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Abstract. This paper presents experiments on common knowledge logic,
conducted with the help of the proof assistant Coq. The main feature
of common knowledge logic is the eponymous modality that says that
a group of agents shares a knowledge about a certain proposition in a
inductive way. This modality is specified by using a fixpoint approach.
Furthermore, from these experiments, we discuss and compare the struc-
ture of theorems that can be proved in specific theories that use common
knowledge logic. Those structures manifest the interplay between the
theory (as implemented in the proof assistant Coq) and the metatheory.

1 Introduction

In a previous paper [14], I have presented an implementation of the common
knowledge logic in Coq. There I have shown how this applies to prove mechan-
ically popular puzzles as prolegomenon of other potential applications. In these
experiments I have shown in particular that in the literature (mostly devoted
to study model theory of common knowledge logic) some concepts of proof the-
ory are not clearly brought out and statements made at the meta-level, i.e., in
the meta-theory, are not sorted out from statements made at the level of the
language, i.e., in the theory. In the deep embedding in a proof assistant (where
the logic is fully implemented into the meta-language) the distinction between
meta-theory and theory is made explicit, by construction. The proof assistant
cannot accept ill-formed expressions and forces the user to specify the level of
statements he makes, namely inside the theory or outside the theory. Thus the
kind of implication or quantification or even statement, e.g., axiom or premise
of a logical implication, has to be made precise. On the opposite, in the hand-
written treatments of the puzzles, it is not clear whether a statement is made an
axiom stated as such in the meta-theory or a proposition stated as the premise
of a logical implication. This confusion is especially present in the literature on
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economic games [23,8]. Using a quantification in the meta-theory vs a quantifi-
cation in the theory can change dramatically the strength of a statement and its
scope.

In this paper, my approach is this of a proof theorist with inclination to ex-
periments. My goal is twofold. First I present a new axiomatization of common
knowledge logic (axiom FB and rule LFB). Second I discuss a specific problem of
common knowledge logic, namely the dilemma between internalizing or external-
izing implication. Here one needs some explanation. In a proof theoretic approach
there are two kinds of implications: an internal implication (the implication of the
object theory) written here ? ⇒? , and the external implication (the implication
of the meta-theory) written �?

�? . Here , � ϕ means “ϕ is a theorem”. This discus-
sion about the two views of the same problem in common knowledge logic will
be made first through examples and at this exploratory state no meta-theorem is
proved. There are two approaches when solving a puzzle. In the first approach, a
statement is made an axiom, say � ϕ, this axiom leads to the proof of � ψ, prov-
ing the meta implication �ϕ

�ψ . In the second approach, one proves � CG(ϕ) ⇒ ψ,
where CG is the common knowledge modality. From experiments, I have drawn
the following statements. These two approaches seem to be equivalent and show
the interplay between the theory and the meta-theory. An interesting meta-
theorem could be to prove that equivalence (see Section 5). I call external vs in-
ternal the equivalence of �ϕ

�ψ with � CG(ϕ) ⇒ ψ. In this paper all the discussion is
based on experiments made in the proof assistantCoq and the paper can be seen
as the description of those experiments. I discovered in [5] that the correspon-
dence between �ϕ

�ψ and � CG(ϕ) ⇒ CG(ψ) is known, but it is not the one I am
looking for. In what follows, the typewriter font is for code taken from the Coq
implementation. Most of the development in Coq is available on the WEB at
http://perso.ens-lyon.fr/pierre.lescanne/COQ/epistemic_logic.v

(see [14] or a presentation). The rest can be found in [21].

2 Presentation of Common Knowledge Logic

Historical Facts

The concept of common knowledge has been introduced by the philosopher
Lewis [16] and since is used in several context namely distributed systems [13,20],
artificial intelligence [18] and game theory [1].

Epistemic Logic

The basis of common knowledge logic is epistemic logic. In my experiments in
Coq [4], epistemic logic is presented by a Hilbert-style system of rules and ax-
ioms. Since I use second order logic, I define only the (internal) implication
and I derive the other connectors. There are only two rules namely MP, i.e.,
the Modus Ponens and KG also known as Knowledge Generalization and three

http://perso.ens-lyon.fr/pierre.lescanne/COQ/epistemic_logic.v 
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�K ϕ
Taut

� ϕ
KK� (Kiϕ ∧Ki(ϕ⇒ ψ)) ⇒ Kiψ

TK� Kiϕ⇒ ϕ

� ϕ � ϕ⇒ ψ
MP

� ψ
� ϕ

KGK� Kiϕ

Fig. 1. The basic rules of epistemic logic: the system T

axioms Taut, K and T. Actually Taut is an axiom scheme as it says that every
classical tautology is a theorem in common knowledge logic. Such an approach
requires a “deep embedding” (see appendix A). The main reason is that modal
logic cannot be easily implemented with natural deduction without changing its
basic philosophy1. Epistemic logic is based on modal logic and in this paper
only the system T (see Figure 1) is considered. Since there is much flexibility
in the terminology, I decided to stick to the terminology of [5]. Epistemic logic
introduces one modality for each agent: it expresses that that agent “knows”
the proposition that follows the modality. More specifically, if ϕ is a proposition,
Ki(ϕ) is the proposition ϕ modified by the modality Ki which means “Agent i
knows ϕ”. In Figure 1, the statement �K ϕ means that ϕ is a theorem in classical
propositional logic (this time,K stands for the German adjective “klassisch” [9]).
Knowing whether classical logic is relevant is a topics of research [24].

Common Knowledge Logic

Now let us suppose that we have a group G of agents. The knowledge of a fact
ϕ can be shared by the group G, i. e., “each agent in G knows ϕ”. We write
EG(ϕ) and the meaning of EG is easily axiomatized by the equivalence given
in Figure 2 which can also be seen as the definition of EG; it is called shared
knowledge.

In common knowledge logic, there is another modality, called common knowl-
edge which is much stronger than shared knowledge. It is also associated with
a group G of agents and is written CG. Given ϕ, CG(ϕ) is the least solution of
the equation

1 The reason why one cannot use a natural deduction of a sequent calculus approach
is essentially due to the rule KG. If one accepts such a rule in natural deduction,
one gets

Γ � ϕ
Ki(Γ ) � Ki(ϕ)

This requires to extend the operator Ki to contexts like Γ . If instead of Ki one uses
a modality �, one says that �(Γ ) is a “boxed context”. Actually linear logic [10]
is perhaps the archetypical modal logic and the equivalent of Ki is the modality of

course written “!”. The equivalent of KG is a rule called also of course. Without that
rule the proof net presentation is somewhat simple [12]. Its introduction requires a
machinery of boxes which increases its complexity.
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E
� EG(ϕ) ⇔

∧

i∈G

Kiϕ

Fig. 2. Shared knowledge

x⇔ ϕ ∧EG(x).
“Least” should be taken w.r.t. the order induced by ⇒. A proposition ψ is less
than a proposition ρ if ρ⇒ ψ. As well known in the fixed point theory, the least
solution of the above equation is also the least solution of the inequation:

x⇒ ϕ ∧EG(x).
The axiomatization of Figure 3 characterizes CG(ϕ) by two properties. Together
with the system T and the definition of EG it forms the system CKG. It asserts
two things.

1. CG(ϕ) is a solution of the inequation x⇒ ϕ ∧EG(x), axiom FB,
2. If ρ is another solution of the inequation, then ρ implies CG(ϕ), which means

that ρ is greater than CG(ϕ)). This is rule LFB.

One can prove that CG satisfies axioms and rules of T, where Ki is replaced by
CG even when G = ∅. Thus we prove

KC� (CGϕ ∧CG(ϕ⇒ ψ)) ⇒ CGψ
TC� CGϕ⇒ ϕ

� ϕ
KGC� CGϕ

KGC stands for Common Knowledge Generalization. Notice that TC and �ϕ
�ϕ

on one side and � CGϕ ⇒ CGϕ and KGC on the other side form the two first
instances of external vs internal. Actually one can prove more, namely that CG
satisfies axiom 4C , namely � CG(ϕ) ⇒ CG(CG(ϕ)). It is a variant for common
knowledge logic of the axiom � Ki(ϕ) ⇒ Ki(Ki(ϕ)) of epistemic logic known as
Positive Introspection or 4K . The proof of 4C does not requires this of 4K

2.
Notice that the presentation of common knowledge given in Figure 3 is some-

what new in logic of knowledge. It is more robust than this of Fagin et al. [5]
which itself formalizes this of Aumann [1]. Our axiomatization works even for an
empty set of agents and this is crucial, as starting with an empty set of agents
is the key of a recursive definition of EG and CG. However, as pointed out by
a reader of this paper, this presentation is well known in modal logic and dy-
namic logic [11], since CG is just the reflexive and transitive closure3 of EG and

2 This seems to show that 4, which is a controverted axiom in general, should be
stated more appropriately for the common knowledge of a group of agents rather
than for the knowledge of an individual agent.

3 From a model theory point of view, i.e., if one sees as relations the modality which
are proposition transformers in proof theory.
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FB
� CG(ϕ) ⇒ ϕ ∧ EG(CG(ϕ))

� ρ⇒ ϕ ∧EG(ρ)
LFB

� ρ⇒ CG(ϕ)

Fig. 3. The rules for common knowledge

(A7 ) CG(ϕ) ⇒ ϕ

(A8 ) CG(ϕ) ⇒ EG(CG(ϕ))

(A9 ) CG(ϕ) ∧ CG(ϕ⇒ ψ) ⇒ CG(ψ)

(A10 ) CG(ϕ ⇒ EG(ϕ)) ⇒ ϕ⇒ CG(ϕ)

(R3 )
ϕ

CG(ϕ)

Fig. 4. Meyer and van der Hoek axioms TECG

a presentation by fixpoint is well-known in this framework. Amazingly, Aumann
and Fagin et al. consider only the transitive closure of EG not the reflexive and
transitive which seems more natural whereas the reflexive and transitive closure
seems more natural.

Two Presentations of Common Knowledge Logic

This presentation should be compared with this given by Meyer and van der
Hoek on page 46 of [19] (see Figure 4). The system T ∪ {A7, A8, A9, A10, R3},
together with the definition of EG, is called TECG. One notices that axioms (A7)
and (A8) are just a splitting of axiom Fixpoint, i.e., one splits the conclusion
ϕ ∧ EG(CG(ϕ)). Axiom (A9) is axiom KC mentioned above and (R3) is KGC

also mentioned above. As said, both (A9) and (R3) can be proved as theorems
in CKG. (A10) is more interesting and requires specific consideration. Figure 5
sketches a proof of (A10) as a theorem in CKG. Therefore CKG implies TECG.

TECG implies CKG. Indeed axiom FB is an obvious consequence of TECG
and we prove that rule LFB is a consequence of TECG as follows.

ρ⇒ ϕ ∧ EG(ρ)
ρ⇒ EG(ρ)

(R3)
CG(ρ⇒ EG(ρ))

(A10 +MP)
ρ⇒ CG(ρ)

ρ⇒ ϕ ∧EG(ρ)
ρ⇒ ϕ

(R3)
CG(ρ ⇒ ϕ))

(A9 +MP)
CG(ρ) ⇒ CG(ϕ)

(Transitivityof ⇒)
ρ⇒ CG(ϕ)
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(R10) Implies (A10). In the above proof, we should notice that instead of
axiom (A10), we use rule

CG(ϕ⇒ EG(ϕ))
(R10)

ϕ⇒ CG(ϕ)

which is a direct consequence of (A10) by MP. By analogy with (A10), we call
that rule (R10). A closer look shows that we use the derived rule

ϕ⇒ EG(ϕ)
(R10′)

ϕ⇒ CG(ϕ)

which is the above rule combined with (R3). See section Discussion below to
understand why we are interested in that rule. Let us come back to (R10) and
let us call TEC′

G the system T ∪ {A7, A8, A9, R10, R3}. Since we have a proof
of CKG in TEC

′
G and a proof of TECG, in particular of (A10), in CKG, we have

an indirect proof of TECG in TEC
′
G or, in short, of (R10) implies (A10). Here

is a direct proof.
Let us state A ≡ CG(ϕ⇒ EG(ϕ)) in this proof. First, let us prove A∧ ϕ⇒

CG(A ∧ ϕ) (see Figure 6).
The rest is easy. First, we notice that we have CG(A ∧ ϕ) ⇒ CG(ϕ).

A ∧ ϕ⇒ ϕ
(R3)

CG(A ∧ ϕ⇒ ϕ)
(A9) +MP

CG(A ∧ ϕ) ⇒ CG(ϕ)

By transitivity of ⇒, we get A ∧ ϕ ⇒ CG(ϕ). But clearly A ∧ ϕ ⇒ CG(ϕ) is
equivalent to A ⇒ ϕ ⇒ CG(ϕ) which is CG(ϕ ⇒ EG(ϕ)) ⇒ ϕ ⇒ CG(ϕ), e.g.,
(A10).

Discussion

The equivalence between (A10) and (R10′) is a third instance of external vs
internal. Indeed, we have shown that a proposition of the form � CG(ρ) ⇒ ψ is
equivalent to a rule of the form �ρ

�ψ .

3 The Three Wise Men

The first example we address is the well-known example of the three wise men.
See [14] for a more detailed presentation. It is stated usually as follows ([5],
Exercise 1.3): “There are three wise men. It is common knowledge that there are
three red hats and two white hats. The king puts a hat on the head of each of
the three wise men and asks them (sequentially) if they know the color of the hat
on their head. The first wise man says that he does not know; the second wise
man says that he does not know; then the third man says that he knows”. Let



278 P. Lescanne

us call the three wise persons Alice, Bob and Carol. Let us write white Alice

for “Alice wears a white hat” and red Alice for “Alice wears a red hat”. The
puzzle is based on a function which says whether an agent knows the color of
her (his) hat:

Definition Kh := fun i => (K i (white i)) V (K i (red i)).

Clearly one has to prove that Kh Carol holds under some assumptions. To make
clear theses assumptions, we define in addition a few propositions namely

Definition One_hat := \-/(fun i:nat => white i | red i).

which says that every agent wears a red hat or a white hat. If P is a predicate,
\-/P is the logical quantification, i.e., the quantification in the theory not this
in the meta-theory.

Definition Two_white_hats := white Bob & white Carol ==> red Alice.

which says that there are two white hats. Notice that this is stated in a weak
form, indeed it is only when Bob and Carol wear white hats that one can deduce
that Alice wears a red hat. Moreover there are three concepts which say that
each agent sees the hat of the other agents and therefore knows the color of the
hat.

Definition K_Alice_white_Bob := white Bob ==> K Alice (white Bob).

Definition K_Alice_white_Carol := white Carol ==> K Alice (white Carol).

Definition K_Bob_white_Carol := white Carol ==> K Bob (white Carol).

A First Result

In a first attempt [14], the five above propositions were stated as axioms and I
was able to prove:

|- K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob)
==> K Carol (red Carol).

In Coq this would give a statement like

|- One_hat &
K_Alice_white_Bob &
K_Alice_white_Carol &
K_Bob_white_Carol &
Two_white_hats ->

|- K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob)
==> K Carol (red Carol).

where -> is the meta-implication, i.e., this of Coq and as usual |−ϕ says that
proposition ϕ is a theorem.
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A Second Result

In the second attempt one proves:

|- K Carol (K Bob (One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol &
(K Alice Two_white_hats) &
¬ Kh Alice) &

¬ Kh Bob)
==> Kh Carol.

This tells exactly the amount of knowledge which Carol requires to deduce that
she knows the color of her hat, actually red. Let us call Alice Bob Carol the
group made of Alice, Bob and Carol. From the above statement, one derives the
corollary:

|- C Alice_Bob_Carol (Two_white_hats &
One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol)

==> K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob) ==> Kh Carol.

which is weaker. But if we state

ϕ ≡ Two_white_hats &
One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol

and

ψ ≡ K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob) ==> Kh Carol

we notice that we have exhibited a fourth instance of external vs internal since
� CG(ϕ) ⇒ ψ and �ϕ

�ψ are equivalent.

4 The Muddy Children

This problem had many variants [17,7,6,8]. It is a typical example of how a
community of agents acquires knowledge. In its politically correct version [5,19],
a group of children have mud on their head after playing during a birthday party.
The kids do not know they have mud on their head. The father of the kid who
organized the party asked the children to come around him in a circle for the
kids to see each other and he tells them that there is at least one child who has
mud on his face so that they clearly all hear him. Then Father asks the kids who
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have mud to step forward. He repeats this last sentence until all the kids step
forward.

Philosophers have been puzzled by the fact that the first sentence of Father
namely “There is at least one child with mud on his face” is absolutely necessary.
This fact is known by the children, but by doing so, Father makes it a common
knowledge. In [14], we have identified that the key lemma is

Lemma Progress :
forall n p : nat,
|- C ([:n+1:]) (At_least (n+1) p) &

E ([:n+1:]) (¬ Exactly (n+1) p)
==> C ([:n+1:]) (At_least (n+1) (p+1)).

In other words, if the fact that there is at least p muddy children is a common
knowledge and all the children know that there is not exactly p muddy children,
then the fact that there is at least p+1 muddy children is a common knowledge.
Together with the first statement of Father:

Axiom First_Father_Statement :
|- C ([:nb_children:]) (At_least n 1).

we are able to prove after n steps C ([:n:]) (At least n n) which means that
the fact that there is at least n muddy children is common knowledge. This is the
final result. Common knowledge is important here because one can “progress” in
common knowledge and not in shared knowledge. Thus the first statement that
provides a first common knowledge allows initialization. The proof of Progress
relies on a statement
Knowledge_Diffusion :
forall n p i : nat,

|- E ([:n:]) (At_least n p) ==>
E ([:n:]) (¬ Exactly n p) ==>
K i (E ([:n:]) (¬ Exactly n p)).

This statement is here to translate what children see after Father has asked the
muddy ones to step forward and none did. They all know that there is at least
p muddy children and they all know that there is not exactly p muddy children
otherwise those with muddy face would have stepped forward, but now each one
knows that all the others know that there is not exactly p muddy children.

Knowledge Diffusion as an Axiom

In a first experiment, we made Knowledge Diffusion an axiom and we were
able to prove Progress in its above form.

Knowledge Diffusion as a Common Knowledge

In the second experiment, we consider that proposition Knowledge Diffusion

should not be made an axiom, i.e., an immutable principle, but it should be
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made just a rule of a game upon everyone agrees. Therefore the rules of the
game are common knowledge that everyone accepts; agreeing on these rules
makes everyone to act and reason according to them, i.e., “rationally”. In this
version Progress becomes:

Lemma Progress :
forall n p : nat,
|- C ([:n+1:])(Knowledge_Diffusion) ==>

(C ([:n+1:]) (At_least (n+1) p) &
E ([:n+1:]) (¬ Exactly (n+1) p))
==> C ([:n+1:]) (At_least (n+1) (p+1)).

Discussion

Again we show that we can change an statement of the form �ϕ
�ψ into a statement

of the form � CG(ϕ) ⇒ ψ. Here

ϕ ≡ C ([:n+1:]) (At_least (n+1) p) &
E ([:n+1:]) (¬ Exactly (n+1) p))

and

ψ ≡ C ([:n+1:]) (At_least (n+1) (p+1)).

This is a fifth instance of external vs internal.

5 The Equivalence between Internal and External
Implication

Fagin et al [5] in exercise 3.29 notice, with no reference, that �ϕ
�ψ and

� CG(ϕ) ⇒ CG(ψ) are equivalent. One notice by TC , i.e., � CG(ρ) ⇒ ρ, that
this statement is stronger than external vs internal, which states4 the equiva-
lence between �ϕ

�ψ and � CG(ϕ) ⇒ ψ. The proof of that result cannot be readily
implemented in Coq in our current implementation of common knowledge logic
since this requires a deeper embedding of the theory. In short, in order to mech-
anize that proof, one needs not only internalize the object implication, which
we called internal implication, but also what we called the external implication,
since a meta-proof of the equivalence requires an induction on the proof of �ϕ

�ψ . In
a first step, one can prove in Coq that all the rules of common knowledge logic,
namely MP,KG and LFB have their equivalent in the form � CG(ϕ) ⇒ CG(ψ),
namely:

� CG((ϕ⇒ ψ) ∧ ϕ) ⇒ CG(ψ) � CG(ϕ) ⇒ CG(Ki(ϕ))

� CG(ρ⇒ ϕ ∧ EG(ρ)) ⇒ CG(ρ⇒ CG(ϕ))

4 Provided that ψ does not contain any knowledge modality relative to an agent outside
the set G.
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The first one is a variant, by the means of � CG(χ ∧ ρ) ⇔ CG(χ) ∧ CG(ρ), of
KC or (A9). The second one is a basic result of common knowledge logic. The
third theorem has no equivalent in the literature and has been proved in Coq
for that purpose. Then we get the following interesting result:

� CG(ϕ) ⇒ CG(ψ) �� � CG(ϕ) ⇒ ψ �� �ϕ
�ψ

��

The back arrow is proved by induction of the length of the deduction � ϕ -> � ψ.
Therefore, one notices three levels of implications: the implication ⇒ in the
theory, the implication �?

�? in the metatheory and the implication �� in the
meta-metatheory. From the above diagram one gets

� CG(ϕ) ⇒ ψ �� � CG(ϕ) ⇒ CG(ψ) .

Actually we have
� CG(ϕ) ⇒ ψ

� CG(ϕ) ⇒ CG(ψ)

as follows � CG(ϕ) ⇒ ψ � CG(ϕ) ⇒ EG(CG(ϕ))

� CG(ϕ) ⇒ ψ ∧ EG(CG(ϕ))
LFB� CG(ϕ) ⇒ CG(ψ)

since � CG(ϕ) ⇒ EG(CG(ϕ)) is a theorem of common knowledge logic.

6 Conclusion

On another hand, it is worth to mention the study on combining common knowl-
edge logic and dynamic logic we have done with Jérôme Puisségur [22,15]. The
dynamic logic is used to describe changes in the world, but those changes are
purely epistemic (an idea we borrow from Baltag, Moss and Solecki [3,2]). This
means that they affect only knowledge of the agents and nothing else. The muddy
children puzzle has been axiomatized in this framework and a proof of its re-
sults has been fully mechanized in Coq. We can draw already two lessons form
those experiences. First when merging two modal logics it seems that internal-
izing common knowledge is more appropriate. In other words, an approach like
� CG(ϕ) ⇒ ψ should be preferred to setting the axiom � ϕ to prove � ψ, as
one does not know which metatheory a specific statement belongs to: dynamic
logic or common knowledge logic? Second a formalization of predicate logic, al-
lows expressing easily arbitrary depth of shared logic according to the number
of agents. More precisely, common knowledge is not a priori necessary in the
muddy children example and just a specific number of imbricated shared knowl-
edge modalities corresponding to the number of children. This fact was already
noticed by authors [8].



Common Knowledge Logic in a Higher Order Proof Assistant 283

Acknowledgment. I would like to thank Bertrand Prémaillon who made part
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A Deep Embedding

A logic L, the object logic or the object theory, is said to be deeply embedded
in another logic M, the meta-theory, or in a proof assistant if one considers the
logic M to be this of the proof assistant, if all the constituents of the logic L are
made objects of the logic M and all the connectors and the rules of L are defined
inside the logic M. This is opposed to shallow embedding where L and M may
share connectors and rules. A shallow embedding is usually more concise, but in a
deep embedding a clear distinction is made between the connectors of the object
theory and those of the meta-theory. In a deep embedding the connector and
the corresponding meta-connector can be somewhat connected, but they cannot
match completely. For instance, it could happen that the meta-disjunctions of
two propositions meta-implies the proposition made as the conjunction of the
two propositions and not vice-versa, in a sense made precise in formalizing the
object theory.

Moreover not all the logics can be shallowly embedded. This is the case for
common knowledge logic which cannot be formalized easily in a natural deduc-
tion framework.

http://www.jaist.ac.jp/~vester/Writings/vestergaard-IS-RR-2006-009.pdf
http://www.jaist.ac.jp/~vester/Writings/vestergaard-IS-RR-2006-009.pdf

	Common Knowledge Logic in a Higher Order Proof Assistant
	Introduction
	Presentation of Common Knowledge Logic
	The Three Wise Men
	The Muddy Children
	The Equivalence between Internal and External Implication
	Conclusion
	References




