compiler.

5.2 Tuning Partition and Block Size

The final optimisation involves the tuning of seven loops of NASA Rotor 37.
These loops are generically small, in terms of number of input op dats and ker-
nel size, and their contribution to the total performance is much lower than the
six loops discussed above. However, our goal is to understand what is the best
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configuration of these two parameters. Table 3 shows the results, including the
configuration parameter values and the obtained performance. In the table, we
can notice that the first four loops obtain higher performance with the largest
achievable partition and block sizes (512), while the remaining three loops per-
form better with a lower value (128). This can be explained by analysing the
access descriptors. All loops take as input a number of op dats between 4 and
6, but only the first four loops have all input data accessed through indirection.
The remaining three loops only access a single input through an indirection,
while the remaining op dats are accessed directly.

As described in Section 3, indirect op dats are staged into sharedmemory for in-
direct loops,while directly accesseddata is left in devicememory.The block size pa-
rameters strongly influences the staging performance. As the first four loops spend
more time in staging data than the remaining three loops, the block size increase
plays a dominant role in the performance of the loops. Also, the number of data
items to be staged directly depends on the number of data values per mesh element
and the partition size. The first four loops have either a larger partition size, or
input op dats with larger dimension, and can thus benefit of larger block sizes.

5.3 Discussion

The analysis of the performance results shown in this section led us to the
following conclusion which can be adopted as a general optimization strategy in
the compiler:

– A main source of performance degradation on GPUs for OP2 loops are small
partition sizes. This is a consequence of having a large number of op dats
which sum up to a large number of input data for each iteration, resulting in
larger shared memory requirements. This condition — having larger shared
memory requirements — can be checked at compile-time by inspecting the
access descriptors. The compiler addresses this issue by splitting the loops
which have been annotated by the user.

– When a loop is split, the resulting loops can be further optimized if the alter-
native coloring strategy actually reduces the number of registers needed per
thread. This can be achieved at compile-time by first generating two versions,
each using a different coloring strategy, and then choosing the best version by
feeding the OP2 run-time with register pressure information returned by the
CUDA compiler. This removes the burden on the programmer to annotate
loops which should be implemented using the alternative coloring strategy.

– Once the partition size is optimized, a loop exposes sufficient parallelism in-
side its partitions. However, the real parallelism that can be obtained on aGPU

Table 3. Partition and block tuning for seven indirect loops

Loop1 Loop2 Loop3 Loop4 Loop5 Loop6 Loop7

Part. and Block size (64,64) (64,64) (64,64) (64,64) (64,64) (64,64) (64,64)
Perf. (millisec.) 15.70 41.94 19.58 35.30 9.53 6.13 7.46
Part. and Block size (64,512) (128,512) (256,512) (256,512) (128,128) (128,128) (128,128)
Perf. (millisec.) 11.52 14.67 8.66 18.99 8.68 5.44 6.64
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depends on the resource constraints of each thread, in terms of register require-
ments. This requirement directly influences the warp allocation strategy for
the SM dynamic scheduler: if each thread requires a large number of registers,
then a smaller number of threads can be allocated in the same warp. This con-
dition must be checked also for loops with relatively small input op dats, but
with high register pressure. For this kind of loop, splitting and the alternative
coloring strategy can be applied to reduce register pressure.

6 Conclusion

In this paper we have demonstrated and evaluated the effect of applying three
optimizations for unstructured mesh programs to a wide number of HYDRA
loops. The optimizations: (1) permit transforming the input OP2 program to
optimize shared memory requirements; (2) provide a kernel-tailored code syn-
thesis minimizing register requirements; (3) tune configuration parameters to
optimize data staging for each loop. We have shown how these three optimiza-
tions can be automatically implemented by the compiler by extending the OP2
language with loop annotations. This reduces significantly the compiler complex-
ity, as it does not need analysing the user kernels associated to each loop. Finally,
in the experiment section we presented a full performance analysis showing the
optimization effects on the performance of the loops, and on their resource re-
quirements. This enabled us to derive a general optimization strategy for the
complier, based on the composition of the described optimizations.
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Abstract. Clustered VLIW processors are scalable wide-issue statically
scheduled processors. Their design is based on physically partitioning
the otherwise shared hardware resources, a design which leads to both
high performance and low energy consumption. In traditional clustered
VLIW processors, all clusters operate at the same frequency. Heteroge-
neous clustered VLIW processors however, support dynamic voltage and
frequency scaling (DVFS) independently per cluster. Effectively control-
ling DVFS, to selectively decrease the frequency of clusters with a lot of
slack in their schedule, can lead to significant energy savings.

In this paper we propose UCIFF, a new scheduling algorithm for het-
erogeneous clustered VLIW processors with software DVFS control, that
performs cluster assignment, instruction scheduling and fast frequency
selection simultaneously, all in a single compiler pass. The proposed algo-
rithm solves the phase ordering problem between frequency selection and
scheduling, present in existing algorithms. We compared the quality of
the generated code, using both performance and energy-related metrics,
against that of the current state-of-the-art and an optimal scheduler.
The results show that UCIFF produces better code than the state-of-
the-art, very close to the optimal across the mediabench2 benchmarks,
while keeping the algorithmic complexity low.

Keywords: clustered VLIW, heterogeneous, DVFS, scheduling, phase-
ordering.

1 Introduction

Energy consumption has become an important design constraint for microproces-
sors. Clustered VLIW processors were introduced with performance and energy
scalability in mind: i. They are statically scheduled, which removes the instruc-
tion scheduling burden from the micro-architecture. ii. The clustered design im-
proves energy efficiency, operating frequency and reduces design complexity[17].
Clustered VLIW processors operate at an attractive power/performance ratio
point. Examples are the Texas Instrument’s VelociTI, HP/ST’s Lx [6], Analog’s
TigerSHARC [7], and BOPS’ ManArray [15].
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A clustered processor has its shared non-scalable resources (such as the reg-
ister file which is shared among functional units) partitioned into smaller parts.
Each part of the partitioned resource, along with some of the resources that
communicate with it are grouped together into a cluster. For example a clus-
ter often contains a slice of the register file along with several functional units.
Within a cluster signals travel fast, faster than in the shared resource case, and
energy consumption remains low, due to the improved locality. Between clusters,
communication is subject to an inter-cluster delay and there is additional energy
consumption on the inter-cluster interconnect.

Traditionally, all clusters of a clustered VLIW processor operate at the same
frequency and voltage. Considerable energy savings can be achieved by freeing
each cluster to operate at its own frequency and voltage level. The reason for this
is that the cluster utilization usually varies; some clusters are fully loaded while
others have a fraction of the load. It is therefore sensible to lower the frequency
of the under-utilized clusters to save energy.

In this paper we raise an important issue of the existing compilation techniques
for heterogeneous clustered VLIW processors. Compiling for these architectures
comprises of solving two distinct but highly dependent sub-problems:

1. Selecting the frequency that each cluster should operate at.

2. Performing cluster assignment and instruction scheduling for the selected
frequencies (we refer to both as “scheduling” for simplicity).

There is a phase-ordering issue between these two sub-problems: A. One can-
not properly select the frequencies per cluster without scheduling and evaluating
the schedule. B. One cannot perform scheduling without having decided on the
frequencies.

State-of-the-art work in this field ([2]) treats these two sub-problems inde-
pendently and solves the first (1.) before the second (2.). At first a good set of
frequencies is found by estimating the scheduling outcome for each configura-
tion (without actually scheduling). Then scheduling is performed for this set of
frequencies. We will refer to this approach as the “Decoupled” one.

The problem is that the frequency decision (1.) has a great impact on the qual-
ity of scheduling (2.). We observed that the estimation of the scheduling outcome
without performing the actual scheduling, as done in [2], can be inaccurate. Never-
theless, it is a critical compilation decision since selecting a non-optimal frequency
set can lead to a schedule with poor performance, energy consumption or both.

In this work we provide a more concrete solution to the problem by solving
both sub-problems (frequency selection and scheduling) in a single algorithm
thus alleviating the phase-ordering issue altogether. The proposed scheduling
algorithm for heterogeneous clustered VLIW processors performs cluster assign-
ment, instruction scheduling and fast frequency selection, all in a unified algo-
rithm, as a unified scheduling pass.

The algorithm can be configured to generate optimized code for any of the
commonly used metrics (Energy, Energy×Delay Product (EDP) and Energy×
Delay2 (ED2), Delay). The output of the algorithm is twofold: i. The operating
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frequency of each cluster such that the scheduling metric is optimized. ii. Fully
clustered and scheduled code for the frequencies selected by (i).

In the text that follows we use the terms “frequencies per cluster”, “set of
frequencies” and “frequency configuration” interchangeably.

2 Motivation

2.1 Homogeneous vs Heterogeneous

This section motivates the heterogeneous clustered VLIW design by demonstrat-
ing how energy can be saved without sacrificing performance in the example of
Fig.1.

Fig.1a is the Data Flow Graph (DFG) to be scheduled. Fig.1b,c show the
instruction schedules that correspond to this DFG on a two-clustered machine
(single-issue per-cluster). Fig.1b is the homogeneous design with both clusters
operating at the same frequency (f), while Fig.1c is the heterogeneous one with
ClusterB operating at half the frequency of ClusterA (f/2). Nevertheless both
configurations have the same performance as the schedule length is 4 cycles
for both. The heterogeneous can perform as well as the homogeneous because
ClusterB was initially under-utilized (there was slack in part of the schedule).
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Fig. 1. Under-utilized ClusterB can have half the frequency with no performance loss

Since the target architecture is a statically scheduled clustered VLIW one, it
is the job of the scheduler to find the best frequency for each cluster so that the
desired metric (Energy, EDP, ED2, Delay) is optimized.

2.2 Phase Ordering

As already discussed in Section 1, there is a phase ordering issue between fre-
quency selection and instruction scheduling. Fig.2 shows a high-level view of the
scheduling algorithms for a 2-cluster processor with 3 possible frequencies per
cluster (f0, f1, f2).

The Decoupled algorithm (existing state-of-the-art based on [2]) is in Fig.2a.
As already mentioned, there are two distinct steps:

1. The first step selects one of the many frequency configurations as the one
that should be the best for the given metric (e.g. EDP). This is based on
a simple estimation (before scheduling) of the schedule time (cycles × T )
and energy consumption that the code will have after scheduling. The exact
calculations are described in detail in Section 5:Decoupled.
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2. The second step performs scheduling on the architecture configuration se-
lected by step 1. This includes both cluster assignment and instruction
scheduling, which in an unmodified [2] are in two separate steps.

It is obvious that if step (1) makes a wrong decision (which is very likely since
the decision is based on a simple estimate), then the processor will operate at a
point far from the optimal one. Therefore step (2) will schedule the code for a
non-optimal frequency configuration which will lead to a non-optimal result.

This phase-ordering issue is dealt with by UCIFF, the proposed unified fre-
quency selection and scheduling algorithm (Fig.2b). The proposed algorithm
solves the two sub-problems simultaneously and outputs a combined solution
which is both the frequency configuration (that is the frequency for each clus-
ter) and the scheduled code for this specific configuration.

{f0 0, f  }

{f0 , f  }1

{f0 , f  }2

{f 0, f  }1

{f , f  }1 1

{f , f  }1 2

{f 0, f  }2

{f , f  }2 1

{f , f  }2 2

{f0 0, f  }

{f0 , f  }1

{f0 , f  }2

{f 0, f  }1

{f , f  }1 1

{f , f  }1 2

{f 0, f  }2

{f , f  }2 1

{f , f  }2 2

(Fx,Fy)

Configuration
Best

Estimate AND
Select Best Frequency

Configuration

F
re

qu
en

y 
C

on
fi

gu
ra

ti
on

s

F
re

qu
en

y 
C

on
fi

gu
ra

ti
on

s

a. Decoupled Frequency selection and Scheduling. b. UCIFF: Unified Frequency selection and Scheduling.

UCIFF
Cluster + Schedule

2.Clustered+Scheduled Code

1.Frequency Configuration
AND

C
lu

st
er

in
g

In
st

r 
Sc

he
d

1.Frequency Configuration

Scheduling

2.Clustered+Scheduled Code

Fig. 2. The two-phase scheduling of the current state-of-the-art (a). The proposed
unified approach (b) is free of this phase-ordering problem.

3 UCIFF

The proposed Unified algorithm for Cluster assignment, Instruction scheduling
and Fast Frequency selection (UCIFF) can be more easily explained if two of
its main ingredients are explained separately. That is: i. scheduling for a fixed
heterogeneous processor and ii. unifying scheduling and frequency selection.

3.1 Scheduling for Fixed Heterogeneous Processors

An out-of-the-box scheduler for a clustered architecture can only handle the
homogeneous case, where all clusters operate at the same frequency. A hetero-
geneous architecture on the other hand, has different frequencies across clusters.
This is because schedulers work in a cycle-by-cycle manner. They schedule ready
instructions on Free cluster resources and move to the next cycle. This cycle-
by-cycle operation is inapplicable when clusters operate at different frequencies.
The problem gets worse if cluster frequencies are not integer multiples of one
another (e.g. cluster 0 operating at frequency f and cluster 1 at 1.5f).

UCIFF introduces a scheduling methodology for heterogeneous clustered ar-
chitectures with arbitrary frequencies per cluster which can be applied to existing
scheduling algorithms. The idea is that the scheduler operates at a higher base
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Fig. 3. The scheduler’s internal clock period Tsched compared to the periods of the two
clusters Tcl0 and Tcl1, for a homogeneous (a) and a heterogeneous (b) architecture

frequency (fsched) such that the clock period of any cluster is an integer multiple
of the clock period of the scheduler (Tsched). It works in two steps:

i. The scheduler’s base frequency fsched is calculated as the lowest integer
common multiple of all possible frequencies of all clusters. The scheduler inter-
nally works at a cycle Tsched = 1/fsched , which is always an integer multiple
of the cycle that each cluster operates at. For example in Fig.3b the scheduler’s
base cycle is Tsched while the cycles of cluster0 and cluster1 are 3 × Tsched and
2× Tsched respectively.

ii. The instruction latencies for each cluster are increased and set to be a
multiple of the original one, equal to (Tcluster/Tsched) × OrigLatency. In the
example of Fig.3, the instruction latencies for cluster0 are multiplied by 3 while
the ones for cluster1 are multiplied by 2.

In this way the problem of scheduling for different frequencies per cluster is trans-
formed to the problem of scheduling instructions of various latencies, which is a
solved problem and is indeed supported by any decent scheduler.

3.2 Scheduling for Non-fixed Heterogeneous Processors (UCIFF)

In contrast to the existing state-of-the-art, UCIFF solves the phase-ordering
problem between frequency selection and scheduling. It does so by combining
them into a single unified algorithm. In addition, the scheduling algorithm per-
forms cluster assignment and instruction scheduling together thus removing any
phase ordering issues between all clustering, scheduling and frequency selection.

The UCIFF algorithm is composed of three nested layers: The driver function
(Alg.1) at the outermost layer, the clustering and scheduling function (Alg.2) at
the second layer and the metric calculation function (Alg.3) at the innermost.

1. The Driver: The highest level of the UCIFF algorithm (Alg.1) performs
the frequency selection. It decides on a single frequency configuration for the
whole scheduling region. Instead of solving the global optimization problem, of
determining the optimal frequency, with a full-search over all configurations,
UCIFF uses a fast hill climbing approach.
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Hill climbing, in general, searches for a globally good solution by evaluating,
at each point, its neighbors and by “moving” towards the best among them.
Due to the nature of the problem, trying out a large number of neighbors is
computationally expensive. This is because we cannot evaluate a configuration
at cycle c unless we schedule all instructions up to c. This makes probabilistic
algorithms (such as simulated annealing) very expensive since trying out random
configurations will lead to almost the whole configuration space being scheduled
to a very large extent, thus leading to a time complexity comparable to that of
the full-search.

Formally, a frequency configuration is an ordered multiset of each cluster’s
frequency: {fa, fb, fc, ...}. Each of fa, fb, fc, ... is one of the l valid frequency levels
in the set {f0, f1, ..., fl−1}. For example a valid configuration for a 2-cluster
machine with 3 possible frequency levels (f0, f1, f2) is {f2, f0} (where clusters
0,1 operate at f2, f0 frequencies respectively).

The neighbors of a configuration c are the configurations which are close
frequency-wise to c. More precisely, the configuration {fna, fnb, fnc, ...} is a
UCIFF neighbor of {fa, fb, fc, ...} if nx = x for all x except one (say y) such that
|ny−y| < NDistance. For example, the neighbors of {f1, f1} for NDistance = 1
are {f0, f1}, {f2, f1}, {f1, f0} and {f1, f2}.

In UCIFF the hill climbing search is done gradually, in steps of cycles, while
the code gets scheduled for the duration of the step. After each step there is
an evaluation. We refer to this step-evaluation-step approach as “gradual hill
climbing” and to the act of scheduling within a step as “partial scheduling”.
This makes UCIFF fast and accurate. The hill climbing search stops when all
instructions of the best neighbors have been scheduled. All of the above will be
further explained through the following example.

A high level example of the UCIFF algorithm for the 2-cluster machine of Fig.2
is illustrated in Fig.4. On the vertical axis there are all 9 possible frequency config-
urations. The horizontal axis represents the scheduler’s cycles (of Tsched duration).
The partial schedule of each configuration is a horizontal line that starts from the
vertical axis at the configuration point and grows to the right. The evaluation (ev-
ery STEP instructions) is represented by the vertical gray line.
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At first (Step 1) all configurations are partially scheduled for “STEP” instruc-
tions. Once partially scheduled, they are evaluated and the best configuration is
found and marked as “B”. At this point the neighbors of “B” are found, according
to the definition given earlier. The neighbors are marked as “N”. The neighbors
(“N”) along with the best (“B”) form the active set. The configurations not in
the active set are marked with a red “X”.

In Step2 the configurations in the active set get partially scheduled for an-
other “STEP” instructions (curly red lines). They get evaluated and the best
one (“B”) and its neighbors (“N”) are found.

In Step3 the active set of Step2 gets partially scheduled for another “STEP”
instructions. At this point it is interesting to note that {f2, f0} and {f1, f1} have
to be scheduled for both the 2nd and 3rd “STEP”. Now there are no instructions
left to schedule for the active configurations, therefore the algorithm terminates.
After the final evaluation, the best configuration of the active set is found (“B”,
{f2, f0}). The full schedule for this configuration is returned (gold rectangle).

Note that the bar lengths are not proportional to any metric value. They just
show the progress of the algorithm while instructions get scheduled.

The detailed algorithm is listed in Alg.1. The algorithm initially performs
partial scheduling of all frequency configurations for “STEP” instructions (Alg.1
lines 11, 14-20). This determines the best configuration and stores it into “BFC”.

Algorithm 1. UCIFF

1 /* Unified Cluster assignment Instr. Scheduling and Fast Frequency selection.
2 In1: METRIC_TYPE that the scheduler should optimize for.
3 In2: Schedule STEP instructions before evaluating and getting the best.
4 In3: STEPVAR: Decrement STEP by STEPVAR upon each evaluation.
5 In4: NEIGHBORS: The number of neighbors per cluster.
6 Out: Scheduled Code and Best Frequency Configuration. */
7 uciff (METRIC_TYPE, STEP, STEPVAR, NEIGHBORS)
8 {
9 do

10 if (BFC not set) /* If first run */
11 NEIGHBORS_SET = all frequency configurations
12 else
13 NEIGHBORS_SET = neighbors of BFC /*up to NEIGHBORS per cluster*/
14 for FCONF in NEIGHBORS_SET
15 /* Partially schedule the ready instructions of FCONF frequency

↪→configuration for STEP instructions, optimizing METRIC_TYPE
↪→*/

16 SCORE = cluster_and_schedule (METRIC_TYPE, STEP, FCONF)
17 Store the scheduler’s calculated SCORE into SCORECARD [FCONF]
18 Decrement STEP by STEPVAR until 1. /* Variable steps (optional) */
19 BFC = Best Freq Configuration of SCORECARD, clear SCORECARD
20 while there are unscheduled instructions in active set
21 return BFC and scheduled code of BFC
22 }

For the rest of the algorithm, each frequency configuration in the neighboring
set of “BFC” (lines 13,14) gets partially scheduled for “STEP” instructions and
evaluated (lines 15,16). The best performing of the neighbors gets stored into
“BFC” (line 19). The algorithm repeats until no instructions in the neighboring
set of “BFC” (a.k.a. active set) are left unscheduled (line 20). Each iteration of
the algorithm decreases “STEP” by “STEPVAR” (line 18) so that re-evaluation
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of the schedules keeps getting more frequent. This makes the algorithm track
the best configuration faster.

This gradual hill-climbing process accurately selects a good configuration
among many without resorting to a full-search across all frequency configura-
tions. The end result is a fully scheduled code for the selected configuration.

It is interesting to note that partial scheduling of all neighbors could be done
in parallel. This could speed up the UCIFF scheduler, to reach speeds close to
those of the Oracle.

2. The Core: At one level lower lies the core of the scheduling algorithm (Alg.2).
It is a unified cluster assignment and scheduling algorithm which shares
some similarities with UAS [14] but has several unique attributes: i. It operates
on a heterogeneous architecture where clusters operate at different frequencies
(as described in Section 3.1). ii. It only issues an instruction to the cluster
chosen by the heuristic. It does not try to issue on any other cluster if it cannot
currently issue on the chosen cluster. iii. It is capable of performing partial
scheduling for “STEP” number of instructions. iv. It can optimize for various
metrics (not just Delay). This includes energy related ones: Energy, EDP, ED2.
v. The start cycle calculation is extended to work for heterogeneous clusters,
which is done by adding to it the latency of the instruction on that cluster (see
Alg.3 line 10).

Algorithm 2. Clustering and Scheduling for various metrics

1 /* In1: METRIC_TYPE: The metric type that the scheduler will optimize for.
2 In2: STEP: Num of instrs to schedule before switching to next freq. conf.
3 In3: FCONF: The architecture’s current frequency configuration.
4 Out: Scheduled Code and metric value. */
5 cluster_and_schedule (METRIC_TYPE, STEP, FCONF)
6 {
7 /* Restore ready list for this frequency configuration */
8 READY_LIST = READY_LIST_ARRAY [FCONF]
9 /* Restore current cycle. CYCLE is the scheduler’s internal cycle. */

10 CYCLE = LAST_CYCLE [FCONF]
11 Restore the Reservation Table state that corresponds to FCONF
12 while (instructions left to schedule && STEP > 0)
13 update READY_LIST with ready to issue at CYCLE, include deferred
14 sort READY_LIST based on list-scheduling priorities
15 while (READY_LIST not empty)
16 select INSN, the highest priority instruction from the READY_LIST
17 create LIST_OF_CLUSTERS[] that INSN can be scheduled at on CYCLE
18 BEST_CLUSTER=best of LIST_OF_CLUSTERS[] by comparing for each cluster

↪→ calculate_heuristic(METRIC_TYPE,CLUSTER,FCONF,INSN,IPCL[])
19 /* Try scheduling INSN on the best cluster */
20 if (INSN can be scheduled on BEST_CLUSTER at CYCLE)
21 schedule INSN, occupy LATENCY[FCONF][BEST_CLUSTER][INSN] slots
22 IPCL [CLUSTER] ++ /* count number of instructions per cluster */
23 remove INSN from READY_LIST
24 /* If failed to schedule INSN on best cluster, defer to next cycle */
25 if (INSN unscheduled)
26 remove INSN from READY_LIST and re-insert it at CYCLE + 1
27 /* No instructions left in ready list for CYCLE, then CYCLE ++ */
28 CYCLE ++
29 /* If we have scheduled STEP instructions, finalize and exit */
30 if (instr. scheduled > STEP instructions)
31 Update READY_LIST_ARRAY[], LAST_CYCLE[] and Reservation Table
32 return metric value of current schedule
33 }
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In more detail, the algorithm is a list-scheduling based one, that operates on
a ready list. The scheduler performs partial scheduling on each active frequency
configuration for a small window of “STEP” instructions. Once a (configuration,
cycle) pair is scheduled it is never revisited. Switching among configurations
requires that the scheduler maintains a private instance of its data structures
(ready list, reservation table, current cycle) for each configuration. To that end, it
saves and restores the snapshot of its structures upon entry and exit (Alg.2 lines
7-11, 31). The ready list gets filled in with ready and deferred instructions (line
13). Then it gets sorted based on priority (calculated on the Data Dependence
Graph) (line 14) and the highest priority one is selected for scheduling (line 16).
A list of candidate clusters is created (line 17) and the best cluster is found based
on the values of the metric used for scheduling (line 18). The instruction is then
tried on the best cluster at the current cycle (lines 19,20). If successful, then its
presence in the schedule is marked on the reservation table for as many cycles as
its latency as specified by LATENCY [ ] array (line 21), the IPCL (Instructions
Per CLuster) counts the issued instruction (line 22), and INSN gets removed
from the ready list (line 23). If unsuccessful, INSN’s execution is deferred to
next cycle (lines 24-26). We move to the next cycle only if the current ready list
is empty (lines 27-28).

3. The Metrics: The combined clustering and scheduling algorithm used in
UCIFF is a modular one. It can optimize the code not only for cycle count, but
also for several other metrics that are useful in the context of a heterogeneous
clustered VLIW. It supports energy-related metrics (Energy, EDP, ED2) and
also execution Delay (Alg.3). The metric type controls the clustering heuristic
which decides on the BEST CLUSTER in Alg.2 line 18.

The energy-related metrics require that the scheduler have an energy model
of the resources. The energy model is a small module in the scheduling algorithm
and it is largely decoupled from the structure of the algorithm. The energy
is calculated as the sum of the static and dynamic energy consumed by the
clusters and the inter-cluster communication network. Static energy consumption
is relative to the time period that the system is “on”. Each instruction that
executes on a cluster consumes dynamic energy relative to its latency. Each inter-
cluster communication consumes dynamic energy as much as an instruction of
the fastest cluster. The exact formulas for these calculations are in Table 1.

Table 1. Formulas for energy calculation

E =
∑

clusters[Est(cl) + Edyn(cl)]

Est(cl) = Pst × cyclescl × Tcl Edyn(cl) = Edyn,ins(cl) +Edyn,icc

Pst(cl) = Cst × Vcl Edyn,ins(cl) =
∑

ins[Pins(cl)× Latency(ins, cl)]
Pins(cl) = Cdyn × fcl × V 2

cl

Edyn,icc = Picc ×NumICCs
Picc = Cdyn × ffastest × V 2

fastest
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Algorithm 3. Heuristic calculation

1 /* In1: METRIC_TYPE: The metric type that the scheduler will optimize for.
2 In2: CLUSTER: The cluster that INSN will be tested on.
3 In3: FCONF: The architecture’s current frequency configuration.
4 In4: INSN: The instruction currently under consideration.
5 In5: IPCL: The Instruction count Per CLuster (for dyn energy).
6 Out: metric value of METRIC_TYPE if INSN scheduled on CLUSTER under FCONF*/
7 calculate_heuristic (METRIC_TYPE, CLUSTER, FCONF, INSN, IPCL[])
8 {
9 START_CYCLE = earliest cycle INSN can be scheduled at on CLUSTER

10 UCIFF_SC = START_CYCLE + LATENCY[FCONF][CLUSTER][INSN]
11 switch (METRIC_TYPE)
12 case ENERGY: return energy (CLUSTER, FCONF, UCIFF_SC, IPCL[])
13 case EDP: return edp (CLUSTER, FCONF, UCIFF_SC, IPCL[])
14 case ED2: return ed2 (CLUSTER, FCONF, UCIFF_SC, IPCL[])
15 case DELAY: return UCIFF_SC
16 }

3.3 DVFS Region

UCIFF determines the best frequency configuration at a per-scheduling-region
basis. This is the natural granularity for a scheduling algorithm. This however is
not the right granularity for Dynamic Voltage and Frequency Scaling (DVFS),
which usually takes longer time. Therefore UCIFF’s decisions on the frequency
and voltage levels occur more frequently than what a real DVFS system could
follow. As a result, UCIFF’s per-region decisions have to be coarsened by some
mapping from multiple UCIFF decisions to a single DVFS decision.

There are both hardware and software solutions to this. A possible micro-
architectural solution involves pushing UCIFF’s decision into a FIFO queue.
Once the queue is full, a DVFS decision is made based on the average of the
items in the queue, and the queue gets flushed.

A software solution is to perform sampling on the UCIFF configurations at
a rate at most as high as the one supported by the system. Another way is to
come up with a single DVFS point for the whole program by calculating the
weighted average of the region points generated by UCIFF. A more accurate
solution could be based on the control-edge probabilities. This knowledge can
be acquired by profiling and can be used to form super-regions which operate at
a single DVFS point.

The mapping decision for the DVFS points is completely decoupled from the
UCIFF algorithm. A thorough evaluation of the possible solutions is not in the
scope of this paper.

4 Experimental Setup

The target architecture is an IA64 (Itanium) [16] based statically scheduled
clustered VLIW architecture. The architecture has 4 clusters and an issue width
of 4 in total (that is 1 per cluster), similar to [2]. Each cluster’s cycle time is 4,
5, 6 or 7 times a reference base cycle. Therefore the ratio of the fastest frequency
to the slowest one is 7:4.

We have implemented UCIFF in the scheduling pass (haifa-sched) of GCC-
4.5.0 [1] cross compiler for IA64.
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Our experimental setup has some of its aspects deliberately idealized so that
the generated code quality is isolated from external noise. i. Each cluster has
all possible types of resource units available for all its issue slots. This alleviates
any instruction bundling issues (which exist in the IA64 instruction set). ii. No
noise from register allocation / register spills. Although the scheduler runs twice
(before and after register allocation) our measurements are taken before register
allocation. At this stage the compiler still considers an infinite register file. This
is not far from reality though, as clustered machines have abundant register
resources (each cluster has a whole register file for its own use).

We evaluated UCIFF on 6 of Mediabench II video [8] benchmarks. All bench-
marks were compiled with optimizations enabled (-O flag).

5 Results

We evaluate UCIFF by comparing it against the Decoupled, the Oracle and the
Full-Search algorithms.

The Decoupled scheduler is the state-of-the-art acyclic scheduler for het-
erogeneous clustered VLIW processors (based on the cyclic scheduler of [2]). It
decouples frequency selection from instruction scheduling. The frequency selec-
tion step is done via a simple estimation of the energy consumption and the
execution (schedule) time. The estimation was done as in [2]:

The schedule time is equal to the cycle count of a profiled homogeneous ar-
chitecture (cycleshom) multiplied by the arithmetic mean of the clock periods
of the heterogeneous clusters: T ime = cycleshom × (

∑
cl Tcl)/NumOfClusters.

The cycle count of each cluster is easily calculated as: cyclescl = T ime/Tcl.
The energy calculation is similar to that of UCIFF (Table 1) with two main

differences:

1. The dynamic energy of a cluster is equal to a fraction of that of a homoge-
neous cluster, proportional to the ratio of fcl to the average frequency:
Edyn,ins(cl) = Edyn,ins hom(cl)× fcl/[

∑
cl(fcl)/NumOfClusters]

2. The energy of the interconnect is equal to that of the homogeneous:
Edyn,icc = Picc ×NumICCshomogeneous

The Oracle scheduler is a decoupled scheduler with a perfect frequency selec-
tion phase. The frequency configuration selected will always produce the best
schedule with 100% accuracy. This scheduler is the upper bound (optimal) in
code quality (Fig.6) and the lowest bound (optimal) in the scheduler run-time
(Fig.7). It is non-implementable as it requires future knowledge.

A Full-Search UCIFF-based scheduler does not perform any kind of pruning
on the frequency space. It is structured as UCIFF, but instead of a hill climbing
search, it does a full search over the frequency configurations. This makes it the
slowest (Fig.7), but in the meantime it always achieves the optimal code quality,
same as that of the Oracle (Fig.6).

Although in the vanilla Decoupled ([2]) clustering and scheduling are in sep-
arate steps, in all implementations of the above algorithms, scheduling includes
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both cluster assignment and instruction scheduling in a unified pass as discussed
in Section 3.2.Core and Alg.2. This lets us focus only on the phase ordering prob-
lem we are interested in: the one between frequency selection and scheduling.

The high-level features of these algorithms are summarized in Table 2.

Table 2. Some features of the algorithms under comparison

Decoupled-based UCIFF-based

Decoupled Oracle Full-Search UCIFF

Phase-ordering problem Yes No No No

Code quality Low High High High

Algorithmic complexity Low Low High Medium

Realistic (implementable) Yes No Yes Yes

Since UCIFF unifies two otherwise distinct phases (frequency selection and
scheduling), we show some results (Section 5.1) that quantify the first phase sepa-
rately. This provides vital insights as to why the unified solution performs better.

5.1 Accuracy of Frequency Selection

The outcome of the Decoupled algorithm relies heavily on the accuracy of the
frequency selection phase. The stand-alone frequency selection step makes its
decision based on estimations of the energy consumption and the scheduled
code’s schedule length as in [2]. The estimations are based on the energy and
cycle numbers of a homogeneous architecture and on the ratio of the clock cycle
of each cluster of the heterogeneous against that of the homogeneous.

On the other hand UCIFF is not based on estimation, but rather on real par-
tial scheduling results. Its frequency decision is therefore much more informed.

UCIFF’s frequency selection superiority over the Decoupled algorithm is shown
in Fig.5. The horizontal axis shows the error margins in the scheduling outcome
when compared to that of the Oracle. For example, a 5% error margin includes
the frequency selections that generate results at most 5% worse than that of the
Oracle. The vertical axis shows the percentage of frequency selections that have
the error margin shown in the horizontal axis. The Decoupled accuracy fluctu-
ates significantly for various metrics; In ED2 it is about 5 times less accurate
than in EDP. UCIFF, on the other hand, is constantly very accurate with the
fluctuations being less than 10% over all error margins.

5.2 UCIFF Code Quality vs Algorithmic Complexity

The quality of the code generated by each scheduling algorithm when optimizing
for various metrics (Energy, EDP, ED2 and Delay) is shown in Fig.6.

We provide an estimate of the algorithmic complexity by measuring the execu-
tion time of each algorithm based on the count of “scheduling actions” each al-
gorithm performs. By “scheduling action” we refer to the action of scheduling an
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Fig. 5. The Accuracy of the Frequency Selection (Y axis) within the range from the or-
acle (X axis) for Decoupled (Left) and UCIFF (Right). UCIFF is tuned with STEP=8,
STEPVAR=2 and NEIGHBORS=4.
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2 h263dec energy results are missing due to failure in compilation.
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Fig. 7. The scheduler’s Run-Time in terms of scheduling actions for Energy, EDP, ED2
and Delay, over the Mediabench2 benchmarks2 normalized to the Oracle/Decoupled.
UCIFF is tuned with STEP=8, STEPVAR=2 and NEIGHBORS=4.

instruction at a specific point. This is an accurate estimate of the time complexity
since all algorithms share the same scheduling core. The results are shown in Fig.7.

UCIFF achieves a code quality close to that of the Oracle and the Full-Search,
but with a much lower run-time than the Full-Search (Fig.7). This is because
UCIFF performs a smart pruning of the frequency configuration space.

The ED2 metric is the hardest to predict at the frequency selection step. This
is obvious from the code-quality results of Fig.6. It is there that the estimation
of the Decoupled algorithm proves not accurate enough, being 2.15× worse than
the Oracle in the worst case. UCIFF, on the other hand, is constantly more
accurate than the Decoupled and very close to the Oracle.

UCIFF can be tuned to operate at various points in the trade-off space
of code quality versus scheduling time complexity. It can get closer or even
match Oracle’s performance by searching more frequency configurations. There
are three knobs that we can configure. In decreasing order of importance they are:
NEIGHBORS, STEP and STEPVAR (see Alg.1). The NEIGHBORS variable
controls the number of neighboring configurations in the neighboring set. A
NEIGHBORS value of 4 means that at most 4 neighbors per cluster are in the
neighboring set (that is equivalent to NDistance = 2 of Section 3.2). The higher
its value, the more accurate the result but the longer it takes for the scheduler
to run. The STEP controls the cycle distance before evaluating and re-selecting
the neighbors. For very small regions STEP should be as high as the size of
the region, to allow for a full-search over it. A high value of STEP however
makes the algorithm less adaptive to changes. This is the job of STEPVAR.
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It decreases STEP by STEPVAR until STEP reaches 1. The results shown were
taken with NEIGHBORS=4, STEP=8, STEPVAR=2. A full investigation of
optimally selecting these variables is beyond the scope of this paper.

6 Related Work

The vast majority of code generation related literature on clustered VLIW pro-
cessors is on homogeneous designs.

Pioneering work on code generation for clustered architectures appeared in
[5], where the Bottom-Up-Greedy (BUG) cluster-assignment algorithm was in-
troduced. The main heuristic used is the completion-cycle, which calculates the
completion cycle of an instruction on each of the possible cluster candidates.

Significant contributions to compilation for clustered VLIW machines were
made in the context of the Multiflow compiler [12]. Clustering is based on Ellis’
work ([5]). The various design points (heuristic tuning, order of visiting the
instructions, etc.) of instruction scheduling, including the cluster assignment,
are discussed in detail in this work.

[4] provides an iterative solution to cluster assignment. Each iteration of the
algorithmmeasures the schedule length by performing instruction scheduling and
by doing a fast register pressure and communication estimation. This being an
iterative algorithm, it has a long run-time and its use is not practical in compilers.

The first work that combines cluster assignment and instruction scheduling
was UAS [14]. Unlike BUG ([5]), this is list-scheduling based, not critical-path
based solution. Several clustering heuristics are evaluated with the start-cycle
heuristic (that is the first half of BUG’s completion-cycle heuristic ([5])) shown
to be the best one on an architecture with a 1-cycle inter-cluster delay. This
work considers the inter-cluster bandwidth as a scheduling resource. UCIFF’s
scheduling core extends UAS, as discussed in detail in Section 3.2.

CARS ([9,10]) is a combined scheduling, clustering, and register allocation
code generation framework based on list scheduling. Depth and height heuris-
tics are used to guide the algorithm. UCIFF could be adapted to work in such
a framework for architectures with small register files, where register pressure
becomes a bottleneck.

The RAW clustered architecture ([11]) communicates data across clusters with
send/receive instructions. The scheduler visits instructions in a topological order
and uses the completion time heuristic to guide the process.

A dynamically-scheduled heterogeneous clustered processor was proposed
in [3]. The dual-cluster design has one high-performance and one low-performance
cluster. It does not support DVFS. A DVFS-capable heterogeneous clustered
processor was introduced by [13]. The proposed design though is a dynamically
scheduled one, and as such no contributions are made on the compiler side.

The most closely related work to UCIFF is [2]. It proposes code generation
techniques for a heterogeneous clustered VLIW processor, very similar to ours.
It proposes a loop scheduling algorithm based on modulo scheduling. This ap-
proach however, as we have discussed extensively in Section 2.2, suffers from the
phase ordering issue of frequency selection and scheduling which are completely
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decoupled from one another. The frequency selection is done by estimating the
energy and the execution time of each frequency configuration based on profiling
data from a homogeneous run.

7 Conclusion

Energy efficiency is becoming a predominant design factor in high performance
microprocessors. Heterogeneous clustered VLIW architectures are a viable choice
under these design goals. This paper proposes a code generation algorithm for
such architectures that performs cluster assignment, instruction scheduling and
per-cluster fast frequency selection in a unified manner. Our evaluation shows
that the proposed algorithm produces code of superior quality than the existing
state-of-the-art and reaches the quality of a scheduler with an oracle frequency
selector. This is achieved with a modest increase in algorithmic complexity.
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Abstract. High-level synthesis is a design process that takes an un-
timed, behavioral description in a high-level language like C and produces
register-transfer-level (RTL) code that implements the same behavior in
hardware. In this design flow, the quality of the generated RTL is greatly
influenced by the high-level description of the language. Hence it follows
that both source-level and IR-level compiler optimizations could either
improve or hurt the quality of the generated RTL. The problem of or-
dering compiler optimization passes, also known as the phase-ordering
problem, has been an area of active research over the past decade. In
this paper, we explore the effects of both source-level and IR optimiza-
tions and phase ordering on high-level synthesis. The parameters of the
generated RTL are very sensitive to high-level optimizations. We study
three commonly used source-level optimizations in isolation and then
propose simple yet effective heuristics to apply them to obtain a rea-
sonable latency-area tradeoff. We also study the phase-ordering problem
for IR-level optimizations from a HLS perspective and compare it to a
CPU-based setting. Our initial results show that an input-specific order
can achieve a significant reduction in the latency of the generated RTL,
and opens up this technology for future research.

Keywords: CompilerOptimization,Design space exploration,High-level
synthesis, Phase ordering.

1 Introduction

The field of compiler optimizations has been an area of active research for more
than fifty years. Numerous optimizations have been proposed and deployed over
the course of time, each trying to optimize a certain aspect of an input program.
Optimizations play a key role in evaluating a compiler.

A well-known fact in literature [17] is that optimizations have enabling and
disabling interactions among themselves, and the best order is dependent on the
program, target and the optimization function. As the solution space is huge,
compiler researchers have tried a plethora of methods over the past decade based
on searching techniques ([7] [13] [12], [3]), analytical models ([22], [25], [20], [24]),
empirical approaches based on statistical data ([19], [18] [2]), and a mixture of
all of these ([9], [21], [16]). However, it is to be noted that all aforementioned
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approaches have been used in a CPU-based setting. In this case, decisions re-
garding optimization orders are implicitly or explicitly influenced by execution
parameters such as the processor pipeline, size of the instruction window, pres-
ence of hardware-managed caches etc. How different would such optimization
orders be if the code being optimized was not going to be ‘executed’ on a pro-
cessor, but is a behavioral description to be synthesized into some customized
hardware itself?

int add(int a[20], int o[2])
{
   int i;
   o[0] = 0;
   o[1] = 1;
   for(i = 1; i < 20; i++) {
       if(a[i]%2 == 0) {
           o[0] += a[i];
           o[1] *= a[i];
       }
   }
}

Fig. 1. (a) Example design. (b) CPU vs. HLS setting. CPU best sequence differs from
HLS best sequence.

Consider the simple design in Fig. 1. Also, let us consider a set of three opti-
mizations1: global value numbering (g), memory to register promotion (m) and
induction variable canonicalization (i). The table in Fig. 1(b) summarizes the
performance of two sequences gim and img. The CPU numbers were obtained
using Simics, an out-of-order processor simulator, while HLS numbers were ob-
tained using xPilot [4], a research tool for high-level synthesis. We can clearly
observe that the sequence gim wins in the HLS setting while sequence img wins
in the CPU setting. We find that img produces smaller code with fewer loads,
because ‘g’ applied after ‘m’ is exposed to a greater number of opportunities,
thereby performing well on CPU. However, while img reduced the loads by re-
using computed values, it increased the length of the data dependency chain.
This led to the img design having one extra state in its finite state machine
created during scheduling due to data constraints, thus increasing its latency in
the HLS setting.

This simple example shown above demonstrates that there are very subtle de-
tails and side effects that can have different impacts on CPU code and HLS de-
signs. The impact of one optimization can be more pronounced in an HLS setting
than in a CPU design. A typical CPU has many hardware features that enhance
the performance of code that is being executed. For example, multiple levels of
caches, out-of-order execution and load/store queues drastically reduce the cost
of a single load. Branch prediction and speculative execution can hide the cost of
evaluating a branch most of the times in case of loops. High-level synthesis is a
different area in that way where each load corresponds to a read from a memory
block, and each load costs the same number of cycles. Every branch instruction is
dependent on another instruction that computes the exit condition, and branch

1 We use the letters within brackets to refer to the respective optimizations in this
section.
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prediction mechanisms have to be specified in software manually by the designer
if needed. Also, HLS can potentially exploit greater ILP limited only by the phys-
ical resources available on the target platform. On a typical processor, only the
ILP available within the instruction window is exploited.

In this paper we perform an initial investigation into the impact of compiler
transformations in a high-level synthesis setting (HLS). High-level synthesis is
an automated design process that takes an un-timed, behavioral description of
a circuit in a high-level language like C, and generates a register-transfer-level
(RTL) net-list that implements the same behavior. The RTL generated by a HLS
process is heavily influenced by the way the design is specified at the high level,
making high-level optimizations very significant in the design flow. Works like
[10] have tried solving similar problems in the HLS community in the past. We
describe and use a set of simple, yet effective heuristics to quickly search the space
of the described optimizations and study their effects on several benchmarks.

We also study the impact of classical IR-level optimizations on high-level syn-
thesis. We evaluate several approaches, and suggest a new approach based on
lookahead for optimizations. We also analyze two real-world benchmarks in a
CPU-based and HLS-based setting and show how optimizations can have con-
trasting side effects. Our initial experiments show that latency improvements
of more than 3X can be achieved by choosing the right order for an input be-
havioural description.

The rest of this paper is organized as follows. We provide some necessary
background information regarding HLS and xPilot in Section 2. Our study on
high-level optimizations is described in Section 3. We describe our methodology
to search the space of IR-level optimizations in Section 4. We provide a detailed
evaluation of our approaches in Section 5. We conclude with comments on future
work in Section 6.

2 Background

High-level synthesis (HLS), or behavioral synthesis, is the process of automati-
cally generating cycle-accurate RTL models from behavioral specifications. The
behavioral specifications are typically in a high-level language, like C/C++/
Matlab. The generated RTL models can then be accepted by the downstream
RTL synthesis flow for implementation using ASICs or FPGAs. Compared to the
traditional RTL-based design flow, potential advantages of HLS include better
management of design complexity, code reuse and easy design-space exploration.

HLS has been an active research topic for more than 30 years. Early attempts
to deploy HLS tools began when RTL-based design flows were well adopted. In
1995, Synopsys announced Behavioral Compiler, which accepts behavioral HDL
code and connects to downstream flows. Since 2000, a new generation of HLS
tools have been developed in both academia and industry. Unlike many prede-
cessors, many of them use C-based languages to capture the design. This makes
them more accessible to algorithm and system designers. It also enables hardware
and software to be specified in the same language, facilitating software/hardware
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co-design and co-verification. The use of C-based languages also makes it easy to
leverage new techniques in software compilers for parallelization and optimiza-
tion. As of 2012, notable commercial C-based tools include Cadence C-to-Silicon
Compiler, Calypto Catapult C (formerly a product of Mentor Graphics), Synop-
sys Synphony C and Xilinx AutoESL (originating from the UCLA xPilot project
[4]). More detailed surveys on the history and progress of HLS are available from
sources such as [8] [5].

xPilot [4] is an academic HLS tool developed at UCLA. It takes as input a C
function and generates an RTL Verilog module to implement the functionality.
Compiler transformations are first performed on the source code using LLVM [14]
to obtain an optimized IR, which can be translated to a control-data flow graph
(CDFG). Scheduling is then performed on the CDFG to generate a finite-state
machine with data path (FSMD) model, where each operation is assigned to a
state in the FSM. Binding is then performed on the FSMD to allocate functional
units, storage units and interconnects, and then the RTL net-list is decided.

For a given CDFG, the scheduler in xPilot tries to minimize worst-case latency
by default, under the constraints of data dependency, control dependency, clock
frequency, and resource limits [6]. The scheduler tries to insert clock boundaries
on certain edges of the dependency graph, in order to guarantee that the delay
and resource constraints are met. In a simplified model, operations in the same
basic block are scheduled into consecutive control states; branches (including
loops) are implemented as state transitions in the FSM. Thus, the resulting
FSM is somewhat similar to the control-flow graph of the input function. If the
control-flow graph of the input function is reducible, it is possible to estimate
the worst-case latency of the module given the trip counts of loops.

3 Source-Level Optimizations

In this section, we describe our study of high-level optimization interactions. We
consider three optimizations - array partitioning, loop unrolling and loop pipelin-
ing. We have chosen these optimizations as they are most commonly employed
in standard high-level synthesis flow [1]. All the experiments in this section have
been performed using AutoESL v1.0, 2011. [23]

3.1 Array Partitioning

Array structures in high-level design descriptions are implemented as memory
blocks by default. However, mapping arrays to a single RAM resource can create
resource constraints as each RAM block has only a few read and write ports.
Mapping arrays to multiple RAM blocks can alleviate the resource constraint
problem, provided the right number of banks are chosen. In this study, we con-
centrate only on cyclic distribution of array elements to different partitions. For
example, consider a simple, contrived design as shown in Fig. 2(a). Fig. 2(b)
shows the effect of partition factors on the latency and area. We make the obser-
vation that the best choices for the number of partitions are powers of 2. When
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void testAP(int a[10], int i)
{
    a[i] = i;
}

Fig. 2. (a) Example design to study array partitioning. DSP: No. of DSP blocks, FF:
No. of Flip-Flops, LUT: No. of Look-up tables.(b) Comparison of latency and area
numbers for different partitions for design in (a).

an array is partitioned, additional code is inserted that performs mod operation
on the index to select the right bank. Implementing mod on a power-of-2 number
n just involves extracting the least significant log2(n) bits in the binary repre-
sentation of n and truncating the rest, while for other numbers full 32-bit mod
operation has to be realised in hardware. Such an operation is slow and occupies
a lot of area.

3.2 Loop Unrolling

Loop unrolling is a popular optimization used to reduce loop overhead and in-
crease ILP. It also exposes more opportunities to other optimizations like scalar
replacement and dead code elimination. Consider two simple kernel loops shown

#define N 500
void daxpy(int a[N], int b[N], int k, int c)
{

int i;
L1:for(i=0;i<N;i++) 
{

a[i] = b[i] * k + c;
}

}
    

#define N 500
void prefix(int a[N+1], int b[N+1], int k, int c)
{

int i;
L1:for(i=1;i<N+1;i++) {

a[i] = a[i-1] + a[i];
}

}

     

Fig. 3. Two simple kernels subject to loop unrolling

in Fig. 3. Fig. 4(a) and 4(b) show the latency and area numbers of the loops
in Fig. 3. We make the following observations – (1) The best performing un-
roll factors in both the kernels considered are 2,4,5,8,10,16,20. In general, the
set of best unroll factors consists of both the factors of the loop trip-count as
well as all powers of 2 lesser than the trip count. Unrolling a loop with a num-
ber that is not a factor of the trip-count adds the overhead of additional exit
checks and branches. For non-power-of-2 unroll factors, the exit checks need a
full 32-bit comparators which are much slower, making them poor choices. Due
to these reasons, the FSM created for this design during the scheduling phase
is larger and complicated, thereby needing greater area to be implemented. (2)
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Fig. 4. Latency and area numbers for (a) Fig. 3(a) and (b) Fig. 3(b)

Area consumption increases linearly with unroll factor as it increases the size
of one iteration and also the size of the FSM. (3) Unrolling loops with a car-
ried dependency enables optimizations like scalar replacement and global value
numbering. (4) Latency gain from unrolling quickly flattens out, while area does
not. From the observations above, we form the following conclusions:

– The set of good unroll factors S for a loop L with a trip-count of n can be
defined as follows:

S = {fi|mod(fi, n) = 0}
⋃

{2k|(k ∈ N) ∧ (2k ≤ n)} (1)

– Starting from the lowest unroll factor si in S, we iterate through the unroll
factors and measure the relative drop in latency as well as relative increase
in area. We continue our iterative search until we arrive at an unroll factor
whose slope of area increase is greater than the slope of latency decrease,
and return the previous best unroll factor at this stage. We use AutoESL’s
estimates to steer the algorithm as it is faster and accurate enough.

3.3 Loop Pipelining

Software pipelining is another popular loop transformation that also attempts to
exploit ILP by re-ordering instructions across iterations and overlapping execu-
tion of consecutive iterations. Pipelining a loopwith low initiation interval yields a
high throughput. However, software pipelining can be constrained by the available
memory bandwidth. Consider Fig. 5(a) for instance, where resource constraints is
inhibiting pipelining. With appropriate array partitioning (Fig. 5(b)), software
pipelining combined with loop unrolling proves to be a powerful combination.

Fig. 5. Pipelining with unrolling loop in Fig. 3(a) for 65536 iterations in (a) without
memory partitioning (b) with memory partitioning



Compiler Optimizations on HLS 149

3.4 Approach to Search Optimization Space

We use the algorithm described in section 3.2 to obtain the unroll factor ui giv-
ing best performance to area. The loop is unrolled ui number of times and then
pipelined. If the II is constrained due to memory resources, the appropriate array
is subjected to partitioning. The partition factor starts at 2 and is then doubled
in subsequent iterations if the previous partition factor was insufficient to resolve
the resource constraint. We discuss and evaluate our approach in section 5.

4 IR-Level Optimizations

In this section, we describe our study on the effects of phase-ordering of IR-level
optimizations.

Optimizations Considered. By default, xPilot applies close to 250 trans-
formations from a set of 55 unique optimizations. The optimization space is
very discrete as can be seen in Fig. 6, which was obtained after evaluating 1000
random sequences of length 200 from the same optimization set. We first re-
duce the search domain in order to obtain greater insight. For this purpose,
we randomly chose 100 sequences and examined the effect of each optimization

Fig. 6. Scatterplot of latencies for
matrixmul

in the sequence. Table 1 gives a brief de-
scription of all the short-listed optimiza-
tions. From here on in this paper, we
restrict all our experiments to this re-
stricted subset of optimizations.

Random Search. In our implementation
of random search, we generate random se-
quences containing upto 25 optimizations
each allowing repetitions. We generated and
evaluated 5000 random sequences for each
of the benchmarks considered.

Genetic Algorithm. We implement a ge-
netic algorithm to search the space of op-
timization sequences using latency as the
minimization cost function. In our implementation, we chose to have a randomly
generated initial population of 20 sequences, each of which can have upto 25 op-
timizations. We repeat the iterative search process for 500 generations. In each
iteration, all the sequences in the population are evaluated and ranked. At the
end of evaluation, sequences in the population undergo mutation and crossover.
The best sequence is preserved as it is. Finally, 8 to 10 sequences are randomly
chosen and mutated. Our implementation chooses sequences at the bottom with
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a higher probability to be mutated by changing flags randomly. Finally, duplicate
sequences are replaced with random sequences. The best solution found after 500
generations is reported.

Table 1. Subset of optimizations and descriptions

Name Description
adce (a) Aggressive dead code elimination
bitwidthmin (b) Bitwidth minimization
condprop (p) Conditional propagation
constprop (k) Constant propagation
dse (e) Dead store elimination
gcse (c) Global common subexpression elimination
gvn (n) Global value Numbering
indvars (v) Canonicalize induction variables
instcombine (i) Combine redundant instructions
inst-simplify (t) Operator strength reduction
loop-deletion (d) Delete dead loops
loop-preproc (o) Loop preprocess
loop-simplify (l) Canonicalize natural loops
mem2reg (m) Promote memory to register
ptr-legalization (r) Convert pointers to array indices
simplifycfg (s) Simplify the control-flow graph
xunroll (x) Partially unroll loops

n-Lookahead Scheme.
The n-lookahead scheme
attempts to construct an
optimization sequence by
progressively deciding on
the best subsequence of
length n. It is based on an
observation that the num-
ber of optimizations en-
abled or disabled by each
optimization is relatively
small. We are effectively
looking ahead by n steps
and choosing the subse-
quence that gives the best
overall benefit at each step.
Therefore, a 0-lookahead
scheme is a greedy ap-
proach that chooses the best optimization successively and an N -lookahead
scheme (where N is the length of the target sequence) is an exhaustive search.
The parameter n provides a tradeoff between the amount of global information
considered and number of comparisons. If we have to construct a sequence of
length k with n levels of look ahead, and we have N number of unique optimiza-
tions, the number of combinations to be evaluated is ( kn ) ∗ Nn. Larger values
of n increases number of sequences exponentially. In section 5, we evaluate the
effectiveness of 0-lookahead and 1-lookahead schemes.

MSIR. We also evaluate an approach called Multi- Start Iterative Refine-
ment (MSIR). In this approach, we generate N random sequences. Each se-
quence (a1, a2...an) is subjected to an iterative refinement process as follows:
Starting from the first pair (a1, a2), we generate two sequences starting with
(a1, a2) and (a2, a1) choose the better sequence. We then move to the next pair
in the chosen sequence (i.e., to the second position) and perform a similar eval-
uation. We continue iterating through pairs as long as we see improvement.
The iterative search stops when no improvement is obtained upon one iteration
through the entire sequence. The best sequence obtained from all the random
sequences is returned. Section 5 evaluates and compares MSIR with the other
described approaches.
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5 Evaluation

5.1 Experiment Design Flow

Fig. 7. Broad design flow used in all our ex-
periments

Fig. 7 describes the architecture of
our flow. Source-level transforma-
tions are studied using AutoESL.
The final area numbers reported are
from Xilinx’s back-end tools. We
use xPilot to study IR-level trans-
formations and their impact on the
latency of the RTL generated. As
AutoESL is does not provide the
user such fine-grained control to
specify IR-level optimizations, AutoESL is not a suitable tool to study such lower
level optimizations. We have modified xPilot to specify arbitrary optimization
sequences. Also, as we do not study area utilization for IR-level transformations
we do not go through the Xilinx back-end.

5.2 High-Level Optimizations

For purposes of evaluation, we use AutoESL v1.0, an industry-standard high-
level synthesis tool. We obtain area numbers from the EDA tool-chain provided
by Xilinx. The target platform we consider here is Xilinx Virtex-5.

Results. We tested our approach on five different kinds of kernels taken from
the Open Accelerator repository [1] and MiBench [11]. We have hand-chosen
different kernels in order to achieve a broader evaluation coverage. The bench-
marks are described in Table 2. Overall, we achieve a mean reduction in latency

Table 2. Benchmarks for evaluation of high-level optimizations

Benchmark Description
adpcm decoder Kernel function of the ADPCM decoding algorithm.
daxpy kernel function performing the vector operation A = Bk + c
prefix kernel function calculating prefix sum on a vector of integers
segmentation Compute step in an image segmentation algorithm
smithwaterman Smith-Waterman algorithm

of 50.42% over xPilot’s default setting. Table 3 shows the factor obtained from
our approach, number of partitions required, latency and area numbers for all
benchmarks. Each benchmark is reported under three configurations: Baseline
– where the benchmark was run without any high-level optimization; Baseline
+ PP – baseline with pipelining, where the main loop was pipelined with the
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Table 3. Comparison between baseline and optimized benchmark versions against
latency and area using ER

Benchmark
Unroll factor No. of partitions Numbers

Slice LUT FF II Depth Latency ER

adpcm decoder
4 1 Baseline 200 588 217 - - 2502 1

1 Baseline + PP 224 741 234 2 5 1006 2.22
1 U4 + PP 619 2009 471 8 11 1006 0.8035

daxpy
8 1 Baseline 21 80 62 - - 1501 1

1 Baseline + PP 26 92 75 1 3 504 2.405
4 U8 + PP 89 324 315 1 3 67 5.286

prefix
8 1 Baseline 29 113 80 - - 1501 1

1 Baseline + PP 43 166 91 2 3 1003 1.009
8 U8 + PP 109 307 375 2 4 130 3.072

segmentation
32 1 Baseline 31 110 65 - - 8321 1

1 Baseline + PP 43 153 88 1 2 4100 1.463
16 U32 + PP 173 522 160 1 3 132 11.296

smithwaterman2
4 1 Baseline 26 102 46 - - 52281 1

1 Baseline + PP 19 73 46 2 3 11708 6.110
1 U4 + PP - - - - - - -

required number of array partitions; and U(num) + PP – unroll by obtained
unroll factor with pipelining along with required number of array partitions.

We define the efficiency ratio ER as the latency-area product, as follows:

ER =
latencyb ∗ areab
latency ∗ area (2)

Here, latencyb and areab are the latency and area numbers of the baseline re-
spectively. We use the number of slices occupied as the representative for area
of a design. We make the following observations:

– adpcm decoder does not benefit from unrolling due to a scalar loop-carried
dependency. Due to a scalar carried constraint, unrolling the loop does not
increase ILP. Hence the best result for this benchmark is when unrolling is
at its minimum i.e., the loop is completely rolled.

– Segmentation achieves a remarkable benefit with its configuration with an
ER of around 11. As the core loop is data parallel, the only constraint to
achieve minimal II would be array resources, and a partitioning factor of 16
resolves all resource constraints.

– smithwaterman benefits from pipelining with an ER of 6, and also shows
impressive area usage. Using our heuristics, an unroll factor of 4 was found
to give the best performance to area value. However, pipelining the unrolled
loop resulted in an AutoESL crash due to an internal bug in the tool.

5.3 IR-Level Optimizations

In this section, we evaluate our approaches described in section 4. Table 4 lists
and describes the set of benchmarks that we consider in our evaluation process.
We have chosen a few different benchmarks in this section because xPilot is not
as mature a tool as AutoESL and failed to synthesize some of the benchmarks.
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Table 4. Benchmarks and description

Benchmark Description
binarysearch Iterative binary search
cftmdl Kernel region in 1D FFT computation
chem DSP algorithm in a chemical plant
dir Direct implementation of 1D DCT
fft Fast fourier tranform from MiBench [11]
honda DSP filter application
jacobi Jacobi method to solve linear equations
lee Lee’s algorithm for 1D DCT [15]
matrixmul Tiled matrix multiplication
sha SHA-1 encryption algorithm
smithwaterman Smith-Waterman algorithm

Random Sampling vs. xPi-
lot. Fig. 8 shows the com-
parison between the results of
random search and the default
optimization setting in xPi-
lot. It can be seen that
there are significant gains that
can be achieved with an op-
timization order that is
benchmark-specific. Overall, we
achieve a mean reduction in la-
tency of 50.42% over xPilot’s
default setting.

Fig. 8. Comparison of normalized latencies. De-

fault : xPilot’s default sequence.

Comparison of Approaches.
We compare the performances
of various approaches discussed
in Section 4. We include only
one small benchmark (binary-
search) for brevity as a rep-
resentative example for all the
other smaller benchmarks in all
our further analyzes.

We can observe from Table 5
that random search and genetic
algorithm match up to each other in most cases except fft. We can also observe
that a similar trend exists between random search and 1-lookahead. We consider
this a promising result, as we can achieve the same result as random search in
lesser comparisons. We can observe thatmem2reg is the sole critical optimization
for sha. Also, we found that jacobi suffered with the default sequence due to a
disabling interaction between -scalarrepl and -gvn.

Comparison with CPU Performance In order to compare the HLS setting
with a CPU-based setting, we picked 200 of the randomly generated optimization
sequences for two benchmarks, sha and smithwaterman. 200 executables were
created, labeled with their sequence and simulated using Simics to get accurate
cycle counts. Each sequence was given a CPU rank and an xPilot rank based on
their execution time and latency respectively.

Fig. 9 shows the rank disparity between xPilot and CPU for the same op-
timization sequence. Consider a specific example. It is surprising to see that
Sequence 1101 for benchmark Sha has an xPilot rank of 2 but a CPU rank of
175: ldaomboptcxrp

Our analysis shows that the HLS-specific bitwidth optimization was adding
a lot of overhead instructions to obtain the operands of the appropriate width,
thereby increasing the instruction count. Such side-effects do not exist in HLS
because an operator of a specific bit-width can be realized in hardware. We
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Table 5. Comparison of different approaches. The Gen: field shows the number of
generations taken to converge. MSIR has been evaluated with N=10 random sequences.
We generated 5000 sequences to evaluate random search.

Benchmark Approach Benchmark Approach

fft

Random
Latency: 2361

jacobi

Random
Latency: 492

Sequence: srnaln Sequence: cbaemkxemsbsdtntsem
GA Latency: 1896 GA Latency: 492
Gen: 186 Sequence: kmnsosbcsenainr Gen: 33 Sequence: bmciensi

0-lookAhead
Latency: 2359

0-lookAhead
Latency: 48358

Sequence: nktadnxpslbcoemns Sequence: mxbtpsealodk

1-lookAhead
Latency: 2339

1-lookAhead
Latency: 492

Sequence: mnriksbtvbosknkacr Sequence: kmnsossbcsebnaiinr

MSIR
Latency: 5359

MSIR
Latency: 66116

Sequence: pmkasr Sequence: mxbeon

matrixmul

Random
Latency: 49

sha

Random
Latency: 1442

Sequence: aooeakbesmdsttvocaosa Sequence: mxxasdotxrlxlbrmnt
GA Latency: 49 GA Latency: 1442
Gen: 28 Sequence: mceosi Gen: 1 Sequence: iiiiiiim

0-lookAhead
Latency: 80119

0-lookAhead
Latency: 1442

Sequence: rnevxbntoldamssss Sequence: mxnapseixrnacsmo

1-lookAhead
Latency: 669

1-lookAhead
Latency: 1442

Sequence: rpnevxbpdeboomisiceb Sequence: kmsipekrbrrpemoker

MSIR
Latency: 368094

MSIR
Latency: 1442

Sequence: kbrmae Sequence: cltpmx

smithwaterman

Random
Latency: 23

binarysearch

Random
Latency: 12

Sequence: kbvdsbbtmeosmn Sequence: etaneb
GA Latency: 23 GA Latency: 12
Gen: 51 Sequence: inemsobs Gen: 1 Sequence: iiiiiiin

0-lookAhead
Latency: 844

0-lookAhead
Latency: 12

Sequence: kneimmissnirnxxxp Sequence: mtsnprciebvsdsak

1-lookAhead
Latency: 23

1-lookAhead
Latency: 12

Sequence: neamiaosaaaa Sequence: kmpkrsnciienaebmts

MSIR
Latency: 2765

MSIR
Latency: 12

Sequence: vsamdn Sequence: obrnxs

Fig. 9. Rank comparison for CPU vs xPilot. (a) Sha. (b) SmithWaterman.

generated another binary using the same sequence without the -bitwidthmin
optimization, and observed that the CPU cycle count dropped from 70790 to
55981, which is very close to the lowest value of 48673. We also found that most
of the lower-ranked sequences for CPUs had -bitwidthmin optimization included
in them. Consider the opposite case in optimization sequence 118, which has a
CPU rank of 9 and an xPilot rank of 191: npxvervadkxnrnlx

The disparity in ranks is caused due to an interesting interplay between -
gvn and -indvars in the CPU-based and HLS-based settings. We performed
additional experiments summarized in Table 6. We can see that the pair -gvn
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Table 6. Comparison of CPU and HLS settings with optimization sequences involving
-gvn and -indvars

Optimization sequence xPilot latency CPU cycle count
(none) 1844 54710
-indvars 1844 54709
-indvars -gvn 1444 54959
-gvn 1444 54958
-gvn -indvars 4024 53644

and -indvars affect the CPU and HLS setting in opposite ways. Intuitively -gvn
decreases number of instructions and our simulation runs confirm that. While
-gvn removes redundant code, it can have a potential side effect of introducing
data dependency due to re-use. Also, if the data to be re-used is in memory,
-gvn can slightly increase the number of loads in the program, as is the case in
our example. The combined effect leads to an increased number of pipeline stalls
which explains the increased cycle count. The -indvars pass increases code size
and also tends to promote certain memory values to registers, thereby reducing
the number of loads. Running an -indvars pass after -gvn pass effectively un-
does the damage caused by -gvn. Hence we see that in the CPU setting, -indvars
has a positive effect after -gvn.

In the HLS setting, however, there is no instruction execution pipeline. The
design can be seen as a data and control-flow driven application where a finite
set of instructions can be scheduled to run in every cycle. Hence, fewer instruc-
tions need fewer cycles to run. This explains the positive effect of -gvn on the
xPilot latency. Running an -indvars pass after -gvn introduces many additional
instructions and dependencies, increasing the number of FSM states and latency.
We re-ran xPilot using sequence 118 without the -indvars option and observed
that the latency dropped from 4024 to 1444.

The above experiments show convincingly that applying good transformations
for a CPU may not lead to good HLS results, and HLS-specific code optimization
sequences and transformations are needed.

6 Conclusions

Given the rise in popularity in high-level synthesis as a popular design choice
in the system design community, we believe that having a sound compilation
technology in high-level synthesis is very essential. In this paper, we have pre-
sented a first study on the impact of compiler optimization phase ordering on
design space exploration and the quality of the generated RTLs. We have pre-
sented studies on three important high-level optimizations - loop unrolling, soft-
ware pipelining and array partitioning. We have described simple heuristics to
quickly eliminate bad choices early. We have also presented a detailed study of
the IR-level optimization phase ordering on high-level synthesis where a variety
of techniques were discussed and evaluated. We reported a mean reduction in
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latency of 50.42% against xPilot’s default setting. We compare our study to a
CPU-based setting and provide several insights into the subtle variations that
causes pairs of optimizations to have different effects.

We believe that our work opens up many interesting future directions. An
interesting direction for future work would be to consider more high-level op-
timizations. With the vast amount of data that we have collected, the idea of
building a predictive model using program featurs seems attractive as well. With
our promising initial results, we believe that research in this direction would ben-
efit the high-level synthesis community.
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Systems Research Center, one of six research centers funded under the Focus
Center Research Program (FCRP), a Semiconductor Research Corporation en-
tity, and also the support from Altera Corporation.
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Abstract. Implementing correct and deterministic parallel programs is
challenging. Even though concurrency constructs exist in popular pro-
gramming languages to facilitate the task of deterministic parallel pro-
gramming, they are often too low level, or do not compose well due to
underlying blocking mechanisms. In this paper, we present the design
and implementation of a fundamental data structure for composable de-
terministic parallel dataflow computation through the use of functional
programming abstractions. Additionally, we provide a correctness proof,
showing that the implementation is linearizable, lock-free, and determin-
istic. Finally, we show experimental results which compare our FlowPool
against corresponding operations on other concurrent data structures,
and show that in addition to offering new capabilities, FlowPools reduce
insertion time by 49− 54% on a 4-core i7 machine with respect to com-
parable concurrent queue data structures in the Java standard library.

Keywords: dataflow, concurrent data-structure, deterministic
parallelism.

1 Introduction

Multicore architectures have become ubiquitous– even most mobile devices now
ship with multiple core processors. Yet parallel programming has yet to enter
the daily workflow of the mainstream developer. One significant obstacle is an
undesirable choice programmers must often face when solving a problem that
could greatly benefit from leveraging available parallelism. Either choose a non-
deterministic, but performant, data structure or programming model, or sacrifice
performance for the sake of clarity and correctness.

Programming models based on dataflow [1, 2] have the potential to simplify
parallel programming, since the resulting programs are deterministic. Moreover,
dataflow programs can be expressed more declaratively than programs based on
mainstream concurrency constructs, such as shared-memory threads and locks,
as programmers are only required to specify data and control dependencies. This
allows one to reason sequentially about the intended behavior of their program,
meanwhile enabling the underlying framework to effectively extract parallelism.
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In this paper, we present the design and implementation of FlowPools, a
fundamental dataflow collections abstraction which can be used as a building
block for larger and more complex deterministic and parallel dataflow programs.
Our FlowPool abstraction is backed by an efficient non-blocking data structure.
As a result, our data structure benefits from the increased robustness provided
by lock-freedom [12], since its operations are not blocked by delayed threads.
We provide a lock-freedom proof, which guarantees progress regardless of the
behavior, including the failure, of concurrent threads.

In combining lock-freedom with a functional interface, we go on to show that
FlowPools are composable. That is, using prototypical higher-order functions
such as foreach and aggregate, one can concisely form dataflow graphs, in
which associated functions are executed asynchronously in a completely non-
blocking way, as elements of FlowPools in the dataflow graph become available.

Finally, we show that FlowPools are able to overcome practical issues, such
as out-of-memory errors, thus enabling programs based upon FlowPools to run
indefinitely. By using a builder abstraction, instead of something like iterators or
streams (which can lead to non-determinism) we are able to garbage collect parts
of the data structure we no longer need, thus reducing memory consumption.

Our contributions are the following:

1. The design and Scala [19] implementation1 of a parallel dataflow abstraction
and underlying data structure that is deterministic, lock-free, & composable.

2. Proofs of lock-freedom, linearizability, and determinism.
3. Detailed benchmarks comparing the performance of our FlowPools against

other popular concurrent data structures.

2 Model of Computation

FlowPools are similar to a typical collections abstraction. Operations invoked on
a FlowPool are executed on its individual elements. However, FlowPools do not
only act as a data container of elements. Unlike a typical collection, FlowPools
also act as nodes and edges of a directed acyclic computation graph (DAG), in
which the executed operations are registered with the FlowPool.

Nodes in this directed acyclic graph are data containers which are first class
values. This makes it possible to use FlowPools as function arguments or to
receive them as return values. Edges, on the other hand, can be thought of
as combinators or higher-order functions whose user-defined functions are the
previously-mentioned operations that are registered with the FlowPool. In addi-
tion to providing composability, this means that the DAG does not have to be
specified at compile time, but can be generated dynamically at run time instead.

This structure allows for complete asynchrony, allowing the runtime to extract
parallelism as a result. That is, elements can be asynchronously inserted, all
registered operations can be asynchronously executed, and new operations can
be asynchronously registered. Put another way, invoking several higher-order
functions in succession on a given FlowPool does not add barriers between nodes

1 See http://www.assembla.com/code/scala-dataflow/git/nodes
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in the DAG, it only extends the DAG. This means that individual elements
within a FlowPool can flow through different edges of the DAG independently.

Properties of FlowPools. In our model, FlowPools have certain properties
which ensure that resulting programs are deterministic.

1. Single-assignment - an element added to the FlowPool cannot be removed.
2. No order - data elements in FlowPools are unordered.
3. Purity - traversals are side-effect free (pure), except when invoking FlowPool

operations.
4. Liveness - callbacks are eventually asynchronously executed on all elements.

We claim that FlowPools are deterministic in the sense that all execution sched-
ules either lead to some form of non-termination (e.g., some exception), or the pro-
gram terminates and no difference can be observed in the final state of the resulting
data structures. This definition is practically useful, because in the case of non-
termination it is guaranteed that on some thread an exception is thrown which
aids debugging, e.g., by including a stack trace. For a more formal definition and
proof of determinism, see section 5.

3 Programming Interface

A FlowPool can be thought of as a concurrent pool data structure, i.e., it can be
used similarly to a collections abstraction, complete with higher-order functions,
or combinators, for composing computations on FlowPools. In this section, we
describe the semantics of several of those functional combinators and other basic
operations defined on FlowPools.

Append (<<). The most fundamental of all operations on FlowPools is the
concurrent thread-safe append operation. As its name suggests, it simply takes
an argument of type Elem and appends it to a given FlowPool.

Foreach and Aggregate. A pool containing a set of elements is of little use if
its elements cannot be manipulated in some manner. One of the most basic data
structure operations is element traversal, often provided by iterators or streams–
stateful objects which store the current position in the data structure. However,
since their state can be manipulated by several threads at once, using streams
or iterators can result in nondeterministic executions.

Another way to traverse the elements is to provide a higher-order foreach op-
erator which takes a user-specified function as an argument and applies it to ev-
ery element. For it to be deterministic, it must be called for every element that
is eventually inserted into the FlowPool, rather than only on those present when
foreach is called. Furthermore, determinism still holds even if the user-specified
function contains side-effecting FlowPool operations such as <<. For foreach to be
non-blocking, it cannot wait until additional elements are added to the FlowPool.
Thus, the foreach operation must execute asynchronously, and be eventually ap-
plied to every element. Its signature is def foreach[U](f:T => U): Future[Int],
and its return type Future[Int] is an integer value which becomes available once
foreach traverses all the elements added to the pool. This integer denotes the
number of times the foreach has been called.
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The aggregate operation aggregates the elements of the pool and has the fol-
lowing signature: def aggregate[S](zero: =>S) (cb: (S, S) => S)

(op: (S, T) => S): Future[S], where zero is the initial aggregation, cb is
an associative operator which combines several aggregations, op is an operator
that adds an element to the aggregation, and Future[S] is the final aggrega-
tion of all the elements which becomes available once all the elements have been
added. The aggregate operator divides elements into subsets and applies the
aggregation operator op to aggregate elements in each subset starting from the
zero aggregation, and then combines different subset aggregations with the cb

operator. In essence, the first part of aggregate defines the commutative monoid
and the functions involved must be non-side-effecting. In contrast, the operator
op is guaranteed to be called only once per element and it can have side-effects.

While in an imperative programming model, foreach and aggregate are
equivalent in the sense that one can be implemented in terms of the other,
in a single-assignment programming model aggregate is more expressive. The
foreach operation can be implemented using aggregate, but not vice versa.

Builders. The FlowPool described so far must maintain a reference to all the el-
ements at all times to implement the foreach operation correctly. Since elements
are never removed, the pool may grow indefinitely and run out of memory. How-
ever, it is important to note that appending new elements does not necessarily
require a reference to any of the existing elements. This observation allows us to
move the << operation out of the FlowPool and into a different abstraction called
a builder. Thus, a typical application starts by registering all the foreach oper-
ations, and then it releases the references to FlowPools, leaving only references to
builders. In a managed environment, the GC then can automatically discard the
no longer needed objects.

Seal. After deciding that no more elements will be added, further appends can
be disallowed by calling seal. This has the advantage of discarding the registered
foreach operations. More importantly, the aggregate can complete its future–
this is only possible once it is known there will be no more appends.

Simply preventing append calls after the point when seal is called, however,
yields a nondeterministic programming model. Imagine a thread that attempts
to seal the pool executing concurrently with a thread that appends an element.
In one execution, the append can precede the seal, and in the other the append
can follow the seal, causing an error. To avoid nondeterminism, there has to be
an agreement on the current state of the pool. A convenient and sufficient way
to make seal deterministic is to provide the expected pool size as an argument.
The semantics of seal is such that it fails if the pool is already sealed with a
different size or the number of elements is greater than the desired size. Note
that we do not guarantee that the same exception always occurs on the same
thread– rather, if any thread throws some exception in some execution schedule,
then in all execution schedules some thread will throw some exception.

Higher-Order Operators. We now show how these basic abstractions can
be used to build higher-order abstractions. To start, it is convenient to have
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generators that create certain pool types. In a dataflow graph, FlowPools created
by generators can be thought of as source nodes. As an example, tabulate
(below) creates a sequence of elements by applying a user-specified function f to
natural numbers. One can imagine more complex generators, which add elements
from a network socket or a file, for example.

def tabulate[T]
(n: Int, f: Int => T)
val p = new FlowPool[T]
val b = p.builder
def recurse(i: Int) {
b << f(i)
if i < n recurse(i + 1)

}
future { recurse(0) }
p

def map[S](f: T => S)
val p = new FlowPool[S]
val b = p.builder
for (x <- this) {
b << f(x)

} map {
sz => b.seal(sz)

}
p

def foreach[U](f: T => U)
aggregate(0)(_ + _) {

(acc, x) =>
f(x)
acc + 1

}

The tabulate generator starts by creating a FlowPool of an arbitrary type T

and creating its builder instance. It then starts an asynchronous computation
using the future construct (see the companion technical report [20] for expla-
nation and examples), which recursively applies f to each number and adds it
to the builder. The reference to the pool p is returned immediately, before the
asynchronous computation completes.

A typical higher-order collection operator map is used to map each element of
a dataset to produce a new dataset. This corresponds to chaining or pipelining
the dataflow graph nodes. Operator map traverses the elements of this FlowPool
and appends each mapped element to the builder. The for loop is syntactic sugar
for calling the foreach method on this. We assume that the foreach return
type Future[Int] has map and flatMap operations, executed once the future
value becomes available. The Future.map above ensures that once the current
pool (this) is sealed, the mapped pool is sealed to the appropriate size.

As argued before, foreach can be expressed in terms of aggregate by accu-
mulating the number of elements and invoking the callback f each time. However,
some patterns cannot be expressed in terms of foreach. The filter combinator
filters out the elements for which a specified predicate does not hold. Appending
the elements to a new pool can proceed as before, but the seal needs to know
the exact number of elements added– thus, the aggregate accumulator is used
to track the number of added elements.

def filter
(pred: T => Boolean)
val p = new FlowPool[T]
val b = p.builder
aggregate(0)(_ + _) {
(acc, x) => if pred(x) {

b << x
1

} else 0
} map { sz => b.seal(sz) }
p

def flatMap[S]
(f: T => FlowPool[S])
val p = new FlowPool[S]
val b = p.builder
aggregate(future(0))(add) {

(af, x) =>
val sf = for (y <- f(x))

b << y
add(af, sf)

} map { sz => b.seal(sz) }
p

def add(f: Future[Int], g: Future[Int]) =
for (a <- f; b <- g) yield a + b

def union[T]
(that: FlowPool[T])
val p = new FlowPool[T]
val b = p.builder
val f = for (x <- this) b << x
val g = for (y <- that) b << y
for (s1 <- f; s2 <- g)

b.seal(s1 + s2)
p
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type Terminal {
sealed: Int
callbacks: List[Elem => Unit]

}

type Elem

type Block {
array: Array[Elem]
next: Block
index: Int
blockindex: Int

}

type FlowPool {
start: Block
current: Block

}
LASTELEMPOS = BLOCKSIZE - 2
NOSEAL = -1

Fig. 1. FlowPool data-types

The flatMap operation retrieves a pool for each element of this pool and
adds its elements to the resulting pool. Given two FlowPools, it can be used to
generate the Cartesian product of their elements. The implementation is similar
to that of filter, but we reduce the size on the future values of the sizes– each
intermediate pool may not yet be sealed. The operation q union r, as one might
expect, produces a new pool which has elements of both pool q and pool r.

The last two operations correspond to joining nodes in the dataflow graph.
Note that if we could somehow merge the two different foreach loops to imple-
ment the third join type zip, zip would be nondeterministic. The programming
model does not allow us to do this, however. The zip function is better suited
for data structures with deterministic ordering, such as Oz streams, which would
in turn have a nondeterministic union.

4 Implementation

We now describe the FlowPool and its basic operations. In doing so, we omit the
details not relevant to the algorithm2 and focus on a high-level description of a
non-blocking data structure. One straightforward way to implement a growing
pool is to use a linked list of nodes that wrap elements. Since we are concerned
about the memory footprint and cache-locality, we store the elements into arrays
instead, which we call blocks. Whenever a block becomes full, a new block is allo-
cated and the previous block is made to point to the next block. This way, most
writes amount to a simple array-write, while allocation occurs only occasionally.
Each block contains a hint index to the first free entry in the array, i.e. one that
does not contain an element. An index is a hint, since it may actually reference
an entry that comes earlier than the first free entry. Additionally, a FlowPool
also maintains a reference to the first block called start. It also maintains a
hint to the last block in the chain of blocks, called current. This reference may
not always be up-to-date, but it always points to some block in the chain.

Each FlowPool is associated with a list of callbacks which have to be called
in the future as new elements are added. Each FlowPool can also be in a sealed
state, meaning there is a bound on the number of elements it can have. This
information is stored as a Terminal value in the first free array entry. At all times,
we maintain the invariant that the array in each block starts with a sequence
of elements, followed by a Terminal delimiter. From a higher-level perspective,
appending an element starts by copying the Terminal value to the next entry
and then overwriting the current entry with the element being appended.

2 Specifically the builder abstraction and the aggregate operation. The aggregate

can be implemented using foreach with a side-effecting accumulator.
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def create()1

new FlowPool {2

start = createBlock(0)3

current = start4

}5

6

def createBlock(bidx: Int)7

new Block {8

array = new Array(BLOCKSIZE)9

index = 010

blockindex = bidx11

next = null12

}13

14

def append(elem: Elem)15

b = READ(current)16

idx = READ(b.index)17

nexto = READ(b.array(idx + 1))18

curo = READ(b.array(idx))19

if check(b, idx, curo) {20

if CAS(b.array(idx+1), nexto, curo) {21

if CAS(b.array(idx), curo, elem) {22

WRITE(b.index, idx + 1)23

invokeCallbacks(elem, curo)24

} else append(elem)25

} else append(elem)26

} else {27

advance()28

append(elem)29

}30

31

def check(b: Block, idx:Int, curo:Object)32

if idx > LASTELEMPOS return false33

else curo match {34

elem: Elem =>35

return false36

term: Terminal =>37

if term.sealed = NOSEAL return true38

else {39

if totalElems(b,idx)<term.sealed40

return true41

else error("sealed")42

}43

null =>44

error("unreachable")45

}46

47

def advance()48

b = READ(current)49

idx = READ(b.index)50

if idx > LASTELEMPOS51

expand(b, b.array(idx))52

else {53

obj = READ(b.array(idx))54

if obj is Elem WRITE(b.index, idx + 1)55

}56

57

def expand(b: Block, t: Terminal)58

nb = READ(b.next)59

if nb is null {60

nb = createBlock(b.blockindex + 1)61

nb.array(0) = t62

if CAS(b.next, null, nb)63

expand(b, t)64

} else {65

CAS(current, b, nb)66

}67

def totalElems(b: Block, idx: Int)68

return b.blockindex * (BLOCKSIZE - 1) + idx69

70

def invokeCallbacks(e: Elem, term: Terminal)71

for (f <- term.callbacks) future {72

f(e)73

}74

75

def seal(size: Int)76

b = READ(current)77

idx = READ(b.index)78

if idx <= LASTELEMPOS {79

curo = READ(b.array(idx))80

curo match {81

term: Terminal =>82

if ¬tryWriteSeal(term, b, idx, size)83

seal(size)84

elem: Elem =>85

WRITE(b.index, idx + 1)86

seal(size)87

null =>88

error("unreachable")89

}90

} else {91

expand(b, b.array(idx))92

seal(size)93

}94

95

def tryWriteSeal(term: Terminal, b: Block,96

idx: Int, size: Int)97

val total = totalElems(b, idx)98

if total > size error("too many elements")99

if term.sealed = NOSEAL {100

nterm = new Terminal {101

sealed = size102

callbacks = term.callbacks103

}104

return CAS(b.array(idx), term, nterm)105

} else if term.sealed �= size {106

error("already sealed with different size")107

} else return true108

109

def foreach(f: Elem => Unit)110

future {111

asyncFor(f, start, 0)112

}113

114

def asyncFor(f:Elem => Unit, b:Block, idx:Int)115

if idx <= LASTELEMPOS {116

obj = READ(b.array(idx))117

obj match {118

term: Terminal =>119

nterm = new Terminal {120

sealed = term.sealed121

callbacks = f ∪ term.callbacks122

}123

if ¬CAS(b.array(idx), term, nterm)124

asyncFor(f, b, idx)125

elem: Elem =>126

f(elem)127

asyncFor(f, b, idx + 1)128

null =>129

error("unreachable")130

}131

} else {132

expand(b, b.array(idx))133

asyncFor(f, b.next, 0)134

}135

Fig. 2. FlowPool operations pseudocode
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The append operation starts by reading the current block and the index of
the free position. It then reads nexto after the first free entry, followed by a read
of the curo at the free entry. The check procedure checks the conditions of the
bounds, whether the FlowPool was already sealed or if the current array entry
contains an element. In either of these events, the current and index values need
to be set– this is done in the advance procedure. We call this the slow path of
the append method. Notice that there are several situations which trigger the
slow path. For example, if some other thread completes the append method but
is preempted before updating the value of the hint index, then the curo will
have the type Elem. The same happens if a preempted thread updates the value
of the hint index after additional elements have been added, via unconditional
write in line 23. Finally, reaching an end of block triggers the slow path.

Otherwise, the operation executes the fast path and appends an element. It
first copies the Terminal value to the next entry with a CAS instruction in line
21, with nexto being the expected value. If it fails (e.g. due to a concurrent CAS),
the append operation is restarted. Otherwise, it proceeds by writing the element
to the current entry with a CAS in line 22, the expected value being curo. On
success, it updates the b.index value and invokes all the callbacks (present when
the element was added) with the future construct. In the implementation, we
do not schedule an asynchronous computation for each element. Instead, the
callback invocations are batched to avoid the scheduling overhead– the array is
scanned for new elements until the first free entry is reached.

Interestingly, note that inverting the order of the reads in lines 18 and 19 would
cause a race in which a thread could overwrite a Terminal value with some older
Terminal value if some other thread appended an element in between.

The seal operation continuously increases the index in the block until it finds
the first free entry. It then tries to replace the Terminal value there with a new
Terminal value which has the seal size set. An error occurs if a different seal size
is set already. The foreach operation works in a similar way, but is executed
asynchronously. Unlike seal, it starts from the first element in the pool and calls
the callback for each element until it finds the first free entry. It then replaces the
Terminal value with a new Terminal value with the additional callback. From
that point on the append method is responsible for scheduling that callback for
subsequently added elements. Note that all three operations call expand to add
an additional block once the current block is empty, to ensure lock-freedom.

Multi-lane FlowPools.Using a single block sequence (i.e. lane) to implement a
FlowPool does not take full advantage of the lack of ordering guarantees and may
cause slowdowns due to collisions when multiple concurrent writers are present.
Multi-Lane FlowPools overcome this limitation by having a lane for each CPU,
where each lane has the same implementation as the normal FlowPool.

This has several implications. First of all, CAS failures during insertion are
avoided to a high extent and memory contention is decreased due to writes
occurring in different cache-lines. Second, aggregate callbacks are added to
each lane individually and aggregated once all of them have completed. Finally,
seal needs to be globally synchronized in a non-blocking fashion.
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Once seal is called, the remaining free slots are split amongst the lanes
equally. If a writer finds that its lane is full, it writes to some other lane in-
stead. This raises the frequency of CAS failures, but in most cases happens only
when the FlowPool is almost full, thus ensuring that the append operation scales.

5 Correctness

We give an outline of the correctness proof here. More formal definitions, and a
complete set of lemmas and proofs can be found in the tech report [20].

We define the notion of an abstract pool A = (elems, callbacks, seal) of ele-
ments in the pool, callbacks and the seal size. Given an abstract pool, abstract
pool operations produce a new abstract pool. The key to showing correctness is
to show that an abstract pool operation corresponds to a FlowPool operation–
that is, it produces a new abstract pool corresponding to the state of the Flow-
Pool after the FlowPool operation has been completed.

Lemma 5.1. Given a FlowPool consistent with some abstract pool, CAS in-
structions in lines 21, 63 and 66 do not change the corresponding abstract pool.

Lemma 5.2. Given a FlowPool consistent with an abstract pool
(elems, cbs, seal), a successful CAS in line 22 changes it to the state con-
sistent with an abstract pool ({elem} ∪ elems, cbs, seal). There exists a time
t1 ≥ t0 at which every callback f ∈ cbs has been called on elem.

Lemma 5.3. Given a FlowPool consistent with an abstract pool
(elems, cbs, seal), a successful CAS in line 124 changes it to the state
consistent with an abstract pool (elems, (f, ∅) ∪ cbs, seal) There exists a time
t1 ≥ t0 at which f has been called for every element in elems.

Lemma 5.4. Given a FlowPool consistent with an abstract pool
(elems, cbs, seal), a successful CAS in line 105 changes it to the state
consistent with an abstract pool (elems, cbs, s), where either seal = −1∧ s ∈ N0

or seal ∈ N0 ∧ s = seal.

Theorem 5.5. [Safety] Operations append, foreach and seal are consistent
with the abstract pool semantics.

Theorem 5.6. [Linearizability] Operations append and seal are linearizable.

Lemma 5.7. After invoking a FlowPool operation append, seal or foreach,
if a non-consistency changing CAS in lines 21, 63, or 66 fails, they must have
already been completed by another thread since the FlowPool operation began.

Lemma 5.8. After invoking a FlowPool operation append, seal or foreach, if
a consistency changing CAS in lines 22, 105, or 124 fails, then some thread has
successfully completed a consistency changing CAS in a finite number of steps.

Lemma 5.9. After invoking a FlowPool operation append, seal or foreach, a
consistency changing instruction will be completed after a finite number of steps.
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t ::= terms
create p pool creation
p << v append
p foreach f foreach
p seal n seal
t1 ; t2 sequence

p ∈ {(vs, σ, cbs) | vs ⊆ Elem,σ ∈ {−1} ∪ N,
cbs ⊂ Elem ⇒ Unit}
v ∈ Elem
f ∈ Elem ⇒ Unit
n ∈ N

Fig. 3. Syntax

Theorem 5.10. [Lock-freedom] FlowPool operations append, foreach and seal
are lock-free.

Determinism. We claim that the FlowPool abstraction is deterministic in the
sense that a program computes the same result (possibly an error) regardless of
the interleaving of execution steps. Here we give an outline of the determinism
proof. A complete formal proof can be found in the technical report [20].

The following definitions and the determinism theorem are based on the lan-
guage shown in Figure 3. The semantics of our core language is defined using
reduction rules which define transitions between execution states. An execution
state is a pair T | P where T is a set of concurrent threads and P is a set of Flow-
Pools. Each thread executes a term of the core language (typically a sequence of
terms). State of a thread is represented as the (rest of) the term that it still has
to execute; this means there is a one-to-one mapping between threads and terms.
For example, the semantics of append is defined by the following reduction rule
(a complete summary of all the rules can be found in the appendix):

t = p << v ; t′ p = (vs, cbs,−1) p′ = ({v} ∪ vs, cbs,−1)

t, T | p, P −→ t′, T | p′, P (Append1)

Append simply adds the value v to the pool p, yielding a modified pool p′. Note
that this rule can only be applied if the pool p is not sealed (the seal size is −1).
The rule for foreach modifies the set of callback functions in the pool:

t = p foreach f ; t′ p = (vs, cbs, n)
T ′ = {g(v) | g ∈ {f} ∪ cbs, v ∈ vs} p′ = (vs, {f} ∪ cbs, n)

t, T | p, P −→ t′, T, T ′ | p′, P (Foreach2)

This rule only applies if p is sealed at size n, meaning that no more elements will
be appended later. Therefore, an invocation of the new callback f is scheduled
for each element v in the pool. Each invocation creates a new thread in T ′.

Programs are built by first creating one or more FlowPools using create. Con-
current threads can then be started by (a) appending an element to a FlowPool,
(b) sealing the FlowPool and (c) registering callback functions (foreach).

Definition 5.11. [Termination] A term t terminates with result P if its reduc-
tion ends in execution state {t : t = {ε}} | P .
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Definition 5.12. [Interleaving] Consider the reduction of a term t: T1 | P1 −→
T2 | P2 −→ . . . −→ {t : t = {ε}} | Pn. An interleaving is a reduction of t
starting in T1 | P1 in which reduction rules are applied in a different order.

Definition 5.13. [Determinism] The reduction of a term t is deterministic iff
either (a) t does not terminate for any interleaving, or (b) t always terminates
with the same result for all interleavings.

Theorem 5.14. [FlowPool Determinism] Reduction of terms t is deterministic.

6 Evaluation

We evaluate our implementation (single-lane and multi-lane FlowPools)
against the LinkedTransferQueue [14] for all benchmarks and the Concur-
rentLinkedQueue [17] for the insert benchmark, both found in JDK 1.7, on three
different architectures; a quad-core 3.4 GHz i7-2600, 4x octa-core 2.27 GHz Intel
Xeon x7560 (both with hyperthreading) and an octa-core 1.2GHz UltraSPARC
T2 with 64 hardware threads. In this section, we focus on the scaling properties
of the above-mentioned data structures, Figures 4 & 5.

In the Insert benchmark, Figure 4, we evaluate concurrent insert operations,
by distributing the work of inserting N elements into the data structure concur-
rently across P threads. In Figure 4, it’s evident that both single-lane FlowPools
and concurrent queues do not scale well with the number of concurrent threads,
particularly on the i7 architecture. They quickly slow down, likely due to cache
line collisions and CAS failures. On the other hand, multi-lane FlowPools scale
well, as threads write to different lanes, and hence different cache lines, mean-
while also avoiding CAS failures. This appears to reduce execution time for
insertions up to 54% on the i7, 63% on the Xeon and 92% on the UltraSPARC.

The performance of higher-order functions is evaluated in the Reduce, Map
(both in Figure 4) and Histogram benchmarks (Figure 5). It’s important to note
that the Histogram benchmark serves as a “real life” example, which uses both
the map and reduce operations that are benchmarked in Figure 4. Also note that
in all of these benchmarks, the time it takes to insert elements into the FlowPool
is also measured, since the FlowPool programming model allows one to insert
elements concurrently with the execution of higher-order functions.

In the Histogram benchmark, Figure 5, P threads produce a total of N ele-
ments, adding them to the FlowPool. The aggregate operation is then used
to produce 10 different histograms concurrently with a different number of
bins. Each separate histogram is constructed by its own thread (or up to P ,
for multi-lane FlowPools). A crucial difference between queues and FlowPools
here, is that with FlowPools, multiple histograms are produced by invoking sev-
eral aggregate operations, while queues require writing each element to several
queues– one for each histogram. Without additional synchronization, reading a
single queue is not an option, since elements have to be removed from the queue
eventually, and it is not clear to each reader when to do this. With FlowPools,
elements are automatically garbage collected when no longer needed.
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Fig. 4. Execution time vs parallelization across three different architectures on three
important FlowPool operations; insert, map, reduce

Finally, to validate the last claim of garbage being automatically collected, in
the Communication/Garbage Collection benchmark, Figure 5, we create a pool
in which a large number of elements N are added concurrently by P threads.
Each element is then processed by one of P threads through the use of the
aggregate operation. We benchmark against linked transfer queues, where P
threads concurrently remove elements from the queue and process it. For each
run, we vary the size of the N and examine its impact on the execution time.
Especially in the cases of the Intel architectures, the multi-lane FlowPools per-
form considerably better than the linked transfer queues. As a matter of fact, the
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Fig. 5. Execution time vs parallelization on a real histogram application (top), & com-
munication benchmark (bottom) showing memory efficiency, across all architectures.

linked transfer queue on the Xeon benchmark ran out of memory, and was un-
able to complete, while the multi-lane FlowPool scaled effortlessly to 400 million
elements, indicating that unneeded elements are properly garbage collected.

7 Related Work

An introduction to linearizability and lock-freedom is given by Herlihy and
Shavit [13]. A detailed overview of concurrent data structures is given by Moir
and Shavit [18]. To date, concurrent data structures remain an active area of
research– we restrict this summary to those relevant to this work.

Concurrently accessible queues have been present for a while, an implemen-
tation is described by [16]. Non-blocking concurrent linked queues are described
by Michael and Scott [17]. This CAS-based queue implementation is cited and
used widely today, a variant of which is present in the Java standard library.
More recently, Scherer, Lea and Scott [14] describe synchronous queues which
internally hold both data and requests. Both approaches above entail blocking
(or spinning) at least on the consumer’s part when the queue is empty.
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While the abstractions above fit well in the concurrent imperative model,
they have the disadvantage that the programs written using them are inherently
nondeterministic. Roy and Haridi [21] describe the Oz programming language,
a subset of which yields programs deterministic by construction. Oz dataflow
streams are built on top of single-assignment variables and are deterministically
ordered. They allow multiple consumers, but only one producer at a time. Oz
has its own runtime which implements blocking using continuations.

The concept of single-assignment variables is used to provide logical variables
in concurrent logic programming languages [23]. It is also embodied in futures
proposed by Baker and Hewitt [11], and promises first mentioned by Friedman
and Wise [7]. Futures were first implemented in MultiLISP [10], and have been
employed in many languages and frameworks since. Scala 2.10 futures [9] and
Twitter futures [6] are of interest, because they define monadic operators and
a number of high-level combinators that create new futures. These APIs avoid
blocking. Futures have been generalized to data-driven futures, which provide
additional information to the scheduler [24]. Many frameworks have constructs
that start an asynchronous computation and yield a future holding its result, for
example, Habanero Java [3] (async) and Scala [19] (future).

A number of other models and frameworks recognized the need to embed the
concept of futures into other data-structures. Single-assignment variables have
been generalized to I-Structures [1] which are essentially single-assignment ar-
rays. CnC [4, 2] is a parallel programming model influenced by dynamic dataflow,
stream-processing and tuple spaces [8]. In CnC the user provides high-level oper-
ations along with the ordering constraints that form a computation dependency
graph. FlumeJava [5] is a distributed programming model which relies heavily
on the concept of collections containing futures. An issue that often arises with
dataflow programming models are unbalanced loads. This is often solved using
bounded buffers which prevent the producer from overflowing the consumer.

Opposed to the correct-by-construction determinism described thus far, a
type-systematic approach can also ensure that concurrent executions have de-
terministic results. Recently, work on Deterministic Parallel Java showed that a
region-based type system can ensure determinism [15]. X10’s constrained-based
dependent types can similarly ensure determinism and deadlock-freedom [22].

8 Conclusion

The abstraction for concurrent dataflow programming we presented provides
a composable deterministic programming model. It can be implemented in a
provably non-blocking manner and is efficient as well, as shown in experiments.

As future work, we plan developing other concurrent collection types with de-
terministic semantics, which enrich the correct-by-construction single-assignment
model, such as bounded buffers, streams and maps. On the implementation level,
we anticipate the need of embedding the callbacks within the data-structure
itself, as is the case with callback-based futures and FlowPools – this has a
particular benefit on platforms which do not support efficient continuations.
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3. Budimlic, Z., Cavé, V., Raman, R., Shirako, J., Tasirlar, S., Zhao, J., Sarkar,
V.: The design and implementation of the Habanero-Java parallel programming
language. In: OOPSLA Companion, pp. 185–186 (2011)

4. Burke, M.G., Knobe, K., Newton, R., Sarkar, V.: Concurrent collections program-
ming model. In: Encyclopedia of Parallel Computing, pp. 364–371 (2011)

5. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R.,
Weizenbaum, N.: FlumeJava: easy, efficient data-parallel pipelines. ACM SIG-
PLAN Notices 45(6), 363–375 (2010)

6. Eriksen, M., Kallen, N.: Twitter Finagle: Futures,
http://twitter.github.com/finagle/

7. Friedman, D., Wise, D.: The impact of applicative programming on multiprocess-
ing. In: International Conference on Parallel Processing (1976)

8. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80–112 (1985)

9. Haller, P., Prokopec, A., Miller, H., Klang, V., Kuhn, R., Jovanovic, V.: Scala
improvement proposal: Futures and promises, SIP-14 (2012),
http://docs.scala-lang.org/sips/pending/futures-promises.html

10. Halstead, J.R.H.: MultiLISP: A language for concurrent symbolic computation.
ACM Trans. Prog. Lang. and Sys. 7(4), 501–538 (1985)

11. Henry, J., Baker, C., Hewitt, C.: The incremental garbage collection of processes.
In: Proc. Symp. on Art. Int. and Prog. Lang. (1977)

12. Herlihy, M.: A methodology for implementing highly concurrent data structures.
In: PPoPP, pp. 197–206 (1990)

13. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming (April 2008)
14. Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. Commun.

ACM 52(5), 100–111 (2009)
15. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli,

R., Overbey, J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for
deterministic parallel Java. In: OOPSLA, pp. 97–116 (2009)

16. Mellor-Crummey, J.M.: Concurrent queues: Practical fetch-and-Φ algorithms (1987)
17. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In: PODC, pp. 267–275 (1996)
18. Moir, Shavit: Concurrent data structures. In: Mehta, Sahni (eds.) Handbook of

Data Structures and Applications, Chapman & Hall/CRC (2005)
19. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Press, Moun-

tain View (2010)
20. Prokopec, A., Miller, H., Schlatter, T., Haller, P., Odersky, M.: Flowpools: A

lock-free deterministic concurrent dataflow abstraction– proofs. Technical Report
EPFL-REPORT-181098, EPFL, Lausanne (June 2012)



FlowPools: A Lock-Free Deterministic Concurrent Dataflow Abstraction 173

21. Roy, P.V., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press (2004)

22. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: concurrent programming for mod-
ern architectures. In: PPOPP, p. 271 (2007)

23. Shapiro, E.: The family of concurrent logic programming languages. ACM Com-
puting Surveys 21(3), 412 (1989)

24. Tasirlar, S., Sarkar, V.: Data-driven tasks and their implementation. In: ICPP, pp.
652–661 (2011)



Task Parallelism and Data Distribution: An Overview
of Explicit Parallel Programming Languages

Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt, and François Irigoin
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Abstract. Efficiently programming parallel computers would ideally require a
language that provides high-level programming constructs to avoid the program-
ming errors frequent when expressing parallelism. Since task parallelism is con-
sidered more error-prone than data parallelism, we survey six popular parallel
language designs that tackle this difficult issue: Cilk, Chapel, X10, Habanero-
Java, OpenMP and OpenCL. Using the parallel computation of the Mandelbrot
set as running example, this paper describes how the fundamentals of task paral-
lel programming are dealt with in these languages. Our study suggests that, even
though there are many keywords and notions introduced by these languages, they
boil down, as far as control issues are concerned, to three key task concepts: cre-
ation, synchronization and atomicity. These languages adopt one of three memory
models: shared, message passing and Partitioned Global Address Space. The pa-
per is designed to give users and language and compiler designers an up-to-date
comparative overview of current parallel languages.

Keywords: Parallel language, Task parallelism, Mandelbrot set, Cilk, Chapel,
X10, Habanero-Java, OpenMP, OpenCL.

1 Introduction

Parallel computing is about 50 years old. The market dominance of multi- and many-
core processors and the growing importance and the increasing number of clusters in the
Top500 list (top500.org) are making parallelism a key concern when implementing
current applications such as weather modeling [10] or nuclear simulations [9]. These
important applications require large computational power and thus need to be pro-
grammed to run on powerful parallel supercomputers. Programming languages adopt
one of two ways to deal with this issue: (1) high-level languages hide the presence of
parallelism at the software level, thus offering a code easy to build and port, but the per-
formance of which is not guaranteed, and (2) low-level languages use explicit constructs
for communication patterns and specifying the number and placement of threads, but
the resulting code is difficult to build and not very portable, although usually efficient.

Recent programming models explore the best trade-offs between expressiveness and
performance when addressing parallelism. Traditionally, there are two general ways to
break an application into concurrent parts in order to take advantage of a parallel com-
puter and execute them simultaneously on different CPUs: data and task parallelisms.

H. Kasahara and K. Kimura (Eds.): LCPC 2012, LNCS 7760, pp. 174–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

top500.org


An Overview of Explicit Parallel Programming Languages 175

In data parallelism, the same instruction is performed repeatedly and simultaneously
on different data. In task parallelism, the execution of different processes (threads) is
distributed across multiple computing nodes. Task parallelism is often considered more
difficult to specify than data parallelism, since it lacks the regularity present in the latter
model; processes (threads) run simultaneously different instructions, leading to differ-
ent execution schedules and memory access patterns. Task management must address
both control and data issues, in order to optimize execution and communication times.

This paper describes how six popular and efficient parallel programming language
designs tackle the issue of task parallelism specification: Cilk, Chapel, X10, Habanero-
Java, OpenMP and OpenCL. They are selected based on the richness of their func-
tionality and their popularity; they provide simple high-level parallel abstractions that
cover most of the parallel programming language design spectrum. We use a popular
parallel problem (the computation of the Mandelbrot set [1]) as a running example. We
consider this an interesting test case, since it exhibits a high-level of embarrassing par-
allelism while its iteration space is not easily partitioned, if one wants to have tasks of
balanced run times. Since our focus is here the study and comparison of the expressive-
ness of each language’s main parallel constructs, we do not give performance measures
for these implementations.

Our paper is useful to (1) programmers, to choose a parallel language and write
parallel applications, (2) language designers, to compare their ideas on how to tackle
parallelism in new languages with existing proposals, and (3) designers of optimizing
compilers, to develop automatic tools for writing parallel programs. Our own goal was
to use this case study for the design of SPIRE [11], a sequential to parallel intermediate
representation extension of the intermediate representations used in compilation frame-
works, in order to upgrade their existing infrastructure to address parallel languages.

After this introduction, Section 2 presents our running example. We discuss the paral-
lel language features specific to task parallelism, namely task creation, synchronization
and atomicity, and also how these languages distribute data over different processors
in Section 3. In Section 4, a selection of current and important parallel programming
languages are described: Cilk, Chapel, X10, Habanero Java, OpenMP and OpenCL.
For each language, an implementation of the Mandelbrot set algorithm is presented.
Section 5 compares and discusses these languages. We conclude in Section 6.

2 Mandelbrot Set Computation

The Mandelbrot set is a fractal set. For each complex c ∈ C, the set of complex numbers
zn(c) is defined by induction as follows: z0(c) = c and zn+1(c) = z2n(c) + c. The
Mandelbrot set M is then defined as {c ∈ C/ limn→∞ zn(c) < ∞}; thus, M is the set
of all complex numbers c for which the series zn(c) converges. One can show [1] that a
finite limit for zn(c) exists only if the modulus of zm(c) is less than 2, for some positive
m. We give a sequential C implementation of the computation of the Mandelbrot set in
Figure 2. Running this program yields Figure 1, in which each complex c is seen as a
pixel, its color being related to its convergence property: the Mandelbrot set is the black
shape in the middle of the figure.
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Fig. 1. Result of the Mandelbrot set

unsigned long m i n c o l o r = 0 , max co lo r = 16777215 ;
unsigned i n t wid th = NPIXELS , h e i g h t = NPIXELS , N = 2 , m a x i t e r = 10000 ;
double r min = −N, r max = N, i m i n = −N, i max = N;
double s c a l e r = ( r max − r min ) / w id th ;
double s c a l e i = ( i max − i m i n ) / h e i g t h ;
double s c a l e c o l o r = ( max co lo r − m i n c o l o r ) / m a x i t e r ;
D i s p l a y ∗ d i s p l a y ; Window win ; GC gc ;
f o r ( row = 0 ; row < h e i g h t ; ++row ) {

f o r ( c o l = 0 ; c o l < wid th ; ++ c o l ) {
z . r = z . i = 0 ;
/∗ S c a l e c as d i s p l a y c o o r d i n a t e s o f c u r r e n t p o i n t ∗ /
c . r = r min + ( ( double ) c o l ∗ s c a l e r ) ;
c . i = i m i n + ( ( double ) ( h e i g h t−1−row ) ∗ s c a l e i ) ;
/∗ I t e r a t e s z = z∗ z+c w h i l e | z | < N, or m a x i t e r i s r eached ∗ /
k = 0 ;
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
++k ;

} whi le ( z . r∗z . r + z . i∗z . i < (N∗N) && k < m a x i t e r ) ;
/∗ S e t c o l o r and d i s p l a y p o i n t ∗ /
c o l o r = ( u long ) ( ( k−1) ∗ s c a l e c o l o r ) + m i n c o l o r ;
XSe tForeground ( d i s p l a y , gc , c o l o r ) ;
XDrawPoint ( d i s p l a y , win , gc , co l , row ) ;

}
}

Fig. 2. Sequential C implementation of the Mandelbrot set

We use this base program as our test case in our parallel implementations, in Sec-
tion 4, for the parallel languages we selected. This is an interesting case for illustrating
parallel programming languages: (1) it is an embarrassingly parallel problem, since all
computations of pixel colors can be performed simultaneously, and thus is obviously
a good candidate for expressing parallelism, but (2) its efficient implementation is not
obvious, since good load balancing cannot be achieved by simply grouping localized
pixels together because convergence can vary widely from one point to the next, due to
the fractal nature of the Mandelbrot set.

3 Task Parallelism Issues

Among the many issues related to parallel programming, the questions of task creation,
synchronization, atomicity and memory model are particularly acute when dealing with
task parallelism, our focus in this paper.
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3.1 Task Creation

In this paper, a task is a static notion, i.e., a list of instructions, while processes and
threads are running instances of tasks. Creation of system-level task instances is an
expensive operation, since its implementation, via processes, requires allocating and
later possibly releasing system-specific resources. If a task has a short execution time,
this overhead might make the overall computation quite inefficient. Another way to
introduce parallelism is to use lighter, user-level tasks, called threads. In all languages
addressed in this paper, task management operations refer to such user-level tasks. The
problem of finding the proper size of tasks, and hence the number of tasks, can be
decided at compile or run times, using heuristic means.

In our Mandelbrot example, the parallel implementations we provide below use a
static schedule that allocates a number of iterations of the loop row to a particular
thread; we interleave successive iterations into distinct threads in a round-robin fashion,
in order to group loop body computations into chunks, of size height/P , where P is
the (language-dependent) number of threads. Our intent here is to try to reach a good
load balancing between threads.

3.2 Synchronization

Coordination in task-parallel programs is a major source of complexity. It is dealt with
using synchronization primitives, for instance when a code fragment contains many
phases of execution where each phase should wait for the precedent ones to proceed.
When a process or a thread exits before synchronizing on a barrier that other pro-
cesses are waiting on or when processes operate on different barriers using different
orders, a deadlock occurs. Programs must avoid these situations (and be deadlock-free).
Different forms of synchronization constructs exist, such as mutual exclusion when
accessing shared resources using locks, join operations that terminate child threads,
multiple synchronizations using barriers1, and point-to-point synchronization using
counting semaphores [18].

In our Mandelbrot example, we need to synchronize all pixel computations before
exiting; one also needs to use synchronization to deal with the atomic section (see next
subsection). Even though synchronization is rather simple in this example, caution is
always needed; an example that may lead to deadlocks is mentioned in Section 5.

3.3 Atomicity

Access to shared resources requires atomic operations that, at any given time, can be
executed by only one process or thread. Atomicity comes in two flavors: weak and
strong [13]. A weak atomic statement is atomic only with respect to other explic-
itly atomic statements; no guarantee is made regarding interactions with non-isolated
statements (not declared as atomic). By opposition, strong atomicity enforces non-
interaction of atomic statements with all operations in the entire program. It usually

1 The term “barrier” is used in various ways by authors [17]; we consider here that barriers are
synchronization points that wait for the termination of sets of threads, defined in a language-
dependent manner.
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requires specialized hardware support (e.g., atomic “compare and swap” operations),
although a software implementation that treats non-explicitly atomic accesses as im-
plicitly atomic single operations (using a single global lock) is possible.

In our Mandelbrot example, display accesses require connection to the X server;
drawing a given pixel is an atomic operation since GUI-specific calls need synchro-
nization. Moreover, two simple examples of atomic sections are provided in Section 5.

3.4 Memory Models

The choice of a proper memory model to express parallel programs is an important issue
in parallel language design. Indeed, the ways processes and threads communicate using
the target architecture and impact the programmer’s computation specification affect
both performance and ease of programming. There are currently three main approaches.

Message Passing. This model uses communication libraries to allow efficient parallel
programs to be written for distributed memory systems. These libraries provide rou-
tines to initiate and configure the messaging environment as well as sending and re-
ceiving data packets. Currently, the most popular high-level message-passing system
for scientific and engineering applications is MPI (Message Passing Interface) [14].
OpenCL [15] uses a variation of the message passing memory model.

Shared Memory. Also called global address space, this model is the simplest one to
use [4]. There, the address spaces of the threads are mapped onto the global memory; no
explicit data passing between threads is needed. However, synchronization is required
between the threads that are writing and reading data to and from the shared memory.
OpenMP [16] and Cilk [5] use the shared memory model.

Partitioned Global Address Space. PGAS-based languages combine the program-
ming convenience of shared memory with the performance control of message passing
by partitioning logically a global address space; each portion is local to each thread.
From the programmer’s point of view programs have a single address space and one
task of a given thread may refer directly to the storage of a different thread. The three
other programming languages in this paper use the PGAS memory model.

4 Parallel Programming Languages

We present here six parallel programming language designs and describe how they deal
with the concepts introduced in the previous section. Given the large number of parallel
languages that exist, we focus primarily on languages that are in current use and popular
and that support simple high-level task-oriented parallel abstractions.

4.1 Cilk

Cilk [5], developed at MIT, is a multithreaded parallel language based on C for shared
memory systems. Cilk is designed for exploiting dynamic and asynchronous paral-
lelism. A Cilk implementation of the Mandelbrot set is provided in Figure 32.

2 From now on, variable declarations are omitted, unless required for the purpose of our presen-
tation.
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{
c i l k l o c k i n i t ( d i s p l a y l o c k ) ;
f o r (m = 0 ; m < P ; m++)

spawn c o m p u t e p o i n t s (m) ;
sync ;

}
c i l k vo id c o m p u t e p o i n t s ( u i n t m) {

f o r ( row = m; row < h e i g h t ; row +=P )
f o r ( c o l = 0 ; c o l < wid th ; ++ c o l ) {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗ z . r∗z . i + c . i ; z . r = temp ;
++k ;

} whi le ( z . r∗z . r + z . i∗z . i < (N∗N) && k < m a x i t e r ) ;
c o l o r = ( u long ) ( ( k−1) ∗ s c a l e c o l o r ) + m i n c o l o r ;
c i l k l o c k ( d i s p l a y l o c k ) ;
XSe tForeground ( d i s p l a y , gc , c o l o r ) ;
XDrawPoint ( d i s p l a y , win , gc , co l , row ) ;
c i l k u n l o c k ( d i s p l a y l o c k ) ;

}
}

Fig. 3. Cilk implementation of the Mandelbrot set (--nproc P)

Task Parallelism. The cilk keyword identifies functions that can be spawned in par-
allel. A Cilk function may create threads to execute functions in parallel. The spawn
keyword is used to create child tasks, such as compute points in our example, when
referring to Cilk functions.

Cilk introduces the notion of inlets [2], which are local Cilk functions defined to take
the result of spawned tasks and use it (performing a reduction). The result should not
be put in a variable in the parent function. All the variables of the function are available
within an inlet. Abort allows to abort a speculative work by terminating all of the
already spawned children of a function; it must be called inside an inlet. Inlets are not
used in our example.

Synchronization. The sync statement is a local barrier, used in our example to ensure
task termination. It waits only for the spawned child tasks of the current procedure to
complete, and not for all tasks currently being executed.

Atomic Section. Mutual exclusion is implemented using locks of type cilk lockvar,
such as display lock in our example. The function cilk lock is used to test a lock
and block if it is already acquired; the function cilk unlock is used to release a lock.
Both functions take a single argument which is an object of type cilk lockvar.
cilk lock init is used to initialize the lock object before it is used.

Data Distribution. In Cilk’s shared memory model, all variables declared outside Cilk
functions are shared. To avoid possible non-determinism due to data races, the program-
mer should avoid the situation when a task writes a variable that may be read or written
concurrently by another task, or use the primitive cilk fence that ensures that all
memory operations of a thread are committed before the next operation execution.



180 D. Khaldi et al.

4.2 Chapel

Chapel [7], developed by Cray, supports both data and control flow parallelism and
is designed around a multithreaded execution model based on PGAS for shared and
distributed-memory systems. A Chapel implementation of the Mandelbrot set is pro-
vided in Figure 4.

c o f o r a l l l o c in Loca le s do
on l o c {

f o r row in l o c . i d . . h e i g h t by numLocales do {
f o r c o l in 1 . . w id th do {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
k = k +1 ;

} whi le ( z . r∗z . r + z . i∗z . i < (N∗N) && k < m a x i t e r ) ;
c o l o r = ( u long ) ( ( k−1) ∗ s c a l e c o l o r ) + m i n c o l o r ;
atomic {

XSetForeground ( d i s p l a y , gc , c o l o r ) ;
XDrawPoint ( d i s p l a y , win , gc , co l , row ) ;

}
}}}

Fig. 4. Chapel implementation of the Mandelbrot set

Task Parallelism. Chapel provides three types of task parallelism [3], two structured
ones and one unstructured. cobegin{stmts} creates a task for each statement in
stmts; the parent task waits for the stmts tasks to be completed. coforall is a
loop variant of the cobegin statement, where each iteration of the coforall loop is
a separate task and the main thread of execution does not continue until every iteration
is completed. Finally, in begin{stmt}, the original parent task continues its execution
after spawning a child running stmt.

Synchronization. In addition to cobegin andcoforall, used in our example, which
have an implicit synchronization at the end, synchronization variables of type sync
can be used for coordinating parallel tasks. A sync [3] variable is either empty or full,
with an additional data value. Reading an empty variable and writing in a full variable
suspends the thread. Writing to an empty variable atomically changes its state to full.
Reading a full variable consumes the value and atomically changes the state to empty.

Atomic Section. Chapel supports atomic sections; atomic{stmt} executes stmt atom-
ically with respect to other threads. The precise semantics is still ongoing work.

Data Distribution. Chapel introduces a type called locale to refer to a unit of the
machine resources on which a computation is running. A locale is a mapping of Chapel
data and computations to the physical machine. In Figure 4, Array Locales represents
the set of locale values corresponding to the machine resources on which this code is
running; numLocales refers to the number of locales. Chapel also introduces new
domain types to specify array distribution; they are not used in our example.
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4.3 X10 and Habanero-Java

X10 [8], developed at IBM, is a distributed asynchronous dynamic parallel program-
ming language for multi-core processors, symmetric shared-memory multiprocessors
(SMPs), commodity clusters, high end supercomputers, and even embedded processors
like Cell. A X10 implementation of the Mandelbrot set is provided in Figure 5.

Habanero-Java [6], under development at Rice University, is derived from X10 [8],
and introduces additional synchronization and atomicity primitives surveyed below.

f i n i s h {
f o r (m = 0 ; m < p l a c e . MAX PLACES; m++) {

p l a c e p l r o w = p l a c e . p l a c e s (m) ;
async at ( p l r o w ) {

f o r ( row = m; row < h e i g h t ; row+= p l a c e . MAX PLACES) {
f o r ( c o l = 0 ; c o l < wid th ; ++ c o l ) {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
++k ;

} whi le ( z . r∗z . r + z . i∗z . i < (N∗N) && k < m a x i t e r ) ;
c o l o r = ( u long ) ( ( k−1) ∗ s c a l e c o l o r ) + m i n c o l o r ;
atomic {

XSetForeground ( d i s p l a y , gc , c o l o r ) ;
XDrawPoint ( d i s p l a y , win , gc , co l , row ) ;

}
}}}}}

Fig. 5. X10 implementation of the Mandelbrot set

Task Parallelism. X10 provides two task creation primitives: (1) the async stmt
construct creates a new asynchronous task that executes stmt, while the current thread
continues, and (2) the future exp expression launches a parallel task that returns the
value of exp.

Synchronization. With finish stmt, the current running task is blocked at the end
of the finish clause, waiting till all the children spawned during the execution of
stmt have terminated. The expression f.force() is used to get the actual value of
the “future” task f.

X10 introduces a new synchronization concept: the clock. It acts as a barrier for a
dynamically varying set of tasks [19] that operate in phases of execution where each
phase should wait for previous ones before proceeding. A task that uses a clock must
first register with it (multiple clocks can be used). It then uses the statement next to
signal to all the tasks that are registered with its clocks that it is ready to move to the
following phase, and waits until all the clocks with which it is registered can advance.
A clock can advance only when all the tasks that are registered with it have executed a
next statement.

Habanero-Java introduces phasers to extend this clock mechanism. A phaser is cre-
ated and initialized to its first phase using the function new. The scope of a phaser
is limited to the immediately enclosing finish statement. A task can be registered
with zero or more phasers, using one of four registration modes: the first two are the
traditional SIG and WAIT signal operations for producer-consumer synchronization;
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the SIG WAIT mode implements barrier synchronization, while SIG WAIT SINGLE
ensures, in addition, that its associated statement is executed by only one thread. As
in X10, a next instruction is used to advance each phaser that this task is registered
with to its next phase, in accordance with this task’s registration mode, and waits on
each phaser that task is registered with, with a WAIT submode. We illustrate the use of
clocks and phasers in Figure 8; note that they are not used in our Mandelbrot example,
since a collective barrier based on the finish statement is sufficient.

Atomic Section. When a thread enters an atomic statement, no other thread may enter
it until the original thread terminates it.

Habanero-Java supports weak atomicity using the isolated stmt primitive for
mutual exclusion and isolation. The Habanero-Java implementation takes a single-lock
approach to deal with isolated statements.

Data Distribution. In order to distribute work across processors, X10 and HJ intro-
duce a type called place. A place is an address space within which a task may run;
different places may however refer to the same physical processor and share physi-
cal memory. The program address space is partitioned into logically distinct places.
Place.MAX PLACES, used in Figure 5, is the number of places available to a
program.

4.4 OpenMP

OpenMP [16] is an application program interface providing a multi-threaded program-
ming model for shared memory parallelism; it uses directives to extend sequential lan-
guages. A C OpenMP implementation of the Mandelbrot set is provided in Figure 6.

P = o m p g e t n u m t h r e a d s ( ) ;
#pragma omp p a r a l l e l shared ( h e i g h t , width , s c a l e r ,\

s c a l e i , max i t e r , s c a l e c o l o r , m i n c o l o r , r min , i m i n )\
p r i v a t e ( row , co l , k ,m, c o l o r , temp , z , c )

#pragma omp s i n g l e
{

f o r (m = 0 ; m < P ; m++)
#pragma omp tas k

f o r ( row = m; row < h e i g h t ; row+=P ) {
f o r ( c o l = 0 ; c o l < wid th ; ++ c o l ) {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
++k ;

} whi le ( z . r∗z . r + z . i∗z . i < (N∗N) && k < m a x i t e r ) ;
c o l o r = ( u long ) ( ( k−1) ∗ s c a l e c o l o r ) + m i n c o l o r ;

#pragma omp c r i t i c a l
{

XSetForeground ( d i s p l a y , gc , c o l o r ) ;
XDrawPoint ( d i s p l a y , win , gc , co l , row ) ;

}
}}}

Fig. 6. C OpenMP implementation of the Mandelbrot set
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Task Parallelism. OpenMP allows dynamic (omp task) and static (omp section)
scheduling models. A task instance is generated each time a thread (the encountering
thread) encounters a omp task directive. This task may either be scheduled immedi-
ately on the same thread or deferred and assigned to any thread in a thread team, which
is the group of threads created when an omp parallel directive is encountered. The
omp sections directive is a non-iterative work-sharing construct. It specifies that
the enclosed sections of code, declared with omp section, are to be divided among
the threads in the team; these sections are independent blocks of code that the compiler
can execute concurrently.

Synchronization. OpenMP provides synchronization constructs that control the exe-
cution inside a team thread: barrier and taskwait. When a thread encounters a
barrier directive, it waits until all other threads in the team reach the same point;
the scope of a barrier region is the innermost enclosing parallel region. The taskwait
construct is a restricted barrier that blocks the thread until all child tasks created since
the beginning of the current task are completed. The omp single directive identifies
code that must be run by only one thread.

Atomic Section. The critical and atomic directives are used for identifying a
section of code that must be executed by a single thread at a time. The atomic direc-
tive works faster than critical, since it only applies to single instructions, and can
thus often benefit from hardware support. Our implementation of the Mandelbrot set in
Figure 6 uses critical.

Data Distribution. OpenMP variables are either global (shared) or local (private);
see Figure 6 for examples. A shared variable refers to one unique block of storage for
all threads in the team. A private variable refers to a different block of storage for each
thread. More memory access modes exist, such as firstprivate or lastprivate,
that may require communication or copy operations.

4.5 OpenCL

OpenCL (Open Computing Language) [15] is a standard for programming heteroge-
neous multiprocessor platforms where programs are divided into several parts: some
called “the kernels” that execute on separate devices, e.g., GPUs, with their own mem-
ories and the others that execute on the host CPU. The main object in OpenCL is
the command queue, which is used to submit work to a device by the enqueueing of
OpenCL commands to be executed. An OpenCL implementation of the Mandelbrot set
is provided in Figure 7.

Task Parallelism. OpenCL provides the parallel construct clEnqueueTask, which
enqueues a command requiring the execution of a kernel on a device by a work item
(OpenCL thread). OpenCL uses two different models of execution of command queues:
in-order, used for data parallelism, and out-of-order. In an out-of-order command queue,
commands are executed as soon as possible, and no order is specified, except for wait
and barrier events. We illustrate the out-of-order execution mechanism in Figure 7, but
currently this is an optional feature and is thus not supported by many devices.
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k e r n e l vo id k e r n e l m a i n ( complex c , u i n t maxi te r , double s c a l e c o l o r ,
u i n t m, u i n t P , ulong c o l o r [ NPIXELS ] [ NPIXELS ] ) {

f o r ( row = m; row < NPIXELS ; row+=P )
f o r ( c o l = 0 ; c o l < NPIXELS; ++ c o l ) {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r−z . i∗z . i +c . r ;
z . i = 2∗ z . r∗z . i +c . i ; z . r = temp ;
++k ;

} whi le ( z . r∗z . r +z . i∗z . i <(N∗N) && k<m a x i t e r ) ;
c o l o r [ row ] [ c o l ] = ( ulong ) ( ( k−1)∗ s c a l e c o l o r ) ;

}
}
c l i n t r e t = c lGetP la t formI Ds ( 1 , &p l a t f o r m i d , &r e t n u m p l a t f o r m s ) ;
r e t = c lGetDev ice IDs ( p l a t f o r m i d , CL DEVICE TYPE DEFAULT , 1 ,

&d e v i c e i d , &r e t n u m d e v i c e s ) ;
c l c o n t e x t c o n t e x t = c lCreateContex t ( NULL, 1 , &d e v i c e i d , NULL, NULL, &r e t ) ;
cQueue=clCreateCommandQueue ( c o n t e x t , d e v i c e i d , OUT OF ORDER EXEC MODE ENABLE, NULL ) ;
P = CL DEVICE MAX COMPUTE UNITS;
memc = c l C r e a t e B u f f e r ( c o n t e x t , CL MEM READ ONLY , s i z e o f ( complex ) , c ) ;
/ / . . . Cr ea te read−o n l y b u f f e r s w i t h max i t e r , s c a l e c o l o r and P t o o
memcolor = c l C r e a t e B u f f e r ( c o n t e x t , CL MEM WRITE ONLY,

s i z e o f ( ulong )∗ h e i g h t ∗width , NULL,NULL ) ;
clEnqueueWriteBuffer ( cQueue , memc , CL TRUE, 0 , s i z e o f ( complex ) ,& c , 0 ,NULL, NULL ) ;
/ / . . . Enqueue w r i t e b u f f e r w i t h max i t e r , s c a l e c o l o r and P t o o
program = clCreateProgramWithSource ( c o n t e x t , 1 , &program s ource , NULL, NULL ) ;
e r r = clBuildProgram ( program , 0 , NULL, NULL, NULL, NULL ) ;
k e r n e l = c lCrea teKerne l ( program , ” k e r n e l m a i n ” , NULL ) ;
c lSe tKerne lArg ( k e r n e l , 0 , s i z e o f ( cl mem ) , ( vo id ∗)&memc ) ;
/ / . . . S e t k e r n e l argument w i t h memmaxiter , mems ca le co lor , memP and memcolor t o o
f o r (m = 0 ; m < P ; m++) {

memm = c l C r e a t e B u f f e r ( c o n t e x t , CL MEM READ ONLY , s i z e o f ( u i n t ) , m) ;
clEnqueueWriteBuffer ( cQueue , memm, CL TRUE , 0 , s i z e o f ( u i n t ) , &m, 0 , NULL, NULL ) ;
c lSe tKerne lArg ( k e r n e l , 0 , s i z e o f ( cl mem ) , ( vo id ∗)&memm) ;
clEnqueueTask ( cQueue , k e r n e l , 0 , NULL, NULL ) ;

}
c l F i n i s h ( cQueue ) ;
clEnqueueReadBuffer ( cQueue , memcolor , CL TRUE , 0 , space , c o l o r , 0 , NULL, NULL ) ;
f o r ( row = 0 ; row < h e i g h t ; ++row )

f o r ( c o l = 0 ; c o l < wid th ; ++ c o l ) {
XSetForeground ( d i s p l a y , gc , c o l o r [ c o l ] [ row ] ) ;
XDrawPoint ( d i s p l a y , win , gc , co l , row ) ;

}

Fig. 7. OpenCL implementation of the Mandelbrot set

Synchronization. OpenCL distinguishes between two types of synchronization: coarse
and fine. Coarse grained synchronization, which deals with command queue operations,
uses the construct clEnqueueBarrier, which defines a barrier synchronization
point. Fine grained synchronization, which covers synchronization at the GPU function
call granularity level, uses OpenCL events via ClEnqueueWaitForEvents calls.

Data transfers between the GPU memory and the host memory, via functions
such as clEnqueueReadBuffer and clEnqueueWriteBuffer, also induce
synchronization between blocking or non-blocking communication commands. Events
returned by clEnqueue operations can be used to check if a non-blocking operation
has completed.

Atomic Section. Atomic operations are only supported on integer data, via functions
such as atom add or atom xchg. Currently, these are only supported by some
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devices as part of an extension of the OpenCL standard. OpenCL lacks support for
general atomic sections, thus the drawing function is executed by the host in Figure 7.

Data Distribution. Each work item can either use (1) its private memory, (2) its local
memory, which is shared between multiple work items, (3) its constant memory, which
is closer to the processor than the global memory, and thus much faster to access,
although slower than local memory, and (4) global memory, shared by all work
items. Data is only accessible after being transferred from the host, using functions
such as clEnqueueReadBuffer and clEnqueueWriteBuffer that move data
in and out of a device.

5 Discussion and Comparison

This section discusses the salient features of our surveyed languages. More specifically,
we look at their design philosophy and the new concepts they introduce, how point-to-
point synchronization is addressed in each of these languages, the various semantics
of atomic sections and the data distribution issues. We end up summarizing the key
features of all the languages covered in this paper.

Design Paradigms. Our overview study, based on a single running example, namely the
computation of the Mandelbrot set, is admittedly somewhat biased, since each language
has been designed with a particular application framework in mind, which may, or may
not, be well adapted to a given application. Cilk is well suited to deal with divide-and-
conquer strategies, something not put into practice in our example. On the contrary,
X10, Chapel and Habanero-Java are high-level Partitioned Global Address Space lan-
guages that offer abstract notions such as places and locales, which were put to good
use in our example. OpenCL is a very low-level, verbose language that works across
GPUs and CPUs; our example clearly illustrates that this approach is not providing
much help here in terms of shrinking the semantic gap between specification and im-
plementation. The OpenMP philosophy is to add compiler directives to parallelize parts
of code on shared-memory machines; this helps programmers move incrementally from
a sequential to a parallel implementation.

New Concepts. Even though this paper does not address data parallelism per se, note
that Cilk is the only language that does not provide special support for data parallelism;
yet, spawned threads can be used inside loops to simulate SIMD processing. Also, Cilk
adds a facility to support speculative parallelism, enabling spawned tasks abort oper-
ations via the abort statement. Habanero-Java introduces the isolated statement
to specify the weak atomicity property. Phasers, in Habanero-Java, and clocks, in X10,
are new high-level constructs for collective and point-to-point synchronization between
varying sets of threads.

Point-to-Point Synchronization. We illustrate the way our surveyed languages address
the difficult issue of point-to-point synchronization via a simple example, a hide-and-
seek game in Figure 8. X10 clocks or Habanero-Java phasers help express easily the
different phases between threads. The notion of point-to-point synchronization cannot
be expressed easily using OpenMP or Chapel. We were not able to implement this game
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using Cilk high-level synchronization primitives, since sync, the only synchronization
construct, is a local barrier for recursive tasks: it synchronizes only threads spawned
in the current procedure, and thus not the two searcher and hider tasks. As mentioned
above, this is not surprising, given Cilk’s approach to parallelism.

f i n i s h async {
c l o c k c l = c l o c k . make ( ) ;
async c locked ( c l ) {

c o u n t t o a n u m b e r ( ) ;
next ;
s t a r t s e a r c h i n g ( ) ;

}
async c locked ( c l ) {

h i d e o n e s e l f ( ) ;
next ;
c o n t i n u e t o b e h i d d e n ( ) ;

}
}

f i n i s h async{
phaser ph = new phaser ( ) ;
async phased ( ph ) {

c o u n t t o a n u m b e r ( ) ;
next ;
s t a r t s e a r c h i n g ( ) ;

}
async phased ( ph ) {

h i d e o n e s e l f ( ) ;
next ;
c o n t i n u e t o b e h i d d e n ( ) ;

}
}

c i l k vo id s e a r c h e r ( ) {
c o u n t t o a n u m b e r ( ) ;
p o i n t t o p o i n t s y n c ( ) ; / / m i s s i n g
s t a r t s e a r c h i n g ( ) ;

}
c i l k vo id h i d d e r ( ) {

h i d e o n e s e l f ( ) ;
p o i n t t o p o i n t s y n c ( ) ; / / m i s s i n g
c o n t i n u e t o b e h i d d e n ( ) ;

}
vo id main ( ) {

spawn s e a r c h e r ( ) ;
spawn h i d d e r ( ) ;

}

Fig. 8. A hide-and-seek game (X10, HJ, Cilk)

Atomic Section. The semantics and implementations of the various proposals for
dealing with atomicity are rather subtle.

Atomic operations, which apply to single instructions, can be efficiently implemented,
e.g. in X10, using non-blocking techniques such ascompare-and-swap instructions.
In OpenMP, the atomic directive can be made to work faster than the critical directive,
when atomic operations are replaced with processor commands such as GLSC [12];
therefore, it is better to use this directive when protecting shared memory during ele-
mentary operations. Atomic operations can be used to update different elements of a
data structure (arrays, records) in parallel without using many explicit locks. In the ex-
ample of Figure 9, the updates of different elements of Array x are allowed to occur in
parallel. General atomic sections, on the other hand, serialize the execution of updates
to elements via one lock.

#pragma omp p a r a l l e l f o r shared ( x , index , n )
f o r ( i =0 ; i<n ; i ++) {
#pragma omp atomic

x [ i n d e x [ i ] ] += f ( i ) ; / / i n d e x i s s uppos ed i n j e c t i v e
}

Fig. 9. Example of an atomic directive in OpenMP

With the weak atomicity model of Habanero-Java, the isolated keyword is used
instead of atomic to make explicit the fact that the construct supports weak rather than
strong isolation. In Figure 10, Threads 1 and 2 may access to ptr simultaneously; since
weakly atomic accesses are used, an atomic access to temp->next is not enforced.
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/ / Thread 1
p t r = head ; / / non i s o l a t e d s t a t e m e n t
i s o l a t e d {

r e a d y = t r u e ;
}

/ / Thread 2
i s o l a t e d {

i f ( r e a d y )
temp−>n e x t = p t r ;

}

Fig. 10. Data race on ptr with Habanero-Java

Data Distribution. PGAS languages offer a compromise between the fine level of con-
trol of data placement provided by the message passing model and the simplicity of the
shared memory model. However, the physical reality is that different PGAS portions,
although logically distinct, may refer to the same physical processor and share physical
memory. Practical performance might thus not be as good as expected.

Regarding the shared memory model, despite its simplicity of programming, pro-
grammers have scarce support for expressing data locality, which could help improve
performance in many cases. Debugging is also difficult when data races occur.

Finally, the message passing memory model, where processors have no direct access
to the memories of other processors, can be seen as the most general one, in which
programmers can both specify data distribution and control locality. Shared memory
(where there is only one processor managing the whole memory) and PGAS (where
one assumes that each portion is located on a distinct processor) models can be seen as
particular instances of the message passing model, when converting implicit write and
read operations with explicit send/receive message passing constructs.

Summary Table. We collect in Table 1 the main characteristics of each language ad-
dressed in this paper. Even though we have not discussed the issue of data parallelism
in this paper, we nonetheless provide, for the interested reader, the main constructs used
in each language to launch data parallel computations.

Table 1. Summary of parallel languages constructs

Task Synchronization Data Memory
Language creation Task join Point-to- Atomic section parallelism model

point

Cilk (MIT) spawn sync — cilk lock — Shared
abort

Chapel (Cray) begin — sync sync forall PGAS
cobegin atomic coforall (Locales)

X10 (IBM) async finish next atomic foreach PGAS
future force (Places)

Habanero-Java async finish next atomic foreach PGAS
(Rice) future get isolated (Places)

OpenMP omp task omp taskwait — omp critical omp for Shared
omp section omp barrier omp atomic

OpenCL EnqueueTask Finish events atom add, EnqueueND- Message
EnqueueBarrier ... RangeKernel Passing
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6 Conclusion

This paper presents, using the Mandelbrot set computation as a running example, an
up-to-date comparative overview of six parallel programming language designs: Cilk,
Chapel, X10, Habanero-Java, OpenMP and OpenCL. These languages are in current
use, popular, offer rich and highly abstract functionalities, and most support both data
and task parallel execution models. The paper describes how, in addition to data dis-
tribution and locality, the fundamentals of task parallel programming, namely task cre-
ation, collective and point-to-point synchronization and mutual exclusion are dealt with
in these languages.

This paper can be of use to (1) programmers, by providing a taxonomy of parallel
language designs useful when deciding which language is more appropriate for a given
project, (2) language designers, by presenting design solutions already field-tested in
previous languages, and (3) implementors of automatic program conversion tools, by
helping them narrow down the issues that need to be tackled when dealing with parallel
execution and memory models.

This case study served as the basis of our design of SPIRE [11], a sequential to par-
allel intermediate representation extension that can be used to upgrade the intermediate
representations of compilation frameworks to represent task concepts in parallel lan-
guages. SPIRE is simple and generic enough to describe, to our knowledge, all parallel
languages, even though the intricacies of the various existing synchronization models,
exhibited by this study, require low-level representation support.
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Abstract. Graph partitioners play an important role in many paral-
lel work distribution and locality optimization approaches. Surprisingly,
however, to our knowledge there is no freely available parallel graph
partitioner designed for execution on a shared memory multicore sys-
tem. This paper presents a shared memory parallel graph partitioner,
ParCubed, for use in the context of sparse tiling run-time data and com-
putation reordering. Sparse tiling is a run-time scheduling technique that
schedules groups of iterations across loops together when they access the
same data and one or more of the loops contains indirect array accesses.
For sparse tiling, which is implemented with an inspector/executor strat-
egy, the inspector needs to find an initial seed partitioning of adequate
quality very quickly. We compare our presented hierarchical clustering
partitioner, ParCubed, with GPart and METIS in terms of partitioning
speed, partitioning quality, and the effect the generated seed partitions
have on executor speed. We find that the presented partitioner is 25 to
100 times faster than METIS on a 16 core machine. The total edge cut of
the partitioning generated by ParCubed was found not to exceed 1.27x
that of the partitioning found by METIS.

Keywords: inspector/executor strategies, graph partitioning, irregular
applications, sparse tiling.

1 Introduction

Computations involving irregular data access patterns figure prominently in
many important scientific applications. These include solving partial differential
equations over irregular grids, molecular dynamics simulations, and computa-
tions over sparse matrices. Often, key loops in these computations are largely
free of loop carried dependencies and can be performed using doall parallelism
across all or a subset of elements. Additionally, loops performing reductions can
often be parallelized. Unfortunately, in many cases these straightforward paral-
lelization strategies encounter performance problems due to the irregularity of
the data accesses. Irregular accesses that jump around in memory decrease the
efficiency of caching and data prefetching and therefore increase the demand on
memory bandwidth.
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(a) At left, the Jacobi iteration space
for a tri-diagonal sparse matrix with
a doall parallelization. On the right, a
full sparse tiling of the computation.
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(b) Task graph for the full sparse
tiled Jacobi computation

Fig. 1. Transformation of Jacobi computation from doall to task graph parallelism

To avoid memory bandwidth bottlenecks, these algorithms are modified by
performance programmers to improve the algorithm’s temporal and spatial lo-
cality. These optimization techniques include irregular cache blocking [5], full
sparse tiling [11], and communication avoiding algorithms [10].

The benefits realized by these approaches can be illustrated by applications
as simple as a sparse Jacobi solver, which has the common nearest neighbor
dependence structure that can be found in many irregular or sparse applications.
The sparse Jacobi solver algorithm is an iterative algorithm for determining
solutions to a system of linear equations. Given a sparse matrix A, and two
vectors u and f related by Au = f , one iteration of the sparse Jacobi method
produces an approximation to the unknown vector u. This method is known
to converge if A is strictly diagonally dominant. The recurrence equation that
describes Jacobi is as follows:

u
(k)
i =

1

Aii

⎛
⎝fi −

∑
j �=i

Aij ∗ u(k−1)
j

⎞
⎠

While the Jacobi method admits a straightforward doall parallel solution on the
i loop, this approach quickly hits scalability issues due to memory bandwidth
demands. Figure 1(a) shows the iteration space for sparse Jacobi when the matrix
is tri-diagonal so the matrix graph is a line. The left-side of Figure 1(a) shows
a doall parallelization with barriers between each iteration of the outer k loop.
The right side of Figure 1(a) shows a possible sparse tiling of Jacobi. That tiling
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Fig. 2. Performance difference between full sparse tiled and blocked Jacobi solvers

results in the task graph shown in Figure 1(b). Figure 2 shows a comparison of
the execution time between a doall parallelized Jacobi solver and a full sparse
tiled [11,12] version as threads are increased from one to sixteen on the 16 core
machine (described in Section 4). The benefit ranges from 5% to 25% as cores
are added and memory bandwidth demand increases.1

A common theme among optimization approaches such as full sparse tiling is
the reduction of communication or data sharing between execution units through
the aggregation of computation that accesses common data. As such, it is com-
mon to create a graph where each node represents some computation (e.g. an
iteration point in 1(a)) and edges between such points represent that those com-
putations share data. For example, the matrix graph for a sparse matrix, where
each row/column is a node and there is an edge between nodes i and j if Aij �= 0,
can be partitioned to create a seed partitioning for growing sparse tiles.

The graph partitioning problem is to divide a graph G = (V,E) with |V | = n

into k partitions Vi such that
⋃k

i=1 Vi = V and
⋂k

i=1 Vi = ∅ with the added
constraint that the edge cut, the number of edges whose incident vertices are in
different partitions, is minimized.

Given the importance of graph partitions, we were surprised to find no freely
available parallel graph partitioner designed for execution on a shared memory
multicore system. Therefore in this paper we present a shared memory parallel
graph partitioner called ParCubed (Par Parallel Partitioner or PAR3), empha-
sizing that the algorithm is parallel and produces results roughly on par with
other partitioners. Section 2 presents the graph partitioning algorithm, and Sec-
tion 3 describes how the algorithm is efficiently implemented. We evaluate the
new partitioner by comparing it with METIS and GPart in Section 4. Section 5
presents related work, and Section 6 concludes the paper.

1 Performance monitoring hardware indicates that the drop from one core to two cores
is due to a doubling of last level cache available as a second 24MB shared cache on
a second socket entered into use.
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I n f l a t e ( in i t ia lNode ID , maxSize )
{
// i n i t i a l i z a t i o n
enqueue in i t i a lNode ID in to FIFO
i n i t i a l i z e cu r r en tS i z e to 1

// main i n f l a t i o n loop
while ( ( cu r r en tS i z e < maxSize ) && FIFO not empty )
{

dequeue nodeID from f ron t o f FIFO
i f ( s i z e o f pa r t i t i o n con ta in i ng nodeID i s 1)
{

i f ( ( cu r r en tS i z e + 1) <= maxSize )
{

// merge t h i s node into the pa r t i t i on
merge nodeID and in i t i a lNode ID pa r t i t i o n s
increment cu r r en tS i z e by one

// add next generation of adjacent nodes to the FIFO
f o r e ach ( node ad jacent to node nodeID )
{

enqueue ad jacent node at back o f FIFO
}

} } } }

Fig. 3. Pseudocode of the inflation phase used to create partitions from starting nodes

2 Overview of the ParCubed Graph Partitioning
Algorithm

In this section, we present an overview of our graph partitioning approach, Par-
Cubed. At the highest level, the partitioning processing consists of three phases:
inflate, join, and fold. First, single vertices are used as seeds for partitions. These
partitions are inflated by adding adjacent vertices using a layered approach. In
the second phase, these subpartitions are joined together to create fewer, but
larger, partitions. Finally, if the generated number of partitions still exceeds the
desired number, the excess partitions are folded into other partitions to bring
the partition count down to the target number. In this section we detail each of
these phases, and in Section 3 we parallelize the overall ParCubed partitioning
algorithm.

2.1 Description of the Inflation Phase

The inflation subroutine is expressed in pseudocode in Figure 3. It is essentially a
breadth first growth. The algorithm arbitrarily selects a node from the graph to
serve as the seed of a partition. It then adds all of that node’s adjacent neighbors,
reducing the edge cut contribution from the original node as much as possible,
ideally to zero. It then proceeds to add all the neighbors of each of the original
node’s neighbors, and so forth, until the partition size limit is reached.

As the partition is inflated, neighbors may be encountered that are already in
another partition. In that case, the inflation stops expanding in that direction,
yielding to the other partition. Because of this, it is sometimes impossible to
reduce the edge cut contribution of a layer to zero.
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GPartJoin ( i n i t i a lV e r t e x , maxSize )
{

currentPar = pa r t i t i o n that c on ta in s i n i t i a l V e r t e x
cu r r en tS i z e = s i z e o f currentPar

f o r e ach neighbor neighborVertex o f i n i t i a lV e r t e x
{

neighborPar = pa r t i t i o n that c on ta in s ve rtex neighborVertex
ne i ghborS i ze = s i z e o f ne ighborPar
i f ( n e i ghborS i ze + cu r r en tS i z e <= maxSize )
{

merge currentPar and neighborPar
cu r r en tS i z e += ne i ghborS i ze

} } }

Fig. 4. Pseudocode of the GPart-like join phase

If at any time a growing partition cannot expand, such as when it is sur-
rounded by other partitions, the process stops for this initial node. The algorithm
then continues with another node taken as the seed of another subpartition.

2.2 Description of the Join Phase

It is possible that a large number of small partitions may result from the inflation
process. To deal with this, the partitioner follows up the inflation step with a
hierarchical partition joining step similar to GPart [7]. This phase is expressed
in pseudocode in Figure 4. During this phase, each node is visited once again.
If any neighbor of that node is found to be in a partition that is small enough
that merging it with the currently visited node’s partition would not exceed the
maximum partition size, the two partitions are merged. This differs from inflation
in that entire subpartitions are being merged, rather than single vertices being
added to a partition.

2.3 Description of the Folding Phase

Commonly, the first two phases produce more partitions than are desired. A
third, final step is used to trim the number of partitions. During the folding
step, the partitions are ordered by partition size from smallest to largest. If k
partitions are desired, then the adopting partition Pk and extra partition Pk−1

are merged, Pk+1 and Pk−2 are merged, and so forth. This combines increasingly
smaller extra partitions with increasingly larger adopting partitions. If more than
twice the desired number of partitions was originally found, the folding process
functions in a modulo fashion, wrapping as needed.

Extra and adopting partitions arematched solely based on size. Due to this fact,
unconnected partitions can be created. If the matching process between adopting
and extra partitions were to consider adjacency, higher quality partitions may be
produced. In the interest of reducing runtime, adjacency is currently ignored.

Also note that during folding, the maximum partition size is ignored, so
partitions that exceed the desired size can be produced. In practice, we saw
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Fold ( partNums : array o f p a r t i t i o n numbers
{
origNumFoundPartitions = number o f found p a r t i t i o n s
numberExtraPart it ions = origNumFoundPartitions − num de s i r ed p a r t i t i o n s ;
f i r s tAdop t i ngPar t i t i on Index = numberExtraPart it ions

// f i gu re out the point at which to f o l d
adopt ingPart i t i onIndex = f i r s tAdop t ingPar t i t i on Index ;
e x t r aPar t i t i on Index = f i r s tAdop t ingPar t i t i on Index −1;

// merge the pa r t i t i on s
f o r e ach extra p a r t i t i o n
{

e x t r aPa r t i t i o n = partNums [ e x t r aPar t i t i onIndex−−]
adop t ingPar t i t i on = partNums [ adopt ingPart i t i onIndex ++]

// do modulo wrap
i f ( adopt ingPart i t i onIndex >= origNumFoundPartitions )
{

adopt ingPart i t i onIndex = numberExtraPart it ions ;
}

// merge
merge e x t r aPa r t i t i o n and adop t i ngPar t i t i on

}

Fig. 5. Pseudocode of the folding step

approximately 5% of the partitions to be oversized. In general, the oversized
partitions were within 15% of the target size, but a handful of extreme outliers
were observed that were as large as 150% of the target.

3 Parallel Implementation of the Partitioner

Having provided an overview of our graph partitioning algorithm, we now turn
to the details of how the algorithm can be efficiently implemented for parallel
execution.

3.1 Parallel Disjoint Set Data Structure

Since much of the algorithm consists of identifying which partition a node is in,
adding nodes to partitions, or merging two partitions, having an efficient way to
do these operations in parallel is critical. The backbone of our implementation is
therefore a parallel implementation of a disjoint set data structure. This structure
is also known as a union-find data structure because of its efficient support for
those two operations. It provides an O(n), where n is the number of graph
nodes, determination of which set contains a particular node and an O(1) set
merge operation.

The disjoint set data structure is built on the concept of a forest of trees. Each
element of the disjoint set is either a top level root or else points to another
element in the structure, indicating membership in that set. The element at
which it points may be a root or may in turn point at another element, creating
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a hierarchy. To perform a merging of two sets, the root of one set is pointed to
any element of the other set, usually the root.

Determining the set to which any given element belongs is a find operation.
In a find on a given element, that element is visited. If it is a root, then the
element belongs to that set. If it is not a root, the node at which it points is
recursively visited until a root is reached.

While the merge operation is very efficient, it can lead to deep trees that
must be traversed repeatedly during find operations. A find operation is always
O(n), but several optimizations can reduce the runtime cost in practice. Path
halving involves linking each node to its grandparent during a find operation,
effectively halving each node’s depth. Path flattening is similar, but finds the
root node for a given node, then points all elements between the initial node and
the root node directly to the root node. As explained below, our approach does
not use either optimization.

Our disjoint set structure was originally taken from Berman’s thesis [2]. We
subsequently modified that implementation to better suit our application. Our
implementation consists of a one dimensional array of integers sized to hold
one array element for each vertex in the adjacency graph. The value of each
array element can represent one of two things. If the value is negative, then this
element is a root of a set and the absolute value of the stored value is the size
of the set. If the value is positive, it represents the array index of the parent of
this element.

In general, disjoint set structures are not safe for parallel operation. To resolve
this, we made a number of straightforward modifications to the standard dis-
joint set structure and its usage. First, find operations can proceed in parallel
without any synchronization. This allows for many concurrent find operations
to occur without the overhead of locking. A detrimental effect is that find oper-
ations cannot perform path flattening or path halving optimizations. However,
these optimizations are largely unneeded by our algorithm. During the inflation
process, we merge the original seed set only with nodes that are not yet merged
with any other nodes. As a result, each of these other nodes is the root in its own
set. When it is merged with the seed set, it creates a tree with depth two. When
the inflation step completes, the entire disjoint set structure has maximum depth
two and cannot be flattened further. During the join step, the disjoint set depth
can grow, but since it is starting with a very shallow tree the depth typically
does not exceed a depth of four, with depth eight being the greatest observed in
our testing.

On a merge operation, a lock is acquired for both root nodes in the merge.
Since a node’s set may change after a find operation has returned its set, set
membership information may be stale. To handle this, after locking the nodes
passed to a merge, they are checked to see if they are still truly root nodes. If
not, their locks are released and the nodes’ paths are traversed until a root is
again found. Those roots are locked and once again checked to determine if they
are root nodes. This continues until both nodes are locked and are roots. The
two sets are then merged and the locks are released.



Fast Parallel Graph Partitioner for I/E 197

The performance and scalability of the inflation step proved to be sensitive
to the number of locks used by the disjoint set. If too coarse grained locks
were used, lock contention hurt performance. If too fine grained locks were used,
performance suffered in some cases because the locks were polluting the per-core
caches and creating memory traffic. Time to initialize the locks also contributed
significantly to total algorithm runtime when excessive locks were used.

To tune the number of locks, we used a process of gradual lock refining.
We varied the number of locks and swept the thread count. At each point, we
measured the amount of time spent in the merge algorithm as a rough proxy
for lock contention. We also examined total partitioner runtime. Based on these
data, we determine the lock count using a simple linear function of thread count
and graph node count. The average degree of nodes in the adjacency graph had
a secondary effect but is ignored in our current lock count calculation.

3.2 Overview of Partitioner Parallelization

The general parallelization strategy used for partitioning is a straightforward
SPMD approach. Each thread is assigned a block of nodes.

Each thread immediately begins inflating from nodes in its block. As they
grow, partitions can pull in nodes outside the thread’s range, but because all
operations done during the inflate phase use the disjoint set structure described
above, they require no additional synchronization. There is, however, a barrier
between the inflate and the join phases of our algorithm.

As with the inflate phase, any operation on shared data during the join phase
consists entirely of disjoint set operations. Each thread attempts to join parti-
tions within its chunk with adjacent partitions.

The final folding phase is currently done serially. It could be parallelized, but
at present takes between 1% - 4% of the total algorithm runtime on a 16 core
machine.

This approach to parallelization results in non-deterministic partitionings.
The order in which nodes are initially inflated, and in which they are joined,
impacts the final partitioning results. This order depends on several factors.
First, the number of threads directly impacts the visitation ordering. A node
that is visited first by some core when using N threads will most likely not
be visited first when using N + 1 threads, simply because it will no longer be
the first node in a block. Also, slight differences in operating system scheduler
behavior cause different interleavings between threads, resulting in a different
global ordering of node visitation.

4 Evaluation

There are several aspects of performance that were considered when evaluating
the ParCubed graph partitioner. We first wanted to evaluate the usefulness of
each of the three distinct phases. In the context of a shared memory inspector,
the runtime of the partitioner is crucial and was evaluated. Lastly, the edge cut
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Table 1. Characteristics of sparse matrices used in the performance evaluation

Name Rows Avg Nonzeroes/Row Memory (MB)

xenon2 157464 24 48

thermal2 1228045 7 130

pwtk 217918 53 138

nd24k 72000 399 345

audikw 1 943695 82 913

of the partitioning is one well understood measure of the partitioning quality. We
supplement edge cut results by also measuring the runtime of the executor phase
while performing a full sparse tiling inspector/executor strategy. This runtime
is the bottom line measure of partitioning quality.

The tiled computation used in this performance evaluation is a sparse Jacobi
solver. The Jacobi algorithm is described in detail in Section 1. In these tests,
the Jacobi kernel is tiled across two convergence iterations of the main loop.
Each tile was sized to access approximately 200kB of data, so as to fit within
the mid-level cache of the processors used.

All of the sparse matrices were drawn from the University of Florida Matrix
Market and are listed in Table 1. The tests were run on a two socket 16 core Xeon
E7-4830 server with 256kB mid level data caches per core and 24 MB of shared
last level cache per socket. The Intel icpc compiler, version 12.1.2 (20111128)
was used at optimization level -O3.

The GPart algorithm used for comparison purposes was run in three passes.
The first pass created partitions of up to 50% the size of the final maximum
partition size. The second pass permits partitions up to 75% of the final size,
while the third pass accepts partitions up to 125% of the maximum size. We
experimented with a variety of different size progressions and found this pro-
gression to give the lowest geometric mean of edge cuts across all input graphs.
Also note that GPart typically does not generate the desired number of parti-
tions. Using this progression, GPart on average returned a number of partitions
equal to 97.5% of the requested number.

The serial METIS algorithm is the METIS PartGraphKway() algorithm, with
the partition size as the only balance constraint. Neither edge nor vertex weights
were used and the objective function was set to minimize edge cut rather than
communication volume.

4.1 Benefit Derived from Each Phase of the Partitioning Process

As seen in Figure 6, the number of partitions affected by each of the three
phases (inflation, joining, folding) varies greatly between sparse matrices. The
figure shows how many partitions exist after each phase of the algorithm. The
requested number of partitions is always reached after folding.

In general, if the input matrix is sufficiently connected, meaning that it has
a relatively high number of non-zero elements per row, than the inflation phase
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Fig. 6. Number of partitions after each phase

is able to do a good job of generating partitions. In these cases, the hierarchical
joining phase provides little benefit. However, when the matrix is more sparse,
such as the thermal2 matrix in this evaluation, the join step is able to combine
smaller partitions and bring the total number of partitions more in line with the
target. The audikw 1 matrix results shows a large number of partitions being
combined during folding, demonstrating the value of the folding step. Note that
METIS always generates the desired number of partitions for these input sets,
while GPart regularly produces more or fewer partitions than requested.

4.2 Speed of Partitioner Compared with METIS and GPart

A major requirement for partitioners in a shared memory multicore environment
is extremely low runtime. In Figure 7, we compare the total partitioning time of
16 core multithreaded ParCubed, single threaded ParCubed, serial METIS, and
serial GPart on the five different sparse matrices in our test suite. All times are
normalized to the METIS time. METIS is consistently the slowest algorithm,
on the order of 5 to 30 times slower than serial ParCubed and 25 to 100 times
slower than 16 thread ParCubed.

A full comparative study of parallel ParMETIS performance is a work in
progress. However, due to the time required to either read in sparse matrix data
on each rank or communicate portions of the data between ranks, the perfor-
mance will not be comparable. For example, partitioning a trivial matrix using
ParMETIS on a multicore machine using a shared memory MPI transport took
1.025 seconds. By comparison, 16 thread ParCubed on a similar machine took just
0.18 seconds to fully partition the audikw 1 matrix, the largest in our study.

4.3 Comparison of Total Partitioning Edge Cut

One common metric of graph partitioning quality is the edge cut of the set of
partitions. Figure 8 shows the edge cuts that were obtained using 16 way parallel
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Fig. 7. Runtimes of different partitioning algorithms relative to serial METIS

ParCubed, serial ParCubed, GPart, and METIS. As explained earlier, in parallel
ParCubed, the order in which nodes are visited varies with the number of threads
used. As these results show, the quality of the partitioning is not greatly impacted
by this effect in general, with results varying slightly in either direction.

When comparing the edge cut, note that METIS always generated the desired
number of partitions for these input sets, while GPart regularly produced more
partitions than requested.

Fig. 8. Relative edge cuts achieved by different partitioning algorithms. Bars are nor-
malized to METIS edge cut values. For thermal2, the GPart value of 22.39x is off the
top of the chart. Lower values are better.

4.4 Executor Runtime

The ultimate purpose of partitioning the executor work is to reduce runtime.
The runtime of the executor when run with 16 threads is shown in Figure 9.
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Fig. 9. Relative performance of the Jacobi executor. Bars are normalized to METIS
executor runtime values. Lower values are better.

The results largely track the edge cut results of Figure 8, as expected. The
nd24k sparse matrix is an exception. That matrix is the most highly connected
in our test suite. It also exhibits the largest run to run variation in executor
runtime. We believe that because of the large amount of shared data, it is very
sensitive to task placement within the machine. If two tiles that share significant
amounts of data are executed back to back on the same core, that core’s cache will
contain some of the shared data. This means that the assumption that each edge
between partitions is equally costly does not always hold true. If communication
between tiles requires accessing main memory, it is more expensive than data
cache accesses. We believe that this effect partially explains the miscorrelation
between edge cut and executor performance in this case.

5 Related Work

The ParCubed graph partitioner presented in this paper depends on a parallel
union-find data structure, therefore we summarize some of the work related to
such data structures. Additionally we summarize other graph partitioners with
similar approaches to the ParCubed graph partitioner, but that are not parallel
or are only parallelized for distributed memory machines.

5.1 Parallel Union Find Algorithms and Data Structures

A major enabler of the algorithm presented here is the disjoint set or union-
find data structure. A number of different implementations have been developed
for use in parallel applications. Wait-free implementations are described in [1]
and rely on atomic compare and exchange operations for correctness. Additional



202 C.D. Krieger and M.M. Strout

methods of implementing parallel disjoint set data structures are presented in
[4]. In [2], the code complexity of a number of different parallel implementations
of union-find is surveyed from a software engineering perspective. This work
includes software transactional memory, coarse and fine grained locking, and
wait free approaches.

5.2 Graph Partitioners

The field of graph partitioning has been extensively researched for decades. While
many different techniques have been developed, the approaches most related to
this research focus either on multi-level graph partitioning or on hierarchical
partitioning.

Multi-level graph partitioners
Multi-level graph partitioners, such as the METIS [9] algorithm that was used
in our comparison above, deliver high quality partitions. They typically involve
a coarsening phase in which the graph is reduced, or coarsened, by combining
multiple nodes into clusters or supernodes. This step is followed by a direct par-
titioning of the coarse graph. The results of the partitioning are then projected
back onto the original graph. Multi-level partitioners differentiate themselves in
the method used to perform each of these phases and in additional refinement
steps added to improve the quality of the final partitioning.

To speed up the partitioning process, many multi-level partitioners have been
parallelized. ParMETIS [8] is a set of multi-level parallel partitioning algorithms
related to METIS. It is parallelized using MPI and is designed for use in dis-
tributed memory environments. METIS has also been parallelized for use on
shared memory machines using the Galois system, but that implementation is
presently slower than ParMETIS [13].

Jostle [14] is another MPI parallelized multi-level graph partitioner. Published
results show that it can produce partitionings equal to or better than ParMETIS,
but it is typically slower. Another multi-level graph partitioner, PT-Scotch [3],
is also parallelized using MPI and likewise is slower than ParMETIS.

Hierarchical clustering or growth based partitioners
Another general approach to graph partitioning is to combine graph nodes to-
gether into clusters. These clusters are then combined to form larger clusters
and so on until the desired partition size has been achieved.

GPart [7] is a hierarchical clustering partitioner that is significantly faster
than METIS, but to the best of our knowledge it has not been parallelized.
Its use has focused more on data reordering to improve locality [6] and it has
features that allow the partitioning to target multiple levels of cache. The join
phase of our partitioner is essentially a slight variation on the GPart technique.
TLayout [15] is a growth based parallel graph partitioner, but it is specifically
designed for execution on a GPGPU and performs poorly on multicore CPUs.
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6 Conclusions and Future Work

ParCubed is a fast, parallel graph partitioner for shared memory systems. It
delivers results comparable to those of METIS in a fraction of the runtime.
This makes it an attractive option for applications such as inspector/executor
optimizations in which the execution time of the partitioner must be minimized,
even at the cost of a slight increase in graph partition edge cut.

Work on the ParCubed partitioner is ongoing. We are currently investigating
the optimal settings for parameters such as target partition sizes used in each
step. Setting the target size to less than the final desired partition size during
inflation, then setting it to slightly larger than the target size during the join
phase has shown some promise. Testing on a larger variety of sparse matrices
continues as well. We are also investigating improvements to the inflation phase
of the algorithm, searching for techniques to further reduce the total edge cut of
the partitioning. We will also compare the partitioning times of this algorithm
with those of ParMETIS running a shared memory based MPI communication
layer on a multicore system.

Future work will include using the partitioner on problems from additional
problem domains, such as molecular dynamics. In these cases, the adjacency
graph is not based on a sparse matrix, but comes from an earlier phase of the
inspector that determines adjacency based on physical proximity of atoms in the
simulation space.
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Abstract. With multicore processors becoming ubiquitous on comput-
ing devices, the need for both parallelizing existing sequential applications
and designing new parallel applications is greatly intensified. With our
work, we intend to tackle the former issue.

In this paper, we present the design of a software-based automatic
parallelization framework for sequential applications that run on the Java
platform: the JaSPEx-MLS framework.

Our framework employs Method-Level Speculation: It uses method in-
vocations as fork points and converts those invocations to return futures
that can be stored in local variables in place of the original values. The
support for speculative execution is provided by automatically modifying
application bytecode to use a custom lightweight Software Transactional
Memory (STM), and we present a novel approach to integrate futures
representing speculative executions with the STM. Thread state transfer
is done by employing a Java Virtual Machine that provides support for
first-class continuations.

We present preliminary results from our implementation of the pro-
posed techniques on the JaSPEx-MLS framework, which works on top
of the OpenJDK Hotspot VM.

Keywords: Automatic Parallelization, Method Level-Speculation,
Software Transactional Memory, Continuations, OpenJDK Hotspot JVM.

1 Introduction

With the move to multicore processors, many new applications are being de-
veloped with concurrent architectures in mind. Yet, many existing applications
are still sequential, and fail to take advantage of the full computing potential
promised by the multicore age.

Unfortunately, it is not feasible for a vast majority of sequential applications
to be rewritten to work in parallel within a reasonable time frame. Thus, an
enticing option is to use an automatic approach to parallelization.
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Parallelizing compilers [4,19] are one such approach that attempts to extract
concurrency from sequential programs automatically by proving that parts of an
application can be safely executed in parallel. The problem is that they fail to
parallelize many irregular applications [8,9,12] that employ dynamic data struc-
tures, loops with complex dependences and control flows, and polymorphism,
which are very hard or even impossible to analyze in a fully static way.

Thread-level speculation (TLS) systems [5, 10, 11, 13, 15, 21] attempt to work
around this issue by optimistically running parts of the application in parallel,
even if the TLS system is not able to prove statically that there will be no depen-
dences. Instead, correctness is dynamically ensured at runtime, during or after
execution of the parallel tasks. Incorrect operations and memory changes are
prevented by buffering and tracking the execution of such operations, followed
by validation before they are propagated to the global program state.

There are multiple ways of identifying tasks from a sequential application to be
executed in parallel. Most TLS proposals concentrate only on loops [5,10,11,15],
whereas on our system we chose to use method calls as spawning points, as
proposed by [6, 12, 13,18].

In this paper, we present the design of our method-based speculation system,
which was implemented on top of the JaSPEx [1, 2] speculative parallelization
framework. Our system needs no special hardware extensions, instead relying on
Software Transactional Memory (STM) for transactional support, and it works
on top of a modified version of the OpenJDK Hotspot Java Virtual Machine
(JVM), allowing it to benefit from a state-of-the-art, production-level managed
runtime with dynamic optimization, garbage collection, and support for Java 6.

The rest of this paper is organized as follows. Section 2 introduces the Method-
Level Speculation technique, and Section 3 introduces the JaSPEx-MLS
parallelization framework. The static modifications done by the JaSPEx-MLS
classloader are described in Section 4, whereas in Section 5 we detail the runtime
creation and coordination of speculative tasks. Section 6 presents preliminary ex-
perimental results for our system. Section 7 discusses the related work, and we
finish in Section 8 by presenting conclusions and future research directions.

2 Method-Level Speculation

Method-level speculation (MLS) is a speculative parallelization strategy first
discussed in the context of Java by [6], and shown to be a promising source for
parallelism by [12, 13, 18]. This technique works by speculatively executing the
code that follows the return of a method call — its continuation — in parallel
with the method call itself.

An example of method-level speculation is shown in Figure 1. When the com-
puteValue() method call is reached, the current thread (T1) begins executing it,
while at the same time triggering the speculative execution (by T2) of the code
following the return of that method.

In this example, both the original parent thread and the speculative child
thread have to join to produce the result of the method. If the value of the
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Fig. 1. Execution of example1() method when run normally (center) and parallelized
with MLS (right)

variable x was never used, it would be possible to speculate past the return of
example1(), and continue execution of the method that invoked it.

Alternatively, even if x’s value is needed to proceed with the execution, we
can employ return value prediction [7, 14] to guess a probable value of x, and
continue speculation using this assumption.

3 The JaSPEx-MLS Parallelization Framework

JaSPEx-MLS is a fully software-based speculative parallelization framework that
provides both a Java classloader that modifies application code as it is requested
by the virtual machine, and a runtime Java library that orchestrates speculative
execution. It is based on the JaSPEx framework [1,2], but with both an entirely
new MLS-based speculation model, and a new transactional backend.

The JaSPEx-MLS classloader (Section 4) is responsible for preparing applica-
tion code for speculative parallelization. This includes transactifying the code,
adding hooks to allow the framework to correctly handle non-transactional op-
erations, and inserting into the application the spawn points that will be used
at runtime to create speculative tasks.

The runtime orchestration library (Section 5) is responsible for controlling the
creation of speculative tasks, establishing the commit order for the underlying
transactional system, deciding when to validate and to commit speculative tasks,
correctly handling aborting and retrying, and controlling the execution of non-
transactional operations. Speculative work is submitted to a thread pool, which
we attempt to keep busy at all times. Nested speculation is supported.

Almost all of JaSPEx-MLS is implemented in Java, and modifications to ap-
plications are done via bytecode rewriting.1 The lone exception to this is that
JaSPEx-MLS relies on having first-class continuation support, which is provided
by a modified version of the OpenJDK virtual machine.

The OpenJDK VM is the result of the open-sourcing of Oracle’s Java technol-
ogy, including the Hotspot JVM. By working on top of OpenJDK, JaSPEx-MLS
has access to all the features and optimizations of a modern production JVM:
just-in-time compilation and adaptive optimization, state-of-the-art garbage col-
lection algorithms, support for Java 6 and optimized concurrency primitives.

1 To simplify presentation, the examples in this paper instead appear in Java.
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We believe that the combination of software-only speculation on top of a
modern production JVM sets our system apart from previous work: Our ap-
proach can work on commonly available modern hardware, and on top of the
same codebase regularly used to run the sequential versions of the applications
that we are targeting.

Our first-class continuation implementation is based on previous work by Ya-
mauchi [20], which itself was based on the work of Stadler et al. [16]. We have
developed a library that currently includes backends for two different JVM im-
plementations of first-class continuations, and that will allow JaSPEx-MLS to
easily adapt to future developments in this area.

4 JaSPEx-MLS Classloader: Static Code Preparation

As introduced in Section 3, the JaSPEx-MLS classloader handles the static
preparation of classes for speculative parallelism. An important assumption that
we make is that any class that is prepared and loaded by this classloader is fully
safe to invoke with transactional semantics. The modifications described in the
following subsections allow a class to fulfill this assumption.

4.1 Transactification

The first part of static application processing is concerned with allowing appli-
cation code to run with transactional semantics. This allows JaSPEx-MLS to
control memory read and write operations during speculative execution, to have
a means of validating them, and to decide if they should be kept or not.

Rather than modifying the virtual machine to obtain this transactional sup-
port, we intercept any Java bytecodes that may access and mutate heap-allocated
memory locations—that is, accesses to object slots and to array elements.

As such, an application is modified to use an STM-like API whenever it must
read or write to slots and arrays.2 This API is very lightweight, type-specific,
and static, allowing the JVM to easily inline it into hot paths of the code.

4.2 Handling Non-transactional Operations

In any transactional system, there are always some operations that cannot be
made to behave transactionally, as they are outside the control of the system.

For JaSPEx-MLS, and in the JVM platform, we consider as non-transactional
two types of operations: (1) native methods, which are implemented with pre-
compiled binary code, making them hard to analyze and transactify; and (2)
code belonging to the JDK (any classes in the java.* package namespace).

Code belonging to the JDK is considered to be non-transactional because the
OpenJDK JVM, like Oracle’s JVM, does not allow alternative versions of JDK
classes to be loaded at runtime. To reduce the number of non-transactional oper-
ations resulting from this limitation, we use a semi-manually–compiled whitelist

2 An exception is the access to final fields, which do not change after initialization.
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java.util.List l = ...;
if (!(l instanceof Transactional)) nonTransactionalActionAttempted();
l.clear();

Listing 1.1. Runtime check for Transactional instances

that includes immutable classes and methods that do not change any state, and
that do not access state from non-transactional classes nor arrays. Yet, in the
future, we intend to explore either the feasibility of modifying the VM to remove
this restriction, or a more limited offline modification of these base classes before
they are loaded.

To protect an application from executing a non-transactional operation while
performing speculative execution, we prepend any such operation with a call to
the framework method nonTransactionalActionAttempted(), which validates the
current speculation, waiting if needed, before allowing the operation to proceed,
or aborts the execution if the speculation is not valid.

In addition, as it is not always possible to distinguish statically when, for
instance, a reference l of type java.util.List refers to a user-provided MyList or
a non-transactional java.util.ArrayList, a runtime test is added. This runtime
test relies on the fact that any class processed by our classloader implements the
Transactional interface, and thus, at runtime, we can avoid stopping speculation
unless really needed, as shown in Listing 1.1.

4.3 Modifications for MLS

Whereas the previous modification steps of the JaSPEx-MLS classloader pre-
pared application code to run with transactional semantics, the final step readies
the code for MLS.

To add support for MLS, JaSPEx-MLS replaces normal method calls with a
call to a special spawnSpeculation() method. This method receives a Callable
object, representing the original method invocation and its arguments, and re-
turns a Future, representing the value that will be returned by the target method.

The Callable object is an instance of an automatically generated class that
includes slots for each argument to the method call. When the call() method
is invoked, it proceeds to call the original method.

The most complex part of the insertion of spawnSpeculation() is dealing with
the returned future. The main objective of the transformation performed is to
delay to as late as possible the retrieval of the result from the future, as it
would entail waiting if the value is not yet computed. Thus, the trivial case
where the future is immediately needed is not useful,3 as nothing would be
gained from just transferring execution to another thread, and so JaSPEx-MLS
rejects this case. The other trivial case, where the value returned from the
method is discarded, or the method is void, is useful, but needs no further
modifications other that popping the future off the stack.

3 JaSPEx-MLS currently does not employ return value prediction [7, 14].
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void example() {
int x = 0;
if (condition) {
Future f0 = spawnSpeculation(...); // original method: compute()
x = f0;

}
int y = x + 1; // error: is x an int or a future ???
{ ... code that uses y ... }

}
Listing 1.2. Example of problematic replacement of a returned value with a future

void example() {
int x = 0;
if (condition) {
Future f0 = spawnSpeculation(...); // original method: compute()
x = f0;
goto x_is_a_Future;

}
int y = x + 1; // x is an int

rest_of_the_method:
{ ... code that uses y ... }
return;

x_is_a_Future:
int y = x.get() + 1; // x is a future
goto rest_of_the_method;

}
Listing 1.3. Valid version of the code from Listing 1.2, obtained by duplicating part
of the method

A more interesting case however, is the common pattern of saving the result
of a method on a local variable for later use. The JVM bytecode specification
allows any type to be stored in any local variable (and this type can change
during execution of a method), so we are allowed to write the future to the same
local variable as the original return value would have.

The problem with this substitution is what happens when the return value is
accessed. Consider for instance the code shown in Listing 1.2: This transforma-
tion is not valid, because the x local variable may be of type int in a possible
path through the method, and of type Future on another path.

To solve this problem, we construct the control flow graph of the method
and duplicate code blocks where both a future and the original return type
may be present. As an example, Listing 1.3 shows the correct version of the
transformation shown in Listing 1.2.

To avoid spawning speculative executions that would run only a small number
of instructions before needing to synchronize with other threads, JaSPEx-MLS
does a number of passes that perform simple analysis to try to avoid these cases.
In addition, the MLS modification pass can use a list of methods that are known
not to be profitable for speculation: This list may either be manually provided,
or be the result of profiling performed on the application.

4.4 STM Support for Futures

To further delay the moment when we need to obtain the return value from the
future, we added to our STM support for writing futures to memory locations.
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// Original Method
void doCompute(Object[] results) {
for (int i = 0; i < results.length; i++) {
results[i] = compute(i);

}}

// Attempted parallelization
void doCompute(Object[] results) {
for (int i = 0; i < results.length; i++) {
Future f0 = spawnSpeculation(...); // original method: compute(i)
TM.storeObjectArray(results, i, f0.get()); // get() called immediately

}}
Listing 1.4. Unsuccessful parallelization of doCompute()

void doCompute(Object[] results) {
for (int i = 0; i < results.length; i++) {
Future f0 = spawnSpeculation(...); // original method: compute(i)
TM.storeFutureObjectArray(results, i, f0); // f0 is handed to the STM

}}
Listing 1.5. Successful parallelization of doCompute(), with the added support for
futures in the STM

Consider, for instance, Listing 1.4: In this case, the transformation performed
in Section 4.3 to add the spawnSpeculation() call would not be useful, as the
resulting code would immediately obtain the return value from the future, so
that it can be written into the array.

In reality, due to the transactification step performed in Section 4.1, the write
to the array is not done directly, but instead the value to be written is handed
over to the STM. We can take advantage of this behavior to extend the STM
with support for futures, allowing the resulting code to behave as shown in
Listing 1.5.

Note that if each execution of compute() that is being replaced by
spawnSpeculation() is fully independent, the example method (and the loop
contained therein) has gone from not being parallelizable, to being fully parallel,
as the entire loop can be executed without stopping speculation, and the do-
Compute() method can even return to its caller, allowing other work to be done,
while the computation of the values proceeds in parallel.

5 Runtime Orchestration of Speculative Executions

The JaSPEx-MLS runtime library is responsible for the creation and coordina-
tion of speculative executions.

A speculative execution starts when an application reaches a call to the
spawnSpeculation() method, which was previously inserted by the JaSPEx-MLS
classloader as a replacement for a normal method call. Inside this method, the
framework dynamically decides weather a new speculation should be spawned
by taking into account the current workload of the system. Because in our sys-
tem nested speculations are supported, speculative executions can spawn further
speculative executions.
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If JaSPEx-MLS chooses to spawn a speculation, it starts by capturing a
first-class continuation representing the stack and execution state of the cur-
rent thread. Remember from Figure 1 in Section 2 that this execution state will
be resumed on another thread, while the current thread will continue by execut-
ing the method call contained in the Callable received by spawnSpeculation().
To represent the task being spawned, JaSPEx-MLS creates a new instance of
SpeculationTask and submits it for execution by the thread pool.

The created SpeculationTask instance is the link between the parent task
— the task that reached the call to spawnSpeculation() — and the child task,
which will resume the continuation and start its execution of the code following
the call to spawnSpeculation(). This parent/child relation implicitly imposes a
global order on all tasks on the system that mirrors the original order on the
sequential application.

After submitting the child SpeculationTask for execution, the parent task
cleans its current thread’s stack by resuming an empty continuation, and pro-
ceeds to execute the method represented by the Callable. When the method
returns, its return value is stored inside the child SpeculationTask, so that the
child task will be able to retrieve it, and the thread running the parent task
returns to the thread pool.

When the child SpeculationTask is picked up for execution by a thread, we
first test if the task’s parent already finished by checking if its result is available.
If it is not, a new STM transaction is started, otherwise, because its parent
already committed, no transaction is started and the task is executed in program-
order mode. The thread then resumes the first-class continuation captured by
the parent task: Upon resuming the continuation, execution restarts inside the
spawnSpeculation() method, and JaSPEx-MLS returns a future to the caller
method — representing the promise of a return value from the parent task —
and the child task continues its execution.

This design where the thread that reaches the spawnSpeculation() throws
away its stack and executes the parent task, while the child task will start by
restoring the very same stack was chosen so as to allow tasks to be queued even
when there are no free threads to execute them. The inverse option, where the
thread that reaches the spawnSpeculation() would execute the child task and
queue the parent for execution could in many cases delay the application, as the
child task would not be able to commit its work before its parent was finished.

5.1 Committing a Speculation

There are three conditions that trigger the commit of a speculative task:

1. The task completed its work
2. The task needed to obtain a result from a future, and noticed that it was

the oldest-running task in the system
3. The task attempted to execute a non-transactional operation

A speculative task is allowed to commit its work only if it is the oldest-running
task in the system. In our design, every task has a parent that spawned it, and
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that parent is responsible for writing its result onto the child’s SpeculationTask.
Every parent commits before its child task and before passing its result to the
child. Thus, when a child receives the result from its parent, it can also commit
because it is guaranteed that its parent has finished its work.

When a task wants to commit, but no result from its parent is available,
it waits on its own SpeculationTask for this value to arrive. Note that it may
be possible that its parent is in the same situation, and that a sequence of
speculative executions are all waiting for their own parents. When a parent sets
its value on the child, it wakes up the child, so that the child can resume working.

After a child task receives the result from its parent, we first check for two spe-
cial cases: an exception and an order to abort. If the result from the parent is an
exception, then whatever work the current speculative task has done is invalid:
In the original application, this code would never run, because the exception
would be thrown before the code was reached. So, when this happens, the child
task aborts its current STM transaction, signals its own child speculation (if
any) that it should abort, and retries execution by re-resuming the continuation
(which re-initializes the current execution stack back inside the spawnSpecula-
tion() method) and by re-throwing the exception thrown by the parent. This
scheme simulates the way the exception would appear in the original application.
In case the speculation receives an order to abort, either because its parent (or
any grandparent) aborted due to an exception or because a mis-speculation was
detected by the STM, the current task aborts its own transaction, signals its
child (if any) to abort also, and the thread is returned to the thread pool. Any
computation done was wasted, because it was based on invalid assumptions.

When a thread attempts to commit, but the validation of the STM transac-
tion fails, the transaction is aborted, and the task is retried by re-resuming the
continuation received from the parent. For the re-execution, no transaction is
started, as the task will be running in program-order, rather than speculatively.

Finally, whenever a task finishes its work and is able to commit successfully
its STM transaction, it writes its return value on its child SpeculationTask and
the thread hosting it is returned to the thread pool.

5.2 Custom Relaxed STM Model

The STM used in JaSPEx-MLS was designed to be very lightweight, so as to im-
pose minimal overheads on the transactified application. It clearly distinguishes
between two modes of execution: program-order mode and speculation mode.

A task that is executing in program-order mode always reads from and writes
to memory directly, with no additional validation nor synchronization: At any
given time, only one task is working in program-order; any other threads exe-
cuting tasks are performing speculative execution.

When the program-order task attempts to write a future into a memory lo-
cation, the return value from the future is immediately retrieved as, per the
structure imposed by the method-level speculation scheme, that future repre-
sents the result of a previous speculation that must already have finished.
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Like most STMs, for tasks running in speculative mode, JaSPEx-MLS keeps
both a (value-based) read-set, which contains each heap-allocated memory loca-
tion read by the transaction and its value at the time, and a write-set, which
maps memory locations to values to be written to them upon commit.

In our STM model, tasks running speculatively always read directly from the
requested memory location, and may observe changes being done concurrently by
a task running in program-order mode. This strategy can, of course, cause incon-
sistent reads, but unlike normal applications that use STM, inconsistent reads are
always present in the execution model, and are handled by the framework.

When a read of a memory location is attempted, and there is already an entry
in the write-set for that location, the value from the write-set is returned. If the
entry in the write-set contained a future in place of the real value, the result from
the future is first retrieved (by waiting, if necessary), and then returned.

Whenever a speculative task wants to perform awrite, a newmapping is added/
updated to the write-set: a pair (location, newvalue) for normal values, and a pair
(location, future) for futures.

Because the task coordination part of JaSPEx-MLS always commits transac-
tions in the same order as the original sequential application, only one transaction
will be trying to commit at any one time, dismissing the need for synchroniza-
tion during the commit operation. As such, the commit operation consists of only
two simple steps: (1) validating the the read-set by re-reading the values from the
memory locations and comparing them to the ones originally read and kept in
the read-set; and (2) performing the write-back of values from the write-set to the
memory locations, including retrieving and writing the results from any futures.

5.3 Thread and Task Management

When a new speculative task is created, JaSPEx-MLS submits it for execution to
a thread pool. The current design of the thread pool allocates a limited number of
threads based on the number of CPUs on the machine, and accepts speculations
only when there are idle threads.

This design is very simple, and we intend to improve it in the future in two ways:
(1) by returning threads to the pool instead of waiting; and (2) by integrating a
task scheduler.

The idea of returning threads to the pool instead of waiting is applicable when
there is a great imbalance between the size of speculative tasks that threads are
working on. If, for instance, the oldest task in the system is executing a very long-
running code section, and all the other threads have, in the meantime, finished
their work, and are waiting for permission to commit, no further speculations are
accepted, and the application would be executing sequentially. Instead, we plan
to have waiting threads capture a first-class continuation with their current state,
which would then be associated with their parent. Then, when the thread running
the parent task finishes its work, instead of immediately returning to the thread
pool it would switch to and finish execution of its child task. This way, waiting
threads would be free to return to the thread pool, where they may accept new
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Fig. 2. Slowdown introduced by the bytecode modifications performed by JaSPEx-MLS
(speculation was disabled) with the JVM in interpreter-only mode (left), and normal op-
timizing mode (right).Only transactification accounts for the modifications described in
Sections 4.1-4.2, whereasTransactification + spawnSpeculation accounts for all bytecode
modifications. Results were normalized to the runtimes of the unmodified applications.

speculative tasks that are submitted by the very busy thread, speeding up its ex-
ecution once again.

Baptista [3] was able to integrate a conflict-aware scheduler into an older version
of the JaSPEx framework. His work shows promising results, and we intend to
adapt it to JaSPEx-MLS in the future.

6 Experimental Results

In this Section, we present preliminary experimental results obtained with the
JaSPEx-MLS framework. We tested our prototype on an Intel Core i5 750 ma-
chine with 8GB of RAM, running Ubuntu Linux 12.04 64-bit, and our modified
OpenJDK VM.

We tested several JVM applications: the JScheme R4RS Scheme implementa-
tion, the Sunflow ray tracing engine, the Avrora hardware simulator and analysis
framework, the Kahlua Lua scripting language interpreter, and some benchmarks
from the the JavaGrande Forum (JGF) benchmark suite. Apart from Sunflow, the
chosen benchmarks are single-threaded, although some of them employed locking
and thread-local variables in some places, which we removed; we modified Sunflow
to use only the single main thread to perform its rendering work.

We first measured the overheads imposed by our system when speculation is
disabled. Figure 2 shows the overhead we measured, when comparing our sys-
tem to the original sequential application runtime, in two cases: (1) running the
JVM in interpreter-only mode (-Xint mode), and (2) with the full Hotspot VM
optimizations enabled. Using only the interpreter, our bytecode modifications im-
pose heavy overheads, but when running with optimizations enabled, we can see
that the VM is successfully able to optimize away many of the added indirections,
showing that our lightweight STM imposes minimal overhead on application code
running in program-order. The results also show that blind conversion of normal
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Fig. 3. Results from benchmarking with JGF benchmarks, normalized to the original
application runtimes. Values above 1 correspond to a speedup, whereas below 1 corre-
spond to a slowdown.

method calls into spawnSpeculation() also imposes non-trivial overheads, sug-
gesting the importance of the integration of a profiling pass to remove unprofitable
calls in our framework.

Results from testing with benchmarks from the JGF benchmark suite are shown
in Figure 3. The input applications were not modified, but some manual profiling
was done and a blacklist of methods unsuitable for speculation was provided to
JaSPEx-MLS. The series benchmark was able to obtain a speedup of 1.7x, lufact
was not able to perform any meaningful speculation, crypt was not able to ex-
tract speedup from the speculation done, heapsort had an overwhelming number
of aborted transactions, and both sor and sparsemult (not shown) are not suit-
able for MLS parallelization as all their computation is done in a single method.
These results again underline the need for a semi-automatic profiling pass that can
avoid unprofitable executions, but also that it is possible to extract parallelism us-
ing JaSPEx-MLS.

7 RelatedWork

Many TLS proposals depend on some kind of hardware transactional support; un-
fortunately, while such support remains absent from common architectures these
systems remain impractical. Jrpm [5] is a Java VM that does speculative loop
parallelization on a multiprocessor with hardware support for profiling and spec-
ulative execution. At runtime, applications are profiled to find speculative buffer
requirements and inter-thread dependences; once sufficient data is collected, the
chosen loops are dynamically recompiled to run in parallel. Helper Transactions
[21] rely on special hardware support to perform method-level speculation. The
authors introduce the concept of implicit commit, allowing a thread that finished
working to signal its sibling speculation to commit; this sibling speculation should
then validate itself, commit its current work and continue executing
non-speculatively. The advantage of this approach is that the oldest speculation
in the system automatically switches off speculative execution as soon as possible,
lowering execution overheads.

Because executing code transactionally can impose very large overheads, re-
cent TLS proposals, similarly to JaSPEx-MLS, try to optimize the transactifica-
tion and transactional model as much as possible: Oancea, Mycroft and Harris [11]
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proposed SpLIP, a software speculation system that targets mostly-parallel loops.
The authors concentrated on avoiding performance pitfalls present on other soft-
ware TLS proposals by having speculations commit their work in parallel, and
using in-place updates. This contrasts with our approach of keeping changes in
the write-set until commit, and increases the penalty for bad speculation deci-
sions, which involve costly rollback operations, prompting a very careful analysis
when choosing loops to parallelize. In [10] the authors propose STMlite, a lighter
STM model targeting loop parallelization. STMlite aims at using a small number
(2-8) of speculative threads to extract parallelism from loops, avoiding the need
to transactify the whole program. During execution, transactional read and write
operations are encoded using hash-based signatures that are then checked by a
central bookkeeping and commit thread. Fastpath [15] is also aimed at extracting
parallelism from loops using speculation. The transactional system distinguishes
between the thread running in program order, and other speculative threads: The
lead thread always commits its work, and has minimal overhead, whereas specula-
tive threads suffer from higher overheads andmay abort. The authors also propose
two different STM-inspired algorithms for conflict detection: value and signature-
based. In both conflict detection algorithms, the lead thread is always allowed to
change memory locations in-place. The Fastpath system as presented did not yet
support automatic parallelization; results from a hand-instrumented benchmark
showed that the value-based algorithm presented the best results. The JaSPEx-
MLS relaxed STM model is very similar to the Fastpath value-based algorithm,
the biggest difference being our inclusion of support for futures in the STM.

The idea of using futures in Java coupled with speculative execution was also
explored in a different context by Welc et al. [17]: In their work on safe futures
for Java, the authors extend Java with support for futures that are guaranteed
to respect serial execution semantics. Because of this, futures can be thought of
as semantically transparent annotations on methods: Execution of a method can
be replaced with the execution of a future, the safe future model guaranteeing
that sequential semantics is respected. In contrast with our automatic approach,
to use safe futures programmers manually change their code to employ futures
instead of normal method calls, including solving cases where the return value
from amethod is used immediately. Zhang and Krintz’s Safe DBLFutures [22] also
support a similar approach, and includes safe handling of exceptions that respect
sequential semantics.

SableSpMT [13] is a Java MLS-based automatic parallelization framework. To
allow speculation even when the return value of a function call is needed immedi-
ately, SableSpMT employs return value prediction [14]. Nested speculation is not
allowed, limiting some of the achievable parallelism: Although the main thread is
allowed to spawn multiple speculative tasks, the tasks themselves cannot spawn
further speculative tasks. Before running an application, SableSpMT performs a
static analysis and modification pass on the input application: This pass inserts
fork points into the application bytecode, and gathers information to be used by
the return value predictor. SableSpMT is based on the SableVM virtual machine,
which is a research VM, employing only an interpreter and a simpler garbage
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collection algorithm. The system was benchmarked using the SPECjvm98 bench-
mark suite on a quad-cpu machine, but no speedup was achieved over the origi-
nal application runtimes due to the added overheads. In further testing with fork
and join overheads factored out by considering a baseline execution where every
speculation fails to commit at the end, SableSpMT was able to achieve a mean
relative speedup of 1.34x. In contrast with SableSpMT, JaSPEx-MLS fully sup-
ports nested speculation, and in our system the garbage collector works normally,
whereas in SableSpMT it invalidates all running speculations. The base SableVM
is also a much simpler VM, with no support for Java 6 and none of the advantages
of OpenJDK as introduced in Section 3.

8 Conclusions and FutureWork

In this paper, we introduced the design of JaSPEx-MLS, an automatic paralleliza-
tion framework for the Java platform. Our framework needs no hardware trans-
actional support, and works atop a modern production-quality managed runtime
supporting JIT compilation and advanced garbage collection facilities: the Open-
JDK Hotspot virtual machine.

We described how the JaSPEx-MLS classloader transactifies applications, and
also how it converts method calls into speculation spawn points.We also presented
a novel approach to enable further speculation by integrating support for the fu-
tures returned at spawn points into the STM, allowing the application to behave
as if the future itself was written to a memory location. We then described how
speculative tasks are orchestrated at runtime, and the design of our lightweight
relaxed STM model.

Our preliminary results show that an optimizing VM can hide much of the over-
head introduced by our static bytecode preparation, and also that JaSPEx-MLS
is already able to extract parallelism in some benchmarks.

In the future, we intend to lift some of the limitations imposed by our handling
of non-transactional operations, to add support for a profiling pass that gathers
information on the most profitable methods for speculation, and to improve the
runtime scheduling of tasks and reuse of threads in the thread pool.
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Abstract. This paper describes Ant, a debugging framework targeting
MPI parallel programs. The Ant framework statically analyzes programs,
marking code regions as being executed by all processes or executed by
only some of the processes. The analyzed program is then instrumented
with calls to an invariant violation monitoring and detection library. The
analysis allows regions to be instrumented based on whether all, or less
than all, processes execute the region. Ant’s instrumentation strategy
allows sampled monitoring across processes in regions executed by all
processes. We present a case study using Ant with C-DIDUCE (a vari-
ant of DIDUCE for C) to find violations of value invariants in parallel
C/MPI programs. Ant’s instrumentation strategy reduces the overhead
of monitoring by over 14 times with less impact on accuracy than a
scheme that simply distributes monitoring over all processes executing
the program.

Keywords: MPI, Parallel Program Debugging, Anomaly Detection,
DIDUCE.

1 Introduction

Bugs in serial programs cost the software industry billions of dollars in lost
productivity each year [1]. Sequential bugs, i.e., bugs not actually related to the
parallelization of a program, will continue to be a major problem in parallel
programs. Tools that identify potential sequential bugs will allow those bugs to
be fixed, and will save programmers from having to determine if the bug is a
sequential bug or a result of parallelization.

Many debugging tools require runtime monitoring of program points of in-
terest. An important class of these tools is invariant violation detection tools,
which includes tools such as DIDUCE [2], C-DIDUCE [3] and AccMon [4]1 that,
in sequential programs, have runtime overheads of up to 20X, 1.21X and 3X,
respectively. A second class of debugging tools (e.g., [5–7]) look for statistical
variations in program behaviors between correct and incorrect runs, and can also

� This material is based upon work supported by the National Science Foundation
under Grant No. CCF-0916901.

1 AccMon requires special hardware.
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have high runtime overheads. A naive port of these tools to parallel programs
will have high overheads while executing on expensive parallel hardware.

This paper describes the Ant framework that allows these, and other tools
that do not require all events of interest to be monitored, to efficiently and ac-
curately target parallel MPI programs. Ant does this by solving two important
problems. First, Ant allows the results gathered on many processes to be merged
in a theoretically sound way that gives useful results. Second, Ant uses the in-
herent parallelism of the program being monitored to reduce the overhead of the
debugging tool, while maintaining a high level of accuracy. We show the effec-
tiveness of Ant using a case study involving C-DIDUCE [3], an implementation
of DIDUCE [2] that targets C instead of Java programs.

DIDUCE, C-DIDUCE and the value invariant hypothesis. Statistical and invari-
ance based debugging tools such as DIDUCE and C-DIDUCE assert a hypothesis
that serves as the foundation of the tool. DIDUCE and C-DIDUCE assert the
value invariant hypothesis, which states that a given variable takes on a small set
of values during its lifetime, even with different input data, and rarely occurring
deviations from this set of values indicate buggy or anomalous behavior. De-
tecting where these deviations occur aids in debugging. The literature on these
and similar techniques (e.g., [3, 2, 4, 7, 8]) empirically validate the utility of the
asserted hypotheses in sequential programs.

Correctly but naively extending a debugging tool to parallel environments. In
our case study, the Ant framework asserts a parallel version of the value invari-
ant hypothesis. Ant asserts that a value invariant holds across different input
datasets, across similar processes executing the program, and across executions
involving different numbers of processes. In Section 3.2, we formally show that
the merging of the monitoring data gathered over many processes will yield the
same result as if the data was gathered in a single sequential execution.

Empirical evidence gathered from our case study targeting C with MPI pro-
grams and C-DIDUCE shows the practicality of exploiting the parallel value
invariant hypothesis with Ant. We use four MPI parallel benchmarks that have
bugs injected into them. Each process performs replicated monitoring, that is,
each process performs the monitoring required by C-DIDUCE as if it were an
independent program, with the results of the individual processes’ monitoring
collected and merged. This monitoring provides effective detection of the injected
bugs, as explained in Section 4.

Exploiting application parallelism for efficient monitoring. Using the replicated
monitoring described above, C-DIDUCE and DIDUCE suffer high overheads in
parallel programs just as they do in sequential programs. One way to reduce these
overheads is to have each of the P processes executing the program monitor 1

P of
the events. This performs a sampled monitoring by distributing the monitoring
evenly across the P processes. We call this type of monitoring distributed moni-
toring. As we show in Section 4, distributed monitoring significantly reduces the
monitoring overhead, but suffers from reduced accuracy in detecting anomalous
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events of interest. The inaccuracy results from each process only sampling 1
P

events, even in program regions that are not executed by all P processes.
Ant takes a more intelligent approach that achieves low overhead similar to

that of distributed monitoring, and accuracy similar to that of replicated moni-
toring. It does this by using a static, compile time analysis to divide the program
into regions that are executed by all processes (All-process Regions or ARs) and
regions that are not executed by all processes (Not-All-process Regions or NARs).
In ARs, Ant acts like distributed monitoring and each process monitors 1

P of the
accesses. In NARs, all processes monitor all accesses, as with replicated moni-
toring. We present experimental results showing that Ant’s strategy achieves the
best of both replicated and distributed monitoring: it has nearly the overhead
reduction of distributed monitoring with accuracy that is close to replicated
monitoring.

To summarize, this paper presents the following technical contributions:

– A distributed monitoring that exploits the application parallelism;

– A flexible framework that allows sequential debugging tools to be used with
parallel programs;

– A case study showing the use of Ant and the C-DIDUCE [3] value invariant
tool with parallel C/MPI programs;

– The uses of ARs and NARs to guide program instrumentation for debugging
tools, and data showing that this leads to accurate monitoring with a low
overhead.

– Experimental results showing the validity of the parallel value invariant hy-
pothesis and the effectiveness of C-DIDUCE on parallel programs.

The rest of the paper is organized as follows. Section 2 provides an overview of
the Ant framework and the compile time analysis used in Ant, and our instru-
mentation techniques based on this analysis. Section 3 describes a case study of
our framework, and Section 4 presents an experimental evaluation of the case
study. Section 5 discusses related work, and Section 6 provides our conclusions.

Fig. 1. Overview of the Ant Framework
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2 The Ant Framework

The Ant framework, shown in Fig. 1, has two main components: (1) a static anal-
ysis component, whose input is a C/MPI program, and that identifies and instru-
ments ARs and NARs, and (2) a debugging runtime. The compiler analysis and
instrumentation is discussed in this section, and the use of an invariant violation
detection and monitoring (runtime) technique is discussed in Section 3, when we
discuss a case study using the C-DIDUCE value invariance debugging tool.

In this section, we describe the compile time analysis and instrumentation.
The phase analysis marks the code regions as being ARs or NARs, and adjusts
instrumentation strategies accordingly.

2.1 Region Demarcation Points (RDPs), ARs and NARs

We consider code to be in a NAR when it is control dependent on a branch whose
conditional is a function of the process rank (i.e., process id). We call these
conditional branches region demarcation points (RDPs). Ant’s static analysis
detects ARs and NARs by identifying RDPs, and this is done by following USE-
DEF chains from the MPI Comm rank function calls. We are not interested in
the value of the control expression or its variables, only that it is dependent
on an MPI rank, and therefore that some processes may follow the true path
from the conditional branch and others may not. All statements that are control
dependent on the RDP are members of a NAR. We note that our analysis may
be conservative – i.e., we may identify regions as NARs that are actually ARs,
but the effect of this is to increase the monitoring overhead and (possibly) the
accuracy.

Algorithm 2.1 describes the Ant static analysis for marking NARs and ARs
of the input parallel program. First, RDPs are determined using the process id
handles by traversing the control flow graph (lines 1 and 2). The data dependence
of process id handles is considered in the gather process id info function, so
the handles data-dependent on the process rank are also added to the pid handles
set. Next, all of the statements in the program are checked to see if they are
control dependent on the RDPs and marked as NAR or AR (lines 3 to 10).
Finally, the callee procedures from NARs are iteratively marked as NARs (lines
11 to 16). The resulting program is ready for instrumentation as described in
the following section.

Fig. 2 shows the time our benchmarks spend in ARs and NARs. The graph
shows that programs spend the overwhelming part of their execution in ARs.
This observation motivates our instrumentation strategy that provides much
lower runtime monitoring cost and good accuracy in locating bugs.

2.2 RDP Guided Instrumentation

Our goal is to spread the monitoring across all processes when all processes are
executing a region (i.e., are in an AR) and to ensure that all code is monitored
when in a NAR. Thus, within a NAR, the instrumentation at a program point is
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Algorithm 2.1 Ant Static Analysis for marking NARs and ARs

1: pid handles ← gather process id info()
2: RDPs ← gather RDP info(pid handles, control flow graphs)
3: for all statement in program do
4: pp ← get control dependent point(statement)
5: if pp in RDPs then
6: mark statement as NAR

7: else
8: mark statement as AR

9: end if
10: end for
11: while change in NARs do
12: for all callsite in NARs do
13: procedure ← get procedure(callsite)
14: mark all statements in procedure as NAR

15: end for
16: end while

replicated, i.e., performed by all processes, as shown in Fig. 3(a), with the instru-
mentation (i.e., the debug lib call) being executed by all processes. Within an
AR, however, the instrumentation is distributed over the processes as shown in
Fig. 3(b). In this case, the instrumented code is invoked every 1

P executions
within a process, where P is the number of processes.

If the program point is in an AR but not in a loop, the guard expres-
sion controlling the execution of the instrumentation is pid == k, where k ∈
{0, . . . , P − 1}. After being used to guard an instrumentation call, k is set to (k

+ 1) % P.
Although we provide a case study and implementation using C-DIDUCE, we

believe that the framework can be used with at least two major classes of tools.
The first class is invariant violation detection tools (e.g., [3, 2, 4, 8]), which look
for violations of program invariants, such as what program location(s) normally

(a) NPB IS (b) ASCI SMG2000

(c) SPEC MPI2007 TACHYON (d) SPEC MPI2007 MILC

Fig. 2. Time spent in ARs and NARs during program execution
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a1 = ...

debug lib call(a1);

...

a1 = ...

if (process rank == (i % num procs))

debug lib call(a1);

(a) NARs (b) ARs in a loop (loop index: i)

Fig. 3. Instrumentation example by different regions

access a memory location [4] and what values a variable normally has [3, 2]. The
second class is tools that find statistical variations in program behaviors that
are correlated to bugs (e.g., [5–7]). In both classes, Ant can reduce overheads
compared to monitoring all accesses in all processes, with a minimal impact on
precision, and offer similar overheads and improved precision relative to simply
distributing the monitoring across processes.

3 Parallel Value Invariant Detection – A Case Study

We now present a case study of the Ant framework and its instrumentation
technique using the C-DIDUCE [3] value invariant detection (VID) technique [2]
adapted to parallel programs.

3.1 Overview of Value Invariant Detection (VID)

This paper uses C-DIDUCE [3], a C implementation of DIDUCE. The differ-
ences between DIDUCE and C-DIDUCE are because DIDUCE targets Java and
C-DIDUCE targets C. Details of these differences can be found in [3]. Both
perform a training run to determine an approximation to the set of all values
seen by each reference in the program. DIDUCE associates each occurrence of a
variable with the invariant I = 〈Mt, V 〉, where V is the variables’ initial value,
and Mt is the value of an invariant mask after the t’th access. V is initialized
to the variable value that is seen the first time some reference of the variable
is executed, and M is initialized to be all 1’s. Let wt be the t-th value of V
observed at the program point.

As each value wt is observed, the test (wt ⊗ V )∧Mt �= 0 is performed, where
⊗ is the bitwise XOR operation. If the test is true, the invariant is relaxed by
updating the mask so that M = Mt+1 ← Mt∧(wt ⊗ V ). Intuitively, each update
of the mask results in the mask having a value of ‘0’ in bit positions where both
a ‘0’ and a ‘1’ have been previously seen. A mask position containing a ‘1’
indicates that all previous values only had a ‘1’ in that position, or that all
previous values only had a ‘0’ in that position. Whether only a ‘0’ or ‘1’ value
was seen is determined by inspecting the corresponding bit of V . Thus the test
determines if the value wt differs in one or more bits from all previously seen
values, and if it does, the mask is relaxed to indicate this.

In a production run with a different input, values that are not in the (ap-
proximate) set of seen values are detected by applying the test above. However,
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not all invariant violations are treated equally. In particular, violations with
values that are seen many times are treated as being less important than vi-
olations with values that occur only a few times. The intuition behind this is
that values that are seen many times are more likely to be values that should
have been in the invariant set. At the end of the run, the different violations
are ranked, and a listing of violations, in rank order, is produced. As with other
debugging and anomaly detection tools, the assumption is that lower ranked
violations are less likely to correlate to a bug, and that a programmer debugging
a program will examine the highly ranked violations, fix any indicated errors,
and then either re-execute the program, or re-train and re-execute the program.

3.2 Extending VID to Parallel Programs

To adapt VID to parallel programs, we extend the value invariants hypothesis
to parallel programs, as follows. First, we observe that a large part of the com-
putation performed in a parallel program is identical regardless of the number
of processes used to execute the program. Intuitively, this is true because given
the same input the parallel and sequential versions of the program will return
the same answers, disregarding numerical stability and round-off effects. Based
on this observation, we allow training runs to use a smaller input on a small
number of processes, and detection runs using larger inputs on a large number
of processes. While significantly lowering the cost of training runs, it creates
another problem: How do we form the approximations of the sets of invariant
values that will be used by each of the P ′ processes on the detection run from
the approximations formed by the P processes on the training runs? Consider
the expression for the mask in I = 〈Mt, V 〉 defined above. When the expression
is monitored at time t, the mask value will be

Mt =
t∧

i=1

(wi ⊗ V ) ∧M0 =
t∧

i=1

(wi ⊗ V ),

since M0 ≡ 1. It follows from the DeMorgan’s laws and the definition of ⊗:

Mt =

t∧
i=1

(wi ⊗ V ) =

t∧
i=1

(wi ∧ V ) ∨ (wi ∧ V )

=
t∧

i=1

((wi ∨ V ) ∧ (wi ∨ V )) =
t∧

i=1

(wi ∨ V ) ∧
t∧

i=1

(wi ∨ V )

= (V ∨
t∧

i=1

wi) ∧ (V ∨
t∧

i=1

wi)

Now, consider the invariant sets Ik = 〈Mk,t, Vk〉 and Ij = 〈Mj,t, Vj〉 of the same
variable reference (i.e., the same program point) built in two different processes
(pk and pj). We can merge both to form a single invariant set I ′ = 〈M ′

t , Vi〉, with

M ′
t =

[
Vk ∨ (

t∧
i=1

wk,i ∧ Vj ∧
t∧

i=1

wj,i)

]
∧
[
Vk ∨ (

t∧
i=1

wk,i ∧ Vj ∧
t∧

i=1

wj,i)

]
,
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and Vi equal to either Vk or Vj . We note that our I ′ is exactly the I ′ that would be
formed if all dynamic references to the monitored variable at this program point,
in all processes of the parallel program, had been used to form a single I, and
the variable’s value is not a function of the number of processes. Our formulation
allows the approximate invariant set for each variable reference to independently
collected during the parallel run, and then merged in time proportional to the
static number of monitoring points in the program, as required by our parallel
value invariance hypothesis.

3.3 Using C-DIDUCE with the Ant Framework

As described in Fig. 1, C-DIDUCE can be easily used with the Ant framework.
For the static analysis, the debugging library information, such as the function
names (and relevant parameters) for the invariant training/monitoring, needs to
be provided. This information is used by the Ant framework when instrumenting
the function calls. The initialization function information for C-DIDUCE is also
required, therefore a runtime initialization call is inserted right after the MPI
runtime initialization. This initialization sets the training/monitoring mode and
allocates memory for the invariant data structures. On exiting the program, the
invariant information is written to output files and the post-run tools merge
the output files. In training mode, the output files contain the value invariant
training data and are merged into one training file as described in the previous
section. In monitoring mode, the output files contain the invariant violation
information and this information is also merged into one violation list. The
different debugging tools may require different rules for merging the output so
tools implementing the merging rules are also required.

3.4 Scalability

Although C-DIDUCE with the Ant framework uses post-run analysis, it is scal-
able to a large number of processes and large data sets. In training mode, the
number of records in each output file is at most the static number of invariant
monitoring points. Merging these files requires a fixed number of set operations
on each file as described in Section 3.2. Therefore, the execution time for merg-
ing training data is linear in the number of processes. In monitoring mode, the
number of records in each output file is also at most the number of invariant
monitoring points. Since C-DIDUCE only writes to output files when there are
invariant violations in monitoring mode, the number of records in each file is
typically less than the number of monitoring points. Merging these files requires
a fixed number of comparisons based on the confidence drop, as described in
the DIDUCE paper [2]. Therefore, the execution time for merging the invariant
violation data is also linear in the number of processes. The larger data set does
not affect the scalability of our post-run analysis within the Ant framework be-
cause the analysis depends on the number of invariant monitoring points, not the
size of data set. Here, the larger data set size causes more updating or checking
of the invariant at each program point at runtime but does not increase the



228 J.-W. Lee et al.

amount of data being merged from the output files at post-runtime, nor, in the
worst case, is the monitoring overhead higher than it would have been without
our technique, and as shown in our experimental results, the overhead is, in
practice, much less.

4 Experimental Results

In this section, we provide quantitative evidence of the effectiveness of Ant frame-
work in reducing overheads and detecting buggy behavior with C-DIDUCE.

Table 1. Benchmark characteristics: “LOC” is lines of code; “Exe. size” is the ex-
ecutable size; “Inst.” is the number of instrumentation points; “NARs” is the num-
ber of NAR code regions; “N.Procs.” is the number of procedures with NARs/total
procedures.

Description LOC Exe. size Inst. NARs N.Procs.

IS Bucket Sorting 1.2K 680 KB 348 12 1/11

SMG2000 Semi. Multigrid Solver 22.7K 1.1 MB 7278 10 10/349

TACHYON Parallel Ray Tracing 12.9K 890 KB 1732 22 17/413

MILC Quantum Chromodynamics 15.8K 871 KB 3560 115 48/310

4.1 Implementation and Experimental Setup

Static analysis and instrumentation, described in Section 2, are implemented in
the Cetus compiler [9]. All variable writes in the program and all variable reads
of control expressions in the program are monitored. The benchmarks used in
the DIDUCE and C-DIDUCE studies [3, 2] are sequential, and so we use the
four benchmarks described in Table 1: NPB-IS [10], ASCI-SMG2000 [11], SPEC
MPI2007-TACHYON and SPEC MPI2007-MILC [12].

The same kinds of bugs were injected as with the original DIDUCE and C-
DIDUCE studies, and the bug types are the same as those found in the Siemens
bug benchmarks [13]. Eight to eleven bugs were injected into each benchmark,
with each bug injected into a different copy of the benchmark. The bugs are
triggered by all processes that execute a path containing the bug.

Table 2 shows the types and the number of injected bugs in each benchmark.
Bugs types are: Value Mutation which changes an assignment like a = x to
a = x + c; Loop Mutation which changes loop bounds from i < mp to i < mp+1;
Control Mutation mutates the operator of conditional expression in which
changes an if statement condition from (a > b) to (a <= b). Bugs were in-
jected into both NARs and ARs, and most bugs were placed into ARs.

We used machines with two quad core Intel Xeon 2.33GHz processors, 16
GB of memory, Linux 2.6.18 and the mpich2-1.0.8. The training run was done
with 2 processes for all the benchmarks and the detection run was done with 16
processes for MILC and 32 processes for the other three benchmarks.
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Table 2. The types and the number of injected bugs. “NAR LOC” is the number
of lines of code in NARs; “NAR %” is the percentage of code in NARs; “T.Bugs” is
the number of total bugs and the number by each type (V: value mutation/ L: loop
mutation/ C: control mutation); “NAR Bugs” is the number of injected bugs in NARs;
and “NAR Bug %” is the percent of bugs in NARs.

NAR LOC NAR % T.Bugs(V/L/C) NAR Bugs NAR Bugs %

IS 126 10.5 % 8 ( 7 / 1 / 0 ) 1 12.5 %

SMG2000 373 1.6 % 10 ( 8 / 0 / 2 ) 1 10.0 %

TACHYON 576 4.0 % 11 ( 11 / 0 / 0 ) 1 9.1 %

MILC 2887 18.0 % 9 ( 4 / 0 / 5 ) 1 11.1 %

4.2 Performance of Optimized Parallel Value Invariant Detection

Fig. 4 compares C-DIDUCE monitoring overhead among replicated (“Repli-
cated”), Ant’s AR/NAR based monitoring (“Ant”) and naive distributed (“Dis-
tributed”) schemes for our benchmarks. The figure shows that there is significant
overhead reduction going from Replicated to Ant and Distributed, with a reduc-
tion of 15X for NPB IS, 4X for ASCI SMG2000, 11X for SPECMPI TACHYON
and 5X for SPECMPI MILC. The reason why the maximum overhead reduction
for Distributed is less than the number of the processes is that Distributed mon-
itoring itself incurs the overhead of checking the process rank at each monitoring
point, as described in Section 2.2. The Ant and Distributed overheads are very
similar (differing by 1.4% to 13%) and low, because the programs are usually
executing ARs, as seen in Fig. 2. As discussed in the next section, accuracy
is better with Ant than Distributed. Since Ant’s monitoring is distributed in
ARs, and analysis and instrumentation occur offline, our technique is inherently
scalable with increasing process counts.

Fig. 4. The comparison of C-DIDUCE overhead against the execution time with no
instrumentation
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4.3 Accuracy of Optimized Parallel Value Invariant Detection

We now present experimental data showing the effectiveness of the three different
monitoring schemes in detecting the injected bugs.

Note that even with fully replicated monitoring, some bugs go undetected
because (1) they may not be executed by C-DIDUCE, or (2) they may not
appear as bugs because the statement is executed a small number of times and all
values appear equally valid, or the approximation (V and Mt) used by DIDUCE
misses outlier values. This happens with DIDUCE and C-DIDUCE in sequential
programs.

Training runs were done with the original, correct benchmarks using small
data sets. After training, each copy of a benchmark containing an injected bug
was run with the large data set under all three monitoring versions.

(a) Any place (b) Top 40

(c) Top 20 (d) Top 10

Fig. 5. Accuracy of bug detection by the ranking in the violation list. Any place means
any rank in the violation list was considered as successful detection. Top 40 means the
ranking is within top 40 of violation list. Top 20 is within first 20 of violation list. Top
10 is within first 10.

Fig. 5 presents bug detection rates for each version of C-DIDUCE. A detection
rate of 100% means that all injected bugs are detected by C-DIDUCE. Because
DIDUCE and C-DIDUCE rank anomalies as to the likelihood of them being a
bug, we report the rates for bugs that occur in the top 10, 20, or 40 anomalies, or
that are detected anywhere. Note that Ant is nearly as accurate as Replicated,
despite having a much lower overhead, showing the effectiveness of the Ant
monitoring technique. Ant is also more accurate than Distributed because of Ant
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monitoring all accesses in all processes within NARs, with the bugs found by
Ant and not Distributed all being in NARs. Thus Ant uses a distributed scheme
when it is safe to and otherwise uses a replicated scheme. With TACHYON in
Fig. 5(c), Ant does better than Replicated because a program crash causes Ant
to lose violation data which coincidentally causes an injected bug to be ranked
higher.

4.4 Discussion

Our experimental results show that the distributed versions of C-DIDUCE in-
creased the performance of the invariant detection by up to 15X while (unlike
Distributed) maintaining almost the full accuracy of the expensive Replicated
monitoring. We could further reduce the overhead of Ant’s monitoring by us-
ing clustering of similarly behaving processes [14, 15] to determine the clusters
within NARs, and distributing the monitoring across the processes within each
cluster, in the same way Ant does with ARs. This will be particularly important
for programs that spend more time in NARs, and this is the focus of ongoing
research.

5 Related Work

Debugging Sequential Programs. There has been previous work focusing on the
development of tools to aid the debugging of sequential programs, and we have
mentioned some of them earlier. DIDUCE [2] introduces a debugging technique
of value invariant violation detection. AccMon [4] discusses PC-invariant based
debugging. Artemis [3] provides a debugging framework using context invariant
to reduce the overhead of debugging tools. Other tools [6–8] describe debugging
techniques using statistical variations in program behaviors between correct and
incorrect runs. These tools are complementary to our work in that Ant framework
is applicable to these tools.Unlike ourwork, these tools target sequential programs.

Debugging Parallel Programs. There are several previous works on debugging
parallel programs. TotalView [16], Mantis [17], and Prism [18] support typical
debugging methods such as setting breakpoints for step-by-step execution, spec-
ifying the processes or threads of interest, etc. Other similar work includes that
of Stringhini et al. [19], Cheng et al. [20] and Wismuller et al. [21]. Ant differs
from these tools in that Ant exploits the parallelism of the application to reduce
the overhead of sequential debugging tools when used with parallel programs.

Process Clustering. Another research area looks for outliers in the behavior of
processes in a cluster. These often use statistical techniques to find clusters of
similarly behaving processes based on metrics such as communication patterns,
volumes, stack traces, and so forth, and then look for outliers in terms of control
flow behavior, or the previously mentioned metrics among the processes in a
cluster. Work related to this includes that of Mirgorodskiy et al. [14], DMTracker
[15], Arnold et al. [22, 23] and Hermes [24]. Ant framework is orthogonal to these
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approaches. It does not use statistical information to form clusters or find outliers
within a cluster. Ant uses statically determined partitioning of regions to drive
instrumentation for sequential bug-finding tools to improve the performance of
the tools.

Static Analysis. Kamil, et al. [25] suggest a static analysis based on a concur-
rency graph to determine whether two statements can run concurrently. How-
ever, our conservative linear algorithms, as shown in Algorithm 2.1, is faster than
their quadratic algorithm, and are effective enough for our debugging purpose
as shown in experimental results.

6 Conclusions

We have presented the Ant debugging framework for MPI parallel programs,
included its static AR/NAR detection analysis and instrumentation strategy. We
presented a case study that extends to parallel programs with the C-DIDUCE
debugging tool developed for sequential programs. More specifically, we have
presented the design and implementation of parallel value invariant analysis and
experimentally shown the validity of the parallel value invariant hypothesis and
the effectiveness of C-DIDUCE on parallel programs. In the future, we plan to
expand the Ant framework to target shared-memory parallel programs.
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Aligned Barriers. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan,
P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 185–199. Springer, Heidelberg (2006)

http://cetus.ecn.purdue.edu
http://www.nas.nasa.gov/publications/npb.html
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/
http://www.spec.org/mpi2007/
http://www.roguewave.com/products/totalview.aspx


Compiler Automatic Discovery
of OmpSs Task Dependencies

Sara Royuela1, Alejandro Duran1,2, and Xavier Martorell1

1 Barcelona Supercomputing Center
{sara.royuela,xavier.martorell}@bsc.es

2 Intel Corporation
alejandro.duran@intel.com

Abstract. Dependence analysis is an essential step for many compiler optimiza-
tions, from simple loop transformations to automatic parallelization. Parallel pro-
gramming models require specific dependence analyses that take into account
multi-threaded execution. Furthermore, asynchronous parallelism introduced by
OpenMP tasks has promoted the development of new dependency analysis tech-
niques. In these terms, OmpSs parallel programming model extends OpenMP
tasks with the definition of intertask dependencies. This extension allows run-
time dependency detection, which potentially improves the performance when
load balancing or locality rule the execution time. On the other side, the exten-
sion requires the user to figure out data-sharing attributes and the type of access
to each data in all tasks in order to correctly specify the dependencies. We aim to
enhance the programmability of OmpSs with a new methodology that enables the
compiler to automatically determine the dependencies of OmpSs tasks, thus re-
leasing users from the task of manually defining these dependencies. In this con-
text, we have developed an algorithm based on the discovery of code concurrent
to a task and liveness analysis. The algorithm first finds out all code concurrent
with a given task. Then, it computes the data-sharing attributes of the variables
appearing in the task. Finally, it analyzes the liveness properties of the task’s
shared variables. With this information, the algorithm figures out the proper de-
pendencies of the task. We have implemented this algorithm in the Mercurium
source-to-source compiler. We have tested the results with several benchmarks
proving that the algorithm is able to correctly find a large number of dependency
expressions.

1 Introduction

The use of parallel programming models is a vital element in the achievement of higher
performance and better programmability, in short, greater productivity. OpenMP* has
become the most used parallel programming model for shared memory systems by
virtue its simplicity and scalability. Although the model already provides a stable and
useful standard for the parallelization of structured loops and dense numerical applica-
tions, new research directions have appeared. One of them is the concept of task, which
has grown as a result of the need of parallelizing applications with different character-
istics (e.g., amount of load imbalance in loops, while-loop based, recursiveness, etc.).

H. Kasahara and K. Kimura (Eds.): LCPC 2012, LNCS 7760, pp. 234–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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OpenMP defines the task directive that represents an independent unit of work.
Different units are synchronized with specific directives (barrier and taskwait),
which ensure sequential consistency of the parallel program. However, these synchro-
nizations restrict the run-time freedom to schedule tasks because they define the bound-
aries of the region where a task can be executed at compile-time. OmpSs is a parallel
programming model that introduces the idea of asynchronous parallelism defining de-
pendencies among tasks. Data-dependence clauses in an OmpSs task can be in, out
or inout. This OpenMP extension increases the freedom of the run-time at the mo-
ment of scheduling a task: tasks are executed when there are available resources and all
tasks they depend on have been executed. Nonetheless, the extension implies a sensitive
loss of programmability as it requires the programmer to define the data-dependence at-
tributes of the tasks. The process of analyzing the data flow of the different tasks can be
difficult because of the uncertainty about the exact moment when the task will be exe-
cuted and the potentially large number of variables that can be involved in this analysis.

Our main contributions in this paper are:
– An algorithm for the automatic discovery of data-dependence attributes of variables

in OmpSs tasks. This algorithm improves the programmability regarding the defi-
nition of asynchronous parallelism, and thus, the productivity of the programming
model. In order to define concurrent regions in the code and establish possible race
conditions, the algorithm uses our previous work on the automatic discovery of
data-sharing attributes of OpenMP tasks. After that, it computes the dependencies
among tasks and reports to the user those variables that cannot be analyzed due to
the lack of information at compile time.

– An implementation of the proposed algorithm in the Mercurium source-to-source
compiler and proof of the algorithm benefits for a set of OmpSs task benchmarks.
We compute the percentage of task expressions whose dependencies can be auto-
matically determined.

2 Motivation and Related Work

Different parallel programming models have appeared as a response to the demand
of increasingly productive systems. OpenMP [18] has become a de facto standard for
shared-memory parallel programming because of its flexibility, programmability and
portability. The latest specifications of OpenMP (from 3.0) have been conceived to han-
dle dynamic generation of unstructured parallelism by defining of explicit tasks. The
model allows the parallelization of program structures like while-loops and recursive
functions, and reduces in most cases the load imbalance and the communication over-
head. Each OpenMP task has a data-environment defined by data-sharing attributes. The
allowed data-sharing clauses are private, firstprivate and shared. Nonethe-
less, the uncertainty introduced by OpenMP tasks regarding the precise moment when
they are going to be executed requires the insertion of synchronization points to ensure
the finalization of all tasks and establish some order in their execution.

However, this compile-time form of task synchronization can avoid the paralleliza-
tion of tasks with no data conflicts. This is because frontiers between tasks are fixed in
the input program. Hence, tasks which are in different synchronized regions (sections
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of code delimited by consecutive synchronization points) likely run concurrently and
tasks in the same region run sequentially. OmpSs [10] is a parallel programming model
based on OpenMP and StarSs [19] that extends OpenMP with the definition of asyn-
chronous parallelism. The model implements data-dependence attributes for tasks.
These attributes specify, for each task, the expressions containing shared variables
that are dependent. The different data-dependence attributes allowed are:

input A task with an l-value as input dependence is eligible to run when all previ-
ous tasks with the same l-value as output dependence have finished its execution.

output A task with an l-value as output dependence is eligible to run when all pre-
vious tasks with the same l-value as input or output dependence have finished
its execution.

inout A task with an l-value as inout dependence is considered as if it had an
input and an output clauses evaluating for the same l-value.

A Task Dependence Graph (TDG) is generated at run-time using the expressions that
appear in the dependence clauses. This graph represents an order in the tasks that can-
not be broken to ensure sequential consistency of the parallel code. In Fig. 1 we de-
pict the TDG corresponding to the code in Listing 1.1. Each instance of the task foo
depends on the instance generated on the previous iteration because of the dependen-
cies input(A[i-1]) and inout(A[i]). The same happens to the instances of bar
task, because of the dependenciesinput(B[i-1]) and inout(B[i]). In addition,
each instance of the task bar depends on the instance of the task foo created in the same
iteration due to the dependencies inout(B[i]) and output(B[i]), respectively.

Listing 1.1. OmpSs code sample showing dependen-
cies among tasks

1 vo id compute ( i n t ∗ A , i n t ∗ B, i n t N ) {
2 f o r ( i n t i = 1 ; i < N; ++ i ) {
3 #pragma omp task input (A[ i −1]) \
4 inout (A[ i ] ) output (B[ i ] )
5 foo ( &A[ i −1] , &A[ i ] , &B[ i ] ) ;
6

7 #pragma omp task input (B[ i −1]) inout (B[ i ] )
8 b a r ( &B[ i −1] , &B[ i ] ) ;
9 }

10 } Fig. 1. Task Dependence Graph resul-
tant from code in Listing 1.1

There are several data structures used to approach the dependence analysis. Two of
the most common are mathematical equations and dependence graphs. Mathematical
techniques are used by powerful methods such as the Polyhedral model based libraries
[9]. Nonetheless, these methods are aimed for regular access patterns and it should be
extended to represent the indeterminism of tasks. Therefore, we focus on graph based
designs. The Program Dependence Graph (PDG), defined by Ferrante et al., [12] is
an intermediate representation where both data and control dependencies are explic-
its. PDG differs from the Control Flow Graph (CFG) in that CFG enforces a fixed
sequencing of operations whereas the PDG only determines necessary sequencing be-
tween operations, exposing potential parallelism. This representation has been proved
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to be useful in many different fields such as program vectorization [8], fault diagnosis
[4], register allocation [17] and auto-parallelization [23].

It is important to differentiate methods generating the dependence graph statically
at compile-time (e.g., auto-parallelizing compilers) and methods generating this graph
dynamically at run-time (e.g., OmpSs TDG) because compile-time methods require the
resolution of alias analysis at that moment. This is a hard and not always possible job. In
the code shown in Listing 1.2 no auto-parallelization is possible because alias analysis
for pointers a and b is not feasible at compile-time. Instead, a compiler implementing
OmpSs auto-dependencies algorithm should be able to define two tasks as shown in
Listing 1.3, where aliasing is solved at run-time.

Listing 1.2. Input code with room to im-
provement

1 vo id f ( i n t n , i n t ∗ a , i n t ∗ b ) {
2 f o r ( i n t i =0 ; i<n ; ++ i )
3 a [ i ] = i
4 f o r ( i n t i =0 ; i<n ; ++ i )
5 b [ i ] = i
6 }

Listing 1.3. Code improved with OmpSs

1 vo id f ( i n t n , i n t ∗ a , i n t ∗ b ) {
2 #pragma omp task output ( a [ 0 : n ] )
3 f o r ( i n t i =0 ; i<n ; ++ i )
4 a [ i ] = i
5 #pragma omp task output ( b [ 0 : n ] )
6 f o r ( i n t i =0 ; i<n ; ++ i )
7 b [ i ] = i
8 }

Even though we have proved graph based methods to be convenient to determine de-
pendencies, the TDG mechanism used in OmpSs requires the user to manually define
data-dependencies among tasks. This can be a difficult and therefore, an error-prone pro-
cess because users must be capable of finding the variables that are shared and analyzing
the kind of access to these variables in order to figure out the correct dependencies.

Many approaches have appeared in the last years to include dependence analysis
in programming models that exploit task-level parallelism. Most of them are based on
OpenMP, but there also exist some other parallel programming models, such as Jade
[20] and Intel R© Threading Building Blocks (Intel R© TBB) [13]. However, these alter-
natives have certain disadvantages: Jade adds too much overhead since it tries to extract
concurrency at run-time and TBB requires a thorough redesign of the program that
differs greatly from the original version in style and size. Moreover, Kegel et al. [14]
demonstrated that TBB does not produce performance benefits compared with other
high-level parallel programming languages such as OpenMP.

Focusing on OpenMP extensions, different proposals have been presented in order to
solve the dependence problem for task synchronization using dependence graphs cre-
ated at compile-time. Larsen et al. [15] presented an extension of OpenMP that makes
it possible to declare inter-task communication patterns. They introduce a new clause
depends that, placed in specific points of the code where synchronizations are per-
formed, can be used to declare dependencies with other tasks. The evaluation of the
clause is done both at compile-time, for simple cases, and at run-time, in the remain-
ing cases. They demonstrate that there is no performance degradation because of the
increase of inter-task communication knowledge. Nonetheless, their work does not take
array slicing into account and rather assume entire arrays to be shared. Furthermore,
their syntax needs to explicitly determine the edges of the dependency graph (which
tasks a task depends on) in addition to the variables involved in the dependence and
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the direction of the dependence. Thus, imposing an arduous and unreliable duty for
programmers and compilers. Baudish et al. [7] presented a translation procedure from
purely synchronous guarded actions generated by multi-threaded OpenMP-based C-
code. They create an Action Dependence Graph (ADG) derived by a syntactic analysis
of the read and write sets of all actions. Afterwards, they merge the actions in the ADG
into different tasks depending on the dependencies found in the graph. Furthermore,
they demonstrate how dependence analysis allows the reduction of the overhead intro-
duced by synchronizations. However this is a very specific solution for codes coming
from a synchronous language compiler and can only be used for such inputs.

A different OpenMP approach is the one presented by Altenfeld et al. [2]. They par-
allelize the MICRESS application using OpenMP tasks. The hot spot of the application
is a solver for non-symmetric linear systems used during the calculation of stress on a
micro-structure material grid. They build a TDG at run-time where a node represents a
pair of grains that are connected in the grid and edges connect those nodes that cannot
be executed in parallel. Then, they use different heuristics to obtain different colorings
of the graph, each one representing a different parallel solution. They use k phases of
task creation by the master thread over the k-coloring of each graph. In each phase,
OpenMP tasks are created for one single color. They compare this scheduling method
with a first-come-first-serve solution. The results show a lost of speed-up in the TDG
version due to the time consumption of the coloring algorithm. Furthermore, their im-
plementation is specific and limited to the MICRESS application.

The previous works demonstrate that the definition of dependencies among tasks can
avoid unnecessary synchronizations. Nonetheless, all of them present some problems
caused by the inherent constraints of their the methodology. On the one hand, com-
piler dependence techniques can be too conservative due to the lack of information at
compile-time (exact control and data flow knowledge) that causes the compiler to take
safe decisions during the analyses (aliasing, non-linear subscripts). On the other hand,
some run-time techniques may need too many resources. Andersch et al. [3] evinced
OmpSs to be a viable alternative to other established parallel programming models
such as Pthreads by exploring the expressiveness of OmpSs and comparing its perfor-
mance with Pthreads. Expressions in the dependence clauses can be easily evaluated at
run-time, thus creating the TDG while executing without a significant loss of time [11].
However, users are required to analyze all data accesses in order to define the proper
dependencies for each task. This is a tedious and potentially error-prone process. As
an example, in Listing 1.4 we show a blocked algorithm that calculates the Cholesky
decomposition using OmpSs. Fig. 2 shows the distribution of tasks that computes each
position of the low triangle matrix for different block sizes (BS) (the left matrix shows
the result for a BS of 2 and the right matrix shows the result for a BS of 3). Tasks T3 and
T4 compute the elements in the diagonal of the matrix. Elements computed by tasks T1
and T5 depend on the value of the block size: these tasks compute the lower triangle
matrix of size BS starting by the top left corner of the matrix, avoiding the elements in
the diagonal. Tasks T2 and T6 compute all the rest lower triangle matrix.

We present a modification of our previous work for automatically determine the data-
sharing attributes for OpenMP tasks [22]. We apply this modification instead to the
automatic discovery of OmpSs task dependencies. This work differs from others in that
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the task dependency graph is computed at run-time together with the information of
the dependence clauses. A task dependency does not relate a task with another task
at compile-time. It is the run-time, when no aliasing problems exist, who evaluates the
clauses and defines which tasks are dependents on each others. In order to automatically
define the dependence clauses, first we need to know which tasks run concurrently, then
determine possible race conditions, and finally perform liveness analysis.

Fig. 2. Cholesky matrix computation distributed by tasks

Listing 1.4. Left handed Cholesky in place implemented with OmpSs

1 / ∗ M e t h o d t h a t c o m p u t e s t h e C h o l e s k y d e c o m p o s i t i o n .

2 ∗ @a i n / o u t m a t r i x w h i c h t h e d e c o m p o s i t i o n i s c o m p u t e d w i t h .

3 ∗ BS i s t h e b l o c k s i z e

4 ∗ N i s t h e n u m b e r o f r o w s / c o l u m s o f a . ∗ /

5 vo id c h o l e s k y ( f l o a t a [N] [N] ) {
6

7 / ∗ L o o p s t r a v e r s i n g t h e l o w e r t r i a n g l e m a t r i x b y r o w s ∗ /

8 f o r ( i n t j j = 0 ; j j < N; j j += BS) {
9 f o r ( i n t j = j j ; j < MIN(N, j j +BS ; j ++) {

10

11 #pragma omp task i n ( a [ j +1 : j j +BS−1][0: j −1] , a [ j ] [ 0 : j −1]) / / T 1

12 inout ( a [ j +1 : j j +BS−1][ j ] )
13 f o r ( i n t i = j +1 ; i < j j +BS ; i ++){
14 f o r ( i n t k = 0 ; k < j ; k ++)
15 a [ i ] [ j ] = a [ i ] [ j ] − a [ i ] [ k ] ∗ a [ j ] [ k ] ;
16

17 #pragma omp task i n ( a [ j j +BS :N−1][0: j −1] , a [ j ] [ 0 : j −1]) / / T 2

18 inout ( a [ j j +BS : N−1][ j ] )
19 f o r ( i n t i = j j +BS ; i < N; i ++)
20 f o r ( i n t k = 0 ; k < j ; k ++)
21 a [ i ] [ j ] = a [ i ] [ j ] − a [ i ] [ k ] ∗ a [ j ] [ k ] ;
22

23 #pragma omp task i n ( a [ j ] [ 0 : j −1]) inout ( a [ j ] [ j ] ) / / T 3

24 f o r ( i n t k = 0 ; k < j ; k ++)
25 a [ j ] [ j ] = a [ j ] [ j ] − a [ j ] [ k ] ∗ a [ j ] [ k ] ;
26

27 #pragma omp task inout ( a [ j ] [ j ] ) / / T 4

28 a [ j ] [ j ] = s q r t ( a [ j ] [ j ] ) ;
29

30 #pragma omp task i n ( a [ j ] [ j ] ) inout ( a [ j +1 : j j +BS−1][ j ] ) / / T 5

31 f o r ( i n t i = j + 1 ; i < j j +BS ; i ++)
32 a [ i ] [ j ] = a [ i ] [ j ] / a [ j ] [ j ] ;
33

34 #pragma omp task i n ( a [ j ] [ j ] ) inout ( a [ j j +BS :N−1][ j ] ) / / T 6

35 f o r ( i n t i = j j +BS ; i < N; i ++)
36 a [ i ] [ j ] = a [ i ] [ j ] / a [ j ] [ j ] ;
37

38 }
39 }
40 }
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3 Proposal

Following the same syntax introduced by Lin et al. [16], we implement a new keyword,
AUTO DEPS, for the clause default. The clause default(AUTO DEPS) attached
to an OmpSs task construct launches the automatic discovery of data-dependence at-
tributes of a given task. We present an modification of our previous work [22] for the
automatic discovery of data-sharing attributes in OpenMP tasks (auto-scoping from now
on). Data dependencies among tasks can only occur for shared variables in a race situa-
tion. Thus, we use the auto-scoping method to define the sections of code that are con-
current with a task and then determine the data-sharing attributes of variables without
explicitly determined attributes. We extend this method to handle, not only variables, but
also references to sub-objects such as array element reference (a[2]), array sections
(a[1:5]), field references (a.b) and shaping expressions ([5][10]a). Algorithm 1
shows a high-level description of the algorithm we present in this paper.

Algorithm 1. High-level description of the auto-dependence algorithm for OmpSs tasks

1.Define the regions of code that execute concurrently with a given task. As we de-
fined in the auto-scoping algorithm, these regions are bounded by the immediately
previous and next synchronization points of the task, and belong to:

(a)Other tasks scheduled in the region described above.
(b)Other instances of the task if scheduled within a loop or in a parallel region.
(c)Code from the parent task between the task scheduling point and the synchro-

nization of the task.
2.For all variables with implicitly determined data-sharing attributes, compute the

correct data-sharing attribute.
3.For all expressions containing or being shared variables, determine the data-

dependence expression depending on the liveness properties of the variables before
and after the execution of the task.

4.For all variables that do not fit in the third step, return the data-sharing attribute
computed during the second step.

The algorithm returns one of the following group for the expressions involved:

– PRIVATE: The variable is to be scoped as private.
– FIRSTPRIVATE: The variable is to be scoped as firstprivate.
– SHARED: The variable is shared but it does not cause a dependence.
– SHARED OR FIRSTPRIVATE: The variable can be scoped as either shared or
firstprivatewithout altering the correctness of the results. It is an implemen-
tation decision to scope it as shared or firstprivate.

– INPUT: The expression contains/is a shared variable and it is to be determined
as an input dependence.

– OUTPUT: The variable contains/is a shared variable and it is to be determined
as an output dependence.

– INOUT: The variable contains/is a shared variable and it is to be determined as
both input and output dependence.

– UNDEFINED: The algorithm is not able to determine the behavior of the variable.
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The algorithm works under the hypothesis that the input code is correct and comes
from an original sequential code that has been parallelized with OpenMP. Otherwise,
the results of the algorithm may be incorrect. Algorithm 2 shows the computation of all
dependence attributes of a task t.

Algorithm 2. Detailed description of the auto-dependence algorithm for OmpSs tasks

1.Apply steps 1, 2 and 3 of the auto-scoping Algorithm 1 to classify all variable v with
implicit data-sharing appearing in t into one of the following groups: PRIVATE,
FIRSTPRIVATE,SHARED, SHARED OR FIRSTPRIVATE (v cannot be a depen-
dence because either v is dead after the exit of t or it is alive but only read in t and
never used in any concurrent code), RACE (v can be a data race), UNDEFINED.

2.For all e, expression from v that has been classified as RACE (v itself or a sub-object
of v if v is aggregate or array access), apply the following rules in order:

(a)If the race condition occurs between one statement in t and some other state-
ment concurrent with t, and belongs to t’s parent task, then v must be privatized
to avoid the race condition. We privatize v as follows:

–If the first action on e within t is a read, then v must be FIRSTPRIVATE.
–If the first action on e within t is a write, then v must be PRIVATE.

(b)If the race condition occurs between a statement in t and some statement in
t′ (where t′ is some other task or other instance of the same task t, that runs
concurrently with t), then v is classified as SHARED.

3.For all e, expression formed from a SHARED variable v, apply the following rules
in order (Liveness analysis for expressions is explained below):

(a)If e is alive at the entry of the task (task scheduling point), then:
–If e is used in the code executed concurrently with t by the parent task of
t, no dependency exists, so v remains SHARED.

–Otherwise, e is classified as INPUT.
(b)If v is alive only at the exit of the task (task completion), then it is classified

as OUTPUT.
(c)If v is alive at the entry and at the exit of the task, then it is classified as
INOUT.

Strengths and Weaknesses. The algorithm is perfectly accurate when the input code
fulfill the hypotheses, meaning it never produces false positives and the reported results
are always correct. Specific rules cover the cases when the algorithm cannot determine
the data-sharing attribute of a variable. The undetermined variables are reported back to
the user. The limitations of the auto-dependencies algorithm come from the limitations
of the auto-scoping algorithm, which are:

– Tasks containing calls to functions the code of which is not accessible at compile
time. All variables that may be involved in these functions cannot be scoped, there-
fore, data-dependence attributes cannot be computed. These variables can sole be
global variables and address parameters of the unaccessible function.
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– Regarding the implementation, the compiler may be unable to determine the sec-
tions of code that are concurrent with the task. In the cases, just the variables that
are local to the function (including its parameters) where the task is scheduled can
be automatically classified. All the rest are classified as UNDEFINED and reported
to the user to be manually classified.

Liveness Analysis. Liveness analysis applied in this algorithm must consider access to
subparts of a variable as it considers OmpSs. Data-dependence clauses can be applied
to expressions such as array element references, array sections and field references.
Consequently, we calculate the liveness of each array and aggregate subpart, and we
post-process this information if necessary (The auto-scoping algorithm calculates live-
ness of variables but not subparts, because OpenMP only allows data-sharing attributes
for variables. The auto-dependencies algorithm implements a second step that merges
the liveness information of all the subparts of an object, obtaining a unique property
per variable). We consider a whole object to be alive if any of its parts is alive, and we
consider a whole object to be dead if all its parts are dead.

Example. Applying the auto-dependence algorithm to the code introduced in Listing
1.4, the compiler can determine all the data-dependence expressions, which are defined
manually in the example, because they are local to the function that is defining the
tasks. Consequently, step 1 will scope variable a as RACE for all tasks because all tasks
are defined within a loop construct, and different concurrent tasks can access the same
position of a at the same time. Step 2 will determine a as SHARED for all tasks because
there is no race condition occurring between a task and its parent task. Finally, step 3
will analyze the expressions containing shared variables and its liveness. During this
step, liveness information provides the sections of a that are accessed in each task and
the dependence clauses for each section are produced.

4 Implementation

Mercurium [5] is a source-to-source research compiler with support for C/C++ and
Fortran designed for fast prototyping. The main goal of Mercurium is to implement
OpenMP and extensions to it. Nevertheless, it has been used to implement other pro-
gramming models such as Cell Superscalar due to its extensibility. As we show in Fig.
3, Mercurium uses a plug-in architecture, where each plug-in is a compiler phase. These
phases form a pipeline that transforms an input source into an output source, which is
afterwards passed to a back-end compiler (e.g., gcc, nvcc). The front-end creates a com-
mon Internal Representation (IR) for C/C++ and Fortran. This IR is used by all phases,
however, some phases can transform it causing next phases to work with a new version
of the IR. We defined a new phase in the compiler that allows applying different anal-
ysis and high level optimizations. We implemented the auto-dependences algorithm 2
in this new phase, along with other analysis necessary for the automatic discovery of
data-dependence clauses: control flow analysis, use-definition chains, liveness analy-
sis, induction variable analysis, loops analysis, reaching definitions, array analysis and
auto-scoping. All of them are both intra- and inter- thread, and intra- and inter- proce-
dural for methods contained in the same file.
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Fig. 3. Mercurium compiler phases pipeline

In Fig. 4 we show the flow chart for the analysis performed during the process of the
automatic discovery of data-dependence clauses in OmpSs tasks. Each step is described
in detail below.

Fig. 4. Flow chart of Mercurium analyses used during the task data-dependence automatic
discovery

1. We first build a Parallel Control Flow Graph (PCFG) [21] with specific support for
OpenMP. In this graph, parallelism (parallel and task OpenMP constructs) is
represented with special nodes expressing that more than one thread can execute
concurrently the code contained in the node. Moreover, all implicit memory flushes
and barriers are made explicit. Finally, task synchronizations are specified by spe-
cial edges denoting the boundaries of a task execution. In Figs. 5 and 6 we show a
task scheme example and the high-level representation of these tasks in the PCFG.
We exemplify how taskwait constructs synchronize just the previous tasks that
are scheduled by the encountered of the taskwait (the taskwait synchronizes
task A, but not task B), whereas barrier constructs synchronize any previ-
ously scheduled task that has not yet been synchronized (barrier synchronizes,
not only task C and task D, but also task B). Note how tasks are connected
by dotted edges meaning synchronization points.

2. Considering the PCFG as the basis of the remaining analysis, we first calculate use-
definition chains. This calculation determines, for each node in the PCFG, which
objects or sub-objects are used before being defined and which objects are defined.

3. Afterwards, we calculate the liveness properties of the graph. This provides the sets
of variables that are live at the entry and at the exit of each node in the graph. Once
again, this is computed from inner nodes to outer nodes.

4. Then we apply an algorithm for the computation of induction variables. We have
extended our previous implementation of this analysis in order to deal not only with
for loops, but also with while and do-while loops. This analysis tags each PCFG
loop node with information about the induction variables (IV), < symbol, stride,
type(basic or derived) >, used in the iteration.

5. Taking into account the previous information about the IVs, we then perform loops
analysis. This analysis allows us to determine the limits of the IVs creating, for each
induction variable, a triplet of < lowerbound, upperbound, stride >. Information
attached to the graph in the previous step is now extended with the new knowledge.



244 S. Royuela, A. Duran, and X. Martorell

6. The next action is reaching definitions calculation. Basically, we want to know the
value of induction variables and other potential array subscripts at any point of the
PCFG. This analysis adds new information to each node in the graph in the form of
tuples like < symbol, value >.

7. At this point, we are able to apply array analysis to determine which sections of an
array are accessed at a given point. We use the same triplet notation used for IVs to
define the array sections.

8. At this point, we apply the algorithm defined in Section 3 to define the data-
dependence clauses of the tasks in the PCFG. This step will change the IR adding
the new data-dependence clauses where necessary and will return an additional list
with all the variables that have been classified as UNDEFINED, so the user can
specify them manually.

As it was explained in the auto-scoping implementation, we have decided to
further specify that variables scoped as SHARED OR FIRSTPRIVATE as follows:

– Scalar variables are defined as FIRSTPRIVATE because the cost of the priva-
tization should be comparable to the cost of one access to a shared variable.

– Array and aggregate variables are defined as SHARED because it may be advan-
tageous to privatize an array or an aggregate only in those cases where many
positions of the array or many fields of the aggregate are accessed many times.

Fig. 5. Code scheme with tasks Fig. 6. Abstraction of the PCFG used during the
auto-scoping showing the connections of the tasks
in Fig. 5
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Our implementation is limited regarding pointers because we do not perform alias anal-
ysis. In some cases when we cannot determine accesses to an aliased pointer, we are
not able to define the dependence expression. These situations are reported to the user.

5 Evaluation

In order to test the proposed algorithm in terms of productivity, we have used the
Barcelona OpenMP Task Suite [1] (BOTS) and some other benchmarks developed in
the Barcelona Supercomputing Center [6]. In Table 1, we introduce the benchmarks
used in our evaluation with a brief description of each algorithm. Table 2 describes the
principal characteristics of each benchmark: the language of the source code, the num-
ber of lines and the number of tasks, whether or not they contain nested tasks and the
method used in the functions where the tasks are defined (iterative, recursive or both).

Table 1. Short description of the benchmarks used in the evaluation

Benchmark Description
Alignment Dynamic programming algorithm that aligns sequences of proteins.
FFT Spectral method that computes the Fast Fourier Transformation.
Fib Recursive version of the Fibonacci numbers computation.
Health Simulation method for a country health system.
Floorplan Optimization algorithm for the optimal placement of cells in a floor plan.
NQueens Search algorithm that finds solutions for the N Queens problem.
SparseLU Linear algebra algorithm that computes the LU factorization of a sparse matrix.
Stencil Stencil algorithm over a matrix structure.
Cholesky Linear algebra algorithm that computes the Cholesky decomposition of a matrix.

Table 2. Summary of the benchmarks used in the evaluation

iter Stands for iterative methods
rec Stands for recursive methods

Benchmark Source language Lines count #tasks Nested tasks Tasks inside omp... Method
Alignment C 694 1 no for iter

FFT C 4859 41 yes single rec

Fib C 45 2 yes single rec

Health C 551 2 yes single iter & rec

Floorplan C 344 1 yes single iter & rec

NQueens C 405 1 yes single iter & rec

SparseLU C 309 4 no single/for iter & rec

Stencil C 218 1 no - iter

Cholesky C 70 6 no - iter

We have run all these examples replacing in each task all data-dependence clauses
by the new clause default(AUTO DEPS). In order to evaluate the programmability,
we have calculated the number of expressions the compiler has been able to determine
the data-dependence clause of. We do not take into account in our evaluation the vari-
ables that have been scoped as UNDEF SC due to the limitations of the auto-scoping
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algorithm, but only the variables that do not appear as dependencies (so they are classi-
fied as UNDEF DEP during the auto-dependences algorithm) but they are. We show the
results in Table 3. For those benchmarks that no dependency clauses are needed, we do
not compute the ratio of success.

Overall, we see that our implementation is able to determine the 88% of dependence
expressions. Cases as FFT contain aliased pointers that avoid our implementation de-
termining several dependence expressions. The compiler is able to report the user that
it may be an INPUT, OUTPUT or INOUT dependence in some objects, but it is not able
to determine the specific expression. Some other expressions classified as UNDEF DEP
come from the fact that our loop analysis is not able to determine the section of an array
accessed within a loop. On the contrary, cases such as the Cholesky benchmark are easy
for the compiler because all loop boundaries are known, hence, the compiler is able to
determine the sections accessed of any array. For some examples, it is interesting to
compare the results of the auto-scoping with the results of the auto-dependences. For
instance, this is the case of the Floorplan, Fib or Nqueens benchmarks, where variables
that were privatized during the auto-scoping, are now defined as dependencies. In the
case of the SparseLU, we are able to compute the dependencies, but the lack of ex-
pressions analysis causes some results to appear in both the INPUT and the OUTPUT
groups, instead of appearing in an INOUT group.

Table 3. Mercurium automatic task dependence results for different benchmarks

IN Stands for input expressions
OUT Stands for output expressions
PRIV Stands for private variables
FIRSTPRIV Stands for firstprivate variables
UNDEF SC Stands for variables for which auto-scoping cannot be computed
UNDEF DEP Stands for variables for which auto-dependence cannot be computed

Automatic classification Reported to the user
PRIV FIRSTPRIV SHARED IN OUT INOUT UNDEF SC UNDEF DEP (%)success

Alignment 5 5 0 0 0 0 11 0 -
FFT 0 241 0 11 2 2 1 77 16.30%
Fib 0 4 0 0 2 0 0 0 100.00%

Health 0 3 0 0 0 0 1 0 -
Floorplan 2 5 0 1 0 2 5 0 100.00%
NQueens 0 5 0 1 0 0 0 0 100.00%
SparseLU 3 7 0 3 2 0 6 0 100.00%

Stencil 0 6 0 7 0 2 1 0 100.00%
Cholesky 0 16 0 26 3 20 0 0 100.00%

6 Conclusions and Future Work

In this paper we present a new algorithm that allows the automatic discovery of data-
dependence clauses for OmpSs tasks. Our main goal is to relieve the programmer
from the error-prone work of calculating manually both the data-sharing attributes (to
define the shared variables) and the data-dependence attributes (taking into account
only shared variables). We implement a new algorithm modifying our previous work
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for the automatic scope of OpenMP task variables, which analyzes task synchroniza-
tion points to define regions of code that run concurrently. We have also extended
our analyses (use-definition chains, liveness analysis, induction variable, loop anal-
ysis and reaching definitions) in order to deal with sub-objects (array elements, ar-
ray sections, shaping expressions and field references). We have defined a new clause
default(AUTO DEPS) that, along with OmpSs tasks, triggers the automatic discov-
ery of such dependencies among tasks. We have used BOTS and other benchmarks to
test the enhancement of programmability provided by this optimization and proved that
the compiler is able to automatically determine the dependence attributes for a large
amount of expressions. The expressions that cannot be automatically classified are re-
ported to the user to proceed to the manual definition of the dependencies.

In the future we want to improve our implementation to cope with non-accessible
function codes. To do so, we are considering to define in the compiler the behavior of
the most common system functions such as dynamic memory management (allocation,
release, etc.) or printing methods. We also want to take advantage of the common IR
provided by Mercurium for C/C++ and Fortran and extend our analysis for Fortran. Fur-
thermore, we want to implement basic compiler analysis such as constant propagation
and transforming expressions to a canonical form, in order to make the implementa-
tion simpler and the dependence expressions more readable. With these improvements,
we want to test our algorithm in other benchmarks. Additionally, we are thinking on
applying this algorithm to other programming models based on task-level concurrency.
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2. Altenfeld, R., Apel, M., an Mey, D., Böttger, B., Benke, S., Bischof, C.: Parallelising Com-
putational Microstructure Simulations for Metallic Materials with OpenMP. In: Chapman,
B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665,
pp. 1–11. Springer, Heidelberg (2011)

3. Andersch, M., Chi, C.C., Juurlink, B.H.H.: Programming parallel embedded and consumer
applications in OpenMP superscalar. In: Ramanujam, J., Sadayappan, P. (eds.) PPoPP, pp.
281–282. ACM (2012)

4. Baah, G.K., Podgurski, A., Harrold, M.J.: The Probabilistic Program Dependence Graph
and Its Application to Fault Diagnosis.. IEEE Transactions on Software Engineering 36(4),
528–545 (2010)

5. Barcelona Supercomputing Center. The NANOS Group Site: The Mercurium Compiler,
http://nanos.ac.upc.edu/mcxx

http://nanos.ac.upc.edu/mcxx


248 S. Royuela, A. Duran, and X. Martorell

6. Barcelona Supercomputing Center. Barcelona Supercomputing Center – Centro Nacional de
Supercomputación (2011), http://www.bsc.es/

7. Baudisch, D., Brandt, J., Schneider, K.: Multithreaded code from synchronous programs:
Extracting independent threads for OpenMP. In: DATE, pp. 949–952. IEEE (2010)

8. Baxter III, W., Bauer, H.R.: The Program Dependence Graph and Vectorization. In: PPL,
pp. 1–11 (1989)

9. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic poly-
hedral parallelizer and locality optimizer. In: Proceedings of the 2008 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2008, pp. 101–113.
ACM, New York (2008)
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Abstract. Automatic data transfer generation is a critical step for
guided or automatic code generation for accelerators using distributed
memories. Although good results have been achieved for loop nests, more
complex control flows such as switches or while loops are generally not
handled. This paper shows how to leverage the convex array regions
abstraction to generate data transfers. The scope of this study ranges
from inter-procedural analysis in simple loop nests with function calls,
to inter-iteration data reuse optimization and arbitrary control flow in
loop bodies. Generated transfers are approximated when an exact solu-
tion cannot be found. Array regions are also used to extend redundant
load store elimination to array variables. The approach has been success-
fully applied to GPUs and domain-specific hardware accelerators.

Keywords: data transfers, convex array regions, redundant transfer
elimination, GPU.

1 Introduction

The last decade has been showcased by the frequency wall limitation and the
beginning of a computing era based on parallel computing. One of the solutions
that emerges is based on the use of hardware accelerators, for instance Graph-
ical Processing Units (GPUs). These are massively parallel pieces of hardware,
usually plugged in a host computer using the PCI-Express bus, that can provide
important performance improvements for data-parallel program.

The main drawback of these accelerators lies in their programming model.
There are two major points: first the programmer has to exhibit in some way
the huge amount of parallelism required to fulfill the accelerator capacity; second,
since the accelerator is plugged in the system and embeds its own memory, the
programmer has to explicitly manage Direct Memory Access (DMA) transfers
between the main host memory and the accelerator memory.

The first point has been addressed in different ways using dedicated lan-
guages/libraries like Thrust 1, with directives over plain C or Fortran [13,26,19],
1 http://thrust.github.com/

H. Kasahara and K. Kimura (Eds.): LCPC 2012, LNCS 7760, pp. 249–263, 2013.
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or through automatic code parallelization [5,6,25]. The second point has been
addressed using simplified input from the programmer [13,27,19], or automati-
cally [4,24,1,26] using compilers.

This paper exposes how the array regions abstraction [12] can be used by
a compiler to automatically compute memory transfers in presence of complex
code patterns. Three examples are used throughout the paper to illustrate the
approach: Listing 1.1 requires interprocedural array accesses analysis, and List-
ing 1.2 contains a while loop, for which the memory access pattern requires an
approximated analysis.

This paper is organized as follows: array region analyses are first presented in
Section 2; then Section 3 introduces the basis of statement isolation, a compiler
pass that transforms a statement into a statement executed in a separate memory
space. A redundant transfer elimination algorithm based on array regions is then
introduced in Section 4 to optimize the generated data transfers. Finally, some
applications are detailed in Section 5.

1 // R(src) = {src[φ1] | i ≤ φ1 ≤ i+ k − 1}
// W(dst) = {dst[φ1] | φ1 = i}

3 // R(m) = {m[φ1] | 0 ≤ φ1 ≤ k − 1}
int kernel (int i, int n, int k, int src[n], int dst[n-k], int

5 m[k]) {
int v=0;

7 for ( int j = 0; j < k; ++j )
v += src[ i + j ] * m[ j ];

9 dst [i]=v;
}

11 void fir ( int n, int k, int src[n], int dst[n-k], int m[k]) {
for ( int i = 0; i < n - k+ 1; ++i )

13 // R(src) = {src[φ1] | i ≤ φ1 ≤ i+ k − 1, 0 ≤ i ≤ n− k}
// R(m) = {m[φ1] | 0 ≤ φ1 ≤ k − 1}

15 // W(dst) = {dst[φ1] | φ1 = i}
kernel (i, n, k, src , dst , m);

17 }

Listing 1.1. Array regions on a code with a function call

1 // R(randv) = {randv[φ1] | N−3
4

≤ φ1 ≤ N
3
}

// W(a) = {a[φ1] | N−3
4

≤ φ1 ≤ 5∗N+9
12

}
3 void foo(int N, int a[N], int randv[N]) {

int x=N/4,y=0;
5 while(x<=N/3) {

a[x+y] = x+y;
7 if (randv[x-y]) x = x+2; else x++,y++;

}
9 }

Listing 1.2. Array regions on a code with a while loop
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2 Introducing Convex Array Regions

Convex array regions were first introduced by Triolet [23] with the initial pur-
pose of summarizing the memory accesses performed on array element sets by
function calls. The concept was later generalized and formally defined for any
program statement by Creusillet [12,10] and implemented in the Paralléliseur
Interprocedural de Programmes Scientifiques (PIPS) compiler framework.

Informally, the read (resp. write) regions for a statement s are the set
of all scalar variables and array elements that are read (resp. written) during
the execution of s. This set generally depends on the values of some program
variables at the entry point of statement s: the read regions are said to be a
function of the memory store σ preceding the statement execution, and they are
collectively denoted R(s, σ) (resp. W(s, σ) for the write regions).

For instance the read regions for the statement on line 6 in Figure 1.1 are
these:

R(s, σ) = {{v}, {i}, {j}, {src(φ1) | φ1 = σ(i) + σ(j)}, {m(φ1) | φ1 = σ(j)}}
where φx is used to describe the constraints on the xth dimension of an array,
and where σ(i) denotes the value of the program variable i in the memory
store σ. From this point, i is used instead of σ(i) when there is no ambiguity.

The regions given above correspond to a very simple statement; however, they
can be computed for every level of compound statements. For instance, the read
regions of the for loop on line 6 in the code in Figure 1.1 are these:

R(s, σ) = {{v}, {i}, {src(φ1) | i ≤ φ1 ≤ i+ k − 1}, {m(φ1) | 0 ≤ φ1 ≤ k − 1}}
However, computing exact sets is not always possible, either because the compiler
lacks information about the values of variables or the program control flow, or
because the regions cannot be exactly represented by a convex polyhedron. In
these cases, over-approximated convex sets (denoted R and W) are computed.
In the following example, the approximation is due to the fact that the exact set
contains holes, and cannot be represented by a convex polyhedron:

W(�for(int i=0; i<n; i++)if (i != 3)a[i]=0;�, σ)={{n} , {a[φ0] | 0 ≤ φ0 < n}}
whereas in the next example, the approximation is due to the fact that the
condition and its negation are nonlinear expressions that cannot be represented
exactly in our framework:

R(�if(a[i]>3)b[i]=1; else c[i]=1�, σ) =

{{i} , {a[φ0] |φ0 = i} , {b[φ0] |φ0 = i} , {c[φ0] |φ0 = i}}
Under-approximations (denoted R and W) are required when computing region
differences (see [11] for more details on approximations when using the convex
polyhedron lattice).

read and write regions summarize the effects of statements and functions
upon array elements, but they do not take into account the flow of array element



252 S. Guelton, M. Amini, and B. Creusillet

values. For that purpose, in and out regions have been introduced in [12] to take
array kills into account, that is to say, redefinitions of individual array elements:

– in regions contain the array elements whose values are imported by the
considered statement, which means the elements that are read before being
possibly redefined by another instruction of the statement.

– out regions contain the array elements defined by the considered statement,
which are used afterwards in the program continuation. They are the live or
exported array elements.

As for read and write regions, in and out regions may be over- or under-
approximated.

There is a strong analogy between the array regions of a statement and the
memory used in this statement, at least from an external point of view, which
means excluding its privately declared variables. Intuitively, the memory foot-
print of a statement can be obtained by counting the points in its associated
array regions. In the same way, the read (or in) and write (or out) regions
can be used to compute the memory transfers required to execute this statement
in a new memory space built from the original space. This analogy is analyzed
and leveraged in this paper and especially in Section 3.

3 Communications Code Generation

This section introduces a new generic code transformation, called statement iso-
lation. It turns a statement s into a new statement Isol(s) that shares no memory
area with the remainder of the code, and is surrounded by the required memory
transfers between the two memory spaces. In other words, if s is evaluated in
a memory store σ, Isol(s) does not reference any element of σ. The generated
memory transfers to and from the new memory space ensure the consistency and
validity of the values used in the extended memory space during the execution
of Isol(s) and once back to the original execution path.

This transformation assumes no aliasing between the different variables refer-
enced by s, so that array regions of two different variables cannot overlap. It is
applicable to any statement for which the array region can be computed, either
exactly or approximately.

The transformation is formally described in [15]. To illustrate how the convex
array regions are leveraged, the while loop in Figure 1.2 is used as an example.
The exact and over-approximated array regions for this statement are as follows:

R = {{x} , {y}} R(randv) = {randv[φ1] | N − 3

4
≤ φ1 ≤ N

3
}

W = {{x} , {y}} W(a) = {a[φ1] | N − 3

4
≤ φ1 ≤ 5 ∗N + 9

12
}

The basic idea is to turn each region into a newly allocated variable, large enough
to hold the region, then to generate data transfers from the original variables to
the new ones, and finally to perform the required copy from the new variables
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to the original ones. This results in the code shown in Figure 1.3, where isolated
variables have been put in uppercase. Statements (3) and (5) correspond to
the exact regions on scalar variables. Statements (2) and (4) correspond to the
over-approximated regions on array variables. Statement (1) is used to ensure
data consistency, as explained later.

Notice how memcpy system calls are used here to simulate data transfers, and,
in particular, how the sizes of the transfers are constrained with respect to the
array regions.

void foo(int N, int a[N], int randv[N]) {
2 int x=0,y=0;

int A[N/6], RANDV[(N-9)/12], X, Y;
4 memcpy(A, a+(N-3)/4, N/6* sizeof(int)); // (1)

memcpy(RANDV , randv+(N -3)/4, (N-9) /12* sizeof(int)); // (2)
6 memcpy (&X, &x, sizeof(x)); memcpy (&Y, &y, sizeof(y));// (3)

while(X<=N/3) {
8 A[X+Y-(N-3) /4] = X+Y;

if (RANDV[X+Y-(N-3) /4]) X = X+2; else X++,Y++;
10 }

memcpy(a+(N-3)/4, A, N/6* sizeof(int)); // (4)
12 memcpy (&x, &X, sizeof(x)); memcpy (&y, &Y, sizeof(y));// (5)

}

Listing 1.3. Isolation of an irregular while loop using array region analysis

The benefits of using new variables to simulate the extended memory space
and of relying on a regular function to simulate the DMA are twofold:

1. The generated code can be executed on a general-purpose processor. It makes
it possible to verify and validate the result without the need of an accelerator
or a simulator.

2. The generated code is independent of the hardware target: specializing its
implementation for a given accelerator requires only a specific implementa-
tion of the memory transfer instructions (here memcpy).

Converting Convex Array Regions into Data Transfers. From this point
on, the availability of data transfer operators that can transfer rectangular sub-
parts of n-dimensional arrays to or from the accelerator is assumed. For instance,

1 size_t memcpy2d (void* dest , void * src ,
size_t dim1 , size_t offset1 , size_t count1 ,

3 size_t dim2 , size_t offset2 , size_t count2);

copies from src to dest the rectangular zone between (offset1, offset2) and
(offset1 + count1, offset2 + count2). dim1 and dim2 are the sizes of the
memory areas pointed to by src and dest on the host memory, and are used to
compute the addresses of the memory elements to transfer.
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We show how convex array regions are used to generate calls to these oper-
ators. Let src be a n-dimensional variable, and {src[φ1] . . . [φn] | ψ(φ1, . . . , φn)}
be a convex region of this variable.

As native DMA instructions are very seldom capable of transferring anything
other than a rectangular memory area, the rectangular hull, denoted �·�, is first
computed so that the region is expressed in the form

{src[φ1] . . . [φn] |α1 ≤ φ1 < β1, . . . , αn ≤ φn < βn}
This transformation can lead to a loss of accuracy and the region approximation
can thus shift from exact to may. This shift is performed when the original region
is not equal to its rectangular envelope.

The call to the transfer function can then be generated with offsetk = αk

and countk = βn − αk for each k in [1 . . . n].
For a statement s, the memory transfers from σ are generated using its read

regions (R(s, σ)): any array element read by s must have an up-to-date value
in the extended memory space with respect to σ. Symmetrically, the memory
transfers back to σ must include all updated values, represented by the written
regions (W(s, σ′)), where σ′ is the memory state once s is executed from σ. 2

However, if the written region is over-approximated, part of the values it
contains may not have been updated by the execution of Isol(s). Therefore, to
guarantee the consistency of the values transferred back to σ, they must first
be correctly initialized during the transfer from σ. These observations lead to
the following equations for the convex array regions transferred from and to σ,
respectively denoted Load(s, σ) and Store(s, σ):

Store(s, σ) =�W(s, σ)�
Load(s, σ) =�R(s, σ) ∪ (Store(s, σ) −W(s, σ))�

Load(s, σ) and Store(s, σ) are rectangular regions by definition and can be con-
verted into memory transfers, as detailed previously. The new variables with
ad-hoc dimensions are declared and a substitution taking into account the shifts
is performed on s to generate Isol(s).

Managing Variable Substitutions. For each variable v to be transferred
according to Load(s, σ), a new variable V is declared, which must contain enough
space to hold the loaded region. For instance if v holds short integers and

Load(s, σ) = {v[φ1][φ2] |α1 ≤ φ1 < β1, α2 ≤ φ2 < β2}
then V will be declared as short int V[β1 − α1][β2 − α2]. The translation of
an intraprocedural reference to v into a reference to V is straightforward as
∀i, j, V[i][j] = v[i+ α1][j + α2].
2 Most of the time, variables used in the region description are not modified by the

isolated statement and we can safely use W(s, σ). Otherwise, e.g. a[i++]=1, methods
detailed in [12] must be applied to express the region in the right memory store.
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The combination of this variable substitution with convex array regions is
what makes the isolate statement a powerful tool: all the complexity is hidden
by the region abstraction.

For interprocedural translation, a new version of the called function is created
using the following scheme: for each transferred variable passed as an actual
parameter, and for each of its dimensions, an extra parameter is added to the
call and to the new function, holding the value of the corresponding offset. These
extra parameters are then used to perform the translation in the called function.

The output of the whole process applied to the outermost loop of the Finite
Impulse Response (FIR) is illustrated in Figure 1.4, where a new KERNEL function
with two extra parameters is now called instead of the original kernel function.
These parameters hold the offsets between the original array variables src and
m and the isolated ones SRC and M.

1 void fir(int n, int k, int src[n], int dst [n-k], int m[k]) {
int N=n - k+ 1;

3 for( int i = 0; i < N; ++i ) {
int DST [1], SRC[k],M[k];

5 memcpy (SRC , src+i, k*sizeof (int));
memcpy (M, m+0, k*sizeof (int));

7 KERNEL (i, n, k, SRC , DST ,M, i/*SRC */, i/*DST */, 0/*M*/);
memcpy (dst , DST+0, 1* sizeof (int));

9 }
}

Listing 1.4. Interprocedural isolation of the outermost loop of a Finite Impulse
Response

The body of the new KERNEL function is given in Figure 1.5. The extra offset
parameters are used to perform the translation on the array parameters. The
same scheme applies for multidimensional arrays, with one offset per dimension.

void KERNEL (int i, int n, int k, int SRC[k], int DST [1],
2 int M[k], int SRC_offset , int DST_offset , int M_offset ) {

int v=0;
4 for( int j = 0; j < k; ++j )

v += SRC[i+j- SRC_offset ]*M[j-M_offset ];
6 DST[i-SRC_offset ]=v;

}

Listing 1.5. Isolated version of the kernel function of a Finite Impulse Response
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4 Redundant Transfer Elimination

The statement isolation pass considers a statement independently of its con-
text. However, it is sometimes possible to limit the volume of transferred data
when considering the context, either through the elimination of redundant data
transfers between isoalted statements, or through overlapping of transfers with
computations.

This section informally describes an original contribution to the former using a
step-by-step propagation of the memory transfers across the Control Flow Graph
(CFG) of the host program. It has been more formally described with proofs
in [14]. The main idea is to move load operations upward in the Hierarchical
Control Flow Graph (HCFG) so that they are executed as soon as possible, while
store operations are symmetrically moved so that they are executed as late as
possible. Redundant load-store elimination is performed in the meantime.

In the following, we only consider optimization of mutliple isolated section
during a sequential execution.

4.1 Interprocedural Propagation

When a load is performed at the entry point of a function, it may be interesting
to move it at the call sites. However, this is valid only if the memory state before
the call site is the same as the memory state at the function entry point, that is,
if there is no write effect during the effective parameter evaluation. In that case,
the load statement can be moved before the call sites, after backward translation
from formal parameters to effective parameters.

Similarly, if the same store statement is found at each exit point of a function,
it may be possible to move it past its call sites. Validity criteria include that the
store statement depends only on formal parameters and that these parameters
are not written by the function. If this the case, the store statement can be
removed from the function call and added after each call site after backward
translation of the formal parameters.

4.2 Combining Load and Store Elimination

In the meanwhile, the intraprocedural and interprocedural propagation of DMA
may trigger other optimization opportunities. Loads and stores may for instance
interact across loop iterations, when the loop body is surrounded by a load and
a store; or when a kernel is called in a function to produce data immediately
consumed by a kernel hosted in another function, and the DMA have been moved
in the calling function.

The optimization then consists in removing load and store operations when
they meet. This relies on the following property: considering that the statement
denoted by “memcpy(a,b,10*sizeof(in))” is a DMA and its reciprocal is denoted
by “memcpy(b,a,10*sizeof(in))”, then in the sequence memcpy(a,b,10*sizeof(in
));memcpy(b,a,10*sizeof(in)), the second call can be removed since it would
not change the values already stored in a.
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Figure 1.6, illustrates the result of the algorithm. It demonstrates the inter-
procedural elimination of data communications represented by the memload and
memstore functions. These function calls are first moved outside of the loop,
then outside of the bar function; finally, redundant loads are eliminated.

void bar(int i, int j[2], int k[2]) {
2 while (i-->=0) {

memload(k, j, sizeof(int)*2);
4 k[0]++;

memstore (j, k, sizeof(int)*2);
6 }
}

8 void foo(int j[2], int k[2]) {
bar(0, j, k);

10 bar(1, j, k);
}

⇓
1 void bar(int i, int j[2], int k[2]) {

while (i-->=0) k[0]++;
3 }
void foo(int j[2], int k[2]) {

5 memload(k, j, sizeof(int)*2); // load moved before call
bar(0, j, k);

7 memstore (j, k, sizeof(int)*2);// redundant load
eliminated

bar(1, j, k);
9 memstore (j, k, sizeof(int)*2);// store moved after call
}

Listing 1.6. Illustration of the redundant load store elimination algorithm

4.3 Optimizing a Tiled Loop Nest

Alias et al. have published an interesting study about fine grained optimization
of communications in the context of Field Programmable Gate Array (FPGA)
[1,2,3]. The fact that they target FPGAs changes some considerations on the
memory size: FPGAs usually embed a very small memory compared to the many
gigabytes available in a GPU board. The proposal from Alias et al. focuses
on optimizing loads from Double Data Rate (DDR) in the context of a tiled
loop nest, where the tiling is done such that tiles execute sequentially on the
accelerator while the computation inside each tile can be parallelized.

While their work is based on the Quasi-Affine Selection Tree (QUAST) ab-
straction, this section shows how their algorithm can be used with the less ex-
pensive convex array region abstraction.

The classical scheme proposed to isolate kernels would exhibit full commu-
nications as shown in Figure 1.7. An inter-iteration analysis allows avoiding
redundant communications and produces the code shown in Figure 1.8. The



258 S. Guelton, M. Amini, and B. Creusillet

for( int i = 0; i < N; ++i ) {
2 memcpy(M,m,k*sizeof(int));

memcpy (& SRC[i],&src[i],k*sizeof(int));
4 kernel(i, n, k, SRC , DST , M);

memcpy (& dst[i],&DST[i],1* sizeof(int));
6 }

Listing 1.7. Code for FIR function from figure 1.1 with naive communication
scheme

for( int i = 0; i < N; ++i ) {
2 if(i==0) {

memcpy(SRC ,src ,k*sizeof(int));
4 memcpy(M,m,k*sizeof(int));

} else {
6 memcpy (& SRC[i+k-1],& src[i+k-1] ,1* sizeof(int));

}
8 kernel(i, n, k, SRC , DST , m);

memcpy (& dst[i],&DST[i],1* sizeof(int));
10 }

Listing 1.8. Code for FIR function with communication after the inter-iterations
redundant elimination

inter-iteration analysis is performed on a do loop, but with the array regions.
The code part to isolate is not bound by static control constraints.

The theorem proposed for exact sets in [1] is the following: 3

Theorem 1.

Load(T ) = R(T )− (R(t < T )
⋃

W(t < T )
)

(1)

Store(T ) = W(T )−W(t > T ) (2)

where T represents a tile, t < T represents the tiles scheduled for execution
before the tile T , and t > T represents the tiles scheduled for execution after T .
The denotation W(t > T ) corresponds to

⋃
t>T W(t).

In Theorem 1, a difference exists for each loop between the first iteration,
the last one, and the rest of the iteration set. Indeed, the first iteration cannot
benefit from reuse from previously transferred data and has to transfer all needed
data, while the last one has to schedule a transfer for all produced data. In other
words, R(t < T ) and W(t < T ) are empty for the first iteration while W(t > T )
is empty for the last iteration.

For instance, in the code presented in Figure 1.7, three cases are considered:
i = 0, 0 < i < N − 1 and i = N − 1.

3 Regions are supposed exact here; the equation can be adapted to under- and over-
approximations.
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Using the array region abstraction available in PIPS, a refinement can be car-
ried out to compute each case, starting with the full region, adding the necessary
constraints and performing a difference.

For example, the region computed by PIPS to represent the set of elements
read for array src, is, for each tile (here corresponding to iteration i)

R(i) = {src[φ1] | i ≤ φ1 ≤ i+ k − 1, 0 ≤ i < N}

For each iteration i of the loop except the first one (here i > 0), the region of
src that is read minus the elements read in all previous iterations i′ < i has to
be processed; that is,

⋃
i′ R(i′ < i).

R(i′ < i) is built from R(i) by renaming i as i′ and adding the constraint
0 ≤ i′ < i to the polyhedron:

R(i′ < i) = {src[φ1] | i′ ≤ φ1 ≤ i′ + k − 1, 0 ≤ i′ < i, 1 ≤ i < N}

i′ is then eliminated to obtain
⋃

i′ R(i′ < i):

⋃
i′
R(i′ < i) = {src[φ1] | 0 ≤ φ1 ≤ i + k − 2, 1 ≤ i < N}

The result of the subtraction R(i > 0)−⋃
i′ R(i′ < i) leads to following region:4

Load(i > 0) = {src[φ1] | φ1 = i+ k − 1, 1 ≤ i < N}

This region is then exploited for generating the loads for all iterations but the
first one. The resulting code after optimization is presented in Figure 1.8. While
the naive version loads i× k × 2 elements, the optimized version exhibits loads
only for i+ 2× k elements.

5 Applications

The transformations introduced in this article have been used as basic blocks
in compilers targeting several different hardware, showing their versatility. They
are partially listed here with references to more detailed paper about each work.

– the redundant load store elimination described in Section 4 has been used
in [14] for vector instruction sets to optimize loads and stores between vector
registers and the main memory. In that case data transfers were not gener-
ated by statement isolation but through vector instruction packing, leading
to the code in Listing 1.9 for a vectorized scalar product. Redundant load
store elimination leads to the optimized version in Listing 1.9.

– The communication generation for an image-processing accelerator, TER-
APIX [8], described in [14] relies on the statement isolation from Section 3.

4 As the write regions are empty for src, this corresponds to the loads.
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for(i0 = 0; i0 <= 199; i0 += 4) {
2 SIMD_LOAD_V4SF (vec20 , &c[i0]);

SIMD_LOAD_V4SF (vec10 , &b[i0]);
4 SIMD_MULPS (vec00 , vec10 , vec20);

SIMD_STORE_V4SF (vec00 , &pdata0 [0]);
6 SIMD_LOAD_V4SF (vec30 , &RED0 [0]) ;

SIMD_ADDPS (vec30 , vec30 , vec00);
8 SIMD_STORE_V4SF (vec30 , &RED0 [0]) ;
}

1 SIMD_LOAD_V4SF (vec30 , &RED0 [0]) ;
for(i0 = 0; i0 <= 199; i0 += 4) {

3 SIMD_LOAD_V4SF (vec20 , &c[i0]);
SIMD_LOAD_V4SF (vec10 , &b[i0]);

5 SIMD_MULPS (vec00 , vec10 , vec20);
SIMD_STORE_V4SF (vec00 , &pdata0 [0]);

7 SIMD_ADDPS (vec30 , vec30 , vec00);
SIMD_STORE_V4SF (vec30 , &RED0 [0]) ;

9 }

Listing 1.9. Body of a vectorized scalar product, before and after redundant load
store elimination

– The SCALOPES project associated an asymmetric MP-SoC with cores dedi-
cated to task scheduling, to a semi-automatic parallelization workflow. State-
ment isolation has been used to generate inter-tasks communications [24].

– SMECY is an innovative compilation tool-chain for embedded multi-core
architectures. This on-going project [22] is another use case that exhibits
how convex array regions are well suited to communication and mapping
problems. In that case, statement isolation generates data transfers between
different fields of a structure, showcasing that it does not support only arrays,
but also imbrication of structure of arrays.

– The code generation for GPUs in Par4All [21] relies on statement isolation
to efficiently manage communications. It relies on generic data transfers and
kernel calls that can use a CUDA or OpenCL backend. A typical output is
showcased in Listing 1.10.

1 P4A_copy_to_accel_2d (sizeof pt[0][0] , 90, 99, 90, 99 ,0 ,0
, pt ,* p4a_pt0);

P4A_copy_to_accel_1d (sizeof t[0], 20, 20, 0, t, *p4a_t0 );
3 p4a_launcher_run (*p4a_pt0 , range , step , *p4a_t0 , xmin , ymin

);
P4A_copy_from_accel_2d( sizeof pt[0][0] , 90, 99, 90, 99, 0,

0, pt , *p4a_pt0);

Listing 1.10. Typical Par4All-generated DMA
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All these architectures use a load-work-store paradigm, so the code transfor-
mations described in this paper can be used to generate or optimized generic
data transfers, although they are rather different targets.

6 Related Works

The issue of generating memory transfers between a host processor and an at-
tached accelerator has been studied at multiple occasions in the past.

Convex array regions were already used in the PIPS framework [9] for High
Performance Fortran (HPF) code generation. We leverage this approach by de-
coupling analysis, transfer generation and transfer optimization.

In the same context, the Omega project [20] relied on the manipulation of
sets of affine constraints over integer variables. Non-affine conditions and func-
tion calls were handled by uninterpreted function symbols, a technique described
in [28] that does not provide the summarizing capability of interprocedural con-
vex array regions.

Beyond HPF, in the field of embedded computing, other approaches based
on memory layout detection and interaction with the memory access patterns
have been proposed [16]. The code generation for transfer instructions depending
on available communication models has been studied through the polyhedral
model [17].

Recently, polyhedral techniques have been applied to generate data commu-
nications between a CPU and a GPU, as detailed in [6,18]. The benefit of using
convex array regions over these approaches is their ability to retain some im-
portant information concerning data accesses even in non-affine situations, by
gracefully degrading their accuracy.

An approach that shares some similarities with ours is described in [7]. This
paper enhances classical polyhedral techniques to tackle while loops and ar-
bitrary conditionnals, relying on over-approximation of the iteration domains
through convex hulls. However, it does not propose any solution other than in-
lining to handle function calls.

7 Conclusion

Automatic code generation currently seems a good lasting option while hetero-
geneous architectural models are emerging at a sustainable pace, and as a single
application may have to be executed on different numerous targets during its
life cycle. In this context, efficiently managing data transfers between different
memory spaces is a key issue, usually addressed by restricting the control flow
of the application kernels.

In this paper, we introduce several techniques relying on the summarizing
power of array region analyzes, to lift these barriers and broaden the input class
of applications, without sacrificing the efficiency of the generated code.

These techniques have been implemented in the PIPS compiler infrastructure
used by the Par4All tool. They have been successfully used to generate code
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for GPGPUs, vector processing units, domain-specific architectures, including
heterogeneous architectures with task scheduling dedicated cores. . . Other tar-
gets are yet being considered such as multi-GPUs architectures. In addition, our
approach could be adapted to directly manage memory hierarchies like software
managed cache in GPUs.
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1 Introduction

Parallel reductions represent a common pattern for computing the aggregation of
an associative and commutative operation, such as summation, across multiple
pieces of data supplied by parallel tasks. In this poster, we introduce finish accu-
mulators, a unified construct that supports predefined and user-defined parallel
reductions for dynamic task parallelism. Finish accumulators are designed to be
integrated into structured task parallelism constructs, such as the async and
finish constructs found in the X10 and Habanero-Java (HJ) languages, so as
to guarantee determinism for accumulation and to avoid any possible race con-
ditions in referring to intermediate results. In contrast to lower-level reduction
constructs such as atomic variables, the high-level semantics of finish accumu-
lators allows for a wide range of implementations with different accumulation
policies, e.g., eager-computation vs. lazy-computation. The best implementation
can thus be selected based on a given application and target platform. We have
integrated finish accumulators into the Habanero-Java task parallel language,
and used them for research and teaching. In addition to their higher-level se-
mantics, experimental results demonstrate that our Java-based implementation
of finish accumulators delivers comparable or better performance for computing
reductions relative to Java’s atomic variables and concurrent collections.

2 Programming Model

In our model, parallel tasks asynchronously transmit their data to finish accu-
mulators with put operations and retrieve the results by get operations. A finish
accumulator ac is accessible to sub-tasks if and only if ac is associated with a
finish statement and the sub-tasks are created within the finish scope. To
ensure an absence of races, get operations by sub-tasks return the value at the
beginning of the associated finish scope and are not affected by put operations
within the same finish scope. In the example in Figure 1, an accumulator ac
is associated with the outer finish scope and hence accessible to T1, T2, and
T3 while the put operation by T4 will throw an exception because T4 does not
belong to the associated finish scope and can happen both before and after
the get operation by T1.
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ac = new accum(Operation.SUM,
                             int.class);
async { ... ac.put(foo()); }  // T1
finish (ac) {
    async {  // T2
        finish {
            async {  // T3
                ac.put(bar());
            }
            ac.put(baz());
        }
        ac.put(qux());
    }
    ac.put(quux());
}
n = ac.get();

ac.put(bar());

ac.put(baz());

ac.put(qux());

ac.put(quux());

ac.get(); ac.put(foo());

:  task creation by async :  synchronization by end-finish

ac = new accum(Operation.SUM, int.class);

finish (ac) {

}

/* ERROR */

T0

T2

T3

T1

  1:

  2:
  3:
  4:
  5:
  6:
  7:
  8:
  9:
10:
11:
12:
13:
14:
15: ut

Fig. 1. Finish accumulator example with four tasks

3 Experimental Results

We summarize our experimental results on an 8-core (2 quad-cores) 2.4GHz Intel
Core i7 system and a 64-thread (8 cores × 8 threads/core) 1.2 GHz Sun Ultra-
SPARC T2 system using four applications with reductions. For finish accumu-
lators, we used the Habanero-Java compiler and runtime with the work stealing
scheduler. JUC represents pure Java versions that use the java.util.concurent
library — AtomicInteger for Nqueens and Fibonacci, ReentrantLock for Su-
doku, and ConcurrentHashMap for WordCount. The eager and lazy cases refer
to implementation variants of finish accumulators; eager is based on atomic op-
erations analogous to the JUC version and lazy is a two-step approach that
computes local reductions on each worker and then performs a global reduction
at the end-finish synchronization point. We can see that eager has comparable
or better performance than JUC except in the case of WordCount, where JUC
benefits from the optimized ConcurrentHashMap implementation. However, lazy
always shows the same or better performance compared to other two versions.

Table 1. Speedup related to lazy accumulators with 1 thread

Core i7 with 8 cores UltraSPARC T2 with 64 threads

Nqueens Fibonacci Sudoku WordCount Nqueens Fibonacci Sudoku WordCount

JUC 2.28× 1.05× 5.69× 2.50× 1.87× 2.18× 12.69× 4.97×
Eager 2.25× 1.10× 6.08× 0.46× 13.41× 5.24× 12.65× 0.62×
Lazy 4.72× 2.20× 5.77× 5.54× 21.18× 23.91× 12.55× 5.10×
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As multicore machines become pervasive, an ever growing number of program-
mers face the challenge of building highly parallel applications that take full
advantage of modern parallel hardware architectures. Software Transactional
Memory (STM) [3] is one promising abstraction to simplify this task because
when using an STM programmers may ignore low-level synchronization details
and simply specify which operations must execute atomically inside transactions.
It is then the STM’s responsibility to preserve the program’s semantics, while
maintaining as much parallelism and concurrency as possible.

Although STMs exhibit very good performance in read-dominated workloads,
the same cannot be said about workloads in which transactions conflict very
frequently. Each time a transaction conflicts it imposes a significant cost on the
system, originating from the need to abort and redo the whole transaction.

In this work we propose the FlashbackSTM, an STM system that extends a
lock-free STM—the JVSTM [1]—with the concept of memo-transactions. Un-
like normal transactions, our new memo-transactions populate a per-transaction
memoization [4] cache with information about their runtime behavior and use
the information stored in the memo-cache to memoize reexecutions.

In the FlashbackSTM nested transactions never fail (closed nesting) and top-
level transactions that fail to commit restart from the beginning. However, in
the reexecution each nested memo-transaction searches the transaction’s private
memo-cache for a hit. If it is successful, the memo-transaction uses the informa-
tion stored in the cache and proceeds to the commit phase without reexecuting.
When the top-level transaction eventually commits with success, valid memo-
ization information is added to a central memo-cache shared by all transactions.

To memoize transactions, the FlashbackSTM needs to recognize when it is
about to execute a transaction with an outcome that is already known and, when
that is the case, to replicate the behavior of that transaction without reexecuting
it. Given that the behavior of a transaction may depend on the shared state of
the application, each memo-entry stores not only the arguments supplied to the
transaction but also the transaction’s read-set, as proposed in [5].

This way, a memo-entry is valid if and only if both the arguments supplied to
the atomic method and the arguments stored in the memo-cache match, and all
the memory positions referenced in the cached read-set still hold the same value

� This work was supported by FCT (INESC-IDmultiannual funding) through the PID-
DAC Program funds and by the RuLAM project (PTDC/EIA-EIA/108240/2008).
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Fig. 1. Speedups for the STMBench7 benchmark and three distinct workloads

as when the read-set was stored in the memo-cache. Additionally, the memo-
cache stores the transaction’s result value and the transaction’s write-set, which
is applied to shared state if the transaction subsequently commits with success.

For our evaluation we considered the STMBench7 [2] benchmark. In Figure 1,
we present the speedup of the benchmark with the JVSTM, the FlashbackSTM,
and the FlashbackSTM with the central memo-cache, using as baseline the exe-
cution time of the benchmark with the JVSTM single thread for each workload.

As expected, FlashbackSTM behaves the best with read-dominated work-
loads, cutting the runtime of the benchmark to a third, scaling well up to 48
threads, and outperforming the JVSTM, which is highly optimized for read-
intensive workloads. In the write-dominated workload, the results are not as im-
pressive and FlashbackSTM improves the performance of the benchmark with
48 threads by 20% only. Nonetheless, we consider the write-dominated results
quite promising, specially if we take into account that for the same workload
JVSTM’s performance only deteriorates as we increase the number of threads.

Furthermore, these results were obtained when we applied memoization to a
single method of the benchmark that is called by less than 5% of all operations
executed in our tests. For that reason, in the future, we intend to perform a
more extensive profiling of the STMBench7 benchmark to find other methods
where memoization can be used efficiently and better understand under which
conditions memo-transactions are most beneficial.
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We are developing a tool Kaira[1,2]. Our main development goal is to create
a practically usable general-purpose high-level visual programming tool for the
area of High Performance Computing (HPC), especially for distributed memory
systems. We feel that there is a space for this research. Tools used by practitioners
in this area are usually low-level ones (like Message Passing Interface – MPI) or
domain specific tools.

Kaira is designed as a complete development environment, it includes: mod-
elling, testing and debugging. The tool is released as open-source project under
GPL licence. An important role in our project plays an abstract computational
model. Semantics of our models are based on a formalism of Coloured Petri Nets
(CPNs). CPNs are a high-level extension of Petri Nets (PNs), where tokens can
carryvalues.PNsnaturally captureparallel behaviour.They can serve also as away
how to think about algorithms, not only a way how to tell a computer what to do.
PNs provide natural visual representations of models so we can straightforwardly
provide visual editing of models and their simulations. Nevertheless, Kaira is not
an automatic parallelization tool. A user has to specify a parallel behaviour explic-
itly, but it can be done in a form of a high level model. From such models, Kaira
derives resulting applicationswith various implementation details.We do notwant
to visually program a complete application using CPNs. We want to focus on par-
allelisms and communication aspects only. Sequential parts of a program can be
created in a “standard” programming language and integrated into visual models.
The current implementation supports integration of codes written in C++. From
suchmodel, Kaira is able to generate a standalone parallel application. The result-
ing applications use MPI and pthreads as a parallel backend. These applications
can be directly executed on HPC computers.

One of the new features of Kaira is the ability to generate parallel libraries
from our models. More precisely we are able to generate standalone C++ li-
braries or C++ libraries with an interface to Octave1. A library interface is
generated solely from Petri nets without need any additional C++ code. This

� The work was supported by: GAČR P202/11/0340, the European Re-
gional Development Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070) and Student project SP2012/127.

1 http://www.gnu.org/software/octave/
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feature was implemented to allow quickly interchange time-consuming parts by
parallel running functions without modifying the rest of a program. Optionally
we can also generate Remote-Procedure-Call (RPC) interface where both client
and server are generated. For example it allows to run Octave in a single in-
stance on a laptop and run performance demanding pars of a program on HPC
hardware in a form of MPI application. The whole chain of actions: how to get
data from Octave, send them to a server, initiate MPI computation and return
results back to Octave is automatically generated from our models.

To demonstrate the abilities of Kaira’s Octave libraries we implemented a
parallel computation of generalized inverse K+ of a block diagonal matrix K
(for K+ holds KK+K = K). Using such block diagonal matrices, we are usually
able to straightforwardly divide computations and perform them in parallel. For
example in Total-FETI domain decomposition method it is one of the most time
consuming operations. The Karia’s model for this problem is in the Figure 1.
More precisely in our example we compute y = K+x using Cholesky decompo-
sition (LTL = PTAP) and N is the number of blocks. From this model Kaira is
able to produce a client-server application that use MPI and threads on a server
side and offers Octave function on a client side.

Fig. 1. Kaira’s model solving y = K+x

To conclude, Kaira is able to produce parallel running libraries that can be
used directly in C++ or Octave. Moreover it takes only few lines of C++ code
and a simple Petri net model. Although if there is a space for various optimiza-
tions, we were able to get a relatively efficient parallel solution quickly and by
iterative approach. Also we were able to get this solution without knowledge
MPI or thread programming, which can be crucial for some Octave users.
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1 Introduction

Thread-level speculation (TLS) has historically been investigated in the con-
text of novel hardware designs Chen and Olukotun, 2003, Steffan et al., 2005
Quiñones et al., 2005. Pure software designs to TLS, however, have relatively
recently become of interest, trading increased overhead concerns for the po-
tential of providing new and user-friendly approaches to extracting parallelism,
and making use of commodity multiprocessors without the need for new hard-
ware Pickett and Verbrugge, 2005, Oancea and Mycroft, 2008. Investigation of
such approaches, however, tends to be hampered by the need for such systems
to build on specific language or execution contexts with implicit source-level
requirements, and lack of integration with a realistic compiler infrastructure.

As a flexible solution, in this paper we develop a software-based TLS system
based on the popular LLVM compiler framework. Our design is fully integrated
into the generic, language and machine-neutral LLVM intermediate representa-
tion (IR), allowing us to take advantage of the full gamut of input languages
and output architectures supported by LLVM, as well as the variety of compiler
optimizations built into the framework.

2 Design

The design involves changes to both front-end and back-end components. The
former is needed as we use programmer-directed speculation. Annotations are
added to the LLVM IR from user-specified fork and join points, a relatively minor
change that allows our work to be easily ported to multiple language contexts.
The back-end support consists of an LLVM speculator pass and a TLS runtime
library, which is managed within the language neutral LLVM IR context.

The TLS runtime library has a global thread manager object to serve as inter-
face between the library and the speculator pass. The thread manager manages
for each CPU three objects maintaining thread status data, global buffering and
local buffering of the speculative thread, avoiding dynamic memory allocation for
efficiency. As we use out-of-order speculation in which there are at most one-pair
of threads synchronizing, a neat feature is that the design and implementation is
lock-free. We compile the runtime library into a bytecode library and link it with
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Fig. 1. Performance Results

the bytecode of the speculated source program, enabling it to be incorporated into
subsequent LLVM optimization passes, including inlining of library function calls.

The speculator pass generates a TLS runtime library call to assign the ID of an
available CPU to the speculative thread. Since LLVM does not allow branching
directly to another function we construct a speculation table to redirect entry con-
trol flow, implemented as a switch instruction that jumps to either normal entry
or to the speculation block depending on an input parameter. At the join point
synchronization with the speculative thread is performed if necessary. Within
the non-speculative thread this process is encapsulated by a library function,
which returns true/false if the speculative thread commits/rollbacks. If true is
returned control branches to a synchronization table, redirecting control flow to
a synchronization block given the corresponding block counter.

We allow speculative threads to enter nested functions, which is non-trivial
since the non-speculative parent thread needs to reconstruct equivalent stack
frames, but stack frames are not available at the LLVM IR level. We track stack
frames as the speculative thread descends into a call chain. The speculator pass
generates a TLS library call to register a new frame for each nested function
call, which is matched by another TLS library call to pop the frame up at return
points. The non-speculative parent then generates a corresponding call chain,
restoring frame data as it descends during synchronization, a process enabled by
a library call inserted at the top of the non-speculative function.

3 Experimental Results

The TLS system is implemented on llvm 2.9 with llvm-gcc-4.2.2.9 front-end. The
system is experimented on a 40-core Intel Xeon machine. We use a synthetic
benchmark “3x + 1” problem as well as two realistic benchmarks: merge-sort
and matrix multiplication. The performance results are illustrated in Figure 1.
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4 Conclusions

Our work provides a basis for TLS research in a full-featured compiler framework
that accommodates a wide variety of input and output contexts. Experimental
results show that the system enables scalable speedup for ideal benchmarks, with
potential for speedup in real-world applications.
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González, A., Tullsen, D.M.: Mitosis compiler: an infrastructure for speculative
threading based on pre-computation slices. In: PLDI 2005: Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 269–279 (2005)

[Steffan et al., 2005]Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The STAM-
Pede approach to thread-level speculation. ACM Transactions on Computer Systems
(TOCS) 23(3), 253–300 (2005)



Abstractions for Defining Semi-Regular Grids

Orthogonally from Stencils

Andrew Stone and Michelle Mills Strout

Colorado State University
{stonea,mstrout}@cs.colostate.edu

In various applications including atmospheric and ocean simulation programs,
stencil computations occur on grids where sub-domains of the grid are regular
(e.g., can be stored in an array) but boundaries between sub-domains connect
in an irregular fashion. We call this class of grids semi-regular. Implementations
of stencils on semi-regular grids often have grid-structure details tangled with
the stencil computation code. This tangling of details requires programmers to
have full knowledge of the current grid structure to make changes to the stencil
computations and makes changing the grid structure extremely expensive. Ex-
isting libraries and tools [1–7] for stencil computations have not focused on this
class of grid, focusing instead on purely regular or irregular grids. In this poster
we introduce abstractions for the class of semi-regular grids and describe the
GridLib library where we have implemented these abstractions. These abstrac-
tions enable a separation of grid, algorithm, and parallelization for semi-regular
grids.

Semi-regular grids appear in Earth simulation applications such as the Parallel
Ocean Program (POP), Global Cloud Resolving Model (GCRM), and the Flow-
Following Finite-Volume Icosahedral Model (FIM). Examples of semi-regular
grids include the lat/lon, torus, dipole [8], tripole [9], icosahedral [10], and cubed-
sphere [11] grids. Different grids have different advantages: for example, the
tripole grid is specialized for ocean simulation programs, cells in the icosahedral
grid are evenly sized, etc. These grids consist of sets of regular subdomains
and data for these subdomains is stored in arrays (as opposed to graph data-
structures). With the array representation neighbors are accessed during stencil
computations directly rather than indirectly through adjacency lists. When the
stencil does not perform enough computation to hide the indirect access, the
locality direct access offers will improve performance. However, the performance
benefit is not without a cost: the array representation requires specialized code be
implemented to handle nodes lying along subdomain boundaries. For example,
in the icosahedral grid, specialized code is needed to communicate data between
arrays and to handle points that represent the north and south poles. Such
specialized code obfuscates the stencil algorithm code and is replicated for each
stencil.

To address these issues, GridWeaver introduces a border mapping abstraction
to specify connectivity around subgrid borders. The border mapping abstraction
maps sets of points in a halo around a subgrid to sets of points in a (poten-
tially) different subgrid. With this abstraction we are able to specify connectivity

H. Kasahara and K. Kimura (Eds.): LCPC 2012, LNCS 7760, pp. 273–274, 2013.
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patterns commonly seen in semi-regular grids such as periodic boundaries, ad-
jacent subgrids, and folded borders. To address communication GridLib auto-
matically calculates a communication plan object. Communication plans specify
what communication must occur to fill halo cells for blocks of locally distributed
data. GridWeaver also includes abstractions for conducting stencil computations,
conducting reduction operations, and distributing data.

These abstractions enable a separation of specification between the connec-
tivity of, the algorithm, and parallelization concerns. This separation improves
code clarity and simplifies code maitenance.
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