
The Blossom of Finite Semantic Trees

Jean Goubault-Larrecq1,� and Jean-Pierre Jouannaud2,��,���

1 ENS Cachan
61 avenue du président Wilson, F-94230 Cachan

goubault@lsv.ens-cachan.fr

http://www.lsv.ens-cachan.fr/~goubault/
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This paper is dedicated to the memory of Harald Ganzinger.

1 Introduction

Automated deduction in first-order logic finds almost all its roots in Herbrand’s
work, starting with Herbrand’s interpretations, a clausal calculus, and rules
for unification. J.A. Robinson’s key contribution was the formulation of reso-
lution and its completeness proof, in which semantic trees were semi-apparent.
Robinson and Wos introduced the specific treatment of equality commonly called
paramodulation. The systematic introduction of orderings to cut the search space
is due to Lankford. Kowalski studied in more details the case of Horn clauses,
while Peterson gave the first proof that paramodulation inside variables was su-
perfluous, assuming a term ordering order-isomorphic to the natural numbers.
Knuth studied the case of equality unit clauses, under the name of completion.
All these works were done by using standard proof techniques, including seman-
tic trees [Kow69].

Further progress required more powerful proof techniques.
The first was proposed by Huet with Noetherian orderings on terms, allow-

ing the use of the powerful noetherian induction principle to establish a strong
theory of abstract and concrete rewriting, another name for the case of equality
unit clauses. The method was then extended by Jouannaud and Kirchner who
introduced induction on proofs abstracted by multisets of terms. Bachmair, Der-
showitz and Hsiang made the last step with the proof reduction method [BD94].
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This tool allowed this subfield to make very fast progress until a new bottleneck
was encountered with constrained equality unit clauses.

The second proof method was proposed by Hsiang and Rusinowitch [HR86],
who invented transfinite semantic trees, a generalization of semantic trees gener-
ated from a transfinite ordering on the Herbrand base. They were able to gener-
alize Peterson’s result to arbitrary well-founded orderings. Considering again the
case of equality unit clauses, they showed the completeness of ordered comple-
tion, an old conjecture of Lankford, which was found to have many theoretical
applications by providing us with a true semi-decision procedure for equality
based on computing normal forms. Being conceptually complex constructions,
transfinite semantic trees did not make their way through in the community.

The third was proposed by Bachmair and Ganzinger, which allowed to make
tremendous progress in all directions ever since, to a point that people did not
find the need to look for new methods. Bachmair and Ganzinger’s model genera-
tion technique [BG01a] is based on forcing a specific interpretation which can be
seen as characterizing the satisfiability property of a given set of clauses. Many
groups throughout the world studied and used this method, which was found a
bit mysterious at first. Our goal here is to shed a new light on this important
approach, by adopting a presentation based on semantic trees which we think is
easy to grasp.

As transfinite semantic trees, Bachmair and Ganzinger’s model generation
technique is based on a well-founded ordering on terms which can be transfinite.
It aims at showing the refutation-completeness property of a set of inference
rules I used for generating the empty clause from a given unsatisfiable set S of
clauses. The ordering is used to restrict the possible inferences to those involving
maximal atoms.

Our first problem was to construct finite semantic trees with transfinite or-
derings. The answer is provided by Gödel and Maltsev’s compactness theorem1:
only finitely many ground instances of S suffice. These ground instances generate
finitely many atoms which define interpretations which are finitely refuted, hence
a finite semantic tree. A consequence of this construction is that the ordering
need not be total, nor well-founded: it needs only be strict. It can then be com-
pleted into a total strict ordering on the finite set of atoms. The well-foundedness
assumption however becomes necessary in the presence of an equality predicate.

Our second problem was to guess which node in the semantic tree of an
unsatisfiable set of ground clauses would allow us to make an inference. The
answer is easy: the model generation technique builds an interpretation which
defines indeed a path in the semantic tree ending in an inference node.

The third problem was to show that this inference decreases the semantic
tree in some well-founded ordering, allowing us to conclude by induction that
the tree could be reduced in finite time to its root, hence showing that the empty
clause had been generated. Building well-founded orderings on the semantic tree

1 The solution was hinted at by Michael Rusinowitch in a discussion with the first
author.
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is much easier than on the set of clauses itself, allowing us again to slightly
improve over the existing literature in some cases.

We do not think that our contribution lies in any improvement over the cur-
rent literature. Our first main contribution, as we feel, is to show that all these
concepts elaborated by Ganzinger and his collaborators are intrinsic to the en-
tire field of automated deduction, rather than specific to his model generation
proof method as one might have thought. The second contribution is the use of a
single proof method to obtain them all, suggesting that some of these restrictions
may be combined. We will treat here a few basic results only: ordered resolution,
ordered resolution with selection, ordered linear resolution, and ordered resolu-
tion and paramodulation. We consider the systematic use of our technique as an
exercice which will allow the reader to better grasp the subtleties of Ganzinger’s
work.

2 Ordered Resolution with Selection

The semantic tree technique makes it relatively clear that not only resolution is
complete, but also ordered resolution, where only literals that are maximal in
their respective clauses are resolved upon [CL73]. This is a very effective restric-
tion of resolution. We recall the completeness argument for ordered resolution in
Section 2.1. We also improve it, by showing that ordered resolution is complete
for any stable ordering (even, say, not well-founded).

Another very effective restriction is ordered resolution with selection, where
a selection function is used to denote selected exceptions to the ordering re-
striction. This refinement of resolution generalizes both ordered resolution and
positive resolution (where one of the premise is constrained to contain only posi-
tive literals). It has been known for a long time to resist semantic tree arguments,
and Bachmair and Ganzinger’s forcing technique [BG01a] provided an elegant
completeness argument. We show how the two techniques blend naturally to-
gether in Section 2.2. In Section 2.3, we deal briefly with redundancy elimination
strategies, an important part of Bachmair and Ganzinger’s work in automated
deduction. We sketch how our technique generalizes to the completeness of lin-
ear resolution in Section 2.4, a refinement of resolution whose completeness was
traditionally thought to require different arguments.

2.1 Ordered Resolution

A literal is an atom or its negation. We write +A for the atom A seen as an atom,
and −A for its negation. We shall usually write ±A for a literal, obtained by
taking A with a sign, either + or −. A clause is a finite set of literals separated
by ∨.

Let � be any stable quasi-ordering on atoms which restricts to an ordering
on ground atoms. By stable, we mean that for any two atoms A, B, if A � B,
then Aσ � Bσ for every substitution σ. Let � be the converse of �, � be the
strict part of �, and ≺ be the converse of �. The rule of ordered resolution is as
follows, where the two premises are assumed renamed, without loss of generality,
so as to have no variable in common.
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+A1 ∨ . . .+ Am ∨ C − A′
1 ∨ . . . ∨ −A′

m′ ∨ C′

Cσ ∨ C′σ

m ≥ 1, n ≥ 1,
σ = mgu(A1 = A2 = . . . = Am =

A′
1 = . . . = A′

m′),
∀B ∈ Cσ ∨ C′σ,A1σ �� B

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′

We write mgu(E) the most general unifier of any given set of term equations.
As usual, we let σ be more general than θ if and only if θ = σσ′ for some
substitution σ′, and we write σ � θ.

Ordered resolution is sound and complete, in the sense that, starting from a set
S of clauses, we may deduce the empty clause � by finitely many applications
of the above rule if and only if S is unsatisfiable. We may in fact restrict m′

to be 1 (no negative factoring), or m to be 1 (no positive factoring) without
breaking completeness, but not both. Alternative presentations split this rule
in one binary ordered resolution rule, and additional positive/negative factoring
rules. We shall do this in later sections. For now, the current presentation will
be more practical.

Soundness is trivial. Completeness is, of course, harder, so let’s start by show-
ing how semantic trees can be used to show that ordered resolution is complete
when � is enumerable, i.e., when it satisfies the following property:

(∗) there is an enumeration A0
1, A

0
2, . . . , A

0
i , . . . of ground atoms such that i > j

whenever A0
i � A0

j .

This much had been known since [Joy76]. Plain, unordered resolution, will in
particular be complete, since this is the case where � is just the equality relation
on atoms, which is clearly enumerable. We shall show that property (∗) is not
required later.

Let A0
1, A

0
2, . . . , A

0
i , . . . be any given enumeration of ground atoms sat-

isfying (∗). A partial interpretation I on this enumeration is a finite list
±1A

0
1,±2A

0
2, . . . ,±kA

0
k. If A

0
i occurs under the + sign, then A0

i is true in I;
A0

i is false if it occurs under the − sign, and undefined otherwise.
The Herbrand tree is the binary tree whose vertices are partial interpreta-

tions. The partial interpretation I = ±1A
0
1,±2A

0
2, . . . ,±kA

0
k has two successors

±1A
0
1,±2A

0
2, . . . ,±kA

0
k,−A0

k+1 and ±1A
0
1,±2A

0
2, . . . ,±kA

0
k,+A0

k+1—provided
A0

k+1 exists, otherwise I is a leaf. The root of the tree is the empty partial
interpretation ε.

The maximal paths of the Herbrand tree are naturally in bijection with Her-
brand interpretations., i.e., sets of ground atoms. If IH is a Herbrand interpreta-
tion, we follow the maximal path going through ε, then ±1A

0
1, then ±1A

0
1,±2A

0
2,

. . . , where ±i is + if A0
i ∈ IH , − otherwise. Conversely, any path goes through

vertices that mention each atom A with a unique sign; collect those that occur
with the + sign, thus defining a Herbrand interpretation.

Figure 1 shows a (finite) semantic tree on the three atoms r, q, p in this order.
I.e., A0

1 = r, A0
2 = q, A0

3 = p. Vertex 1 is the empty partial interpretation ε,
vertex 2 is −r, 3 is +r, 4 is −r,−q, etc.
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1
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+p
+q ∨ −p+q ∨ −p −p ∨ −q ∨ −r

+r ∨ −q +p
+p

Fig. 1. A semantic tree

Let us say that a ground clause C is false at vertex I = ±1A
0
1,±2A

0
2, . . . ,

±kA
0
k if and only if, for every literal ±A of C, the opposite literal ∓A is listed

in I. In Figure 1, the clause +r ∨−q is false at −r,+q (vertex 5), and also, say,
at −r,+q,−p (vertex 10).

Let S be an unsatisfiable set of clauses: for every Herbrand interpretation IH ,
there is a ground instance Cθ of a clause C ∈ S such that IH makes Cθ false.
Since the value of Cθ depends on the truth value of only finitely many atoms,
there is a partial interpretation, i.e., a vertex along IH where Cθ is false—e.g.,
vertex 10 makes +r ∨−q false, assuming +r ∨−q is a ground instance of some
clause in S. A failure node is any highest vertex in the Herbrand tree that makes
some ground instance Cθ of some clause C ∈ S false.

By König’s Lemma, if S is unsatisfiable, then the closed tree TS obtained
from the Herbrand tree by cutting it at failure nodes is finite. The compactness
theorem for first-order logic follows easily: only finitely elements of S account
for the finitely many leaves of TS.

Given a finite closed tree TS , either the root ε is a failure node, so that S must
contain the empty clause �; or there must be a lowest non-failure vertex I, called
an inference node. For example, −r,−q (vertex 4) in Figure 1 is an inference
node. Its two successors, which must be of the form I,−A and I,+A respectively,
must be failure nodes for some ground instances of first-order clauses C+ and
C− respectively, in S, say C+θ+ and C−θ−. By the definition of failure nodes,
C+θ+ must be a disjunction of +A with some literals above A (i.e., appearing
before A in the enumeration A0

1, A
0
2, . . . ), and C−θ− must be a disjunction of

−A with some literals above A again. Write C+ as +A1 ∨ . . .+ Am ∨ C, where
+A1, . . . , +Am are the literals L in C+ such that Lθ+ = +A, and write C− as
−A′

1 ∨ . . . ∨ −A′
m′ ∨ C′, where −A′

1, . . . , −A′
m′ are the literals L′ in C− such

that L′θ− = −A. Renaming apart the free variables of C+ and C−, in particular,
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A1, . . . , Am, A′
1, . . . , A

′
n are unifiable. Call σ their most general unifier; since �

is stable, and using assumption (∗) above, Aiσ 	� B and A′
i′σ 	� B for every

atom B in Cσ ∨ C′σ, 1 ≤ i ≤ m, 1 ≤ i ≤ m′. So the ordered resolution rule
applies, and we may generate the resolvent Cσ ∨ C′σ. E.g., in Figure 1, the
inference node −r,−q (vertex 4) allows one to resolve between the two clauses
whose respective ground instances decorate the failure nodes below it, namely
+p and +q ∨ −p, yielding a clause with +q as ground instance.

Let S′ be S union Cσ ∨ C′σ. Since Cσ ∨ C′σ is now false at the inference
node I, TS′ is a closed tree with strictly less vertices than TS . This process must
therefore terminate; then ε will be a failure node, at which point � has been
inferred: completeness follows.

There are several degrees of freedom that we can exploit in this argument.
First, the usual argument goes by considering the ground instances of clauses in S
(which form an unsatisfiable set), showing that propositional ordered resolution
is complete for the latter, then lifting propositional resolution refutations to
the first-order level by so-called lifting. The argument above shows that we can
reason directly at the level of first-order clauses, considering ground instances
on the fly. While this makes no difference in ordered resolution, this is definitely
needed when selection functions are introduced (Section 2.2), because nothing
like stability will be required of selection functions.

Second, assumption (∗) can be completely dispensed with, as we promised,
using compactness: if S is unsatisfiable, then some finite set of ground instances
of S is already unsatisfiable. Clearly, this finite set uses only finitely many ground
atoms A0

1, . . . , A
0
n, and we can replay the argument above by using only these

atoms. Now it is easy to enumerate them in such a way that A0
i � A0

j implies

i > j, whether (∗) holds or not: just find a topological sort of the A0
i with respect

to the ordering �. (This is where we are using that � restricts to an ordering
on ground atoms.)

Third, the way we pick interesting vertices (here, inference nodes) in the
tree clearly dictates what constraints we may add to the resolution rule while
retaining completeness. Picking inference nodes is a good match for ordered
resolution. Other forms of resolution will require us to find other vertices in TS .
In the context of semantic trees, the import of the Bachmair-Ganzinger forcing
method can be seen as a clever way of finding alternative vertices in TS. This
is simple and elegant: any vertex I is just a partial interpretation, and we shall
find it by constructing I as a partial interpretation, alternatively as specifying
which ground atoms should be true and which should be false while going down
the closed tree TS .

Fourth, and finally, we are free to apply alternative termination arguments.
Taking the notations above, we have argued that we could produce a finite
ordered resolution refutation by showing that we could rewrite TS into another
closed tree TS′ by generating the right ordered resolvent. This terminates because
the size |TS | of TS is greater than that of TS′ . However, any well-founded measure
of finite closed trees TS would work equally well. This is precisely what we shall
exploit next.
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2.2 Ordered Resolution with Selection

Let sel be any fixed selection function, by which we mean any function that
maps each clause C to a possibly empty subset of the negative literals in C—the
selected literals in C. The idea is that, if sel (C) is non-empty, then we require
to resolve on all selected literals; if sel (C) = ∅, then we revert to resolving upon
�-maximal literals. On the other hand, we additionally require that the other
premise +A1 ∨ . . .+Am ∨ C contains no selected literal at all.

Again assume a given stable quasi-ordering � whose restriction to ground
atoms is an ordering, and assume additionally that � is also stable: A � B
implies Aσ � Bσ for every atoms A, B, and substitution σ. In case all these
conditions are satisfied, we say that� is strongly stable. E.g., any reflexive closure
� of a strict stable ordering �—the traditional setting for ordered resolution—is
a strongly stable quasi-ordering.

The rule of ordered resolution with selection is

1≤i≤�
︷ ︸︸ ︷

Ci ∨+Ai1 ∨ . . . ∨+Aini C′ ∨ −A′
1 ∨ . . . ∨ −A′

�

C1σ ∨ . . . ∨ C�σ ∨C′σ

with the following side-conditions:

(i) ni ≥ 1 for every i, 1 ≤ i ≤ �;
(ii) σ = mgu{Aij = A′

i|1 ≤ i ≤ �, 1 ≤ j ≤ ni};
(iii) sel(Ci ∨ +Ai1 ∨ . . . ∨ +Aini) = ∅ and Ai1σ 	� B for every atom B in Ciσ,

for every i, 1 ≤ i ≤ �;
(iv) sel(C′ ∨ −A′

1 ∨ . . . ∨ −A′
�) = {−A′

1, . . . ,−A′
�} and � ≥ 1, or no literal is

selected, � = 1 and A′
1σ 	≺ B for every atom B in C′σ.

Note that sel is arbitrary. In particular, imagine that we select {−p(X)} in
+q(X)∨−p(X)∨−r(X). While it would be natural to also select {−p(a)} in its
instance +q(a)∨−p(a)∨−r(a), selection functions are not required in any way
to do so, and we may perfectly well choose to select {−r(a)}, or {−p(a),−r(a)},
or nothing instead. This fact alone ruins any hope of proving completeness by
lifting a completeness argument from the propositional to the first-order case.

Note also that, while we still require positive factoring (in general ni 	= 1) in
the side clauses Ci ∨+Ai1 ∨ . . .∨+Aini , we dispense with negative factoring in
the main clause C′ ∨ −A′

1 ∨ . . . ∨ −A′
�.

Theorem 1. Ordered resolution with selection is complete: for any strongly sta-
ble quasi-ordering �, for any selection function sel, for any set of clauses S, S
is unsatisfiable if and only if we can derive � from S by ordered resolution with
selection.

Proof. We spend the rest of this section proving this.
The “if” direction is obvious. Conversely, fix a finite enumeration A0

1, . . . , A
0
n

of all ground atoms in the finite unsatisfiable set of ground instances of clauses
in S secured by the compactness theorem. Sort them so that A0

i � A0
j implies
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i > j. A closed tree TS is adequate if and only if its vertices are of the form
±1A

0
1, . . . ,±A0

k with k ≤ n. By construction, there is an adequate closed tree
TS. Also, for each failure node I of TS , there is a clause CI in S and a substitution
θI such that CIθI is ground and false at I.

Given any set S′ of clauses, call a decorated tree any tuple (T,C•, θ•), where
T is an adequate closed tree, C• maps each leaf I of T to a clause CI of S′, and
θ• maps each leaf I to a substitution θI such that CIθI is ground and false at
I. The discussion above shows that S has a decorated tree.

Given a decorated tree (T,C•, θ•) for S′, either the root ε is a leaf, then Cε

is necessarily the empty clause �, and we are done. Or we find a path through
T as follows. Define the ground atom HI and the sign ±I , for each leaf I, so
that ±IHI is the literal ±A0

i in CIθI with the highest index i; i.e., the lowest
(largest) literal on the path leading to I.

Definition 1 (Generative). Let us say that CI , and by extension CIθI , is
generative if and only if ±I is the + sign, and no literal is selected: sel (CI) = ∅.
This is our version of Bachmair and Ganzinger’s notion of productive clauses.
Any clause CI can be written uniquely as ±IHI ∨+PI ∨ −NI , where PI is the
set of atoms occurring under the + sign in CI (except HI), and NI is the set of
atoms occurring under the − sign in CI . (We write +P for the disjunction of all
+B, B ∈ P , and −N for the disjunction of all −B, B ∈ N .) Generative clauses
are those where ±I is the + sign, and no literal is selected in −NI .

Now build a specific interpretation by Bachmair-Ganzinger forcing. Intu-
itively, each productive clause can be written as a Horn-like clause HI ⇐ −PI ∧
+NI , stating thatHI should be set to true whenever all atoms in PI are false and
all atoms in NI are true. We say that −PI ∧+NI is true, and that HI is forced
whenever this happens; otherwise, HI will be set to the default value “false”.
We shall do so while traveling downwards inside T . E.g., look at Figure 1. The
clause +p is necessarily generative. The clause +q ∨ −p cannot be generative,
because the only positive atom is not maximal, and similarly for +r∨−q. Then,
starting from vertex 1, we let r be set to the default value false—no generative
clause forces it to true. So we must go down left, and arrive at vertex 2. Then
we let q be false, go to 4, and finally force p to true, arriving at 9. Formally:

Definition 2. Let (T,C•, θ•) be a decorated tree. Define a failure node I in T
as follows. Let I0 = ε be the root of T . Then define Ik, k ≥ 1, by induction on
k as follows. Let Ik be given. If Ik is a failure node, then stop, and let I = Ik.
Otherwise, if there is a generative clause CI′ = +HI′ ∨ +PI′ ∨ −NI′ such that
−PI′θI′ ∧ +NI′θI′ is true in Ik and HI′θI′ = A0

k+1, then force A0
k+1 to true:

define Ik+1 as Ik,+A0
k+1. Otherwise, let Ik+1 be Ik.

Alternatively, the failure node I is obtained by traveling down T , starting from
the root. At each non-leaf vertex, we prefer to take the left branch, unless the
left successor I ′ is already a failure node and CI′ has no selected atom (in which
case CI′ is the generative clause indicated in Definition 2). This stops at a leaf
I. Either the last direction we took was left, and then there must be a selected
atom in I (this will ensure the left alternative in condition (iv)), or the last
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direction we took was right, in which case the maximal atom in CIθI will have
the − sign (ensuring the right alternative in condition (iv)). We prove this in
Lemma 2 below.

Clearly,

Lemma 1. The partial interpretation I of Definition 2 satisfies the following
two properties:

(I.1) For every generative clause CI′ such that −PI′θI′ ∧+NI′θI′ is true in I,
HI′θI′ is true in I.

(I.2) If H is a true atom in I, then there is a generative clause CI′ such that
HI′θI′ = H. Moreover, −PI′θI′ ∧+NI′θI′ is true in I.

These properties crucially depend on the fact that once an atom has been forced
to true, resp. false, in Ik, it will remain so in all subsequent Ik′ , k′ ≥ k. (Whence
the name of forcing.)

The failure node I will be the place where resolution takes place, much as
inference nodes were the places where resolution took place in Section 2.1. Let
us see how I provides us with the main clause C′ ∨ −A′

1 ∨ . . . ∨ −A′
�, so that

condition (iv) is satisfied:

Lemma 2. If there is at least one selected literal in CI , CI can be written as
C′ ∨ −A′

1 ∨ . . . ∨ −A′
�, where −A′

1, . . . ,−A′
� are exactly the selected literals of

CI , and � ≥ 1. Otherwise, let σ be any substitution that is more general than θI .
Then, CI is necessarily of the form C′ ∨−A′

1, where −A′
1σ is maximal in CIσ,

i.e., where −A′
1σ 	≺ B for every atom B in C′σ.

Proof. If sel(CI) is non-empty, this is clear. So assume sel(CI) = ∅. Consider
±IHI . If ±I were +, CI would be generative. But since CIθI is false at I,
−PIθI ∧+NIθI is true in I. By (I.1) HIθI would be true in I, too. This would
make CIθI true at I, contradiction. So ±I is −. Let −A′

1 be HI . Clearly, A
′
1θI

is below or equal to AθI for any A in C′. So A′
1σ 	≺ Aσ, since � is stable and

σ � θI . ��

We now show that the other conditions (i), (ii), (iii) on the rule of ordered
resolution with selection also apply:

Lemma 3. Let A′
1, . . . , A

′
� be defined as in Lemma 2. For each i, 1 ≤ i ≤ �,

there is a generative clause CI′
i
such that HI′

i
θI′

i
= A′

iθI .
Write CI′

i
as Ci ∨ +Ai1 ∨ . . . ∨ +Aini , where +Ai1, . . . , +Aini are all the

literals L in CI′
i
such that LθI′

i
= +A′

iθI . Then:

(i) ni ≥ 1;

(ii) the mgu σ = mgu{Aij = A′
i|1 ≤ i ≤ �, 1 ≤ j ≤ ni} exists, and σ � θ, where

θ = θI ∪ θI′
1
∪ θI′

2
∪ . . . ∪ θI′

�
;

(iii) sel(Ci ∨+Ai1 ∨ . . . ∨+Aini) = ∅ and Ai1σ 	� B for every atom B in Ciσ,
for every i, 1 ≤ i ≤ �;
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Proof. Since CIθI is false at I, all the atoms A′
iθI are true in I. By (I.2), first

part, there is a generative clause CI′
i
such that HI′

i
θI′

i
= A′

iθI . Necessarily, CI′
i
θI′

i

contains the literal +A′
iθI .

Let therefore +Ai1, . . . , +Aini , ni ≥ 1, be all the literals L in CI′
i
such that

LθI′
i
= +A′

iθI , and let Ci be the disjunction of the remaining literals of CI′
i
.

(Note that there may be several such literals L, whence ni may be different
from 1, requiring positive factoring.) We have just found the side premise CI′

i
=

Ci ∨+Ai1 ∨ . . . ∨+Aini . Since ni ≥ 1, (i) follows.
Then, AijθI′

i
= A′

iθI . Since without loss of generality, Aij and Ai′j′ have no
free variable in common whenever i 	= i′, and since Aij and A′

i′ have no free
variable in common (for all i, i′, j), the substitution θI ∪ θI′

1
∪ θI′

2
∪ . . . ∪ θI′

�

makes sense, and unifies all Aijs and A′
is: (ii) follows.

Since CI′
i
is generative, no literal is selected in it. Assume that Aijσ � Bσ

for some B ∈ Ci; by stability, using σ � θI′
i
, AijθI′

i
� BθI′

i
, that is, HI′

i
θI′

i
�

BθI′
i
. This is impossible, since HI′

i
θI′

i
is the largest literal in CI′

i
θI′

i
, since by

construction BθI′
i
	= HI′

i
θI′

i
, and since � restricts to an ordering on ground

atoms. So (iii) follows. ��

Therefore C1σ∨. . .∨C�σ∨C′σ is indeed inferable by the rule of ordered resolution
with selection.

We now turn to termination. Let S′ be the set of clauses of which (T,C•, θ•)
is a decorated tree, and let S′′ be S′ union the resolvent C1σ ∨ . . . ∨C�σ ∨C′σ.
We shall build a new decorated tree (T ′, C′

•, θ
′
•), for S

′′ this time, in Definition 3
below, in such a way that (T ′, C′•, θ′•) is less than (T,C•, θ•) in some well-founded
ordering.

This ordering must be more sophisticated than the natural ordering on sizes
|T | of trees T that we used in Section 2.1. To use this ordering, we should show
that the resolvent is false at some vertex I ′ strictly above I, which would allow
us to define T ′ as T , with the subtree rooted at I ′ chopped out. But I ′ may
well be I itself in our new setting. This is mainly because we do not implement
negative factoring.

As a consolation, we check that the resolvent (C1σ ∨ . . . ∨ C�σ ∨ C′σ)θ =
C1θI′

1
∨ . . . ∨ C�θI′

�
∨ C′θI is false at I itself. In the problematic case where the

highest vertex I ′ where this is false is I itself (and the chopping described above
would not decrease the size of the tree), this will allow us to redecorate I with
C1σ ∨ . . . ∨ C�σ ∨C′σ, θ instead of CI , θI . We shall see that the new decoration
is then smaller than the old one in a suitable ordering.

So let us check that C1θI′
1
∨ . . . ∨ C�θI′

�
∨ C′θI is false at I. C′θI is false

at I, since C′θI is a sub-clause of CIθI , which is false at I. And each CiθI′
i
,

1 ≤ i ≤ �, is false at I, by the following argument. The generative clause CI′
i

equals +HI′
i
∨ +PI′

i
∨ −NI′

i
. By construction of CI′

i
and by (I.2), second part,

−PI′
i
θI′

i
∧+NI′

i
θI′

i
is true at I. By construction, CiθI′

i
is exactly the sub-clause

+PI′
i
θI′

i
∨−NI′

i
θI′

i
, which is false at I. So (C1σ∨ . . .∨C�σ∨C′σ)θ is indeed false

at I. Since it only contains atoms not lower than the atoms in the premises, it
is false at I.

Therefore, we define:
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Definition 3. Let I ′ be the highest vertex in T , above I, where the resolvent
(C1σ ∨ . . . ∨ C�σ ∨ C′σ)θ is false. Define the new decorated tree (T ′, C′

•, θ
′
•) as

follows:

(a) If I ′ is strictly higher than I in T , then let T ′ be the closed tree whose leaves
are I ′ plus all the leaves of T that are not below I ′. (“Chop at I ′.”) Let C′

I′

be the resolvent C1σ ∨ . . .∨C�σ ∨C′σ, and θ′I′ be θ. Let C′
I′′ be CI′′ and θ′I′′

be θI′′ for every I ′′ 	= I ′.
(b) If I ′ = I, let T ′ be just T , C′

I be the resolvent C1σ ∨ . . . ∨ C�σ ∨ C′σ, θ′I be
θ; let C′

I′′ be CI′′ and θ′I′′ be θI′′ for every I ′′ 	= I.

The latter case can only happen when the lowest atom of (C1σ ∨ . . . ∨ C�σ ∨
C′σ)θ is the same as that of CIθI , i.e., HIθI . Consider the other literals of
(C1σ ∨ . . . ∨ C�σ ∨ C′σ)θ = C1θI′

1
∨ . . . ∨ C�θI′

�
∨ C′θI . The literals in CiθI′

i
,

1 ≤ i ≤ �, are, by definition of Ci, strictly higher than HI′
i
θI′

i
= A′

iθI , which is
an atom of CIθI , and is therefore higher than or equal toHI . The literals of CiθI′

i

are then always strictly higher than HI . The only reason why HI can occur in
(C1σ∨ . . .∨C�σ∨C′σ)θ = C1θI′

1
∨ . . .∨C�θI′

�
∨C′θI is therefore that it occurs in

C′θI . What matters here is that by replacing CIθI by C1θI′
1
∨. . .∨C�θI′

�
∨C′θI as

the clause at leaf I, we have replaced large literals HIθI by clauses CiθI′
i
which

contain an arbitrary number of strictly smaller literals.
This suggests defining a measure based on multiset extensions. Formally:

Definition 4. Define A0
i �′ A0

j if and only if i > j. For every failure node I ′ in
a decorated tree (T,C•, θ•), let μ1(CI′ , θI′) be the multiset of all AθI′ , where ±A
ranges over the literals of CI′ . This is ordered by the multiset extension �′

mul

of �′.

(Note that A � B implies A �′ B, but the converse implication fails in general,
unless � is total on ground atoms, which we do not assume.)

In case (b), where I ′ = I, we therefore obtain μ1(CI , θI)�′
mulμ1(C

′
I , θ

′
I).

Definition 5. Define μ−(T,C•, θ•) as the multiset of all measures μ1(CI′ , θI′),
when I ′ ranges over the failure nodes of T .

In case (b), μ1(CI′ , θI′) decreases strictly, while μ1(CI′′ , θI′′) remains unchanged
for the other leaves I ′′. So μ−(T,C•, θ•) (�′

mul)mul μ
−(T ′, C′

•, θ
′
•) in case (b).

Let |T | denote the size of T , and note that |T | = |T ′| in this case. In case (a),
clearly |T | > |T ′|, so in any case μ(T,C•, θ•) (>, (�′

mul)mul)lex μ(T ′, C′
•, θ

′
•),

where:

Definition 6. The measure μ(T,C•, θ•) is defined as the pair (|T |,
μ−(T,C•, θ•)).

Since > is well-founded, and since �′, which is an ordering on a finite set of
atoms A0

1, . . . , A
0
n, is also well-founded, we conclude:

Lemma 4. The reduction relation that replaces (T,C•, θ•) by (T ′, C′•, θ′•), as
defined in Definition 3, terminates.
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We now terminate the proof of Theorem 1. Assume S unsatisfiable. Starting from
a decorated tree for S, we build a derivation by ordered resolution with selection
of S = S0, S1, . . . , Sk, . . . , each mapped to a decorated tree (T0, C0•, θ0•),
(T1, C1•, θ1•), . . . , (Tk, Ck•, θk•), . . . ., where each decorated tree is obtained from
the previous one by the reduction defined in Definition 3. By Lemma 4, this
terminates, say at step k. Then the root of Tk must be a failure node, so Sk

contains the empty clause �. ��
This proof clearly takes its roots in both the semantic tree technique and Bach-
mair and Ganzinger forcing. Note that we only require � to be strongly stable.
We don’t need it to be a reduction ordering, or to be total on ground atoms, or
even to be well-founded.

2.3 Redundancy Elimination and Games

An important component of every automated deduction system is a set of re-
dundancy elimination rules. Classic redundant clauses include tautologies and
subsumed clauses [BG01a]. Other useful redundancy elimination rules include
simplification rules. A crucial import of Bachmair and Ganzinger’s approach to
resolution was to define standard redundancy criteria, a unified approach justi-
fying which redundant clauses can be eliminated, and which simplification rules
can be applied while preserving completeness.

We may see the subtle interaction between resolution and redundancy rules as
a two-player game [dN95] between a player P and an opponent O. At each turn,
either the empty clause � has been derived, and P wins, or P chooses a resolvent
to produce, then O applies any finite number of redundancy rules. Completeness
is then equivalent to the existence of a winning strategy for P, starting from any
unsatisfiable set S of clauses.

For simplicity, and without loss of generality, we shall assume that O can only
add clauses, or remove clauses. Replacing and simplifying clauses will be imple-
mented by adding the replacement clauses and removing the replaced clauses.

The proof of Theorem 1 shows what resolvent P should play at each turn; this
resolvent is the one we constructed, which makes μ(T,C•, θ•) decrease strictly.
Completeness in the presence of redundancy elimination rules follows, as soon
as, whatever O does, it can only make the chosen measure μ(T,C•, θ•) decrease
or stay the same. This is obvious when O adds a clause: (T,C•, θ•) stays the
same. This is trickier when O removes a clause. We need to make sure that: (†)
whatever clause C is removed by O from the current clause set S′, for any leaf
I ′ of T such that C = CI′ (note that there might be 0, 1, or several such leaves),
there is another clause C′

I′ in S such that some ground instance C′
I′θ′I′ of C′

I′ is
false at I ′, and μ1(CI′ , θI′)�′

mulμ1(C
′
I′ , θ′I′), where �′

mul is the reflexive closure
of �′

mul. If so, we shall change (T,C•, θ•) into (T ′, C′
•, θ

′
•), where T ′ = T , C′

I′

and θ′I′ are as given above for all leaves I ′ such that C = CI′ (note that C′
I′θ′I′

cannot be false strictly above I ′, since I ′ is a failure node, whence T ′ = T ), and
C′

I′ = CI′ , θ′I′ = θI′ for all other leaves I ′. It is clear that μ(T,C•, θ•) will be
larger than μ(T ′, C′•, θ′I′) in the reflexive closure of (>, (�′

mul)mul)lex, whence
completeness is preserved.
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Let us find a more readable criterion than condition (†) above. Recall that
C1, . . . , Ck |= C if and only if every Herbrand interpretation that makes all
ground instances of C1, . . . , Ck true also makes every ground instance of C true.
Equivalently, every Herbrand interpretation that makes some ground instance
of C false must make some ground instance of some Ci, 1 ≤ i ≤ k, false. By
analogy, let us say that C1 . . . , Ck |=∗ C if and only if every partial interpretation
that makes some ground instance of C false must make some ground instance of
some Ci false, too, 1 ≤ i ≤ k.

Imitating Bachmair and Ganzinger’s standard redundancy criterion, we may
enforce the above condition (†) by requiring the stronger property that C1, . . . ,
Ck |=∗ C, for some clauses C1, . . . , Ck in the current clause set S such that
C�mulC1, . . . , C�mulCk. Here �mul makes sense provided we see clauses as
multisets of literals, ignoring signs. Let us show that indeed (†) must hold. For
each leaf I ′ where C = CI′ , since C1, . . . , Ck |=∗ C, there is a clause Ci, 1 ≤ i ≤ k,
having a ground instance that is false at I ′. Let C′

I′ be Ci, and C′
I′θ′I′ be the cor-

responding ground instance. We must show that μ1(CI′ , θI′) �′
mulμ1(C

′
I′ , θ′I′).

Since CI′ = C �mul Ci = C′
I′ , we may obtain C′

I′ from CI′ by repetitively re-
placing atoms by finitely many smaller ones in the � strict ordering. Since � is
stable, we may reproduce this at the ground level, and obtain C′

I′θ′I′ from CI′θI′

by repetitively replacing ground atoms by smaller ones in the � strict ordering.
These are in particular smaller in �′ as well. So μ1(CI′ , θI′)�′

mulμ1(C
′
I′ , θ′I′),

and (†) follows.
To recap, the natural standard redundancy criterion in our case reads as:

If C ∈ S, and C1 . . . , Ck |=∗ C for some clauses C1, . . . , Ck in S such that
C�mulC1, . . . , C�mulCk, then erase C.

We have shown that applying this criterion at any time during ordered resolution
with selection preserves completeness. This is close to Bachmair and Ganzinger’s
standard redundancy criterion, which uses |= instead of |=∗.

We illustrate this on a few well-known redundancy elimination rules.
In case C is a tautology C0∨+A∨−A, k is zero, and the criterion is vacuously

satisfied: we can always eliminate tautologies without breaking completeness in
ordered resolution with selection.

In case C = CI′ is subsumed by some clause C1 = C′
I′′ (k = 1), it is not

necessarily the case that C �mul C1, or even that μ1(CI′ , θI′)�′
mulμ1(C

′
I′′ , θ′I′′).

E.g., take C = +P (x), C1 = +P (x) ∨+P (y), which subsume each other, while
C 	�mul C1. This suggests that eliminating subsumed clauses is fraught with dan-
ger. And indeed, it is well-known that eliminating backward-subsumed clauses
may break completeness. We shall let the reader check that we indeed obtain
μ1(CI′ , θI′)�′

mulμ1(C
′
I′′ , θ′I′′) as soon as C′

I′′ subsumes C linearly, i.e., C is of
the form C′

I′′σ ∨ C′′, where σ does not unify any distinct literals in C′
I′′ (i.e.,

C′
I′′σ is not a factor of C′

I′′). This justifies that eliminating linearly subsumed
clauses (whether backward or forward) does not break completeness. Eliminating
linearly subsumed clauses is implemented in SPASS [WBH+02]. The linearity re-
striction is also implicit in work by Bachmair and Ganzinger, who define clauses
as multisets, not sets (we shall do so as well in Section 3).
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Our argument shows that completeness is in fact preserved if we remove C =
C′

I′′σ ∨ C′′, when both C and C′
I′′ are in S, whatever σ is (i.e., even when C

is subsumed non-linearly by C′
I′′ ), provided C′′ contains an atom A such that

A � B for every B in C′
I′′σ: indeed in this case C can only be false at a vertex

strictly below I ′′, hence C cannot be of the form CI′ for any failure node I ′.
Many other redundancy elimination rules are listed in [BG01a], on which the

arguments above apply. We would like to end this section by examining the subtle
case of the splitting-with-naming rule of [RV01a] (which was called splittingless
splitting in [GLRV04], by analogy with inductionless induction). This will in
particular show where using |=∗ instead of |= makes a difference. Assume we
are given an initial set of clauses on a set P of predicates. Call these P-clauses.
For each equivalence class of P-clauses C modulo renaming, let �C� be a fresh
nullary predicate symbol not in P . Call these fresh symbols the splitting symbols .
The splittingless splitting rule allows one to replace a clause of the form C ∨C′,
where C and C′ are non-empty clauses that have no variable in common, where
C′ is a P-clause, and where C contains at least one atom P (t1, . . . , tn) with
P ∈ P , by the two clauses C ∨ −q and +q ∨ C′, where q = �C′�. This rule
is not only effective in practice [RV01a], it is also an important tool in proving
certain subclasses of first-order logic decidable, and to obtain optimal complexity
bounds (see e.g., [GL05]). Take � so that P (t1, . . . , tn) � q for every P ∈ P and
for any splitting symbol q. Then it is easy to see that the standard redundancy
criterion is satisfied, and we can indeed replace C ∨ C′ by the smaller clauses
C ∨ −q and +q ∨ C′. So completeness is preserved, as shown by Bachmair and
Ganzinger, as soon as � is a well-founded reduction ordering that is total on
ground terms.

Our approach, as it is, does not apply here. We are paying the dues for all the
benefits that our use of compactness brought us. Indeed, remember our proof
started by taking a finite subset of ground atoms A0

1, . . . , A
0
n that are required

for finding a contradiction. While P is only required to play clauses with ground
instances among the latter, O is not limited in any such way. Here, O may indeed
produce C ∨−q and +q∨C′, where q is not among A0

1, . . . , A
0
n. Then we cannot

remove C ∨ C′. Assume that C ∨ C′ is CI′
i
, for some leaves I ′i, 1 ≤ i ≤ k.

There is no reason why C ∨−q or +q ∨C′ should be false at any I ′i: indeed q is
undecided. In other words, while (C ∨ −q), (+q ∨ C′) |= C ∨ C′, we do not get
(C ∨−q), (+q∨C′) |=∗ C ∨C′. Bachmair and Ganzinger’s standard redundancy
criterion applies, but our variant does not.

This can be repaired easily if O can only generate finitely many splitting sym-
bols. In this case, just assume they are all among A0

1, . . . , A
0
n, and completeness

again follows. E.g., in [GL05], the only splitting symbols we ever need are of
the form �B(X)�, where B(X) is any disjunction of literals −P (X), where P is
taken from a finite set. So there are finitely many splitting symbols, and we can
without loss of generality assume they are all among A0

1, . . . , A
0
n.

Despite these difficulties, completeness still holds in the general case. How-
ever, this is more complex: first, we need to assume a form of our old condi-
tion (∗), namely that the ordering � on splitting symbols can be extended to
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a total ordering on the splitting symbols q1, q2, . . . , qi, . . . (a similar condition
is used in [SV05, Theorem 4]); second, we need to consider transfinite seman-
tic trees [HR91] based on the transfinite (indexed by the ordinal ω + n) enu-
meration q1, q2, . . . , qi, . . . , A

0
1, . . . , A

0
n, where A0

1, . . . , A
0
n are the ground atoms

P (t1, . . . , tn), P ∈ P , given by the compactness theorem. . . but this is Bachmair
and Ganzinger’s usual forcing argument in disguise.

2.4 Where Trees Matter: Completeness of Linear Resolution

Until now, we have only used semantic trees as a convenient way of organizing
paths, i.e., Herbrand interpretations. Similarly, Bachmair and Ganzinger’s forc-
ing argument builds an interpretation. One might therefore ask whether the use
of trees brings any additional benefit than just reasoning on paths.

We claim that linear resolution can be shown complete using a semantic tree
technique. This appears to be new by itself: the standard proof of completeness
of linear resolution is by Anderson and Bledsoe’s excess literal argument, applied
to so-called minimally unsatisfiable sets of clauses. Furthermore, our semantic
tree technique will really use trees, not just the paths inside the trees.

The rule of linear resolution can be explained as follows. Start from a clause
set S0, and pick a clause C0 in S0, non-deterministically. Find a resolvent of C0

(the center clause) with some clause in S0 (the side clause). Name this resolvent
C1; this is the top clause. The current clause set is now S1 = S0 ∪ {C1}. Then
find a resolvent of the top clause C1 (now the new center clause) with some
side clause in S1, call it C2 (the new top clause). Proceed, getting a sequence of
successive resolvents Ci, i ≥ 0, until (hopefully) the empty clause � is obtained.
Observe that this is a non-deterministic procedure. The point in linear resolution
is that the only allowed center clause at the next step is the previous top clause.

That linear resolution is complete means that, if S0 is unsatisfiable, then there
is a sequence of choices, first of C0, then of each side clause, so that the empty
clause � eventually occurs as the top clause. Our technique will establish a more
general result: linear ordered resolution, where each resolvent is constrained to
be ordered (see Section 2.1), is complete again. This holds even if we only allow
factoring in center clauses but disallow it in side clauses.

This refinement of linear resolution can be formalized as follows. The only
deduction rule is:

∓A′
1 ∨ C′ ± A1 ∨ . . .± Am ∨ C

Cσ ∨ C′σ

m ≥ 1,
σ = mgu(A1 = A2 = . . . = Am = A′

1),
∀B ∈ Cσ,Aiσ �� B

1 ≤ i ≤ m

where ± is the same sign throughout, and ∓ is its opposite. The left premise is
meant to be the side clause, and the right premise is the center clause.

The process of linear resolution is then defined through a transition relation.
A state of the linear resolution procedure is a pair (S,C), where C is a clause in
S. The transition relation of linear resolution) is given by
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(S,C) � (S ∪ {C′}, C′)

where
C′′ C

C′

by the ordered linear resolution rule above, for some C′′ ∈ S. Remember that
C is the center clause, C′′ is the side clause, and C′ is the top clause.

Completeness means that, if S is unsatisfiable, then (S,C) �∗ (S′,�) for
some C ∈ S and some clause set S′.

We prove this by modifying the notion of semantic tree slightly. E.g., consider
the example of Figure 1, this time with the ordering q ≺ r ≺ p, see Figure 2.

Now look at vertex 2. The choice on r here is irrelevant: there is no clause
decorating any failure node below 2 that depends on the truth value of r. It is
therefore tempting to reduce the semantic tree to the one shown in Figure 3,
where vertex 2 has been replaced by the subtree rooted at vertex 5. This reduc-
tion process is similar to that used in BDDs [Ake78].

We now allow paths in semantic trees to skip over some atoms, as in Figure 3,
where r is skipped in the paths on the left: r is a don’t care. But atoms will still
be enumerated in the same ordering on each path. Call the resulting modified
notion a lax semantic tree for S. Each path, hence each leaf (failure node) defines
a lax partial interpretation, defined as a finite list ±1A

0
i1 ,±2A

0
i2 , . . . ,±kA

0
ik

of
signed ground atoms, 1 ≤ i1 < i2 < . . . < ik. We define decorated lax trees (for
S) in the expected way, as a triple T = (T,C•, θ•), where CI and θI are such
that CI ∈ S, CIθI is ground and false at leaf I.

We shall fix an unsatisfiable S and an enumeration A0
1, A

0
2, . . . , A

0
n guaranteed

by the compactness theorem in the rest of the section.
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Fig. 2. Another semantic tree, based on a different ordering
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q

p
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Fig. 3. A normal decorated lax tree

We now define reduction on decorated lax
trees T as follows. It will be helpful to de-
note a decorated lax subtree of T of the form
shown on the right as A(Tleft, Tright). We
say that a subtree uses A if and only if it
has a failure node I such that A occurs as a
a ground atom in CIθI .

Tleft Tright

A

(1)

We use the following two reduction rules:

A(Tleft, Tright) � Tright if Tright does not use A
A(Tleft, Tright) � Tleft if Tleft does not use A

Standardly, the left-hand sides are called redexes, reduction rules are applied at
any position in decorated lax trees, and a decorated lax tree is normal if and
only if it contains no redex. The following are easily proved.

Lemma 5. If T = (T,C•, θ•) is a decorated lax tree for S, and T � T ′, then
T ′ is also a decorated lax tree for S. Moreover, μ(T ) (>, (�′

mul)mul)lex μ(T ′).

Lemma 6. Let T = (T,C•, θ•) be a normal decorated lax tree for S, and assume
that S does not contain the empty clause. For every failure node I in T , CI is
of the form ±A1 ∨ . . . ± Am ∨ C where m ≥ 1, and there is another failure
node I ′ in T such that CI′ is of the form ∓A′

1 ∨ C′, the most general unifier
σ = mgu(A1 = A2 = . . . = Am = A′

1) is well-defined, σ � θI ∪θI′ , and for every
atom B in Cσ, Aiσ 	� B.

Moreover, letting θ be such that σθ = θI∪θI′ , the ground instance (Cσ∨C′σ)θ
of the linear resolvent Cσ ∨ C′σ is false at I ′, and for every atom B in C,
A′

1θI′ �′ BθI .
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Proof. Since the empty clause is not in S, CI cannot be the empty clause.

Let A be the ground atom A0
i with the

largest index i that occurs in CIθI ,
i.e., the last ground atom labeling
an internal vertex occurring on the
branch I. As a leaf, I may be the left
successor of its parent, or its right suc-
cessor. The following picture displays
the case where I is left.

Tright

false trueA

I (2)

Assume I is left, as in the picture. The other case is symmetrical. So CI is of
the form +A1 ∨ . . .+ Am ∨ C, where A1, . . . , Am enumerate those atoms B in
CI such that BθI = A. Since T is normal, (2) is not a redex, so Tright uses A:
there is a failure node I ′ in Tright such that CI′θI′ contains the atom A. Because
this clause must be false at I ′, A must occur negatively. So CI′ is of the form
−A′

1 ∨ C′, where A′
1θI′ = A.

In particular, θI ∪ θI′ is a unifier of A1, . . . , Am, A′
1. Let σ be their mgu, and

θ be such that σθ = θI ∪ θI′

Note that the atoms B that occur in C are such that BθI = A0
j with j < i,

so A′
1θI′ = A0

i �′ BθI . In particular, for every atom B = B′σ that occurs in
Cσ, AiθI = A0

i �′ Bθ, whence Aiσ 	� B since � is stable. It also follows that
(Cσ ∨ C′σ)θ = CθI ∨ C′θI′ is false at I ′. �

Contrarily to ordered resolution, where we had to find an inference node, here
any failure node will enable us to apply a resolution step. This is a consequence
of the fact that T is normal.

Since reduction clearly terminates, if S is unsatisfiable, then it has a normal
decorated lax tree. The reduction rules are not confluent, and in general normal
forms are not unique. But there is only one normal form in the following special
case, which is the only one we shall require.

Lemma 7. Let T = (T,C•, θ•) be a decorated lax tree for S. Say that a failure
node I ′ in T is weak if and only if there is a ground atom A in I ′ (seen as
a partial Herbrand interpretation, i.e., as a set of ground atoms) that does not
occur in CI′θI′ .

Let I be a partial Herbrand interpretation, and assume that the only weak
failure nodes I ′ in T are such that I ′ ⊆ I. Then T has a unique normal form T ′

for �. Moreover, (CI , θI) still decorates some failure node I ′ in T ′, with I ′ ⊆ I.

Proof. For short, say that T is good if and only if its only weak failure nodes
I ′ are such that I ′ ⊆ I. If T is good, then it can have at most one weak failure
node: either it is normal, and there is nothing to prove, or one finds the weak
failure node I ′ by following the unique branch from the root that goes to the
left of A0

i if −A0
i ∈ I, or to the right if +A0

i ∈ I; since −A0
i or +A0

i is in I ′ ⊆ I,
one of the two cases must happen.

Note that any subtree T ′ of T whose failure nodes are not weak is normal.
Indeed, assume that T ′ contained a redex, say A(Tl, Tr) where Tr does not use A.
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Then any failure node I ′ in Tr is such that A does not occur in CI′θI′ , although
+A ∈ I ′, which would imply that I ′ is weak.

If T is good but not normal, then let I ′ ⊆ I be its unique weak failure node.
The only redexes in T must be of the form A(Tl, Tr) with I ′ a leaf of Tl and
Tr normal, or with I ′ a leaf of Tr and Tl normal. Indeed, if I ′ is a leaf of Tl,
then Tr contains no weak failure node, and is therefore normal. The other case
is symmetrical.

Assume T contains a redex of the form A(Tl, Tr) with I ′ a leaf of Tl, and Tr
normal. Let T ′ be obtained from T by contracting this redex, necessarily to Tl.
Let I ′′ be the partial Herbrand interpretation obtained from I ′ by deleting −A.
Clearly, I ′′ is a failure node in T ′, and is decorated with (CI′ , θI′). We claim
that I ′′ is the only weak failure node in T ′, if any. Indeed, for any other weak
failure node I ′′′ in T ′, either I ′′′ or I ′′′ ∪ {−A} was a failure node in T . But
either case implies I ′′′ ⊆ I, since T is good, and I ′′ is the only failure node such
that I ′′ ⊆ I.

In particular, if a good tree rewrites to another tree, then the latter is good.
Among good trees, the relation � has no critical pair: a critical pair would be
a subtree of the form A(Tl, Tr) that we could rewrite both as Tl and as Tr; this
would imply that Tl does not use A, hence that the unique weak failure node I ′

is in Tl, and also, symmetrically, that I ′ is in Tr, contradiction.
So � is convergent on good trees. Since (CI , θI) decorates the only possible

weak failure node in T , and any decoration of the unique weak failure node in a
tree still decorates some failure node in any of its redexes, we conclude. �

Completeness follows. Let S0 be an unsatisfiable set of clauses. It has a decorated
lax tree T = (T,C•, θ•), which we may assume normal by Lemma 5. If the root
of the tree is a failure node, then S0 contains the empty clause. Otherwise, let
C0 be any clause in S0 that decorates some failure node I in T . Taking C0 as the
center clause, Lemma 6 guarantees that we can resolve C0 with some side clause
C′

0 using the rule of linear resolution; C′
0 decorates some other failure node I ′ in

T . Let C1 be the resolvent. Lemma 6 also guarantees us that C1θ is false at I ′ for
some θ. We modify T by redecorating I ′ with the pair C1, θ: we obtain another
decorated lax tree T ′, which may fail to be good, as now the failure node I ′ may
be weak. But this is the only failure node in T ′ that can be weak. So Lemma 7
applies: T ′ has a unique normal form ̂T ′ for �, which is a decorated lax tree for
S0 ∪ {C1}. Moreover, C1 still decorates some failure node in ̂T ′, so that we can
take C2 as new center clause, and repeat the process.

Theorem 2. Linear ordered resolution is complete: given any stable quasi-
ordering �, for any set of clauses S, S is unsatisfiable if and only if we can
derive � by linear ordered resolution.

Proof. It only remains to prove termination, which reduces to showing that
μ(T ) (>, (�′

mul)mul)lex μ(̂T ′), using the above notations. By Lemma 5,

μ(T ′) is larger than or equal to μ(̂T ′) in (>, (�′
mul)mul)lex, so it remains

to show μ(T ) (>, (�′
mul)mul)lex μ(T ′). In turn, this follows from the fact

that μ1(CI′ , θI′)�′
mulμ1(C1, θ), where we write C′

0 = CI′ as ∓A′
1 ∨ C′, C0 as
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±A1 ∨ . . .±Am ∨C, and we let σ, θ be as in Lemma 6, so that the resolvent is
C1 = Cσ ∨ C′σ. This fact is proved as in the ordered resolution with selection
case: μ1(C1, θ) is obtained from the multiset μ1(CI′ , θI′) by replacing one occur-
rence of A = A′

1θI′ by the multiset of atoms BθI , B ∈ C. But A′
1θI′ �′ BθI

(Lemma 6). �

A nice consequence of this new completeness proof is, as for any other proof
obtained by semantic trees, that completeness is easily seen to be retained in
the presence of redundancy elimination techniques.

E.g., we can remove tautologies, because tautologies cannot decorate any fail-
ure node. But this should be understood in a slightly different manner as for
ordinary resolution, because linear resolution is a non-deterministic process. The
completeness argument above shows that there is a way of doing linear resolu-
tion that leads to the empty clause without deriving any tautology as top clause.
So, whenever we use linear resolution and derive a tautology as top clause, we
can immediately stop deriving new clauses and backtrack.

Similarly, we can eliminate linearly subsumed clauses. Backward subsumption
is not an issue here. Forward subsumption is as subtle as tautology elimination:
if the top clause is subsumed, then we can stop and backtrack. Alternately, the
completeness argument shows that we can replace C′ by C′

1, and continue with
C′

1 as the new top clause, thus restarting a proof.
We would like to stress that the tree structure is important here: the above

proof crucially rests on reduction �, which cannot be defined by just considering
the paths of the tree T .

3 Ordered Resolution, Paramodulation and Factoring

We now move to clauses involving the equality predicate.

3.1 Inference Rules

Inference Rules. First, we give inference rules applying to clauses defined as
multisets of atoms: the same atommay appear several times in a clause. A ground
instance of a clause is a true instance, there is no need to apply contractions.
We use also an ordering on atoms extending an ordering � on terms that will
be defined later.

Reflexivity is also called equality resolution in the literature, because it appears
to be a resolution between the clause −u = v∨C and the reflexivity axiom x = x.

This inference system is known to be complete when the ordering is a sta-
ble ordering, which is monotonic, total and well-founded on ground terms, in
which case it must have the subterm property as well. Relaxing any one of these
properties raises the question of what the new inference rule should be. Some
authors [BG01b, BGNR99] keep the same inference rule for paramodulation,
but we prefer another formulation which pinpoints the needed properties of the
ordering in use. This is why we have renamed the paramodulation inference rule
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Resolution
+A ∨ C − A′ ∨D

Cσ ∨Dσ
σ = mgu(A = A′);∀B ∈ Cσ ∨Dσ,Aσ �≺ B

Monotonic Paramodulation
C ∨ l = r D ∨ ±A[u]

Cσ ∨Dσ ∨ ±Aσ[rσ]

{
σ = mgu(l = u); ∀B ∈ Cσ, (lσ = rσ) �≺ B
rσ �≺ lσ;∀B ∈ Dσ,Aσ �≺ B

Factoring
+A ∨+A′ ∨ C

+Aσ ∨ Cσ
σ = mgu(A = A′);∀B ∈ Cσ,Aσ �≺ B

Reflexivity
−u = v ∨ C

Cσ
σ = mgu(u = v);∀B ∈ Cσ, (uσ = vσ) �≺ B

Fig. 4. ORMP : Ordered versions of Resolution, Monotonic Paramodulation, Fac-
toring and Reflexivity

Ordered Paramodulation
C ∨ l = r D ∨ ±A[u]

Cσ ∨Dσ ∨ ±Aσ[rσ]

{
σ = mgu(l = u);∀B ∈ Cσ, (lσ = rσ) �≺ B
Aσ �≺ Aσ[rσ];∀B ∈ Dσ,Aσ �≺ B

Fig. 5. Ordered Paramodulation Revisited

as monotonic paramodulation. We introduce now our version of paramodulation,
ordered paramodulation and compare both rules by means of a few examples.

In ordered paramodulation, checking the rule instance has been replaced
by checking the whole rewritten atom: ordered paramodulation coincides with
monotonic paramodulation when the ordering is monotonic, total and well-
founded. We call ORP the set of inference rules made of ordered resolution,
ordered paramodulation, (ordered) factoring and (ordered) reflexivity.

Violating Monotonicity. ORP is incomplete when the ordering on terms
does not satisfy monotonicity. Consider the following unsatisfiable set of ground
clauses

{gb = b, fg2b 	= fb} with fg3b � fgb � fb � fg2b � gb � b.

Assuming that the ordering on terms is extended to atoms considered as mul-
tisets by taking its multiset extension, this set of ground unit clauses is closed
under the inference rules inORP . Note that the ordering can be easily completed
so as to satisfy the subterm property on the whole set of ground terms.

Using monotonic ordered paramodulation instead of ordered paramodulation
yields the following set of clauses:

{gb = b, fg2b 	= fb , fgb 	= fb, fb 	= fb, �}
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and ORMP is indeed again complete [BG01b]. Note however that monotonic
ordered paramodulation can be interpreted as ordered paramodulation with an
ordering which is the monotonic extension of the ordering on ground instances
of equality atoms. This ordering is therefore essentially monotonic.

Violating Subterm. ORP turns out to be again incomplete when the or-
dering on terms does not satisfy the subterm property. Consider the following
unsatisfiable set of ground clauses

{a 	= fa, fb 	= fa, b = fb, a = fb}, with a � b � fa � fb.

This set is closed under ordered paramodulation, resolution, factoring and re-
flexivity, assuming that the ordering on terms is extended to atoms considered
as multisets by taking its multiset extension.

In [BGNR99], the authors show completeness of ORMP for Horn clauses
when using a well-founded ordering which does not have the subterm property
(with a proof which is quite intricate). To compute the set of clauses generated,
we first need to extend the ordering into a well-founded ordering on the whole
set of atoms:

fna � fnb � . . . � f2a � f2b � a � b � fa � fb.

ORMP then yields the following infinite set of clauses:

{a 	= fa, fb 	= fa, a = fb}∪
{fnb = fmb, a 	= fmb, fn+1b 	= fm+1b | n ≥ 0,m > 0}∪

{�}.

Indeed, any extension of the ordering would yield the same result, because the
lefthand and righthand sides of equations are compared instead of the atoms
themselves. Therefore, the equations a = fb and b = fb suffice for generating
the whole set.

Subterm Monotonicity Does Not Suffice. We thought for a while that
monotonicity could be restricted to the subterm relationship. Here is an example
showing that this restriction of monotonicity does not ensure completeness:

{fa 	= b, a = b, gb = b, fga = b}
with

f2b � f2a � fgb � fga � ga � gb � fb � fa � a � b.

Indeed, we need to paramodulate fga = b by a = b as if fga were bigger than
fgb. In other words, the ordering � must be monotonic on the rewrite relation
induced by the equality atoms s = t generated from the clauses s = t ∨ C in
which s = t is maximal.
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3.2 Ordering Terms, Atoms and Clauses

From now on, we assume that � is a stable, partial quasi-ordering on terms
which restricts to a total strict ordering on ground terms which is monotonic and
satisfies the subterm property. As a consequence, it is a simplification ordering,
and is therefore well-founded on any set of terms which is generated from a finite
signature. As another straightforward consequence, ordered paramodulation and
monotonic ordered paramodulation coincide.

We assume further that � is extended to atoms so as to satisfy the following
two properties:

(monotonicity) s � t implies A[s] � A[t] for any atom A[s];
(*) s � t implies A[s] � (s = t) if A is not an equality atom;
(†) � is total on ground equalities.
Note that monotonicity extends monotonicity from terms to atoms. It also

implies that (u[s] = u[t]) � (s = t) if u[ ] 	= [ ] by the subterm property of �
applied twice and transitivity.

An example of ordering satisfying these properties can be obtained by extend-
ing the ordering � from terms to atoms by letting

P (u) � Q(u) iff (max(u), P, u)(�mul, >P ,�stat(P ))lex(max(v), Q, v)

where the precedence >P is a well-founded ordering on the set of predicate
symbols in which the equality predicate is minimal and stat is a function from
P to {lex,mul} such that stat(P ) = mul iff P is the equality predicate.

3.3 Herbrand Equality Interpretations

Our goal is now to construct all Herbrand equality interpretations over a finite
set A of ground atoms, which we suppose without loss of generality to be closed
under reflexivity, that is, to contain all atoms s = s such that (s = t) ∈ A
for some t. The total well-founded ordering � allows us to order the finite set
of ground atoms, hence A = {Aj}j<n such that Ai � Aj if and only if i > j
(remember that we do not distinguish s = t from t = s). The enumeration of
the set of ground atoms based on the ordering � provides us with a convenient
characterization of Herbrand equality interpretations, which are then organized
as a finitely branching tree whose vertices at a given depth assign a truth value
to the same ground atom. Interpretations are in one-to-one correspondence with
the branches of the tree.

Unlike the previous usual formulation of Herbrand interpretations, we assume
here for convenience a set of three truth values {U, T, F} where U stands for the
undefined truth value and is used to consider partial interpretations as total
functions over {U, T, F}.

Definition 7. A (partial) Herbrand interpretation I of a finite set A = {Ai}i<n

of ground atoms is a mapping [ ]I from A to the set of truth values {U, T, F}. I
is said to be total whenever its target is the subset {T, F}.
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Note that Herbrand interpretations are defined with respect to a given finite
vocabulary of ground atoms closed under reflexivity. As usual, a partial inter-
pretation I of an initial segment {Ai}i<j≤n of A satisfies [Ak]I = U for all
j ≤ k < n. This is used in particular to represent all total interpretations as-
signing the same truth value among {T, F} to the ground atoms in the initial
segment, in the sense that if a formula φ takes value x ∈ {T, F} in I, it takes
the same value x in all total extensions of I. Here, undefined values may occur
anywhere.

The logical connectives are classically extended to the third truth value by
setting T ∨ U = T, F ∨ U = U, T ∧ U = U, F ∧ U = F and ¬U = U . Inter-
pretations are then extended to propositional formulae over A by taking their
homomorphic extension. Let U < T,U < F be the usual order on truth values,
and < be its natural pointwise extension to partial Herbrand interpretations.
The intuition is that a partial Herbrand interpretation I of A stands for all total
Herbrand interpretations H bigger than I in the order on interpretations.

We now turn our attention to Herbrand equality interpretations. Let EI be
the subset of equalities in A interpreted by T in some Herbrand interpretation
I. Our goal is to define partial Herbrand equality interpretations in a way that
specializes to the total case.

Definition 8. A Herbrand equality interpretation is a Herbrand interpretation
I that is compatible with the axioms of equality, that is:

(i) for any term s, [s = s]I = T ;
(ii) for any two atoms A,B such that A←→∗

EI
B, then [A]I = [B]I ;

(iii) for any two terms s, t such that s←→∗
EI

t and any term u such that
u[s] = u[t] ∈ A, then [u[s] = u[t]]I = T .

Note that the proof from A to B may involve atoms not in A. A similar phe-
nomenon may occur with the proof from s to t. Indeed, the first two conditions
suffice to characterize Herbrand equality interpretations under our assumptions
on � and A:

Lemma 8. A Herbrand interpretation I of A is a Herbrand equality interpre-
tation of A iff

(i) for any ground atom s = s ∈ A, [s = s]I = T ,
(ii) for any two different ground atoms A,B ∈ A such that B � A, [A]I , [B]I ∈

{T, F} and A←→∗
EI

B, then [B]I = [A]I .

Note that no constraint at all is imposed on A,B when [A]I = U or [B]I = U .
In case of a total interpretation, we obtain the usual characterization.

Proof. Clearly, if I is a partial Herbrand equality interpretation, (i) and (ii) must
be satisfied. We need to show the converse.

Assume that s←→∗
EI

t and u[s] = u[t] ∈ A for some u[]. If s and t are identical,
then [u[s] = u[s]]I = T by (i). Otherwise, let s � t. Then, u[s] = u[t]←→∗

EI
u[t] =

u[t] which belongs to A by closure assumption and is smaller than u[s] = u[t] by
property of the ordering. By (ii) and (i), [u[s] = u[t]]I = [u[t] = u[t]]I = T . �
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We now verify our intuition that partial Herbrand equality interpretations rep-
resent total ones:

Lemma 9. Let φ be an arbitrary propositional formula over the vocabulary A,
I be a partial Herbrand equality interpretation, and H > I be a total Herbrand
equality interpretation. Then [φ]H = [φ]I iff [φ]I 	= U .

We finally capture the idea that there are enough Herbrand equality interpreta-
tions on the one hand, and that a set of ground atoms becomes unsatisfiable in
presence of the axioms of equality:

Definition 9. A set E of Herbrand equality interpretations is complete if every
Herbrand equality interpretation in {T, F}A is smaller than some interpretation
in E in the order of interpretations.

Definition 10. A set S of clauses is said to be E-unsatisfiable if S augmented
with the axioms of equality is unsatisfiable.

The following property of complete sets of Herbrand equality interpretations is
the basis of our completeness proof:

Lemma 10. A set G of ground clauses built from a set A of ground atoms
closed under reflexivity is E-unsatisfiable iff G refutes a complete set of Herbrand
equality interpretations over A.

Proof. Because the axioms of equality cannot refute Herbrand equality interpre-
tations on the one hand, and a ground clause C refuting a partial interpreta-
tion I refutes all total interpretations bigger than I by Lemma 9 on the other
hand. �

We now consider the problem of extending a complete set E of partial Herbrand
equality interpretations over a finite set A of ground atoms into a complete set E ′
of partial Herbrand equality interpretations over A∪{B}. The new set of ground
atoms should of course contain the ground atoms s = s and t = t whenever B is
the ground equality atom s = t. We will assume that s = s and t = t are added
one by one before s = t. The flexibility of partial interpretations allows us to
extend each interpretation in E by exactly one interpretation in E ′:

Definition 11. Given a partial Herbrand equality interpretation I over A, we
define its extension I ′ to A∪ {B} as follows:

1. If B ∈ A, I ′ = I. Otherwise,
2. If B is a ground atom s = s, then [B]I′ = T .
3. If B←→∗

EI
Ai ∈ A with [Ai]I ∈ {T, F}, then [B]I′ = [Ai]I .

4. If B is a ground atom s = t such that there exists Ai 	= Aj with [Ai]I =
T, [Aj ]I = F and Ai←→∗

EI∪{s=t} Aj , then [s = t]I′ = F .

5. Otherwise, [B]I′ = U .

Note that Case 4 does not apply when B is strictly bigger than any ground atom
in A since � contains subterm.
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Lemma 11. Assume E is a complete set of partial Herbrand equality interpreta-
tions with respect to A. Then the set E ′ obtained from E by replacing each partial
Herbrand equality interpretation I by its extension I ′ to A ∪ {B} is a complete
set of partial Herbrand equality interpretations with respect to A ∪ {B}.

Assume moreover that some interpretation I ∈ E is refuted by a ground clause
C. Then, its extension I ′ in E ′ is refuted by the same clause C.

Proof. For the first statement, we need to show that every total Herbrand equal-
ity interpretation extending I extends I ′. This follows from Definition 8 and
Lemma 8. The second statement follows from Lemma 9. �

Example 1. Let A be the set {A(a), a = c, A(b), a = b, A(c)} in increasing order,
A being a predicate and a, b, c constants. We give from left to right: the 12 total
Herbrand equality interpretations over the subset {A(a), a = c, A(b), A(c)} of A;
a complete set of 4 partial Herbrand equality interpretations; its extension to A.

A(a) a=c A(b) A(c)

T T T T
T T F T
T F T T
T F T F
T F F T
T F F F
F T T F
F T F F
F F T T
F F T F
F F F T
F F F F

A(a) a=c A(b) A(c)

T U U U
F T U F
F F T U
U F F U

A complete set
of four partial

Herbrand equality
interpretations.

A(a) a=c A(b) a=b A(c)

T U U U U
F T U U F
F F T F U
U F F U U

Its extension
with the
atom
a = b.

As usual, it is convenient to view a given set of Herbrand equality interpreta-
tions as a tree.

Definition 12. Given a set E of partial Herbrand equality interpretations over
the set of ground atoms A = {Ai}i<n ordered by �, we construct the tree of
Herbrand equality interpretations TE by induction on �. Each vertex I in the
tree defines a partial Herbrand equality interpretation I of an initial segment
{Ai}i<j<n of ground atoms enumerated so far and a set EI of equalities inter-
preted by T in I. The vertex I has:

1. a single successor J such that [Aj ]J = x in case all interpretations in E
whose restriction coincide on {Ai}i<j assign the same value x to Aj;

2. two or three successors otherwise, depending on the different values assigned
to Ai by the interpretations in E whose restriction coincide on {Ai}i<j<n.

Case 1 applies in particular when Ai is a ground atom of the form s = s for
some term s, in which case [Ai]J = T , or when Aj←→∗

EI
Ak for some k < j, in

which case [Aj ]J = [Ak]I .
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It is clear that the set of branches of TE is in one-to-one correspondance with
the set E . This property will be exploited without saying in the rest of the paper.

Definition 13. The tree TE of Herbrand equality interpretations over A is nar-
row iff every internal vertex I has either one successor assigning a truth value
among {U, T, F} to the ground atom A|I|+1, or else two assigning the truth values
among T and F respectively to the ground atom A|I|+1. The set E of interpreta-
tions will be called narrow as well.

Lemma 12. Every complete set E of Herbrand equality interpretations over A
contains a narrow complete set E ′.

Proof. Let I be a internal vertex of TE with a successor J such that [A|I|+1]J =
U . Then, the other successors of I, if any, may be deleted without compromising
completeness. �

Using narrow sets of interpretations makes the undefined truth value useless:
if I has J for single successor assigning the truth value U to the ground atom
A|I|+1, then we can collapse the vertices I and J and omit this ground atom. We
prefer however to keep undefined values because they allow us the possibility of
having a given ground atom interpreted at a given depth in the tree of Herbrand
equality interpretations, all branches therefore having the same length. In other
words, all branches of the tree give a truth value in {U, T, F} to all ground atoms
in A, rather than a truth value in {T, F} to a subset of ground atoms in A as it
is the case in Section 2.4.

3.4 Semantic Trees and Generating Interpretations

In this section, we assume given:

– a finite set of ground atoms A = {AI}i<n closed under reflexivity such that
Ai � Aj iff i > j;

– an E-unsatisfiable set G of ground clauses built from the ground atoms in A
which is closed under positive factoring;

– a complete narrow set E of partial Herbrand equality interpretations over A,
or equivalently, its associated narrow tree TE .

We will say that the triple (A,G, E) (or equivalently (A,G, TE) or even (A,G, TG)
satisfies assumption (*). Note that the two closure properties that we assume
can be enforced without extending the set of ground terms, as would closure of
G under ordered paramodulation.

Definition 14. Given (A,G, TE) satisfying (*), we call failure node any vertex
J of TE for which there exists C ∈ G such that [C]J = F and [C]I = U for
any ancestor I of J . We call semantic tree associated with (A,G, TE) any tree
obtained from TE by replacing a failure node J on each branch of the tree by a
leaf decorated with the associated clause C. We denote it by TG.
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Note that TG is not defined uniquely. This is on purpose, since it will be conve-
nient to consider non-minimal semantic trees in our completeness proof. How-
ever, our definition forces the ground atom enumerated at a failure node to be
either T or F .

Since C is a ground clause, [C]J is defined iff all its atoms are assigned a
truth value in {T, F} by J . Hence, the failure node cannot assign the undefined
truth value U to the last ground atom enumerated at a failure node. Another
consequence, since G is E-unsatisfiable, is that the semantic tree is closed, that
is, all its branches end up in a failure node. As usual, the only clause refuting
the root of the tree is the empty clause.

We now define a specific interpretation G (actually, a class of interpretations)
ending up in a failure node at which an ordered resolution or paramodulation
will always be possible. The idea is that a ground equality atom l = r should
belong to EG, that is, be interpreted in T by G, iff it stems from a ground
instance of a clause l = r ∨ C that can be used to perform a ground ordered
paramodulation. The generating interpretation is of course directly related to
the notion of generated equality of Bachmair and Ganzinger. It pops up very
naturally in the context of semantic trees.

Definition 15. The set of generating interpretations G of a narrow closed se-
mantic tree associated with the triple (A,G, TE) satisfying (*) is defined induc-
tively as follows. Assume some vertex I in the semantic tree is the generating
interpretation constructed so far. If I is a leaf, we are done. Otherwise, let A be
A|I|+1.

1. If I has a unique successor I ′ in the semantic tree, we choose I ′. Otherwise,
let L be its left successor ( [A]L = F ) and K be its right successor.

2. If A is a ground equality atom and L is not a failure node, then we choose
L.

3. If A is a ground equality atom s = t and L is a failure node, then we choose
K. In this case, the clause s = t ∨ Cθ decorating L is called a generating
clause and s = t is a generated equation.

4. Otherwise, we choose L or K in an arbitrary way, provided that if the chosen
one is a failure node, then the other one must also be a failure node (i.e., we
prefer internal vertices over failure nodes).

We denote by G an arbitrary generating interpretation, and by GenG the set of
generating clauses.

Notice that we need not make any particular choice when the enumerated ground
atom A is not an equality (Case 4), therefore leaving room for improvement. For
example, we could superimpose a selection function as in Section 2. Note also
that we could define generating interpretations for non-narrow trees. The above
definition then shows that we would always need taking the successor J such
that [A]J = U whenever there is one.

In Bachmair and Ganzinger’s work, the generating interpretation is unique, as
well as the set of generating clauses. This is so because they encode predicates as
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Boolean functions. Here, the generating interpretation is not unique, but the set
of generating clauses does not depend upon the choice of a particular generating
interpretation: it is easy to see that a clause s = t ∨ Cθ generates the equation
s = t with s � t if s = t is maximal in the clause and is irreducible by the
previously generated equations. (Irreducibility is by the definition of Herbrand
equality interpretations, and the fact that the successor of I is not unique in
this case.) The definition by Bachmair and Ganzinger is slightly different, since
they allow the right hand side t of the equation s = t to be reducible. We
could do that as well, since this becomes important for showing completeness
of the superposition paramodulation strategy. This would not need changing
the definition of generating interpretations: we would only have to collect more
equations along them.

As is standard, we interpret each equation u = v in EG as a rewrite rule
u → v if u � v, or as v → u if v � u (and as any one rule if u = v, which will
not happen).

Lemma 13. Assume that G is a generating interpretation of a narrow closed
semantic tree. Then EG is a canonical set of rewrite rules.

Proof. All the equations s = t in EG must be generated, i.e., produced in Case 3
of Definition 15. Let us use the notations given there. By definition of the tree
of Herbrand equality interpretations, and since I has two successors, s = t is
neither true nor false in EI , in particular s 	= t. Since � is total on ground terms,
s � t or t � s. Let us assume s � t.

Let now u = v be another equation in EG. We have just seen that we could
assume u � v. Moreover, by our assumption (†) that � is total on ground
equalities, (u = v) � (s = t), or the converse inequality. By properties of �,
u � s and u � t, hence u is not a subterm of s or of t. It follows that s = t
cannot be reduced by u→ v.

Therefore, s = t is irreducible with respect to EG\{s = t}. Since EG is clearly
terminating, the result follows. �

Lemma 14. Assume that G is a generating interpretation of a narrow closed
semantic tree associated with the triple (A,G, TE) satisfying (*). Assume further
that Ai is reducible by some equation s = t of EG, s � t, meaning that s occurs
as a subterm of Ai. Then there exists a generating clause s = t ∨ Cθ in G such
that:

(i) Ai−→s=t B, with Ai � B,
(ii) (s = t) � A for every atom A of Cθ,
(iii) [Cθ]G = F .

This happens notably when Ai←→∗
EG

Aj for some j < i: since EG is a canonical
set of rules (Lemma 13), Ai −→∗

G A′ ∗
G ←− Aj for some A′, and Ai � A′,

Aj � A′. Since Ai � Aj , it is impossible that Ai = A′, so Ai must rewrite in at
least one EG step to A′, and the lemma applies.

In case the ordering � is not monotonic, the lemma does not hold anymore,
and reducible atoms may not be reducible by (irreducible) generated equations.
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Our example violating subterm monotonicity shows this behavior for the atom
fga = b which is reducible by ga = a and ga = b, but not by a = b although
a = b reduces ga. It is easy to see that monotonicity is only needed for equations
reducing other equations, that is, for the equations in E .

Proof. (i) is the assumption, plus the fact that � is monotonic. Beware that B
may fail to belong to A.

We are left with (ii) and (iii). Since s = t is in EG, look at the first time it
was added to the generating interpretation in the process of Definition 15. This
must be by Case 3 of this definition, at a point where the current vertex was I,
with two successors K and L, such that [s = t]L = F and L is a failure node for
some generating clause s = t ∨ Cθ.

Since s = t is the last ground atom enumerated by L, it is maximal in the
clause. Since G is closed under positive factoring, we can assume without loss
of generality that (s = t) 	∈ Cθ, hence [Cθ]G = [Cθ]I = F and s = t is strictly
bigger than any ground atom in Cθ. �

3.5 Refutational Completeness of ORP
Let S be a set of clauses which is E-unsatisfiable. Our purpose is to show that
ORP is refutationally complete, that is, the empty clause is generated in finite
time from S. To do this, we will reason at the ground level, and use a lifting
argument to relate the ground level with the non-ground level. Lifting is simple
because a ground instance Cθ of a clause is a multiset of ground atoms, therefore
eliminating any need for contraction.

Theorem 3. A set of clauses S is E-unsatisfiable iff the empty clause belongs
to the closure of G under ORP.

Proof. By compactness and Lemma 10, we first choose a finite E-unsatisfiable
set of ground instances of S. Let A be the set of ground atoms occurring in G.
We add to A all ground atoms of the form s = s whenever s = t ∈ A, and close
G under positive factoring. We then compute the set E of Herbrand equality
interpretations over A and organize it as a narrow tree TE . Therefore, the triple
(A,G, TE) satisfies (*). We finally compute the narrow closed semantic tree TG.
This ends up the initialization phase.

We define the complexity of a semantic tree TG to be the multiset of clauses
in TG that decorate its leaves. Complexities are compared in the multiset exten-
sion of �. Since the last ground atom enumerated at a failure node cannot be
undefined, the smallest semantic tree in this order is therefore the empty tree,
decorated by the empty clause.

During the course of the proof, we will perform an operation on the current
triple (A,G, TE) called extension, each time a new clause is added to G; let us
call G′ the new set. First, we recompute the set of ground atoms, let us call
it A′, and complete it as before with the necessary ground atoms s = s. As
before, we also close G under positive factoring. We then extend the complete
set of interpretations E over A into a new complete set E ′′ by adding the ground
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atoms in A′ \ A one by one, in increasing order, thanks to Definition 11. By
Lemma 11, E ′′ is complete. By Lemma 12, we now compute E ′ ⊆ E ′′ such that
E ′ is narrow. Therefore, the new triple (A′,G′, TE′) satisfies (*). By Lemma 11,
the interpretations in E ′ are refuted by a subset of the clauses in G ⊆ G′ that
refute the interpretations in E . Since the interpretations in E ′ are in one-to-one
correspondence with those of E , it follows that extensions do not increase the
complexity of the semantic tree.

We now reason by induction on the semantic tree TG . If TG is empty, we
are done. Otherwise, we choose an arbitrary generating interpretation ending
up in a leaf J of TG . By non-emptiness, J has a parent vertex I. By defini-
tion of the semantic tree, J is decorated by a ground clause in G of the form
±P (uθ) ∨ Cθ, where ±P (u) ∨ C is in S. In it, A = P (uθ) is the last ground
atom enumerated by J , hence is larger than or equal to any ground atom in C.
And A is assigned either the value T or the value F in J . Let us assume that
there exists some clause in ORP(G) that refutes some extension J ′ of J to be
defined next, and is strictly smaller than ±P (uθ) ∨Cθ. This clause may involve
new ground atoms (because of paramodulation inferences). We therefore apply
finitely many completion steps resulting in a set of clauses G′ containing G and
the new clause and a semantic tree TG′ . By our assumption, we can replace the
clause ±P (uθ) ∨ Cθ refuting the vertex J ′ extending J by the inferred clause
which is strictly smaller, therefore decreasing the complexity of the semantic
tree. We conclude by induction hypothesis.

It remains to show that our assumption can be fulfilled. By definition of the
generated interpretation, there are four cases:

1. P (uθ) is of the form s = s, in which case I has J as single successor decorated
by ¬s = s∨Cθ � Cθ. By reflexivity, Cθ belongs to ORP(G) and refutes the
interpretation J .

2. P (uθ) is irreducible by EI . Then, I has two successors, L (left) andK (right),
by definition of Herbrand equality interpretations. We claim that both are
failure nodes. If P (uθ) is not an equality atom, then we are in Case 4 of
Definition 15, and the claim is immediate. Otherwise, either Case 2 or Case 3
applies. In Case 2, we must have chosen J = L, contradicting the fact that
J is a failure node. In Case 3, L is a failure node, and we must have chosen
J = K, and we conclude since J is a failure node.

So I has two successors, which are both failure nodes. Both are decorated
by clauses in both of which the ground atom P (uθ) is maximal. Let these
clauses be +P (uθ)∨Cθ and −P (uθ)∨Dθ, in which P (uθ) is strictly bigger
than any ground atom occurring in Cθ. So the resolvent Cθ∨Dθ refutes the
interpretation I.

3. A = P (uθ) is reducible by EI at a non-variable position p of P (u) by an
equation s = t ∈ EI such that s � t, yielding the ground atom A[t]p. By
Lemma 14, s = t is generated by a clause s = t ∨ Dθ such that s = t is
strictly larger than any ground atom in Dθ. Therefore, there is an ordered
paramodulation between s = t∨Dθ and the clause ±A∨Cθ, yielding A[t]p∨
Cθ ∨ Dθ, which therefore belongs to ORP(G). Consider now the tree of
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Herbrand equality interpretations extended from the previous one to the set
of ground atoms A ∪ {A[t]p}. Let I ′, J ′ be the respective extensions of I, J .
Since [s = t]J = T , [A[t]p]J′ = [A[s]p]J′ = [A]J′ = [A]J = F , and since
A = A[s]p � A[t]p, [A[t]p]I′ = F . By Lemma 11, [Cθ]J′ = [Dθ]J′ = F , hence
[Cθ ∨ Dθ]J′ = F , and by the same token as previously [Cθ ∨ Dθ]I′ = F .
Therefore [A[t]p ∨Cθ ∨Dθ]I′ = F .

4. P (uθ) is reducible by EI at a position in θ, hence xθ−→EI
xθ′ for some

variable that occurs in u. We now consider the clause instance +P (uθ′) ∨
Cθ′, which is strictly smaller than the previous one. This case is similar to
the previous one, except that there may be several new ground atoms in
+P (uθ′) ∨Cθ′. �

4 Conclusion

Recasting Ganzinger’s work into the framework of finite semantic trees was an
enriching experience. The logical next step is to consider basic ordered resolution
and paramodulation together with selection strategies via term selection, as done
in [BGLS].

To conclude, we must compare the model generation model with semantic
trees. The implicit answer we give here is that there is no significant difference
between the two. The former does not construct all interpretations, only a rel-
evant one, while the latter describes the relevant one as a maximal branch in
the tree of all interpretations. One main difference is the use of the compactness
argument to make the semantic tree finite. The same could probably be done
with model generation. A second difference is that semantic trees fit our own
intuition better.
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