
Andrei Voronkov
Christoph Weidenbach (Eds.)

Programming Logics

Fe
st

sc
hr

ift
LN

CS
 7

79
7

Essays in Memory of Harald Ganzinger

 123

Superposition, left

Γ → Δ, s ≈ t u[s′] ≈ v, Λ → Π
u[t]σ ≈ vσ, Γσ, Λσ → Δσ, Πσ

(i) sσ = s′σ (ii) uσ �� vσ
(iii) s′ V∈� (iv) sσ �� tσ
(v) uσ ≈ vσ �≺ pσ ≈ qσ, (vi) sσ ≈ tσ �� lσ ≈ rσ,

p ≈ q ∈ (Λ, Π) l ≈ r ∈ (Γ, Δ)

Lecture Notes in Computer Science 7797
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andrei Voronkov
Christoph Weidenbach (Eds.)

Programming Logics
Essays in Memory of Harald Ganzinger

13

Volume Editors

Andrei Voronkov
University of Manchester
Oxford Road
Manchester, M13 9PL, UK
E-mail: andrei.voronkov@manchester.ac.uk

Christoph Weidenbach
Max-Planck-Institut für Informatik
Campus E1 4
66123 Saarbrücken, Germany
E-mail: weidenbach@mpi-inf.mpg.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37650-4 e-ISBN 978-3-642-37651-1
DOI 10.1007/978-3-642-37651-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013934837

CR Subject Classification (1998): F.4.1, I.2.2-4, D.1.6, F.3.1-2, D.3.1, F.1.0

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Harald Ganzinger died on June 3, 2004, after a long and serious illness. Ex-
actly one year later, on June 3 and 4, 2005, Andreas Podelski, Andrei Voronkov,
and Reinhard Wilhelm organized a workshop on “Programming Logics,” the
name of Ganzinger’s department at the Max Planck Institute for Informatics.
The workshop took place at the Max Planck Institute for Informatics and in-
cluded leading scientists in the area of programming logics. The program of the
workshop is presented in Table 1.

The idea for this volume was born out of the workshop . It was a long journey
until it was finished. We are, in particular, indebted to our reviewers including
among others Peter Baumgartner, Maria Alpuente Frasnedo, Silvio Ghilardi,
Thomas Hillenbrand, Matthias Horbach, Laura Kovács, Herbert Kuchen, Ralf
Lämmel, Nicolas Peltier, Stephan Schulz, Doitsa Swierstra, Dmitry Tishkovsky,
and Patrick Wischnewski. Thanks to Krista Ames for proofreading the English.
The EasyChair conference management system was a great help in dealing with
all aspects of putting together this volume.

Some weeks before Harald Ganzinger passed away, a directors, board meeting
at the Max Planck Institute for Informatics took place. All directors including
Harald attended. One item on the agenda was to fix the date for an important
event happening in autumn of 2004. It was during this discussion that everyone
suddenly realized that Harald would already be gone by then. Silence. Harald
smiled and said: “I’m available. I don’t have any appointment at that time.”

Andrei Voronkov
Christoph Weidenbach

VIII Preface

Table 1. Program of the “Programming Logics” Workshop

Andrei Voronkov,
Robert Nieuwenhuis

The Scientific Life of Harald Ganzinger

Christopher Lynch Constructing Bachmair-Ganzinger Models
Nachum Dershowitz,
Maria Paola Bonacina

Canonical Ground Horn Theories

Robert Nieuwenhuis First-Order Theorem Proving by Constraint Propagation and
by Local Search

David Plaisted,
Swaha Miller

The Relative Power of Semantics and Unification

Deepak Kapur Will Algebraic Geometry Rescue Program Verification?
Pierre Lescanne Experiments in Higher-Order Epistemic Logic with Common

Knowledge Using a Proof Assistant
Claude Kirchner,
Hélène Kirchner,
Fabrice Nahon

Narrowing-Based Inductive Proof Search

Uwe Waldmann Modular Proof Systems for Partial Functions with Weak
Equality

Viorica
Sofronie-Stokkermans

On Reasoning in Local Theory Extensions

Renate Schmidt First-Order Resolution Methods for Modal Logics
Witold Charatonik Set Constraints
Neil Jones Programs as Data Objects
Manfred Broy Reasoning on Feedback Under Lack of Time
Frank Pfenning Linear Logical Algorithms
David McAllester Logical Algorithms and Generalized A∗ in Computer Vision

and NLP
Moshe Y. Vardi Alternation as an Algorithmic Construct
Jean-Pierre
Jouannaud,
Jean Goubault

Resolution, Paramodulation and Finite Semantics Trees

Amir Pnueli Program Synthesis in Action: Solving a Doubly Exponential
Hard Problem in Time N3

Robert Giegerich The Power of Abstraction in Biosequence Analysis
Alexander Bockmayr Bio-Logics: Logic Modeling of Bioregulatory Networks
Gernot Stenz,
Reinhold Letz

Advanced Pruning Concepts for Tableau Calculi

Hans de Nivelle,
Ruzica Piskac

Verification of a Result Checker in Saturate

Andreas Podelski,
Andrey Rybalchenko

Software Model Checking for Termination and Liveness

Table of Contents

Harald Ganzinger’s Legacy: Contributions to
Logics and Programming . 1

Deepak Kapur, Robert Nieuwenhuis, Andrei Voronkov,
Christoph Weidenbach, and Reinhard Wilhelm

Bio-Logics: Logical Analysis of Bioregulatory Networks 19
Alexander Bockmayr and Heike Siebert

Canonical Ground Horn Theories . 35
Maria Paola Bonacina and Nachum Dershowitz

A Generic Functional Representation of Sorted Trees Supporting
Attribution (Haskell Can Do It) . 72

Jean-Marie Gaillourdet, Patrick Michel, Arnd Poetzsch-Heffter, and
Nicole Rauch

The Blossom of Finite Semantic Trees . 90
Jean Goubault-Larrecq and Jean-Pierre Jouannaud

Functional Logic Programming: From Theory to Curry 123
Michael Hanus

From Search to Computation: Redundancy Criteria and Simplification
at Work . 169

Thomas Hillenbrand, Ruzica Piskac, Uwe Waldmann, and
Christoph Weidenbach

Elimination Techniques for Program Analysis . 194
Deepak Kapur

Narrowing Based Inductive Proof Search . 216
Claude Kirchner, Hélène Kirchner, and Fabrice Nahon

Inst-Gen – A Modular Approach to Instantiation-Based Automated
Reasoning . 239

Konstantin Korovin

Common Knowledge Logic in a Higher Order Proof Assistant 271
Pierre Lescanne

Constructing Bachmair-Ganzinger Models . 285
Christopher Lynch

X Table of Contents

Planning with Effectively Propositional Logic . 302
Juan Antonio Navarro-Pérez and Andrei Voronkov

The Relative Power of Semantics and Unification . 317
David A. Plaisted and Swaha Miller

First-Order Resolution Methods for Modal Logics . 345
Renate A. Schmidt and Ullrich Hustadt

On Combinations of Local Theory Extensions . 392
Viorica Sofronie-Stokkermans

Interprocedural Shape Analysis for Effectively Cutpoint-Free
Programs . 414

J. Kreiker, T. Reps, N. Rinetzky, M. Sagiv, Reinhard Wilhelm, and
E. Yahav

Author Index . 447

Harald Ganzinger’s Legacy:

Contributions to Logics and Programming

Deepak Kapur1, Robert Nieuwenhuis2, Andrei Voronkov3,
Christoph Weidenbach4, and Reinhard Wilhelm5

1 University of New Mexico
http://www.cs.unm.edu/~kapur/

2 Technical University of Catalonia
http://www.lsi.upc.es/~roberto

3 University of Manchester
http://www.voronkov.com

4 Max Planck Institute for Informatics
http://www.mpi-inf.mpg.de/~weidenb

5 Saarland University
http://rw4.cs.uni-saarland.de/people/wilhelm.shtml

Abstract. In 2004 Harald Ganzinger was nominated for the Herbrand
Award, which he received only two months before he passed away on June
3, 2004. We describe Ganzinger’s scientific achievements. We hope that
this paper will also be useful as a reference guide to Ganzinger’s most
significant contributions and publications in many areas of computer
science.

Je mehr du gedacht, je mehr du getan hast, desto länger hast du gelebt.1

Immanuel Kant
From Harald Ganziger’s death notice.

1 Introduction

Harald Ganzinger’s research career spanned over 3 decades during which he
made numerous contributions to many areas of computer science, ranging from
fundamental theory to low-level implementation techniques. During this time
period, he also powerfully influenced many researchers’ lives. He had publications
with more than 35 different coauthors from many different countries. In this
article, we briefly review Ganzinger’s contributions to Logics and Programming
with a special focus on automated theorem proving.

Among many other honors, Ganzinger received the Herbrand Award for Dis-
tinguished Contributions to Automated Deduction in March 2004. This award
was created to honor individuals or groups for important contributions to this
field. It is named after the famous French mathematician and logician Jacques

1 The more you have thought, the more you have done, the longer you have lived.

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 D. Kapur et al.

Herbrand [Her30] and is given at most once per year at the Conference on Au-
tomated Deduction (CADE).

The citation for the Herbrand Award for Harald Ganzinger states that it was
to recognize

– his seminal work on the theory underlying modern theorem proving systems,
– the breadth of his research covering nearly all major areas of deduction, and

the depth of his results in each one of them,
– his effective contributions to the development of systems and implementation

techniques,
– his dedicated promotion of automated reasoning both inside and outside the

community.

As a recipient of the Herbrand Award, Ganzinger ranks among the most influ-
ential people in automated deduction. All recipients of the award to date are
Larry Wos (1992), Woody Bledsoe (1994), J. Alan Robinson (1996), Wu Wen-
Tsun (1997), Gérard Huet (1998), Robert S. Boyer and J Strother Moore (1999),
WilliamW. McCune (2000), Donald W. Loveland (2001), Mark E. Stickel (2002),
Peter B. Andrews (2003), Harald Ganzinger (2004), Martin Davis (2005), Wolf-
gang Bibel (2006), Alan Bundy (2007), Edmund Clarke (2008), Deepak Kapur
(2009), David Plaisted (2010), Nachum Dershowitz (2011), and Melvin Fitting
(2012).

2 From Compilers to Automated Deduction: Breadth
and Depth of Ganzinger’s Contributions

We summarize Ganzinger’s contributions to numerous areas of computer science
in chronological order.

2.1 Mid 70’s to Mid 80’s: Compiler Construction

Ganzinger started his scientific career working on the compilation of program-
ming languages. He worked on a project funded by the Deutsche Forschungsge-
meinschaft (German Research Foundation, DFG) in the “Sonderforschungsbere-
ich 49” (Research Center 49) at the Technical University of Munich. The project’s
goal was the automatic generation of compilers from appropriate descriptions of
compilation subtasks. Typical description mechanisms were regular expressions,
context-free grammars, and attribute grammars. Generation methods for lexical
analyzers from regular expressions and syntax analyzers from context-free gram-
mars were already well-known at that time. Evaluators for attribute grammars,
and even the attribute-grammar mechanism itself, were however topics of active
research. The composition of the generated modules and their cooperation on
intermediate program representations had not yet been adequately investigated.

Ganzinger’s first publication [GW75], together with Wilhelm, concerned dif-
ferent ways compiler modules could cooperate and conditions under which such

Harald Ganzinger’s Legacy: Contributions to Logics and Programming 3

representations could be suppressed. The latter transformation became known as
deforestation in the functional-language domain. A number of publications de-
scribed the compiler-generating systems developed in the aforementioned project
[WRC+76, GRW77]. Further publications dealt with particular problems in com-
pilation, such as an algebraic view of type conversions [Gan76] and storage op-
timization for automatically generated compilers [Gan79b].

Ganzinger was not content with implementing a system that would do the
generation job. He wanted to also reason about its correctness and, therefore,
needed the connection of the descriptions of the compilation subtasks to pro-
gramming language semantics [Gan79a]. As a next step, a language semantics
was transformed into a description that was usable as input to a compiler gener-
ator [Gan80, GGMW82]. All this work led him to gain an algebraic view of com-
piler components, which he used again to pick up the topic of his first publication,
namely how to structure compilers in a modular way [Gan83b, Gan83c, Gan83a].
These publications comprised Ganzinger’s Habilitation thesis, submitted to the
Technical University of Munich in 1983.

2.2 Mid 80’s to Early 90’s: Abstract Data Type Specifications,
Reasoning, and Completion of Conditional Equations

Ganzinger began investigating abstract data types in order to develop methods
for modularizing descriptions of compilers; this approach would allow compiler
descriptions to be adapted to different related programming languages [Gan81].
In his efforts to support automated reasoning about parameterized algebraic
specification of abstract data types, Ganzinger’s work on algebraic specification
emphasized proof-theoretic investigations [Gan83a, Gan83d].

A particular mention must be made of Ganzinger’s work on investigating ex-
tensions of the Knuth-Bendix completion procedure to conditional equational
specifications [Gan86, Gan87c, Gan87a]. Using complexity bounds on proofs,
Ganzinger developed a technique for the completion of many-sorted conditional
equations that declares conditional equations as either eliminable, non-operational,
or contributing to proofs as reductive rewrite rules [Gan87b]. He was able to show
the termination of completion on many nontrivial conditional equation specifica-
tions. These ideas could be viewed as precursor of related concepts, which would
subsequently serve as the basis for Ganzinger’s insightful work on optimizing
proofs in the superposition calculus using proof orderings and redundancy.

As a part of the European project “Prospectra”, Ganzinger and his colleagues
at the University of Dortmund developed the software system CEC, supporting
the completion of conditional equational specifications in order to generate soft-
ware from it [BGB87, BGS88b].

Ganzinger also showed how the order-sorted completion of Goguen et al. could
be improved by observing that order-sorted algebraic specifications can be trans-
formed into equivalent many-sorted specifications using his earlier results on
completion for many-sorted conditional equations [Gan89, Gan91b].

Motivated by his early work on compilers and algebraic specification,
Ganzinger further developed a new theory for rewriting and completion of

4 D. Kapur et al.

conditional equations [Gan87a] and applied it, among others, to deduction in
order-sorted theories and termination proofs of logic programs [GW93].

2.3 90’s Onwards: Superposition Calculus and Its Applications

Ganzinger generalized automated deduction from conditional equations to the
full first-order setting. By combining ideas from Knuth Bendix completion,
paramodulation, resolution, and other earlier work on first-order reasoning, he,
together with Bachmair, developed the superposition calculus [BG90c]. It was
revolutionary in the sense that it combined previously separately known concepts
in a single calculus:

– ordering restrictions on inferences,
– an abstract redundancy criterion that relies on the same ordering,
– a model assumption that guides the search for relevant inferences, and
– the saturation concept that eventually leads to a proof or a model.

Using the superposition calculus, Ganzinger devised a new, cleaner way of giving
semantics to logic programs with equality and negation. He showed that satu-
rated programs have a unique perfect model for a given ordering, thus extending
earlier notions of stratified logic programs [BG91a].

Ganzinger’s search for practical techniques to include specialized procedures
into the superposition calculus and refutational theorem provers started in the
early nineties; he began with work on hierarchical first-order theories with suf-
ficient completeness requirements [BGW92, BGW94], continued with results
on the Shostak combination procedure [Gan02], and, finally, incorporated it in
refutational provers [GHW03]. During the last two decades, Ganzinger showed
how to design specialized inference systems for a large variety of domains, such
as transitive relations and total orderings [BG94e, BG98a], commutative semi-
groups [BG94a], commutative rings [BGS94], and cancellative Abelian monoids
[GW96]. Closely related to this, he contributed to a better understanding of the
relationship between Buchberger’s algorithm for computing Groebner Bases and
saturation [BG94b]. Furthermore, he developed chaining techniques for deduc-
tion in many-valued logics [GSS00].

In addition to actually building theorem proving procedures, Ganzinger was
keen on applying superposition to decision problems. He designed superposition-
based decision procedures for several classes of formulas, such as the monadic
class with equality (which he proved to be equivalent to a class of set con-
straints [BGW93a]), the two-variable guarded fragment with transitive rela-
tions [GMV99], the guarded fragment with equality [GdN99], and modal logics
[GHMS98].

Concerning tableaux calculi, Ganzinger produced new results on rigid reach-
ability [GJV00], which have been applied by others for proving new results on
second-order unification [LV00]. He gave an equality elimination method with
ordering constraints [BGV98].

Another completely different part of Ganzinger’s research concerned
deduction-based complexity analysis. Among several other results in this area,

Harald Ganzinger’s Legacy: Contributions to Logics and Programming 5

Ganzinger showed how complexity classes can be characterized by the existence
of sets of clauses that are saturated with respect to different term orderings
[BG96, BG01b], and he showed that this technique can be made effective by
means of the Saturate system which was first developed by Nieuwenhuis and
Nivela and then continued by him [NN93, GNN99].

Ganzinger’s research activities also included new ideas on instantiation-based
theorem proving, which, among other applications, make it possible to incorpo-
rate decision procedures for propositional satisfiability into first-order theorem
proving [GK03, GK04, GK06]. Other work includes saturation techniques with
lazy clause normal form transformation, the Prolog implementation of which
(in Saturate) Ganzinger showed to be superior to efficiently implemented CASC
winning systems on a large class of problems [GS05]. Furthermore, he recognized
the importance of theory combinations and, after his seminal paper on hierar-
chical superposition [BGW94], he did further work on combination frameworks
[GHN+04, GSSW06].

3 Seminal Contribution to the Theory Underlying
Modern Automated Reasoning Systems

In this section, we discuss Ganzinger’s main contribution to the theory of au-
tomated reasoning: the superposition calculus. The superposition calculus has
greatly influenced research in automated reasoning. Whereas we concentrated in
the previous sections solely on Ganzinger’s work, we now also explain the roots
of the superposition calculus and its influence on other researchers work to the
present day.

The origin of superposition can actually be found in the seminal paper of
Robinson on resolution [Rob65]. The main contributions of Robinson’s work
were the dedication of the resolution calculus to a normal form of formulas (CNF,
clause normal form) and the replacement of an explicit or implicit instantiation
rule for first-order variables by unification. Although it was recognized that the
resolution principle constituted a big step forward towards automation, looking
at it from today’s perspective, it lacked structure and simply generated too
many inferences for almost any interesting problem. In particular, even simple
problems, particularly including equality, generated enormous search spaces due
to the axiomatic handling of the equality relation. In order to overcome this
situation, the idea to replace the equality axiom system by an extra inference
rule was born: paramodulation, mechanizing the principle of replacing equals by
equals [WRCS67, RW69].

Purely equational theories, i.e., theories consisting of a set of equations, at-
tracted particular attention. Sets of equations can represent computable func-
tions in a natural way, so researchers became interested in how to represent and
reason in this setting. The starting point here was Knuth and Bendix’s seminal
paper on completion [KB70]. In fact, the study of purely equational systems
was Ganzinger’s starting point in automated reasoning, see Section 2.2. The
Knuth-Bendix completion procedure added another dimension to the work on

6 D. Kapur et al.

paramodulation: replace equals by equals, but always replace complex structures
by simpler ones. The idea of ordering was added, yielding in particular a model
of computation via rewriting instead of exploring a search space.

Next, researchers started to combine the ideas of paramodulation-based first-
order theorem proving for clauses and Knuth-Bendix completion for purely
equational systems. Bachmair and Ganzinger established their theory of res-
olution and paramodulation-based theorem proving with abstract redundancy
criteria [BG90c, BG94d] – the superposition calculus in the early 1990’s, which
was built on earlier work of Peterson on establishing paramodulation complete-
ness [Pet83], Zhang and Kapur on model construction and clausal superposition
[ZK88, ZK89, Zha88, ZK90], Kapur, Musser and Narendran [KMN88] as well as
Bachmair and Dershowitz’s work on redundancy of superpositions [BD88], and
Lynch and Snyder’s work on redundancy in constrained completion [LS95]. It
was first developed as a sound and complete calculus for first-order logic with
equality. Ganzinger provided a rigorous analysis of the partly noticed and ex-
ploited relationships between the rewriting theory and Knuth-Bendix completion
on the one hand and paramodulation-based refutational theorem proving on the
other hand.

The following four subsections explore the influence of this contribution on
the area of automated deduction.

3.1 Incorporation of Theories

In the same way that Ganzinger built equational reasoning into the superposition
calculus, he and other researchers extended the superposition calculus by specific
inference mechanisms for various theories. Their motivation was always that
inference rules dedicated to a particular theory are superior to applying standard
superposition to an axiomatization of the theory.

The first class of structures they considered consisted of subtheories of equal-
ity. The main result for transitive relations and extensions thereof [BG94e,
BG94c, BG98a, BGNR99] was that the ordering restrictions could be transferred
to the arguments of a transitive relation. A particular application of the equa-
tional relation is the implementation of a unique name assumption that can also
be handled more efficiently by specific inference rules [SB05]. For associative and
commutative (AC) function symbols, AC superposition replaces the theory by
AC unification, AC-constraints, or computes modulo the axioms but deletes AC-
variants [BG94a, NR94, Hil08]. With respect to algebraic structures, specific su-
perposition calculi have been developed for cancellative abelian monoids [GW96],
for abelian groups and semigroups [Stu98a, GN00, GN01b, GN04], for commu-
tative rings [Stu98b], and for totally ordered divisible abelian groups [Wal01].

The above-mentioned theories were all first-order logic expressible. Superposi-
tion extensions for combinations with other, not necessarily first-order, theories
have been studied as well. The Shostak framework [GHW03] as well as the hi-
erarchic framework [BGW92, BGW94] are superposition extensions that support
the combination of a first-order clause set with some theory. The frameworks have
in particular been instantiated and applied for modular proof systems for partial

Harald Ganzinger’s Legacy: Contributions to Logics and Programming 7

functions [GSSW06] aswell as for linear [KV07, AKW09] and non-linear [EKK+11]
arithmetic.

3.2 Superposition Extensions

The superposition calculus itself was also subject to further research. Forbidding
paramodulation into variables is one of the ingredients of efficient equational rea-
soning and also part of the superposition calculus. Extending this idea to the
terms instantiated for variables during a superposition derivation leads to the
basic strategy [BGLS92, NR92a, BGLS95]. Keeping completeness, paramodula-
tion into instantiated terms can be forbidden at the price of a restricted notion of
redundancy. Already part of the implementation of the basic strategy in the su-
perposition calculus, the idea occurred to attach constraints to clauses. This idea
yielded another branch of superposition extensions, namely constraint superpo-
sition [KKR90, NR92b, NR95, GN01a, LAWRS07]. Information stored in the
clause constraint ranged from instantiation information to ordering information,
to bookkeeping information on the current derivation.

As do many automated reasoning calculi, superposition computes on clauses
and hence requires the transformation of a first-order formula into clause nor-
mal form with the disadvantage that local formula structure information is
eventually distributed over many clauses. The non-clausal superposition cal-
culus [BG92, GS05] overcomes this potential drawback by interleaving normal
form transformation steps and superposition steps.

Another core concept of superposition is saturation. A clause set is saturated
if all inferences lead to redundant clauses. If such a clause set is satisfiable, it
is a representation of a minimal model for the clauses. Since saturated clause
sets enjoy better computational properties, several researchers took this as a
starting point for reasoning with respect to the minimal model, i.e., to develop
superposition-based inductive theorem proving techniques [GS93, CN00, HW10].

3.3 Decidability

The superposition calculus turned the paramodulation and resolution calculus,
which were already successful for specific examples, into an effective decision
procedure for many known decidable fragments of first-order logic. Superposition
decides a clause fragment if any saturation is finite. Furthermore, the approach
is successful in providing decidability results for fragments unknown until then.
Since there are efficient implementations of the superposition calculus, there are
now generic and effective decision procedures for various classes.

Regarding already known decidable fragments and extensions thereof, su-
perposition turned out to be a decision procedure for the class of first-order
clauses with an explicit finite domain [HW07], for the monadic class with equal-
ity [BGW93b], for set constraints [BGW93a], for the guarded fragment with
equality [GdN99], for fluted logic [SH00], and for divisible torsion-free abelian
groups [Wal99].

8 D. Kapur et al.

With respect to description and non-classical logics such as modal logics, as
well as data structure theories, additional decidability results about superposi-
tion calculus for these logics were obtained [GHMS98, SH07, KM08, HMS08,
ARR03, ABRS09].

Among the theories where superposition was the key technology to prove
decidability were the two variable guarded fragment with transitive relations
[GMV99], shallow clause theories [Nie96, JMW98], and theories related to bottom-
up tree automata [Wei99, JRV06, SR12].

3.4 Computation

In addition to providing an effective means for establishing decidability re-
sults, the saturation concept can also serve as a notion of computability.
In particular, saturated clause sets can represent any function of determin-
istic complexity classes such as polynomial or exponential time complexity
classes [McA93, BG01b]. The actual evaluation of function calls is supported
by specific forms of contextual rewriting that also serve as effective computation
mechanisms for functions in general [ZR85, BG90c, Nip96, WW10].

3.5 Systems and Applications

There are efficient implementations of the superposition calculus by the the-
orem provers E [Sch02], Spass [WSH+07], and Vampire [RV02]. These have
been successfully applied on various domains such as reasoning on data struc-
tures [ABRS09], reasoning on large ontologies [SWW10], or interpolant gen-
eration [McM03, HKV10]. Superposition-based theorem proving systems have
become a standard technology in the context of first-order logic problem solv-
ing.

Further applications are adaptions of the superposition technology to other
domains such as tableaux with equality [BGV98], many-valued logics [GSS00],
and temporal reasoning [DFK06, SW12].

4 Effective Contributions to the Development of Systems
and Implementation Techniques

Ganzinger was on of a few influential theoretical researchers in automated deduc-
tion who also contributed to the development of new practical deduction systems
and implementation techniques. A large part of Ganzinger’s theoretical work was
motivated by experiments with his early implementation CEC [BGB87] for the
completion of equational Horn specifications [BGS88b]. Initially in collaboration
with Nieuwenhuis and Nivela [NN93], Ganzinger developed the Saturate system,
a toolkit implementation in Prolog for experimentation with inference systems,
constraint solvers, and redundancy provers [GNN99]. Ganzinger implemented
and tested almost all of his theoretical contributions in the Saturate system,

Harald Ganzinger’s Legacy: Contributions to Logics and Programming 9

including such sophisticated concepts as contextual rewriting, deduction mod-
ulo ordering constraints, deduction with lazy clause normal form transformation,
deduction modulo theory constraints like AC operators, and basic superposition.

Although the Saturate system was Ganzinger’s toolbox for testing all concepts
developed in the superposition context, he was aware of the potential of high-
performance implementations of superposition. One of the world’s leading state-
of-the-art systems, Spass [Wei97, GMW97], was implemented in Ganzinger’s
group headed by Weidenbach at MPI-INF. SPASS was the archetype of a mod-
ern superposition-based prover and has influenced other leading automated rea-
soning systems, including E and Vampire. Among Ganzinger’s contributions to
high-performance implementation techniques is his research in term indexing:
substitution trees [Gra95] were developed in his group, and he generalized this
indexing approach to context trees. Context trees are still a leading indexing
technique that requires least memory and supports the sharing of terms while
being competitive in time [GNN01, GNN04].

5 Promotion of Automated Reasoning

Within the automated reasoning community, Ganzinger promoted the field of
automated reasoning by his activities as the Programme Committee Chair of
conferences like CADE, RTA, and LPAR, by organizing events at the MPI-
INF such as the 2000 Summer Retreat in Automated Deduction, by his duties
as FLoC (Associate) General Chair as well as in the German DFG Research
Programme “Deduktion”, and by inviting researchers to MPI-INF for talks and
visits.

What is perhaps even more important, around the time Ganzinger was ap-
pointed as one of the Directors at the Max Planck Institute for Informatics
(MPI-INF), he shifted his research area from Compilers and Algebraic Speci-
fication to the area of Automated Deduction, devoting to this field the large
amount of resources available through his position. As a result, MPI-INF be-
came the leading research center for automated deduction in the world in the
late 1990’s. Many junior researchers in automated deduction received a PhD
or held a postdoc position in his group at MPI-INF; senior researchers were
often visitors there. Among the scientists working in Ganzinger’s group at MPI-
INF were: Werner Backes, Peter Barth, David Basin, Hubert Baumeister, Pe-
ter Baumgartner, Alexander Bockmayr, Witold Charatonik, Giorgio Delzanno,
Friedrich Eisenbrand, Detlef Fehrer, Matthias Fischmann, Stefan Friedrich, Jörn
Freiheit, Lilia Georgieva, Peter Graf, Michael Hanus, Thomas Hillenbrand, Jörg
Hoffmann, Malte Hübner, Sajjad Syed Hussain, Ullrich Hustadt, Carsten Ihle-
mann, Florent Jacquemard, Swen Jacobs, Manfred Jäger, David Nicolaas Jansen,
Georg Jung, Thomas Kasper, Konstantin Korovin, Yevgeny Kazakov, Christoph
Kirsch (formerly Meyer), Patrick Maier, Alexander Malkis, Peter Madden, Seán
Matthews, Supratik Mukhopadhyay, Robert Nieuwenhuis, Hans de Nivelle, An-
dreas Nonnengart, Hans-Jürgen Ohlbach, Ruzica Piskac, Andreas Podelski, Vir-
gile Prevosto, Solofo Ramangalahy, Madala R. K. Krishna Rao, Stefan Ratschan,

10 D. Kapur et al.

Anya Romina, Andrey Rybalchenko, Ina Schäfer, Renate A. Schmidt, Zhikun
She, Viorica Sofronie-Stokkermans, Gernot Stenz, Georg Struth, Jürgen Stu-
ber, Jean-Marc Talbot, Andreas Tönne, Leon van der Torre, Margus Veanes,
Luca Viganò, Sergei Vorobyov, Andrei Voronkov, Silke Wagner, Uwe Waldmann,
Christoph Weidenbach, Emil Weydert, Thomas Wies, Jinzhao Wu, and Frank
Zartmann.

In addition to Ganzinger’s work group there were regular, month-long visits by
researchers from all over the world including Michael Adamczyk, Leo Bachmair,
Philippe Balbiani, Clark Barrett, Henrik Bjorklund, Chris Brink, Alan Bundy,
Evelyne Contejean, Véronique Cortier, Yannis Dimopoulos, Javier Esparza, An-
drea Formisano, Dov Gabbay, Alberto Griggio, Nevin Heintze, Andreas Herzig,
Ranjit Jhala, Deepak Kapur, Piotr Krysta, Andrzej Lukaszewski, Shilong Ma,
Jerzy Marcinkowski, Laurent Mauborgne, Fleming Nielson, Pilar Nivela, Damian
Niwinski, Frank Pfenning, David Plaisted, Ian Pratt, Shahid Rahman, Hans
Rott, Rosa Ruggeri, Pawel Rzechonek, R. K. Shyamasunda, Anatol Slissenko,
Andrzej Szalas, Evan Tick, Lincoln Wallen, Li Wei, and Bican Xia.

Ganzinger also promoted automated reasoning outside the community by de-
veloping numerous new applications of deduction-based methods applicable in
other fields. He applied the theory of the model construction method for defin-
ing the semantics of logic programs [BG91a]; he used resolution-based methods
for solving set constraints [BGW93a] (used in program analysis); and he devel-
oped saturation-based complexity analysis [BG96, BG01b], thus approximating
deduction to the field of descriptive complexity; he developed deduction-based
techniques for universal algebra [BGS94]. Indirectly, Ganzinger’s theoretical re-
sults have also contributed to solving hard open problems in other areas. As an
example, he made an important contribution the discovery of the basic strategy
for paramodulation, which played a key role in the celebrated automatic proof of
the Robbins algebra problem by the EQP prover developed by McCune [McC97].

Acknowledgements. We are particularly indebted to Uwe Waldmann for his
comments on this paper and to Jennifer Müller for providing a complete account
of Ganzinger’s publications and group statistics.

References

[ABRS09] Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on
rewrite-based satisfiability procedures. ACM Transactions on Computa-
tional Logic 10(1), 1–47 (2009)

[AKW09] Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear
Arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009.
LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)

[ARR03] Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satis-
fiability procedures. Information and Computation 183(2), 140–164 (2003)

[BD88] Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. Journal
of Symbolic Computation 6(1), 1–18 (1988)

Harald Ganzinger’s Legacy: Contributions to Logics and Programming 11

[BG89] Bertling, H., Ganzinger, H.: Completion-time optimization of rewrite-time
goal solving. In: Extended Abstracts of the Third International Workshop
on Unification (Preliminary Version) (1989)

[BG90a] Bachmair, L., Ganzinger, H.: Completion of first-order clauses with equal-
ity by strict superposition (abstract). In: Term Rewriting: Theory and
Applications (Ext. Abstracts of the 2nd German Workshop) (1990)

[BG90b] Bachmair, L., Ganzinger, H.: Completion of First-order Clauses with
Equality by Strict Superposition (Extended Abstract). In: Okada, M.,
Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 162–180. Springer,
Heidelberg (1991)

[BG90c] Bachmair, L., Ganzinger, H.: On Restrictions of Ordered Paramodulation
with Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI),
vol. 449, pp. 427–441. Springer, Heidelberg (1990)

[BG91a] Bachmair, L., Ganzinger, H.: Perfect model semantics for logic programs
with equality. In: Furukawa, K. (ed.) Proceedings of the Eighth Inter-
national Conference on Logic Programming, Paris, France, June 24-28,
pp. 645–659. The MIT Press (1991)

[BG91b] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving
with selection and simplification. Technical Report MPI-I-91-208, Max-
Planck-Institut für Informatik, Saarbrücken (August 1991)

[BG92] Bachmair, L., Ganzinger, H.: Non-clausal Resolution and Superposition
with Selection andRedundancyCriteria. In:Voronkov,A. (ed.) LPAR1992.
LNCS, vol. 624, pp. 273–284. Springer, Heidelberg (1992)

[BG93] Bachmair, L., Ganzinger, H.: Associative-commutative superposition.
Technical Report MPI-I-93-267, Max-Planck-Institut für Informatik,
Saarbrücken (December 1993)

[BG94a] Bachmair, L., Ganzinger, H.: Associative-commutative Superposition. In:
Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968,
pp. 155–167. Springer, Heidelberg (1995)

[BG94b] Bachmair, L., Ganzinger, H.: Buchberger’s Algorithm: A Constraint-based
Completion Procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS,
vol. 845, pp. 285–301. Springer, Heidelberg (1994)

[BG94c] Bachmair, L., Ganzinger, H.: Ordered Chaining for Total Orderings.
In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 435–450.
Springer, Heidelberg (1994)

[BG94d] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and Computation 4(3),
217–247 (1994)

[BG94e] Bachmair, L., Ganzinger, H.: Rewrite techniques for transitive relations.
In: Ninth Annual IEEE Symposium on Logic in Computer Science, Paris,
France (July 1994)

[BG96] Basin, D., Ganzinger, H.: Complexity Analysis Based on Ordered Resolu-
tion. In: Eleventh Annual IEEE Symposium on Logic in Computer Science
(LICS). IEEE Computer Society Press, New Brunswick, New Jersey, USA,
pp. 456–465. IEEE Computer Society Press (1996)

[BG98a] Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order the-
ories of transitive relations. Journal of the ACM 45(6) (November 1998);
Revised Version of MPI-I-95-2-009

[BG98b] Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based
theorem proving. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction:
A Basis for Applications. Kluwer (1998)

12 D. Kapur et al.

[BG98c] Bachmair, L., Ganzinger, H.: Strict Basic Superposition. In: Kirchner, C.,
Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 160–174.
Springer, Heidelberg (1998)

[BG01a] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 2,
pp. 19–99. Elsevier (2001)

[BG01b] Basin, D.A., Ganzinger, H.: Automated complexity analysis based on or-
dered resolution. Journal of the ACM 48(1), 70–109 (2001)

[BGB87] Bertling, H., Ganzinger, H., Baumeister, H.: CEC (Conditional Equations
Completion). In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.)
STACS 1987. LNCS, vol. 247, p. 470. Springer, Heidelberg (1987)

[BGLS92] Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic Paramodula-
tion and Superposition. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI),
vol. 607, pp. 462–476. Springer, Heidelberg (1992)

[BGLS95] Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodula-
tion. Information and Computation 121(2), 172–192 (1995)

[BGNR99] Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation with
non-monotonic orderings. In: 14th IEEE Symposium on Logic in Com-
puter Science (LICS), Trento, Italy, July 2-5, vol. 5, pp. 225–233 (1999)

[BGS88a] Bertling, H., Ganzinger, H., Schäfers, R.: CEC: A system for conditional
equational completion — User manual, version 1.0 (1988)

[BGS88b] Bertling, H., Ganzinger, H., Schäfers, R.: CEC: A system for the completion
of conditional equational specifications. In: Ganzinger, H. (ed.) ESOP 1988.
LNCS, vol. 300, pp. 378–379. Springer, Heidelberg (1988)

[BGS88c] Bertling, H., Ganzinger, H., Schäfers, R.: A collection of specifications
completed by the CEC-system, version 1.0 (1988)

[BGS94] Bachmair, L., Ganzinger, H., Stuber, J.: Combining Algebra and Universal
Algebra in First-order Theorem Proving: The Case of Commutative Rings.
In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types
1994 and COMPASS 1994. LNCS, vol. 906, pp. 1–29. Springer, Heidelberg
(1995)

[BGV98] Bachmair, L., Ganzinger, H., Voronkov, A.: Elimination of Equality via
Transformation with Ordering Constraints. In: Kirchner, C., Kirchner,
H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 175–190. Springer,
Heidelberg (1998)

[BGW92] Bachmair, L., Ganzinger, H., Waldmann, U.: Theorem Proving for Hier-
archic First-order Theories. In: Kirchner, H., Levi, G. (eds.) ALP 1992.
LNCS, vol. 632, pp. 420–434. Springer, Heidelberg (1992)

[BGW93a] Bachmair, L., Ganzinger, H., Waldmann, U.: Set constraints are the
monadic class. In: Eighth Annual IEEE Symposium on Logic in Computer
Science (LICS), Montreal, Canada, pp. 75–83. IEEE Computer Society
Press (1993)

[BGW93b] Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with Simpli-
fication as a Decision Procedure for the Monadic Class with Equality. In:
Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713,
pp. 83–96. Springer, Heidelberg (1993)

[BGW94] Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem prov-
ing for hierarchic first-order theories. Appl. Algebra Eng. Commun. Com-
put. 5, 193–212 (1994)

[CN00] Comon, H., Nieuwenhuis, R.: Induction = I-Axiomatization + First-Order
Consistency. Information & Computation 159(1), 151–186 (2000)

Harald Ganzinger’s Legacy: Contributions to Logics and Programming 13

[DFK06] Degtyarev, A., Fisher, M., Konev, B.: Monodic temporal resolution. ACM
Trans. Comput. Log. 7(1), 108–150 (2006)

[EKK+11] Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T.,
Weidenbach, C.: Superposition Modulo Non-linear Arithmetic. In: Tinelli,
C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989,
pp. 119–134. Springer, Heidelberg (2011)

[Gan76] Ganzinger, H.: Darstellung der Artanpassung in höheren Programmier-
sprachen durch Repräsentation von Gruppen. In: Schneider, H.J., Nagl, M.
(eds.) Programmiersprachen, 4. Fachtagung der GI, Erlangen, Proceedings,
März 8-10. Informatik-Fachberichte, vol. 1, pp. 194–202. Springer (1976)

[Gan79a] Ganzinger, H.: An approach to the derivation of compiler description
concepts from the mathematical semantics concept. In: Böhling, K.-H.,
Spies, P.P. (eds.) GI - 9. Jahrestagung, Bonn, Proceedings, Oktober 1-5.
Informatik-Fachberichte, vol. 19, pp. 206–217. Springer (1979)

[Gan79b] Ganzinger, H.: On Storage Optimization for Automatically Generated
Compilers. In: Weihrauch, K. (ed.) GI-TCS 1979. LNCS, vol. 67,
pp. 132–141. Springer, Heidelberg (1979)

[Gan80] Ganzinger, H.: Transforming denotational semantics into practical at-
tribute grammars. In: Jones, N.D. (ed.) Semantics-Directed Compiler Gen-
eration. LNCS, vol. 94, pp. 1–69. Springer, Heidelberg (1980)

[Gan81] Ganzinger, H.: Description of parameterized compiler modules. In: Brauer,
W. (ed.) GI - 11. Jahrestagung in Verbindung mit Third Conference of the
European Co-operation in Informatics (ECI), München, Proceedings, Ok-
tober 20.-23. Informatik-Fachberichte, vol. 50, pp. 11–19. Springer (1981)

[Gan83a] Ganzinger, H.: Increasing modularity and language-independency in au-
tomatically generated compilers. Sci. Comput. Program. 3(3), 223–278
(1983)

[Gan83b] Ganzinger, H.: Modular compiler descriptions based on abstract seman-
tic data types. In: Proceedings 2nd Workshop on Abstract Data Types,
University of Passau (1983)

[Gan83c] Ganzinger, H.: Modular Compiler Descriptions Based on Abstract Se-
mantic Data Types (Extended Abstract). In: Dı́az, J. (ed.) ICALP 1983.
LNCS, vol. 154, pp. 237–249. Springer, Heidelberg (1983)

[Gan83d] Ganzinger, H.: Parameterized specifications: Parameter passing and im-
plementation with respect to observability. ACM Transactions on Pro-
gramming Languages and Systems 5(3), 318–354 (1983)

[Gan86] Ganzinger, H.: Knuth-Bendix completion for parametric specifications
with conditional equations. In: Workshop on Specification of Abstract
Data Types, ADT (1986)

[Gan87a] Ganzinger, H.: A completion procedure for conditional equations. In:
Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 62–83.
Springer, Heidelberg (1988)

[Gan87b] Ganzinger, H.: Completion with History-dependent Complexities for Gen-
erated Equations. In: Sannella, D., Tarlecki, A. (eds.) Abstract Data Types
1987. LNCS, vol. 332, pp. 73–91. Springer, Heidelberg (1988)

[Gan87c] Ganzinger, H.: Ground Term Confluence in Parametric Conditional Equa-
tional Specifications. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 286–298. Springer, Heidelberg
(1987)

14 D. Kapur et al.

[Gan89] Ganzinger, H.: Order-sorted Completion: TheMany-sortedWay (Extended
Abstract). In: Dı́az, J., Yu, Y. (eds.) CAAP 1989 and TAPSOFT 1989.
LNCS, vol. 351, pp. 244–258. Springer, Heidelberg (1989)

[Gan91a] Ganzinger, H.: A Completion Procedure for Conditional Equations. Jour-
nal of Symbolic Computation 11, 51–81 (1991)

[Gan91b] Ganzinger, H.: Order-sorted completion: the many-sorted way. Theoretical
Computer Science 89, 3–32 (1991)

[Gan02] Ganzinger, H.: Shostak Light. In: Voronkov, A. (ed.) CADE 2002. LNCS
(LNAI), vol. 2392, pp. 332–346. Springer, Heidelberg (2002)

[GdN99] Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the
guarded fragment with equality. In: 14th IEEE Symposium on Logic in
Computer Science (LICS), Trento, Italy, July 2–5, pp. 295–305 (1999)

[GGMW82] Ganzinger, H., Giegerich, R., Möncke, U., Wilhelm, R.: A truly genera-
tive semantics-directed compiler generator. In: SIGPLAN Symposium on
Compiler Construction, pp. 172–184 (1982)

[GHBR87] Ganzinger, H., Heeg, G., Baumeister, H., Rüger, M.: Smalltalk-80. Infor-
mationstechnik — IT 29(4), 241–251 (1987)

[GHMS98] Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A resolution-based
decision procedure for extensions of K4. In: Zakharyaschev, M., Segerberg,
K., de Rijke, M., Wansing, H. (eds.) Advances in Modal Logic 2, Papers
from the Second Workshop on Advances in Modal Logic, Uppsala, Sweden,
pp. 225–246. CSLI Publications (1998)

[GHN+04] Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.:
DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.)
CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)

[GHW03] Ganzinger, H., Hillenbrand, T., Waldmann, U.: Superposition Modulo
a Shostak Theory. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI),
vol. 2741, pp. 182–196. Springer, Heidelberg (2003)

[GJV00] Ganzinger, H., Jacquemard, F., Veanes, M.: Rigid reachability, the non-
symmetric form of rigid E-unification. Int. J. Found. Comput. Sci. 11(1),
3–27 (2000)

[GK03] Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem
proving. In: Proc.18th IEEE Symposium on Logic in Computer Science
(LICS 2003), pp. 55–64. IEEE Computer Society Press (2003)

[GK04] Ganzinger, H., Korovin, K.: Integrating equational reasoning into
instantiation-based theorem proving. In: Marcinkowski, J., Tarlecki, A.
(eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)

[GK06] Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M.,
Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511.
Springer, Heidelberg (2006)

[GMV99] Ganzinger, H., Meyer, C., Veanes, M.: The two-variable guarded fragment
with transitive relations. In: 14th IEEE Symposium on Logic in Computer
Science (LICS), Trento, Italy, July 2-5, pp. 24–34 (1999)

[GMW97] Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Res-
olution. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249,
pp. 321–335. Springer, Heidelberg (1997)

[GN00] Godoy, G., Nieuwenhuis, R.: Paramodulation with built-in abelian groups.
In: 15th IEEE Symp. Logic in Computer Science (LICS), Santa Barbara,
USA, pp. 413–424. IEEE Computer Society Press (2000)

Harald Ganzinger’s Legacy: Contributions to Logics and Programming 15

[GN01a] Ganzinger, H., Nieuwenhuis, R.: Constraints and Theorem Proving. In:
Comon, H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002,
pp. 159–201. Springer, Heidelberg (2001)

[GN01b] Godoy, G., Nieuwenhuis, R.: Ordering Constraints for Deduction with
Built-in Abelian Semigroups, Monoids and Groups. In: 16th IEEE Sym-
posium on Logic in Computer Science (LICS), Boston, USA, June 16–20,
pp. 38–47. IEEE Computer Society Press (2001)

[GN04] Godoy, G., Nieuwenhuis, R.: Superposition with Completely Built-in
Abelian Groups. Journ. Symbolic Computation 37(1), 1–33 (2004)

[GNN99] Ganzinger, H., Nieuwenhuis, R., Nivela, P.: The Saturate System (1999),
Software and documentation,
http://www.mpi-inf.mpg.de/SATURATE/Saturate.html

[GNN01] Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Context trees. In: EuroGP 2001.
LNCS (LNAI), vol. 2038, pp. 242–256, Siena, Italy (2001)

[GNN04] Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Fast term indexing with coded
context trees. Journal of Automated Reasoning 32(2), 103–120 (2004)

[Gra95] Graf, P.: Substitution Tree Indexing. In: Hsiang, J. (ed.) RTA 1995. LNCS,
vol. 914, pp. 117–131. Springer, Heidelberg (1995)

[GRW77] Ganzinger, H., Ripken, K., Wilhelm, R.: Automatic generation of optimiz-
ing multipass compilers. In: IFIP Congress, pp. 535–540 (1977)

[GS93] Ganzinger, H., Stuber, J.: Inductive Theorem Proving by Consistency for
First-order Clauses. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992.
LNCS, vol. 656, pp. 226–241. Springer, Heidelberg (1993)

[GS05] Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and
delayed clause normal form transformation. Inf. Comput. 199(1-2), 3–23
(2005)

[GSS00] Ganzinger, H., Sofronie-Stokkermans, V.: Chaining techniques for auto-
mated theorem proving in many-valued logics. In: 30th IEEE International
Symposium on Multiple-Valued Logic (ISMV)L, pp. 337–344 (2000)

[GSSW06] Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof
systems for partial functions with Evans equality. Inf. Comput. 204(10),
1453–1492 (2006)

[GW75] Ganzinger, H., Wilhelm, R.: Verschränkung von Compiler-Moduln. In:
Mühlbacher, J.R. (ed.) GI 1975. LNCS, vol. 34, pp. 654–665. Springer,
Heidelberg (1975)

[GW93] Ganzinger, H., Waldmann, U.: Termination Proofs of Well-moded Logic
Programs via Conditional Rewrite Systems. In: Rusinowitch, M., Remy,
J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 430–437. Springer, Heidelberg
(1993)

[GW96] Ganzinger, H., Waldmann, U.: Theorem Proving in Cancellative Abelian
Monoids. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS
(LNAI), vol. 1104, pp. 388–402. Springer, Heidelberg (1996)

[Her30] Herbrand, J.: Recherches sur la théorie de la démonstration. Traveaux
de la Societé des Sciences de Varsoria 33 (1930); Translation appeared in
van Heijenoort, J.: From Frege to Gödel: A Source Book in Mathematical
Logic, pp. 525–581. Harvard University Press (1967)

[Hil08] Hillenbrand, T.: Superposition and Decision Procedures – Back and Forth.
PhD thesis, Universität des Saarlandes (2008)

[HKV10] Hoder, K., Kovács, L., Voronkov, A.: Interpolation and Symbol Elimi-
nation in Vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS,
vol. 6173, pp. 188–195. Springer, Heidelberg (2010)

http://www.mpi-inf.mpg.de/SATURATE/Saturate.html

16 D. Kapur et al.

[HMS08] Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics
in the framework of resolution. Inf. Comput. 206(5), 579–601 (2008)

[HW07] Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Re-
search Report MPI-I-2007-RG1-002, Max-Planck Institute for Informatics,
Saarbruecken, Germany (April 2007)

[HW10] Horbach, M., Weidenbach, C.: Superposition for fixed domains. ACM
Transactions on Computational Logic 11(4), 1–35 (2010)

[JMW98] Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in Extensions
of Shallow Equational Theories. In: Nipkow, T. (ed.) RTA 1998. LNCS,
vol. 1379, pp. 76–90. Springer, Heidelberg (1998)

[JRV06] Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree Automata with
Equality Constraints Modulo Equational Theories. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 557–571.
Springer, Heidelberg (2006)

[KB70] Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In:
Leech, I. (ed.) Computational Problems in Abstract Algebra, pp. 263–297.
Pergamon Press (1970)

[KKR90] Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic
constraints. Revue Française d’Intelligence Artificielle 4(3), 9–52 (1990)

[KM08] Kazakov, Y., Motik, B.: A resolution-based decision procedure for shoiq.
Journal of Automated Reasoning 40(2-3), 89–116 (2008)

[KMN88] Kapur, D., Musser, D.R., Narendran, P.: Only prime superpositions need
be considered in the Knuth-Bendix completion procedure. Journal of Sym-
bolic Computation 6(1), 19–36 (1988)

[KV07] Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superpo-
sition Calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 223–237. Springer, Heidelberg (2007)

[LAWRS07] Lev-Ami, T., Weidenbach, C., Reps, T.W., Sagiv, M.: Labelled Clauses.
In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 311–327.
Springer, Heidelberg (2007)

[LS95] Lynch, C., Snyder, W.: Redundancy criteria for constrained completion.
Theoretical Compututer Science 142(2), 141–177 (1995)

[LV00] Levy, J., Veanes, M.: On the undecidability of second-order unification.
Inf. Comput. 159(1-2), 125–150 (2000)

[McA93] McAllester, D.: Automatic recognition of tractability in inferences rela-
tions. Journal of the ACM 40(2), 284–303 (1993)

[McC97] McCune, W.: Solution of the Robbins problem. Journal of Automated
Reasoning 19(3), 263–276 (1997)

[McM03] McMillan, K.L.: Interpolation and SAT-based Model Checking. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13.
Springer, Heidelberg (2003)

[Nie96] Nieuwenhuis, R.: Basic paramodulation and decidable theories. In:
Eleventh Annual IEEE Symposium on Logic in Computer Science, New
Brunswick, New Jersey, USA, pp. 473–482. IEEE Computer Society Press
(1996)

[Nip96] Nipkow, T.: More Church-Rosser Proofs (in Isabelle/HOL). In: McRobbie,
M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 733–747.
Springer, Heidelberg (1996)

Harald Ganzinger’s Legacy: Contributions to Logics and Programming 17

[NN93] Nivela, P., Nieuwenhuis, R.: Practical Results on the Saturation of Full
First-order Clauses: Experiments with the Saturate System (System De-
scription). In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 436–440.
Springer, Heidelberg (1993)

[NR92a] Nieuwenhuis, R., Rubio, A.: Basic Superposition is Complete. In: Krieg-
Brückner, B. (ed.) ESOP 1992. LNCS, vol. 582, pp. 371–390. Springer,
Heidelberg (1992)

[NR92b] Nieuwenhuis, R., Rubio, A.: Theorem Proving with Ordering Constrained
Clauses. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 477–491.
Springer, Heidelberg (1992)

[NR94] Nieuwenhuis, R., Rubio, A.: AC-Superposition with Constraints: No
AC-unifiers Needed. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814,
pp. 545–559. Springer, Heidelberg (1994)

[NR95] Nieuwenhuis, R., Rubio, A.: Theorem Proving with Ordering and Equality
Constrained Clauses. Journal of Symbolic Computation 19(4), 321–351
(1995)

[Pet83] Peterson, G.E.: A technique for establishing completeness results in theo-
rem proving with equality. SIAM J. on Computing 12(1), 82–100 (1983)

[Rob65] Robinson, J.A.: A machine-oriented logic based on the resolution principle.
Journal of the ACM 12(1), 23–41 (1965)

[RV02] Riazanov, A., Voronkov, A.: The design and implementation of VAM-
PIRE. AI Communications 15(91-110) (2002)

[RW69] Robinson, G.A., Wos, L.T.: Paramodulation and theorem-proving in first
order theories with equality. Machine Intelligence 4, 135–150 (1969)

[SB05] Schulz, S., Bonacina, M.P.: On handling distinct objects in the superpo-
sition calculus. In: Notes 5th IWIL Workshop on the Implementation of
Logics, pp. 11–66 (2005)

[Sch02] Stephan Schulz, E.: A Brainiac Theorem Prover. Journal of AI Commu-
nications 15(2/3), 111–126 (2002)

[SH00] Schmidt, R.A., Hustadt, U.: A Resolution Decision Procedure for Fluted
Logic. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 433–448.
Springer, Heidelberg (2000)

[SH07] Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal
logic. ACM Trans. Comput. Log. 8(4), 1–51 (2007)

[SR12] Seidl, H., Reuß, A.: Extending H1-Clauses with Path Disequalities. In:
Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 165–179. Springer,
Heidelberg (2012)

[Stu98a] Stuber, J.: Superposition theorem proving for abelian groups represented
as integer modules. Theoretical Computer Science 208(1-2), 149–177
(1998)

[Stu98b] Stuber, J.: Superposition theorem proving for commutative rings. In:
Bibel, W., Schmitt, P.H. (eds.) Automated Deduction - A Basis for Appli-
cations, vol. III. Applications, ch.2, pp. 31–55. Kluwer, Dordrecht (1998)

[SW12] Suda, M., Weidenbach, C.: A PLTL-Prover Based on Labelled Superposi-
tion with Partial Model Guidance. In: Gramlich, B., Miller, D., Sattler, U.
(eds.) IJCAR 2012. LNCS, vol. 7364, pp. 537–543. Springer, Heidelberg
(2012)

[SWW10] Suda, M., Weidenbach, C., Wischnewski, P.: On the Saturation of YAGO.
In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173,
pp. 441–456. Springer, Heidelberg (2010)

18 D. Kapur et al.

[Wal99] Waldmann, U.: Cancellative Superposition Decides the Theory of Divisible
Torsion-free Abelian Groups. In: Ganzinger, H., McAllester, D., Voronkov,
A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 131–147. Springer,
Heidelberg (1999)

[Wal01] Waldmann, U.: Superposition and Chaining for Totally Ordered Di-
visible Abelian Groups. In: Goré, R., Leitsch, A., Nipkow, T. (eds.)
EuroGP 2001. LNCS, vol. 2038, pp. 226–241. Springer, Heidelberg (2001),
www.mpi-inf.mpg.de/~uwe/paper/IJCAR01-bibl.html

[Wei97] Weidenbach, C.: SPASS—version 0.49. Journal of Automated Reason-
ing 18(2), 247–252 (1997)

[Wei99] Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in
First-Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI),
vol. 1632, pp. 314–328. Springer, Heidelberg (1999)

[WRC+76] Wilhelm, R., Ripken, K., Ciesinger, J., Ganzinger, H., Lahner, W.,
Nollmann, R.: Design evaluation of the compiler generating system MUGI.
In: Yeh, R.T., Ramamoorthy, C.V. (eds.) Proceedings of the 2nd Inter-
national Conference on Software Engineering, San Francisco, California,
USA, 1976, October 13-15, pp. 571–576. IEEE Computer Society (1976)

[WRCS67] Wos, L., Robinson, G.A., Carson, D.F., Shalla, L.: The concept of demod-
ulation in theorem proving. Journal of the ACM 14(4), 698–709 (1967)

[WSH+07] Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.:
System Description: Spass Version 3.0. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

[WW10] Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Com-
munications 23(2-3), 97–109 (2010)

[Zha88] Zhang, H.: Reduction, superposition and induction: Automated reason-
ing in an equational logic. Research Report 88–06, University of Iowa
(November 1988)

[ZK88] Zhang, H., Kapur, D.: First-order Theorem Proving using Conditional
Rewrite Rules. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS,
vol. 310, pp. 1–20. Springer, Heidelberg (1988)

[ZK89] Zhang, H., Kapur, D.: Consider only General Superpositions in Com-
pletion Procedures. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355,
pp. 513–527. Springer, Heidelberg (1989)

[ZK90] Zhang, H., Kapur, D.: Unnecessary inferences in associative-commutative
completion procedures. Mathematical Systems Theory 23(3), 175–206
(1990)

[ZR85] Zhang, H., Remy, J.-L.: Contextual Rewriting. In: Jouannaud, J.-P. (ed.)
RTA 1985. LNCS, vol. 202, pp. 46–62. Springer, Heidelberg (1985)

www.mpi-inf.mpg.de/~uwe/paper/IJCAR01-bibl.html

Bio-Logics: Logical Analysis

of Bioregulatory Networks

Alexander Bockmayr and Heike Siebert

DFG Research Center Matheon,
Fachbereich Mathematik und Informatik, Freie Universität Berlin,

Arnimallee 6, D-14195 Berlin, Germany
{bockmayr,siebert}@mi.fu-berlin.de

Abstract. We discuss different ways of applying logic to analyze the
structure and dynamics of regulatory networks in molecular biology.
First, the structure of a bioregulatory network may be described nat-
urally using propositional or multi-valued logic. Second, the resulting
non-deterministic dynamics may be analyzed using temporal logic and
model checking. Third, information on time delays may be incorporated
using a refined modeling approach based on timed automata.

1 Introduction

The last decades have seen a tremendous progress in molecular biology. Cur-
rent genome, transcriptome or proteome projects, whose goal is to determine
completely all the genes, RNA or proteins in a given organism, produce an ex-
ponentially growing amount of data. A major challenge consists in exploiting
all these data and in understanding how the various components of a biological
system (i.e., genes, RNA, proteins etc.) interact in order to perform complex bi-
ological functions. This has lead to the new field of systems biology, which aims
at a system-level understanding of biological systems [13]. While traditional biol-
ogy examines single genes or proteins in isolation, system biology simultaneously
studies the complex interaction of many levels of biological information (genomic
DNA, mRNA, proteins, informational pathways and networks) to understand
how they work together.

The development of computational models of biological systems plays a major
role in systems biology, see e.g. [27]. A variety of formalisms for modeling, sim-
ulating, and analyzing different types of biological systems has been proposed
during the last years. In this paper, we focus on the logical analysis of regulatory
networks in biology. Bioregulatory networks form an important class of biologi-
cal systems. The understanding of regulation is crucial for many applications in
medicine and pharmacy.

Mathematical and computational modeling has long been recognized as an
important tool for understanding the dynamical behavior of bioregulatory net-
works. Classically, such networks are modeled in terms of differential equations
resulting in a fully quantitative description. However, experimental data is often

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 19–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 A. Bockmayr and H. Siebert

of qualitative nature and thus not sufficient for deriving the required parameter
values. In addition, detailed descriptions of the reaction mechanisms are needed
for a complete kinetic model. The resulting systems of differential equations are
mostly non-linear and thus cannot be solved analytically. Numerical methods
can provide very accurate solutions. However, this accuracy may be misleading
since it relies on parameter estimations based on insufficient data.

These difficulties led to the development of discrete modeling approaches aim-
ing to grasp the essential character of a systems’ behavior based on qualitative
data. The logical analysis of bioregulatory networks was pioneered more than
30 years ago by the work of Sugita, Kauffman, Glass, and Thomas [26,11,9,28].
Thomas [28] introduced a purely logical formalism, which, over the years, has
been further developed and successfully applied to different biological problems
(see [31], [32] and references therein). The only information on a regulatory
component required in this formalism is whether or not it has an activity level
relevant for some interaction in the network. For example, in order to activate a
certain gene, the concentration of some protein has to be above a given threshold.
The two relevant activity levels then represent the concentration being below or
above the threshold. Since a regulatory component can be involved in more than
one interaction, more than two activity levels may be associated with it. A state
of the network gives the current activity levels for each component. To derive the
dynamical behavior of the system, discrete parameters are introduced that deter-
mine the strength of the different interactions in a given state. Parameter values
can be specified, for instance, based on information on the ratio of production
and decay rates of chemical substances. They are used to define a discrete func-
tion that determines the evolution of the system. However, rather than executing
all indicated changes in the components at the same time, an asynchronous up-
dating rule is employed to obtain a non-deterministic state transition graph. It
has been shown that this approach captures essential qualitative features of the
dynamical behavior of complex biological networks (again see [31] and [32]).

In this paper, we discuss how logical methods can be applied to the analysis
of regulatory networks in molecular systems biology. We start in Sect. 2 by
introducing a logical formalism for modeling bioregulatory networks based on
the classical Thomas approach. In Sect. 3 we illustrate the method on a model
of the mammalian cell cycle. Sect. 4 focusses on general principles relating the
structure and the dynamics of bioregulatory networks. In Sect. 5, we discuss
how temporal logic and model checking may be used to analyze the dynamics
of bioregulatory networks. Finally, a refinement of the logic modeling approach
based on the incorporation of time delays is presented in Sect. 6.

2 Network Structure and Dynamics

In this section we introduce a logical formalism that allows to capture structural
properties and the dynamical behavior of a bioregulatory network. It is based
on the classical modeling approach of Thomas (see for example [31] and [32]).
As in [6], the structure of the network is represented by a directed multigraph,
i. e., a directed graph that may contain parallel edges.

Bio-Logics: Logical Analysis of Bioregulatory Networks 21

Definition 1. Let n ∈ IN denote the number of regulatory components. An in-
teraction (multi-)graph (or bioregulatory (multi-)graph) I is a labeled directed
multigraph with vertex set V := {α1, . . . , αn} and edge set E. Let T (αj) be
the set of all edges whose tail is αj, and H(αj) the set of edges whose head is
αj. Each edge e from αj to αi is labeled with a sign εe ∈ {+,−} and a set
Me ⊆ {1, . . . , dj}, where dj denotes the out-degree of αj. Let pj be the maximal
value of the union of all sets Me with e ∈ T (αj). We call {0, . . . , pj} the range
of αj. For each i ∈ {1, . . . , n} we denote by Pred(αi) the set of vertices αj such
that αj → αi is an edge in E.

The vertices of this graph represent the components of the regulatory network,
e. g. genes, the range of a vertex the different expression levels of the correspond-
ing component affecting the behavior of the network. Thus, the vertices can be
interpreted as variables that take values in the corresponding range. An edge
e from αj to αi signifies that αj influences αi in a positive or negative way,
depending on εe and provided that the current expression level of αj is in Me.
The way αj influences αi may also depend on the context. For example, presence
or absence of a co-factor may determine whether an activating or an inhibiting
effect can be observed or how strong the influence is. Such effects can even occur
in auto-regulation. Consider a gene α with low, intermediate and high activity
level that remains quiescent at low level, but influences itself via its own prod-
uct at an intermediate level leading to a strong increase of production. Once it
reaches the high concentration level self-inhibition occurs, downregulating the
level not necessarily to zero but to the intermediate level, resulting in an oscil-
lation between intermediate and high concentrations. Such a situation can be
captured in a graph with two edges leading from α to itself, one negative and
one positive, labeled with appropriate disjoint sets Me. The original Thomas
formalism, where the network structure is represented by a directed graph not
allowing for multiple edges, could capture the oscillation via a negative edge, but
not the additional stable behavior at low activity level, since here an additional
positive edge is needed.

Fig. 1(a) shows a simple interaction graph comprising two vertices. The two
different edges leading from α2 to α1 signify that α2 has an inhibiting influence
on α1 if its expression level is 1. However, on the higher expression level 2 the
influence becomes activating. Furthermore, there are two edges, e3 and e4, from
α2 to itself. The corresponding setsMe3 andMe4 intersect. It is not clear from the
interaction graph alone whether α2 with expression level 1 inhibits or activates
itself. The outcome depends on the interplay between the influence from α2 on
itself and the influence of α1 on α2. Thus, in order to determine the dynamical
behavior of the system we need further information.

Definition 2. Let I be an interaction graph. A state of the system described by
I is a tuple s ∈ Sn := {0, . . . , p1} × · · · × {0, . . . , pn}. The set of resource edges
of αi in state s is the set

22 A. Bockmayr and H. Siebert

α1 α2

−

0 1

0 0

1 1

1 0

1 20 2

+

{1}
{1} {1, 2}

{2}
{1}

{1}

+
−

−−

e1 := (α1, α1,−, {1}),
e2 := (α1, α2,−, {1}),
e3 := (α2, α2, +, {1, 2}),
e4 := (α2, α2,−, {1}),
e5 := (α2, α1,−, {1}),
e6 = (α2, α1, +, {2})

α1 α2 f1(s) f2(s) f1(s) f2(s)

0 0 K1,{e1,e5} K2,{e2,e4} 1 1
1 0 K1,{e5} K2,{e4} 0 0
0 1 K1,{e1} K2,{e2,e3} 0 2
1 1 K1,∅ K2,{e3} 0 0
0 2 K1,{e1,e5,e6} K2,{e2,e3,e4} 1 2
1 2 K1,{e5,e6} K2,{e3,e4} 1 1

(a)

(b)

Fig. 1. In (a), interaction graph of a regulatory system comprising two components
and six interactions. In (b), state table for general parameters with specific values, and
the resulting state transition graph.

Ri(s) := {e ∈ H(αi) | e : αj → αi, (εe = + ∧ sj ∈Me) ∨ (εe = − ∧ sj /∈Me)}.

Given a set K(I) := {Ki,Ri(s) | i ∈ {1, . . . , n}, s ∈ Sn} of (logical) parameters

Ki,Ri(s), which take values in the range of αi, we define fK(I) = f : Sn →
Sn, s �→ (K1,R1(s), . . . ,Kn,Rn(s)). We call (I, f) a bioregulatory network.

In a given state s only the edges e labeled with a w. r. t. s suitable set Me

represent active influences. The set of edge resources Ri(s) contains all active
positive edges and all inactive negative edges reaching αi. That is, we interpret
the absence of an inhibiting influence as activating influence. The value of the
parameter Ki,Ri(s), and thus fi(s), then indicates how the expression level of αi

will evolve. It will increase (decrease) if the parameter value is greater (smaller)
than si. The expression level stays the same if both values are equal. Thus the
function f holds all the information necessary to determine the dynamical behav-
ior of the network. In the table given in Fig. 1(b) we see in the second column the
values f(s). The third column provides a specification of the parameter values,
and thus of f .

Typically, the set of resources Ri(s), and with it the logical parameters, is
defined as the set of predecessors of αi (instead of edges reaching αi) having an
activating influence on αi (see [4]). Since we introduced a more general frame-
work allowing for parallel edges, knowledge of the current expression level of a
predecessor of αi is not enough to determine the character of the corresponding
interaction. For an interaction graph without parallel edges, the notion of edge
resources and vertex resources are equivalent.

Bio-Logics: Logical Analysis of Bioregulatory Networks 23

The signs on the edges together with the sets Me determine whether a com-
ponent is an activator or an inhibitor of some other component in a given state.
An activating influence, i. e., an effective activator or a non-effective inhibitor,
cannot induce a decrease in expression level of the target component. This is
reflected in the following parameter constraint:

ω ⊆ ω′ ⊆ H(αi) ⇒ Ki,ω ≤ Ki,ω′ (1)

for all i ∈ {1, . . . , n} and ω, ω′ resource edge sets of αi. In the following we will
always assume that this constraint is satisfied.

We have seen that the way the structure of the network influences its dynamics
is captured in the specification of the logical parameters. Depending on their
values, edges in the graph may or may not be functional in the following sense.
Obviously, if there is an edge e from αj to αi and Ki,R = Ki,R\{e} for all suitable
resource sets R, then the edge e has no influence on the dynamics of the system.
In that case, deleting e from the interaction graph has no consequences regarding
the dynamics of the network. Thus, in the following, we may assume for every
N := (I, f) that whenever there is an edge e : αj → αi in I, then there exists a
suitable resource set R such that Ki,R
= Ki,R\{e}. Thus, there exist states s, s

(j)

satisfying fi(s)
= fi(s
(j)), sj
= s

(j)
j , and sk = s

(j)
k for all k
= j.

In the same way, we may infer the existence of an edge in I from the values
of f(s). It is easy to see that, if s is a state such that fi(s)
= fi(s

(j)) with s(j)

as defined above, then there is an edge from αj to αi.

Remark 1. If we consider a Boolean model the situation is easy to grasp. In
addition to deriving the existence of edges from f , we can also easily deduce

the sign of that edge. If s and s(j) are defined as above, then the value of s
(j)
j

is determined by the value of sj . Furthermore, we know for every edge e that
Me = {1}. It is now not difficult to see that e is a positive edge if sj = fi(s),

and negative if s
(j)
j = fi(s). We say that I and f are consistent, if the edges in

I coincide with those computed from f .
Consistency can also be defined for multi-valued models, however the defini-

tions get more involved [14]. Often, a system is defined primarily by the function
f , and its corresponding structure is derived locally, i. e., for a given state. Then,
labeling edges simply by signs with no additional activity level sets is sufficient.
A global representation of the network structure can be defined as a union of the
local graphs (see e. g. [19]). The information inherent in such a global graph is
naturally much coarser than that represented by the interaction graph of Def. 1,
but it is still useful in highlighting dependencies of the network components and
already allows interesting insights in the network characteristics.

The remainder of this section will deal with the representation of the dynam-
ical behavior of the network in the state space Sn. Other than in continuous
dynamics described by suitable differential equations, we have more than one
possibility to derive the dynamical behavior of the system from the function f .
The first possibility that comes to mind is to use the relation {(s, f(s)) ; s ∈ Sn}

24 A. Bockmayr and H. Siebert

to define state transitions. That is to say, we update all activity levels si of
the regulatory components at the same time. This method of updating is called
synchronous update. Much work has been done using this approach, often using
stochastic methods to analyze systems for large n (see e.g. [10]). However, this
method of updating the activity levels of different components is highly idealis-
tic. The molecules and chemical reactions leading to the activation of different
components differ. Thus it is reasonable to assume that although a given situa-
tion may provide the conditions for a change in the activity level of more than
one regulatory component, it will evolve at first to a state that differs only in
one component. This procedure is called asynchronous update and will be used
in the remainder of this paper. We obtain the following definition.

Definition 3. The state transition graph SN corresponding to the bioregulatory
network N = (I, f) is a directed graph with vertex set Sn. There is an edge
s → s′ if either s = f(s) = s′ or if there is i ∈ {1, . . . , n} such that s′i =
si + sgn(Ki,Ri(s) − si)
= si and sj = s′j for all j ∈ {1, . . . , n} \ {i}.

If s is a state such that f(s) differs from s in more than one component, then
there will be more than one successor of s in SN . In Fig. 1(b) we see the state
transition graph corresponding to the state table also given in the figure.

In the following, we introduce some basic structures in this graph that are of
biological interest using standard terminology from graph theory, such as paths
and cycles.

Definition 4. Let SN be a state transition graph. An infinite path (s0, s1, . . .)
in SN is called trajectory. A nonempty set of states D is called trap set if every
trajectory starting in D never leaves D. A trap set A is called attractor if for
any s1, s2 ∈ A there is a path from s1 to s2 in SN . A is called cyclic attractor
if A contains at least two states.

A state s0 is called steady state, if s0 is a fixed point of f , that is, if there is
an edge from s0 to itself. A cycle C := (s1, . . . , sr, s1), r ≥ 2, is called a trap
cycle if every sj, j ∈ {1, . . . , r}, has only one outgoing edge in SN , i. e., the
trajectory starting in s1 is unique.

Let M be an arbitrary set of states. The set of states s, such that there exists
a path from s to some state in M , is called the basin of attraction of M . The
immediate basin of attraction of M is the set of states s such that for every
trajectory (s, s1, . . .) starting in s there exists k0 with sk ∈M for all k ≥ k0.

In other words, the attractors of SN correspond to the terminal strongly con-
nected components of the graph. It is easy to see that steady states and trap
cycles are attractors.

When analyzing the state transition graph, not only trap cycles but cycles
in general are of interest. In the general case, a concise statement about the
asymptotic behavior represented by the trajectories is not possible, since there
may be trajectories traversing the cycle in question which leave it again at some
point. As a consequence the immediate basin of attraction of a cycle may be
empty. This illustrates that although a trajectory is an infinite path in a finite

Bio-Logics: Logical Analysis of Bioregulatory Networks 25

graph, it does not necessarily reach an attractor. However, it is easy to see
that for each state there exists a trajectory starting in the state leading to an
attractor.

Attractors represent regions of predictability and stability in the behavior of
the system. It is not surprising that an attractor can often be associated with
a meaningful aspect of the system’s role in biological processes. A fixed point
in a regulatory network associated with cell differentiation, for example, may
represent the stable state reached at the end of a developmental process. Trap
cycles can often be identified with homeostasis of sustained oscillatory activity,
as can be found in the cell cycle or circadian rhythm.

3 The Mammalian Cell Cycle: An Example

To illustrate the methods introduced in Sect. 2, we consider a model of cell cycle
control in eukaryotes. There is a number of different discrete models available,
focussing on different aspects and research questions (see [8] for an overview).
Here, we focus on a generic model of the mammalian cell cycle proposed by
Fauré et al. in [7].

The cell cycle is a series of events allowing a cell to duplicate itself, which
is important for many biological processes, such as differentiation, apoptosis
and regeneration. It is divided in a series of well-defined phases that lead to
replication of the genome of the cell and the division in two daughter cells.

Replication of DNA occurs in the S phase, while in the M phase replicated
genetic material is separated. Usually, so-called gap phases occur between M
and S phase, the G1 phase following the M phase and set before the S phase,
and the G2 phase between S and M phase. Starting from the G1 phase, the cell
cycle has to pass a checkpoint, the so-called restriction point. Beyond this point
the cell is committed to dividing, that is, the cell cycle is executed in its entirety.
Regulation of the cell cycle may also prohibit the passing of the restriction point.
The cell then enters a quiescent state, called the G0 phase.

The Boolean model of the cell cycle as proposed in [7] is shown in Fig. 2. For a
detailed explanation of the biological significance of the regulatory components,
see [7] and references therein. Note that this interaction graph does not contain
parallel edges. Thus each edge is defined by its head and tail. Furthermore, for
each edge e we have Me = {1}.

We begin the dynamical analysis by the following observation. Since the com-
ponent CycD is only influenced by itself, its value can be viewed as input in the
system. Thus we can characterize the dynamics of the system in the presence of
active CycD and in its absence separately. This mirrors the biological situation
since an extracellular signal eliciting cell division leads to activation of the pro-
tein Cyclin D as a first step. In the G0 phase Cyclin D is not active. The logical
model gives rise to one steady state. In this state CycD is not activated. It can
be reached from every other state lacking active CycD in the state transition
graph. In other words, the set of states lacking active CycD is the basin of at-
traction of the unique steady state. The steady state represents the quiescent

26 A. Bockmayr and H. Siebert

CycD

CycE

Rb E2F

CycA

p27

Cdc20

Ubc
Cdh1

CycB

+

–
––

–
–

–

–

–

+

+ –
––

+
–

–+

+

+

+

+

+

–

+
–

+

+
–

–

–
–

–

+

+

–

– – –

KCycD,{CycD} = 1
KRb,{CycA,CycB,CycD,CycE} = 1
KRb,{p27,CycB,CycD} = 1
KE2F,{Rb,CycA,CycB} = 1
KE2F,{p27,Rb,CycB} = 1
KCycE,{E2F,Rb} = 1
KCycA,{E2F,Rb,Cdc20,Cdh1} = 1
KCycA,{E2F,Rb,Cdc20,Ubc} = 1
KCycA,{CycA,Rb,Cdc20,Cdh1} = 1
KCycA,{CycA,Rb,Cdc20,Ubc} = 1
Kp27,{CycA,CycB,CycD,CycE} = 1
Kp27,{p27,CycB,CycD,CycE} = 1
Kp27,{p27,CycA,CycB,CycD} = 1
KCdc20,{CycB} = 1
KCdh1,{CycA,CycB} = 1
KCdh1,{Cdc20} = 1
KCdh1,{p27,CycB} = 1
KUbc,{Cdh1} = 1
KUbc,{Ubc,Cdc20} = 1
KUbc,{Ubc,CycA} = 1
KUbc,{Ubc,CycB} = 1
KCycB,{Cdc20,Cdh1} = 1

Fig. 2. The interaction graph of the Boolean model of the mammalian cell cycle [7].
For each edge e we have Me = {1}. Edges in the resource sets are denoted by the tail
vertex of the edge. All parameters with value 1 of the regulatory network arise from
those given above and the condition ω ⊂ ω′ ⇒ Kα,ω ≤ Kα,ω′ .

phase G0. In the presence of active Cyclin D there is also a unique attractor.
This attractor is a set of intertwined cycles. It comprises 112 states. The basin of
attraction encompasses all states indicating the presence of active Cyclin D. In
the cyclic attractor we can identify the different phases of the cell cycle. In both
cases, presence and absence of CycD, the basin of attraction and the immediate
basin of attraction do not coincide. That is due to the fact that there exist cycles
in the state transition graph that do not belong to an attractor (see [7] for more
details).

A more thorough analysis shows that some trajectories in the state transition
graph are clearly unrealistic given the current biological knowledge. The data
incorporated in the discrete model is simply not sufficient to yield a more pre-
cise representation. However, the qualitative aspects of the system’s behavior
were determined correctly, namely two attractors, a stable state representing
the quiescent G0 phase and a cyclic behavior representing the course of events
in the cell division. A next step in the process of obtaining more information
about the system is to analyze the influence of small changes in the structure
of the network on the resulting behavior. Deleting certain edges or vertices, for
example, can be interpreted as mutations in the original system. Comparison
with experimental results of loss-of-function or gain-of-function mutations may
thus lead to a refined model. In turn the predictions of such a model may be
checked by suitable experiments, yielding new information on the real system.

Bio-Logics: Logical Analysis of Bioregulatory Networks 27

4 Linking Structure and Dynamics

In the preceding section, we presented a practical application of the modeling
formalism introduced in Sect. 2. An important issue, both from the theoretical
and practical viewpoint, is to better understand the relationship between the
structure and the dynamics of a bioregulatory network N = (I, f). Since the
dynamics are derived from the function f , finding meaningful mathematical
relations between dynamical and structural aspects is only possible if I and
f are consistent (see Remark 1 in Sect. 2). In the following, we only consider
consistent networks.

It has been shown that feedback circuits, i. e., sequences of consecutive edges
(e0, . . . , ek) in the interaction graph such that the tail vertex of e0 coincides
with the head vertex of ek, and all tail vertices of the involved edges are distinct,
are of particular importance for the behavior of a system. Such a circuit is
called positive if the number of positive edges in the cycle is even, and negative
otherwise. Thomas [30] conjectured in 1981 that

– a positive circuit in the interaction graph is a necessary condition for multi-
stationarity, i.e., multiple steady states.

– a negative circuit in the interaction graph is a necessary condition for stable
periodic behavior.

During the last 25 years, these conjectures have been proven in various settings,
for both discrete and continuous modeling formalisms, see e.g. [25] and the ref-
erences therein. We can formulate them in the following way for our framework.
The proofs can be found in [19,18]. Note that the notion of interaction graph
used in these references is not the same as in our definition, but the results eas-
ily translate to our setting, and even allow for stronger statements using local
interaction graphs (compare Remark 1).

Theorem 1. Let N = (I, f) be a bioregulatory network. If there are two distinct
attractors in the asynchronous state transition graph SN , then there exists a
positive circuit in I. If there is a cyclic attractor in SN , then there exists a
negative circuit in I.

In general, the inverse statements of the results in the above theorem are not
true. Fig. 3 shows a simple example clarifying this point. The network in the
figure has only one attractor, the steady state (0, 0), but includes a positive as
well as a negative circuit.

Finding sufficient conditions for positive resp. negative circuits to generate
multiple attractors resp. cyclic attractors is an important problem, since it al-
lows dynamical characterization of a given system based on investigation of the
interaction graph rather than the exponentially larger state transition graph. In
[15], the authors show that the asynchronous state transition graph has exactly
two steady states and no other attractors, if the interaction graph is a single
positive circuit. If I consists of only one negative cycle, then there is only one
attractor in the asynchronous state transition graph, and this attractor is cyclic.

28 A. Bockmayr and H. Siebert

α1 α2
+

−

Kα1,∅ = 0
Kα1,{α1} = 0
Kα1,{α2} = 0
Kα1,{α1,α2} = 1
Kα2,∅ = 0
Kα2,{α1} = 1

0 1

0 0

1 1

1 0

+

Fig. 3. Interaction graph, parameters and state transition graph of a simple regulatory
system. Since there are no parallel edges we again refer to edges in the resource sets
by their tail vertex.

To obtain similar results for more complex networks, a purely structural anal-
ysis is clearly not sufficient, as the example in Fig. 3 shows. However, there exist
different approaches supplementing structural observations with pinpoint dy-
namical information that allow for results about attractor characteristics based
on circuits in the interaction graph [23,16,20]. Extending such results may lead
to efficient analysis methods for bioregulatory networks, permitting an under-
standing of essential dynamical properties without having to generate the state
transition graph in its entirety.

5 Model Checking for Biological Networks

In the previous sections, we have studied mathematical relationships between the
interaction graph and the state transition graph. In this section, we discuss how
the dynamics of a bioregulatory network, as represented by the state transition
graph, can be analyzed in practice. Since the size of the state transition graph
grows exponentially in the number of genes, the use of classical graph algorithms
to determine shortest paths, elementary circuits, or strongly connected compo-
nents is limited. A powerful alternative consists in using model checking : many
non-trivial dynamic properties can be tested automatically by expressing them
in a suitable temporal logic (e.g. Computation Tree Logic (CTL)) and apply-
ing model checking techniques from formal verification [4,5,3]. Model checking
can also be used in reverse engineering of genetic networks. It allows finding
values for the discrete parameters that are consistent with available biological
knowledge [4].

Definition 5. Given a set of atomic formulas AP , the set of CTL formulas
(over AP) is inductively defined as follows:

1. Atomic formulas in AP are CTL formulas.
2. If ϕ and ψ are CTL formulas, then ¬ϕ, ϕ∧ψ, ϕ∨ψ,AXϕ,EXϕ,AFϕ,EFϕ,

AGϕ,EGϕ,A[ϕUψ], E[ϕUψ] are CTL formulas.

Each temporal operator in CTL consists of a path quantifier, A (for All paths)
or E (there Exists a path), together with a linear time operator X (in the neXt
state), F (in some Future state), G (in all future states, Globally), or U (Until).

Bio-Logics: Logical Analysis of Bioregulatory Networks 29

CTL formulas are interpreted over Kripke structures M = (S,→, L). Here, S
is a finite set of states, → is a binary relation on S such that for each s ∈ S
there exists s′ ∈ S with s → s′. The labeling function L : S → 2AP defines for
each state s ∈ S the set L(s) of atomic formulas valid in S.

Definition 6. Given a Kripke model M = (S,→, L), a state s ∈ S, and a CTL
formula ϕ, the satisfaction relation M, s |= ϕ is inductively defined as follows:

– M, s |= p iff p ∈ L(s).
– M, s |= ¬ϕ iff M, s
|= ϕ.
– M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ.
– M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ.
– M, s |= AXϕ iff for all s′ ∈ S with s→ s′ we have M, s′ |= ϕ.
– M, s |= EXϕ iff for some s′ ∈ S with s→ s′ we have M, s′ |= ϕ.
– M, s |= AFϕ iff for all paths s = s1 → s2 → . . . we have M, si |= ϕ, for

some i ≥ 1.
– M, s |= EFϕ iff for some path s = s1 → s2 → . . . we have M, si |= ϕ, for

some i ≥ 1.
– M, s |= AGϕ iff for all paths s = s1 → s2 → . . . we have M, si |= ϕ, for all
i ≥ 1.

– M, s |= EGϕ iff for some path s = s1 → s2 → . . . we have M, si |= ϕ, for
all i ≥ 1.

– M, s |= A[ϕUψ] iff for all paths s = s1 → s2 → . . . there exists i ≥ 1 such
that M, si |= ψ and M, sj |= ϕ, for all 1 ≤ j < i.

– M, s |= A[ϕUψ] iff for some path s = s1 → s2 → . . . there exists i ≥ 1 such
that M, si |= ψ and M, sj |= ϕ, for all 1 ≤ j < i.

Given a state transition graph SN = (Sn,→) of a bioregulatory network N =
(I, f), we may define a corresponding Kripke structure M = (S,→0, L) by set-
ting

– S = Sn = {0, . . . , p1} × · · · × {0, . . . , pn}, →0 = → ∪{s→ s | s is stable}
– AP = {xi = 0, xi = 1, . . . , xi = pi, xi = fi | i ∈ {1, . . . , n} }, with new

constant symbols f1, . . . , fn, and

– L(s) = {xi = si | i ∈ {1, . . . , n} } ∪ {xi = fi | fK(I)
i (s) = si, i ∈ {1, . . . , n} }.

Using this language, we may express various properties occurring in analyzing
the dynamics of a bioregulatory network [17]. For example, the formula

states ≡ (x1 = s1 ∧ · · · ∧ xn = sn)

is satisfied exactly in the state s ∈ Sn. Similarly, the formula

steady ≡ (x1 = f1 ∧ · · · ∧ xn = fn)

is satisfied exactly by the steady states. The formula

states → AF (steady)

30 A. Bockmayr and H. Siebert

expresses that on all paths starting in state s one eventually reaches a steady
state. A periodic behavior is expressed by the formula

states → AF (¬states ∧ AF (states)),

which states that all paths starting from state s will reach a state different from
s and then come back to s.

6 Incorporating Time Delays

The formalism introduced in the preceding sections requires only basic knowl-
edge about the modeled system. In turn, the resulting representation of the
network dynamics is high-level and non-deterministic. So far, we have no means
to distinguish between different trajectories in the state transition graph, and
thus must consider all possible cases. However, experimental data permitting a
distinction may be available. This calls for suitable extensions of the formalism
allowing for the incorporation of such data [29,31,12].

In this section, we focus on including temporal data concerning the network
operations. Thus we introduce a time axis that allows to compare durations, or
time delays, of different activity level changes of network components. The sole
assumption about time delays inherent in the logical formalism is reflected in
the asynchronous update rule introduced in Def. 3. We assume that different
processes involved in activity level changes do not take the exact same amount
of time, i. e., one is faster than the other. However, we do not know the ordering
of the time delays involved and thus have to consider every possible outcome.
This leads to the non-determinism of the state transition graph.

We now associate a time delay with every activity level change in the network.
Then for each time delay we have to indicate the corresponding component and
activity levels involved. Furthermore, we have to realize that in a biological sys-
tem the processes governing activity level increase and decrease, e. g. production
and decay of some substance, often differ in duration. So we introduce time de-
lays τkεi associated with the process of activity level change of component αi

from k to k + 1, if ε = +, or from k to k − 1, if ε = −. Now, we can label each
edge in the state transition graph with a time constraint identifying the value
change of the corresponding state component as the fastest activity level change.
Note that such a time constraint is not necessary if a state has only one outgoing
edge, since there is no competition between processes in that case. Fig. 4(a) and
(b) show the interaction graph and the labeled state transition graph of a simple
network comprising two components.

In addition to time constraints corresponding to a single edge we can also
calculate time constraints for paths in the state transition graph. However, these
constraints may become more and more complex with increasing path length,
because we have to keep in mind the history of each network component. For
example in Fig. 4(c), the constraint for the path from (1,2) to (1,0) has to take
into account that the process of activity level decrease for α1 starts at the same
time as that of α2 and is not terminated when reaching the intermediate state

Bio-Logics: Logical Analysis of Bioregulatory Networks 31

0 1

0 0

1 1

1 0

1 20 2

(a)

τ0+
1 < τ0+

2

τ1−
1 < τ1−

2

α1

α2

−

−
−{2}

{1}

{1}

(b)
τ1−
1 < τ2−

2

τ2−
2

<
τ1−
1

τ1−
2

<
τ1−
1

τ0+
2

<
τ0+
1

0 1

0 0

1 1

1 0

1 20 2

(c)

τ2−
2

+
τ1−
2

<
τ1−
1

Fig. 4. In (a) interaction graph of a simple network. We use the logical parameters
K1,∅ = K2,∅ = K2,{α2} = 0, K1,{α2} = K2,{α1} = 1 and K2,{α1,α2} = 2, where again
edges in the resource sets are denoted by their tail vertex. In (b) and (c) corresponding
state transition graph labeled with time constraints.

(1,1). Thus, in order to reach (1,0) the sum of both time delays τ2−2 and τ1−2
needs to be smaller than τ1−1 .

If suitable data about the time delays is available, these should be incorporated
in the structural description. Then an automated procedure should provide a
representation of the dynamics taking into account all the given constraints.
A possible framework that allows us to express the logical rules governing the
network behavior as well as to measure time is the theory of timed automata (see
e. g. [1]). Here the discrete changes in activity levels can be linked to conditions
depending on the evolution of time. The details of the modeling procedure (see
[21,22,24]) are beyond the scope of this paper, but in the following we explain
the general idea. It can be divided in three steps:

– We model each network component separately, incorporating information on
its range, interactions influencing the component, parameter values and time
delays concerning the component.

– The local models are combined to a global model supplying information
on the state space, state changes induced by the structure and parameter
specification of the network, and constraints on time delays associates with
state changes.

– The data inherent in the network model is evaluated to obtain a represen-
tation of the dynamical behavior in agreement with all given constraints.

Each network component is modeled as a timed automaton, equipped with a
clock that measures time, and consists of discrete locations representing the
different activity levels of the component. Such locations are called regular. Fur-
thermore it contains so-called intermediate locations representing the process of
activity level change, that is, the process we identify with a certain time de-
lay. Changes from a regular location to an intermediate location are based on
the system evolution determined by the logical function f introduced in Def. 2.
However, a location change indicating the completion of an activity level change,
represented by a change from an intermediate location to the corresponding

32 A. Bockmayr and H. Siebert

regular location, depends only on the given time delay. This time delay does not
have to be an exact value. It is also possible to indicate a maximal and minimal
time delay for a process, again allowing for non-determinism.

In order to obtain a representation of the network dynamics we derive a timed
automaton from the component automata in much the same way a product au-
tomaton is defined (see again [1]). The location set of the resulting automaton
contains the state space of the network and all possible transitions between the
states. However, there has not yet been an evaluation of the time constraints im-
posed on those transitions. In a last step, we derive a transition system consisting
of states with a discrete part holding the activity level values and a continuous
part holding the clock values. It represents the possible dynamical behavior of
the network, all paths in the transition system are in agreement with the given
constraints. Provided we have enough data on time delays, this representation
allows for a much more refined analysis of the system’s dynamics than the purely
discrete state transition graph. Transitions and pathways appearing in the state
transition graph can be ruled out if they violate the given time constraints. This
can be of great advantage when modeling systems parts of which work on dif-
ferent time scales. Furthermore, it is possible to compare different trajectories
regarding their feasibility with respect to the time constraints. For example,
transitions depending on equality of time delays will occur less likely in biologi-
cal systems than transitions allowing for perturbations in the time delays. The
same considerations allow for the introduction of a stability concept for certain
behaviors. Altogether we obtain a much more detailed picture of the network
dynamics (see [21,22,24] for more information).

Of course, we have to make sure that there exist effective modeling and anal-
ysis methods for this framework. The theory of timed automata provides a suit-
able platform for our approach, since there are a variety of software packages
for implementation, simulation and verification of such models. Concerning the
analysis of the network behavior, model checking techniques can be applied. In
particular, the CTL and LTL model checking problems are decidable for timed
automata (see [2]).

7 Conclusion

During the last years, logic modeling has become a well established methodology
in systems biology. It allows for the translation of working models of experimental
biologists into a rigorous mathematical framework, requiring only basic qualita-
tive information. Despite the high level of abstraction, analysis of such models
can reveal characteristic patterns of the dynamical behavior, thus helping to
understand biological function.

Linking the occurrence of certain dynamical patterns, regardless of their bio-
logical interpretation, to structural properties of the network is a task needing
theoretical mathematical consideration. Already there have been interesting re-
sults, some of which were presented in Sect. 4. A more thorough understanding
of the general rules governing the relation between structure and dynamics is not

Bio-Logics: Logical Analysis of Bioregulatory Networks 33

only of theoretical interest. It may also prove helpful in reverse engineering reg-
ulatory networks, i.e., discovering the structure underlying the experimentally
observed dynamic behavior. For example, every bioregulatory system capable of
reaching different stable states, representing different cell types in cell differenti-
ation, necessarily contains a positive feedback circuit in its interaction graph, as
can be deduced from Theorem 1. When logic modeling is applied to a regulatory
network, a non-deterministic state transition graph is obtained, which can be
further explored using temporal logic and model checking. Practical experience
shows that model checking is also very useful for reverse engineering bioregula-
tory networks. Being able to build a model starting from very limited data is one
of the strengths of the logical approach. However, if additional data is available,
extensions of the formalism are needed to exploit this information and to enable
a refined dynamical analysis. In Sect. 6 we introduced an extended approach in-
corporating data on time delays using timed automata. Further extensions may
be needed, for example to include information on reaction mechanisms, thus pro-
viding a step by step enhancement of the model in accordance with the results
of experimental biology.

References

1. Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

2. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid
systems. Proceedings of the IEEE 88, 971–984 (2000)

3. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schnei-
der, D.: Analysis and verification of qualitative models of genetic regulatory net-
works: A model-checking approach. In: 19th International Joint Conference on
Artificial Intelligence, IJCAI 2005, Edinburgh, pp. 370–375 (2005)

4. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal meth-
ods to biological regulatory networks: extending Thomas’ asynchronous logical
approach with temporal logic. J. Theor. Biol. 229, 339–347 (2004)

5. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biomolecular interaction networks. Theoret. Comput. Sci. 325(1),
25–44 (2004)

6. Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative Analysis of Regulatory
Graphs: A Computational Tool Based on a Discrete Formal Framework. In: Bru,
R., Romero-Vivó, S. (eds.) POSTA 2009. Lecture Notes in Control and Information
Sciences, vol. 389, pp. 830–832. Springer, Heidelberg (2009)

7. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle. Bioinform. 22, 124–131
(2006)

8. Fauré, A., Thieffry, D.: Logical modelling of cell cycle control in eukaryotes: a
comparative study. Mol. BioSyst. 5, 1569–1581 (2009)

9. Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochem-
ical control networks. J. Theor. Biol. 39, 103–129 (1973)

10. Kauffman, S.: The Origins of Order. Oxford University Press (1993)
11. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic

nets. J. Theor. Biol. 22, 437–467 (1969)

34 A. Bockmayr and H. Siebert

12. Kaufman, M., Andris, F., Leo, O.: A logical analysis of T cell activation and anergy.
PNAS 96(7), 3894–3899 (1999)

13. Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)
14. Naldi, A., Thieffry, D., Chaouiya, C.: Decision Diagrams for the Representation

and Analysis of Logical Models of Genetic Networks. In: Calder, M., Gilmore, S.
(eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg
(2007)

15. Remy, É., Mossé, B., Chaouiya, C., Thieffry, D.: A description of dynamical graphs
associated to elementary regulatory circuits. Bioinform. 19, 172–178 (2003)

16. Remy, E., Ruet, P.: Incorporating Time Delays into the Logical Analysis of Gene
Regulatory Networks. Bioinform. 24, 220–226 (2008)

17. Richard, A.: Modèle formel pour les réseaux de régulation génétique et influence
des circuits de rétroaction. PhD thesis, Univ. d’Evry, France (2006)

18. Richard, A.: Negative circuits and sustained oscillations in asynchronous automata
networks. Advances in Applied Mathematics 44(4), 378–392 (2010)

19. Richard, A., Comet, J.-P.: Necessary conditions for multistationarity in discrete
dynamical systems. Discrete Appl. Math. 155(18), 2403–2413 (2007)

20. Siebert, H.: Analysis of discrete bioregulatory networks using symbolic steady
states. Bull. Math. Biol. 73, 873–898 (2011)

21. Siebert, H., Bockmayr, A.: Incorporating time delays into the logical analysis
of gene regulatory networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI),
vol. 4210, pp. 169–183. Springer, Heidelberg (2006)

22. Siebert, H., Bockmayr, A.: Context Sensitivity in Logical Modeling with Time
Delays. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695,
pp. 64–79. Springer, Heidelberg (2007)

23. Siebert, H., Bockmayr, A.: Relating Attractors and Singular Steady States in the
Logical Analysis of Bioregulatory Networks. In: Anai, H., Horimoto, K., Kutsia,
T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 36–50. Springer, Heidelberg (2007)

24. Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regulatory
networks. Theor. Comput. Sci. 391(3), 258–275 (2008)

25. Soulé, C.: Mathematical approaches to gene regulation and differentiation. C.R.
Paris Biolgies 329, 13–20 (2006)

26. Sugita, M.: Functional analysis of chemical systems in vivo using a logical circuit
equivalent. J. Theor. Biol. 1, 415–430 (1961)

27. Szallasi, Z., Stelling, J., Periwal, V.: System modeling in cellular biology. MIT
Press (2006)

28. Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42,
565–583 (1973)

29. Thomas, R.: Kinetic logic: a boolean approach to the analysis of complex regulatory
systems. Lecture Notes in Biomathematics, vol. 29. Springer (1979)

30. Thomas, R.: On the relation between the logical structure of systems and their
abilities to generate multiple steady states and sustained oscillations. In: Series in
Synergetics, vol. 9, pp. 180–193. Springer (1981)

31. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press (1990)
32. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and

memory. II. Logical analysis of regulatory networks in terms of feedback circuits.
Chaos 11, 180–195 (2001)

Canonical Ground Horn Theories

Maria Paola Bonacina1,� and Nachum Dershowitz2

1 Dipartimento di Informatica, Università degli Studi di Verona,
Strada Le Grazie 15, I-37134 Verona, Italy

mariapaola.bonacina@univr.it
2 School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel

Nachum.Dershowitz@cs.tau.ac.il

Dedicated to the memory of Harald Ganzinger, friend and colleague.

Abstract. An abstract framework of canonical inference based on proof
orderings is applied to ground Horn theories with equality. A finite pre-
sentation that makes all normal-form proofs available is called saturated.
To maximize the chance that a saturated presentation be finite, it should
also be contracted, in which case it is deemed canonical. We apply these
notions to propositional Horn theories – or equivalently Moore families –
presented as implicational systems or associative-commutative rewrite
systems, and ground equational Horn theories, presented as decreasing
conditional rewrite systems. For implicational systems, we study different
notions of optimality and the completion procedures that generate them,
and we suggest a new notion of rewrite-optimality, that takes contraction
by simplification into account. For conditional rewrite systems, we show
that reduced (fully normalized) is stronger than contracted (sans redun-
dancy), and accordingly the perfect system – complete and reduced –
is preferred to the canonical one – saturated and contracted. We con-
clude with a survey of approaches to normal-form proofs, saturated, or
canonical, systems, and decision procedures based on them.

Keywords: Horn theories, conditional theories, Moore families, decision
procedures, canonical systems, normal forms, saturation, redundancy.

The first concept is . . . the elimination of equations and rules. . ..
An equation C ⇒ s = t can be discarded

if there is also a proof of the same conditional equation,
different from the one which led to the construction of the equation.

In addition, this proof has to be simpler
with respect to the complexity measure on proofs.

– Harald Ganzinger (1991)

� Research supported in part by Ministero per l’Istruzione, l’Università e la Ricerca
(grants no. 2003-097383 and 2007-9E5KM8) and by EU COST Action IC0901.

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 35–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

36 M.P. Bonacina and N. Dershowitz

1 Motivation

We are interested in the study of presentations for theories in Horn logic with
equality. We use the term “presentation” to mean a set of formulæ, reserving
“theory” for a presentation with all its theorems. Thus, a Horn presentation
is any set of Horn clauses, while a Horn theory is a deductively-closed set of
formulæ that can be axiomatized by a Horn presentation. Since a Horn presen-
tation can also be read naturally as a set of instructions for a computer, Horn
theories are important in automated reasoning, artificial intelligence, declarative
programming and deductive databases. The literature is vast; surveys include
those by Apt [1] and Hodges [50]. More specifically, conditional rewriting (and
unification) with equational Horn clauses has been proposed as a logic-based
programming paradigm in [36,67,48,43,37]; see [49] for a survey.

On account of their double nature – computational and logical – Horn theo-
ries, and especially Horn theories with equality, presented by sets of conditional
equations or conditional rewrite rules, played a special rôle in Harald Ganzinger’s
work (e.g. [47]). Harald’s study of them represented the transition phase from
his earlier work on compilers and programming languages to his later work in
automated deduction.

From the perspective taken here, the quality of presentations depends on the
quality of the proofs they make possible: the better are the proofs, the better is
the presentation. Proofs are measured by proof orderings, and the most desirable
ones are those that are minimal in the chosen ordering. Since a minimal proof
in a certain presentation may not remain minimal in a presentation expanded
by deduction, the best proofs are those that are minimal in deductively-closed
presentations. These best proofs are called normal-form proofs. However, what is
a deductively-closed presentation depends on the choice of deduction mechanism.
Thus, the choices of notion of normal-form proof and deduction mechanism are
intertwined.

One reason for deeming normal-form proofs to be best is their connection
with decidability. The archetypal instance of this concept is rewriting for equa-
tional theories, where normal-form proofs are valley proofs. A valley proof of an
equational theorem ∀x̄ s� t, where x̄ are the variables in s� t, is a proof chain
s̃

∗→ ◦ ∗← t̃, where s̃ and t̃ are s and t with their variables treated as Skolem con-
stants, and equations only decrease terms. Given a presentation E of universally
quantified equations, and a complete simplification ordering �, an equivalent
ground-convergent presentation E� offers a valley proof for every equational the-
orem ∀x̄ s� t. If E� is finite, it serves as a decision procedure, because validity
can be decided by rewriting s̃ and t̃ “blindly” to their E�-normal forms and
comparing the results. If E� is also reduced, in the sense that as much as possible
is in normal form, it is called canonical, and is unique for the given ordering �,
a property first noticed by Mike Ballantyne (see [35]). Procedures to generate
canonical presentations, which afford normal-form proofs and may be the basis
for decision procedures, are called completion procedures (cf. [59,55,54,6,18,5]).
For more on rewriting, see [32,38,71].

Canonical Ground Horn Theories 37

More generally, the notion of canonicity can be articulated into three proper-
ties of increasing strength, that were defined in the abstract framework of [33,13]
as follows:

– A presentation is complete if it affords at least one normal-form proof for
each theorem.

– A presentation is saturated if it supports all normal-form proofs for all the-
orems.

– A presentation is canonical if it is both saturated and contracted, in the
sense of containing no redundancies.

If minimal proofs are unique, complete and saturated coincide. For equational
theories, contracted means reduced and saturated means convergent. We call a
system perfect when it is reduced but not saturated, only complete. A critical
question is whether canonical, or perfect, presentations can be finite – possibly
characterized by some quantitative bound – and/or unique. Viewed in this light,
one purpose of studying these properties is to balance the strength of the “satu-
rated,” or “complete,” requirement with that of the “contracted” requirement.
On one hand, one wants saturation to be strong enough that a saturated pre-
sentation – when finite – yields a decision procedure for validity in the theory.
On the other hand, one wants contraction to be as strong as possible, so as to
maximize the possibility that the canonical presentation turns out to be finite.
Furthermore, it is desirable that the canonical presentation be unique relative
to the chosen ordering.

In this article, we present three main contributions:

– a study of canonicity in propositional Horn theories (Sect. 3);
– a study of canonicity in conditional equational theories in the ground case

(Sect. 4);
– a survey of proof normalization and decision procedures based on saturated

systems, primarily in Horn theories (Sect. 5).

Propositional Horn theories are the theories presented by sets of propositional
Horn implications, known as implicational systems. The family of models of a
theory of this kind is known as a Moore family and has the distinctive property
of closure under intersection (see [11,10]). Moore families and implicational sys-
tems play a rôle in a variety of fields in computer science, including relational
databases, data mining, artificial intelligence, logic programming, lattice theory
and abstract interpretations. We refer to [22] and [10] for surveys, including
applications, related formalisms and historical notes.

Since a Moore family may be presented by different implicational systems, it
makes sense to define and generate implicational systems that are “optimal,”
or “minimal,” or “canonical” in some suitable sense. Bertet and Nebut [11] pro-
posed the notions of directness of implicational systems, optimizing computation
by forward chaining, and direct-optimality of implicational systems, which adds
an optimization step based on a symbol count. Bertet and Monjardet [10] con-
sidered other candidates and proved them all equal to direct-optimality, which,

38 M.P. Bonacina and N. Dershowitz

therefore, earned the appellation canonical-directness. Furthermore, they showed
that given a Horn function, the Moore family of its models and its associated clo-
sure operator, the elements of the corresponding canonical-direct implicational
system, read as disjunctions, give the prime implicates of the Horn function.

We investigate correspondences between “optimal” implicational systems
(direct, direct-optimal) and canonical rewrite systems, by establishing an equiv-
alence between implicational systems and associative-commutative rewrite sys-
tems, and by defining and comparing their respective deduction mechanisms
and underlying proof orderings. We discover that direct-optimality can be sim-
ulated by normalization with respect to a different proof ordering than the one
assumed by rewriting, and this discrepancy leads us to introduce a new no-
tion of rewrite-optimality. Thus, while directness corresponds to saturation in
an expansion-oriented deduction mechanism, rewrite-optimality corresponds to
canonicity.

For conditional equational theories, we find that, unlike for equational the-
ories, reduced implies contracted, but the two notions remain distinct. Thus,
in the conditional case, perfect differs from canonical in two ways: complete
is weaker than saturated, and reduced is stronger than contracted. Since com-
plete/saturated determines how much expansion we need to do in completion,
whereas reduced/contracted refers to how much simplification we should have,
perfect is doubly preferable to canonical.

This article is organized as follows: Sect. 2 fixes notations and concepts;
Sects. 3 and 4 are devoted to propositional Horn theories and to ground condi-
tional equational theories, respectively; and Sect. 5 contains the survey of proof
normalization and saturation-based systems. We conclude with a discussion.

2 Background

Horn clauses, the subject of this study, are an important subclass of logical
formulæ.

2.1 Preliminaries

Let Σ = 〈X,F, P 〉 be a vocabulary, consisting of variables X , function (and
constant) symbols F , and predicate symbols P . Although this article is mainly
concerned with the ground case, where there are no variables X , we keep basic
definitions as general as possible. Let T be the set of atoms over Σ. Identity of
terms and atoms will be denoted by =. A context is a term with a “hole” at
some indicated position. The notation l = t[s]u indicates that term s occurs in
term or atom l at position u within context t, and Var(l) is the set of variables
occurring in term or atom l. Positions u will henceforth be omitted from the
notation.

A Horn clause,

¬a1 ∨ · · · ∨ ¬an or ¬a1 ∨ · · · ∨ ¬an ∨ c ,

Canonical Ground Horn Theories 39

(n ≥ 0) is a clause (set of literals) with at most one positive literal, c, where
∨ (disjunction) is commutative and idempotent by nature, and a1, . . . , an, c are
atoms in T . Positive literals (c present and n = 0), sometimes called “facts”, and
negative clauses (c absent and n > 0), called “queries” or “goals,” are special
cases of Horn clauses. Horn clauses that are not queries are termed definite Horn
clauses. A Horn presentation is a set of non-negative Horn clauses.

It is customary to write a Horn clause as the implication or rule

a1 · · · an ⇒ c .

A Horn clause is trivial if the conclusion c is the same as one of the premises
ai. The same clause also has n contrapositive forms

a1 · · · aj−1aj+1 · · ·an¬c ⇒ ¬aj ,

for 1 ≤ j ≤ n. Facts are written simply as is,

c ,

and queries as

a1 · · · an ⇒ false ,

or just

a1 · · ·an ⇒ .

The main inference rules for Horn-theory reasoning are forward chaining and
backward chaining :

a1 · · · an ⇒ c b1 · · · bmc⇒ d
a1 · · · anb1 · · · bm ⇒ d

a1 · · · anc⇒ b1 · · · bm ⇒ c
a1 · · ·anb1 · · · bm ⇒ .

Another way to present a Horn theory is as an “implicational” system (see
[11,10]). An implicational system S is a binary relation S ⊆ P(T)× P(T), read
as a set of implications

a1 · · · an ⇒ c1 · · · cm ,

for ai, cj ∈ T , with both sides understood as conjunctions. If all right-hand sides
are singletons, S is a unary implicational system. Clearly, any definite Horn
clause is such a unary implication and vice-versa, and any non-unary implication
can be decomposed into a set of m unary implications, or, equivalently, Horn
clauses, one for each ci. Empty sets correspond to true. Conjunctions of facts
are written just as

c1 · · · cm ,

instead of as ∅ ⇒ c1 . . . cm.
If we focus on propositional logic, atoms are propositional variables, that eval-

uate to either true or false. A propositional implication a1 · · · an ⇒ c1 · · · cm
is equivalent to the bi-implication a1 · · ·anc1 · · · cm ⇔ a1 · · · an, again with both

40 M.P. Bonacina and N. Dershowitz

sides understood as conjunctions. Since one side is greater than the other in any
monotonic well-founded ordering, it can also be translated into a rewrite rule

a1 · · · anc1 · · · cm → a1 · · · an ,

where juxtaposition stands for the associative-commutative-idempotent (ACI)
conjunction operator, and the arrow→ has the operational semantics of rewriting
and the logical semantics of equivalence (see, for instance, [27,28,17]).

When dealing with theories with equality, we presume the underlying axioms
of equality (which are Horn), and use the predicate symbol � (in P) symmet-
rically: l� r stands for both l� r and r� l. If one views atoms as terms and
phrases an atom r(t1, . . . , tn) as an equation r(t1, . . . , tn)�true, where r is
a predicate symbol other than �, t1, . . . , tn are terms, and true is a special
symbol, not in the original vocabulary, then any equational Horn clause can be
written interchangeably as a conditional equation,

p1 � q1, · · · , pn � qn ⇒ l� r ,

or as an equational clause

p1
� q1 ∨ · · · ∨ pn
� qn ∨ l� r ,

where p1, q1, . . . , pn, qn, l, r are terms, and p
� q stands for ¬(p� q).
A conjecture C ⇒ l� r is valid in a theory with presentation S, where C is

some set (conjunction) of equations, if l� r is valid in S∪C, or, equivalently, S∪
C∪{l
� r} is unsatisfiable, where l
� r is the goal. A conjecture p1 � q1 . . . pn � qn
is valid in S if S∪{p1
� q1∨ . . .∨pn
� qn} is unsatisfiable, in which case p1
� q1∨
. . . ∨ pn
� qn is the goal.

The purely equational ground case, where all conditions are empty, the propo-
sitional case (with rules in the form a1 �true, . . . , an �true ⇒ c�true), and
the intermediate case a1 �true, . . . , an �true ⇒ l� r (where a1, . . . , an, c are
propositional variables and l, r are ground terms), are all covered by the general
ground equational Horn presentation case.

2.2 Canonical Systems

In this paper, we apply the framework of [33,13] to proofs made of ground Horn
clauses. Let A be the set of all ground conditional equations and P the set of all
ground Horn proofs, over signature Σ. Formulæ A and proofs P are linked by two
functions Pm : P → P(A), that takes a proof p and gives its premises, denoted
[p]Pm , and Cl : P → A, that takes a proof p and gives its conclusion, denoted
[p]Cl . Both are extended to sets of proofs – termed justifications – in the usual
fashion. Proofs in P are ordered by two well-founded partial orderings: a subproof
relation � and a proof ordering ≥, which, for convenience, is assumed to compare
only proofs with the same conclusion (that is, p ≥ q ⇒ [p]Cl = [q]Cl).

In addition to standard inference rules of the form

A1 . . . An

B1 . . . Bm

Canonical Ground Horn Theories 41

that add inferred formulæ B1, . . . , Bm to the set of known theorems, which
already include the premises A1, . . . , An, we are interested in rules that delete
or simplify already-inferred theorems. We use a “double-ruled” inference rule of
the form

A1 . . . An

B1 . . . Bm

meaning that the formulæ (Ai) above the rule are replaced by those below (Bj).
It is a deletion rule if the consequences are a proper subset of the premises;
otherwise, it is a simplification rule. The challenge is incorporating such rules
without endangering completeness of the inference system.

Given a presentation S, the set of all proofs using premises of S is denoted
by Pf (S) and defined by1

Pf (S)
!
= {p ∈ P : [p]Pm ⊆ S} .

A proof is trivial if it proves only its single premise ([p]Pm = {[p]Cl}) and has no
subproofs other than itself (p� q ⇒ p = q). A trivial proof of a ∈ A is denoted
by â. The theory of S is denoted by Th S and defined by

Th S
!
= [Pf (S)]Cl ,

that is, the conclusions of all proofs using any number of premises from S.
Three basic assumptions on � and ≥ are postulated, for all proofs p, q, r and

formulæ a:

1. Proofs use their premises:

a ∈ [p]Pm ⇒ p� â .

2. Subproofs do not use non-extant premises:

p� q ⇒ [p]Pm ⊇ [q]Pm .

3. Proof orderings are monotonic with respect to subproofs:2

p� q > r ⇒ ∃v ∈ Pf ([p]Pm ∪ [r]Pm). p > v � r .

(Recall that p ≥ q ⇒ [p]Cl = [q]Cl .)
Since > is well-founded, there exist minimal proofs. The set of minimal proofs

in a given justification P is defined as

μP
!
= {p ∈ P : ∀q ∈ P. q
< p} ,

while the normal-form proofs of a presentation S are the minimal proofs in the
theory of S, that is,

Nf (S)
!
= μPf (Th S) .

1 We use
!
= to signify definitions.

2 This is weakened in [21].

42 M.P. Bonacina and N. Dershowitz

This definition is not trivial, because it is not necessarily the case that for all

proofs p, p > [̂p]Cl . For instance, for equational theories, and a standard choice
of proof ordering (e.g., [5]), s̃→ ◦ ← t̃
> s̃� t̃. In other words, trivial proofs are
not normal-form proofs in general.

With these notions in place, the characterizations of presentations introduced
in Sect. 1 can be defined formally: The canonical presentation is the set of
premises of normal-form proofs, or

S� !
= [Nf (S)]Pm ,

and a presentation S is canonical if S = S�. Since trivial proofs are not normal-
form proofs in general, S� is not Th S. Furthermore, (S�)� = S�.

By lifting the proof ordering to justifications and presentations, canonicity
can be characterized directly in terms of the ordering. We say that presentation
B is simpler than a logically equivalent presentation A, denoted by A � B, when
B provides better proofs than does A, in the sense that

∀p ∈ Pf (A). ∃q ∈ Pf (B). p ≥ q .

Thus, canonicity is characterized in terms of this quasi-ordering, by proving
that the canonical presentation is the simplest, or, in other words, that A � A�

[33,13].
In addition to canonical, a presentation S can be:

– contracted, if it is made of the premises of minimal proofs, or S =
[μPf (S)]Pm ;

– saturated, if its minimal proofs are exactly the normal-form proofs, or
μPf (S) = Nf (S); or

– complete, if its set of minimal proofs contains a normal-form proof for every
theorem, or Th S = [Pf (S) ∩ Nf (S)]Cl .

A clause is redundant in a presentation if adding it – or removing it – does not
affect minimal proofs, and a presentation is irredundant if it does not contain
anything redundant. A presentation is contracted if and only if it is irredundant,
and canonical if and only if it is saturated and contracted [33,13].

A (one-step) deduction mechanism � is a binary relation over presentations.
A deduction step S � S ∪ S′ is an expansion provided S′ ⊆ Th S. A deduction
step S ∪ S′ � S is a contraction provided S ∪ S′ � S. A sequence of deductions
S0 � S1 � · · · is a derivation, whose result, or limit, is the set of persisting

formulæ: S∞
!
=

⋃
j

⋂
i≥j Si. Since [55], a fundamental requirement of derivations

is fairness, doing all inferences that are needed to achieve the desired degree of
proof normalization. A fair derivation generates a complete set in the limit, a
uniformly fair derivation generates a saturated limit, and a contracting derivation
generates a contracted limit. We refer to [13] for these definitions and results, as
well as historical notes and references on fairness.

Canonical Ground Horn Theories 43

2.3 A Clausal Ordering

Modern theorem provers employ orderings to control and limit inference. Let �
be a complete simplification ordering on atoms and terms over Σ, by which we
mean that the ordering is total (on ground terms), monotonic (with respect to
term structure), stable (with respect to substitutions), and includes the subterm
ordering, meaning that t[s] � s for any non-empty context t (hence, � is well-
founded [26]). See [32], for example, for basic definitions.

Various orderings on Horn clause proofs are possible. Suppose we express
atoms as equations and let t � true for all terms t over Σ. Literals may be
ordered by an ordering �L that measures an equation l� r by the multiset
{{l, r}} and a disequation l
� r by the multiset {{l, r, l, r}}, and compares such
multisets by the multiset extension [34] of �. It follows that l
� r �L l� r,
because {{l, r, l, r}} is a bigger multiset than is {{l, r}}, which is desirable, so as to
allow l� r to simplify l
� r.

Given this ordering on literals, an ordering �C on clauses is ob-
tained by another multiset extension. An equational clause e of the form
p1 � q1, · · · , pn � qn ⇒ l� r, regarded as a multiset of literals, is measured by

M(e)
!
= {{{{p1, q1, p1, q1}}, . . . , {{pn, qn, pn, qn}}, {{l, r}}}}

and these multisets are compared by the multiset extension of �L. Under this
ordering, a clause C ∨ p
� q∨ l� r is smaller than a clause C ∨ f [p]
� f [q]∨ l� r,
because the multiset M(C) ∪ {{{{p, q, p, q}}, {{l, r}}}} is smaller than the multiset
M(C) ∪ {{{{f [p], f [q], f [p], f [q]}}, {{l, r}}}}. Similarly, a clause C ∨ l� r is smaller
than a clause C∨f [l]� f [r], because the multisetM(C)∪{{{{l, r}}}} is smaller than
M(C) ∪ {{{{f [l], f [r]}}}}. A clause C ⇒ l� r is smaller than a clause B ⇒ l� r,
such that C � B, because the multiset M(C) ∪ {{{{l, r}}}} is smaller than the
multiset M(B) ∪ {{{{l, r}}}}.

Example 1. If e1 is a� b ⇒ c� d, M(e1) = {{{{a, b, a, b}}, {{c, d}}}}. If e2 is
f(a)� f(b) ⇒ c� d, M(e2) = {{{{f(a), f(b), f(a), f(b)}}, {{c, d}}}}. Since f(a) � a
and f(b) � b in any ordering with the subterm property, e2 �C e1. ��

If S is a set of clauses, we write M(S) also for the multiset of their measures,
and �M for the multiset extension of �C . Let >P be the usual proof ordering
where proofs are compared by comparing the multisets of their premises: p >P q
if [p]Pm �M [q]Pm .

Example 2. Consider the equational theory {a� b, b� c, a� c}. Different proof
orderings induce different canonical presentations.

a. If all proofs are minimal, the canonical saturated presentation is the whole
theory, while any pair of equations, like a� b and b� c, is sufficient to form a
complete presentation, because, in this example, the proof of a� c by tran-
sitivity from {a� b, b� c} is minimal. Since minimal proofs are not unique,
saturated and complete indeed differ.

44 M.P. Bonacina and N. Dershowitz

b. Suppose a � b � c. If all valley proofs are minimal, the whole theory is
again the saturated presentation, while the only other complete presentation
is {a� c, b� c}, which gives a→ c← b as minimal proof of a� b.

c. If a � b � c and the proof ordering is >P , then minimal proofs are unique.
The complete presentation {a� c, b� c} is also saturated. The proof of a� b
is again a→ c← b, which is smaller than a→ b, since {{{{a, c}}, {{b, c}}}} ≺M

{{{{a, b}}}}.
d. If a and b are incomparable, that is, a
= b ∧ a
� b ∧ b
� a, and all valley

proofs are minimal, a ↔ b is not a minimal proof, and {a� c, b� c} is both
complete and saturated.

e. On the other hand, if only trivial proofs are minimal, it is the whole theory
{a� b, b� c, a� c} that is both saturated and complete. ��

3 Implicational Systems

In this section we study canonicity for propositional Horn theories. We consider
propositional implicational systems, that are sets of implications A⇒ B, whose
antecedent A and consequent B are conjunctions of distinct propositional vari-
ables. The notation A ⇒S B specifies that A ⇒ B ∈ S, for given implicational
system S.

Let V be a set of propositional variables. A subset X ⊆ V represents the
propositional interpretation that assigns the value true to all elements in X
and false to all those in V \ X . Accordingly, a set X is said to satisfy an
implication A⇒ B over V if either B ⊆ X or else A
⊆ X . Similarly, we say that
X satisfies an implicational system S, or is a model of S, denoted by X |= S, if
X satisfies all implications in S.

3.1 Moore Families

AMoore family on a given set V is a family F of subsets of V that contains V and
is closed under intersection [12]. Moore families are in one-to-one correspondence
with closure operators, where a closure operator on V is an operator ϕ : P(V) →
P(V) that is

– isotone, that is, X ⊆ X ′ implies ϕ(X) ⊆ ϕ(X ′),
– extensive, that is, X ⊆ ϕ(X), and
– idempotent, that is, ϕ(ϕ(X)) = ϕ(X).

The Moore family Fϕ associated with a given closure operator ϕ is the set of all
fixed points of ϕ:

Fϕ
!
= {X ⊆ V : X = ϕ(X)} .

The closure operator ϕF associated with a given Moore family F maps any
X ⊆ V to the least element of F that contains X :

ϕF (X)
!
= ∩{Y ∈ F : X ⊆ Y } .

Canonical Ground Horn Theories 45

The Moore family FS associated with a given implicational system S is the
family of the propositional models of S, in the sense given above:

FS
!
= {X ⊆ V : X |= S} .

In turn, every Moore family F can be presented at least by one implicational
system, for instance {X ⇒ ϕF(X) : X ⊆ V }. Combining the notions of closure
operator for a Moore family, and Moore family associated with an implicational
system, the closure operator ϕS for implicational system S maps any X ⊆ V to
the least model of S that satisfies X [11]:

ϕS(X)
!
= ∩{Y ⊆ V : Y ⊇ X ∧ Y |= S} .

Example 3. If S = {a ⇒ b, ac ⇒ d, e ⇒ a} and writing sets as strings, then
FS = {∅, b, c, d, ab, bc, bd, cd, abd, abe, bcd, abcd, abde, abcde} and ϕS(ae) = abe.

��
As noted in Sect. 2.1, there is an obvious syntactic correspondence between
Horn presentations and implicational systems. At the semantic level, there is a
correspondence between Horn theories and Moore families, since Horn theories
are those theories whose models are closed under intersection, a fact due to
McKinsey [65] and later Horn himself [51, Lemma 7]. This result is rephrased
in [10] in terms of Boolean functions and Moore families: if a Horn function is
defined as a Boolean function whose conjunctive normal form is a conjunction of
Horn clauses, a Boolean function is Horn if and only if the set of its true points
(equivalently, the set of its models) is a Moore family.3

Different implicational systems can describe the same Moore family, like dif-
ferent presentations can describe the same theory. Two implicational systems S
and S′ are said to be equivalent if they have the same Moore family, FS = FS′ .

3.2 Direct Systems

In this section we investigate the relation between the notion of direct implica-
tional system and that of saturated presentation with respect to an appropriately
chosen deduction mechanism. Directness appeared in [11], motivated by finding
an implicational system that allows one to compute ϕS(X) efficiently for any X :

Definition 1 (Directness [11, Def. 1]). An implicational system S is direct

if ϕS(X) = S(X), where S(X)
!
= X ∪∪{B : A⇒S B ∧ A ⊆ X}.

In other words, a direct implicational system allows one to compute ϕS(X)
in one single round of forward chaining. In general, ϕS(X) = S∗(X), where

S0(X) = X

Si+1(X) = S(Si(X))

S∗(X) =
⋃

i
Si(X) .

3 For enumerations of Moore families and related structures, see [31] and Sequences
A102894–7 and A108798–801 in [69].

46 M.P. Bonacina and N. Dershowitz

Since S, X and V are all finite, S∗(X) = Sk(X) for the smallest k such that
Sk+1(X) = Sk(X).

Example 4. The implicational system S = {ac⇒ d, e⇒ a} is not direct. Indeed,
for X = ce, the computation of ϕS(X) = {acde} requires two rounds of forward
chaining, because only after a has been added by e ⇒ a, can d be added by
ac⇒ d. That is, S(X) = {ace} and ϕS(X) = S2(X) = S∗(X) = {acde}. ��
Generalizing this example, it is sufficient to have two implications A⇒S B and
C ⇒S D such that A ⊆ X , C
⊆ X and C ⊆ X ∪ B, for ϕS(X) to require
more than one iteration of forward chaining. Since A ⊆ X , but C
⊆ X , the first
round adds B, but not D; since C ⊆ X ∪ B, D is added in a second round. In
the above example, A ⇒ B is e ⇒ a and C ⇒ D is ac ⇒ d. The conditions
A ⊆ X and C ⊆ X ∪B are equivalent to A ∪ (C \B) ⊆ X , because C ⊆ X ∪B
means that whatever is in C and not in B must be in X . Thus, to collapse the
two iterations of forward chaining into one, it is sufficient to add the implication
A∪ (C \B) ⇒S D. In the example A∪ (C \B) ⇒S D is ce⇒ d. This mechanism
can be defined in more abstract terms as the following inference rule:

Implicational overlap

A⇒ BO CO ⇒ D
AC ⇒ D

B ∩ C = ∅
= O

Intuitively, the consequent of the first implication “overlaps” with the antecedent
of the second one, whence the conclusion. The condition O
= ∅ says that the
overlap is non-trivial, and the condition B ∩ C = ∅ says that it is as large as
possible. Indeed, if O = ∅, the conclusion AC ⇒ D is subsumed by C ⇒ D, and
if B ∩ C
= ∅, then an alternate inference is more general. One inference step of
this rule will be denoted by �I. Thus, directness can be characterized as follows:

Definition 2 (Generated direct system [11, Def. 4]). Given an implica-
tional system S, the direct implicational system I(S) generated from S is the
smallest implicational system containing S and closed with respect to implica-
tional overlap.

A main theorem of [11] shows that indeed ϕS(X) = I(S)(X). What we call
“overlap” is called “exchange” in [10], where a system closed with respect to
implicational overlap is said to satisfy an “exchange condition.”

As we saw in Sect. 2.1, an implicational system can be rewritten as a unary
system or a set of Horn clauses, and vice-versa. Recalling that an implication
A ⇒ B is equivalent to the bi-implication AB ⇔ A, and using juxtaposition
for ACI conjunction, we can view the bi-implication as a rewrite rule AB →
A, where AB � A in any well-founded ordering with the subterm property.
Accordingly, we have the following:

Definition 3 (Associated rewrite system). The rewrite system RX associ-
ated to a set X ⊆ V of variables is RX = {x→ true : x ∈ X}. The rewrite sys-
tem RS associated with an implicational system S is RS = {AB → A : A⇒S B}.
Given S and X we can also form the rewrite system RS

X = RX ∪RS.

Canonical Ground Horn Theories 47

Example 5. If S = {a⇒ b, ac⇒ d, e⇒ a}, then RS = {ab→ a, acd→ ac, ae→
e}. If X = ae, then RX = {a→ true, e→ true}. Thus, RS

X = {a→ true, e→
true, ab→ a, acd→ ac, ae→ e}. ��

We show that there is a correspondence between implicational overlap and
the classical notion of overlap between monomials in Boolean rewriting that
was developed for theorem proving in both propositional and first-order logic
(e.g. [52,53,4,73]) and applied also to declarative programming (e.g. [28,37,17]).
Here we are concerned only with its propositional version:

Equational overlap

AO → B CO → D
M → N

A ∩ C = ∅
= O, M � N

where M and N are the normal forms of BC and AD with respect to {AO →
B,CO → D}, and � is some ordering on sets of propositions (with the subterm
property).

Intuitively, the left hand sides of the two rules “overlap,” yielding the proof
BC ← AOC → AD, which justifies the conclusion. One inference step of this rule
will be denoted by �E. We observe the correspondence first on the implicational
system of Example 4:

Example 6. For S = {ac ⇒ d, e ⇒ a}, we have RS = {acd → ac, ae → e}, and
the overlap of the two rewrite rules gives ace ← acde → cde. Hence, the proof
ce ← ace ← acde → cde yields the rewrite rule cde → ce, which corresponds to
the implication ce⇒ d generated by implicational overlap. ��

Note how an implicational overlap between consequent and antecedent corre-
sponds to an equational overlap between left hand sides, since both antecedent
and consequent appears on the left hand sides of rewrite rules representing bi-
implications.

Lemma 1. If A⇒ B and C ⇒ D are two non-trivial Horn clauses (|B| = |D| =
1, B
⊆ A, D
⊆ C), then if A⇒ B,C ⇒ D �I E ⇒ D by implicational overlap,
then AB → A,CD → C �E DE → E by equational overlap, and vice-versa.
Furthermore, all other equational overlaps are trivial.

This result reflects the fact that implicational overlap is designed to produce a
direct system I(S), which, once fed with a set X , yields its image ϕI(S)(X) in
a single round of forward chaining. Hence, implicational overlap unfolds the for-
ward chaining in the implicational system. Since forward chaining is complete for
Horn logic, it is coherent to expect that the only non-trivial equational overlaps
are those corresponding to implicational overlaps.

Proof. (If direction.) Assume A⇒ B,C ⇒ D �I E ⇒ D. Since B is a singleton
by hypothesis, it must be that the consequent of the first implication and the

48 M.P. Bonacina and N. Dershowitz

antecedent of the second one overlap on B. Thus, C ⇒ D is BF ⇒ D and
the implicational overlap of A ⇒ B and BF ⇒ D generates AF ⇒ D. The
corresponding rewrite rules are AB → A and BFD → BF , which also overlap
on B yielding the equational overlap

AFD ← ABFD → ABF → AF ,

which generates the corresponding rule AFD → AF .
(Only if direction.) If AB → A,CD → C �E DE → E, the rewrite rules
AB → A and CD → C can overlap in four ways: B ∩ C
= ∅, A ∩ D
= ∅,
A ∩C
= ∅ and B ∩D
= ∅, which we consider in order.

1. B ∩C
= ∅: Since B is a singleton, it must be B ∩C = B, hence C = BF for
some F . Thus, CD → C is BFD → BF , and the overlap of AB → A and
BFD → BF is the same as above, yielding AFD → AF . The corresponding
implications A ⇒ B and BF ⇒ D generate AF ⇒ D by implicational
overlap.

2. A ∩ D
= ∅: Since D is a singleton, it must be A ∩ D = D or A = DF for
some F . Thus, AB → A is DFB → DF and the overlap is

CF ← CDF ← CDFB → CFB ,

so that CFB → CF is generated. The corresponding implications C ⇒ D
and DF ⇒ B overlap on D and generate CF ⇒ B by implicational overlap.

3. A∩C
= ∅: Let A = FO and C = OG, so that the rules are FOB → FO and
OGD → OG, with O
= ∅ and F ∩ G = ∅. The resulting equational overlap
is trivial: FOG← FOGD ← FBOGD → FBOG→ FOG.

4. B ∩D
= ∅: Since B and D are singletons, it must be B ∩D = B = D, and
rules AB → A and CB → C produce the trivial overlap AC ← ABC → AC.

��

The “if” direction holds also for non-Horn clauses: suppose A ⇒ FO,OG ⇒
D �I AG⇒ D by implicational overlap, with O
= ∅ = F ∩G. The corresponding
rewrite rules AFO → A and OGD → OG also overlap on O, yielding

AGD ← AFOGD → AFOG → AG ,

which generates the rule AGD → AG corresponding to AG⇒ D.
Let �I be the deduction mechanism of implicational overlap: S �I S

′ if
S′ = S∪{A⇒ B} and A⇒ B is generated by implicational overlap from impli-
cations in S. Clearly, such a deduction mechanism only features expansion. For
propositional Horn theories, it is reasonable to assume that minimal proofs are
unique, so that complete and saturated, and fair and uniformly fair, coincide. If
minimal proofs are not unique, all our results still hold, provided the hypothesis
of fairness of derivations is replaced by uniform fairness. For an expansion-only
mechanism such as �I, fairness simply means performing all applicable impli-
cational overlaps eventually. If we apply these concepts to implicational systems
and the �I deduction mechanism, we have:

Canonical Ground Horn Theories 49

Proposition 1. Given an implicational system S, for all fair derivations S =
S0 �I S1 �I · · · , S∞ = I(S).

Proof. By fairness, S∞ is saturated, and therefore closed with respect to im-
plicational overlap. Since �I deletes nothing, S∞ contains S. Since �I adds
nothing beside implicational overlaps, S∞ is equal to the smallest system with
these properties, that is, S∞ = I(S). ��

Let �E be the deduction mechanism of equational overlap: R �E R′ if R′ =
R ∪ {M → N} and M → N is generated by equational overlap from rewrite
rules in R. Equational overlap combines expansion, in the form of the generation
of BC ↔ AD, with contraction – its normalization to M → N , where M � N .
This sort of contraction applied to normalize a newly generated formula, before
it is inserted in the database, is called forward contraction, while the contraction
applied to reduce an equation that was already established is called backward
contraction. Thus,�E features expansion and forward contraction, and therefore
is expansion-oriented, since contraction is limited to forward contraction. Similar
to �I, fairness means performing all applicable equational overlaps eventually.
Lemma 1 yields the following correspondence between deduction mechanisms:

Lemma 2. For all implicational systems S, S �I S
′ if and only if RS �E RS′ .

Proof

– If S �I S
′ then RS �E RS′ follows from the if direction of Lemma 1.

– If RS �E R′ then S �I S
′ and R′ = RS′ follows from the only-if direction

of Lemma 1. ��

The next theorem shows that for fair derivations the process of completing S with
respect to implicational overlap, and turning the result into a rewrite system, is
equivalent to the process of translating S into the rewrite system RS , and then
completing it with respect to equational overlap. In other words, completion and
translation commute. For the sake of expressivity, we abuse the notation slightly,
and use (RS)∞ in lieu of R∞ for the limit of a derivation R0 �E R1 �E · · ·
where R0 = RS .

Theorem 1. For every implicational system S and for all fair derivations S =
S0 �I S1 �I · · · and RS = R0 �E R1 �E · · · , we have

R(S∞) = (RS)∞ .

Proof

(a) R(S∞) ⊆ (RS)∞: for any AB → A ∈ R(S∞), A ⇒ B ∈ S∞ by Definition 3;
then A⇒ B ∈ Sj for some j ≥ 0. Let j be the smallest such index. If j = 0,
or Sj = S, AB → A ∈ RS by Definition 3, and AB → A ∈ (RS)∞, because
�E features no backward contraction. If j > 0,A⇒ B is generated at stage j
by implicational overlap. By Lemma 2 and by fairness of R0 �E R1 �E · · · ,
AB → A ∈ Rk for some k > 0. Then AB → A ∈ (RS)∞, since �E features
no backward contraction.

50 M.P. Bonacina and N. Dershowitz

(b) (RS)∞ ⊆ R(S∞): for any AB → A ∈ (RS)∞, AB → A ∈ Rj for some
j ≥ 0. Let j be the smallest such index. If j = 0, or Rj = RS , A ⇒
B ∈ S by Definition 3, and A⇒ B ∈ S∞, because �I features no backward
contraction. Hence AB → A ∈ R(S∞). If j > 0, AB → A is generated at stage
j by equational overlap. By Lemma 2 and by fairness of S0 �I S1 �I · · · ,
A ⇒ B ∈ Sk for some k > 0. Then A ⇒ B ∈ S∞, since �I features no
backward contraction, and AB → A ∈ R(S∞) by Definition 3. ��

Since the limit of a fair �I-derivation is I(S), it follows that:

Corollary 1. For every implicational system S, and for all fair derivations S =
S0 �I S1 �I · · · and RS = R0 �E R1 �E · · · , we have

R(I(S)) = (RS)∞ .

3.3 Computing Minimal Models

The motivation for generating I(S) from S is to be able to compute, for any
subset X ⊆ V , its minimal S-model ϕS(X) in one round of forward chaining.
In other words, one envisions a two-stage process: in the first stage, S is sat-
urated with respect to implicational overlap to generate I(S); in the second
stage, forward chaining is applied to I(S)∪X to generate ϕI(S)(X) = ϕS(X). In
the rewrite-based framework, these two stages can be replaced by one. For any
X ⊆ V we can compute ϕS(X) = ϕI(S)(X), by giving as input to a completion
procedure the rewrite system RS

X and extracting the rules in the form x→ true.
For this purpose, the deduction mechanism is enriched with contraction rules,
as follows:

Simplification

AC → B C → D

AD → B C → D
AD � B

AC → B C → D

B → AD C → D
B � AD

B → AC C → D

B → AD C → D
,

where A can be empty, and

Deletion
A↔ A

,

which eliminates trivial equalities.

Let �R denote the deduction mechanism that extends �E with simplification
and deletion. Thus, in addition to the simplification applied as forward con-
traction within equational overlap, there is simplification applied as backward
contraction to any rule. Accordingly, we consider derivations that are both fair
and contracting, meaning that both expansion and contraction are applied sys-
tematically.

Canonical Ground Horn Theories 51

The following theorem shows that the completion of RS
X with respect to �R

generates a limit that includes the least S-model of X . As before, we use (RS
X)∞

in lieu of R∞ for the limit of a derivation R0 �R R1 �R · · · where R0 = RS
X .

Theorem 2. For all X ⊆ V , implicational systems S, and fair and contracting
derivations RS

X = R0 �R R1 �R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY ⊆ (RS
X)∞ .

Proof. By Definition 3, RY = {x → true : x ∈ Y }. The proof is by induction
on the construction of Y = ϕS(X).
Base case: If x ∈ Y because x ∈ X , then x→ true ∈ RX , x→ true ∈ RS

X and
x→ true ∈ (RS

X)∞, since a rule in the form x→ true is persistent.
Inductive case: If x ∈ Y because for some A ⇒S B, B = x and A ⊆ Y , then
AB → A ∈ RS and AB → A ∈ RS

X . By the induction hypothesis, A ⊆ Y
implies that, for all z ∈ A, z ∈ Y and z → true ∈ (RS

X)∞. Let j > 0 be the
smallest index in the derivation R0 �E R1 �E · · · such that for all z ∈ A, z →
true ∈ Rj . Then there is an i > j such that x→ true ∈ Ri, because the rules
z → true simplify AB → A to x→ true. It follows that x→ true ∈ (RS

X)∞,
since a rule in the form x→ true is persistent. ��

Then, the least S-model of X can be extracted from the saturated set:

Corollary 2. For all X ⊆ V , implicational systems S, and fair and contracting
derivations RS

X = R0 �R R1 �R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY = {x→ true : x→ true ∈ (RS
X)∞} .

Proof. If x→ true ∈ (RS
X)∞, then x→ true ∈ RY , and x ∈ Y , by the sound-

ness of equational overlap and simplification. The other direction was established
in Theorem 2. ��

Example 7. Let S = {ac ⇒ d, e ⇒ a, bd⇒ f} and X = ce. Then Y = ϕS(X) =
acde, and RY = {a → true, c → true, d → true, e → true}. On the other
hand, for RS = {acd → ac, ae → e, bdf → bd} and RX = {c → true, e →
true}, completion gives

(
RS

X

)
∞ = {c → true, e → true, a → true, d →

true, bf → b}, where a → true is generated by simplification of ae → e with
respect to e→ true, d→ true is generated by simplification of acd→ ac with
respect to c→ true and a→ true, and bf → b is generated by simplification of
bdf → bd with respect to d→ true. Thus,

(
RS

X

)
∞ includes RY , which is made

exactly of the rules in the form x → true of
(
RS

X

)
∞. The direct system I(S)

contains the implication ce⇒ d, generated by implicational overlap from e⇒ a
and ac ⇒ d. The corresponding equational overlap of acd → ac and ae → e
gives ce← ace← acde→ cde and, hence, generates the rule cde→ ce. However,
this rule is redundant in the presence of {c→ true, e→ true, d→ true} and
simplification. ��

52 M.P. Bonacina and N. Dershowitz

3.4 Direct-Optimal Systems

Bertet and Nebut [11] refined the notion of direct implicational system into that
of direct-optimal implicational system. In this subsection, we disprove the conjec-
ture that the direct-optimal implicational system corresponds to the canonical
rewrite system with respect to equational overlap and contraction.

Optimality is defined with respect to a measure |S | that counts the sum of
the number of occurrences of symbols on each of the two sides of each implication
in a system S:

Definition 4 (Optimality [11, Section 2]). An implicational system S is
optimal if, for all equivalent implicational system S′, |S | ≤ |S′ | where

|S | !
=

∑
A⇒SB

|A|+ |B|

and |A| is the cardinality of set A.

From an implicational system S, one can generate an equivalent implicational
system D(S) that is direct, optimal, and has the following properties, shown to
be necessary and sufficient for directness and optimality (cf. [11, Thm. 2]):

– extensiveness: for all A⇒D(S) B, A ∩B = ∅;
– isotony: for all A⇒D(S) B and C ⇒D(S) D, if C ⊂ A, then B ∩D = ∅;
– premise property: for all A⇒D(S) B and A⇒D(S) B

′, B = B′;
– non-empty conclusion property: for all A⇒D(S) B, B
= ∅.

This leads to the following characterization:

Definition 5 (Direct-optimal system [11, Def. 5]). Given a direct system
S, the direct-optimal system D(S) generated from S contains precisely the im-
plications

A⇒∪{B : A⇒S B} \ {C : D ⇒S C ∧D � A} \A ,

for each set A of propositions – provided the conclusion is non-empty.

From the above four properties, we can deduce an optimization procedure, ap-
plying – in order – the following rules:

Premise
A⇒ B, A⇒ C

A⇒ BC
,

Isotony
A⇒ B, AD ⇒ BE

A⇒ B, AD ⇒ E
,

Extensiveness
AC ⇒ BC

AC ⇒ B
,

Definiteness
A⇒ ∅

.

Canonical Ground Horn Theories 53

The first rule merges all rules with the same antecedent A into one and imple-
ments the premise property. The second rule removes from the consequent thus
generated those subsets B that are already implied by subsets A of AD, to en-
force isotony. The third rule makes sure that antecedents C do not themselves
appear in the consequent to enforce extensiveness. Finally, implications with
empty consequent are eliminated. This latter rule is called definiteness, because
it eliminates negative clauses, which, for Horn theories, represent queries and
are not “definite” clauses.

Clearly, the changes wrought by the optimization rules do not affect the the-
ory. Application of this optimization to the direct implicational system I(S)
yields the direct-optimal system D(S) of S.

The following example shows that this notion of optimization does not corre-
spond to elimination of redundancies by contraction in completion:

Example 8. Let S = {a ⇒ b, ac ⇒ d, e ⇒ a}. Then, I(S) = {a ⇒ b, ac ⇒
d, e ⇒ a, e ⇒ b, ce ⇒ d}, where e ⇒ b is generated by implicational overlap of
e ⇒ a and a ⇒ b, and ce ⇒ d is generated by implicational overlap of e ⇒ a
and ac ⇒ d. Next, optimization replaces e ⇒ a and e ⇒ b by e ⇒ ab, so that
D(S) = {a ⇒ b, ac ⇒ d, e ⇒ ab, ce ⇒ d}. If we consider the rewriting side,
we have RS = {ab → a, acd → ac, ae → e}. Equational overlap of ae → e
and ab → a generates be → e, and equational overlap of ae → e and acd →
ac generates cde → ce, corresponding to the two implicational overlaps. Thus,
(RS)∞ = {ab→ a, acd→ ac, ae→ e, be→ e, cde→ ce}. The rule corresponding
to e ⇒ ab, namely abe → e, would be redundant if added to (RS)∞, because
it would be reduced to a trivial equivalence by ae → e and be → e. Thus, the
optimization consisting of replacing e ⇒ a and e ⇒ b by e ⇒ ab does not
correspond to a rewriting inference. ��

The reason for this discrepancy is the different choice of ordering. The procedure
of [11] optimizes the overall size of the system. For the above example, we have
|{e ⇒ ab} | = 3 < 4 = |{e ⇒ a, e ⇒ b} |. The corresponding proof ordering
measures a proof of a from a set X and an implicational system S by a multiset
of pairs 〈|B|,#BS〉, for each B ⇒S aC such that B ⊆ X , where #BS is the
number of implications in S with antecedent B. A proof of a from X = {e} and
{e⇒ ab} will have measure {{〈1, 1〉}}, which is smaller than the measure {{〈1, 2〉}}
of a proof of a from X = {e} and {e⇒ a, e⇒ b}.

Completion, on the other hand, optimizes with respect to a complete sim-
plification ordering �. For {abe → e} and {ae → e, be → e}, we have
ae ≺ abe and be ≺ abe by the subterm property of �, so {{ae, e}} ≺L

{{abe, e}} and {{be, e}} ≺L {{abe, e}} in the multiset extension �L of �, and
{{{{ae, e}}, {{be, e}}}} ≺C {{{{abe, e}}}} in the multiset extension �C of �L. In-
deed, from a rewriting point of view, it is better to have {ae→ e, be→ e} than
{abe→ e}, since rules with smaller left-hand side are more applicable.

54 M.P. Bonacina and N. Dershowitz

3.5 Rewrite Optimality

It is apparent that the differences between direct optimality and completion
arise because of the application of the premise rule. Accordingly, we propose
an alternative definition of optimality, one that does not require the premise
property, because symbols in repeated antecedents are counted only once:

Definition 6 (Rewrite optimality). An implicational system S is rewrite-
optimal if ‖S ‖ ≤ ‖S′ ‖ for all equivalent implicational system S′, where the
measure ‖S ‖ is defined by:

‖S ‖ !
= |Ante(S)|+ |Cons(S)| ,

for Ante(S)
!
= {c ∈ A : A ⇒S B}, the set of symbols occurring in antecedents,

and Cons(S)
!
= {{c ∈ B : A ⇒S B}}, the multiset of symbols occurring in

consequents.

Unlike Definition 4, where antecedents and consequents contribute equally, here
symbols in antecedents are counted only once, because Ante(S) is defined as a
set – hence, without repetitions – while symbols in consequents are counted as
many times as they appear, since Cons(S) is a multiset.

Rewrite optimality appears to be an appropriate choice to work with Horn
clauses, because the premise property conflicts with the decomposition of
non-unary implications (e.g., a1 · · ·an ⇒ c1 · · · cm) into Horn clauses (e.g.,
a1 · · · an ⇒ ci for 1 ≤ i ≤ n) that we saw in Sect. 2.1. Indeed, if S is a non-
unary implicational system, and SH is the equivalent Horn system obtained by
decomposing non-unary implications, the application of the premise rule to SH

undoes the decomposition.

Example 9. Applying rewrite optimality to S = {a ⇒ b, ac ⇒ d, e ⇒ a} of
Example 8, we have ‖{e ⇒ ab} ‖ = 3 = ‖{e ⇒ a, e ⇒ b} ‖, so that replacing
{e ⇒ a, e ⇒ b} by {e ⇒ ab} is no longer justified. Thus, D(S) = I(S) = {a ⇒
b, ac ⇒ d, e ⇒ a, e ⇒ b, ce ⇒ d}, and the rewrite system associated with D(S)
is (RS)∞ = {ab → a, acd → ac, ae → e, be → e, cde → ce}. A proof ordering
corresponding to rewrite optimality would measure a proof of a from a set X and
an implicational system S by the set of the cardinalities |B|, for each B ⇒S aC
such that B ⊆ X . Accordingly, a proof of a fromX = {e} and {e⇒ ab} will have
measure {{1}}, which is the same as the measure of a proof of a from X = {e}
and {e⇒ a, e⇒ b}. ��

Thus, we deem canonical the result of optimization without premise rule:

Definition 7 (Canonical system). Given an implicational system S, the
canonical implicational system O(S) generated from S is the closure of S with
respect to implicational overlap, isotony, extensiveness and definiteness.

Let �O denote the deduction mechanism that features implicational overlap
as expansion rule and the optimization rules except premise, namely isotony,
extensiveness and definiteness, as contraction rules. Then, we have:

Canonical Ground Horn Theories 55

Proposition 2. Given an implicational system S, for all fair and contracting
derivations S = S0 �O S1 �O · · · , S∞ = O(S).

Proof. If the derivation is fair and contracting, both expansion and contraction
rules are applied systematically. Hence, the result. ��

The following lemma shows that every inference by�O is covered by an inference
in �R:

Lemma 3. For all implicational systems S, if S �O S′, then RS �R RS′ .

Proof. We consider four cases, corresponding to the four inference rules in �O:

1. Implicational overlap: If S �O S′ by an implicational overlap step, then
RS �R RS′ by equational overlap, by Lemma 2.

2. Isotony: For an application of this rule, S = S′′ ∪ {A⇒ B,AD ⇒ BE} and
S′ = S′′ ∪ {A ⇒ B,AD ⇒ E}. Then, RS = RS′′ ∪ {AB → A,ADBE →
AD}. Simplification applies to RS using AB → A to rewrite ADBE → AD
to ADE → AD, yielding RS′′ ∪ {AB → A,ADE → AD} = RS′ .

3. Extensiveness: When this rule applies, S = S′′ ∪ {AC ⇒ BC} and S′ =
S′′∪{AC ⇒ B}. Then, RS = RS′′ ∪{ACBC → AC}. By mere idempotence
of juxtaposition, RS = RS′′ ∪ {ABC → AC} = RS′ .

4. Definiteness: If S = S′ ∪ {A ⇒ ∅}, then RS = RS′ ∪ {A ↔ A} and an
application of deletion eliminates the trivial equation, yielding RS′ . ��

However, the other direction of this lemma does not hold. Although every equa-
tional overlap is covered by an implicational overlap and deletions correspond
to applications of the definiteness rules, there are simplifications by �R that do
not correspond to inferences in �O:

Example 10. Assume that the implicational system S includes {de⇒ b, b⇒ d}.
Accordingly, RS contains {deb→ de, bd→ b}. A simplification inference applies
bd→ b to reduce deb→ de to be↔ de, which is oriented into be→ de, if b � d,
and into de → be, if d � b. (Were �R equipped with a cancellation inference
rule, be ↔ de could be rewritten to b ↔ d, whence b → d or d → b.) The
deduction mechanism �O can apply implicational overlap to de⇒ b and b⇒ d
to generate de⇒ d. However, de⇒ d is reduced to de⇒ ∅ by the extensiveness
rule, and de⇒ ∅ is deleted by the definiteness rule. Thus, �O does not generate
anything that corresponds to be↔ de. ��

This example can be generalized to provide a simple analysis of simplification
steps, one that shows which steps correspond to �O-inferences and which do
not. Assume we have two rewrite rules AB → A and CD → C, corresponding
to non-trivial Horn clauses (|B| = 1, B
⊆ A, |D| = 1, D
⊆ C), and such that
CD → C simplifies AB → A. We distinguish three cases:

1. In the first one, CD appears in AB because CD appears in A. In other
words, A = CDE for some E. Then, the simplification step is

CDEB → CDE, CD → C

CEB → CE, CD → C

56 M.P. Bonacina and N. Dershowitz

(where simplification is actually applied to both sides). The corresponding
implications are A ⇒ B and C ⇒ D. Since A ⇒ B is CDE ⇒ B, implica-
tional overlap applies to generate the implication CE ⇒ B that corresponds
to CEB → CE:

C ⇒ D, CDE ⇒ B
CE ⇒ B

.

The isotony rule applied to CE ⇒ B and CDE ⇒ B reduces the latter to
CDE ⇒ ∅, which is then deleted by the definiteness rule. Thus, a combina-
tion of implicational overlap, isotony and definiteness simulates the effects
of simplification.

2. In the second case, CD appears in AB because C appears in A, that is,
A = CE for some E, and D = B. Then, the simplification step is

CEB → CE, CB → C

CE ↔ CE, CB → C
,

and there is an isotony inference

C ⇒ B, CE ⇒ B

C ⇒ B, CE ⇒ ∅ ,

which generates the trivial implication CE ⇒ ∅ corresponding to the trivial
equation CE ↔ CE. Both are deleted by definiteness and deletion, respec-
tively.

3. The third case is the generalization of Example 10: CD appears in AB
because D appears in A, and C is made of B and some F that also appears
in A, that is, A = DEF for some E and F , and C = BF . The simplification
step is

DEFB → DEF, BFD → BF

BFE ↔ DEF, BFD → BF
.

Implicational overlap applies

DEF ⇒ B, BF ⇒ D
DEF ⇒ D

to generate an implication that is first reduced by extensiveness toDEF ⇒ ∅
and then eliminated by definiteness. Thus, nothing corresponding to BFE ↔
DEF is generated.

It follows that whatever is generated by�O is generated by�R, but may become
redundant eventually:

Theorem 3. For every implicational system S, for all fair and contracting
derivations S = S0 �O S1 �O · · · and RS = R0 �R R1 �R · · · , for all
FG → F ∈ R(S∞), either FG → F ∈ (RS)∞ or FG → F is redundant in
(RS)∞.

Canonical Ground Horn Theories 57

Proof. For all FG→ F ∈ R(S∞), F ⇒ G ∈ S∞ by Definition 3, and F ⇒ G ∈ Sj

for some j ≥ 0. Let j be the smallest such index. If j = 0, or Sj = S, FG →
F ∈ RS = R0 by Definition 3. If j > 0, F ⇒ G was generated by an application
of implicational overlap, the isotony rule or extensiveness. By Lemma 3 and the
assumption that the �R-derivation is fair and contracting, FG → F ∈ Rk for
some k > 0. In both cases, FG → F ∈ Rk for some k ≥ 0. If FG→ F persists,
then FG→ F ∈ (RS)∞. Otherwise, FG→ F is rewritten by simplification and
is therefore redundant in (RS)∞. ��

Since the limit of a fair and contracting �O-derivation is O(S), it follows that:

Corollary 3. For every implicational system S, for all fair and contracting
derivations S = S0 �O S1 �O · · · and RS = R0 �R R1 �R · · · , and for
all FG → F ∈ RO(S), either FG → F ∈ (RS)∞ or FG → F is redundant in
(RS)∞.

4 Conditional Rewrite Systems

In this section we investigate canonicity in conditional equational theories, fo-
cusing on the ground case. We study conditional reduction and we propose a
notion of reducedness, where also conditions themselves are subject to reduc-
tion, so that it may be possible to “reduce” overly-complex conditions, without
affecting the equality relation. It follows that for conditional equational theories,
unlike for equational ones, being reduced and being contracted are distinct. As a
consequence, perfect systems – complete and reduced – and canonical systems –
saturated and contracted – also differ.

4.1 Decreasing Systems

To use conditional equations for simplification, one needs to establish that the
conditions hold. If testing the validity of the conditions yields a problem that is
as difficult as the one we would like to solve by applying conditional equations,
conditional simplification becomes unpractical. In other words, the complexity
of conditions should be bounded. Therefore, we start with a notion of decreasing-
ness, which appeared in [29] and ensures that testing conditions does not yield
bigger problems:

Definition 8 (Decreasing conditional equation). A ground conditional
equation p1 � q1, · · · , pn � qn ⇒ l� r is decreasing if l � r, p1, q1, . . . , pn, qn;
a conditional equation is decreasing if all its ground instances are.

A decreasing inference is an application of the following inference rule:

C ⇒ l� r w1 . . . wn

C \ {w1, . . . wn} ⇒ f [l]� f [r]
f [l]� f [r] �C C

where f is any context and w1 . . . wn are equations. If C \ {w1, . . . wn} = ∅, an
equation is deduced; otherwise, a conditional equation is deduced, where those

58 M.P. Bonacina and N. Dershowitz

conditions that are not discharged remain part of the conclusion. Condition
f [l]� f [r] �C C characterizes the inference as decreasing. Since � is a simpli-
fication ordering and therefore has the subterm property, f [l]� f [r] �C l� r
also holds. Thus, f [l]� f [r] �C (C ⇒ l� r) follows. On the other hand, the
subproofs of the wi may contain larger premises.

The depth of a decreasing inference is 0 if f [l] = f [r] (a trivial equation is
deduced) or n = 0 (no subproofs). Otherwise, it is 1. The depth of a proof
is the sum of the depth of its inferences, that is, the number of non-trivial
inferences where a conditional equation is applied and some if its conditions are
discharged. Thus, purely equational proofs have depth 0, because they do not
have conditions.

Definition 9 (Equivalence). Given a presentation S of a theory, two terms s
and t are S-equivalent, written s ≡S t, if there is a proof p, such that [p]Cl =
s� t and [p]Pm ⊆ S, made of decreasing inferences.

We can use minimal elements of S-equivalence classes as their representatives:

Definition 10 (Normal form). The S-normal form of a term t is the �-
minimal element of its S-equivalence class.

By the same token, a term t is in normal form with respect to S, if it is its own
S-normal form.

4.2 Reduced Systems

Given a set S of conditional equations, we are interested in a reduced version of
S. Computing a reduced system involves deletion of trivial conditional equations,
subsumption and simplification, as defined by the following inference rules:

Deletion
C ⇒ r� r C, l� r ⇒ l� r

Subsumption

C,D ⇒ u[l]�u[r] C ⇒ l� r

C ⇒ l� r

Simplification

C, p� q ⇒ l[p]� r

C, p� q ⇒ l[q]� r
p � q

C, p� q, u[p]� v ⇒ l� r

C, p� q, u[q]� v ⇒ l� r
p � q

C,D ⇒ l[u]� r C ⇒ u� v

C,D ⇒ l[v]� r C ⇒ u� v
u � v ,

Canonical Ground Horn Theories 59

where the first two simplification rules use a condition to simplify the conse-
quence or another condition of the same conditional equation, while the third
one applies a conditional equation C ⇒ u� v to simplify another conditional
equation whose conditions include C. Inferences shown on the left-hand side of
� apply also to the right-hand side, since � is symmetric.

These inference rules produce a reduced system according to the following
definition:

Definition 11 (S-reduced). Let S = S′ ! {e} be a presentation, where e =
(C ⇒ l� r) is a conditional equation, C = {pi� qi}ni=1, and, for convenience,
l � r and pi � qi, for all i, 1 ≤ i ≤ n. Then, e is S-reduced if

1. e is not trivial,
2. no conditional equation in S′ subsumes e,
3. l is in (S′ ∪ C)-normal form,
4. r is in (S ∪ C)-normal form,
5. for all i, 1 ≤ i ≤ n,

(a) pi is in (S′ ∪ (C \ {pi� qi}))-normal form and
(b) qi is in (S′ ∪ C)-normal form.

The difference between Item 3 and Item 4 is designed to prevent C ⇒ l� r from
simplifying itself. In Item 5, a condition p� q ∈ C is normalized also with respect
to the other equalities in C, because all equalities in C must be true to apply a
conditional equation e. Thus, the notion of reducedness incorporates the notion
of reduction with respect to a context as in the conditional contextual rewriting
proposed by Zhang [74]. The difference between Item 5a and Item 5b is meant to
prevent pi� qi from simplifying itself. Thus, we can safely define the following:

Definition 12 (Self-reduced). A conditional equation e is self-reduced, if it
is {e}-reduced. The self-reduced form of e is denoted e�.

Example 11. For S = {e1, e2}, where e1 is a� b⇒ c� d, and e2 is f(a)� f(b) ⇒
c� d, as in Example 1, both e1 and e2 are S-reduced. ��

Definition 13 (Reduced). A presentation S is reduced, if all its elements are
S-reduced.

Definition 14 (Perfect). A presentation S is perfect, if it is complete and
reduced.

Example 12. Let S = {e1, e2}, where e1 is a� b ⇒ f(a)� c and e2 is a� b ⇒
f(b)� c, with f > a > b > c. The presentation S is not reduced, because clause
e1 is not. Indeed, the normal form of f(a) with respect to (S \ {e1}) ∪ {a� b}
is c, and the reduced form of e1 is the trivial clause a� b ⇒ c� c. Clause e2 is
reduced. ��

Proposition 3. If S is reduced, then it is contracted.

60 M.P. Bonacina and N. Dershowitz

Proof. Assume that S is not contracted. Then, there exists an e ∈ S, such that
e
∈ [μPf (S)]Pm (see Sect. 2.2). In other words, if e ∈ [p]Pm , then p
∈ μPf (S).
For each such p, there is a q ∈ μPf (S), such that p > q and e
∈ [q]Pm . By
monotonicity of the proof ordering with respect to subproofs (cf. Property 3 in
Sect. 2.2), proof p must contain a subproof involving e, possibly consisting of e
itself, which is replaced by a smaller subproof in q. Thus, proof p and premise
e must contain at least a term that is not in S-normal form. Hence, e is not in
S-reduced form, and S is not reduced. ��

On the other hand, a presentation can be contracted but not reduced, as shown
in the following example:

Example 13. If a > b > c, neither a� b ⇒ b� c nor a� b ⇒ a� c is decreasing.
The presentations S1 = {a� b ⇒ b� c}, S2 = {a� b ⇒ a� c}, and S3 =
{a� b ⇒ b� c, a� b ⇒ a� c} are equivalent. However, S1 is reduced, whereas
S2 is not, since the S2-reduced form of a� b⇒ a� c is a� b⇒ b� c. Neither is
S3 reduced, although it is contracted. Indeed, while a� b⇒ b� c is S3-reduced,
the S3-reduced form of a� b⇒ a� c is the trivial clause a� c⇒ a� c. ��

Unlike the ground equational case, where contracted and canonical collapse to
reduced, because all inferences consist of rewriting, in the conditional case con-
tracted and reduced are different (like S3 in Example 13). Furthermore, de-
creasing simplification is “incomplete” with respect to Definition 11, because
non-reduced presentations may not be reducible by decreasing simplification, as
the clauses are not decreasing (like S2 and S3 in Example 13). The following
lemma and theorem follow from the definitions.

Lemma 4. A conditional equation e has a normal-form proof in presentation
S, if the S-reduced form of e� is subsumed by a conditional equation in S.

Theorem 4. If S is canonical, then S subsumes the S-reduced form of every
theorem of S.

Example 14. Consider again the three presentations of Example 13, e1 = a� b⇒
b� c and e2 = a� b ⇒ a� c. We have e�1 = a� b ⇒ b� c = e�2. Thus, both S1

and S3 are complete (and saturated), because they contain a� b ⇒ b� c. On
the other hand, S2 does not, and therefore it is not complete. In summary, S1

is perfect (reduced and complete), S3 is canonical (contracted and saturated),
whereas S2 is neither. ��

In summary, in the conditional case, a perfect system – complete and reduced –
and a canonical system – saturated and contracted – differ in two ways: com-
plete is weaker than saturated, and reduced is stronger than contracted. Since
complete/saturated determines how much expansion is required in completion,
whereas reduced/contracted refers to how much simplification completion should
feature, both discrepancies hint that the perfect system is really the best system,
as the name suggests.

Canonical Ground Horn Theories 61

5 Horn Normal Forms

In this section, we survey proof normalization and decision procedures, based
on canonical systems, in Horn theories and beyond. Since Th S is defined based
on proofs (cf. Sect. 2.2), the choice of normal-form proofs is intertwined with
the choice of the deduction mechanism that generates the proofs. This double
choice is guided by the purpose of ensuring that S� forms the basis for a decision
procedure. To achieve decidability, the various notions of normal-form proof aim
at minimizing non-deterministic choice-points that require search. Then, Horn
proofs may have the following qualities:

– Linear : in linear resolution proofs at each step a center clause is resolved with
a side clause, to generate the next center clause (see, for instance, Chapter 7
in the book by Chang and Lee [23]). The first center clause, or top clause, is
the goal given by the problem. Linearity eliminates one choice point, because
the main premise of the next step must be whatever was generated by the
previous step.

– Linear input : the choice of side clauses is restricted to input clauses [23].
– Reducing: a linear proof is reducing if each center clause is smaller than its

predecessor in the ordering �C – this implies termination [18].
– Unit-resulting: each step must generate a unit clause; thus, all literals but

one must be resolved away, which eliminates the choice of literal in the center
clause, but may require multiple side clauses (traditionally called satellites
or electrons as in the unit-resulting resolution of McCharen, Overbeek and
Wos [64]).

– Confluent : whatever choices are left, such as choice of side premise(s) or
choice of subterm, are irrelevant for finding or not finding a proof, which
means they will never need to be undone by backtracking.

Valley proofs for purely equational theories satisfy all these properties, some
vacuously (like unit-resulting). In this section we survey different choices of
normal-form proofs for Horn theories, and we examine how they yield differ-
ent requirements on canonical presentations, and on the completion procedures
that generate them at the limit.

5.1 Trivial Proofs

If trivial proofs are assumed to be normal-form proofs, closure with respect
to forward chaining gives the canonical presentation. Canonical, saturated and
complete coincide. Given a Horn presentation S, S� is made of all ground facts
that follow from S and the axioms of equality by forward chaining. In other
words, S� is the least Herbrand model of S, and, equivalently, the least fixed-
point of the mapping associated to program S and the axioms of equality in
the fixed point semantics of logic programming (see the aforementioned surveys
[1,50] or Lloyd’s book [62]).

Existence of the least Herbrand model is a consequence of the defining prop-
erty of Horn theories, namely closure of the family of models with respect to

62 M.P. Bonacina and N. Dershowitz

intersection. This is also the basis upon which to draw a correspondence be-
tween Horn clauses with unary predicate symbols and certain tree automata,
called two-way alternating tree automata (cf. [24, Sec. 7.6.3]). Tree automata are
automata that accept trees, or, equivalently, terms. Given a Horn presentation
S, the predicate symbols in S are the states of the automaton. As usual, a subset
of states is defined to be final. Then, the essence of the correspondence is that a
ground term t is accepted by the automaton if the atom r(t) is in S� and r is fi-
nal. The deduction mechanism for computing the accepted terms is still forward
chaining. It is sufficient to have unary predicate symbols, because the notion of
being accepted applies to one term at a time. This restriction is advantageous
because many properties in the monadic fragment are decidable. For the class
of two-way alternating tree automata, clauses are further restricted to have one
of the following forms:

1. a1(x1), . . . , an(xn) ⇒ c(u), where x1, . . . , xn are (not necessarily distinct)
variables, u is a linear, non-variable term, and x1, . . . , xn ∈ Var(u);

2. a(u) ⇒ c(x), where u is a linear term and x is a variable; and
3. a1(x), . . . , an(x) ⇒ c(x).

We refer the interested reader to [24] for more details and results.

5.2 Ground-Preserving Linear Input Proofs

According to Kounalis and Rusinowitch [60], normal-form proofs for Horn the-
ories with equality are linear input proofs by ordered resolution and ordered
superposition, where only maximal literals are resolved upon, and only maximal
sides of maximal literals are superposed into and from. Furthermore, in order
to have a normal-form proof, all side clauses p1 � q1, · · · , pn � qn ⇒ l� r in the
proof must be ground-preserving: Var(pi� qi) ⊆ Var(l� r), for all i, 1 ≤ i ≤ n,
and either l � r or r � l, or Var(l) = Var(r).

A conjecture is a conjunction ∀x̄ u1 � v1, . . . , uk � vk, whose negation is a
ground (Skolemized) negative clause ũ1
� ṽ1 ∨ · · · ∨ ũk
� ṽk. If all side clauses
are ground-preserving and the top clause is ground, all center clauses will also
be ground. This, together with the ordering restrictions on resolution and su-
perposition and the assumption that the ordering is a complete simplification
ordering – hence, is total on ground terms, literals and clauses – imply that every
center clause is smaller than its parent center clause, so that proofs are reducing.

Therefore, a finite presentation that features such a normal-form proof for
every conjunction of positive literals is a decision procedure. The Horn comple-
tion procedure of [60], with ordered resolution, superposition, simplification by
conditional equations, and subsumption, generates at the limit a saturated pre-
sentation, which is such a decision procedure, if it is finite and all its clauses are
ground-preserving.

5.3 Linear Input Unit-Resulting Proofs

An approach for Horn logic without equality was studied by Baumgartner in his
book on theory reasoning [9]. Here normal-form proofs of conjunctions of posi-

Canonical Ground Horn Theories 63

tive literals are linear input unit-resulting (UR) resolution proofs. A completion
procedure, called Linearizing Completion, applies selected resolution inferences
and additions of contrapositives to compile the given presentation into one that
offers normal-form proofs for all conjunctions of positive literals. The name “Lin-
earizing” evokes the transformation of UR-resolution proofs (not in normal form)
into linear UR-resolution proofs (in normal form).

If finite, the resulting saturated presentation is used as a decision procedure
for the Horn theory in the context of partial theory model elimination. Similar
to partial theory resolution of Stickel [70], a decision procedure that generates
conditions for the unsatisfiability of a set of literals in the theory, as opposed
to deciding unsatisfiability, suffices. The saturated presentation generated by
Linearizing Completion is a decision procedure in this weaker sense.

5.4 Valley Proofs

If the notion of normal-form proof of the unconditional case is generalized to
the conditional case, normal-form proofs are valley proofs of depth 0, where all
conditions have been solved away. The Maximal Unit Strategy of [30] achieves
this effect by restricting expansion inferences to have at least one unit premise:
it applies superposition between unconditional equations and to superpose un-
conditional equations into maximal terms of conditions.

In the limit, the saturated set contains all positive unit theorems, or, equiv-
alently, all conditional equations are redundant [18], so that there is a normal-
form proof for every theorem. However, such a presentation will be infinite in
most cases, so that the Maximal Unit Strategy is better seen as a semi-decision
procedure for forward-reasoning theorem proving, rather than as a generator of
decision procedures [29].

5.5 Nested Valley Proofs

In [29,30], a normal-form proof of s� t is a valley proof, in which each subproof
is also in normal form, and each term in a subproof is smaller than the greater
of s and t. To enforce the latter constraint, only decreasing instances of con-
ditional equations are applied. The Decreasing Strategy of [29,30] simplifies by
decreasing instances of conditional equations and applies ordered paramodula-
tion/superposition of decreasing instances, to generate at the limit a saturated
presentation that features normal-form proofs for all theorems. Our analysis in
Sect. 4 started from this point to develop the notions of reduced and perfect
system, showing the incompleteness of decreasing simplification with respect to
reducedness and the difference between canonical and perfect system.

If we compare this notion of normal-form proof based on decreasingness with
the conditional valley proofs of null depth of Sect. 5.4, we see that decreasingness
allows nested valley proofs, or, equivalently, it does not require that normal-form
proofs have depth 0: this means renouncing linearity.

To compare with the ground-preserving linear input proofs of Sect. 5.2,
consider a conditional equation that is not ground-preserving, such as

64 M.P. Bonacina and N. Dershowitz

p1 � q1, · · · , pn � qn ⇒ l� r, where l � r and either r, or one of the pi’s, or
one of the qi’s, for some i, 1 ≤ i ≤ n, contains a variable that does not occur in
l. Such a conditional equation cannot be decreasing. However, the motivations
for the two conditions are different. The motivation for the ground-preserving
property is to ensure that proofs are reducing. The motivation for decreasing-
ness, which improved upon previous suggestions in [57,56], is to capture exactly
the finiteness of recursive evaluation of terms.

Another significant difference between decreasingness, on one hand, and ear-
lier requirements, on the other, including the ground-preserving condition and
the requirements studied by Kaplan and Rémy [58] or Ganzinger [47], is that they
are static properties of conditional rewrite rules or equations, whereas decreas-
ingness is tested dynamically on the applied instances. This difference resembles
the one between Knuth-Bendix completion [59], where all equations must be
oriented, and Unfailing, or Ordered, Completion, that applies oriented instances
of unoriented equations [20,61,54,6,5,18].

5.6 Quasi-Horn Theories

A generalization of the approach of Sect. 5.2 was given by Bachmair and
Ganzinger in [7], by considering quasi-Horn clauses and replacing the ground-
preserving property with the universally reductive property.

A clause C is quasi-Horn if it has at most one positive equational literal,
and, if there is one – say l� r, then (l� r)σ is maximal in Cσ for all ground
instances Cσ of C. A general clause C is universally reductive if it contains a
literal L such that (i) Var(C) ⊆ Var(L), (ii) for all ground substitutions σ,
Lσ is strictly maximal in Cσ, (iii) if L is an equational literal, it is a positive
equation s� t, such that Var(s� t) ⊆ Var(s) and for all ground substitutions
σ, sσ � tσ. Clause C is said to be universally reductive for L. Clearly, if a
quasi-Horn clause that contains a positive equation is universally reductive, it is
universally reductive for the positive equation.

A quasi-Horn clause is more general than a Horn clause, because it allows more
than one positive literal, provided they are not equations: if there is a positive
equation, then it must be unique and maximal. A quasi-Horn clause C that
contains a positive equation l� r will be involved only in superposition inferences
into, or from, l� r: ordered resolution does not apply to C, because its non-
equational literals are not maximal; ordered factoring and equality resolution,4

are not applicable either, because C has only one positive literal and its negative
literals are not maximal. Furthermore, superposition of C into a clause without
positive equations will produce another clause without positive equations. In
essence, the notion of quasi-Horn clause serves the purpose of making sure that
the equational part of the problem is Horn, and can be dealt with separately
with respect to the non-equational part, which may be non-Horn and require
ordered resolution and ordered factoring.

4 Equality resolution is ordered resolution with x�x.

Canonical Ground Horn Theories 65

The notion of goal is generalized from ground negative clause to ground clause
without positive equations, and the notion of normal-form proof for such a goal
is weakened accordingly: the equational reasoning part by ordered superposi-
tion is linear, whereas the ordered resolution and ordered factoring part for the
non-equational component is not necessarily linear. A finite saturated set of
universally-reductive quasi-Horn clauses is a decision procedure in that it pro-
vides a normal-form proof for all goals in this form.

5.7 Beyond Quasi-Horn

It is well known that the restrictions of general inferences that are complete for
Horn logic (including linear input resolution, unit resolution, forward chaining)
are not complete for full first-order logic (see [23]). In the non-equational case,
linear input proofs must be replaced by linear proofs, involving also factoring
and ancestor-resolution inferences. In the presence of equality, one needs to deal
with the interplay of the equational and non-equational parts in its full gene-
rality. Nevertheless, completion procedures to generate saturated or canonical
presentations have been investigated also in the unrestricted first-order context.
One purpose is to find whether inference systems or strategies that are not
complete for first-order logic, may become complete if a canonical, or at least
saturated, presentation is given.

An example is the classical resolution with set of support of Wos et al. [72],
where the set of support initially contains the goal clauses (those resulting from
the negation of the conjecture), its complement contains the presentation, and
all generated clauses are added to the set of support. This is complete for res-
olution in first-order logic, but it is not complete for ordered resolution and
superposition in first-order logic with equality. However, it is well known that, if
the presentation is saturated, then the set of support strategy is complete also
for first-order logic with equality and ordered inferences, for the simple reason
that all inferences from the saturated presentation are redundant.

For first-order theories, in general, there is no finite canonical presentation
that forms the basis for a decision procedure. Obtaining decision procedures for
fragments of first-order logic rests on some combination of saturation by com-
pletion and syntactic constraints on the presentation. A survey can be found in
[42]. More recent results based on syntactic constraints include those of Comon-
Lundh and Courtier in [25]. In [40], Dowek studied proof normalization in the
context of a sequent calculus modulo a congruence on terms, where normal-form
proofs are cut-free proofs.

Another thread of research on decision procedures is that of satisfiability mod-
ulo a theory (SMT), where T -satisfiability is the problem of deciding satisfiabil-
ity of a set of ground literals in theory T . Armando et al. [3,2] proved that a
rewrite-based inference system for first-order logic with equality is guaranteed
to generate finitely many clauses when applied to T -satisfiability problems in
several theories of data structures, and any of their combinations. Thus, such
an inference system equipped with a fair search plan yields a decision proce-
dure for T -satisfiability in those theories. Bonacina and Echenim generalized this

66 M.P. Bonacina and N. Dershowitz

approach to T -satisfiability in theories of recursive data structures [14], extended
it to decide T -satisfiability of arbitrary ground formulæ [15], and investigated
how using a rewrite-based inference system as a pre-processor for an SMT-solver
yields decision procedures [16]. Lynch and Morawska [63] combined the approach
of [3] with syntactic constraints to obtain complexity bounds for some theories.
Bonacina, Lynch and de Moura obtained more decision procedures by equip-
ping a theorem prover that integrates superposition into an SMT-solver with
speculative inferences [19].

5.8 Knowledge Representation

In the context of knowledge representation, various forms of knowledge compi-
lation have been studied to transform a given knowledge base into a normal
form that enables efficient reasoning. Roussel and Mathieu [68] investigated the
problem of “completing” a knowledge base, so that forward chaining becomes
complete also in the first-order case (without equality). An achieved knowledge
base corresponds to a saturated presentation, and the process that generates it
is called achievement.

Clearly, in many instances an achieved knowledge base that is equivalent
to the original one will be infinite, so that one has to resort to either partial
achievement or total achievement techniques. Partial achievement produces a
finite knowledge base by setting a limit on either the depth of instances, or the
length of chains of literals, that may be produced. Total achievement relaxes, in
a controlled way, the requirement that the achieved base be equivalent to the
original one. More recently, Furbach and Obermaier [44] considered knowledge
compilation in description logics.

6 Discussion

Knuth-Bendix completion [59,55,54,6,5,18] was designed to derive decision pro-
cedures for validity in algebraic theories. Its outstanding feature is the use of
inferred rules to continuously reduce equations and rules during the inference
process. As a byproduct, the resulting reduced convergent system is unique –
given a well-founded ordering of terms for orienting equations into rules [35] –
and appropriately viewed as canonical.

In the ground equational case, reduction and completion are one and the same
[61,45,66,8,13]. The natural next step up is to consider what canonical ground
Horn presentations might look like. Here, we take a new look at ground Horn
theories from the point of view of the theory of canonical inference initiated in
[33,13]. Of course, entailment of equational Horn clauses is also easily decidable
in the propositional [41] and ground [46] cases. However, it turns out that reduced
and canonical – hence, reduction and completion – are distinct in this case.

For implicational systems, we analyzed the notions of direct and direct-
optimal implicational system in terms of completion and canonicity. We com-
pared implicational systems with inference mechanisms featuring implicational

Canonical Ground Horn Theories 67

overlap and optimization, and rewrite systems with inference mechanisms featur-
ing equational overlap and simplification. We found that a direct implicational
system corresponds to the canonical limit of a derivation by completion that
features expansion by equational overlap and contraction by forward simplifi-
cation. When completion also features backward simplification and is given a
subset of the alphabet as input, together with the implicational system, it com-
putes the image of the subset with respect to the closure operator associated
with the implicational system. In other words, it computes the minimal model
that satisfies both the implicational system and the subset. On the other hand, a
direct-optimal implicational system does not correspond to the limit of a deriva-
tion by completion, because the underlying proof orderings are different and
therefore normalization induces two different notions of optimization. Accord-
ingly, we introduced a new notion of optimality for implicational systems, termed
rewrite optimality, that corresponds to canonicity defined by completion up to
redundancy.

Although limited to the propositional level, our analysis is complementary to
those of [28,37,17,39] in a few ways. First, previous studies primarily compared
answering a query with respect to a program of definite clauses, interpreted by
SLD-resolution, as in Prolog, with answering a query with respect to a pro-
gram of rewrite rules, interpreted by linear completion, with equational overlap,
with or without simplification. Thus, from an operational point of view, those
analyses focused on backward reasoning from the query, whereas ours concen-
trates on optimizing and completing presentations by forward reasoning. Sec-
ond, SLD-resolution involves no contraction, so that earlier comparisons placed
an inference mechanism with contraction (linear completion) side-by-side with
one without. The treatment in [17] included the case where the Prolog interpreter
is enriched with subsumption, but it was only subsumption between goals, with
no contraction of the presentation. Here we have also compared different forms
of contraction, putting optimization of implicational systems and simplification
of rewrite systems in parallel. The present analysis agrees with prior ones in
indicating the role of simplification in differentiating reasoning by completion
about equivalences from reasoning about implications. Indeed, as we have seen,
the canonical rewrite system can be more reduced than the rewrite-optimal im-
plicational system (cf. Theorem 3).

Future work includes generalizing this analysis to non-ground Horn theories,
similar to what was done in [21] to extend the application of the abstract frame-
work of [33,13] from ground completion to standard completion of equational
theories. Other directions may be opened by exploring new connections between
canonical systems and decision procedures.

Acknowledgements. We thank Andreas Podelski, Andrei Voronkov and Rein-
hard Wilhelm for organizing the workshop in Harald’s memory in Saarbrücken
in June 2005.

68 M.P. Bonacina and N. Dershowitz

References

1. Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science. Formal Methods and Semantics, vol. B, ch. 10, pp. 493–574.
North-Holland, Amsterdam (1990)

2. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-
based satisfiability procedures. ACM Transactions on Computational Logic 10(1),
129–179 (2009)

3. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Information and Computation 183(2), 140–164 (2003)

4. Bachmair, L., Dershowitz, N.: Inference rules for rewrite-based first-order theo-
rem proving. In: Proceedings of the Second Annual IEEE Symposium on Logic in
Computer Science, pp. 331–337. IEEE Computer Society Press (1987)

5. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof
orderings. Journal of the Association for Computing Machinery 41(2), 236–276
(1994)

6. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aı̈t-
Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewrit-
ing Techniques, vol. II, pp. 1–30. Academic Press (1989)

7. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. Journal of Logic and Computation 4, 217–247 (1994)

8. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. Journal of
Automated Reasoning 31(2), 129–168 (2003)

9. Baumgartner, P. (ed.): Theory Reasoning in Connection Calculi. LNCS (LNAI),
vol. 1527. Springer, Heidelberg (1998)

10. Bertet, K., Monjardet, B.: The multiple facets of the canonical direct implicational
basis. Cahiers de la MSE No. b05052, Maison des Sciences Economiques, Université
Paris Panthéon-Sorbonne (June 2005),
http://ideas.repec.org/p/mse/wpsorb/b05052.html

11. Bertet, K., Nebut, M.: Efficient algorithms on the Moore family associated to an
implicational system. Discrete Mathematics and Theoretical Computer Science 6,
315–338 (2004)

12. Birkhoff, G.: Lattice Theory. Revised edn. American Mathematical Society, New
York (1948)

13. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Transactions
on Computational Logic 8(1) (2007)

14. Bonacina, M.P., Echenim, M.: Rewrite-based satisfiability procedures for recursive
data structures. In: Cook, B., Sebastiani, R. (eds.) Proceedings of the Fourth Work-
shop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR),
Fourth Federated Logic Conference (FLoC). Electronic Notes in Theoretical Com-
puter Science, vol. 174(8), pp. 55–70. Elsevier, Amsterdam (2007)

15. Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial T-
satisfiability procedures. Journal of Logic and Computation 18(1), 77–96 (2008)

16. Bonacina, M.P., Echenim, M.: Theory decision by decomposition. Journal of Sym-
bolic Computation 45(2), 229–260 (2010)

17. Bonacina, M.P., Hsiang, J.: On rewrite programs: Semantics and relationship with
Prolog. Journal of Logic Programming 14(1 & 2), 155–180 (1992)

18. Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as
semidecision procedures. Theoretical Computer Science 146, 199–242 (1995)

http://ideas.repec.org/p/mse/wpsorb/b05052.html

Canonical Ground Horn Theories 69

19. Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theo-
rem proving with speculative inferences. Journal of Automated Reasoning 47(2),
161–189 (2011)

20. Brown Jr., T.C.: A Structured Design-Method for Specialized Proof Procedures.
PhD thesis, California Institute of Technology, Pasadena, CA (1975)

21. Burel, G., Kirchner, C.: Completion Is an Instance of Abstract Canonical Sys-
tem Inference. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Goguen
Festschrift 2006. LNCS, vol. 4060, pp. 497–520. Springer, Heidelberg (2006)

22. Caspard, N., Monjardet, B.: The lattice of Moore families and closure operators
on a finite set: A survey. Electronic Notes in Discrete Mathematic, vol. 2 (1999)

23. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press (1973)

24. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications (2005),
http://www.grappa.univ-lille3.fr/tata

25. Comon-Lundh, H., Courtier, V.: New Decidability Results for Fragments of First-
order Logic and Application to Cryptographic Protocols. In: Nieuwenhuis, R. (ed.)
RTA 2003. LNCS, vol. 2706, pp. 148–164. Springer, Heidelberg (2003)

26. Dershowitz, N.: A note on simplification orderings. Information Processing Let-
ters 9(5), 212–215 (1979)

27. Dershowitz, N.: Equations as programming language. In: Proceedings of the Fourth
Jerusalem Conference on Information Technology, Jerusalem, Israel, pp. 114–124.
IEEE Computer Society Press (May 1984)

28. Dershowitz, N.: Computing with rewrite systems. Information and Control 64(2/3),
122–157 (1985)

29. Dershowitz, N.: Canonical Sets of Horn Clauses. In: Leach Albert, J., Monien, B.,
Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 267–278. Springer,
Heidelberg (1991)

30. Dershowitz, N.: Ordering-based strategies for Horn clauses. In: Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence, Sydney, Australia,
pp. 118–124 (1991)

31. Dershowitz, N., Huang, G.S., Harris, M.A.: Enumeration problems related to
ground Horn theories (2008), http://arxiv.org/abs/cs/0610054

32. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science. Formal Methods and Semantics, vol. B, ch.
6, pp. 243–320. North-Holland, Amsterdam (1990)

33. Dershowitz, N., Kirchner, C.: Abstract canonical presentations. Theoretical Com-
puter Science 357, 53–69 (2006)

34. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commu-
nications of the ACM 22(8), 465–476 (1979)

35. Dershowitz, N., Marcus, L., Tarlecki, A.: Existence, uniqueness, and construction
of rewrite systems. SIAM Journal of Computing 17(4), 629–639 (1988)

36. Dershowitz, N., Plaisted, D.A.: Logic programming cum applicative programming.
In: Proceedings of the 1985 Symposium on Logic Programming, Boston, MA,
pp. 54–66 (1985)

37. Dershowitz, N., Plaisted, D.A.: Equational programming. In: Hayes, J.E., Michie,
D., Richards, J. (eds.) Machine Intelligence 11: The Logic and Acquisition of
Knowledge, ch. 2, pp. 21–56. Oxford University Press, Oxford (1988)

38. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. I, ch. 9, pp. 535–610. Elsevier, Amsterdam
(2001)

http://www.grappa.univ-lille3.fr/tata
http://arxiv.org/abs/cs/0610054

70 M.P. Bonacina and N. Dershowitz

39. Dershowitz, N., Reddy, U.: Deductive and inductive synthesis of equational pro-
grams. Journal of Symbolic Computation 15, 467–494 (1993)

40. Dowek, G.: Confluence as a Cut Elimination Property. In: Nieuwenhuis, R. (ed.)
RTA 2003. LNCS, vol. 2706, pp. 2–13. Springer, Heidelberg (2003)

41. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of
propositional Horn formulæ. Journal of Logic Programming 1(3), 267–284 (1984)

42. Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision proce-
dures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
vol. II, ch. 25, pp. 1793–1849. Elsevier, Amsterdam (2001)

43. Fribourg, L.: Slog—Logic Interpreter for Equational Clauses. In: Choffrut, C.,
Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 479–480. Springer, Heidelberg
(1990)

44. Furbach, U., Obermaier, C.: Knowledge compilation for description logics. In:
Dershowitz, N., Voronkov, A. (eds.) Proceedings of the Fourteenth Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR), Short Papers Session (2007)

45. Gallier, J., Narendran, P., Plaisted, D.A., Raatz, S., Snyder, W.: Finding canonical
rewriting systems equivalent to a finite set of ground equations in polynomial time.
Journal of the Association for Computing Machinery 40(1), 1–16 (1993)

46. Gallier, J.H.: Fast algorithms for testing unsatisfiability of ground Horn clauses
with equations. Journal of Symbolic Computation 4, 233–254 (1987)

47. Ganzinger, H.: A completion procedure for conditional equations. Journal of Sym-
bolic Computation 11(1 & 2), 51–81 (1991)

48. Goguen, J.A., Meseguer, J.: Eqlog: Equality, types, and generic modules for logic
programming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming: Func-
tions, Relations, and Equations, pp. 295–363. Prentice-Hall, Englewood Cliffs
(1986)

49. Hanus, M.: The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming 19&20, 583–628 (1994)

50. Hodges, W.: Logical features of Horn clauses. In: Gabbay, D.M., Hogger, C.J.,
Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming. Logical Foundations, vol. I, pp. 449–503. Oxford University Press, Ox-
ford (1993)

51. Horn, A.: On sentences which are true in direct unions of algebras. Journal of
Symbolic Logic 16, 14–21 (1951)

52. Hsiang, J.: Refutational theorem proving using term rewriting systems. Artificial
Intelligence 25, 255–300 (1985)

53. Hsiang, J.: Rewrite method for theorem proving in first order theories with equality.
Journal of Symbolic Computation 3, 133–151 (1987)

54. Hsiang, J., Rusinowitch, M.: On Word Problems in Equational Theories. In:
Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 54–71. Springer, Heidelberg
(1987)

55. Huet, G.: A complete proof of correctness of the Knuth–Bendix completion algo-
rithm. Journal of Computer and System Sciences 23(1), 11–21 (1981)

56. Jouannaud, J.P., Waldmann, B.: Reductive conditional term rewriting systems.
In: Proceedings of the Third IFIP Working Conference on Formal Description of
Programming Concepts, Ebberup, Denmark (1986)

57. Kaplan, S.: Simplifying conditional term rewriting systems: Unification, termina-
tion, and confluence. Journal of Symbolic Computation 4(3), 295–334 (1987)

Canonical Ground Horn Theories 71

58. Kaplan, S., Rémy, J.L.: Completion algorithms for conditional rewriting systems.
In: Aı̈t-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures.
Rewriting Techniques, vol. II, pp. 141–170. Academic Press (1989)

59. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In:
Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Perga-
mon Press, Oxford (1970)

60. Kounalis, E., Rusinowitch, M.: On word problems in Horn theories. Journal of
Symbolic Computation 11(1 & 2), 113–128 (1991)

61. Lankford, D.S.: Canonical inference. Memo ATP-32, Automatic Theorem Proving
Project, University of Texas, Austin, TX (1975)

62. Lloyd, J.W.: Foundations of Logic Programming, 2nd extended edn. Symbolic
Computation Series. Springer, Berlin (1987)

63. Lynch, C., Morawska, B.: Automatic decidability. In: Plotkin, G. (ed.) Proceed-
ings of the Seventeenth IEEE Symposium in Logic in Computer Science. IEEE
Computer Society Press (2002)

64. McCharen, J.D., Overbeek, R.A., Wos, L.: Complexity and related enhancements
for automated theorem proving programs. Computers and Mathematics with Ap-
plications 2(1), 1–16 (1976)

65. McKinsey, J.C.C.: The decision problem for some classes of sentences without
quantifiers. Journal of Symbolic Logic 8, 61–76 (1943)

66. Plaisted, D.A., Sattler-Klein, A.: Proof lengths for equational completion. Infor-
mation and Computation 125(2), 154–170 (1996)

67. Reddy, U.S.: Narrowing as the operational semantics of functional languages. In:
Proceedings of the Symposium on Logic Programming, pp. 138–151. IEEE Com-
puter Society Press (1985)

68. Roussel, O., Mathieu, P.: Exact Knowledge Compilation in Predicate Calculus: The
Partial Achievement Case. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249,
pp. 161–175. Springer, Heidelberg (1997)

69. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2006),
http://www.research.att.com/~njas/sequences

70. Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated
Reasoning 1, 333–355 (1985)

71. Bezem, M., Klop, J.W., de Vrijer, R.: TeReSe: Term Rewriting Systems. Cambridge
University Press, Cambridge (2003)

72. Wos, L., Carson, D.F., Robinson, G.A.: Efficiency and completeness of the set of
support strategy in theorem proving. Journal of the Association for Computing
Machinery 12, 536–541 (1965)

73. Zhang, H.: A new method for the boolean ring based theorem proving. Journal of
Symbolic Computation 17(2), 189–211 (1994)

74. Zhang, H.: Contextual rewriting in automated reasoning. Fundamenta Informati-
cae 24, 107–123 (1995)

http://www.research.att.com/~njas/sequences

A Generic Functional Representation

of Sorted Trees Supporting Attribution

(Haskell Can Do It)

Jean-Marie Gaillourdet, Patrick Michel,
Arnd Poetzsch-Heffter, and Nicole Rauch

University of Kaiserslautern
{jmg,poetzsch,p michel,rauch}@cs.uni-kl.de

Abstract. Many important tasks and algorithms in computer science
build on sorted trees. Typical examples are the translation of programs
represented by syntax trees or the processing of (recursive) data struc-
tures following some XML schema. In purely functional programming,
sorted trees are usually implemented by terms of recursive data types
such that a term represents a tree node and the subterms represent its
children. The drawback of this representation is that the context of a
tree node is not accessible and has to be managed by different means,
e.g., by additional arguments of the functions working on the tree.

In this paper, we present a pattern for the realization of sorted trees
that overcomes this drawback. The technique is fully declarative. In con-
trast to competing patterns for trees such as Zippers, it supports pattern
matching on the tree data structure. Functions on tree nodes can be used
to express the decoration of trees by attribute values in a flexible way.
In particular, links between tree nodes can easily be defined and attribu-
tions can be modularized into phases with clear interfaces. Techniques
adapted from the “Scrap your boilerplate” approach allow for the high-
level specification of contextual constraints. We show how our approach
can be realized in Haskell and discuss tool support.

1 Introduction

Many important tasks and algorithms in computer science build on sorted trees.
Typical examples are the translation of programs represented by syntax trees
or the processing of (recursive) data structures following some XML schema.
A sorted tree is an ordered directed acyclic labeled graph where the labeling
follows some application specific rules. Except for the root node, every tree node
has a parent node and possibly sibling nodes, i.e., it has a so-called context. In
purely functional programming, sorted trees are usually implemented by terms
of recursive data types such that a term represents a tree node and the subterms
represent its children. The drawback of this representation is that the context
of a tree node is not accessible and has to be managed by different means, e.g.,
by additional arguments of the functions working on the tree. The drawback in
particular appears in two application scenarios:

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 72–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Generic Functional Representation of Sorted Trees Supporting Attribution 73

– the editing scenario in which one can freely navigate in trees (up and down,
left and right) and update the tree at a current cursor position

– the decoration scenario in which tree nodes are decorated with attribute
values that might depend on the context

Zippers [10] and Web Weavers [9] are functional programming patterns devel-
oped for the editing scenario. In this paper, we develop a technique for the generic
functional representation of sorted trees for the decoration scenario. More pre-
cisely, the technique addresses the following requirements:

– Pattern matching on the tree representation should be available in the same
way as for the term representation of trees.

– After a first visit of the tree, navigation should be possible without memory
allocation.

– The representation should be optimized towards the decoration scenario. In
particular, efficient memoization of functions on tree nodes should be possible
(whereas modifications of the tree might be more expensive).

– Generic programming techniques on trees should be supported.

In our solution, every node has an additional component to access the upper
context. As we use a cyclic realization to represent the context, we obtain a
tree representation that needs no memory allocation during navigation in the
tree. This is different from Zippers where every navigation step causes the call
of constructors.

Our implementation takes the data types of an abstract syntax as input and
generates a module with input-dependent declarations. Together with a (fixed)
library module, programmers obtain an expressive API to handle trees that are
sorted according to the abstract syntax. In particular, they can design attribu-
tions as functions on tree nodes. We use the term attribution for the decoration
of a (possibly already attributed) tree with attribute values, independent of the
technique for specifying the decoration.

We implemented our approach for Haskell 98 using several standard exten-
sions1. To understand the conceptual aspects of the approach, the reader should
be familiar with functional programming. Some of the technical aspects assume
knowledge of Haskell.

Overview. The rest of the paper is structured as follows. Section 2 describes how
programmers can use our approach. Section 3 discusses the motivation underly-
ing the approach and related work. Section 4 presents our realization of trees in
Haskell in detail. Section 5 contains furhter technical implementation aspects.
Section 6 concludes.

2 The Programmer’s Side of the Approach

This section introduces and motivates our technique along with an example from
semantic analysis of programs. We show:

1 We use multi-parameter type classes with functional dependencies, rank2types, ex-
istential types, and undecidable instances.

74 J.-M. Gaillourdet et al.

– what our technique offers to programmers, and
– how the technique can be used to decorate syntax trees by attribute values

and to implement semantic analysis.

We use typed lambda expressions as programs and check that all used variables
are bound and all expressions are well-typed. The type information is given to-
gether with the variable binding in λ-abstractions. Types are either the primitive
type Ind for individuals or function types. In Haskell, the data types to represent
such programs could be defined as in Fig. 1. Our tool takes such data type defini-

data Program = Program { ast::LExp }

data LExp = Var { uv::UsedVar }

| Abs { dv::String, tp::Type, body::LExp }

| App { fun::LExp, arg::LExp }

data UsedVar = UsedVar { str::String }

data Type = Ind | Fun { dom::Type, rng::Type }

Fig. 1. A recursive data type to represent simply typed lambda expressions

tions2 and the root type of the trees we are interested in as input and generates
data types for the tree positions and functions to navigate in the tree. In the
example, the type of the root is Program, the types generated for tree positions
include P.Program, P.LExp, P.UsedVar, and P.Type. Similarly, there are construc-
tors P.Abs, etc. for tree positions. Compared to the term constructors, they take
an additional argument capturing the upper tree context. From a programmers
point of view, such constructors are only used in pattern matching. For example,
the following function isAbs checks whether an LExp position is an abstraction:

isAbs :: P.LExp → Bool

isAbs (P.Abs _ _ _ _) = True

isAbs _ = False

The function P.pos :: Program → P.Program allows to access the root position of
the tree corresponding to a term of type Program; here is an example application:

progp = P.pos (Program (Abs "x" Ind (Var (UsedVar "x"))))

Starting from the root position, we can navigate in the tree both in a typed and
an untyped way. For example in P.body (P.ast progp), we first select the outer
most lambda expression and then its body. Whereas the selector P.ast :: P.
Program → P.LExp never fails, the selector P.body fails if applied to a variable or
application. Untyped navigation abstracts from the types of the tree positions.
Our framework provides the generic functions parent yielding the parent of a
position and child yielding the n-th child of a position. As they are partial
functions, we support monadic treatment for undefined cases and casts. Here is
an example expression with the Maybe monad:

(P.asProgram =<< parent (P.ast progp) == Just progp

2 As described in Sect. 5 our tool uses a different, slightly more flexible input syntax.

A Generic Functional Representation of Sorted Trees Supporting Attribution 75

As the type of the expression parent (P.ast progp) cannot be inferred, the cast
by P.asProgram is necessary. In undefined cases, tree navigation functions and
casts would yield the value Nothing. Another important generic function is the
function term that yields for a given position the corresponding term; in partic-
ular, term (P.dv (P.ast progp)) is equal to the string "x".

Now we have all technical prerequisites to illustrate how the tree represen-
tation can be used for the flexible solution of semantic analysis problems. As
example problem, we want to check that all used variables in a lambda expres-
sion are bound and then decorate the expression and their subexpression by
their types. Following ideas from [23,6], we solve this problem in a nonstandard
way. In a first step, we define a function decl :: P.UsedVar → P.LExp that yields
for a used variable the abstraction where it is bound; for this function, the up-
per context of tree nodes has to be available. Then, we compute the decoration
with type information bottom up. Along with the example, we explain further
features of our framework.

The helper function lkupBd searches bottom up for the binding of a variable v
starting at a position lp in a lambda expression. If lp is an abstraction binding
v, it yields lp; otherwise, it continues the search at the parent position:

lkupBd :: String → P.LExp → Maybe P.LExp

lkupBd v lp@(P.Abs dvp _ _ _)

| v == term dvp = Just lp

lkupBd v lp = lkupBd v =<< P.asLExp =<< parent lp

declMaybe :: P.UsedVar → Maybe P.LExp

declMaybe uvp@(P.UsedVar sp _) =

lkupBd (term sp) =<< P.asLExp =<< parent uvp

The function declMaybe looks up the binding for the used variable and returns
Nothing if such a binding does not exist.

Similar to the programming techniques described in [17], our framework sup-
ports generic queries. For example, we could be interested to check that for all
used variables in a program declMaybe is defined. The forall query (defined in
the library, see Sect. 4) applies the predicate isJust.declMaybe to all positions
of its argument type, i.e., of type P.UsedVar, and conjoins the results:

allDeclared :: P.Program → Bool

allDeclared = forall (isJust . declMaybe)

Checking that all used variables are declared is a typical example of a con-
text condition. Expressing such context conditions by generic queries is a nice
declarative mechanism resembling informal formulations of context conditions
in language reports.

decl :: P.UsedVar → P.LExp

decl = fromJust . declMaybe

Assuming allDeclared, we can use a function decl in later phases of the semantic
analysis. That is, for such phases developers can use a simplified API to the
syntax tree in which lkupBd and declMaybe are hidden. Here, we show a simple
type analysis as an example of a subsequent analysis phase:

76 J.-M. Gaillourdet et al.

typeMaybe :: P.LExp → Maybe Type

typeMaybe(P.Var uvp _) = Just $ term $ P.tp $ decl uvp

typeMaybe(P.Abs _ tp bd _) = Fun (term tp) <$> typeMaybe bd

typeMaybe(P.App fn arg _)

| (domM =<< typeMaybe fn) == typeMaybe arg

= rngM =<< typeMaybe fn

| otherwise = Nothing

The type of a variable uvp is obtained by just taking the term of the type of the
abstraction expression in which uvp is bound. The type of an abstraction is the
obvious function type. The type of an application is the range type of the function
argument. typeMaybe yields Nothing for wrongly typed lambda expressions. To
support monadic exception handling, our framework provides monadic selectors
for terms and positions, e.g., domM and P.domM. Thus, the expression domM =<<
typeMaybe fn evaluates to the domain type of the type of fn if the type of fn is
defined and is a function type.

3 Motivation and Related Work

Our approach provides a middle ground between functional programs without
support of sorted trees and full-fledged attribute grammar systems. This section
discusses our motivations and related work.

3.1 Motivational Background

Language processing phases are usually defined over the structure of the syntax
tree. Conceptually, there are two central patterns to combine such phases:

– Functional Pattern: A phase is specified as a function taking the syntax tree
plus additional arguments as input and returning a tuple of results. The
results are used for the input of subsequent phases. In particular, one of
the results might be a new or restructured tree according to the same or a
different syntax (e.g., an intermediate representation of a program).

– Decoration Pattern: A phase is specified as a process decorating a tree by
attribute values. The input is a possibly partially decorated syntax tree; the
output is the same tree with additional attributes.

Let us revisit the semantic analysis problem of Sect. 2. According to the func-
tional pattern, it is difficult to separate name and type analysis into two phases.
Typically, one would realize it as one phase declared as a function

semAnalysis :: Program → Maybe TypedProgram

that takes a program term p as input and returns a term of type TypedProgram
in which every lambda expression has its type as an additional component (if p
satisfies the context conditions, otherwise Nothing). The realization in Sect. 2 fol-
lows the decoration pattern with two phases. The first takes the raw syntax tree
as input and decorates it with the attribute decl. The second phase takes this

A Generic Functional Representation of Sorted Trees Supporting Attribution 77

output as input and computes the type information for all (sub-)expressions.
It is important to notice that the interfaces between the language processing
phases heavily depend on the pattern used. According to our experience, the
decoration pattern simplifies the decoupling of phases. It allows for more declar-
ative interfaces between phases. In particular, the construction of additional data
structures such as symbol tables can often be avoided or simplified. Of course,
both patterns can be combined.

Whereas the decoration pattern is well-supported by attribute grammars or
similar techniques, it is difficult to be directly used in purely functional pro-
gramming. A main motivation for our work was to decrease this burden and
to support the application of the decoration pattern without having to use an
attribute grammar systems.

3.2 Related Work

Our work is related to techniques for specifying the decoration of trees with
attribute values in functional settings. For the language embedding, it is related
to tree representations in purely functional generic programming.

Attribution of Trees. During the last forty years, a number of specification
and implementation techniques have been developed for tree attribution (see
e.g. [14,7,12,6,1]). Attribute grammars, developed by D. Knuth in [15], are among
the best investigated techniques in the area (cf. [2] for an overview).

Here, we focus our discussion on the attribution mechanisms in declarative
settings. With the design of MUG2 [5], Ganzinger and his coauthors were among
the first looking for more declarative specification support in compiler generation
(see also [3]). Further work resulted in the development of attribute coupling [4]
and higher-order techniques [25]. They allowed the direct use of parts of the
syntax tree to compute attribute values.

In the example of Sect. 2, we used the attribute decl to link used variable
occurrences to their binding. To our knowledge, this technique was first realized
in the Synthesizer Generator [23]. In a more general form, it is supported by the
Door Attribute Grammars [6].

Starting in the nineties, attribute grammars were investigated as a specifi-
cation method (see e.g. [13]) and as a functional programming paradigm (see
e.g. [11]). We developed the MAX system [21]. It is built on positions in order-
sorted terms and their attribution. A very interesting related work is the em-
bedding of AGs as a domain-specific language into Haskell [24].

Attribute grammars have two potential advantages over our approach. First,
most classes of attribute grammars allow to check statically that attribute depen-
dencies are acyclic, i.e., one reason of non-termination can be avoided. Secondly,
AG systems typically generate implementations that are more efficient than a
straightforward implementation with our approach. In particular, they store at-
tribute values for later use. To achieve the latter, one has to combine techniques

78 J.-M. Gaillourdet et al.

C

B O L

L L

(a) Term

CC

B

O

L

L L

OC

(b) Zipper

Fig. 2. Different representations of the same term structure

for function memoization with our approach (cf. [20,8]). Our experience is that
for a functional programmer who only knows his language, our approach is easier
to learn and allows for more flexibility than an attribute grammar system.

Purely Functional Tree Representations. In [10], Huet describes the so-called
Zipper approach to representing positions within a term in a purely functional
setting. Its main application area is the editing scenario (see Sect. 1). Zippers are
based on pointer reversal. To represent a term position p in a term t, the Zipper
consists of the subterm at p and the path from p to the root, containing the
context of the subterm. If p is the root position, the path is empty. Otherwise, it
consists of the term siblings of p and the path of p’s parent. Figure 2 illustrates
the situation for typed terms. The Zipper is a pair of the subterm with construc-
tor O and a path with constructor OC. The path consists of the left sibling B, the
right sibling L, and the path to root (here only CC). Every navigation operation
in a Zipper entails several constructor calls and thus memory allocations. Thus,
navigation is more expensive than just selecting subterms. On the other hand,
modifications of the tree at the “current” positions is relatively cheap.

The programming technique “Weaving a Web” [9] addresses the same require-
ments as the Zipper and shares many of its characteristics. Like our approach,
it uses cyclic structures to represent positions. Zippers and Weavers address a
similar problem than ours, but have other runtime characteristics and provide a
different programming API for trees. In particular, our approach supports pat-
tern matching on the position structure that is almost the same as for the term
structure (see function typeMaybe in Sect. 2 as an example). Most notably, the
variables bound by the matching are positions again. Pattern matching in the
other two approaches needs more knowledge from the programmer and does not
yield positions as result of the matching. For example matching on a Zipper to
bind a position in a subtree would yield a term representation of the subtree.

Another challenge that we addressed is to enable typed and untyped op-
erations on the trees. Typing is nice for pattern matching, but for navigation

A Generic Functional Representation of Sorted Trees Supporting Attribution 79

(cf. function parent) and for generic queries (cf. function allDeclared) it can be
a burden. That is why we adopted the generic techniques from the “Scrap your
boilerplate” design pattern (cf. [17,18,16]).

4 Trees in Purely Functional Programming

This section describes how our approach is realized in the lazy functional pro-
gramming language Haskell98 with the extensions described in Sect. 1.3 First,
we explain the representation of trees and show how they are realized in a typed
way. Then, we describe the type classes for positions and their instantiation. Fi-
nally, we explain some of the generic programming features. As said above, the
input to our tool is essentially a set of first-order recursive data type definitions
and the root type of the trees we are interested in (cf. Sect. 5 for more details).
The Haskell code for the trees consists of a library file that is independent of the
input and of a generated output file containing input-dependent data types. We
use the example from Fig. 1 to illustrate our technique.

C

B O L

L L

(a) Term structure

P.C

P.B P.O P.L

P.L P.L

⊥

(b) Position structure

Fig. 3. Two representations of the same tree

4.1 Typed Tree Positions

The basic idea of how typed trees are represented is illustrated in Fig. 3. In
addition to the term representation as shown in Fig. 3(a), we provide a typed tree
representation. For each term constructor K, there is a corresponding constructor
P.K for (tree) positions. As demonstrated in Fig. 3(b), this constructor takes a
context as an additional argument. For example for type LExp of Fig. 1, we get the
following position type and context type (similar types are generated for Program,
Type, UsedVar, and String):

3 To realize our approach in an eager functional language, one could adapt the tech-
nique described in [9] to represent cyclic graph structures.

80 J.-M. Gaillourdet et al.

data LExp = Var UsedVar LExpContext
| Abs String Type LExp LExpContext

| App LExp LExp LExpContext

data LExpContext = Absbody LExp
| Appfun LExp

| Apparg LExp

| Programast Program

When these types and their constructors are used together with the term data
types or to stress that they are position types and constructors, we use the
prefix P. as shown in Sect. 2. Type P.LExp differs from LExp only by the context
component. The context of a position p captures its parent position pp and
expresses how to select p from pp. Note that if a position type occurs only at
the root, we get an empty data declaration for the corresponding context type.
For example for type Program, the following is generated:

data Program = Program LExp ProgramContext

data ProgramContext

Position types are instances of the type classes for the generic treatment of
positions. The most interesting aspect, namely how cyclic structures are created
(see Fig. 3(b)), will be explained together with their instance declarations in
Subsect. 4.3 (after the description of the type classes).

The implementation generates further helpful functions and types. In partic-
ular, selectors on positions are provided for typed navigation. For example, the
selector P.body and its monadic counterpart are defined as:

body :: Abs → LExp

body (Abs _ _ x _) = x

body x = (error $ "Selector ‘body‘ applied to ...")

bodyM :: Monad m ⇒ Abs → m (LExp)

bodyM (Abs _ _ x _) = return $ x

bodyM x = (fail $ "Selector ‘body‘ applied to ...")

4.2 Type Classes for Positions

The next step is to describe the library containing the input-independent type
classes and generic functions for positions. We focus here on the central con-
struction and leave out the treatment of selectors and the relations to type
classes of the Haskell library (Show, Eq, Typeable, Ord). Further features will
be described in Sect. 5.

Let us recall that our approach supports two related representations of a tree
structure, the term representation and the representation by positions in the
tree. The type classes provide us with overloaded functions for navigating in
the tree, relating the tree and term representation, accessing the context of a
position, and creating positions. We designed the type classes Positions and
TermPositions for these functions such that

A Generic Functional Representation of Sorted Trees Supporting Attribution 81

type Index = Int

class Positions pos root | pos → root

where
parent :: Monad m ⇒ pos → m (Position root)

size :: pos → Index

child :: Monad m ⇒ Index → pos → m (Position root)

root :: pos → root

rootM :: Monad m ⇒ pos → m root

...

class (Positions pos root) ⇒ TermPositions pos root term ctx

| pos → root, pos → term, term → ctx

where
term :: pos → term

context :: pos → ctx

create :: term → ctx → pos

data Position root = forall pos term ctx .

TermPositions pos root term ctx ⇒ Position pos

instance Positions (Position root) root

where
parent (Position p) = parent p

size (Position p) = size p

child idx (Position p) = child idx p

root (Position p) = root p

Fig. 4. Type classes and type for positions

– Positions can be instantiated without knowing the term types,
– TermPositions is built on Positions and includes the relation to terms.

The type class Positions uses a data type Position to express the range type of
parent and child.

The overall construction is given in Fig. 4. Both type classes are multi-
parameter type classes with functional dependencies4. The type class Positions

states that a position type pos (e.g., P.LExp) and the corresponding type of the
tree root (e.g., P.Program) are in that class if the listed functions are provided
(size returns the number of children). The type class TermPositions states that
a position type pos with its corresponding root type root, term type term, and
context type ctx are in that class if there are the functions:

– term yielding the subterm at the given position,
– context yielding the context of the given position,

4 At the time of submission of this paper, type families, an alternative approach to
type classes, were still under development.

82 J.-M. Gaillourdet et al.

instance Positions LExp Program where
parent x = case context x of
Absbody y → return $ Position y

Appfun y → return $ Position y

Apparg y → return $ Position y

Programast y → return $ Position y

size (Var _uv _ctx) = 1

size (Abs _dv _tp _body _ctx) = 3

size (App _fun _arg _ctx) = 2

...

instance TermPositions LExp Program T.LExp LExpContext where
term (Var _uv _c) = T.Var (term _uv)

term (Abs _d _t _b _c) = T.Abs (term _d) (term _t) (term _b)

term (App _fn _ag _c) = T.App (term _fn) (term _ag)

context (Var _uv _ctx) = _ctx

context (Abs _dv _tp _body _ctx) = _ctx

context (App _fun _arg _ctx) = _ctx

create (T.Var _uv) p =

let x = Var _uvp p
_uvp = (create _uv $ Varuv x)

in x
create (T.Abs _dv _tp _body) p =

let x = Abs _dvp _tpp _bodyp p
_dvp = (create _dv $ Absdv x)

_tpp = (create _tp $ Abstp x)

_bodyp = (create _body $ Absbody x)

in x
create (T.App _fun _arg) p =

let x = App _funp _argp p
_funp = (create _fun $ Appfun x)

_argp = (create _arg $ Apparg x)

in x

Fig. 5. Instances of the type classes Positions and TermPositions

A Generic Functional Representation of Sorted Trees Supporting Attribution 83

– create taking a term t and a context c and yielding the position that repre-
sents a node with context c and subterm t. We have term (create t c) = t
and context (create t c) = c.

The data type Position is parametric in the root type of a tree. Its constructor
takes a value of a position type. The type Position plays the role of a “supertype”
of all position types. In particular, the untyped navigation functions parent and
child need Position to express the range type. Although it is not a concrete
position type, we would like to apply our position API, or at least a part of it,
also to values of Position. Because there is no equivalent term type, Position
cannot be an element of TermPositions. However, the pair (Position root) and
root is an instance of class Positions (see Fig. 4). The realization of the functions
is taken from the position instance. Next, we describe the instantiation of the
generated position types.

4.3 Instantiating the Type Classes for Positions

All pairs of term types and position types are instances of class TermPositions.
Figure 5 illustrates the construction by showing the instance declarations for
type P.LExp. As these declarations are part of the module where the position
types are defined, P.LExp is denoted by LExp in this module (similarly for the
constructors). To distinguishing them from their position counterparts, the term
types and constructors of Fig. 1 are imported with the prefix T.; e.g., T.App is
the binary constructor for an application expression.

The type P.LExp together with its root type P.Program is an instance of class
Positions. The parent of a position x of type P.LExp is obtained via the context
of x. The size of a position is simply determined by pattern matching. The rest of
the instance declaration is omitted here, as it is not of interest for understanding
the overall construction and as it uses parts of the implementation that are
beyond the presentation in the paper.

The type P.LExp, together with P.Program, with the corresponding term type
T.LExp, and with the context type P.LExpContext, form an instance of class
TermPositions. The term corresponding to a position is constructed recursively
by applying the term constructor to the terms of the child positions. The re-
cursion ends when an external or basic type is encountered or when a term
constructor has zero arguments. The context of a position is its last component.
The most interesting part is the creation of positions. As explained in Sect. 2,
positions are created top down starting with a function pos. Here is its definition
in the generated module for the position declarations:

pos :: T.Program → Program

pos x = create x (undefined :: ProgramContext)

I.e., the root position has an undefined context. As illustrated in Fig. 5, other
positions are created by using the upper context and by lazily creating the
positions of the children with the newly created position in their contexts. That
is, the position structure is created incrementally when it is visited.

84 J.-M. Gaillourdet et al.

4.4 Generic Programming with Positions

Based on the techniques of [17,18], we support generic programming for posi-
tions. Our tool generates instance declarations for type class Data for all defined
term and position types. The library module provides generally useful declara-
tions, in particular for handling generic queries. In the following, we sketch part
of the supported functionality and explain the adaptation of the “Scrap your
boilerplate” technique to positions.

As a matter of convenience, “cast” functions are generated with descriptive
names. The underlying cast functionality is taken from class Typeable, intro-
duced in [18]. For every position type T there is a function asT :: Position →
Maybe T. Furthermore, we provide predicates checking the type of a position.
Here are the corresponding declarations for type LExp:

asLExp :: forall root . Position root → Maybe LExp

asLExp (Position p) = (cast p :: Maybe LExp)

isLExp :: Position root → Bool

isLExp = (maybe False $ const True) . asLExp

In Sect. 2, we considered the generic query that checks that all variables are
bound:

allDeclared :: P.Program → Bool

allDeclared = forall (isJust . declMaybe)

It uses the forall query. Figure 6 shows the definition of forall and the used
combinators for recursive traversals. The design adapts the approach of [17].
To handle the cyclic structure caused by the context components, we have
to avoid to follow these components in a query. This is realized in the com-
binator everythingBut5 that uses the predicate isContext to exclude the con-
text components. Combinator everythingBut is used to define the combinators
everythingDown and everythingUp that apply a query to all positions of the sub-
tree rooted by a given position or all positions in the context. In addition to
the forall query, the framework provides a query all to collect all positions
satisfying a predicate and the dual queries exists and some.

5 Implementation Aspects

This section discusses the implementation of the approach in our tool Katja6.
Katja is a code generator translating specifications of a order-sorted data types
to different target languages. There exist backends for Java, Isabelle/HOL and
Haskell. For Java, the order between sorts is reflected by the generated sub-
type hierarchy. In the following, we provide more details on Katja and discuss
memoization.

5 Note that such a combinator was also introduced in a recent version of the Data.

Generics library, yet it has a different meaning and is not usable for our application.
6 http://softech.cs.uni-kl.de/Homepage/Katja

http://softech.cs.uni-kl.de/Homepage/Katja

A Generic Functional Representation of Sorted Trees Supporting Attribution 85

data UndefinedTypeCase = UTC deriving (Typeable, Data)

everythingBut :: GenericQ Bool → (r→r→r)
→ GenericQ r → GenericQ r

everythingBut q k f x

| q x = f UTC -- neutral element

| otherwise = gmapQl k (f x) (everythingBut q k f) x

type GenericQP r = forall a root .
(Data a, Positions a root) ⇒ a → r

everythingDown :: (r → r → r) → GenericQ r → GenericQP r

everythingDown join q qp =

everythingBut (isContext(root p)) join q qp

forall :: TermPositions a root ctx term ⇒
(a → Bool) → GenericQP Bool

forall pq = everythingDown (&&) (True ‘mkQ‘ pq)

all :: TermPositions a root sel ctx term ⇒
(a → Bool) → GenericQP [a]

all pq = everythingDown (++) ([] ‘mkQ‘ collect)

where collect x = if pq x then [x] else []

Fig. 6. A glimpse of the generic programming facilities

5.1 Generator

Because Haskell does not support full order-sortedness, the Haskell backend
restricts the permissible input to specifications which have a direct translation
to Haskell. The specification of the example of Fig. 1 is given in Fig. 7.

The specification line indicates a name for the whole specification. It is
comparable to a module name. Then, there is a backend block. It contains dec-
larations which apply to only one of Katja’s backends. Here, it contains imports
for external sorts and the declaration of the Haskell module name to use for the
generated code. The root line declares that tree position types for terms of sort
Program should be generated. Pos is an identifier used to differentiate between
term types and tree position types, here it is the name of the module contain-
ing the tree position definitions. The Haskell backend also generates a module
with that name and puts all the corresponding tree position types in it. Then,
String is declared to be a sort provided by the environment. The remaining lines
declare sorts either as constructors or as variants, i.e., as super sort of a set of
other sorts. As said above, the Haskell backend restricts sort declarations to the
subset which can be expressed directly in Haskell, i.e., a constructor has to be
part of at most one variant.

Katja generates three Haskell modules from the specification of Fig. 7, an
input-independent library module Data.Positions, a module containing term
data type definitions Lambda.Term and a module containing tree position data

86 J.-M. Gaillourdet et al.

specification Lambda

backend haskell {

module Lambda
import String from Prelude

}

root Program Pos

external String

Program (LExp ast)

LExp = Var | Abs | App

Var (UsedVar uv)

Abs (String dv, Type tp, LExp body)

App (LExp fun, LExp arg)

UsedVar (String str)

Type = Ind | Fun

Fun (Type dom, Type rng)

Ind ()

Fig. 7. The example of Fig. 1 using the concrete syntax of Katja

type definitions Lambda.Pos. Each of the last two modules contains type defini-
tions for every sort and selector functions for every declared selector.

Java Backend. The Java backend generates a jar file, that contains compiled
interfaces and classes which realize the type hierarchy specified in the input file
(see [19] for details). The partial type order is reflected by subtyping between
interfaces in the Java target. In addition to the core functions and types for term
positions, the Java implementation provides a rich set of declarations to work
with positions and terms. In particular, it supports selectors, visitors, iterators,
and substitution methods. Similar to the Haskell implementation, the generated
Java types are immutable and the construction of tree positions is performed
lazily. In contrast to the Haskell backend it uses smart constructors to maximally
share all term and tree position objects.

Isabelle/HOL Backend. The Isabelle/HOL backend generates a theory that con-
tains an embedding of the tree position data types and functions into higher-
order logic. The encoding resembles term positions, i.e., the embedding repre-
sents positions in a structure that is dual to the term structure (see [22]). On
positions, constructor functions are used to access subpositions, while “selectors”
are used to access to the upper context of a position. To express partiality on the
related position constructors, a construction by inductive sets is used that only

A Generic Functional Representation of Sorted Trees Supporting Attribution 87

contain the defined cases. In addition to the core data types, the Isabelle/HOL
theory contains most of the generic functions explained for Haskell above as well
as helper lemmas that make the application of these functions more convenient.

5.2 Memoized Attribute Functions

Other than Zippers, the cyclic structure underlying tree positions allows nav-
igation without allocation. This opens up the possibility to do pointer-based
hashing in order to realize memoization of functions on tree positions, e.g., at-
tribute functions. In [20], Peyton-Jones et. al. discuss the support for pointer-
based hashing in GHC. This is not applicable to Zippers, because the allocation
during navigation leads to constantly changing memory representations of equal
zipper terms.

We performed preliminary experiments comparing attribute functions applied
to tree nodes in different representations and memoized with different under-
lying data structures. These showed that pointer-based hashing using GHC’s
StableName abstraction with hash maps perform better than Zippers memoized
with a map using the path from the current node to the root as key in a map.
In order to quantify these benefits, further investigations are necessary.

6 Conclusions

We presented an approach to realize sorted trees in purely functional program-
ming languages. Nodes/positions in these trees have an upper context. The tree
representation is optimized towards the specification of attributions as functions
on tree nodes in two ways. It supports

– pattern matching, similar to the term representation
– memoization using stable names

Such a direct support allows to combine attribution patterns with the full power
and flexibility of higher-order functional programming. We demonstrated in
particular the use of type classes to realize generic functions and applied the
technique of “Scrap your boilerplate” to provide a convenient way to formu-
late context conditions. As all needed declarations can be generated from the
data type representing the abstract syntax, the overhead for the programmer is
negligible.

Having attributes as functions on tree positions provides a rich interface to
an attributed tree. The attribution process can be structured into phases where
phase n+1 takes the attributed tree of phase n as input, not just the results of the
synthesized attributes at the root of the tree. In our example, the type analysis
phase used the result of the name analysis phase in form of the function decl
. By this modularization, language processing becomes a stepwise attribution
and enrichment of the tree structure in which auxiliary attributes and functions
for one phase can be hidden from other phases. E.g., helper functions such as
lkupBd can be hidden in subsequent phases. This enrichment process can of
course include transformation of tree parts. Altogether the approach can help:

88 J.-M. Gaillourdet et al.

– to make programming patterns known from attribute grammars available in
functional programming and

– to overcome the dichotomy of programs into tree structure and declaration
table that is found in many declarative approaches to language processing.

The approach follows goals of Ganzinger’s earlier works in two ways. First, it
presents a very flexible attribution technique with an additional modularization
possibility. Second, it describes how this technique can be realized in a declarative
framework that allows its automatic embedding into formal reasoning.

Future work includes the improvement of the memoization support and the
realization of the technique with type families.

Acknowledgments. Many thanks go to Ralf Lämmel and an anonymous re-
viewer for their patient and elaborate comments on an earlier version of this
paper.

References

1. Augusteijn, L.: The Elegant Compiler Generator System. In: Deransart, P., Jour-
dan, M. (eds.) Attribute Grammars and their Applications. LNCS, vol. 461,
pp. 238–254. Springer, Heidelberg (1990)

2. Deransart, P., Jourdan, M., Lorho, B. (eds.): Attribute Grammars. LNCS, vol. 323.
Springer, Heidelberg (1988)

3. Ganzinger, H.: Increasing modularity and language-independency in automatically
generated compilers. Science of Computer Programming (1983)

4. Ganzinger, H., Giegerich, R.: Attribute coupled grammars. In: SIGPLAN 1984
Symposium on Compiler Construction, SIGPLAN Notices, vol. 19(6), pp. 157–170.
ACM Press (1984)

5. Ganzinger, H., Giegerich, R., Möncke, U., Wilhelm, R.: A truly generative
semantics-directed compiler generator. In: SIGPLAN 1982: Proceedings of the 1982
SIGPLAN Symposium on Compiler Construction, pp. 172–184. ACM Press (1982)

6. Hedin, G.: An Overview of Door Attribute Grammars. In: Fritzson, P.A. (ed.)
CC 1994. LNCS, vol. 786, pp. 31–51. Springer, Heidelberg (1994)

7. Hendriks, P.R.H.: ASF system user’s guide. Technical Report CS-R8823, CWI
(1988)

8. Hinze, R.: Memo functions, polytypically! In: Proceedings of the 2nd Workshop on
Generic Programming, pp. 17–32 (2000)

9. Hinze, R., Jeuring, J.: Weaving a web. J. Funct. Program. 11(6), 681–689 (2001)
10. Huet, G.: The Zipper. Journal of Functional Programming 7(5), 549–554 (1997)
11. Johnson, T.: Attribute Grammars as a Functional Programming Paradigm. In:

Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 154–173. Springer, Heidelberg
(1987)

12. Jourdan, M., Parigot, D.: The FNC-2 system: Advances in attribute grammars
technology. Technical Report No. 834, INRIA (April 1988)

13. Kastens, U.: Attributed Grammars as a Specification Method. In: Alblas, H.,
Melichar, B. (eds.) SAGA School 1991. LNCS, vol. 545, pp. 16–47. Springer,
Heidelberg (1991)

14. Kastens, U., Hutt, B., Zimmermann, E. (eds.): GAG: A Practical Compiler Gen-
erator. LNCS, vol. 141. Springer, Heidelberg (1982)

A Generic Functional Representation of Sorted Trees Supporting Attribution 89

15. Knuth, D.E.: The semantics of context-free languages. Mathematical Systems The-
ory (1968)

16. Lämmel, R.: Scrap your boilerplate with XPath-like combinators. In: POPL 2007,
Proceedings. ACM Press (January 2007)

17. Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: a practical design pattern
for generic programming. In: ACM SIGPLAN Notices, Proceedings of the ACM
SIGPLAN Workshop on Types in Language Design and Implementation TLDI,
vol. 38(3), pp. 26–37 (2003)

18. Lämmel, R., Peyton Jones, S.: Scrap more boilerplate: reflection, zips, and gener-
alised casts. In: Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP 2004), pp. 244–255. ACM Press (2004)

19. Michel, P.: Adding position structures to Katja. Technical Report 353/06, Univer-
sity of Kaiserslautern (June 2005)

20. Peyton Jones, S., Marlow, S., Elliott, C.: Stretching the Storage Manager: Weak
Pointers and Stable Names in Haskell. In: Koopman, P., Clack, C. (eds.) IFL 1999.
LNCS, vol. 1868, pp. 37–58. Springer, Heidelberg (2000)

21. Poetzsch-Heffter, A.: Prototyping realistic programming languages based on formal
specifications. Acta Informatica 34, 737–772 (1997)

22. Poetzsch-Heffter, A., Rauch, N.: Application and Formal Specification of Sorted
Term-Position Algebras. In: Fiadeiro, J.L., Mosses, P.D., Yu, Y. (eds.) WADT
2004. LNCS, vol. 3423, pp. 201–217. Springer, Heidelberg (2005)

23. Reps, T., Marceau, C., Teitelbaum, T.: Remote attribute updating for language-
based editors. In: ACM-SIGPLAN ACM-SIGACT (ed.) Thirteenth Annual ACM
Symposium on Principles of Programming Languages, pp. 1–13. ACM Press
(January 1986)

24. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: how
to do aspect oriented programming in haskell. In: Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2009,
pp. 245–256. ACM, New York (2009)

25. Vogt, H., Swierstra, S., Kuiper, M.: Higher order attribute grammars. In: SIGPLAN
1989 Conference on Progamming Language Design and Implementation, SIGPLAN
Notices, vol. 24(7), pp. 131–145. ACM Press (1989)

The Blossom of Finite Semantic Trees

Jean Goubault-Larrecq1,� and Jean-Pierre Jouannaud2,��,���

1 ENS Cachan
61 avenue du président Wilson, F-94230 Cachan

goubault@lsv.ens-cachan.fr

http://www.lsv.ens-cachan.fr/~goubault/
2 École Polytechnique, F-91400 Palaiseau

jouannaud@lix.polytechnique.fr

http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/

This paper is dedicated to the memory of Harald Ganzinger.

1 Introduction

Automated deduction in first-order logic finds almost all its roots in Herbrand’s
work, starting with Herbrand’s interpretations, a clausal calculus, and rules
for unification. J.A. Robinson’s key contribution was the formulation of reso-
lution and its completeness proof, in which semantic trees were semi-apparent.
Robinson and Wos introduced the specific treatment of equality commonly called
paramodulation. The systematic introduction of orderings to cut the search space
is due to Lankford. Kowalski studied in more details the case of Horn clauses,
while Peterson gave the first proof that paramodulation inside variables was su-
perfluous, assuming a term ordering order-isomorphic to the natural numbers.
Knuth studied the case of equality unit clauses, under the name of completion.
All these works were done by using standard proof techniques, including seman-
tic trees [Kow69].

Further progress required more powerful proof techniques.
The first was proposed by Huet with Noetherian orderings on terms, allow-

ing the use of the powerful noetherian induction principle to establish a strong
theory of abstract and concrete rewriting, another name for the case of equality
unit clauses. The method was then extended by Jouannaud and Kirchner who
introduced induction on proofs abstracted by multisets of terms. Bachmair, Der-
showitz and Hsiang made the last step with the proof reduction method [BD94].

� Partially supported by the RNTL project Prouvé and the ACI Rossignol.
�� Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de

Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud. Now at LIAMA,
INRIA and Tsinghua University, Beijing, China.

��� Harald Ganzinger and I had the opportunity to closely collaborate within the Euro-
pean projects COMPASS and Combination of Computational Logics. As a member
of the Fachbeirat of the Max Planck Institute für Informatik in Saarbrücken for
6 years from the beginning, I had also the privilege to closely collaborate with
Harald Ganzinger in his dedication to make the institute stronger. He will stay for
ever in my memory as a genuine friend.

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 90–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.lsv.ens-cachan.fr/~goubault/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/

The Blossom of Finite Semantic Trees 91

This tool allowed this subfield to make very fast progress until a new bottleneck
was encountered with constrained equality unit clauses.

The second proof method was proposed by Hsiang and Rusinowitch [HR86],
who invented transfinite semantic trees, a generalization of semantic trees gener-
ated from a transfinite ordering on the Herbrand base. They were able to gener-
alize Peterson’s result to arbitrary well-founded orderings. Considering again the
case of equality unit clauses, they showed the completeness of ordered comple-
tion, an old conjecture of Lankford, which was found to have many theoretical
applications by providing us with a true semi-decision procedure for equality
based on computing normal forms. Being conceptually complex constructions,
transfinite semantic trees did not make their way through in the community.

The third was proposed by Bachmair and Ganzinger, which allowed to make
tremendous progress in all directions ever since, to a point that people did not
find the need to look for new methods. Bachmair and Ganzinger’s model genera-
tion technique [BG01a] is based on forcing a specific interpretation which can be
seen as characterizing the satisfiability property of a given set of clauses. Many
groups throughout the world studied and used this method, which was found a
bit mysterious at first. Our goal here is to shed a new light on this important
approach, by adopting a presentation based on semantic trees which we think is
easy to grasp.

As transfinite semantic trees, Bachmair and Ganzinger’s model generation
technique is based on a well-founded ordering on terms which can be transfinite.
It aims at showing the refutation-completeness property of a set of inference
rules I used for generating the empty clause from a given unsatisfiable set S of
clauses. The ordering is used to restrict the possible inferences to those involving
maximal atoms.

Our first problem was to construct finite semantic trees with transfinite or-
derings. The answer is provided by Gödel and Maltsev’s compactness theorem1:
only finitely many ground instances of S suffice. These ground instances generate
finitely many atoms which define interpretations which are finitely refuted, hence
a finite semantic tree. A consequence of this construction is that the ordering
need not be total, nor well-founded: it needs only be strict. It can then be com-
pleted into a total strict ordering on the finite set of atoms. The well-foundedness
assumption however becomes necessary in the presence of an equality predicate.

Our second problem was to guess which node in the semantic tree of an
unsatisfiable set of ground clauses would allow us to make an inference. The
answer is easy: the model generation technique builds an interpretation which
defines indeed a path in the semantic tree ending in an inference node.

The third problem was to show that this inference decreases the semantic
tree in some well-founded ordering, allowing us to conclude by induction that
the tree could be reduced in finite time to its root, hence showing that the empty
clause had been generated. Building well-founded orderings on the semantic tree

1 The solution was hinted at by Michael Rusinowitch in a discussion with the first
author.

92 J. Goubault-Larrecq and J.-P. Jouannaud

is much easier than on the set of clauses itself, allowing us again to slightly
improve over the existing literature in some cases.

We do not think that our contribution lies in any improvement over the cur-
rent literature. Our first main contribution, as we feel, is to show that all these
concepts elaborated by Ganzinger and his collaborators are intrinsic to the en-
tire field of automated deduction, rather than specific to his model generation
proof method as one might have thought. The second contribution is the use of a
single proof method to obtain them all, suggesting that some of these restrictions
may be combined. We will treat here a few basic results only: ordered resolution,
ordered resolution with selection, ordered linear resolution, and ordered resolu-
tion and paramodulation. We consider the systematic use of our technique as an
exercice which will allow the reader to better grasp the subtleties of Ganzinger’s
work.

2 Ordered Resolution with Selection

The semantic tree technique makes it relatively clear that not only resolution is
complete, but also ordered resolution, where only literals that are maximal in
their respective clauses are resolved upon [CL73]. This is a very effective restric-
tion of resolution. We recall the completeness argument for ordered resolution in
Section 2.1. We also improve it, by showing that ordered resolution is complete
for any stable ordering (even, say, not well-founded).

Another very effective restriction is ordered resolution with selection, where
a selection function is used to denote selected exceptions to the ordering re-
striction. This refinement of resolution generalizes both ordered resolution and
positive resolution (where one of the premise is constrained to contain only posi-
tive literals). It has been known for a long time to resist semantic tree arguments,
and Bachmair and Ganzinger’s forcing technique [BG01a] provided an elegant
completeness argument. We show how the two techniques blend naturally to-
gether in Section 2.2. In Section 2.3, we deal briefly with redundancy elimination
strategies, an important part of Bachmair and Ganzinger’s work in automated
deduction. We sketch how our technique generalizes to the completeness of lin-
ear resolution in Section 2.4, a refinement of resolution whose completeness was
traditionally thought to require different arguments.

2.1 Ordered Resolution

A literal is an atom or its negation. We write +A for the atom A seen as an atom,
and −A for its negation. We shall usually write ±A for a literal, obtained by
taking A with a sign, either + or −. A clause is a finite set of literals separated
by ∨.

Let � be any stable quasi-ordering on atoms which restricts to an ordering
on ground atoms. By stable, we mean that for any two atoms A, B, if A � B,
then Aσ � Bσ for every substitution σ. Let � be the converse of �, � be the
strict part of �, and ≺ be the converse of �. The rule of ordered resolution is as
follows, where the two premises are assumed renamed, without loss of generality,
so as to have no variable in common.

The Blossom of Finite Semantic Trees 93

+A1 ∨ . . .+ Am ∨ C − A′
1 ∨ . . . ∨ −A′

m′ ∨ C′

Cσ ∨ C′σ

m ≥ 1, n ≥ 1,
σ = mgu(A1 = A2 = . . . = Am =

A′
1 = . . . = A′

m′),
∀B ∈ Cσ ∨ C′σ,A1σ
� B

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′

We write mgu(E) the most general unifier of any given set of term equations.
As usual, we let σ be more general than θ if and only if θ = σσ′ for some
substitution σ′, and we write σ " θ.

Ordered resolution is sound and complete, in the sense that, starting from a set
S of clauses, we may deduce the empty clause � by finitely many applications
of the above rule if and only if S is unsatisfiable. We may in fact restrict m′

to be 1 (no negative factoring), or m to be 1 (no positive factoring) without
breaking completeness, but not both. Alternative presentations split this rule
in one binary ordered resolution rule, and additional positive/negative factoring
rules. We shall do this in later sections. For now, the current presentation will
be more practical.

Soundness is trivial. Completeness is, of course, harder, so let’s start by show-
ing how semantic trees can be used to show that ordered resolution is complete
when � is enumerable, i.e., when it satisfies the following property:

(∗) there is an enumeration A0
1, A

0
2, . . . , A

0
i , . . . of ground atoms such that i > j

whenever A0
i � A0

j .

This much had been known since [Joy76]. Plain, unordered resolution, will in
particular be complete, since this is the case where � is just the equality relation
on atoms, which is clearly enumerable. We shall show that property (∗) is not
required later.

Let A0
1, A

0
2, . . . , A

0
i , . . . be any given enumeration of ground atoms sat-

isfying (∗). A partial interpretation I on this enumeration is a finite list
±1A

0
1,±2A

0
2, . . . ,±kA

0
k. If A

0
i occurs under the + sign, then A0

i is true in I;
A0

i is false if it occurs under the − sign, and undefined otherwise.
The Herbrand tree is the binary tree whose vertices are partial interpreta-

tions. The partial interpretation I = ±1A
0
1,±2A

0
2, . . . ,±kA

0
k has two successors

±1A
0
1,±2A

0
2, . . . ,±kA

0
k,−A0

k+1 and ±1A
0
1,±2A

0
2, . . . ,±kA

0
k,+A

0
k+1—provided

A0
k+1 exists, otherwise I is a leaf. The root of the tree is the empty partial

interpretation ε.
The maximal paths of the Herbrand tree are naturally in bijection with Her-

brand interpretations., i.e., sets of ground atoms. If IH is a Herbrand interpreta-
tion, we follow the maximal path going through ε, then ±1A

0
1, then ±1A

0
1,±2A

0
2,

. . . , where ±i is + if A0
i ∈ IH , − otherwise. Conversely, any path goes through

vertices that mention each atom A with a unique sign; collect those that occur
with the + sign, thus defining a Herbrand interpretation.

Figure 1 shows a (finite) semantic tree on the three atoms r, q, p in this order.
I.e., A0

1 = r, A0
2 = q, A0

3 = p. Vertex 1 is the empty partial interpretation ε,
vertex 2 is −r, 3 is +r, 4 is −r,−q, etc.

94 J. Goubault-Larrecq and J.-P. Jouannaud

� ��
�
�
��

�
�
� � ��

�
�
��

�
�
� � ��

�
�
��

�
�
�

� ��
�
�
��

�
�
� � ��

�
�
��

�
�
�

� ��
�
�
��

�
�
�

� �

� �

�

��������������

false true

false true false true

false false false falsetrue true true true

r :

q :

p :

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

+p
+q ∨ −p+q ∨ −p −p ∨ −q ∨ −r

+r ∨ −q +p
+p

Fig. 1. A semantic tree

Let us say that a ground clause C is false at vertex I = ±1A
0
1,±2A

0
2, . . . ,

±kA
0
k if and only if, for every literal ±A of C, the opposite literal ∓A is listed

in I. In Figure 1, the clause +r ∨−q is false at −r,+q (vertex 5), and also, say,
at −r,+q,−p (vertex 10).

Let S be an unsatisfiable set of clauses: for every Herbrand interpretation IH ,
there is a ground instance Cθ of a clause C ∈ S such that IH makes Cθ false.
Since the value of Cθ depends on the truth value of only finitely many atoms,
there is a partial interpretation, i.e., a vertex along IH where Cθ is false—e.g.,
vertex 10 makes +r ∨−q false, assuming +r ∨−q is a ground instance of some
clause in S. A failure node is any highest vertex in the Herbrand tree that makes
some ground instance Cθ of some clause C ∈ S false.

By König’s Lemma, if S is unsatisfiable, then the closed tree TS obtained
from the Herbrand tree by cutting it at failure nodes is finite. The compactness
theorem for first-order logic follows easily: only finitely elements of S account
for the finitely many leaves of TS.

Given a finite closed tree TS , either the root ε is a failure node, so that S must
contain the empty clause �; or there must be a lowest non-failure vertex I, called
an inference node. For example, −r,−q (vertex 4) in Figure 1 is an inference
node. Its two successors, which must be of the form I,−A and I,+A respectively,
must be failure nodes for some ground instances of first-order clauses C+ and
C− respectively, in S, say C+θ+ and C−θ−. By the definition of failure nodes,
C+θ+ must be a disjunction of +A with some literals above A (i.e., appearing
before A in the enumeration A0

1, A
0
2, . . .), and C−θ− must be a disjunction of

−A with some literals above A again. Write C+ as +A1 ∨ . . .+ Am ∨ C, where
+A1, . . . , +Am are the literals L in C+ such that Lθ+ = +A, and write C− as
−A′

1 ∨ . . . ∨ −A′
m′ ∨ C′, where −A′

1, . . . , −A′
m′ are the literals L′ in C− such

that L′θ− = −A. Renaming apart the free variables of C+ and C−, in particular,

The Blossom of Finite Semantic Trees 95

A1, . . . , Am, A
′
1, . . . , A

′
n are unifiable. Call σ their most general unifier; since �

is stable, and using assumption (∗) above, Aiσ
� B and A′
i′σ
� B for every

atom B in Cσ ∨ C′σ, 1 ≤ i ≤ m, 1 ≤ i ≤ m′. So the ordered resolution rule
applies, and we may generate the resolvent Cσ ∨ C′σ. E.g., in Figure 1, the
inference node −r,−q (vertex 4) allows one to resolve between the two clauses
whose respective ground instances decorate the failure nodes below it, namely
+p and +q ∨ −p, yielding a clause with +q as ground instance.

Let S′ be S union Cσ ∨ C′σ. Since Cσ ∨ C′σ is now false at the inference
node I, TS′ is a closed tree with strictly less vertices than TS . This process must
therefore terminate; then ε will be a failure node, at which point � has been
inferred: completeness follows.

There are several degrees of freedom that we can exploit in this argument.
First, the usual argument goes by considering the ground instances of clauses in S
(which form an unsatisfiable set), showing that propositional ordered resolution
is complete for the latter, then lifting propositional resolution refutations to
the first-order level by so-called lifting. The argument above shows that we can
reason directly at the level of first-order clauses, considering ground instances
on the fly. While this makes no difference in ordered resolution, this is definitely
needed when selection functions are introduced (Section 2.2), because nothing
like stability will be required of selection functions.

Second, assumption (∗) can be completely dispensed with, as we promised,
using compactness: if S is unsatisfiable, then some finite set of ground instances
of S is already unsatisfiable. Clearly, this finite set uses only finitely many ground
atoms A0

1, . . . , A
0
n, and we can replay the argument above by using only these

atoms. Now it is easy to enumerate them in such a way that A0
i � A0

j implies

i > j, whether (∗) holds or not: just find a topological sort of the A0
i with respect

to the ordering �. (This is where we are using that � restricts to an ordering
on ground atoms.)

Third, the way we pick interesting vertices (here, inference nodes) in the
tree clearly dictates what constraints we may add to the resolution rule while
retaining completeness. Picking inference nodes is a good match for ordered
resolution. Other forms of resolution will require us to find other vertices in TS .
In the context of semantic trees, the import of the Bachmair-Ganzinger forcing
method can be seen as a clever way of finding alternative vertices in TS. This
is simple and elegant: any vertex I is just a partial interpretation, and we shall
find it by constructing I as a partial interpretation, alternatively as specifying
which ground atoms should be true and which should be false while going down
the closed tree TS .

Fourth, and finally, we are free to apply alternative termination arguments.
Taking the notations above, we have argued that we could produce a finite
ordered resolution refutation by showing that we could rewrite TS into another
closed tree TS′ by generating the right ordered resolvent. This terminates because
the size |TS | of TS is greater than that of TS′ . However, any well-founded measure
of finite closed trees TS would work equally well. This is precisely what we shall
exploit next.

96 J. Goubault-Larrecq and J.-P. Jouannaud

2.2 Ordered Resolution with Selection

Let sel be any fixed selection function, by which we mean any function that
maps each clause C to a possibly empty subset of the negative literals in C—the
selected literals in C. The idea is that, if sel (C) is non-empty, then we require
to resolve on all selected literals; if sel (C) = ∅, then we revert to resolving upon
�-maximal literals. On the other hand, we additionally require that the other
premise +A1 ∨ . . .+Am ∨ C contains no selected literal at all.

Again assume a given stable quasi-ordering � whose restriction to ground
atoms is an ordering, and assume additionally that � is also stable: A � B
implies Aσ � Bσ for every atoms A, B, and substitution σ. In case all these
conditions are satisfied, we say that� is strongly stable. E.g., any reflexive closure
% of a strict stable ordering �—the traditional setting for ordered resolution—is
a strongly stable quasi-ordering.

The rule of ordered resolution with selection is

1≤i≤�︷ ︸︸ ︷
Ci ∨+Ai1 ∨ . . . ∨+Aini C′ ∨ −A′

1 ∨ . . . ∨ −A′
�

C1σ ∨ . . . ∨ C�σ ∨C′σ

with the following side-conditions:

(i) ni ≥ 1 for every i, 1 ≤ i ≤ �;
(ii) σ = mgu{Aij = A′

i|1 ≤ i ≤ �, 1 ≤ j ≤ ni};
(iii) sel(Ci ∨ +Ai1 ∨ . . . ∨ +Aini) = ∅ and Ai1σ
� B for every atom B in Ciσ,

for every i, 1 ≤ i ≤ �;
(iv) sel(C′ ∨ −A′

1 ∨ . . . ∨ −A′
�) = {−A′

1, . . . ,−A′
�} and � ≥ 1, or no literal is

selected, � = 1 and A′
1σ
≺ B for every atom B in C′σ.

Note that sel is arbitrary. In particular, imagine that we select {−p(X)} in
+q(X)∨−p(X)∨−r(X). While it would be natural to also select {−p(a)} in its
instance +q(a)∨−p(a)∨−r(a), selection functions are not required in any way
to do so, and we may perfectly well choose to select {−r(a)}, or {−p(a),−r(a)},
or nothing instead. This fact alone ruins any hope of proving completeness by
lifting a completeness argument from the propositional to the first-order case.

Note also that, while we still require positive factoring (in general ni
= 1) in
the side clauses Ci ∨+Ai1 ∨ . . .∨+Aini , we dispense with negative factoring in
the main clause C′ ∨ −A′

1 ∨ . . . ∨ −A′
�.

Theorem 1. Ordered resolution with selection is complete: for any strongly sta-
ble quasi-ordering �, for any selection function sel, for any set of clauses S, S
is unsatisfiable if and only if we can derive � from S by ordered resolution with
selection.

Proof. We spend the rest of this section proving this.
The “if” direction is obvious. Conversely, fix a finite enumeration A0

1, . . . , A
0
n

of all ground atoms in the finite unsatisfiable set of ground instances of clauses
in S secured by the compactness theorem. Sort them so that A0

i � A0
j implies

The Blossom of Finite Semantic Trees 97

i > j. A closed tree TS is adequate if and only if its vertices are of the form
±1A

0
1, . . . ,±A0

k with k ≤ n. By construction, there is an adequate closed tree
TS. Also, for each failure node I of TS , there is a clause CI in S and a substitution
θI such that CIθI is ground and false at I.

Given any set S′ of clauses, call a decorated tree any tuple (T,C•, θ•), where
T is an adequate closed tree, C• maps each leaf I of T to a clause CI of S′, and
θ• maps each leaf I to a substitution θI such that CIθI is ground and false at
I. The discussion above shows that S has a decorated tree.

Given a decorated tree (T,C•, θ•) for S′, either the root ε is a leaf, then Cε

is necessarily the empty clause �, and we are done. Or we find a path through
T as follows. Define the ground atom HI and the sign ±I , for each leaf I, so
that ±IHI is the literal ±A0

i in CIθI with the highest index i; i.e., the lowest
(largest) literal on the path leading to I.

Definition 1 (Generative). Let us say that CI , and by extension CIθI , is
generative if and only if ±I is the + sign, and no literal is selected: sel (CI) = ∅.
This is our version of Bachmair and Ganzinger’s notion of productive clauses.
Any clause CI can be written uniquely as ±IHI ∨+PI ∨ −NI , where PI is the
set of atoms occurring under the + sign in CI (except HI), and NI is the set of
atoms occurring under the − sign in CI . (We write +P for the disjunction of all
+B, B ∈ P , and −N for the disjunction of all −B, B ∈ N .) Generative clauses
are those where ±I is the + sign, and no literal is selected in −NI .

Now build a specific interpretation by Bachmair-Ganzinger forcing. Intu-
itively, each productive clause can be written as a Horn-like clause HI ⇐ −PI ∧
+NI , stating thatHI should be set to true whenever all atoms in PI are false and
all atoms in NI are true. We say that −PI ∧+NI is true, and that HI is forced
whenever this happens; otherwise, HI will be set to the default value “false”.
We shall do so while traveling downwards inside T . E.g., look at Figure 1. The
clause +p is necessarily generative. The clause +q ∨ −p cannot be generative,
because the only positive atom is not maximal, and similarly for +r∨−q. Then,
starting from vertex 1, we let r be set to the default value false—no generative
clause forces it to true. So we must go down left, and arrive at vertex 2. Then
we let q be false, go to 4, and finally force p to true, arriving at 9. Formally:

Definition 2. Let (T,C•, θ•) be a decorated tree. Define a failure node I in T
as follows. Let I0 = ε be the root of T . Then define Ik, k ≥ 1, by induction on
k as follows. Let Ik be given. If Ik is a failure node, then stop, and let I = Ik.
Otherwise, if there is a generative clause CI′ = +HI′ ∨ +PI′ ∨ −NI′ such that
−PI′θI′ ∧ +NI′θI′ is true in Ik and HI′θI′ = A0

k+1, then force A0
k+1 to true:

define Ik+1 as Ik,+A
0
k+1. Otherwise, let Ik+1 be Ik.

Alternatively, the failure node I is obtained by traveling down T , starting from
the root. At each non-leaf vertex, we prefer to take the left branch, unless the
left successor I ′ is already a failure node and CI′ has no selected atom (in which
case CI′ is the generative clause indicated in Definition 2). This stops at a leaf
I. Either the last direction we took was left, and then there must be a selected
atom in I (this will ensure the left alternative in condition (iv)), or the last

98 J. Goubault-Larrecq and J.-P. Jouannaud

direction we took was right, in which case the maximal atom in CIθI will have
the − sign (ensuring the right alternative in condition (iv)). We prove this in
Lemma 2 below.

Clearly,

Lemma 1. The partial interpretation I of Definition 2 satisfies the following
two properties:

(I.1) For every generative clause CI′ such that −PI′θI′ ∧+NI′θI′ is true in I,
HI′θI′ is true in I.

(I.2) If H is a true atom in I, then there is a generative clause CI′ such that
HI′θI′ = H. Moreover, −PI′θI′ ∧+NI′θI′ is true in I.

These properties crucially depend on the fact that once an atom has been forced
to true, resp. false, in Ik, it will remain so in all subsequent Ik′ , k′ ≥ k. (Whence
the name of forcing.)

The failure node I will be the place where resolution takes place, much as
inference nodes were the places where resolution took place in Section 2.1. Let
us see how I provides us with the main clause C′ ∨ −A′

1 ∨ . . . ∨ −A′
�, so that

condition (iv) is satisfied:

Lemma 2. If there is at least one selected literal in CI , CI can be written as
C′ ∨ −A′

1 ∨ . . . ∨ −A′
�, where −A′

1, . . . ,−A′
� are exactly the selected literals of

CI , and � ≥ 1. Otherwise, let σ be any substitution that is more general than θI .
Then, CI is necessarily of the form C′ ∨−A′

1, where −A′
1σ is maximal in CIσ,

i.e., where −A′
1σ
≺ B for every atom B in C′σ.

Proof. If sel(CI) is non-empty, this is clear. So assume sel(CI) = ∅. Consider
±IHI . If ±I were +, CI would be generative. But since CIθI is false at I,
−PIθI ∧+NIθI is true in I. By (I.1) HIθI would be true in I, too. This would
make CIθI true at I, contradiction. So ±I is −. Let −A′

1 be HI . Clearly, A
′
1θI

is below or equal to AθI for any A in C′. So A′
1σ
≺ Aσ, since � is stable and

σ " θI . ��

We now show that the other conditions (i), (ii), (iii) on the rule of ordered
resolution with selection also apply:

Lemma 3. Let A′
1, . . . , A

′
� be defined as in Lemma 2. For each i, 1 ≤ i ≤ �,

there is a generative clause CI′
i
such that HI′

i
θI′

i
= A′

iθI .
Write CI′

i
as Ci ∨ +Ai1 ∨ . . . ∨ +Aini , where +Ai1, . . . , +Aini are all the

literals L in CI′
i
such that LθI′

i
= +A′

iθI . Then:

(i) ni ≥ 1;

(ii) the mgu σ = mgu{Aij = A′
i|1 ≤ i ≤ �, 1 ≤ j ≤ ni} exists, and σ " θ, where

θ = θI ∪ θI′
1
∪ θI′

2
∪ . . . ∪ θI′

�
;

(iii) sel(Ci ∨+Ai1 ∨ . . . ∨+Aini) = ∅ and Ai1σ
� B for every atom B in Ciσ,
for every i, 1 ≤ i ≤ �;

The Blossom of Finite Semantic Trees 99

Proof. Since CIθI is false at I, all the atoms A′
iθI are true in I. By (I.2), first

part, there is a generative clause CI′
i
such that HI′

i
θI′

i
= A′

iθI . Necessarily, CI′
i
θI′

i

contains the literal +A′
iθI .

Let therefore +Ai1, . . . , +Aini , ni ≥ 1, be all the literals L in CI′
i
such that

LθI′
i
= +A′

iθI , and let Ci be the disjunction of the remaining literals of CI′
i
.

(Note that there may be several such literals L, whence ni may be different
from 1, requiring positive factoring.) We have just found the side premise CI′

i
=

Ci ∨+Ai1 ∨ . . . ∨+Aini . Since ni ≥ 1, (i) follows.
Then, AijθI′

i
= A′

iθI . Since without loss of generality, Aij and Ai′j′ have no
free variable in common whenever i
= i′, and since Aij and A′

i′ have no free
variable in common (for all i, i′, j), the substitution θI ∪ θI′

1
∪ θI′

2
∪ . . . ∪ θI′

�

makes sense, and unifies all Aijs and A
′
is: (ii) follows.

Since CI′
i
is generative, no literal is selected in it. Assume that Aijσ � Bσ

for some B ∈ Ci; by stability, using σ " θI′
i
, AijθI′

i
� BθI′

i
, that is, HI′

i
θI′

i
�

BθI′
i
. This is impossible, since HI′

i
θI′

i
is the largest literal in CI′

i
θI′

i
, since by

construction BθI′
i

= HI′

i
θI′

i
, and since � restricts to an ordering on ground

atoms. So (iii) follows. ��

Therefore C1σ∨. . .∨C�σ∨C′σ is indeed inferable by the rule of ordered resolution
with selection.

We now turn to termination. Let S′ be the set of clauses of which (T,C•, θ•)
is a decorated tree, and let S′′ be S′ union the resolvent C1σ ∨ . . . ∨C�σ ∨C′σ.
We shall build a new decorated tree (T ′, C′

•, θ
′
•), for S

′′ this time, in Definition 3
below, in such a way that (T ′, C′

•, θ
′
•) is less than (T,C•, θ•) in some well-founded

ordering.
This ordering must be more sophisticated than the natural ordering on sizes

|T | of trees T that we used in Section 2.1. To use this ordering, we should show
that the resolvent is false at some vertex I ′ strictly above I, which would allow
us to define T ′ as T , with the subtree rooted at I ′ chopped out. But I ′ may
well be I itself in our new setting. This is mainly because we do not implement
negative factoring.

As a consolation, we check that the resolvent (C1σ ∨ . . . ∨ C�σ ∨ C′σ)θ =
C1θI′

1
∨ . . . ∨ C�θI′

�
∨ C′θI is false at I itself. In the problematic case where the

highest vertex I ′ where this is false is I itself (and the chopping described above
would not decrease the size of the tree), this will allow us to redecorate I with
C1σ ∨ . . . ∨ C�σ ∨C′σ, θ instead of CI , θI . We shall see that the new decoration
is then smaller than the old one in a suitable ordering.

So let us check that C1θI′
1
∨ . . . ∨ C�θI′

�
∨ C′θI is false at I. C′θI is false

at I, since C′θI is a sub-clause of CIθI , which is false at I. And each CiθI′
i
,

1 ≤ i ≤ �, is false at I, by the following argument. The generative clause CI′
i

equals +HI′
i
∨ +PI′

i
∨ −NI′

i
. By construction of CI′

i
and by (I.2), second part,

−PI′
i
θI′

i
∧+NI′

i
θI′

i
is true at I. By construction, CiθI′

i
is exactly the sub-clause

+PI′
i
θI′

i
∨−NI′

i
θI′

i
, which is false at I. So (C1σ∨ . . .∨C�σ∨C′σ)θ is indeed false

at I. Since it only contains atoms not lower than the atoms in the premises, it
is false at I.

Therefore, we define:

100 J. Goubault-Larrecq and J.-P. Jouannaud

Definition 3. Let I ′ be the highest vertex in T , above I, where the resolvent
(C1σ ∨ . . . ∨ C�σ ∨ C′σ)θ is false. Define the new decorated tree (T ′, C′

•, θ
′
•) as

follows:

(a) If I ′ is strictly higher than I in T , then let T ′ be the closed tree whose leaves
are I ′ plus all the leaves of T that are not below I ′. (“Chop at I ′.”) Let C′

I′

be the resolvent C1σ ∨ . . .∨C�σ ∨C′σ, and θ′I′ be θ. Let C′
I′′ be CI′′ and θ′I′′

be θI′′ for every I ′′
= I ′.
(b) If I ′ = I, let T ′ be just T , C′

I be the resolvent C1σ ∨ . . . ∨ C�σ ∨ C′σ, θ′I be
θ; let C′

I′′ be CI′′ and θ′I′′ be θI′′ for every I ′′
= I.

The latter case can only happen when the lowest atom of (C1σ ∨ . . . ∨ C�σ ∨
C′σ)θ is the same as that of CIθI , i.e., HIθI . Consider the other literals of
(C1σ ∨ . . . ∨ C�σ ∨ C′σ)θ = C1θI′

1
∨ . . . ∨ C�θI′

�
∨ C′θI . The literals in CiθI′

i
,

1 ≤ i ≤ �, are, by definition of Ci, strictly higher than HI′
i
θI′

i
= A′

iθI , which is
an atom of CIθI , and is therefore higher than or equal toHI . The literals of CiθI′

i

are then always strictly higher than HI . The only reason why HI can occur in
(C1σ∨ . . .∨C�σ∨C′σ)θ = C1θI′

1
∨ . . .∨C�θI′

�
∨C′θI is therefore that it occurs in

C′θI . What matters here is that by replacing CIθI by C1θI′
1
∨. . .∨C�θI′

�
∨C′θI as

the clause at leaf I, we have replaced large literals HIθI by clauses CiθI′
i
which

contain an arbitrary number of strictly smaller literals.
This suggests defining a measure based on multiset extensions. Formally:

Definition 4. Define A0
i �′ A0

j if and only if i > j. For every failure node I ′ in
a decorated tree (T,C•, θ•), let μ1(CI′ , θI′) be the multiset of all AθI′ , where ±A
ranges over the literals of CI′ . This is ordered by the multiset extension �′

mul

of �′.

(Note that A � B implies A �′ B, but the converse implication fails in general,
unless � is total on ground atoms, which we do not assume.)

In case (b), where I ′ = I, we therefore obtain μ1(CI , θI)�′
mulμ1(C

′
I , θ

′
I).

Definition 5. Define μ−(T,C•, θ•) as the multiset of all measures μ1(CI′ , θI′),
when I ′ ranges over the failure nodes of T .

In case (b), μ1(CI′ , θI′) decreases strictly, while μ1(CI′′ , θI′′) remains unchanged
for the other leaves I ′′. So μ−(T,C•, θ•) (�′

mul)mul μ
−(T ′, C′

•, θ
′
•) in case (b).

Let |T | denote the size of T , and note that |T | = |T ′| in this case. In case (a),
clearly |T | > |T ′|, so in any case μ(T,C•, θ•) (>, (�′

mul)mul)lex μ(T ′, C′
•, θ

′
•),

where:

Definition 6. The measure μ(T,C•, θ•) is defined as the pair (|T |,
μ−(T,C•, θ•)).

Since > is well-founded, and since �′, which is an ordering on a finite set of
atoms A0

1, . . . , A
0
n, is also well-founded, we conclude:

Lemma 4. The reduction relation that replaces (T,C•, θ•) by (T ′, C′
•, θ

′
•), as

defined in Definition 3, terminates.

The Blossom of Finite Semantic Trees 101

We now terminate the proof of Theorem 1. Assume S unsatisfiable. Starting from
a decorated tree for S, we build a derivation by ordered resolution with selection
of S = S0, S1, . . . , Sk, . . . , each mapped to a decorated tree (T0, C0•, θ0•),
(T1, C1•, θ1•), . . . , (Tk, Ck•, θk•),, where each decorated tree is obtained from
the previous one by the reduction defined in Definition 3. By Lemma 4, this
terminates, say at step k. Then the root of Tk must be a failure node, so Sk

contains the empty clause �. ��
This proof clearly takes its roots in both the semantic tree technique and Bach-
mair and Ganzinger forcing. Note that we only require � to be strongly stable.
We don’t need it to be a reduction ordering, or to be total on ground atoms, or
even to be well-founded.

2.3 Redundancy Elimination and Games

An important component of every automated deduction system is a set of re-
dundancy elimination rules. Classic redundant clauses include tautologies and
subsumed clauses [BG01a]. Other useful redundancy elimination rules include
simplification rules. A crucial import of Bachmair and Ganzinger’s approach to
resolution was to define standard redundancy criteria, a unified approach justi-
fying which redundant clauses can be eliminated, and which simplification rules
can be applied while preserving completeness.

We may see the subtle interaction between resolution and redundancy rules as
a two-player game [dN95] between a player P and an opponent O. At each turn,
either the empty clause � has been derived, and P wins, or P chooses a resolvent
to produce, then O applies any finite number of redundancy rules. Completeness
is then equivalent to the existence of a winning strategy for P, starting from any
unsatisfiable set S of clauses.

For simplicity, and without loss of generality, we shall assume that O can only
add clauses, or remove clauses. Replacing and simplifying clauses will be imple-
mented by adding the replacement clauses and removing the replaced clauses.

The proof of Theorem 1 shows what resolvent P should play at each turn; this
resolvent is the one we constructed, which makes μ(T,C•, θ•) decrease strictly.
Completeness in the presence of redundancy elimination rules follows, as soon
as, whatever O does, it can only make the chosen measure μ(T,C•, θ•) decrease
or stay the same. This is obvious when O adds a clause: (T,C•, θ•) stays the
same. This is trickier when O removes a clause. We need to make sure that: (†)
whatever clause C is removed by O from the current clause set S′, for any leaf
I ′ of T such that C = CI′ (note that there might be 0, 1, or several such leaves),
there is another clause C′

I′ in S such that some ground instance C′
I′θ′I′ of C′

I′ is
false at I ′, and μ1(CI′ , θI′)%′

mulμ1(C
′
I′ , θ′I′), where %′

mul is the reflexive closure
of �′

mul. If so, we shall change (T,C•, θ•) into (T ′, C′
•, θ

′
•), where T

′ = T , C′
I′

and θ′I′ are as given above for all leaves I ′ such that C = CI′ (note that C′
I′θ′I′

cannot be false strictly above I ′, since I ′ is a failure node, whence T ′ = T), and
C′

I′ = CI′ , θ′I′ = θI′ for all other leaves I ′. It is clear that μ(T,C•, θ•) will be
larger than μ(T ′, C′

•, θ
′
I′) in the reflexive closure of (>, (�′

mul)mul)lex, whence
completeness is preserved.

102 J. Goubault-Larrecq and J.-P. Jouannaud

Let us find a more readable criterion than condition (†) above. Recall that
C1, . . . , Ck |= C if and only if every Herbrand interpretation that makes all
ground instances of C1, . . . , Ck true also makes every ground instance of C true.
Equivalently, every Herbrand interpretation that makes some ground instance
of C false must make some ground instance of some Ci, 1 ≤ i ≤ k, false. By
analogy, let us say that C1 . . . , Ck |=∗ C if and only if every partial interpretation
that makes some ground instance of C false must make some ground instance of
some Ci false, too, 1 ≤ i ≤ k.

Imitating Bachmair and Ganzinger’s standard redundancy criterion, we may
enforce the above condition (†) by requiring the stronger property that C1, . . . ,
Ck |=∗ C, for some clauses C1, . . . , Ck in the current clause set S such that
C�mulC1, . . . , C�mulCk. Here �mul makes sense provided we see clauses as
multisets of literals, ignoring signs. Let us show that indeed (†) must hold. For
each leaf I ′ where C = CI′ , since C1, . . . , Ck |=∗ C, there is a clause Ci, 1 ≤ i ≤ k,
having a ground instance that is false at I ′. Let C′

I′ be Ci, and C
′
I′θ′I′ be the cor-

responding ground instance. We must show that μ1(CI′ , θI′) %′
mulμ1(C

′
I′ , θ′I′).

Since CI′ = C �mul Ci = C′
I′ , we may obtain C′

I′ from CI′ by repetitively re-
placing atoms by finitely many smaller ones in the � strict ordering. Since � is
stable, we may reproduce this at the ground level, and obtain C′

I′θ′I′ from CI′θI′

by repetitively replacing ground atoms by smaller ones in the � strict ordering.
These are in particular smaller in �′ as well. So μ1(CI′ , θI′)%′

mulμ1(C
′
I′ , θ′I′),

and (†) follows.
To recap, the natural standard redundancy criterion in our case reads as:

If C ∈ S, and C1 . . . , Ck |=∗ C for some clauses C1, . . . , Ck in S such that
C�mulC1, . . . , C�mulCk, then erase C.

We have shown that applying this criterion at any time during ordered resolution
with selection preserves completeness. This is close to Bachmair and Ganzinger’s
standard redundancy criterion, which uses |= instead of |=∗.

We illustrate this on a few well-known redundancy elimination rules.
In case C is a tautology C0∨+A∨−A, k is zero, and the criterion is vacuously

satisfied: we can always eliminate tautologies without breaking completeness in
ordered resolution with selection.

In case C = CI′ is subsumed by some clause C1 = C′
I′′ (k = 1), it is not

necessarily the case that C �mul C1, or even that μ1(CI′ , θI′)%′
mulμ1(C

′
I′′ , θ′I′′).

E.g., take C = +P (x), C1 = +P (x) ∨+P (y), which subsume each other, while
C
�mul C1. This suggests that eliminating subsumed clauses is fraught with dan-
ger. And indeed, it is well-known that eliminating backward-subsumed clauses
may break completeness. We shall let the reader check that we indeed obtain
μ1(CI′ , θI′)%′

mulμ1(C
′
I′′ , θ′I′′) as soon as C′

I′′ subsumes C linearly, i.e., C is of
the form C′

I′′σ ∨ C′′, where σ does not unify any distinct literals in C′
I′′ (i.e.,

C′
I′′σ is not a factor of C′

I′′). This justifies that eliminating linearly subsumed
clauses (whether backward or forward) does not break completeness. Eliminating
linearly subsumed clauses is implemented in SPASS [WBH+02]. The linearity re-
striction is also implicit in work by Bachmair and Ganzinger, who define clauses
as multisets, not sets (we shall do so as well in Section 3).

The Blossom of Finite Semantic Trees 103

Our argument shows that completeness is in fact preserved if we remove C =
C′

I′′σ ∨ C′′, when both C and C′
I′′ are in S, whatever σ is (i.e., even when C

is subsumed non-linearly by C′
I′′), provided C′′ contains an atom A such that

A � B for every B in C′
I′′σ: indeed in this case C can only be false at a vertex

strictly below I ′′, hence C cannot be of the form CI′ for any failure node I ′.
Many other redundancy elimination rules are listed in [BG01a], on which the

arguments above apply. We would like to end this section by examining the subtle
case of the splitting-with-naming rule of [RV01a] (which was called splittingless
splitting in [GLRV04], by analogy with inductionless induction). This will in
particular show where using |=∗ instead of |= makes a difference. Assume we
are given an initial set of clauses on a set P of predicates. Call these P-clauses.
For each equivalence class of P-clauses C modulo renaming, let �C� be a fresh
nullary predicate symbol not in P . Call these fresh symbols the splitting symbols .
The splittingless splitting rule allows one to replace a clause of the form C ∨C′,
where C and C′ are non-empty clauses that have no variable in common, where
C′ is a P-clause, and where C contains at least one atom P (t1, . . . , tn) with
P ∈ P , by the two clauses C ∨ −q and +q ∨ C′, where q = �C′�. This rule
is not only effective in practice [RV01a], it is also an important tool in proving
certain subclasses of first-order logic decidable, and to obtain optimal complexity
bounds (see e.g., [GL05]). Take � so that P (t1, . . . , tn) � q for every P ∈ P and
for any splitting symbol q. Then it is easy to see that the standard redundancy
criterion is satisfied, and we can indeed replace C ∨ C′ by the smaller clauses
C ∨ −q and +q ∨ C′. So completeness is preserved, as shown by Bachmair and
Ganzinger, as soon as � is a well-founded reduction ordering that is total on
ground terms.

Our approach, as it is, does not apply here. We are paying the dues for all the
benefits that our use of compactness brought us. Indeed, remember our proof
started by taking a finite subset of ground atoms A0

1, . . . , A
0
n that are required

for finding a contradiction. While P is only required to play clauses with ground
instances among the latter, O is not limited in any such way. Here, O may indeed
produce C ∨−q and +q∨C′, where q is not among A0

1, . . . , A
0
n. Then we cannot

remove C ∨ C′. Assume that C ∨ C′ is CI′
i
, for some leaves I ′i, 1 ≤ i ≤ k.

There is no reason why C ∨−q or +q ∨C′ should be false at any I ′i: indeed q is
undecided. In other words, while (C ∨ −q), (+q ∨ C′) |= C ∨ C′, we do not get
(C ∨−q), (+q∨C′) |=∗ C ∨C′. Bachmair and Ganzinger’s standard redundancy
criterion applies, but our variant does not.

This can be repaired easily if O can only generate finitely many splitting sym-
bols. In this case, just assume they are all among A0

1, . . . , A
0
n, and completeness

again follows. E.g., in [GL05], the only splitting symbols we ever need are of
the form �B(X)�, where B(X) is any disjunction of literals −P (X), where P is
taken from a finite set. So there are finitely many splitting symbols, and we can
without loss of generality assume they are all among A0

1, . . . , A
0
n.

Despite these difficulties, completeness still holds in the general case. How-
ever, this is more complex: first, we need to assume a form of our old condi-
tion (∗), namely that the ordering � on splitting symbols can be extended to

104 J. Goubault-Larrecq and J.-P. Jouannaud

a total ordering on the splitting symbols q1, q2, . . . , qi, . . . (a similar condition
is used in [SV05, Theorem 4]); second, we need to consider transfinite seman-
tic trees [HR91] based on the transfinite (indexed by the ordinal ω + n) enu-
meration q1, q2, . . . , qi, . . . , A

0
1, . . . , A

0
n, where A

0
1, . . . , A

0
n are the ground atoms

P (t1, . . . , tn), P ∈ P , given by the compactness theorem. . . but this is Bachmair
and Ganzinger’s usual forcing argument in disguise.

2.4 Where Trees Matter: Completeness of Linear Resolution

Until now, we have only used semantic trees as a convenient way of organizing
paths, i.e., Herbrand interpretations. Similarly, Bachmair and Ganzinger’s forc-
ing argument builds an interpretation. One might therefore ask whether the use
of trees brings any additional benefit than just reasoning on paths.

We claim that linear resolution can be shown complete using a semantic tree
technique. This appears to be new by itself: the standard proof of completeness
of linear resolution is by Anderson and Bledsoe’s excess literal argument, applied
to so-called minimally unsatisfiable sets of clauses. Furthermore, our semantic
tree technique will really use trees, not just the paths inside the trees.

The rule of linear resolution can be explained as follows. Start from a clause
set S0, and pick a clause C0 in S0, non-deterministically. Find a resolvent of C0

(the center clause) with some clause in S0 (the side clause). Name this resolvent
C1; this is the top clause. The current clause set is now S1 = S0 ∪ {C1}. Then
find a resolvent of the top clause C1 (now the new center clause) with some
side clause in S1, call it C2 (the new top clause). Proceed, getting a sequence of
successive resolvents Ci, i ≥ 0, until (hopefully) the empty clause � is obtained.
Observe that this is a non-deterministic procedure. The point in linear resolution
is that the only allowed center clause at the next step is the previous top clause.

That linear resolution is complete means that, if S0 is unsatisfiable, then there
is a sequence of choices, first of C0, then of each side clause, so that the empty
clause � eventually occurs as the top clause. Our technique will establish a more
general result: linear ordered resolution, where each resolvent is constrained to
be ordered (see Section 2.1), is complete again. This holds even if we only allow
factoring in center clauses but disallow it in side clauses.

This refinement of linear resolution can be formalized as follows. The only
deduction rule is:

∓A′
1 ∨ C′ ± A1 ∨ . . .± Am ∨ C

Cσ ∨ C′σ

m ≥ 1,
σ = mgu(A1 = A2 = . . . = Am = A′

1),
∀B ∈ Cσ,Aiσ
� B

1 ≤ i ≤ m

where ± is the same sign throughout, and ∓ is its opposite. The left premise is
meant to be the side clause, and the right premise is the center clause.

The process of linear resolution is then defined through a transition relation.
A state of the linear resolution procedure is a pair (S,C), where C is a clause in
S. The transition relation of linear resolution) is given by

The Blossom of Finite Semantic Trees 105

(S,C) � (S ∪ {C′}, C′)

where
C′′ C

C′

by the ordered linear resolution rule above, for some C′′ ∈ S. Remember that
C is the center clause, C′′ is the side clause, and C′ is the top clause.

Completeness means that, if S is unsatisfiable, then (S,C) �∗ (S′,�) for
some C ∈ S and some clause set S′.

We prove this by modifying the notion of semantic tree slightly. E.g., consider
the example of Figure 1, this time with the ordering q ≺ r ≺ p, see Figure 2.

Now look at vertex 2. The choice on r here is irrelevant: there is no clause
decorating any failure node below 2 that depends on the truth value of r. It is
therefore tempting to reduce the semantic tree to the one shown in Figure 3,
where vertex 2 has been replaced by the subtree rooted at vertex 5. This reduc-
tion process is similar to that used in BDDs [Ake78].

We now allow paths in semantic trees to skip over some atoms, as in Figure 3,
where r is skipped in the paths on the left: r is a don’t care. But atoms will still
be enumerated in the same ordering on each path. Call the resulting modified
notion a lax semantic tree for S. Each path, hence each leaf (failure node) defines
a lax partial interpretation, defined as a finite list ±1A

0
i1 ,±2A

0
i2 , . . . ,±kA

0
ik

of
signed ground atoms, 1 ≤ i1 < i2 < . . . < ik. We define decorated lax trees (for
S) in the expected way, as a triple T = (T,C•, θ•), where CI and θI are such
that CI ∈ S, CIθI is ground and false at leaf I.

We shall fix an unsatisfiable S and an enumeration A0
1, A

0
2, . . . , A

0
n guaranteed

by the compactness theorem in the rest of the section.

� ��
�
�
��

�
�
� � ��

�
�
��

�
�
�

� ��
�
�
��

�
�
� � ��

�
�
��

�
�
�

� ��
�
�
��

�
�
�

+p
+q ∨ −p

+p
+q ∨ −p

� ��
�
�
��

�
�
�
false true

12 13

� �

� �

�

��������������

false true

false true false true

false false falsetrue true true

q :

r :

p :

1

2 3

4 5 6 7

8 9 10 14 15

−p ∨ −q ∨ −r

+p

11

+r ∨ −q

Fig. 2. Another semantic tree, based on a different ordering

106 J. Goubault-Larrecq and J.-P. Jouannaud

� ��
�
�
��

�
�
�

� ��
�
�
��

�
�
�

+q ∨ −p

� ��
�
�
��

�
�
�

+p

�

false true

5

10 11 � �

�

�

��������������

false true

false true

false true

1

3

6 7

14 15

−p ∨ −q ∨ −r

+p+r ∨ −q

q

p

q

r

p

Fig. 3. A normal decorated lax tree

We now define reduction on decorated lax
trees T as follows. It will be helpful to de-
note a decorated lax subtree of T of the form
shown on the right as A(Tleft, Tright). We
say that a subtree uses A if and only if it
has a failure node I such that A occurs as a
a ground atom in CIθI .

Tleft Tright

A

(1)

We use the following two reduction rules:

A(Tleft, Tright) � Tright if Tright does not use A
A(Tleft, Tright) � Tleft if Tleft does not use A

Standardly, the left-hand sides are called redexes, reduction rules are applied at
any position in decorated lax trees, and a decorated lax tree is normal if and
only if it contains no redex. The following are easily proved.

Lemma 5. If T = (T,C•, θ•) is a decorated lax tree for S, and T � T ′, then
T ′ is also a decorated lax tree for S. Moreover, μ(T) (>, (�′

mul)mul)lex μ(T ′).

Lemma 6. Let T = (T,C•, θ•) be a normal decorated lax tree for S, and assume
that S does not contain the empty clause. For every failure node I in T , CI is
of the form ±A1 ∨ . . . ± Am ∨ C where m ≥ 1, and there is another failure
node I ′ in T such that CI′ is of the form ∓A′

1 ∨ C′, the most general unifier
σ = mgu(A1 = A2 = . . . = Am = A′

1) is well-defined, σ " θI ∪θI′ , and for every
atom B in Cσ, Aiσ
� B.

Moreover, letting θ be such that σθ = θI∪θI′ , the ground instance (Cσ∨C′σ)θ
of the linear resolvent Cσ ∨ C′σ is false at I ′, and for every atom B in C,
A′

1θI′ �′ BθI .

The Blossom of Finite Semantic Trees 107

Proof. Since the empty clause is not in S, CI cannot be the empty clause.

Let A be the ground atom A0
i with the

largest index i that occurs in CIθI ,
i.e., the last ground atom labeling
an internal vertex occurring on the
branch I. As a leaf, I may be the left
successor of its parent, or its right suc-
cessor. The following picture displays
the case where I is left.

Tright

false trueA

I (2)

Assume I is left, as in the picture. The other case is symmetrical. So CI is of
the form +A1 ∨ . . .+ Am ∨ C, where A1, . . . , Am enumerate those atoms B in
CI such that BθI = A. Since T is normal, (2) is not a redex, so Tright uses A:
there is a failure node I ′ in Tright such that CI′θI′ contains the atom A. Because
this clause must be false at I ′, A must occur negatively. So CI′ is of the form
−A′

1 ∨ C′, where A′
1θI′ = A.

In particular, θI ∪ θI′ is a unifier of A1, . . . , Am, A′
1. Let σ be their mgu, and

θ be such that σθ = θI ∪ θI′

Note that the atoms B that occur in C are such that BθI = A0
j with j < i,

so A′
1θI′ = A0

i �′ BθI . In particular, for every atom B = B′σ that occurs in
Cσ, AiθI = A0

i �′ Bθ, whence Aiσ
� B since � is stable. It also follows that
(Cσ ∨ C′σ)θ = CθI ∨ C′θI′ is false at I ′. �

Contrarily to ordered resolution, where we had to find an inference node, here
any failure node will enable us to apply a resolution step. This is a consequence
of the fact that T is normal.

Since reduction clearly terminates, if S is unsatisfiable, then it has a normal
decorated lax tree. The reduction rules are not confluent, and in general normal
forms are not unique. But there is only one normal form in the following special
case, which is the only one we shall require.

Lemma 7. Let T = (T,C•, θ•) be a decorated lax tree for S. Say that a failure
node I ′ in T is weak if and only if there is a ground atom A in I ′ (seen as
a partial Herbrand interpretation, i.e., as a set of ground atoms) that does not
occur in CI′θI′ .

Let I be a partial Herbrand interpretation, and assume that the only weak
failure nodes I ′ in T are such that I ′ ⊆ I. Then T has a unique normal form T ′

for �. Moreover, (CI , θI) still decorates some failure node I ′ in T ′, with I ′ ⊆ I.

Proof. For short, say that T is good if and only if its only weak failure nodes
I ′ are such that I ′ ⊆ I. If T is good, then it can have at most one weak failure
node: either it is normal, and there is nothing to prove, or one finds the weak
failure node I ′ by following the unique branch from the root that goes to the
left of A0

i if −A0
i ∈ I, or to the right if +A0

i ∈ I; since −A0
i or +A0

i is in I ′ ⊆ I,
one of the two cases must happen.

Note that any subtree T ′ of T whose failure nodes are not weak is normal.
Indeed, assume that T ′ contained a redex, say A(Tl, Tr) where Tr does not use A.

108 J. Goubault-Larrecq and J.-P. Jouannaud

Then any failure node I ′ in Tr is such that A does not occur in CI′θI′ , although
+A ∈ I ′, which would imply that I ′ is weak.

If T is good but not normal, then let I ′ ⊆ I be its unique weak failure node.
The only redexes in T must be of the form A(Tl, Tr) with I ′ a leaf of Tl and
Tr normal, or with I ′ a leaf of Tr and Tl normal. Indeed, if I ′ is a leaf of Tl,
then Tr contains no weak failure node, and is therefore normal. The other case
is symmetrical.

Assume T contains a redex of the form A(Tl, Tr) with I ′ a leaf of Tl, and Tr
normal. Let T ′ be obtained from T by contracting this redex, necessarily to Tl.
Let I ′′ be the partial Herbrand interpretation obtained from I ′ by deleting −A.
Clearly, I ′′ is a failure node in T ′, and is decorated with (CI′ , θI′). We claim
that I ′′ is the only weak failure node in T ′, if any. Indeed, for any other weak
failure node I ′′′ in T ′, either I ′′′ or I ′′′ ∪ {−A} was a failure node in T . But
either case implies I ′′′ ⊆ I, since T is good, and I ′′ is the only failure node such
that I ′′ ⊆ I.

In particular, if a good tree rewrites to another tree, then the latter is good.
Among good trees, the relation � has no critical pair: a critical pair would be
a subtree of the form A(Tl, Tr) that we could rewrite both as Tl and as Tr; this
would imply that Tl does not use A, hence that the unique weak failure node I ′

is in Tl, and also, symmetrically, that I ′ is in Tr, contradiction.
So � is convergent on good trees. Since (CI , θI) decorates the only possible

weak failure node in T , and any decoration of the unique weak failure node in a
tree still decorates some failure node in any of its redexes, we conclude. �

Completeness follows. Let S0 be an unsatisfiable set of clauses. It has a decorated
lax tree T = (T,C•, θ•), which we may assume normal by Lemma 5. If the root
of the tree is a failure node, then S0 contains the empty clause. Otherwise, let
C0 be any clause in S0 that decorates some failure node I in T . Taking C0 as the
center clause, Lemma 6 guarantees that we can resolve C0 with some side clause
C′

0 using the rule of linear resolution; C′
0 decorates some other failure node I ′ in

T . Let C1 be the resolvent. Lemma 6 also guarantees us that C1θ is false at I
′ for

some θ. We modify T by redecorating I ′ with the pair C1, θ: we obtain another
decorated lax tree T ′, which may fail to be good, as now the failure node I ′ may
be weak. But this is the only failure node in T ′ that can be weak. So Lemma 7
applies: T ′ has a unique normal form T̂ ′ for �, which is a decorated lax tree for
S0 ∪ {C1}. Moreover, C1 still decorates some failure node in T̂ ′, so that we can
take C2 as new center clause, and repeat the process.

Theorem 2. Linear ordered resolution is complete: given any stable quasi-
ordering �, for any set of clauses S, S is unsatisfiable if and only if we can
derive � by linear ordered resolution.

Proof. It only remains to prove termination, which reduces to showing that
μ(T) (>, (�′

mul)mul)lex μ(T̂ ′), using the above notations. By Lemma 5,

μ(T ′) is larger than or equal to μ(T̂ ′) in (>, (�′
mul)mul)lex, so it remains

to show μ(T) (>, (�′
mul)mul)lex μ(T ′). In turn, this follows from the fact

that μ1(CI′ , θI′)�′
mulμ1(C1, θ), where we write C′

0 = CI′ as ∓A′
1 ∨ C′, C0 as

The Blossom of Finite Semantic Trees 109

±A1 ∨ . . .±Am ∨C, and we let σ, θ be as in Lemma 6, so that the resolvent is
C1 = Cσ ∨ C′σ. This fact is proved as in the ordered resolution with selection
case: μ1(C1, θ) is obtained from the multiset μ1(CI′ , θI′) by replacing one occur-
rence of A = A′

1θI′ by the multiset of atoms BθI , B ∈ C. But A′
1θI′ �′ BθI

(Lemma 6). �

A nice consequence of this new completeness proof is, as for any other proof
obtained by semantic trees, that completeness is easily seen to be retained in
the presence of redundancy elimination techniques.

E.g., we can remove tautologies, because tautologies cannot decorate any fail-
ure node. But this should be understood in a slightly different manner as for
ordinary resolution, because linear resolution is a non-deterministic process. The
completeness argument above shows that there is a way of doing linear resolu-
tion that leads to the empty clause without deriving any tautology as top clause.
So, whenever we use linear resolution and derive a tautology as top clause, we
can immediately stop deriving new clauses and backtrack.

Similarly, we can eliminate linearly subsumed clauses. Backward subsumption
is not an issue here. Forward subsumption is as subtle as tautology elimination:
if the top clause is subsumed, then we can stop and backtrack. Alternately, the
completeness argument shows that we can replace C′ by C′

1, and continue with
C′

1 as the new top clause, thus restarting a proof.
We would like to stress that the tree structure is important here: the above

proof crucially rests on reduction �, which cannot be defined by just considering
the paths of the tree T .

3 Ordered Resolution, Paramodulation and Factoring

We now move to clauses involving the equality predicate.

3.1 Inference Rules

Inference Rules. First, we give inference rules applying to clauses defined as
multisets of atoms: the same atommay appear several times in a clause. A ground
instance of a clause is a true instance, there is no need to apply contractions.
We use also an ordering on atoms extending an ordering � on terms that will
be defined later.

Reflexivity is also called equality resolution in the literature, because it appears
to be a resolution between the clause −u = v∨C and the reflexivity axiom x = x.

This inference system is known to be complete when the ordering is a sta-
ble ordering, which is monotonic, total and well-founded on ground terms, in
which case it must have the subterm property as well. Relaxing any one of these
properties raises the question of what the new inference rule should be. Some
authors [BG01b, BGNR99] keep the same inference rule for paramodulation,
but we prefer another formulation which pinpoints the needed properties of the
ordering in use. This is why we have renamed the paramodulation inference rule

110 J. Goubault-Larrecq and J.-P. Jouannaud

Resolution
+A ∨ C − A′ ∨D

Cσ ∨Dσ
σ = mgu(A = A′);∀B ∈ Cσ ∨Dσ,Aσ
≺ B

Monotonic Paramodulation
C ∨ l = r D ∨ ±A[u]

Cσ ∨Dσ ∨ ±Aσ[rσ]

{
σ = mgu(l = u); ∀B ∈ Cσ, (lσ = rσ)
≺ B
rσ
≺ lσ;∀B ∈ Dσ,Aσ
≺ B

Factoring
+A ∨+A′ ∨ C

+Aσ ∨ Cσ
σ = mgu(A = A′);∀B ∈ Cσ,Aσ
≺ B

Reflexivity
−u = v ∨ C

Cσ
σ = mgu(u = v);∀B ∈ Cσ, (uσ = vσ)
≺ B

Fig. 4. ORMP : Ordered versions of Resolution, Monotonic Paramodulation, Fac-
toring and Reflexivity

Ordered Paramodulation
C ∨ l = r D ∨ ±A[u]

Cσ ∨Dσ ∨ ±Aσ[rσ]

{
σ = mgu(l = u);∀B ∈ Cσ, (lσ = rσ)
≺ B
Aσ
≺ Aσ[rσ];∀B ∈ Dσ,Aσ
≺ B

Fig. 5. Ordered Paramodulation Revisited

as monotonic paramodulation. We introduce now our version of paramodulation,
ordered paramodulation and compare both rules by means of a few examples.

In ordered paramodulation, checking the rule instance has been replaced
by checking the whole rewritten atom: ordered paramodulation coincides with
monotonic paramodulation when the ordering is monotonic, total and well-
founded. We call ORP the set of inference rules made of ordered resolution,
ordered paramodulation, (ordered) factoring and (ordered) reflexivity.

Violating Monotonicity. ORP is incomplete when the ordering on terms
does not satisfy monotonicity. Consider the following unsatisfiable set of ground
clauses

{gb = b, fg2b
= fb} with fg3b � fgb � fb � fg2b � gb � b.

Assuming that the ordering on terms is extended to atoms considered as mul-
tisets by taking its multiset extension, this set of ground unit clauses is closed
under the inference rules inORP . Note that the ordering can be easily completed
so as to satisfy the subterm property on the whole set of ground terms.

Using monotonic ordered paramodulation instead of ordered paramodulation
yields the following set of clauses:

{gb = b, fg2b
= fb , fgb
= fb, fb
= fb, �}

The Blossom of Finite Semantic Trees 111

and ORMP is indeed again complete [BG01b]. Note however that monotonic
ordered paramodulation can be interpreted as ordered paramodulation with an
ordering which is the monotonic extension of the ordering on ground instances
of equality atoms. This ordering is therefore essentially monotonic.

Violating Subterm. ORP turns out to be again incomplete when the or-
dering on terms does not satisfy the subterm property. Consider the following
unsatisfiable set of ground clauses

{a
= fa, fb
= fa, b = fb, a = fb}, with a � b � fa � fb.

This set is closed under ordered paramodulation, resolution, factoring and re-
flexivity, assuming that the ordering on terms is extended to atoms considered
as multisets by taking its multiset extension.

In [BGNR99], the authors show completeness of ORMP for Horn clauses
when using a well-founded ordering which does not have the subterm property
(with a proof which is quite intricate). To compute the set of clauses generated,
we first need to extend the ordering into a well-founded ordering on the whole
set of atoms:

fna � fnb � . . . � f2a � f2b � a � b � fa � fb.

ORMP then yields the following infinite set of clauses:

{a
= fa, fb
= fa, a = fb}∪
{fnb = fmb, a
= fmb, fn+1b
= fm+1b | n ≥ 0,m > 0}∪

{�}.

Indeed, any extension of the ordering would yield the same result, because the
lefthand and righthand sides of equations are compared instead of the atoms
themselves. Therefore, the equations a = fb and b = fb suffice for generating
the whole set.

Subterm Monotonicity Does Not Suffice. We thought for a while that
monotonicity could be restricted to the subterm relationship. Here is an example
showing that this restriction of monotonicity does not ensure completeness:

{fa
= b, a = b, gb = b, fga = b}
with

f2b � f2a � fgb � fga � ga � gb � fb � fa � a � b.

Indeed, we need to paramodulate fga = b by a = b as if fga were bigger than
fgb. In other words, the ordering � must be monotonic on the rewrite relation
induced by the equality atoms s = t generated from the clauses s = t ∨ C in
which s = t is maximal.

112 J. Goubault-Larrecq and J.-P. Jouannaud

3.2 Ordering Terms, Atoms and Clauses

From now on, we assume that % is a stable, partial quasi-ordering on terms
which restricts to a total strict ordering on ground terms which is monotonic and
satisfies the subterm property. As a consequence, it is a simplification ordering,
and is therefore well-founded on any set of terms which is generated from a finite
signature. As another straightforward consequence, ordered paramodulation and
monotonic ordered paramodulation coincide.

We assume further that � is extended to atoms so as to satisfy the following
two properties:

(monotonicity) s � t implies A[s] � A[t] for any atom A[s];
(*) s � t implies A[s] � (s = t) if A is not an equality atom;
(†) � is total on ground equalities.
Note that monotonicity extends monotonicity from terms to atoms. It also

implies that (u[s] = u[t]) � (s = t) if u[]
= [] by the subterm property of �
applied twice and transitivity.

An example of ordering satisfying these properties can be obtained by extend-
ing the ordering � from terms to atoms by letting

P (u) � Q(u) iff (max(u), P, u)(�mul, >P ,�stat(P))lex(max(v), Q, v)

where the precedence >P is a well-founded ordering on the set of predicate
symbols in which the equality predicate is minimal and stat is a function from
P to {lex,mul} such that stat(P) = mul iff P is the equality predicate.

3.3 Herbrand Equality Interpretations

Our goal is now to construct all Herbrand equality interpretations over a finite
set A of ground atoms, which we suppose without loss of generality to be closed
under reflexivity, that is, to contain all atoms s = s such that (s = t) ∈ A
for some t. The total well-founded ordering � allows us to order the finite set
of ground atoms, hence A = {Aj}j<n such that Ai � Aj if and only if i > j
(remember that we do not distinguish s = t from t = s). The enumeration of
the set of ground atoms based on the ordering � provides us with a convenient
characterization of Herbrand equality interpretations, which are then organized
as a finitely branching tree whose vertices at a given depth assign a truth value
to the same ground atom. Interpretations are in one-to-one correspondence with
the branches of the tree.

Unlike the previous usual formulation of Herbrand interpretations, we assume
here for convenience a set of three truth values {U, T, F} where U stands for the
undefined truth value and is used to consider partial interpretations as total
functions over {U, T, F}.

Definition 7. A (partial) Herbrand interpretation I of a finite set A = {Ai}i<n

of ground atoms is a mapping []I from A to the set of truth values {U, T, F}. I
is said to be total whenever its target is the subset {T, F}.

The Blossom of Finite Semantic Trees 113

Note that Herbrand interpretations are defined with respect to a given finite
vocabulary of ground atoms closed under reflexivity. As usual, a partial inter-
pretation I of an initial segment {Ai}i<j≤n of A satisfies [Ak]I = U for all
j ≤ k < n. This is used in particular to represent all total interpretations as-
signing the same truth value among {T, F} to the ground atoms in the initial
segment, in the sense that if a formula φ takes value x ∈ {T, F} in I, it takes
the same value x in all total extensions of I. Here, undefined values may occur
anywhere.

The logical connectives are classically extended to the third truth value by
setting T ∨ U = T, F ∨ U = U, T ∧ U = U, F ∧ U = F and ¬U = U . Inter-
pretations are then extended to propositional formulae over A by taking their
homomorphic extension. Let U < T,U < F be the usual order on truth values,
and < be its natural pointwise extension to partial Herbrand interpretations.
The intuition is that a partial Herbrand interpretation I of A stands for all total
Herbrand interpretations H bigger than I in the order on interpretations.

We now turn our attention to Herbrand equality interpretations. Let EI be
the subset of equalities in A interpreted by T in some Herbrand interpretation
I. Our goal is to define partial Herbrand equality interpretations in a way that
specializes to the total case.

Definition 8. A Herbrand equality interpretation is a Herbrand interpretation
I that is compatible with the axioms of equality, that is:

(i) for any term s, [s = s]I = T ;
(ii) for any two atoms A,B such that A←→∗

EI
B, then [A]I = [B]I ;

(iii) for any two terms s, t such that s←→∗
EI
t and any term u such that

u[s] = u[t] ∈ A, then [u[s] = u[t]]I = T .

Note that the proof from A to B may involve atoms not in A. A similar phe-
nomenon may occur with the proof from s to t. Indeed, the first two conditions
suffice to characterize Herbrand equality interpretations under our assumptions
on � and A:

Lemma 8. A Herbrand interpretation I of A is a Herbrand equality interpre-
tation of A iff

(i) for any ground atom s = s ∈ A, [s = s]I = T ,
(ii) for any two different ground atoms A,B ∈ A such that B � A, [A]I , [B]I ∈

{T, F} and A←→∗
EI
B, then [B]I = [A]I .

Note that no constraint at all is imposed on A,B when [A]I = U or [B]I = U .
In case of a total interpretation, we obtain the usual characterization.

Proof. Clearly, if I is a partial Herbrand equality interpretation, (i) and (ii) must
be satisfied. We need to show the converse.

Assume that s←→∗
EI
t and u[s] = u[t] ∈ A for some u[]. If s and t are identical,

then [u[s] = u[s]]I = T by (i). Otherwise, let s � t. Then, u[s] = u[t]←→∗
EI
u[t] =

u[t] which belongs to A by closure assumption and is smaller than u[s] = u[t] by
property of the ordering. By (ii) and (i), [u[s] = u[t]]I = [u[t] = u[t]]I = T . �

114 J. Goubault-Larrecq and J.-P. Jouannaud

We now verify our intuition that partial Herbrand equality interpretations rep-
resent total ones:

Lemma 9. Let φ be an arbitrary propositional formula over the vocabulary A,
I be a partial Herbrand equality interpretation, and H > I be a total Herbrand
equality interpretation. Then [φ]H = [φ]I iff [φ]I
= U .

We finally capture the idea that there are enough Herbrand equality interpreta-
tions on the one hand, and that a set of ground atoms becomes unsatisfiable in
presence of the axioms of equality:

Definition 9. A set E of Herbrand equality interpretations is complete if every
Herbrand equality interpretation in {T, F}A is smaller than some interpretation
in E in the order of interpretations.

Definition 10. A set S of clauses is said to be E-unsatisfiable if S augmented
with the axioms of equality is unsatisfiable.

The following property of complete sets of Herbrand equality interpretations is
the basis of our completeness proof:

Lemma 10. A set G of ground clauses built from a set A of ground atoms
closed under reflexivity is E-unsatisfiable iff G refutes a complete set of Herbrand
equality interpretations over A.

Proof. Because the axioms of equality cannot refute Herbrand equality interpre-
tations on the one hand, and a ground clause C refuting a partial interpreta-
tion I refutes all total interpretations bigger than I by Lemma 9 on the other
hand. �

We now consider the problem of extending a complete set E of partial Herbrand
equality interpretations over a finite set A of ground atoms into a complete set E ′

of partial Herbrand equality interpretations over A∪{B}. The new set of ground
atoms should of course contain the ground atoms s = s and t = t whenever B is
the ground equality atom s = t. We will assume that s = s and t = t are added
one by one before s = t. The flexibility of partial interpretations allows us to
extend each interpretation in E by exactly one interpretation in E ′:

Definition 11. Given a partial Herbrand equality interpretation I over A, we
define its extension I ′ to A∪ {B} as follows:

1. If B ∈ A, I ′ = I. Otherwise,
2. If B is a ground atom s = s, then [B]I′ = T .
3. If B←→∗

EI
Ai ∈ A with [Ai]I ∈ {T, F}, then [B]I′ = [Ai]I .

4. If B is a ground atom s = t such that there exists Ai
= Aj with [Ai]I =
T, [Aj]I = F and Ai ←→∗

EI∪{s=t}Aj , then [s = t]I′ = F .

5. Otherwise, [B]I′ = U .

Note that Case 4 does not apply when B is strictly bigger than any ground atom
in A since � contains subterm.

The Blossom of Finite Semantic Trees 115

Lemma 11. Assume E is a complete set of partial Herbrand equality interpreta-
tions with respect to A. Then the set E ′ obtained from E by replacing each partial
Herbrand equality interpretation I by its extension I ′ to A ∪ {B} is a complete
set of partial Herbrand equality interpretations with respect to A ∪ {B}.

Assume moreover that some interpretation I ∈ E is refuted by a ground clause
C. Then, its extension I ′ in E ′ is refuted by the same clause C.

Proof. For the first statement, we need to show that every total Herbrand equal-
ity interpretation extending I extends I ′. This follows from Definition 8 and
Lemma 8. The second statement follows from Lemma 9. �

Example 1. Let A be the set {A(a), a = c, A(b), a = b, A(c)} in increasing order,
A being a predicate and a, b, c constants. We give from left to right: the 12 total
Herbrand equality interpretations over the subset {A(a), a = c, A(b), A(c)} of A;
a complete set of 4 partial Herbrand equality interpretations; its extension to A.

A(a) a=c A(b) A(c)

T T T T
T T F T
T F T T
T F T F
T F F T
T F F F
F T T F
F T F F
F F T T
F F T F
F F F T
F F F F

A(a) a=c A(b) A(c)

T U U U
F T U F
F F T U
U F F U

A complete set
of four partial

Herbrand equality
interpretations.

A(a) a=c A(b) a=b A(c)

T U U U U
F T U U F
F F T F U
U F F U U

Its extension
with the
atom
a = b.

As usual, it is convenient to view a given set of Herbrand equality interpreta-
tions as a tree.

Definition 12. Given a set E of partial Herbrand equality interpretations over
the set of ground atoms A = {Ai}i<n ordered by �, we construct the tree of
Herbrand equality interpretations TE by induction on �. Each vertex I in the
tree defines a partial Herbrand equality interpretation I of an initial segment
{Ai}i<j<n of ground atoms enumerated so far and a set EI of equalities inter-
preted by T in I. The vertex I has:

1. a single successor J such that [Aj]J = x in case all interpretations in E
whose restriction coincide on {Ai}i<j assign the same value x to Aj;

2. two or three successors otherwise, depending on the different values assigned
to Ai by the interpretations in E whose restriction coincide on {Ai}i<j<n.

Case 1 applies in particular when Ai is a ground atom of the form s = s for
some term s, in which case [Ai]J = T , or when Aj ←→∗

EI
Ak for some k < j, in

which case [Aj]J = [Ak]I .

116 J. Goubault-Larrecq and J.-P. Jouannaud

It is clear that the set of branches of TE is in one-to-one correspondance with
the set E . This property will be exploited without saying in the rest of the paper.

Definition 13. The tree TE of Herbrand equality interpretations over A is nar-
row iff every internal vertex I has either one successor assigning a truth value
among {U, T, F} to the ground atom A|I|+1, or else two assigning the truth values
among T and F respectively to the ground atom A|I|+1. The set E of interpreta-
tions will be called narrow as well.

Lemma 12. Every complete set E of Herbrand equality interpretations over A
contains a narrow complete set E ′.

Proof. Let I be a internal vertex of TE with a successor J such that [A|I|+1]J =
U . Then, the other successors of I, if any, may be deleted without compromising
completeness. �

Using narrow sets of interpretations makes the undefined truth value useless:
if I has J for single successor assigning the truth value U to the ground atom
A|I|+1, then we can collapse the vertices I and J and omit this ground atom. We
prefer however to keep undefined values because they allow us the possibility of
having a given ground atom interpreted at a given depth in the tree of Herbrand
equality interpretations, all branches therefore having the same length. In other
words, all branches of the tree give a truth value in {U, T, F} to all ground atoms
in A, rather than a truth value in {T, F} to a subset of ground atoms in A as it
is the case in Section 2.4.

3.4 Semantic Trees and Generating Interpretations

In this section, we assume given:

– a finite set of ground atoms A = {AI}i<n closed under reflexivity such that
Ai � Aj iff i > j;

– an E-unsatisfiable set G of ground clauses built from the ground atoms in A
which is closed under positive factoring;

– a complete narrow set E of partial Herbrand equality interpretations over A,
or equivalently, its associated narrow tree TE .

We will say that the triple (A,G, E) (or equivalently (A,G, TE) or even (A,G, TG)
satisfies assumption (*). Note that the two closure properties that we assume
can be enforced without extending the set of ground terms, as would closure of
G under ordered paramodulation.

Definition 14. Given (A,G, TE) satisfying (*), we call failure node any vertex
J of TE for which there exists C ∈ G such that [C]J = F and [C]I = U for
any ancestor I of J . We call semantic tree associated with (A,G, TE) any tree
obtained from TE by replacing a failure node J on each branch of the tree by a
leaf decorated with the associated clause C. We denote it by TG.

The Blossom of Finite Semantic Trees 117

Note that TG is not defined uniquely. This is on purpose, since it will be conve-
nient to consider non-minimal semantic trees in our completeness proof. How-
ever, our definition forces the ground atom enumerated at a failure node to be
either T or F .

Since C is a ground clause, [C]J is defined iff all its atoms are assigned a
truth value in {T, F} by J . Hence, the failure node cannot assign the undefined
truth value U to the last ground atom enumerated at a failure node. Another
consequence, since G is E-unsatisfiable, is that the semantic tree is closed, that
is, all its branches end up in a failure node. As usual, the only clause refuting
the root of the tree is the empty clause.

We now define a specific interpretation G (actually, a class of interpretations)
ending up in a failure node at which an ordered resolution or paramodulation
will always be possible. The idea is that a ground equality atom l = r should
belong to EG, that is, be interpreted in T by G, iff it stems from a ground
instance of a clause l = r ∨ C that can be used to perform a ground ordered
paramodulation. The generating interpretation is of course directly related to
the notion of generated equality of Bachmair and Ganzinger. It pops up very
naturally in the context of semantic trees.

Definition 15. The set of generating interpretations G of a narrow closed se-
mantic tree associated with the triple (A,G, TE) satisfying (*) is defined induc-
tively as follows. Assume some vertex I in the semantic tree is the generating
interpretation constructed so far. If I is a leaf, we are done. Otherwise, let A be
A|I|+1.

1. If I has a unique successor I ′ in the semantic tree, we choose I ′. Otherwise,
let L be its left successor ([A]L = F) and K be its right successor.

2. If A is a ground equality atom and L is not a failure node, then we choose
L.

3. If A is a ground equality atom s = t and L is a failure node, then we choose
K. In this case, the clause s = t ∨ Cθ decorating L is called a generating
clause and s = t is a generated equation.

4. Otherwise, we choose L or K in an arbitrary way, provided that if the chosen
one is a failure node, then the other one must also be a failure node (i.e., we
prefer internal vertices over failure nodes).

We denote by G an arbitrary generating interpretation, and by GenG the set of
generating clauses.

Notice that we need not make any particular choice when the enumerated ground
atom A is not an equality (Case 4), therefore leaving room for improvement. For
example, we could superimpose a selection function as in Section 2. Note also
that we could define generating interpretations for non-narrow trees. The above
definition then shows that we would always need taking the successor J such
that [A]J = U whenever there is one.

In Bachmair and Ganzinger’s work, the generating interpretation is unique, as
well as the set of generating clauses. This is so because they encode predicates as

118 J. Goubault-Larrecq and J.-P. Jouannaud

Boolean functions. Here, the generating interpretation is not unique, but the set
of generating clauses does not depend upon the choice of a particular generating
interpretation: it is easy to see that a clause s = t ∨ Cθ generates the equation
s = t with s � t if s = t is maximal in the clause and is irreducible by the
previously generated equations. (Irreducibility is by the definition of Herbrand
equality interpretations, and the fact that the successor of I is not unique in
this case.) The definition by Bachmair and Ganzinger is slightly different, since
they allow the right hand side t of the equation s = t to be reducible. We
could do that as well, since this becomes important for showing completeness
of the superposition paramodulation strategy. This would not need changing
the definition of generating interpretations: we would only have to collect more
equations along them.

As is standard, we interpret each equation u = v in EG as a rewrite rule
u → v if u � v, or as v → u if v � u (and as any one rule if u = v, which will
not happen).

Lemma 13. Assume that G is a generating interpretation of a narrow closed
semantic tree. Then EG is a canonical set of rewrite rules.

Proof. All the equations s = t in EG must be generated, i.e., produced in Case 3
of Definition 15. Let us use the notations given there. By definition of the tree
of Herbrand equality interpretations, and since I has two successors, s = t is
neither true nor false in EI , in particular s
= t. Since � is total on ground terms,
s � t or t � s. Let us assume s � t.

Let now u = v be another equation in EG. We have just seen that we could
assume u � v. Moreover, by our assumption (†) that � is total on ground
equalities, (u = v) � (s = t), or the converse inequality. By properties of �,
u � s and u � t, hence u is not a subterm of s or of t. It follows that s = t
cannot be reduced by u→ v.

Therefore, s = t is irreducible with respect to EG\{s = t}. Since EG is clearly
terminating, the result follows. �

Lemma 14. Assume that G is a generating interpretation of a narrow closed
semantic tree associated with the triple (A,G, TE) satisfying (*). Assume further
that Ai is reducible by some equation s = t of EG, s � t, meaning that s occurs
as a subterm of Ai. Then there exists a generating clause s = t ∨ Cθ in G such
that:

(i) Ai −→s=tB, with Ai � B,
(ii) (s = t) � A for every atom A of Cθ,
(iii) [Cθ]G = F .

This happens notably when Ai ←→∗
EG

Aj for some j < i: since EG is a canonical
set of rules (Lemma 13), Ai −→∗

G A′ ∗
G ←− Aj for some A′, and Ai % A′,

Aj % A′. Since Ai � Aj , it is impossible that Ai = A′, so Ai must rewrite in at
least one EG step to A′, and the lemma applies.

In case the ordering � is not monotonic, the lemma does not hold anymore,
and reducible atoms may not be reducible by (irreducible) generated equations.

The Blossom of Finite Semantic Trees 119

Our example violating subterm monotonicity shows this behavior for the atom
fga = b which is reducible by ga = a and ga = b, but not by a = b although
a = b reduces ga. It is easy to see that monotonicity is only needed for equations
reducing other equations, that is, for the equations in E .

Proof. (i) is the assumption, plus the fact that � is monotonic. Beware that B
may fail to belong to A.

We are left with (ii) and (iii). Since s = t is in EG, look at the first time it
was added to the generating interpretation in the process of Definition 15. This
must be by Case 3 of this definition, at a point where the current vertex was I,
with two successors K and L, such that [s = t]L = F and L is a failure node for
some generating clause s = t ∨ Cθ.

Since s = t is the last ground atom enumerated by L, it is maximal in the
clause. Since G is closed under positive factoring, we can assume without loss
of generality that (s = t)
∈ Cθ, hence [Cθ]G = [Cθ]I = F and s = t is strictly
bigger than any ground atom in Cθ. �

3.5 Refutational Completeness of ORP
Let S be a set of clauses which is E-unsatisfiable. Our purpose is to show that
ORP is refutationally complete, that is, the empty clause is generated in finite
time from S. To do this, we will reason at the ground level, and use a lifting
argument to relate the ground level with the non-ground level. Lifting is simple
because a ground instance Cθ of a clause is a multiset of ground atoms, therefore
eliminating any need for contraction.

Theorem 3. A set of clauses S is E-unsatisfiable iff the empty clause belongs
to the closure of G under ORP.

Proof. By compactness and Lemma 10, we first choose a finite E-unsatisfiable
set of ground instances of S. Let A be the set of ground atoms occurring in G.
We add to A all ground atoms of the form s = s whenever s = t ∈ A, and close
G under positive factoring. We then compute the set E of Herbrand equality
interpretations over A and organize it as a narrow tree TE . Therefore, the triple
(A,G, TE) satisfies (*). We finally compute the narrow closed semantic tree TG.
This ends up the initialization phase.

We define the complexity of a semantic tree TG to be the multiset of clauses
in TG that decorate its leaves. Complexities are compared in the multiset exten-
sion of �. Since the last ground atom enumerated at a failure node cannot be
undefined, the smallest semantic tree in this order is therefore the empty tree,
decorated by the empty clause.

During the course of the proof, we will perform an operation on the current
triple (A,G, TE) called extension, each time a new clause is added to G; let us
call G′ the new set. First, we recompute the set of ground atoms, let us call
it A′, and complete it as before with the necessary ground atoms s = s. As
before, we also close G under positive factoring. We then extend the complete
set of interpretations E over A into a new complete set E ′′ by adding the ground

120 J. Goubault-Larrecq and J.-P. Jouannaud

atoms in A′ \ A one by one, in increasing order, thanks to Definition 11. By
Lemma 11, E ′′ is complete. By Lemma 12, we now compute E ′ ⊆ E ′′ such that
E ′ is narrow. Therefore, the new triple (A′,G′, TE′) satisfies (*). By Lemma 11,
the interpretations in E ′ are refuted by a subset of the clauses in G ⊆ G′ that
refute the interpretations in E . Since the interpretations in E ′ are in one-to-one
correspondence with those of E , it follows that extensions do not increase the
complexity of the semantic tree.

We now reason by induction on the semantic tree TG . If TG is empty, we
are done. Otherwise, we choose an arbitrary generating interpretation ending
up in a leaf J of TG . By non-emptiness, J has a parent vertex I. By defini-
tion of the semantic tree, J is decorated by a ground clause in G of the form
±P (uθ) ∨ Cθ, where ±P (u) ∨ C is in S. In it, A = P (uθ) is the last ground
atom enumerated by J , hence is larger than or equal to any ground atom in C.
And A is assigned either the value T or the value F in J . Let us assume that
there exists some clause in ORP(G) that refutes some extension J ′ of J to be
defined next, and is strictly smaller than ±P (uθ) ∨Cθ. This clause may involve
new ground atoms (because of paramodulation inferences). We therefore apply
finitely many completion steps resulting in a set of clauses G′ containing G and
the new clause and a semantic tree TG′ . By our assumption, we can replace the
clause ±P (uθ) ∨ Cθ refuting the vertex J ′ extending J by the inferred clause
which is strictly smaller, therefore decreasing the complexity of the semantic
tree. We conclude by induction hypothesis.

It remains to show that our assumption can be fulfilled. By definition of the
generated interpretation, there are four cases:

1. P (uθ) is of the form s = s, in which case I has J as single successor decorated
by ¬s = s∨Cθ � Cθ. By reflexivity, Cθ belongs to ORP(G) and refutes the
interpretation J .

2. P (uθ) is irreducible by EI . Then, I has two successors, L (left) andK (right),
by definition of Herbrand equality interpretations. We claim that both are
failure nodes. If P (uθ) is not an equality atom, then we are in Case 4 of
Definition 15, and the claim is immediate. Otherwise, either Case 2 or Case 3
applies. In Case 2, we must have chosen J = L, contradicting the fact that
J is a failure node. In Case 3, L is a failure node, and we must have chosen
J = K, and we conclude since J is a failure node.

So I has two successors, which are both failure nodes. Both are decorated
by clauses in both of which the ground atom P (uθ) is maximal. Let these
clauses be +P (uθ)∨Cθ and −P (uθ)∨Dθ, in which P (uθ) is strictly bigger
than any ground atom occurring in Cθ. So the resolvent Cθ∨Dθ refutes the
interpretation I.

3. A = P (uθ) is reducible by EI at a non-variable position p of P (u) by an
equation s = t ∈ EI such that s � t, yielding the ground atom A[t]p. By
Lemma 14, s = t is generated by a clause s = t ∨ Dθ such that s = t is
strictly larger than any ground atom in Dθ. Therefore, there is an ordered
paramodulation between s = t∨Dθ and the clause ±A∨Cθ, yielding A[t]p∨
Cθ ∨ Dθ, which therefore belongs to ORP(G). Consider now the tree of

The Blossom of Finite Semantic Trees 121

Herbrand equality interpretations extended from the previous one to the set
of ground atoms A ∪ {A[t]p}. Let I ′, J ′ be the respective extensions of I, J .
Since [s = t]J = T , [A[t]p]J′ = [A[s]p]J′ = [A]J′ = [A]J = F , and since
A = A[s]p � A[t]p, [A[t]p]I′ = F . By Lemma 11, [Cθ]J′ = [Dθ]J′ = F , hence
[Cθ ∨ Dθ]J′ = F , and by the same token as previously [Cθ ∨ Dθ]I′ = F .
Therefore [A[t]p ∨Cθ ∨Dθ]I′ = F .

4. P (uθ) is reducible by EI at a position in θ, hence xθ−→EI
xθ′ for some

variable that occurs in u. We now consider the clause instance +P (uθ′) ∨
Cθ′, which is strictly smaller than the previous one. This case is similar to
the previous one, except that there may be several new ground atoms in
+P (uθ′) ∨Cθ′. �

4 Conclusion

Recasting Ganzinger’s work into the framework of finite semantic trees was an
enriching experience. The logical next step is to consider basic ordered resolution
and paramodulation together with selection strategies via term selection, as done
in [BGLS].

To conclude, we must compare the model generation model with semantic
trees. The implicit answer we give here is that there is no significant difference
between the two. The former does not construct all interpretations, only a rel-
evant one, while the latter describes the relevant one as a maximal branch in
the tree of all interpretations. One main difference is the use of the compactness
argument to make the semantic tree finite. The same could probably be done
with model generation. A second difference is that semantic trees fit our own
intuition better.

Acknowledgments. The authors thank Sergiu Bursuc, Yevgueny Kazarov
from MPI, as well as Michaël Lienhardt, Bruno Marnette, Muriel Roger and
Kumar Neeraj Verma from ENS Cachan for their remarks. Thanks also go to
the anonymous referees.

References

[Ake78] Akers, S.B.: Functional testing with binary decision diagrams. In: Eighth
Annual Conference on Fault-Tolerant Computing, pp. 75–82 (1978)

[BD94] Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs and
proof orderings. Journal of the ACM 41(2), 236–276 (1994)

[BG01a] Bachmair, L., Ganzinger, H.: Resolution Theorem Proving, vol. I, ch. 2,
pp. 19–99. North-Holland (2001), [RV01b]

[BG01b] Bofill, M., Godoy, G.: On the Completeness of Arbitrary Selection Strate-
gies for Paramodulation. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, pp. 951–962. Springer, Heidelberg (2001)

[BGLS] Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic Paramodula-
tion and Superposition. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI),
vol. 607, pp. 462–476. Springer, Heidelberg (1992)

122 J. Goubault-Larrecq and J.-P. Jouannaud

[BGNR99] Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation with
non-monotonic orderings. In: Proc. 14th IEEE Symposium on Logics in
Computer Science (LICS 1999), pp. 225–233. IEEE Computer Society
Press (1999)

[CL73] Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem
Proving. Computer Science Classics. Academic Press (1973)

[dN95] de Nivelle, H.: Ordering Refinements of Resolution. PhD thesis, Technis-
che Universiteit Delft (1995)

[GL05] Goubault-Larrecq, J.: Deciding H1 by resolution. Information Processing
Letters (2005) (to appear)

[GLRV04] Jean Goubault-Larrecq, Muriel Roger, and Kumar Neeraj Verma. Ab-
straction and resolution modulo AC: How to verify Diffie-Hellman-like
protocols automatically. J. Logic and Algebraic Programming (2004)
(to appear)

[HR86] Hsiang, J., Rusinowitch, M.: A New Method for Establishing Refutational
Completeness in Theorem Proving. In: Siekmann, J.H. (ed.) CADE 1986.
LNCS, vol. 230, pp. 141–152. Springer, Heidelberg (1986)

[HR91] Hsiang, J., Rusinowitch, M.: Proving refutational completeness of
theorem-proving strategies: The transfinite semantic tree method. Journal
of the ACM 38(3), 559–587 (1991)

[Joy76] Joyner Jr., W.H.: Resolution strategies as decision procedures. Journal of
the ACM 23(3), 398–417 (1976)

[Kow69] Kowalski, R.: Semantic trees in automatic theorem-proving. Machine In-
telligence 4, 86–101 (1969)

[RV01a] Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Nebel, B.
(ed.) Proc. 17th Intl. Joint Conf. Artificial Intelligence, vol. 1, pp. 611–617.
Morgan Kaufmann (August 2001)

[RV01b] Alan Robinson, J., Voronkov, A. (eds.): Handbook of Automated Rea-
soning. North-Holland (2001)

[SV05] Seidl, H., Verma, K.N.: Flat and One-Variable Clauses: Complexity of
Verifying Cryptographic Protocols with Single Blind Copying. In: Baader,
F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 79–94.
Springer, Heidelberg (2005)

[WBH+02] Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C.,
Topic, D.: SPASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS
(LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)

Functional Logic Programming:

From Theory to Curry�

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Functional logic programming languages combine the most
important declarative programming paradigms, and attempts to com-
bine these paradigms have a long history. The declarative multi-paradigm
language Curry is influenced by recent advances in the foundations and
implementation of functional logic languages. The development of Curry
is an international initiative intended to provide a common platform
for the research, teaching, and application of integrated functional logic
languages. This paper surveys the foundations of functional logic pro-
gramming that are relevant for Curry, the main features of Curry, and
extensions and applications of Curry and functional logic programming.

1 Introduction

Compared to traditional imperative languages, functional as well as logic lan-
guages provide a higher and more abstract level of programming that leads to
reliable and maintainable programs. Although the motivations are similar in
both paradigms, the concrete languages differ due to their different foundations,
namely the lambda calculus and first-order predicate logic. Thus, it is a natu-
ral idea to combine these worlds of programming into a single paradigm, and
attempts for doing so have a long history. However, the interactions between
functional and logic programming features are complex in detail so that the
concrete design of an integrated functional logic language is a non-trivial task.
This is demonstrated by a lot of research work on the semantics, operational
principles, and implementation of functional logic languages since more than
two decades. Fortunately, recent advances in the foundation and implementation
of functional logic languages have shown reasonable principles that lead to the
design of practically applicable programming languages. The declarative multi-
paradigm language Curry1 [69,92] is based on these principles. It is developed by
an international initiative of researchers in this area and intended to provide a
common platform for the research, teaching, and application of integrated func-
tional logic languages. This paper surveys the foundations of functional logic
programming that are relevant for Curry, design decisions and main features of

� This work was partially supported by the German Research Council (DFG) under
grants Ha 2457/5-1 and Ha 2457/5-2 and the NSF under grant CCR-0218224.

1 http://www.curry-language.org

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 123–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.curry-language.org

124 M. Hanus

Curry, implementation techniques, and extensions and applications of functional
logic programming.

Since this paper is intended to be a compact survey, not all of the numerous
papers in this area can be mentioned and the relevant topics are only sketched.
Interested readers might look into the cited references for more details. In par-
ticular, there exist other surveys on particular topics related to this paper. [66]
is a survey on the development and the implementation of various evaluation
strategies for functional logic languages that have been explored until more than
a decade ago. [15] contains a good survey on more recent evaluation strategies
and classes of functional logic programs. The survey [119] is more specialized
but reviews the efforts to integrate constraints into functional logic languages.

The rest of this paper is structured as follows. The next main section in-
troduces and reviews the foundations of functional logic programming that are
used in current functional logic languages. Section 3 discusses important aspects
of the language Curry. Section 4 surveys the efforts to implement Curry and
related functional logic languages. Sections 5 and 6 contain references to fur-
ther extensions and applications of functional logic programming, respectively.
Finally, Section 7 contains our conclusions with notes about related languages.

2 Foundations of Functional Logic Programming

2.1 Basic Concepts

Functional logic languages are intended to combine the most important fea-
tures of functional languages (algebraic data types, polymorphic typing, demand-
driven evaluation, higher-order functions) and logic languages (computing with
partial information, constraint solving, nondeterministic search for solutions). A
functional program is a set of functions or operations defined by equations or
rules. A functional computation consists of replacing subexpressions by equal
(w.r.t. the defining equations) subexpressions until no more replacements (or
reductions) are possible and a value or normal form is obtained. For instance,
consider the operation double defined by2

double x = x + x

The expression “double 1” is replaced by 1+1. The latter can be replaced by
2 if we interpret the operator “+” to be defined by an infinite set of equations,
e.g., 1+1 = 2, 1+2 = 3, etc (we will discuss the handling of such operations later).
In a similar way, one can evaluate nested expressions (where the replaced subex-
pression is underlined):

double (1+2) → (1+2)+(1+2) → 3+(1+2) → 3+3 → 6

2 For concrete examples in this paper, we use the Curry syntax which is very similar
to the syntax of Haskell [117], i.e., (type) variables and function names usually start
with lowercase letters and the names of type and data constructors start with an
uppercase letter. The application of an operation f to an expression e is denoted by
juxtaposition (“f e”). Moreover, binary operators like “+” are written infix.

Functional Logic Programming: From Theory to Curry 125

There is also another order of evaluation if we replace the arguments of operators
from right-to-left:

double (1+2) → (1+2)+(1+2) → (1+2)+3 → 3+3 → 6

In this case, both derivations lead to the same result. This indicates a funda-
mental property of declarative languages: the value of a computed result does
not depend on the order or time of evaluation due to the absence of side effects.
This simplifies the reasoning about and maintenance of declarative programs.

Obviously, these are not all possible evaluation orders. Another one is obtained
by evaluating the argument of double before applying its defining equation:

double (1+2) → double 3 → 3+3 → 6

In this case, we obtain the same result with less evaluation steps. This leads to
questions about appropriate evaluation strategies, where a strategy can be con-
sidered as a function that determines for an expression the next subexpression
to be replaced: Which strategies are able to compute values for which classes
of programs? As we will see, there are important differences in case of recur-
sive programs. If there are several strategies, which strategies are better w.r.t.
the number of evaluation steps, implementation effort, etc? Many works in the
area of functional logic programming have been devoted to finding appropriate
evaluation strategies. A detailed account of the development of such strategies
can be found in [66]. In the following, we will only survey the strategies that are
relevant for current functional logic languages.

Although functional languages are based on the lambda calculus that is purely
based on function definitions and applications, modern functional languages offer
more features for convenient programming. In particular, they support the def-
inition of algebraic data types by enumerating their constructors. For instance,
the type of Boolean values consists of the constructors True and False that are
declared as follows:

data Bool = True | False

Operations on Booleans can be defined by pattern matching, i.e., by providing
several equations for different argument values:

not True = False

not False = True

The principle of replacing equals by equals is still valid provided that the actual
arguments have the required form, e.g.:

not (not False) → not True → False

More complex data structures can be obtained by recursive data types. For
instance, a list of elements, where the type of elements is arbitrary (denoted by
the type variable a), is either the empty list “[]” or the non-empty list “x:xs”
consisting of a first element x and a list xs. Hence, lists can be defined by

data List a = [] | a : List a

126 M. Hanus

For conformity with Haskell, the type “List a” is usually written as [a] and
finite lists e1:e2:. . .:en:[] are written as [e1,e2,. . .,en]. We can define opera-
tions on recursive types by inductive definitions where pattern matching supports
the convenient separation of the different cases. For instance, the concatenation
operation “++” on polymorphic lists can be defined as follows (the optional type
declaration in the first line specifies that “++” takes two lists as input and pro-
duces an output list, where all list elements are of the same unspecified type):

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs++ys

Beyond its application for various programming tasks, the operation “++” is also
useful to specify the behavior of other operations on lists. For instance, the be-
havior of an operation last that yields the last element of a list can be specified
as follows: for all lists l and elements e, last l = e iff ∃xs : xs ++[e] = l.3 Based
on this specification, one can define an operation and verify that this definition
satisfies the given specification (e.g., by inductive proofs as shown in [34]). This
is one of the situations where functional logic languages become handy. Simi-
larly to logic languages, functional logic languages provide search for solutions
for existentially quantified variables. In contrast to pure logic languages, they
support equation solving over nested functional expressions so that an equation
like xs ++[e] = [1,2,3] is solved by instantiating xs to the list [1,2] and e to
the value 3. For instance, in Curry one can define the operation last as follows:

last l | xs++[e]=:= l = e where xs,e free

Here, the symbol “=:=” is used for equational constraints in order to provide
a syntactic distinction from defining equations. Similarly, extra variables (i.e.,
variables not occurring in the left-hand side of the defining equation) are ex-
plicitly declared by “where...free” in order to provide some opportunities to
detect bugs caused by typos. A conditional equation of the form l | c = r is
applicable for reduction if its condition c has been solved. In contrast to purely
functional languages where conditions are only evaluated to a Boolean value,
functional logic languages support the solving of conditions by guessing values
for the unknowns in the condition. As we have seen in the previous example,
this reduces the programming effort by reusing existing operations and allows
the direct translation of specifications into executable program code. The im-
portant question to be answered when designing a functional logic language is:
How are conditions solved and are there constructive methods to avoid a blind
guessing of values for unknowns? This is the purpose of narrowing strategies
that are discussed next.

3 The exact meaning of the equality symbol is omitted here since it will be discussed
later.

Functional Logic Programming: From Theory to Curry 127

2.2 Narrowing

Techniques for goal solving are well developed in the area of logic programming.
Since functional languages advocate the equational definition of operations, it
is a natural idea to integrate both paradigms by adding an equality predicate
to logic programs, leading to equational logic programming [93,115,116]. On the
operational side, the resolution principle of logic programming must be extended
to deal with replacements of subterms. Narrowing, originally introduced in auto-
mated theorem proving [125], is a constructive method to deal with such replace-
ments. For this purpose, defining equations are interpreted as rewrite rules that
are only applied from left to right (as in functional programming). In contrast
to functional programming, the left-hand side of a defining equation is unified
with the subterm under evaluation. In order to provide more detailed defini-
tions, some basic notions of term rewriting [31,48] are briefly recalled. Although
the theoretical part uses notations from term rewriting, its mapping into the
concrete programming language syntax should be obvious.

Since we ignore polymorphic types in the theoretical part of this paper, we
consider a many-sorted signature Σ partitioned into a set C of constructors and a
set F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F for n-
ary constructor and operation symbols, respectively. Given a set of variables X ,
the set of terms and constructor terms are denoted by T (C∪F ,X) and T (C,X),
respectively. The set of variables occurring in a term t is denoted by Var(t). A
term t is ground if Var(t) = ∅. A term is linear if it does not contain multiple
occurrences of one variable. A term is operation-rooted (constructor-rooted) if its
root symbol is an operation (constructor). A head normal form is a term that is
not operation-rooted, i.e., a variable or a constructor-rooted term.

A pattern is a term of the form f(d1, . . . , dn) where f/n ∈ F and d1, . . . , dn ∈
T (C,X). A term rewriting system (TRS) is set of rewrite rules, where an (uncon-
ditional) rewrite rule is a pair l → r with a linear pattern l as the left-hand side
(lhs) and a term r as the right-hand side (rhs). Note that this definition reflects
the specific properties of functional logic programs. Traditional term rewriting
systems [48] differ from this definition in the following points:

1. We have required that the left-hand sides must be linear patterns. Such
rewrite systems are also called constructor-based and exclude rules like

(xs ++ ys) ++ zs = xs ++ (ys ++zs) (assoc)
last (xs ++ [e]) = e (last)

Although this seems to be a restriction when one is interested in writing
equational specifications, it is not a restriction from a programming lan-
guage point of view, since functional as well as logic programming languages
enforces the same requirement (although logic languages do not require lin-
earity of patterns, this can be easily obtained by introducing new variables
and adding equations for them in the condition; conditional rules are dis-
cussed below). Often, non-constructor-based rules specify properties of op-
erations rather than providing a constructive definition (compare rule assoc
above that specifies the associativity of “++”), or they can be transformed

128 M. Hanus

into constructor-based rules by moving non-constructor terms in left-hand
side arguments into the condition (e.g., rule last). Although there exist nar-
rowing strategies for non-constructor-based rewrite rules (see [66,116,125] for
more details), they often put requirements on the rewrite system that are too
strong or difficult to check in universal programming languages, like termi-
nation or confluence. An important insight from recent works on functional
logic programming is that the restriction to constructor-based programs is
quite reasonable since this supports the development of efficient and practi-
cally useful evaluation strategies (see below). Although narrowing has been
studied for more general classes of term rewriting systems, those extensions
are often applied to areas like theorem proving rather than programming
(e.g., [52]).

2. Traditional rewrite rules l → r require that Var(r) ⊆ Var(l). A TRS where
all rules satisfy this restriction is also called a TRS without extra variables.4

Although this makes sense for rewrite-based languages, it limits the expres-
sive power of functional logic languages (see the definition of last in Sec-
tion 2.1). Therefore, functional logic languages usually do not have this vari-
able requirement, although some theoretical results have only been proved
under this requirement.

In order to formally define computations w.r.t. a TRS, we need a few further
notions. A position p in a term t is represented by a sequence of natural numbers.
Positions are used to identify particular subterms. Thus, t|p denotes the subterm
of t at position p, and t[s]p denotes the result of replacing the subterm t|p by
the term s (see [48] for details). A substitution is an idempotent mapping σ :
X → T (C ∪ F ,X) where the domain Dom(σ) = {x ∈ X | σ(x)
= x} is finite.
Substitutions are obviously extended to morphisms on terms. We denote by
{x1 �→ t1, . . . , xn �→ tn} the substitution σ with σ(xi) = ti (i = 1, . . . , n) and
σ(x) = x for all other variables x. A substitution σ is constructor (ground
constructor), if σ(x) is a constructor (ground constructor) term for all x ∈
Dom(σ).

A rewrite step t →p,R t′ (in the following, p and R will often be omitted
in the notation of rewrite and narrowing steps) is defined if p is a position in
t, R = l → r is a rewrite rule with fresh variables,5 and σ is a substitution
with t|p = σ(l) and t′ = t[σ(r)]p. The instantiated lhs σ(l) is also called a redex
(reducible expression). A term t is called irreducible or in normal form if there is

no term s with t→ s.
∗→ denotes the reflexive and transitive closure of a relation

→.
Rewrite steps formalize functional computation steps with pattern matching

as introduced in Section 2.1. The goal of a sequence of rewrite steps is to compute

4 In case of conditional rules, which are discussed later, the condition is considered as
belonging to the right-hand side so that variables occurring in the condition but not
in the left-hand side are also extra variables.

5 In classical traditional term rewriting, fresh variables are not used when a rule is
applied. Since we consider also rules containing extra variables in right-hand sides,
it is important to replace them by fresh variables when the rule is applied.

Functional Logic Programming: From Theory to Curry 129

a normal form. A rewrite strategy determines for each rewrite step a rule and a
position for applying the next step. A normalizing strategy is one that terminates
a rewrite sequence in a normal form, if it exists. Note, however, that normal
forms are not necessarily the interesting results of functional computations, as
the following example shows.

Example 1. Consider the operation

idNil [] = []

that is the identity on the empty list but undefined for non-empty lists. Then,
a normal form like “idNil [1]” is usually considered as an error rather than a
result. Actually, Haskell reports an error for evaluating the term “idNil [1+2]”
rather than delivering the normal form “idNil [3]”. �

Therefore, the interesting results of functional computations are constructor
terms that will be also called values. Evaluation strategies used in functional
programming, such as lazy evaluation, are not normalizing, as the previous ex-
ample shows.

Functional logic languages are able to do more than pure rewriting since they
instantiate variables in a term (also called free or logic variables) so that a rewrite
step can be applied. The combination of variable instantiation and rewriting is
called narrowing. Formally, t�p,R,σ t

′ is a narrowing step if p is a non-variable
position in t (i.e., t|p is not a variable) and σ(t) →p,R t′. Since the substitution
σ is intended to instantiate the variables in the term under evaluation, one often
restricts Dom(σ) ⊆ Var(t). We denote by t0 �∗

σ tn a sequence of narrowing
steps t0 �σ1 . . . �σn tn with σ = σn ◦ · · · ◦ σ1 (where σ = {} in the case of
n = 0). Since in functional logic languages we are interested in computing values
(constructor terms) as well as answers (substitutions), we say that the narrowing
derivation t�∗

σ c computes the value c with answer σ if c is a constructor term.
The above definition of narrowing is too general for a realistic implementation

since it allows arbitrary instantiations of variables in the term under evaluation.
Thus, all possible instantiations must be tried in order to compute all possible
values and answers. Obviously, this does not lead to a practical implementation.
Therefore, older narrowing strategies (see [66] for a detailed account) were in-
fluenced by the resolution principle and required that the substitution used in a
narrowing step must be a most general unifier of t|p and the left-hand side of the
applied rule. As shown in [19], this condition prevents the development of opti-
mal evaluation strategies. Therefore, most recent narrowing strategies relax this
traditional requirement but provide another constructive method to compute a
small set of unifiers in narrowing steps, as we will see below. The next example
shows the non-optimality of narrowing with most general unifiers.

Example 2. Consider the following program containing a declaration of natural
numbers in Peano’s notation and two operations for addition and a “less than
or equal” test (the pattern “_” denotes an unnamed anonymous variable):

data Nat = O | S Nat

130 M. Hanus

add O y = y

add (S x) y = S (add x y)

leq O _ = True (leq1)
leq (S _) O = False (leq2)
leq (S x) (S y) = leq x y (leq3)

Consider the initial term “leq v (add w O)” where v and w are free variables.
By applying rule leq1, v is instantiated to O and the result True is computed:

leq v (add w O) �{v
→O} True

Further answers can be obtained by instantiating v to (S...). This requires the
evaluation of the subterm (add w O) in order to allow the application of rule
leq2 or leq3. For instance, the following narrowing derivation computes the value
False with answer {v �→ S z, w �→ O}:

leq v (add w O) �{w
→O} leq v O �{v
→S z} False

However, we can also apply rule leq1 in the second step of the previous narrowing
derivation and obtain the following derivation:

leq v (add w O) �{w
→O} leq v O �{v
→O} True

Obviously, the last derivation is not optimal since it computes the same value
as the first derivation with a less general answer and needs one more step. This
derivation can be avoided by instantiating variable v to S z in the first narrowing
step:

leq v (add w O) �{v
→S z, w
→O} leq (S z) O

Now, rule leq1 is no longer applicable, as intended. However, this first narrow-
ing step contains a substitution that is not a most general unifier between the
evaluated subterm (add w 0) and the left-hand side of some rule for add. �

Needed Narrowing. The first narrowing strategy that advocated the use of
non-most general unifiers and for which optimality results have been shown is
needed narrowing [19]. Furthermore, needed narrowing steps can be efficiently
computed. Therefore, it has become the basis of modern functional logic lan-
guages.6

Needed narrowing is based on the idea to perform only narrowing steps that
are in some sense necessary to compute a result (such strategies are also called
lazy or demand-driven). For doing so, it analyzes the left-hand sides of the rewrite
rules of an operation under evaluation (starting from an outermost operation).
If there is an argument position where all left-hand sides are constructor-rooted,
the corresponding actual argument must be also rooted by one of the constructors
in order to apply a rewrite step. Thus, the actual argument is evaluated to head

6 Concrete languages and implementations add various extensions in order to deal
with larger classes of programs that will be discussed later.

Functional Logic Programming: From Theory to Curry 131

normal form if it is operation-rooted and, if it is a variable, nondeterministically
instantiated with some constructor.

Example 3. Consider again the program of Example 2. Since the left-hand sides
of all rules for leq have a constructor-rooted first argument, needed narrowing
instantiates the variable v in “leq v (add w 0)” to either O or S z (where z is a
fresh variable). In the first case, only rule leq1 becomes applicable. In the second
case, only rules leq2 or leq3 become applicable. Since the latter rules have both
a constructor-rooted term as the second argument, the corresponding subterm
(add w 0) is recursively evaluated to a constructor-rooted term before applying
one of these rules. �

Since there are TRSs with rules that do not allow such a reasoning, needed
narrowing is defined on the subclass of inductively sequential TRSs. This class
can be characterized by definitional trees [12] that are also useful to formal-
ize and implement various narrowing strategies. Since only the left-hand sides
of rules are important for the applicability of needed narrowing, the following
characterization of definitional trees [13] considers patterns partially ordered by
subsumption (the subsumption ordering on terms is defined by t ≤ σ(t) for a
term t and substitution σ).

A definitional tree of an operation f is a non-empty set T of linear patterns
partially ordered by subsumption having the following properties:

Leaves property: The maximal elements of T , called the leaves, are exactly the
(variants of) the left-hand sides of the rules defining f . Non-maximal ele-
ments are also called branches.

Root property: T has a minimum element, called the root, of the form
f(x1, . . . , xn) where x1, . . . , xn are pairwise distinct variables.

Parent property: If π ∈ T is a pattern different from the root, there exists a
unique π′ ∈ T , called the parent of π (and π is called a child of π′), such
that π′ < π and there is no other pattern π′′ ∈ T (C∪F ,X) with π′ < π′′ < π.

Induction property: All the children of a pattern π differ from each other only
at a common position, called the inductive position, which is the position of
a variable in π.7

An operation is called inductively sequential if it has a definitional tree and its
rules do not contain extra variables. A TRS is inductively sequential if all its
defined operations are inductively sequential. Intuitively, inductively sequential
functions are defined by structural induction on the argument types. Purely
functional programs and the vast majority of operations in functional logic pro-
grams are inductively sequential. Thus, needed narrowing is applicable to most
operations, although extensions are useful for particular operations (see below).

It is often convenient and simplifies the understanding to provide a graphic
representation of definitional trees, where each inner node is marked with a pat-
tern, the inductive position in branches is surrounded by a box, and the leaves

7 There might be more than one potential inductive position when constructing a
definitional tree. In this case one can select any of them since the results about
needed narrowing do not depend on the selected definitional tree.

132 M. Hanus

leq O x2 = True leq (S x) x2

leq (S x) O = False leq (S x) (S y)
= leq x y

leq x1 x2

�
�

��

	
	
		

�
�

��

	
	
		

add O x2 = x2 add (S x) x2
= S (add x x2)

add x1 x2

�
�

��

	
	
		

Fig. 1. Definitional trees of the operations add and leq

contain the corresponding rules. For instance, the definitional trees of the opera-
tions add and leq, defined in Example 2, are illustrated in Figure 1. Definitional
trees have also a strong correspondence to traditional pattern matching by case
expressions in functional languages, as we will see later.

The formal definition of needed narrowing is based on definitional trees and
can be found in [19]. A definitional tree can be computed at compile time (see
[15,69] for algorithms to construct definitional trees) and contains all information
for the efficient implementation of the decisions to be made at run time (compare
Example 3). Intuitively, a needed narrowing step is applied to an operation-
rooted term t by considering a definitional tree (with fresh variables) for the
operation at the root. The tree is recursively processed from the root until one
finds a maximal pattern that unifies with t. Thus, to compute a needed narrowing
step, one starts with the root pattern of the definitional tree and performs at
each level with pattern π the following case distinction:

– If π is a leaf, we apply the corresponding rule.
– If π is a branch and p its inductive position, we consider the corresponding

subterm t|p:
1. If t|p is rooted by a constructor c and there is a child π′ of π having c at

the inductive position, we proceed by examining π′. If there is no such
child, we fail, i.e., no needed narrowing step is applicable.

2. If t|p is a variable, we nondeterministically instantiate this variable by
the constructor term at the inductive position of a child π′ of π and
proceed with π′.

3. If t|p is operation-rooted, we recursively apply the computation of a
needed narrowing step to σ(t|p), where σ is the instantiation of the vari-
ables of t performed in the previous case distinctions.

As discussed above, the failure to compute a narrowing step in case (1) is not
a weakness but advantageous when we want to compute values. For instance,
consider the term t = idNil [1+2] where the operation idNil is as defined
in Example 1. A normalizing strategy performs a step to compute the normal
form idNil [3] whereas needed narrowing immediately fails since there exists
no value as a result. Thus, the early failure of needed narrowing avoids wasting
resources.

Functional Logic Programming: From Theory to Curry 133

As a consequence of the previous behavior, the properties of needed narrowing
are stated w.r.t. constructor terms as results. In particular, the equality symbol
“=:=” in goals is interpreted as the strict equality on terms, i.e., the equation
t1 =:= t2 is satisfied iff t1 and t2 are reducible to the same ground constructor
term. In contrast to the mathematical notion of equality as a congruence rela-
tion, strict equality is not reflexive. Similarly to the notion of result values, this
is intended in programming languages where an equation between functional ex-
pressions that do not have a value, like “idNil [1] =:= idNil [1]”, is usually
not considered as true. Furthermore, normal forms or values might not exist
(note that we do not require terminating rewrite systems) so that reflexivity is
not a feasible property of equational constraints (see [60] for a more detailed
discussion on this topic).

Strict equality can be defined as a binary operation by the following set of
(inductively sequential) rewrite rules. The constant Success denotes a solved
(equational) constraint and is used to represent the result of successful evalua-
tions.8

c =:= c = Success ∀c/0 ∈ C
c x1 . . . xn =:= c y1 . . . yn = x1=:=y1 &...& xn=:=yn ∀c/n ∈ C, n > 0
Success & Success = Success

Thus, it is sufficient to consider strict equality as any other operation. Concrete
functional logic languages provide more efficient implementations of strict equal-
ity where variables can be bound to other variables instead of instantiating them
to ground terms (see also Section 3.2).

Now we can state the main properties of needed narrowing. A (correct) solu-
tion for an equation t1 =:= t2 is a constructor substitution σ (note that construc-
tor substitutions are desired in practice since a broader class of solutions would
contain unevaluated or undefined expressions) if σ(t1) =:=σ(t2)

∗→ Success.
Needed narrowing is sound and complete, i.e., all computed solutions are correct
and for each correct solution a possibly more general one is computed, and it
does not compute redundant solutions in different derivations:

Theorem 1 ([19]). Let R be an inductively sequential TRS and e an equation.

1. (Soundness) If e�∗
σ Success is a needed narrowing derivation, then σ is a

solution for e.
2. (Completeness) For each solution σ of e, there exists a needed narrowing

derivation e�∗
σ′ Success with σ′(x) ≤ σ(x) for all x ∈ Var(e).

3. (Minimality) If e �∗
σ Success and e �∗

σ′ Success are two distinct needed
narrowing derivations, then σ and σ′ are independent on Var(e), i.e., there
is some x ∈ Var(e) such that σ(x) and σ′(x) are not unifiable.

Furthermore, in successful derivations, needed narrowing computes only steps
that are necessary to obtain the result and, consequently, it computes the shortest

8 Since narrowing is used to solve equations, it does not compute solutions such that an
equation is not satisfied. This is the motivation to use the specific constant Success
rather than the Boolean values True and False as the outcome of equation solving.

134 M. Hanus

of all possible narrowing derivations if derivations on common subterms are
shared (a standard implementation technique in non-strict functional languages)
[19, Corollary 1]. Needed narrowing is currently the only narrowing strategy with
such strong results. Therefore, it is an adequate basis for modern functional
logic languages, although concrete implementations support extensions that are
discussed next.

Weakly Needed Narrowing. Inductively sequential TRS are a proper sub-
class of (constructor-based) TRSs. Although the majority of function definitions
is inductively sequential, there are also operations where it is more convenient
to relax this requirement. The next interesting superclass are weakly orthogonal
TRSs. These are rewrite systems where left-hand sides can overlap in a semanti-
cally trivial way. Formally, a TRS without extra variables (recall that we consider
only left-linear constructor-based rules) is weakly orthogonal if σ(r1) = σ(r2) for
all (variants of) rules l1 → r1 and l2 → r2 and substitutions σ with σ(l1) = σ(l2).

Example 4. A typical example of a weakly orthogonal TRS is the parallel-or,
defined by the rules:

or True _ = True (or1)
or _ True = True (or2)
or False False = False (or3)

A term like “or s t” could be reduced to True whenever one of the arguments
s or t evaluates to True. However, it is not clear which of the arguments should
be evaluated first, since any of them could result in a nonterminating rewriting
or narrowing derivation. or has no definitional tree and, thus, needed narrowing
cannot be applied. �

In rewriting, several normalizing strategies for weakly orthogonal TRSs have
been proposed, such as parallel outermost [114] or weakly needed [122] rewriting
that are based on the idea to replace several redexes in parallel in one step.
Since strategies for functional logic languages already support nondeterminis-
tic evaluations, one can exploit this feature to extend needed narrowing to a
weakly needed narrowing strategy. The basic idea is to generalize the notion of
definitional trees to include or-branches which conceptually represent a union
of definitional trees [12,18,100]. If such an or-branch is encountered during the
evaluation of a narrowing step, weakly needed narrowing performs a nondeter-
ministic guess and proceeds with the subtrees below the or-branches.

Example 5. Consider again the rules for the operation or shown in Example 4
and the operation f defined by

f O = True

One can construct separate definitional trees for the rule sets {or1, or3} and
{or2} and join them by an or-branch. Then there are the following different
weakly needed narrowing derivations based on this generalized definitional tree
for the term “or (f x) (f x)”:

Functional Logic Programming: From Theory to Curry 135

or (f x) (f x) �{x
→O} or True (f O) �{} True

or (f x) (f x) �{x
→O} or True (f O) �{} or True True �{} True

or (f x) (f x) �{x
→O} or (f O) True �{} or True True �{} True

or (f x) (f x) �{x
→O} or (f O) True �{} True

�

Obviously, weakly needed narrowing is no longer optimal in the sense of needed
narrowing. However, it is sound and complete for weakly orthogonal TRS in the
sense of Theorem 1 [18].

Weakly needed narrowing can be improved by computing weakly needed nar-
rowing steps in parallel, discarding steps with non-minimal substitutions and
replacing several outermost redexes in parallel. The resulting strategy, called
parallel narrowing [18], computes only one derivation for Example 5 and has the
general property (beyond soundness and completeness) that it behaves deter-
ministically (i.e., without choices) on ground terms. However, the computation
of parallel narrowing steps is quite complex (see [18] for details) so that it has
not been integrated in existing functional logic languages, in contrast to weakly
needed narrowing that is implemented in languages such as Curry [69,92] or
TOY [101].

Overlapping Inductively Sequential Systems. Inductively sequential and
weakly orthogonal TRSs are confluent, i.e., each term has at most one normal
form. This property is sensible for functional languages since it ensures that
operations are well defined (partial) functions in the mathematical sense. Since
the operational mechanism of functional logic languages is more powerful due
to its built-in search mechanism, in this context it makes sense to consider also
operations defined by non-confluent TRSs. Such operations are also called non-
deterministic. The prototype of such a nondeterministic operation is a binary
operation “?” that returns one of its arguments:

x ? y = x

x ? y = y

Thus, the expression “0 ? 1” has two possible results, namely 0 or 1.
Since functional logic languages already handle nondeterministic computa-

tions, they are also capable of dealing with such nondeterministic operations. To
provide a reasonable semantics for functional logic programs, constructor-based
rules are sufficient but confluence is not required [62]. If operations are inter-
preted as mappings from values into sets of values (actually, due to the presence
of recursive non-strict operations, algebraic structures with cones of partially
ordered sets are used instead of sets, see [62] for details), one can provide model-
theoretic and proof-theoretic semantics with the usual properties (minimal term
models, equivalence of model-theoretic and proof-theoretic solutions, etc). Thus,
functional logic programs with nondeterministic operations are still in the design
space of declarative languages. Moreover, nondeterministic operations have
advantages w.r.t. demand-driven evaluation strategies so that they became a

136 M. Hanus

standard feature of current functional logic languages, whereas older languages,
like ALF [65], Babel [109], K-Leaf [60], or SLOG [58], put confluence require-
ments on their programs. The following example discusses this in more detail.

Example 6. Based on the binary operation “?” introduced above, one can define
an operation insert that nondeterministically inserts an element at an arbitrary
position in a list:

insert e [] = [e]

insert e (x:xs) = (e : x : xs) ? (x : insert e xs)

Exploiting this operation, one can define an operation perm that returns an
arbitrary permutation of a list:

perm [] = []

perm (x:xs) = insert x (perm xs)

One can already see an important property when reasoning about nondeter-
ministic operations: the computation of results is arbitrary, i.e., one result is
as good as any other. For instance, if one evaluates perm[1,2,3], any permu-
tation (e.g., [3,2,1] as well as [1,3,2]) is an acceptable result. If one puts
specific conditions on the results, the completeness of the underlying computa-
tional model (e.g., INS, see below) ensures that the appropriate results meeting
these conditions are selected.

For instance, one can use perm to define an operation psort to sort a list
based on a “partial identity” function sorted that returns its input list if it is
sorted:

sorted [] = []

sorted [x] = [x]

sorted (x1:x2:xs) | leq x1 x2 =:= True = x1 : sorted (x2:xs)

psort xs = sorted (perm xs)

Thus, psort xs returns only those permutations of xs that are sorted. The
advantage of this definition of psort in comparison to traditional “generate-
and-test” solutions becomes apparent when one considers the demand-driven
evaluation strategy (note that one can apply the weakly needed narrowing strat-
egy to such kinds of programs since this strategy is only based on the left-hand
sides of the rules but does not exploit confluence). Since in an expression like
sorted(permxs) the argument of sorted is only evaluated as demanded by
sorted, the permutations are not fully computed at once. If a permutation starts
with a non-ordered prefix, like S 0 : O : perm xs, the application of the third rule
of sorted fails and, thus, the computation of the remaining part of the permu-
tation (which can result in n! different permutations if n is the length of the list
xs) is discarded. The overall effect is a reduction in complexity in comparison
to the traditional generate-and-test solution. �

This example shows that nondeterministic operations allow the transformation of
“generate-and-test” solutions into “test-of-generate” solutions with a lower com-
plexity since the demand-driven narrowing strategy results in a demand-driven

Functional Logic Programming: From Theory to Curry 137

construction of the search space (see [13,62] for further examples). Antoy [13]
shows that desirable properties of needed narrowing can be transferred to pro-
grams with nondeterministic operations if one considers overlapping inductively
sequential systems. These are TRSs with inductively sequential rules where each
rule can have multiple right-hand sides (basically, inductively sequential TRSs
with occurrences of “?” in the top-level of right-hand sides), possibly containing
extra variables. For instance, the rules defining insert form an overlapping in-
ductively sequential TRS if the second rule is interpreted as a single rule with
two right-hand sides (“e:x:xs” and “x : inserte xs”). The corresponding strat-
egy, called INS (inductively sequential narrowing strategy), is defined similarly
to needed narrowing but computes for each narrowing step a set of replacements.
INS is a conservative extension of needed narrowing and optimal modulo non-
deterministic choices of multiple right-hand sides, i.e., if there are no multiple
right-hand sides or there is an oracle for choosing the appropriate element from
multiple right-hand sides, INS has the same optimality properties as needed
narrowing (see [13] for more details).

A subtle aspect of nondeterministic operations is their treatment if they are
passed as arguments. For instance, consider the nondeterministic operation coin

defined by

coin = 0 ? 1

and the expression “double coin” (where double is defined as in Section 2.1). If
the argument coin is evaluated (to 0 or 1) before it is passed to double, we obtain
the possible results 0 and 2. However, if the argument coin is passed unevaluated
to double, we obtain after one rewrite step the expression coin+coin which has
four possible further rewrite derivations resulting in the values 0, 1, 1, and 2. The
former behavior is referred to as call-time choice semantics [94] since the choice
for the desired value of a nondeterministic operation is made at call time, whereas
the latter is referred to as need-time choice semantics. There are arguments for
either of these semantics depending on the programmer’s intention (see [15] for
more examples).

Although call-time choice suggests an eager or call-by-value strategy, it fits
well into the framework of demand-driven evaluation where arguments are shared
to avoid multiple evaluations of the same subterm. For instance, the actual sub-
term (e.g., coin) associated to argument x in the rule “double x = x+x” is not
duplicated in the right-hand side but a reference to it is passed so that, if it
is evaluated by one subcomputation, the same result will be taken in the other
subcomputation. This technique, called sharing, is essential to obtain efficient
(and optimal) evaluation strategies. If sharing is used, the call-time choice se-
mantics can be implemented without any further machinery. Furthermore, in
many situations call-time choice is the semantics with the “least astonishment”.
For instance, consider the reformulation of the operation psort in Example 6 to

psort xs = idOnSorted (perm xs)

idOnSorted xs | sorted xs =:= xs = xs

138 M. Hanus

Then, for the call psort xs, the call-time choice semantics delivers only sorted
permutations of xs, as expected, whereas the need-time choice semantics deliv-
ers all permutations of xs since the different occurrences of xs in the rule of
idOnSorted are not shared. For instance, to evaluate the call psort [3,2,1],
one has to verify that the condition

sorted (perm [3,2,1]) =:= perm [3,2,1]

of idOnSorted is satisfied (see below for more details about conditional rules).
This can be shown by reducing both occurrences of “perm [3,2,1]” to the list
[1,2,3]. Since the condition is satisfied, the call idOnSorted (perm [3,2,1])

will be reduced to perm [3,2,1] w.r.t. the need-time choice semantics. Thus,
one finally obtains all permutations of the input list.

Due to these reasons, current functional logic languages usually adopt the
call-time choice semantics.

Conditional Rules. The narrowing strategies presented so far are only defined
for rewrite rules without conditions, although some of the concrete program
examples indicate that conditional rules are convenient in practice. Formally,
a conditional rewrite rule has the form l → r ⇐ C where l and r are as in
the unconditional case and the condition C consists of finitely many equational
constraints of the form s =:= t. Due to the interpretation of equational constraints
as strict equalities, one can define a rewrite step with a conditional rule similar
to the unconditional case with the additional requirement that each equational
constraint in the condition of an applicable rule must be joinable, i.e., both sides
of the equation must be reducible to the same ground constructor term.9 A more
precise definition will be provided in Section 2.3.

To extend narrowing to conditional rules, one can define narrowing steps on
equational goals, i.e., (multi)sets of equations, where an application of a condi-
tional rule adds new conditions to the equational goal. However, to obtain an
efficient implementation, functional logic languages often use another technique.
As discussed before, efficient narrowing strategies exploit the structure of the
left-hand sides of rewrite rules to decide its applicability. In order to do the
same for conditional rules, one can consider conditions as part of the right-hand
side. This can be achieved by transforming a conditional rule of the form

l → r ⇐ s1 =:= t1 & . . . & sn =:= tn

into an unconditional rule

l → cond(s1 =:= t1 & . . .& sn =:= tn, r)

where the “conditional” is defined by cond(Success, x) → x. Since over-
lapping inductively sequential TRSs allow rules with multiple right-hand
sides, one can transform also sets of conditional rules with identical left-hand
sides, in contrast to pure term rewriting with confluence requirements where only

9 The recursion in this intuitive definition of conditional rewriting can be avoided by
an iterative definition using levels for rewriting conditions, see [33].

Functional Logic Programming: From Theory to Curry 139

restricted subsets of conditional rules can be transformed into unconditional ones
(e.g., [33]). Actually, Antoy [14] has shown a systematic method to translate any
conditional constructor-based TRS into an overlapping inductively sequential
TRS performing equivalent computations.

For restricted subsets of conditional rules, other transformations that allow the
application of more sophisticated narrowing strategies are possible. For instance,
in [17] it is shown how to transform any weakly orthogonal conditional TRS
into an unconditional TRS so that the weakly needed and parallel narrowing
strategies are sound and complete on the transformed programs. The application
of parallel narrowing to the transformed programs has the effect that conditions
are evaluated in parallel so that nondeterministic evaluation steps are completely
avoided on ground terms.

Further Works. Although weakly needed narrowing or INS are reasonable nar-
rowing strategies for rather general classes of functional logic programs, further
works investigated improvements for specific classes of TRSs. For instance, [97]
proposes a refinement of definitional trees if there is more than one inductive po-
sition (e.g., in operations like “=:=” and “&” defined above). This is exploited to
implement needed narrowing in a way that reduces the number of nondetermin-
istic choices. [50,51] proposes natural narrowing as a refinement of weakly needed
narrowing by incorporating a better treatment of demandedness properties.

Since the formal reasoning about sophisticated narrowing strategies could be
fairly complex, narrowing calculi have been studied. Usually, such calculi are
defined by a set of inference rules on equational goals so that properties like
soundness and completeness can be shown by proving invariants w.r.t. the ap-
plication of inference rules. This simplifies the proof of properties of narrowing
techniques but has the disadvantage that a connection to efficient implementa-
tions required for real languages is more difficult to establish. Examples for such
narrowing calculi are LNC [107] for confluent TRSs, OINC [95] for orthogonal
TRSs and goals with ground normal forms as right-hand sides, or CLNC [62] as
the narrowing equivalent to CRWL (see below). LNC and OINC do not require
constructor-based TRSs. This has useful applications for applicative TRSs [111]
in order to study narrowing calculi for programs with higher-order operations.

2.3 Constructor-Based Rewriting Logic

As discussed in the previous section on overlapping inductively sequential TRS,
sharing becomes important for the semantics of nondeterministic operations.
This has the immediate consequence that traditional equational reasoning is
no longer applicable. For instance, the expressions double coin and coin+coin

are not equal since the latter can reduce to 1 while this is impossible for the
former w.r.t. a call-time choice semantics. In order to provide a semantical ba-
sis for such general functional logic programs, González-Moreno et al. [62] have
proposed the rewriting logic CRWL (Constructor-based conditional ReWriting
Logic) as a logical (execution- and strategy-independent) foundation for declara-
tive programming with non-strict and nondeterministic operations and call-time

140 M. Hanus

choice semantics. This logic has been also used to link a natural model theory
as an extension of the traditional theory of logic programming and to establish
soundness and completeness of narrowing strategies for rather general classes of
TRSs [47].

To deal with non-strict operations, CRWL considers signatures Σ⊥ that are
extended by a special symbol ⊥ to represent undefined values. For instance,
T (C ∪ {⊥},X) denotes the set of partial constructor terms, e.g., 1:2:⊥ denotes
a list starting with elements 1 and 2 and an undefined rest. Such partial terms
are considered as finite approximations of possibly infinite values. CRWL defines
the deduction of two kinds of basic statements: approximation statements e→ t
with the intended meaning “the partial constructor term t approximates the
value of e”, and joinability statements e1 =:= e2 with the intended meaning that
e1 and e2 have a common total approximation t ∈ T (C,X) with e1 → t and
e2 → t, thus modeling strict equality with terms containing variables. To model
call-time choice semantics, rewrite rules are only applied to partial values. Hence,
the following notation for partial constructor instances of a set of (conditional)
rules R is useful:

[R]⊥ = {σ(l → r ⇐ C) | l → r ⇐ C ∈ R, σ : X → T (C ∪ {⊥},X)}

Then CRWL is defined by the following set of inference rules (where the
program is represented by a TRS R):

Bottom: e→ ⊥ e ∈ T (C ∪ F ∪ {⊥},X)

Restricted
reflexivity: x→ x x ∈ X

Decomposition:
e1 → t1 · · · en → tn

c(e1, . . . , en) → c(t1, . . . , tn)
c/n ∈ C, ti ∈ T (C ∪ {⊥},X)

Function
reduction:

e1 → t1 · · · en → tn C r → t
f(e1, . . . , en) → t

f(t1, . . . , tn) → r ⇐ C ∈ [R]⊥
and t
= ⊥

Joinability:
e1 → t e2 → t

e1 =:= e2
t ∈ T (C,X)

Rule (Bottom) specifies that ⊥ approximates any expression. The condition
t
= ⊥ in rule (Function reduction) avoids unnecessary applications of this
rule since this case is already covered by the first rule. The restriction to
partial constructor instances in this rule formalizes non-strict operations with
a call-time choice semantics. Operations might have non-strict arguments that
are not evaluated since the corresponding actual arguments can be derived to
⊥ by rule (Bottom). If the value of an argument is required to evaluate the
right-hand side of a rule, it must be evaluated to a partial constructor term
before it is passed to the right-hand side (since [R]⊥ contains only partial
constructor instances), which corresponds to a call-time choice semantics. Note
that this does not prohibit the use of lazy implementations since this semantical
behavior can be enforced by sharing unevaluated expressions. Actually, [62]
defines a lazy narrowing calculus that reflects this behavior.

Functional Logic Programming: From Theory to Curry 141

Fapp f(σ(t1), . . . , σ(tn)) →l σ(r) f(t1, . . . , tn) → r ∈ R, σ : X → T (C,X)

LetIn g(. . . , e, . . .) →l e = f(. . .) (f ∈ F) or e = let . . .
let x = e in g(. . . , x, . . .) g ∈ C ∪ F , x ∈ X fresh variable

Flat let x = (let y = e1 in e2) in e3 →l

let y = e1 in (let x = e2 in e3) y does not appear free in e3

Bind let x = t in e →l σ(e) t ∈ T (C,X), σ = {x �→ t}
Elim let x = e1 in e2 →l e2 x does not appear free in e2

Contx e[e1]p →l e[e2]p e1 →l e2 and p position in e

Fig. 2. Rules for let-rewriting [103]

CRWL can be used as the logical foundation of functional logic languages
with non-strict nondeterministic operations. It is a basis for the verification of
functional logic programs [45] and has been extended in various directions, e.g.,
higher-order operations [63], algebraic types [30], polymorphic types [61], failure
[104], constraints [102] etc. An account on CRWL and its applications can be
found in [119].

As discussed in [103], a disadvantage of CRWL is its high level of abstraction:
CRWL relates expressions to computed (partial) results but misses a one-step
evaluation mechanism similarly to rewriting for functional programs or narrow-
ing for functional logic programs. Thus, it is sometimes difficult to use CRWL to
reason about computations in functional logic languages. To overcome this draw-
back, López-Fraguas et al. [103] proposed specific reduction relations conform
with CRWL (for simplicity, we consider here only rules without conditions). The
following reduction relation � is similarly to standard rewriting but restricts
the reduction of operations to situations where the arguments are partial terms.
Furthermore, any expression can be approximated by ⊥.

e[f(t1, . . . , tn)]p � e[r]p if f(t1, . . . , tn) → r ∈ [R]⊥ and p position in e

e � e[⊥]p if p is a position in e

CRWL and the relation � are equivalent in the sense that CRWL and � relates
the same partial terms to each expression [103].

This reduction relation is more appropriate to reason about computations.
For instance, it has been applied in [79] to approximate call patterns in func-
tional logic computations. On the negative side, this reduction relation allows
a nondeterministic choice between reducing or approximating a call to some
operation which leads to a large computation space. Furthermore, the order of
reduction steps does not reflect the typical demand-driven order of evaluation
steps. Therefore, López-Fraguas et al. [103] proposed let-rewriting, i.e., rewriting
on expressions containing let-bindings which denote arguments that need to be
evaluated in order to reduce some operation. For this purpose, let-expressions
are expressions where the extended form “let x = e1 in e2” is also permitted
(x is visible in e2 but not in e1, i.e., lets are not recursive). The let-rewriting

142 M. Hanus

relation →l is defined by the rules in Figure 2 (we omit the precise definition
of free variable occurrences and substitutions on let-expressions since they are
standard). In contrast to CRWL, let-rewriting does not use ⊥ to approximate
expressions that are not demanded. Instead, such expressions are moved from
an argument position to a let-binding (LetIn) which can be eliminated (Elim) if
they are not demanded. Thus, a function call is reduced if the arguments do not
contain any operation (Fapp) which reflects the call-time choice semantics. The
equivalence of CRWL and let-rewriting is shown in [103]. There it is also shown
that let-rewriting is equivalent to standard rewriting for deterministic programs.
Let-rewriting does not enforce any reduction strategy. This will be considered in
Section 2.5 where a more strategy-oriented semantics will be discussed.

2.4 Residuation

Although narrowing extends soundness and completeness results of logic pro-
gramming to the general framework of functional logic programming, it is not
the only method that has been proposed to integrate functions into logic pro-
grams. An alternative technique, called residuation, is based on the idea to delay
or suspend function calls until they are ready for deterministic evaluation. The
residuation principle is used, for instance, in the languages Escher [99], Le Fun [2],
Life [1], NUE-Prolog [110], and Oz [126]. Since the residuation principle evaluates
function calls by deterministic reduction steps, nondeterministic search must be
encoded by predicates [1,2,110] or disjunctions [99,126]. Moreover, if some part
of a computation might suspend, one needs a primitive to execute computations
concurrently. For instance, the conjunction of constraints “&” needs to evaluate
both arguments to Success so that it is reasonable to do it concurrently, i.e., if
the evaluation of one argument suspends, the other one is evaluated.

Example 7. Consider Example 2 together with the operation

nat O = Success

nat (S x) = nat x

If the operation add is evaluated by residuation, i.e., suspends if the first argu-
ment is a variable, the expression “add y O =:= S O & nat y” is evaluated as
follows:

add y O =:= S O & nat y →{y
→S x} add (S x) O =:= S O & nat x

→{} S (add x O) =:= S O & nat x

→{} add x O =:= O & nat x

→{x
→O} add O O =:= O & Success

→{} O =:= O & Success

→{} Success & Success

→{} Success

Thus, the solution {y �→ S O} is computed by switching between the residuating
operation add and the constraint nat that instantiates its argument to natural
numbers. �

Functional Logic Programming: From Theory to Curry 143

Narrowing and residuation are quite different approaches to integrate functional
and logic programming. Narrowing is sound and complete but requires the
nondeterministic evaluation of function calls if some arguments are unknown.
Residuation might not compute some result due to the potential suspension of
evaluation but avoids guessing on operations. From an operational point of view,
there is no clear advantage of one of the strategies. One might have the impres-
sion that the deterministic evaluation of operations in the case of residuation is
more efficient, but there are examples where residuation has an infinite computa-
tion space whereas narrowing has a finite one (see [67] for more details). On the
other hand, residuation offers a concurrent evaluation principle with synchro-
nization on logic variables (sometimes also called declarative concurrency [128])
and a conceptually clean method to connect external operations to declarative
programs [35] (note that narrowing requires operations to be explicitly defined
by rewrite rules). Therefore, it is desirable to integrate both principles in a single
framework. This has been proposed in [69] where residuation is combined with
weakly needed narrowing by extending definitional trees with branches deco-
rated with a flexible/rigid tag. Operations with flexible tags are evaluated as
with narrowing whereas operations with rigid tags suspend if the arguments are
not sufficiently instantiated. The overall strategy is similar to weakly needed
narrowing with the exception that a rigid branch with a free variable in the cor-
responding inductive position results in the suspension of the operation under
evaluation. For instance, if the branch of add in Figure 1 has a rigid tag, then
add is evaluated as shown in Example 7.

2.5 Flat Programs

The constructor-based rewriting logic defines the meaning of functional logic
programs without referring to a concrete evaluation strategy. However, reasoning
about the behavior of programs (e.g., program analysis), optimizing programs
(e.g., partial evaluation), or building language specific tools (e.g., debuggers,
profilers) demands for a more detailed description of the operational semantics
of programs. On the one hand, such a description should reflect all details of the
program execution, like pattern matching, sharing, binding logic variables, etc.
On the other hand, it should be high level so that properties of programs can
be formally derived.

It has been shown that such a description can be better based on an interme-
diate flat representation of programs rather than on the source-level functional
logic programs. Figure 3 shows the syntax of such a flat language which has been
successfully applied for this purpose. Flat programs contain an explicit represen-
tation of pattern matching (case/fcase corresponds to branches in definitional
trees, or represents a choice between definitional trees in the case of rules with
overlapping left-hand sides). The difference between case and fcase corresponds
to residuation and narrowing: when the argument e evaluates to a free variable,
case suspends whereas fcase nondeterministically binds this variable to a pattern
in a branch of the case expression.

144 M. Hanus

P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)

| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let {x1 = e1, . . . , xn = en} in e (let binding)

p ::= c(x1, . . . , xn) (pattern)

Fig. 3. Syntax for flat programs

Let bindings as shown in Figure 3 are in principle not required for translat-
ing functional logic programs into flat programs. However, they can be used to
translate extended classes of programs containing circular data structures and
are convenient to express sharing without the use of complex graph structures
[49,64]. Operationally, let bindings introduce new structures in memory that are
updated after evaluation, which is essential for lazy computations [98]. Further-
more, let bindings are also useful to represent free variables in expressions by a
direct circular binding of the form “let {x = x} in e”.

For instance, the operations add and “?” defined in Section 2.2 have the
following flat representations:

add x y = fcase x of { O → y; S z → S (add z y) }
x ? y = x or y

[87] defines a mapping between definitional trees and flat programs and shows the
equivalence of needed narrowing and outermost narrowing on flat programs. A
precise description of (weakly needed) narrowing and residuation with sharing is
given in [3] as an extension of Launchbury’s natural semantics for lazy evaluation
[98]. For this purpose, one considers only normalized flat programs, i.e., programs
where the arguments of constructor and function calls are always variables. Any
flat program can be normalized by introducing new variables by let expressions
[3]. For instance, the expression “double coin” is normalized into “let {x =
coin} in double x”. In order to model sharing, the variables are interpreted as
references into a heap where new let bindings are stored and function calls are
updated with their evaluated results.

To be more precise, a heap, denoted by Γ,Δ, or Θ, is a partial mapping from
variables to expressions (the empty heap is denoted by []). The value associated
to variable x in heap Γ is denoted by Γ [x]. Γ [x �→ e] denotes a heap Γ ′ with
Γ ′[x] = e and Γ ′[y] = Γ [y] for all x
= y. We use this notation either as a
condition or as an update of a heap. A logic variable x that is unbound in Γ is
represented by a circular binding of the form Γ [x] = x.

Functional Logic Programming: From Theory to Curry 145

VarCons Γ [x �→ t] : x ⇓ Γ [x �→ t] : t where t is constructor-rooted

VarExp
Γ [x �→ e] : e ⇓ Δ : v

Γ [x �→ e] : x ⇓ Δ[x �→ v] : v

where e is not constructor-rooted
and e
= x

Val Γ : v ⇓ Γ : v
where v is constructor-rooted

or a variable with Γ [v] = v

Fun
Γ : ρ(e) ⇓ Δ : v

Γ : f(xn) ⇓ Δ : v
where f(yn) = e ∈ P and ρ = {yn �→ xn}

Let
Γ [yk �→ ρ(ek)] : ρ(e) ⇓ Δ : v

Γ : let {xk = ek} in e ⇓ Δ : v

where ρ = {xk �→ yk}
and yk are fresh variables

Or
Γ : ei ⇓ Δ : v

Γ : e1 or e2 ⇓ Δ : v
where i ∈ {1, 2}

Select
Γ : e ⇓ Δ : c(yn) Δ : ρ(ei) ⇓ Θ : v

Γ : (f)case e of {pk → ek} ⇓ Θ : v

where pi = c(xn)
and ρ = {xn �→ yn}

Guess
Γ : e ⇓ Δ : x Δ[x �→ ρ(pi), yn �→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v

where pi = c(xn), ρ = {xn �→ yn}, and yn are fresh variables

Fig. 4. Natural semantics of normalized flat programs [3]

Using heap structures, one can provide a high-level description of the op-
erational behavior of residuation and demand-driven narrowing with call-time
choice in form of a natural semantics (also called big-step semantics). The nat-
ural semantics uses judgements of the form “Γ : e ⇓ Δ : v” with the meaning
that in the context of heap Γ the expression e evaluates to value (head normal
form) v and produces a modified heap Δ. Figure 4 shows the rules defining this
semantics w.r.t. a given normalized flat program P (ok denotes a sequence of
objects o1, . . . , ok). The rules VarCons and VarExp retrieve expressions from the
heap: VarCons retrieves values whereas the expressions retrieved by VarExp are
further evaluated. In order to avoid the reevaluation of the same expression,
VarExp updates the heap with the computed value, which models sharing. Val-
ues (i.e., head normal forms) are just returned by rule Val. Fun unfolds function
calls by evaluating the right-hand side after binding the formal parameters to the
actual ones. Let introduces new bindings in the heap and renames the variables
in the expressions with the fresh names introduced in the heap. Or nondeter-
ministically evaluates one of its arguments. Finally, Select and Guess deal with

146 M. Hanus

case expressions. If the first argument of case evaluates to a constructor-rooted
term, Select evaluates the corresponding branch of the case expression, otherwise
(if the argument evaluates to an unbound variable), Guess nondeterministically
binds the argument to one of the patterns of the case expression and continues
with the corresponding branch.

By introducing a stack to model the context of a computation, one can also
define an equivalent small-step semantics which can be enriched with more de-
tails of realistic implementations, such as search strategies, concurrency, external
operations etc (see [3] for details).

The flat representation of programs and its operational semantics has been
used for various language-oriented tools (e.g., compilers [20,27], partial evalua-
tors [4,5], trace-oriented debuggers [40], profilers [39]) and extended in various
ways (e.g., higher-order functions [87], memoization [53], encapsulated search
[38], computation costs [39]).

Flat programs can be considered as a kernel language for functional logic
programming since programs written in concrete functional logic languages like
Curry with all its syntactic sugar can be automatically translated into flat pro-
grams. It is interesting to note that the language of flat programs is not minimal
since it contains two concepts that can be simulated by each other: logic vari-
ables and overlapping rules (i.e., disjunctions expressed by or). For instance, a
rule like

x ? y = x or y

can be expressed without or by introducing a logic variable z that ranges over
two data constructors I0 and I1:

x ? y = let {z = z} in fcase z of { I0 → x; I1 → y }

On the other hand, logic variables can be eliminated by defining nondeterministic
generator operations for each type. For instance, a generator for type Nat defined
in Example 2 is the operation genNat defined by

genNat = O ? S genNat

so that genNat evaluates to all possible values of type Nat. Now each occur-
rence of a logic variable can be replaced by a corresponding generator, e.g., the
expression

let {x = x} in leq x (S O)

can be transformed into

let {x = genNat} in leq x (S O)

without changing the computed results. These equivalences have been used in
implementations of functional logic languages [41,42]. Further details can be
found in [24].

Functional Logic Programming: From Theory to Curry 147

3 Language Concepts: Curry

After the review of recent results and techniques for functional logic program-
ming, this section shows how they influenced the design of a concrete program-
ming language. For this purpose, we consider Curry [69,92] (the relation to other
languages will be briefly discussed in Section 7), a functional logic language based
on many of the concepts introduced so far. The development of Curry is the out-
come of an international initiative of researchers in the area of functional logic
programming with the goal to provide a common standard for the research,
teaching, and application of integrated functional logic languages.

The syntax of Curry is very similar to the syntax of Haskell [117] and has been
already introduced in an informal manner. Curry is a polymorphically typed
language with a Hindley/Milner-like type system supporting type inference [46].
Since the type concept is fairly standard and orthogonal to the other issues of the
language, it is not explicitly addressed in the following. Therefore, this section
is devoted to discuss concepts and design decisions that are unique to Curry.

3.1 Semantics

A Curry program is formally a constructor-based TRS. Thus, its declarative
semantics is given by the rewriting logic CRWL, i.e., operations and constructors
are non-strict with a call-time choice semantics for nondeterministic operations.

The operational semantics is based on an extension of needed narrowing on
generalized definitional trees with sharing and residuation. The precise descrip-
tion is based on normalized flat programs as already shown in Section 2.5. Thus,
for (flexible) inductively sequential operations, which form the vast majority of
operations in application programs, the evaluation strategy is optimal w.r.t. the
length of derivations and number of computed solutions and always computes a
value if it exists (in case of nondeterministic choices only if the underlying imple-
mentation is fair w.r.t. such choices, as [26,27,88]). Therefore, the programmer
can concentrate on the declarative meaning of programs and needs less attention
to the consequences of the particular evaluation strategy (see [73] for a more de-
tailed discussion). The following example shows that Curry is an improvement
compared to Haskell which does not have a similar behavior for all inductively
sequential operations.

Example 8. Consider the inductively sequential operation f defined by

f 0 [] = 0

f x (y:ys) = y

and a nonterminating operation ⊥. Then the expression “f⊥ [1]” has the value
1, but Haskell does not terminate on this expression due to the strict left-to-right
top-down pattern matching strategy. Furthermore, if the operation g is defined
by

g x = 0

g 1 = 1

148 M. Hanus

in Haskell the expression “g 1” is evaluated to 0 although the second equation
indicates that 1 is also an acceptable result. As a consequence, program rules in
Haskell cannot be interpreted as equations but all the rules defining an opera-
tion in a Haskell program must be passed through a complex pattern-matching
compiler [129] in order to understand their meaning. �

As discussed above, external operations not implemented by explicit rules, like
basic arithmetic operators or I/O operations, cannot be handled by narrowing.
Therefore, Curry exploits residuation to connect external operations in a con-
ceptually clean way (see also [35]). Since external operations can not usually
deal with unevaluated arguments possibly containing logic variables, the argu-
ments of external operations are reduced to a ground value before the operation
is evaluated. If some arguments are not ground but contain logic variables, the
function call is suspended until the variables are bound to ground values. The
concurrent conjunction “&” on constraints is the basic concurrency operator that
evaluates both arguments in a non-specified order to success.

The discussion of residuation-based languages (see Section 2.4) might give the
impression that residuation is useful for user-defined operations. Therefore, pre-
vious versions of Curry had also the possibility to define operations as “rigid”.
However, it turned out that this is unnecessary in practice, since the suspen-
sion of operations often caused more complications than their active application
through narrowing (exceptions are related to concurrent objects and ports for
distributed programming, see below). Moreover, the optimality of needed nar-
rowing ensures that the argument guessing is restricted to a minimal part. There-
fore, all user-defined operations are evaluated by narrowing and only external
operations and conditionals like “if-then-else” or “case-of” are evaluated by
residuation. The latter is motivated by the fact that conditionals are often used
as guards to prevent infinite recursion. A useful primitive to define general “sus-
pension” combinators for concurrent programming is the predefined operation
ensureNotFree that returns its argument evaluated to head normal form but
suspends as long as the result is a logic variable.

3.2 Constraints

Functional logic languages are able to solve equational constraints. As shown in
Section 2.2, such constraints occur in conditions of conditional rules and are in-
tended to restrict the applicability of the rewrite rule, i.e., a replacement with a
conditional rule is only performed if the condition has been shown to be satisfied
(e.g., compare the definition of last in Section 2.1). Thus, constraints are solved
when conditional rules are applied. In terms of concurrent constraint program-
ming languages [121], solving constraints in conditions corresponds to tell con-
straints. The dual operation, ask, is used in conditionals like “if-then-else”.
Curry distinguishes these different uses by different types: Success and Bool.

Equational constraints are expressions of type Success. Since constraints are
ordinary expressions, they are first-class values that can be passed in arguments
or data structures. For instance, the following “constraint combinator” takes a

Functional Logic Programming: From Theory to Curry 149

list of constraints as input and creates a new constraint that is satisfied if all
constraints in the input list are satisfied:

allValid :: [Success] -> Success

allValid [] = success

allValid (c:cs) = c & allValid cs

Here, success is not a constructor but denotes the trivial constraint that is
always satisfied. Exploiting the higher-order features of Curry (see below), one
can define it also by

allValid = foldr (&) success

Note that the constructor Success was introduced in Section 2.2 only to provide
a rewrite-based definition of strict equality. It is not available in Curry where
a more efficient implementation of strict equality is used. The main difference
shows up when an equational constraint “x =:= y” between two logic variables x
and y is solved. Solving it with the rewrite rules shown in Section 2.2, x and y are
nondeterministically bound to ground constructor terms which usually results
in an infinite search space. This is avoided in Curry by binding one variable to
the other, similar to logic programming.

Hence, the type Success is a type without constructors but with a few basic
constraints like success and “=:=” and a concurrent conjunction “&” to combine
constraints into larger units. Actually, one can consider Success as equivalent to
the functional type “ConstraintStore → ConstraintStore” mapping a constraint
store into a new constraint store. Then, the trivial constraint success is the
identity mapping and a constraint like x=:=2 maps a constraint store into a new
one which is extended by the binding of x to 2. Constraint stores are implicitly
chained through a derivation, cloned in nondeterministic steps, and extended
when evaluating a condition of a rule. This view has been used in [106] to connect
a solver for real arithmetic constraints to a Curry implementation. By adding
basic constraints that deal with other constraint domains, like real arithmetic or
finite domain constraints, typical applications of constraint logic programming
can be covered and combined with features of lazy higher-order programming
[20,54,55,102,106,119].

The condition of a rule is any expression of type Success, i.e., it is not only a
conjunction of equational constraints but can also be constructed by constraint
combinators like allValid. By contrast, the condition in an “if-then-else”
must be an expression of type Bool since two different values (True and False)
are required to select the then or else branch according to the result of the
Boolean test. For this purpose, Curry also supports a test equality predicate
“==” of type “a->a->Bool” to check the equality of two ground constructor
terms. In contrast to “=:=”, a call to “==” is suspended if an argument contains
logic variables so that the equality cannot be decided without instantiating
these variables. Hence, one can consider “==” as a rigid operation defined by
the rules

150 M. Hanus

c == c = True ∀c/0 ∈ C
c x1 . . . xn == c y1 . . . yn = x1==y1 &&...&& xn==yn ∀c/n ∈ C, n > 0
c x1 . . . xn == d y1 . . . ym = False ∀c/n
= d/m ∈ C

True && x = x

False && x = False

As an alternative to the distinction between equational constraints in conditions
and Boolean tests in conditionals, one might also use equational constraints
in conditionals, as, for instance, done in the purely narrowing-based language
TOY [101]. This demands for the negation of constraints so that a conditional
“if c then e1 else e2” is evaluated by nondeterministically evaluating c ∧
e1 or ¬c ∧ e2. Actually, this is implemented in TOY by the use of disequality
constraints. However, the complexity of the handling of disequality constraints
puts more demands on the implementation side.

3.3 Higher-Order Operations

The use of higher-order operations, i.e., operations that take other operations
as arguments or yield them as results, is an important programming technique
in functional languages so that it should be covered also by functional logic
languages. Typical examples are the mapping of an operation to all elements of
a list (map) or a generic accumulator for lists (foldr):

map :: (a->b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

foldr :: (a->b->b) -> b -> [a] -> b

foldr _ z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

Logic languages often provide higher-order features through a transformation
into a first-order program [131] by defining a predicate apply that implements
the application of an arbitrary operation of the program to an expression. This
technique is also known as “defunctionalization” [118] and enough to support the
higher-order features of current functional languages (e.g., lambda abstractions
can be replaced by new function definitions). Therefore, this solution is also used
in Curry.

As an example, consider a program containing the unary operation not and
the binary operations add and leq. Then, one can define the meaning of apply
by the following rules:

apply not x = not x (apply1)
apply add x = add x (apply2)
apply (add x) y = add x y (apply3)
apply leq x = leq x (apply4)
apply (leq x) y = leq x y (apply5)

Functional Logic Programming: From Theory to Curry 151

Thus, a partially applied function call, i.e., a n-ary operation called with less than
n arguments, is considered as a constructor-rooted, i.e., not further evaluable,
term (one can also make this distinction clear by introducing new constructor
symbols for such partial applications). Thus, the first argument in each rule for
apply is always a constructor-rooted term. If an n-ary function call with n − 1
arguments is applied to its final argument, the operation is evaluated (e.g., as
in the rules apply1, apply3, apply5). This explicit definition has been used in
Prolog-based implementations of functional logic languages [20].

An important difference to purely functional languages shows up when the
operation to be applied (i.e., the first argument of apply) is a logic variable. In
this case, one can instantiate this variable to all possible operations occurring
in the program [63]. Since this might result also in instantiations that are not
intended w.r.t. the given types, one can restrict these instantiations to well-typed
ones which requires to keep type information at run time [29,61]. Another option
is the instantiation of variables denoting functions to (well-typed) lambda terms
in order to cover programs that can reason about bindings and block structure
[87]. Since all these options might result in huge search spaces due to function
instantiation, and the feasibility and usefulness for larger application programs
is not clear, Curry chooses a more pragmatic solution: function application apply
is rigid, i.e., it suspends if the first functional argument is a logic variable. For
this behavior, we can avoid the explicit introduction of rules for apply : it can be
considered as a primitive operation with a meaning that is specified by extending
the natural semantics of Figure 4 with the following rule (where partially applied
function calls are considered as constructor-rooted terms in the rules VarCons
and Val):

Apply
Γ : x ⇓ Δ : ϕ(xk) Δ : ϕ(xk, y) ⇓ Θ : v

Γ : apply x y ⇓ Θ : v

where ϕ is either a constructor or an n-ary operation with k < n.

3.4 Encapsulated Search

An essential difference between functional and logic computations is their de-
terminism behavior. Functional computations are deterministic. This enables a
reasonable treatment of I/O operations by the monadic approach where I/O ac-
tions are considered as transformations on the outside world [130]. The monadic
I/O approach is also taken in Curry. However, logic computations might cause
(don’t know) nondeterministic choices, i.e., a computation can be cloned and
continued in two different directions. Since one can not clone the entire out-
side world, nondeterministic choices during monadic I/O computations are not
allowed and lead to a run-time error in Curry. Since this might restrict the
applicability of logic programming techniques in larger applications, there is a
clear need to encapsulate nondeterministic search between I/O actions. For this
purpose, [89] proposes the addition of a primitive search operator

try :: (a->Success) -> [a->Success]

152 M. Hanus

that takes a constraint abstraction, e.g., (\x->x=:= coin), as input, evaluates
it until the first nondeterministic step occurs, and returns the result: the empty
list in case of failure, a list with a single element in case of success, or a list
with at least two elements representing a nondeterministic choice. For instance,
try (\x->x=:= coin) evaluates to [\x->x=:= 0, \x->x=:= 1]. Based on this
primitive, one can define various search strategies to explore the search space
and return its solutions. [105] shows an implementation of this primitive.

Although typical search operators of Prolog, like findall, once, or negation-
as-failure, can be implemented using the primitive try, it became also clear
that the combination with demand-driven evaluation and sharing causes further
complications. For instance, in an expression like

let y = coin in try (\x->x=:= y)

it is not obvious whether the evaluation of coin (introduced outside but de-
manded inside the search operator) should be encapsulated or not. Hence, the
result of this expression might depend on the evaluation order. For instance, if
coin is evaluated before the try expression, it results in two computations where
y is bound to 0 in one computation and to 1 in the other computation. Hence,
try does not encapsulate the nondeterminism of coin (this is also the semantics
of try implemented in [105]). However, if coin is evaluated inside the capsule
of try (because it is not demanded before), then the nondeterminism of coin is
encapsulated. These and more peculiarities are discussed in [38]. Furthermore,
the order of the solutions might depend on the textual order of program rules or
the evaluation time (e.g., in parallel implementations). Therefore, [38] contains
a proposal for another primitive search operator:

getSearchTree :: a -> IO (SearchTree a)

Since getSearchTree is an I/O action, its result (in particular, the order of
solutions) depends on the current environment, e.g., time of evaluation. It takes
an expression and delivers a search tree representing the search space when
evaluating the input:

data SearchTree a = Or [SearchTree a] | Val a | Fail

Based on this primitive, one can define various concrete search strategies as tree
traversals. To avoid the complications w.r.t. shared variables, getSearchTree
implements a strong encapsulation view, i.e., conceptually, the argument of
getSearchTree is cloned before the evaluation starts in order to cut any sharing
with the environment. Furthermore, the structure of the search tree is computed
lazily so that an expression with infinitely many values does not cause the non-
termination of the search operator if one is interested in only one solution. More
details about search trees and their operational semantics can be found in [38,41].

Although these concepts are sufficient to encapsulate nondeterministic com-
putations to avoid nondeterminism in I/O operations, it is often also desired
to collect all the values of an expression in some data structure at arbitrary
computation points, e.g., to accumulate all values, to compute a minimal value,
or to check whether some constraint has no solution (similarly to “negation as

Functional Logic Programming: From Theory to Curry 153

failure” in logic programming). As mentioned above, the initial concepts for en-
capsulation in functional logic languages have the drawback that their result
might depend on the degree of evaluation of the argument (which is difficult to
grasp in non-strict languages). A solution to this problem is presented in [25] by
the introduction of set functions. For each defined operation f , fS denotes its
corresponding set function. In order to be independent of the evaluation order,
fS encapsulates only the nondeterminism caused by evaluating f except for the
nondeterminism caused by evaluating the arguments to which f is applied. For
instance, consider the operation decOrInc defined by

decOrInc x = (x-1) ? (x+1)

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4},
i.e., the nondeterminism originating from decOrInc is encapsulated into a set.
However, “decOrIncS (2?5)” evaluates to two different sets {1, 3} and {4, 6}
due to its nondeterministic argument, i.e., the nondeterminism originating from
the argument is not encapsulated but produces different sets. It is shown in [25]
that the results of set functions do not depend on the evaluation order so that
the disadvantages of the earlier approaches are avoided. [104,120] contain similar
proposals but with the restriction to test only the failure of expressions. There,
an operation fails computes the set of all values of its argument expression and
returns true, if this set is empty, or false, otherwise.

4 Implementation

The definition of needed narrowing and its extensions shares many similarities
with pattern matching in functional or unification in logic languages. Thus, it
is reasonable to use similar techniques to implement functional logic languages.
Due to the coverage of logic variables and nondeterministic search, one could
try to translate functional logic programs into Prolog programs in order to ex-
ploit the implementation technology available for Prolog. Actually, there are
various approaches to implement functional logic languages with demand-driven
evaluation strategies in Prolog (e.g., [11,20,44,68,96,100]). A common idea is
the translation of source operations into predicates that compute only the head
normal form (i.e., a constructor-rooted term or a variable) of a call to this oper-
ation. Thus, an n-ary operation could be translated into a predicate with n+ 1
arguments where the last argument contains the head normal form of the eval-
uated call. For instance, the list concatenation “++” defined in Section 2.1 can
be translated into the following Prolog predicate conc:

conc(Xs,Ys,H) :- hnf(Xs,HXs), conc_1(HXs,Ys,H).

conc_1([],Ys,H) :- hnf(Ys,H).

conc_1([X|Xs],Ys,[X|conc(Xs,Ys)]).

Since the first argument of “++” is an inductive position, its value is needed
and, hence, computed by the predicate hnf before it is passed to the predicate
conc_1 implementing the pattern matching on the first argument. Since the
right-hand side of the second rule of “++” is already in head normal form, no

154 M. Hanus

further evaluation is necessary. In the first rule of conc_1, it is unknown at
compile time whether the second argument Ys is already in head normal form.
Therefore, the evaluation to head normal form is enforced by the predicate hnf.
The goal hnf(t,h) evaluates any term t to its head normal form h. Some of the
clauses defining hnf are:

hnf(V,V) :- var(V), !.

hnf([],[]).

hnf([X|Xs],[X|Xs]).

...

hnf(conc(Xs,Ys),H) :- conc(Xs,Ys,H).

...

Using this scheme, there is a straightforward transformation of needed narrowing
and its extensions into Prolog. However, this scheme does not implement sharing
where it is required that each function call should be evaluated at most once.
This can be achieved by representing function calls as “suspensions” that contain
two further arguments: one indicates whether the suspension has been already
evaluated and the other contains the head normal form. Thus, the second rule
of conc_1 has then the form

conc_1([X|Xs],Ys,[X|susp(conc(Xs,Ys),E,H)]).

and the definition of hnf has the additional clause

hnf(susp(Call,E,H),H) :- var(E) -> hnf(Call,H), E=ready ; true.

Another implementation of sharing is proposed in [20] where only variables with
multiple occurrences in right-hand sides are shared instead of function calls. In
order to implement residuation, coroutining features of modern Prolog imple-
mentation can be exploited (see [20] for details).

The transformation of functional logic programs into Prolog programs has
many advantages. It is fairly simple to implement, one can use constraint solvers
available in many Prolog implementations in application programs, and one can
exploit the advances made in efficient implementations of Prolog (depending on
the Prolog implementation, one can improve the efficiency of the above code
by a couple of minor transformations). Thus, one obtains with a limited effort
an implementation that can be used for larger applications with a comparable
efficiency than other more low-level implementations (e.g., [81,101]).

Despite these advantages, the transformation into Prolog has the drawback
that one is fixed to Prolog’s backtracking strategy to implement nondetermin-
istic search. This hampers the implementation of encapsulated search or fair
search strategies. Therefore, there are also various approaches to use other target
languages than Prolog. For instance, [27] presents techniques to compile Curry
programs into Java programs that implement a fair search for solutions. A trans-
lation of Curry programs into Haskell programs is proposed in [41,42] which
offers a primitive operator to encapsulate search, similarly to getSearchTree

introduced in Section 3.4. Virtual machines to compile Curry programs are

Functional Logic Programming: From Theory to Curry 155

proposed in [26,88,105]. In particular, [26,88] implement a fair (global) search
for solutions, and [105] covers the implementation of encapsulated search.

Beyond the compilation of programs into particular target languages or virtual
machines, the implementation of programming languages has many other facets
that have been considered also for functional logic languages. For instance, par-
tial evaluation is a powerful compile-time technique to optimize source-level
programs. [9] contains a general framework for the partial evaluation of func-
tional logic programs. It has been specialized to the case of needed narrowing in
[10] where the superiority of needed narrowing has been shown also for partial
evaluation. To provide a practical implementation of a partial evaluator cover-
ing all features of Curry, [5] shows that this is possible if the partial evaluator is
based on the flat representation introduced in Section 2.5.

To understand the run-time behavior of functional logic programs, specific
tools are required since it is well known that even the operational behavior of
purely functional programs with lazy evaluation is difficult to understand [112].
This demands for tools specifically designed to show operational aspects of func-
tional logic programs. Thus, a few activities into this direction have started.
Since traditional tracing tools, although provided in practical systems, are of-
ten not helpful, the objective of debugging tools is usually a representation
of operational aspects that are more oriented towards the program text rather
than execution steps. For instance, COOSy [36] is a tool to observe the evalu-
ation of individual expressions, operations, or logic variables in a program. It
records the observable events during run time and presents the corresponding
results (computed values, variable bindings etc) with a separate viewer. TeaBag
[28] provides another view that connects the activities of virtual machine with
the source program under execution. Other debugging tools are more oriented
towards the semantics of functional logic programs. For instance, [40] describes
a formal semantics for a trace-based debugging tool, [39] proposes a profiling
tool based on a cost-augmented semantics of functional logic programs, [113]
proposes a debugging approach based on dynamic slicing, and [6,43] contain ap-
proaches to declarative debugging based on the ideas developed in the area of
logic programming [123].

5 Extensions

The language Curry described so far is based on the theoretical foundations on
functional logic programming surveyed in Section 2. Thus, it is a basis to show
the feasibility and usefulness of these concepts in practice. Nevertheless, vari-
ous extensions to this base language have been explored in recent years. In this
section, we review some of them: constraints, functional patterns, and support
for distributed programming. Other aspects, which are not discussed below, are
default rules [108], failure [104,120], inductive programming [56], tabling and
memoization [16,53], connecting databases [57,75], or proof tools for the verifi-
cation of functional logic programs [45].

156 M. Hanus

5.1 Constraints

The integration of constraints has been already mentioned. Curry provides equa-
tional constraints that are solved in conditions. Further constraint domains, like
real arithmetic, Boolean, or finite domains, can be supported by adding ba-
sic constraints for these domains (e.g., see [20,32,54,55,102,106,119] for some
examples). It has been shown [54,55] that functional logic languages are good
frameworks to solve constraint problems in a high-level and maintainable way.

As an example demonstrating the compactness obtained by combining con-
straint programming and higher-order features, consider a solver for SuDoku
puzzles10 with finite domain constraints. If we represent the SuDoku matrix m as
a list of lists of finite domain variables, the “SuDoku constraints” can be easily
specified by

allValid (map allDifferent m) &

allValid (map allDifferent (transpose m)) &

allValid (map allDifferent (squaresOfNine m))

where allDifferent is the usual constraint stating that all variables in its ar-
gument list must have different values, transpose is the standard matrix trans-
position, and squaresOfNine computes the list of 3 × 3 sub-matrices. Then, a
SuDoku puzzle can be solved with these constraints by adding the usual domain
and labeling constraints (see [77] for more details).

5.2 Functional Patterns

We have discussed in Section 2.2 the fundamental requirement of functional
languages for constructor-based rewrite systems. This requirement is the key for
practically useful implementations and excludes rules like

last (xs ++ [e]) = e (last)

The non-constructor pattern (xs ++ [e]) in this rule can be eliminated by mov-
ing it into the condition part (see Section 2.1):

last l | xs++[e]=:= l = e where xs,e free (lastc)

However, the strict equality used in (lastc) has the disadvantage that all list
elements are completely evaluated. Hence, an expression like last [failed,3]

(where failed is an expression that has no value) leads to a failure. This dis-
advantage can be avoided by allowing functional patterns, i.e., expressions con-
taining defined functions, in arguments of a rule’s left-hand side so that (last)
becomes a valid rule. In order to base this extension on the existing foundations
of functional logic programming as described so far, a functional pattern is in-
terpreted as an abbreviation of the set of constructor terms that is the result of
evaluating (by narrowing) the functional pattern. Thus, rule (last) abbreviates
the following (infinite) set of rules:

10 A SuDoku puzzle consists of a 9 × 9 matrix of digits between 1 and 9 so that each
row, each column, and each of the nine 3× 3 sub-matrices contain pairwise different
digits. The challenge is to find the missing digits if some digits are given.

Functional Logic Programming: From Theory to Curry 157

last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

...

Hence, the expression last [failed,3] reduces to 3 w.r.t. these rules. In order
to provide a constructive implementation of this concept, [23] proposes a specific
demand-driven unification procedure for functional pattern unification that can
be implemented similarly to strict equality. Functional patterns are a powerful
concept to express transformation problems in a high-level way. Concrete pro-
gramming examples and syntactic conditions for the well-definedness of rules
with functional patterns can be found in [23]. [80] exploits functional patterns
for a declarative approach to process XML documents.

5.3 Distributed Programming

Distributed systems are of great importance but programming them is a non-
trivial task. Since Curry has already features for concurrent programming via
residuation, it provides a good basis that can be extended for distributed pro-
gramming. For this purpose, [70] proposes port constraints. Conceptually, a port
is a constraint between a multiset (of messages) and a list that is satisfied if all
elements in the multiset occur in the list and vice versa. Clients use a primitive
constraint sendmp that extends a port p by an element (message)m. A server is
just a recursive operation that processes the list of messages of a port and waits
until the tail of the list is instantiated with the next message, i.e., it is rigid w.r.t.
the message list. By sending messages containing logic variables, the server can
instantiate them so that answers can be easily returned without explicit return
channels. By making ports accessible through symbolic names similar to URLs,
clients can send messages to servers running on an arbitrary host. As shown in
[70], the use of ports provides a high-level concept to implement distributed sys-
tems and to integrate existing declarative programs fairly easy into distributed
environments.

The port concept can be also used to implement distributed objects in Curry.
It is well known from concurrent logic programming [124] that objects can be
easily implemented as predicates processing a stream of incoming messages. The
object’s internal state is a parameter that may change in each recursive call that
processes a message. By creating such object predicates with their own ports,
one immediately obtains distributed objects that can reside on various hosts.
To avoid the explicit modeling of objects by the programmer, [85] proposes
ObjectCurry, a syntactic extension of Curry which allows the direct definition of
templates that play the role of classes in conventional object-oriented languages.
A template defines a local state and messages that modify the state and send
messages to other objects. Templates can be directly transformed into standard
Curry code by a preprocessor. To provide inheritance between templates, the
preprocessor implements an extended type system that includes subtyping.

158 M. Hanus

Fig. 5. A simple counter GUI

6 Applications

Although most of the published work on functional logic programming is re-
lated to foundational aspects, functional logic languages, in particular Curry,
have been used in various applications in order to demonstrate the feasibility
and advantages of functional logic programming. A summary of design patterns
exploiting combined functional and logic features for application programming
can be found in [21]. These patterns are unique to functional logic programming
and cannot be directly applied in other paradigms. For instance, the constraint
constructor pattern exploits the fact that functional logic languages can deal
with failure so that conditions about the validity of data represented by general
structures can be encoded directly in the data structures rather than in applica-
tions programs. This frees the application programs from dealing with complex
conditions on the constructed data. Another pattern, called locally defined global
identifier, has been used to provide high-level interfaces to libraries dealing with
complex data, like programming of dynamic web pages or graphical user inter-
faces (GUIs) (see below). This pattern exploits the fact that functional logic
data structures can contain logic variables which are globally unique when they
are introduced. This is helpful to create local structures with globally unique
identifiers and leads to improved abstractions in application programs. Further
design patterns and programming techniques are discussed in [21,22].

The combination of functional and logic language features are exploited in [71]
for the high-level programming of GUIs. The hierarchical structure of a GUI (e.g.,
rows, columns, or matrices of primitive and combined widgets) is represented
as a data term. This term contains call-back functions as event handlers, i.e.,
the use of functions as first-class objects is natural in this application. Since
event handlers defined for one widget should usually influence the appearance
and contents of other widgets (e.g., if a slider is moved, values shown in other
widgets should change), GUIs have also a logical structure that is different from
its hierarchical structure. To specify this logical structure, logic variables in data
structures are handy, since a logic variable can specify relationships between
different parts of a data term. As a concrete example, consider the simple counter
GUI shown in Figure 5. Using a Curry library designed with these ideas, one
can specify this GUI by the following data term:

Functional Logic Programming: From Theory to Curry 159

Col [Entry [WRef val, Text "0", Background "yellow"],

Row [Button (updateValue incrText val) [Text "Increment"],

Button (setValue val "0") [Text "Reset"],

Button exitGUI [Text "Stop"]]]

where val free

The hierarchical structure of the GUI (a column with two rows) is directly re-
flected in the tree structure of this term. The first argument of each Button is the
corresponding event handler. For instance, the invocation of exitGUI terminates
the GUI, and the invocation of setValue assigns a new value to the referenced
widget. For this purpose, the logic variable val is used. Since the attribute WRef
of the entry widget defines its origin and it is used in various event handlers,
it appropriately describes the logical structure of the GUI, i.e., the dependen-
cies between different widgets. Note that other (more low level) GUI libraries
or languages (e.g., Tcl/Tk) use strings or numbers as widget references which is
potentially more error prone.

Similar ideas are applied in [72] to provide a high-level programming interface
for web applications (dynamic web pages). There, HTML terms are represented
as data structures containing event handlers associated to submit buttons and
logic variables referring to user inputs in web pages that are passed to event han-
dlers. These high-level APIs have been used in various applications, e.g., to im-
plement web-based learning systems [84], constructing web-based interfaces for
arbitrary applications [77,78], graphical programming environments [76], docu-
mentation tools [74], and web frameworks [86] for Curry. Furthermore, Curry has
also been used for embedded systems programming [82,83] with specific libraries
and application-specific compilers.

7 Conclusions and Related Languages

In this paper we surveyed foundations of functional logic programming and their
practical realization in the declarative multi-paradigm language Curry. Curry is
currently the only functional logic language which is based on such strong foun-
dations (e.g., soundness and completeness and optimal evaluation on inductively
sequential programs) and that has been also used to develop larger applications.
Nevertheless, there exist languages with similar goals. We briefly discuss some
of them and relate them to Curry.

The language TOY [101] has strong connections to Curry since it is based
on similar foundations (rewriting logic CRWL, demand-driven narrowing). In
contrast to Curry, it is purely narrowing-based and does not cover residuation
or concurrency. As a consequence, there is no distinction between constraints
and Boolean expressions, but disequality constraints are used to implement the
negation of equations in conditional expressions. Similarly to some implementa-
tions of Curry, TOY supports constraints over finite domains or real numbers.
In addition to Curry, TOY allows higher-order patterns in the left-hand sides of

160 M. Hanus

proram rules. Since residuation is not included in TOY, the connection with
external operations is rather ad hoc. Furthermore, TOY does not provide a
concept to encapsulate search.

Escher [99] is a residuation-based functional logic language. Nondeterminism
is expressed by explicit disjunctions. The operational semantics is given by a set
of reduction rules to evaluate operations in a demand-driven manner and simplify
logical expressions. Due to its different computation model, the conditions under
which completely evaluated answers can be computed are not clear.

The language Oz [126] is based on a computation model that extends the
concurrent constraint programming paradigm [121] with features for distributed
programming and stateful computations. Similarly to Escher, nondeterministic
computations must be explicitly represented as disjunctions so that operations
used to solve equations require different definitions than operations to rewrite
expressions. In contrast to Escher and Curry, the base semantics is strict so that
optimal evaluations are not directly supported.

The functional logic languageMercury [127] restricts logic programming fea-
tures in order to provide a highly efficient implementation. In particular, predi-
cates and functions must have distinct modes so that their arguments are either
ground or unbound at call time. This inhibits the application of typical logic pro-
gramming techniques, like computation with partially instantiated structures, so
that some programming techniques for functional logic programming [21,71,72]
cannot be applied in Mercury. This condition has been relaxed in the language
HAL [59]. However, both languages are based on a strict operational semantics
that does not support optimal evaluations.

Although many encouraging results have been obtained in recent years, the
development of functional logic languages is ongoing and there are many topics
for future work:

Semantics and Language Concepts: The notion of strict equality, although
similar to functional languages, is for some applications too restrictive so
that a more flexible handling is often desirable. Are more powerful higher-
order features useful, and how can they be treated (from a semantical and
implementation point of view)? Are there other concepts for concurrency
and distribution together with a formal model? How can existing constraint
solvers be integrated in a generic way, and which kinds of constraint domains
and solvers are useful? More powerful type systems (e.g., type classes, sub-
types, dependent types) and concepts for object-orientation beyond existing
ones can be considered. Is the incorporation of modes useful? Are there ap-
propriate concepts for meta-programming beyond existing approaches (e.g.,
libraries of the PAKCS distribution [81])?

Implementation: More efficient implementations, in particular, of advanced
concepts such as encapsulated search, concurrency, fair scheduling, paral-
lelism. Compilation into various target languages or target architectures,
e.g., multi-core or embedded processors. Implementation of useful concepts
from related languages, like Haskell’s type classes, genericity, memoization.
Program optimization, e.g., by powerful transformations or for restricted

Functional Logic Programming: From Theory to Curry 161

classes of programs. Domain-specific compilation for particular application
domains (e.g., constraints, web programming, embedded or pervasive sys-
tems). Better environments for program development. More domain-specific
libraries and APIs, standardization of libraries (e.g., for Curry) to improve
compatibility of different implementations, standard interfaces to external
operations.

Analysis and Transformation: Only a few approaches exist for the analy-
sis of functional logic programs (e.g., [7,8,37,67,79,90,91,132]) so that this
area deserves more studies, like termination analyses, abstract interpreta-
tion frameworks, analysis of particular properties (e.g., determinism, suspen-
sion, modes). Similarly, more powerful and practically applicable methods
for transforming programs are required, like optimizing source and interme-
diate programs, more advanced program specialization, refactoring, and also
general transformation frameworks.

Debugging: Some works done in this area have been already mentioned, but
more work is required to provide practically useful support tools, like trac-
ers, declarative debuggers, program slicers, or profilers for functional logic
programs, integrated debugging environments, techniques and strategies for
program correction and program verification.

Results and advances in these areas are also useful to support the development
of more applications implemented with functional logic languages.

Acknowledgments. I am grateful to Harald Ganzinger who put me on this
research track and created a productive research environment in his group that
lead to my most important contributions in this area. Furthermore, I would
like to thank Sergio Antoy, Bernd Braßel, Germán Vidal, and the anonymous
reviewers for their constructive remarks on a previous version of this paper.

References

1. Aı̈t-Kaci, H.: An Overview of LIFE. In: Schmidt, J.W., Stogny, A.A. (eds.)
EWDW 1990. LNCS, vol. 504, pp. 42–58. Springer, Heidelberg (1991)

2. Aı̈t-Kaci, H., Lincoln, P., Nasr, R.: Le Fun: Logic, equations, and Functions.
In: Proc. 4th IEEE Internat. Symposium on Logic Programming, San Francisco,
pp. 17–23 (1987)

3. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational Semantics for
Declarative Multi-Paradigm Languages. Journal of Symbolic Computation 40(1),
795–829 (2005)

4. Albert, E., Hanus, M., Vidal, G.: Using an Abstract Representation to Specialize
Functional Logic Programs. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000.
LNCS (LNAI), vol. 1955, pp. 381–398. Springer, Heidelberg (2000)

5. Albert, E., Hanus, M., Vidal, G.: A Practical Partial Evaluator for a Multi-
Paradigm Declarative Language. Journal of Functional and Logic Program-
ming 2002(1) (2002)

6. Alpuente, M., Correa, F.J., Falaschi, M.: A Debugging Scheme for Functional
Logic Programs. Electronic Notes in Theoretical Computer Science, vol. 64 (2002)

162 M. Hanus

7. Alpuente, M., Falaschi, M., Manzo, F.: Analyses of Unsatisfiability for Equational
Logic Programming. Journal of Logic Programming 22(3), 223–254 (1995)

8. Alpuente, M., Falaschi, M., Vidal, G.: A Compositional Semantic Basis for the
Analysis of Equational Horn Programs. Theoretical Computer Science 165(1),
133–169 (1996)

9. Alpuente, M., Falaschi, M., Vidal, G.: Partial Evaluation of Functional Logic
Programs. ACM Transactions on Programming Languages and Systems 20(4),
768–844 (1998)

10. Alpuente, M., Hanus, M., Lucas, S., Vidal, G.: Specialization of Functional Logic
Programs Based on Needed Narrowing. Theory and Practice of Logic Program-
ming 5(3), 273–303 (2005)

11. Antoy, S.: Non-Determinism and Lazy Evaluation in Logic Programming. In: Proc.
Int. Workshop on Logic Program Synthesis and Transformation (LOPSTR 1991),
pp. 318–331. Springer (1991)

12. Antoy, S.: Definitional Trees. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS,
vol. 632, pp. 143–157. Springer, Heidelberg (1992)

13. Antoy, S.: Optimal Non-Deterministic Functional Logic Computations. In: Hanus,
M., Heering, J., Meinke, K. (eds.) ALP 1997 and HOA 1997. LNCS, vol. 1298,
pp. 16–30. Springer, Heidelberg (1997)

14. Antoy, S.: Constructor-based Conditional Narrowing. In: Proc. of the 3rd Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP 2001), pp. 199–206. ACM Press, New York (2001)

15. Antoy, S.: Evaluation Strategies for Functional Logic Programming. Journal of
Symbolic Computation 40(1), 875–903 (2005)

16. Antoy, S., Ariola, Z.M.: Narrowing the Narrowing Space. In: Hartel, P.H., Kuchen,
H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 1–15. Springer, Heidelberg (1997)

17. Antoy, S., Braßel, B., Hanus, M.: Conditional Narrowing without Conditions. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP 2003), pp. 20–31. ACM Press
(2003)

18. Antoy, S., Echahed, R., Hanus, M.: Parallel Evaluation Strategies for Functional
Logic Languages. In: Proc. of the Fourteenth International Conference on Logic
Programming (ICLP 1997), pp. 138–152. MIT Press (1997)

19. Antoy, S., Echahed, R., Hanus, M.: A Needed Narrowing Strategy. Journal of the
ACM 47(4), 776–822 (2000)

20. Antoy, S., Hanus, M.: Compiling Multi-Paradigm Declarative Programs into Pro-
log. In: Kirchner, H. (ed.) FroCos 2000. LNCS, vol. 1794, pp. 171–185. Springer,
Heidelberg (2000)

21. Antoy, S., Hanus, M.: Functional Logic Design Patterns. In: Hu, Z., Rodŕıguez-
Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441, pp. 67–87. Springer, Heidelberg
(2002)

22. Antoy, S., Hanus, M.: Concurrent Distinct Choices. Journal of Functional Pro-
gramming 14(6), 657–668 (2004)

23. Antoy, S., Hanus, M.: Declarative Programming with Function Patterns. In: Hill,
P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6–22. Springer, Heidelberg (2006)

24. Antoy, S., Hanus, M.: Overlapping Rules and Logic Variables in Functional Logic
Programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 87–101. Springer, Heidelberg (2006)

25. Antoy, S., Hanus, M.: Set Functions for Functional Logic Programming. In: Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2009), pp. 73–82. ACM Press (2009)

Functional Logic Programming: From Theory to Curry 163

26. Antoy, S., Hanus, M., Liu, J., Tolmach, A.: A Virtual Machine for Functional
Logic Computations. In: Grelck, C., Huch, F., Michaelson, G.J., Trinder, P. (eds.)
IFL 2004. LNCS, vol. 3474, pp. 108–125. Springer, Heidelberg (2005)

27. Antoy, S., Hanus, M., Massey, B., Steiner, F.: An Implementation of Narrow-
ing Strategies. In: Proc. of the 3rd International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming (PPDP 2001), pp. 207–217.
ACM Press (2001)

28. Antoy, S., Johnson, S.: TeaBag: A Functional Logic Language Debugger. In: Proc.
13th International Workshop on Functional and (Constraint) Logic Program-
ming (WFLP 2004), pp. 4–18, Aachen (Germany). Technical Report AIB-2004-05,
RWTH Aachen (2004)

29. Antoy, S., Tolmach, A.: Typed Higher-Order Narrowing without Higher-Order
Strategies. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722,
pp. 335–352. Springer, Heidelberg (1999)

30. Arenas-Sánchez, P., Rodŕıguez-Artalejo, M.: A Semantic Framework for Func-
tional Logic Programming with Algebraic Polymorphic Types. In: Bidoit, M.,
Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS,
vol. 1214, pp. 453–464. Springer, Heidelberg (1997)

31. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

32. Berghammer, R., Fischer, S.: Implementing Relational Specifications in a Con-
straint Functional Logic Language. Electronic Notes in Theoretical Computer
Science, vol. 177, pp. 169–183 (2007)

33. Bergstra, J.A., Klop, J.W.: Conditional Rewrite Rules: Confluence and Termina-
tion. Journal of Computer and System Sciences 32(3), 323–362 (1986)

34. Bird, R.S., Wadler, P.: Introduction to Functional Programming. Prentice-Hall
(1988)

35. Bonnier, S., Maluszynski, J.: Towards a Clean Amalgamation of Logic Programs
with External Procedures. In: Proc. 5th Conference on Logic Programming & 5th
Symposium on Logic Programming (Seattle), pp. 311–326. MIT Press (1988)

36. Braßel, B., Chitil, O., Hanus, M., Huch, F.: Observing Functional Logic Com-
putations. In: Jayaraman, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 193–208.
Springer, Heidelberg (2004)

37. Braßel, B., Hanus, M.: Nondeterminism Analysis of Functional Logic Programs.
In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 265–279.
Springer, Heidelberg (2005)

38. Braßel, B., Hanus, M., Huch, F.: Encapsulating Non-Determinism in Functional
Logic Computations. Journal of Functional and Logic Programming 2004(6)
(2004)

39. Brassel, B., Hanus, M., Huch, F., Silva, J., Vidal, G.: Run-Time Profiling of
Functional Logic Programs. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573,
pp. 182–197. Springer, Heidelberg (2005)

40. Braßel, B., Hanus, M., Huch, F., Vidal, G.: A Semantics for Tracing Declara-
tive Multi-Paradigm Programs. In: Proceedings of the 6th ACM SIGPLAN In-
ternational Conference on Principles and Practice of Declarative Programming
(PPDP 2004), pp. 179–190. ACM Press (2004)

41. Braßel, B., Huch, F.: On a Tighter Integration of Functional and Logic Program-
ming. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 122–138. Springer,
Heidelberg (2007)

164 M. Hanus

42. Braßel, B., Huch, F.: The Kiel Curry System KiCS. In: Seipel, D., Hanus, M.,
Wolf, A. (eds.) INAP 2007. LNCS (LNAI), vol. 5437, pp. 195–205. Springer,
Heidelberg (2009)

43. Caballero, R., Rodŕıguez-Artalejo, M.: DDT: a Declarative Debugging Tool for
Functional-Logic Languages. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004.
LNCS, vol. 2998, pp. 70–84. Springer, Heidelberg (2004)

44. Cheong, P.H., Fribourg, L.: Implementation of Narrowing: The Prolog-Based Ap-
proach. In: Apt, K.R., de Bakker, J.W., Rutten, J.J.M.M. (eds.) Logic Program-
ming Languages: Constraints, Functions, and Objects, pp. 1–20. MIT Press (1993)

45. Cleva, J.M., Leach, J., López-Fraguas, F.J.: A logic programming approach to
the verification of functional-logic programs. In: Proceedings of the 6th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pp. 9–19. ACM Press (2004)

46. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Proc.
9th Annual Symposium on Principles of Programming Languages, pp. 207–212
(1982)

47. del Vado Virseda, R.: A Demand-Driven Narrowing Calculus with Overlapping
Definitional Trees. In: Proceedings of the 8th ACM SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (PPDP 2003),
pp. 253–263. ACM Press (2003)

48. Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. B, pp. 243–320. Elsevier (1990)

49. Echahed, R., Janodet, J.-C.: Admissible Graph Rewriting and Narrowing. In:
Proc. Joint International Conference and Symposium on Logic Programming
(JICSLP 1998), pp. 325–340 (1998)

50. Escobar, S.: Refining Weakly Outermost-Needed Rewriting and Narrowing. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP 2003), pp. 113–123. ACM Press
(2003)

51. Escobar, S.: Implementing Natural Rewriting and Narrowing Efficiently. In:
Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 147–162.
Springer, Heidelberg (2004)

52. Escobar, S., Meseguer, J., Thati, P.: Narrowing adn Rewriting Logic: from Foun-
dations to Applications. Electronic Notes in Theoretical Computer Science 177,
5–33 (2007)

53. España, S., Estruch, V.: A Memoizing Semantics for Functional Logic Languages.
In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 109–123. Springer,
Heidelberg (2004)

54. Fernández, A.J., Hortalá-González, T., Sáenz-Pérez, F.: Solving Combinatorial
Problems with a Constraint Functional Logic Language. In: Dahl, V. (ed.)
PADL 2003. LNCS, vol. 2562, pp. 320–338. Springer, Heidelberg (2002)

55. Fernández, A.J., Hortalá-González, M.T., Sáenz-Pérez, F., del Vado-Vı́rseda, R.:
Constraint Functional Logic Programming over Finite Domains. Theory and Prac-
tice of Logic Programming 7(5), 537–582 (2007)

56. Ferri-Ramı́rez, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Incremen-
tal Learning of Functional Logic Programs. In: Kuchen, H., Ueda, K. (eds.)
FLOPS 2001. LNCS, vol. 2024, pp. 233–247. Springer, Heidelberg (2001)

57. Fischer, S.: A Functional Logic Database Library. In: Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005),
pp. 54–59. ACM Press (2005)

Functional Logic Programming: From Theory to Curry 165

58. Fribourg, L.: SLOG: A Logic Programming Language Interpreter Based on
Clausal Superposition and Rewriting. In: Proc. IEEE Internat. Symposium on
Logic Programming, Boston, pp. 172–184 (1985)

59. Garćıa de la Banda, M.J., Demoen, B., Marriott, K., Stuckey, P.J.: To the Gates
of HAL: A HAL Tutorial. In: Hu, Z., Rodŕıguez-Artalejo, M. (eds.) FLOPS 2002.
LNCS, vol. 2441, pp. 47–66. Springer, Heidelberg (2002)

60. Giovannetti, E., Levi, G., Moiso, C., Palamidessi, C.: Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences 42(2), 139–185
(1991)

61. Gonzáles-Moreno, J.C., Hortalá-González, M.T., Rodŕıguez-Artalejo, M.: Poly-
morphic Types in Functional Logic Programming. Journal of Functional and Logic
Programming 2001(1) (2001)

62. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
Journal of Logic Programming 40, 47–87 (1999)

63. González-Moreno, J.C., Hortalá-González, M.T., Rodŕıguez-Artalejo, M.: A
Higher Order Rewriting Logic for Functional Logic Programming. In: Proc. of
the Fourteenth International Conference on Logic Programming (ICLP 1997),
pp. 153–167. MIT Press (1997)

64. Habel, A., Plump, D.: Term Graph Narrowing. Mathematical Structures in Com-
puter Science 6(6), 649–676 (1996)

65. Hanus, M.: Compiling Logic Programs with Equality. In: Deransart, P.,
Ma�luszyński, J. (eds.) PLILP 1990. LNCS, vol. 456, pp. 387–401. Springer,
Heidelberg (1990)

66. Hanus, M.: The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming 19&20, 583–628 (1994)

67. Hanus, M.: Analysis of Residuating Logic Programs. Journal of Logic Program-
ming 24(3), 161–199 (1995)

68. Hanus, M.: Efficient Translation of Lazy Functional Logic Programs into Prolog.
In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 252–266. Springer,
Heidelberg (1996)

69. Hanus, M.: A Unified Computation Model for Functional and Logic Programming.
In: Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93 (1997)

70. Hanus, M.: Distributed Programming in a Multi-Paradigm Declarative Language.
In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 376–395. Springer,
Heidelberg (1999)

71. Hanus, M.: A Functional Logic Programming Approach to Graphical User In-
terfaces. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753,
pp. 47–62. Springer, Heidelberg (2000)

72. Hanus, M.: High-Level Server Side Web Scripting in Curry. In: Ramakrishnan,
I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 76–92. Springer, Heidelberg (2001)

73. Hanus, M.: Reduction Strategies for Declarative Programming. Electronic Notes
in Theoretical Computer Science 57 (2001)

74. Hanus, M.: CurryDoc: A Documentation Tool for Declarative Programs. In: Proc.
11th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2002), Research Report UDMI/18/2002/RR, pp. 225–228, University of
Udine (2002)

75. Hanus, M.: Dynamic Predicates in Functional Logic Programs. Journal of Func-
tional and Logic Programming 2004(5) (2004)

166 M. Hanus

76. Hanus, M.: A Generic Analysis Environment for Declarative Programs. In: Proc.
of the ACM SIGPLAN 2005 Workshop on Curry and Functional Logic Program-
ming (WCFLP 2005), pp. 43–48. ACM Press (2005)

77. Hanus, M.: Type-Oriented Construction of Web User Interfaces. In: Proceedings
of the 8th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP 2006), pp. 27–38. ACM Press (2006)

78. Hanus, M.: Putting Declarative Programming into the Web: Translating Curry
to JavaScript. In: Proceedings of the 9th ACM SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (PPDP 2007),
pp. 155–166. ACM Press (2007)

79. Hanus, M.: Call Pattern Analysis for Functional Logic Programs. In: Proceedings
of the 10th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP 2008), pp. 67–78. ACM Press (2008)

80. Hanus, M.: Declarative Processing of Semistructured Web Data. Technical Report
1103, Christian-Albrechts-Universität Kiel (2011)

81. Hanus, M., Antoy, S., Braßel, B., Engelke, M., Höppner, K., Koj, J., Niederau, P.,
Sadre, R., Steiner, F.: PAKCS: The Portland Aachen Kiel Curry System (2010),
http://www.informatik.uni-kiel.de/~pakcs/

82. Hanus, M., Höppner, K.: Programming Autonomous Robots in Curry. Electronic
Notes in Theoretical Computer Science 76 (2002)

83. Hanus, M., Höppner, K., Huch, F.: Towards Translating Embedded Curry to C.
Electronic Notes in Theoretical Computer Science 86(3) (2003)

84. Hanus, M., Huch, F.: An Open System to Support Web-based Learning. In: Proc.
12th International Workshop on Functional and (Constraint) Logic Program-
ming (WFLP 2003), pp. 269–282. Technical Report DSIC-II/13/03, Universidad
Politécnica de Valencia (2003)

85. Hanus, M., Huch, F., Niederau, P.: ObjectCurry: An Object-Oriented Extension
of the Declarative Multi-Paradigm Language Curry. In: Mohnen, M., Koopman,
P. (eds.) IFL 2000. LNCS, vol. 2011, pp. 89–106. Springer, Heidelberg (2001)

86. Hanus,M., Koschnicke, S.: AnER-Based Framework for DeclarativeWebProgram-
ming. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 201–216.
Springer, Heidelberg (2010)

87. Hanus, M., Prehofer, C.: Higher-Order Narrowing with Definitional Trees. Journal
of Functional Programming 9(1), 33–75 (1999)

88. Hanus, M., Sadre, R.: An Abstract Machine for Curry and its Concurrent Imple-
mentation in Java. Journal of Functional and Logic Programming 1999(6) (1999)

89. Hanus, M., Steiner, F.: Controlling Search in Declarative Programs. In:
Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP 1998 and PLILP 1998.
LNCS, vol. 1490, pp. 374–390. Springer, Heidelberg (1998)

90. Hanus, M., Steiner, F.: Type-based Nondeterminism Checking in Functional Logic
Programs. In: Proc. of the 2nd International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming (PPDP 2000), pp. 202–213. ACM
Press (2000)

91. Hanus, M., Zartmann, F.: Mode Analysis of Functional Logic Programs. In:
LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 26–42. Springer, Heidelberg
(1994)

92. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language (2011),
http://www.curry-language.org

93. Hölldobler, S.: Foundations of Equational Logic Programming. In: Hölldobler, S.
(ed.) Foundations of Equational Logic Programming. LNCS, vol. 353, Springer,
Heidelberg (1989)

http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org

Functional Logic Programming: From Theory to Curry 167

94. Hussmann, H.: Nondeterministic Algebraic Specifications and Nonconfluent Term
Rewriting. Journal of Logic Programming 12, 237–255 (1992)

95. Ida, T., Nakahara, K.: Leftmost outside-in narrowing calculi. Journal of Func-
tional Programming 7(2), 129–161 (1997)

96. Jiménez-Martin, J.A., Marino-Carballo, J., Moreno-Navarro, J.J.: Efficient Com-
pilation of Lazy Narrowing into Prolog. In: Proc. Int. Workshop on Logic Program
Synthesis and Transformation (LOPSTR 1992). Springer Workshops in Comput-
ing Series, pp. 253–270 (1992)

97. Julián Iranzo, P., Villamizar Lamus, C.: Analysing Definitional Trees: Looking
for Determinism. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS,
vol. 2998, pp. 55–69. Springer, Heidelberg (2004)

98. Launchbury, J.: A Natural Semantics for Lazy Evaluation. In: Proc. 20th ACM
Symposium on Principles of Programming Languages (POPL 1993), pp. 144–154.
ACM Press (1993)

99. Lloyd, J.: Programming in an Integrated Functional and Logic Language. Journal
of Functional and Logic Programming (3), 1–49 (1999)

100. Loogen, R., López Fraguas, F., Rodŕıguez Artalejo, M.: A Demand Driven Com-
putation Strategy for Lazy Narrowing. In: Penjam, J., Bruynooghe, M. (eds.)
PLILP 1993. LNCS, vol. 714, pp. 184–200. Springer, Heidelberg (1993)

101. Fraguas, F.J.L., Hernández, J.S.: TOY: A Multiparadigm Declarative System. In:
Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 244–247.
Springer, Heidelberg (1999)

102. López-Fraguas, F.J., Rodŕıguez-Artalejo, M., del Vado Virseda, R.: A lazy nar-
rowing calculus for declarative constraint programming. In: Proceedings of the 6th
International ACM SIGPLAN Conference on Principles and Practice of Declara-
tive Programming, pp. 43–54. ACM Press (2004)

103. López-Fraguas, F.J., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: A Simple
Rewrite Notion for Call-time Choice Semantics. In: Proceedings of the 9th ACM
SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP 2007), pp. 197–208. ACM Press (2007)

104. López-Fraguas, F.J., Sánchez-Hernández, J.: A Proof Theoretic Approach to Fail-
ure in Functional Logic Programming. Theory and Practice of Logic Program-
ming 4(1), 41–74 (2004)

105. Lux, W.: Implementing Encapsulated Search for a Lazy Functional Logic Lan-
guage. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722,
pp. 100–113. Springer, Heidelberg (1999)

106. Lux, W.: Adding Linear Constraints over Real Numbers to Curry. In: Kuchen, H.,
Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024, pp. 185–200. Springer, Heidelberg
(2001)

107. Middeldorp, A., Okui, S., Ida, T.: Lazy Narrowing: Strong Completeness and
Eager Variable Elimination. Theoretical Computer Science 2(1,2), 95–130 (1996)

108. Moreno-Navarro, J.J.: Default Rules: An Extension of Constructive Negation for
Narrowing-based Languages. In: Proc. Eleventh International Conference on Logic
Programming, pp. 535–549. MIT Press (1994)

109. Moreno-Navarro, J.J., Rodŕıguez-Artalejo, M.: Logic Programming with Func-
tions and Predicates: The Language BABEL. Journal of Logic Programming 12,
191–223 (1992)

110. Naish, L.: Adding Equations to NU-Prolog. In: Ma�luszyński, J., Wirsing, M. (eds.)
PLILP 1991. LNCS, vol. 528, pp. 15–26. Springer, Heidelberg (1991)

168 M. Hanus

111. Nakahara, K., Middeldorp, A., Ida, T.: A Complete Narrowing Calculus
for Higher-Order Functional Logic Programming. In: Swierstra, S.D. (ed.)
PLILP 1995. LNCS, vol. 982, pp. 97–114. Springer, Heidelberg (1995)

112. Nilsson, H., Fritzson, P.: Algorithmic debugging for lazy functional languages.
Journal of Functional Programming 4(3), 337–370 (1994)

113. Ochoa, C., Silva, J., Vidal, G.: Dynamic Slicing Based on Redex Trails. In: Proc.
of the ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation (PEPM 2004), pp. 123–134. ACM Press (2004)

114. O’Donnell, M.J. (ed.): Computing in Systems Described by Equations. LNCS,
vol. 58. Springer, Heidelberg (1977)

115. O’Donnell, M.J.: Equational Logic as a Programming Language. MIT Press (1985)
116. Padawitz, P.: Computing in Horn Clause Theories. EATCS Monographs on The-

oretical Computer Science, vol. 16. Springer (1988)
117. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report.

Cambridge University Press (2003)
118. Reynolds, J.C.: Definitional Interpreters for Higher-Order Programming Lan-

guages. In: Proceedings of the ACM Annual Conference, pp. 717–740. ACM Press
(1972)

119. Rodŕıguez-Artalejo,M.:Functional andConstraintLogicProgramming. In:Comon,
H.,Marché,C.,Treinen,R. (eds.)CCL1999.LNCS,vol. 2002,pp. 202–270.Springer,
Heidelberg (2001)

120. Sánchez-Hernández, J.: Constructive Failure in Functional-Logic Programming:
From Theory to Implementation. Journal of Universal Computer Science 12(11),
1574–1593 (2006)

121. Saraswat, V.A.: Concurrent Constraint Programming. MIT Press (1993)
122. Sekar, R.C., Ramakrishnan, I.V.: Programming in Equational Logic: Beyond

Strong Sequentiality. Information and Computation 104(1), 78–109 (1993)
123. Shapiro, E.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
124. Shapiro, E., Takeuchi, A.: Object Oriented Programming in Concurrent Prolog.

In: Shapiro, E. (ed.) Concurrent Prolog: Collected Papers, vol. 2, pp. 251–273.
MIT Press (1987)

125. Slagle, J.R.: Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity, and Associativity. Journal of the ACM 21(4), 622–642 (1974)

126. Smolka, G.: The Oz Programming Model. In: van Leeuwen, J. (ed.) Computer
Science Today. LNCS, vol. 1000, pp. 324–343. Springer, Heidelberg (1995)

127. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming 29(1-3), 17–64 (1996)

128. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press (2004)

129. Wadler, P.: Efficient Compilation of Pattern-Matching. In: Peyton Jones, S.L.
(ed.) The Implementation of Functional Programming Languages, pp. 78–103.
Prentice Hall (1987)

130. Wadler, P.: How to Declare an Imperative. ACM Computing Surveys 29(3),
240–263 (1997)

131. Warren, D.H.D.: Higher-order extensions to Prolog: are they needed? In: Machine
Intelligence, vol. 10, pp. 441–454 (1982)

132. Zartmann, F.: Denotational Abstract Interpretation of Functional Logic Pro-
grams. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 141–156.
Springer, Heidelberg (1997)

From Search to Computation:

Redundancy Criteria and Simplification at Work

Thomas Hillenbrand1, Ruzica Piskac2,
Uwe Waldmann1, and Christoph Weidenbach1

1 Max-Planck-Institut für Informatik
Campus E1.4, 66123 Saarbrücken, Germany
2 Max-Planck-Institut für Softwaresysteme,
Campus E1.4, 66123 Saarbrücken, Germany

Abstract. The concept of redundancy and simplification has been an
ongoing theme in Harald Ganzinger’s work from his first contributions
to equational completion to the various variants of the superposition
calculus. When executed by a theorem prover, the inference rules of
logic calculi usually generate a tremendously huge search space. The
redundancy and simplification concept is indispensable for cutting down
this search space to a manageable size. For a number of subclasses of first-
order logic appropriate redundancy and simplification concepts even turn
the superposition calculus into a decision procedure. Hence, the key to
successfully applying first-order theorem proving to a problem domain is
to find those simplifications and redundancy criteria that fit this domain
and can be effectively implemented.

We present Harald Ganzinger’s work in the light of the simplification
and redundancy techniques that have been developed for concrete prob-
lem areas. This includes a variant of contextual rewriting to decide a
subclass of Euclidean geometry, ordered chaining techniques for Church-
Rosser and priority queue proofs, contextual rewriting and history-
dependent complexities for the completion of conditional rewrite
systems, rewriting with equivalences for theorem proving in set theory,
soft typing for the exploration of sort information in the context of equa-
tions, and constraint inheritance for automated complexity analysis.

1 Introduction

Theorem proving methods such as resolution or superposition aim at deducing a
contradiction from a set of formulae by recursively deriving new formulae from
given ones according to some logic calculus. A theorem prover computes one of
the possible inferences of the current set of formulae and adds its conclusion to
the current set, until a contradiction is found, or until a “closed” (or “saturated”)
set is reached, where the conclusion of every inference is already contained in
the set.

Usually the inference rules of the calculus generate an infinite search space.
For any serious application of saturation theorem provers, it is therefore in-
dispensable to cut down the search space, and preferably, to turn undirected

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 169–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

170 T. Hillenbrand et al.

search into goal-directed computation. Simplification and redundancy detection
are the key techniques to reduce the search space of a saturation-based prover.
Abstractly stated, a redundant formula is a formula that is known to be unnec-
essary for deriving a contradiction and can be discarded, and a simplification is
a process that makes a formula redundant, possibly by adding other (simpler)
formulas. To be useful in practice, however, these abstract properties have to
be approximated by concrete simplifications and redundancy criteria that fit
the given problem domain and can be effectively and preferably also efficiently
implemented. The importance of efficiency should not be underestimated here:
current theorem provers can easily spend more than 90% of their runtime on
simplification and redundancy detection.

The concept of redundancy and simplification has been an ongoing theme in
Harald Ganzinger’s work from his first contributions to equational completion in
the mid 1980’s to the various variants of the superposition calculus. We give ex-
amples of the work of Harald Ganzinger, his students, and members of his group,
that illustrate simplification and redundancy techniques and their application for
concrete problem areas. This includes a variant of contextual rewriting to de-
cide a subclass of Euclidean geometry, ordered chaining techniques for Church-
Rosser and priority queue proofs, contextual rewriting and history-dependent
complexities for the completion of conditional rewrite systems, rewriting with
equivalences for theorem proving in set theory, soft typing for the exploration
of sort information in the context of equations, and constraint inheritance for
automated complexity analysis.

2 Preliminaries

We start this section by briefly summarizing the foundations of first-order logic,
term rewriting, and refutational theorem proving. For a more detailed presenta-
tion we refer to [2] and [9].

We consider terms and formulas over a set of function symbols Σ, a set of
predicate symbols Π , and a set of variables X , where Σ, Π , and X are disjoint.
Every function and predicate symbol comes with a unique arity n ≥ 0. The set of
terms over Σ and X is the least set containing x whenever x ∈ X , and containing
f(t1, . . . , tn) whenever each ti is a term and f ∈ Σ has arity n. The set of atoms
over Π , Σ, and X contains P (t1, . . . , tn) whenever each ti is a term and P ∈ Π
has arity n. We assume that Π contains a binary predicate symbol ≈ (equality),
written in infix notation. An atom t ≈ t′ is also called an equation. Formulas are
constructed from atoms and the constants * (true) and ⊥ (false) using the usual
connectives ¬, ∨, ∧, ⇒, ⇔ and the quantifiers ∀ and ∃. Throughout this survey
we assume that function and predicate symbols are declared appropriately such
that all syntactic objects (terms, atoms, etc.) are well-formed.

The set of variables occurring in a syntactic object Q is denoted by Var(Q).
If Var(Q) is empty, then Q is called ground. We require that there exists at least
one ground term.

From Search to Computation 171

A literal is either an atom A (also called a positive literal) or a negated atom
¬A (also called a negative literal). A clause is either the symbol ⊥ (empty clause)
or a disjunction of literals. We identify clauses with finite multiset of literals. The
symbol [¬] A denotes either A or ¬ A. Instead of ¬ t ≈ t′, we sometimes write
t
≈ t′. If no explicit quantifiers are specified, variables in a clause are implicitly
universally quantified.

A substitution σ is a mapping from X into the set of terms over Σ and X .
Substitutions are homomorphically extended to terms, and likewise to atoms,
literals, or clauses. We use postfix notation for substitutions and write tσ instead
of σ(t); σσ′ is the substitution that maps every x to (xσ)σ′. A syntactic object
Q′ is called an instance of an object Q, if Qσ = Q′ for some substitution σ. For
a set N of clauses, the set of all ground instances of clauses in N is denoted
by N̄ . A substitution that maps the variables x1, . . . , xn to the terms t1, . . . , tn,
respectively, is denoted by {x1 �→ t1, . . . , xn �→ tn}.

An interpretation A for Σ and Π consists of a non-empty set U , called the
domain of A, and a mapping that assigns to every n-ary function symbol f ∈ Σ
a function fA : Un → U and to each n-ary predicate symbol P ∈ Π an n-ary
relation PA ⊆ Un. An A-assignment α is a mapping from the set of variables X
into the domain of A. Assignments can be homomorphically extended to terms
over Σ and X . An atom P (t1, . . . , tn) is called true with respect to A and α if
(α(t1), . . . , α(tn)) ∈ PA, otherwise it is called false.

The extension to arbitrary formulas happens in the usual way. In particular,
a negative literal ¬A is true with respect to A and α if and only if A is not true,
and a clause C is true with respect to A and α if at least one of its literals is
true. An interpretation A is a model of a formula, if it is true with respect to A
and α for every A-assignment α. It is a model of a set N of formulas, if it is a
model of every formula in N . If A is a model of N , we also say that it satisfies
N . A set of formulas is called satisfiable if it has a model. Obviously every set
of formulas containing ⊥ is unsatisfiable.

In refutational theorem proving, one is primarily interested in the question
whether or not a given set of universally quantified clauses is satisfiable. For
this purpose we may confine ourselves to term-generated interpretations, that
is, to interpretations A where every element of U is the image of some ground
term.1 We may even confine ourselves to Herbrand interpretations, that is, to
term-generated interpretations whose domain is the set of ground terms, and
where every ground term is interpreted by itself: A set of clauses has a model,
if and only if it has a term-generated model, if and only if it has a Herbrand
model.

As long as we restrict ourselves to term-generated models we may think of a
non-ground clause as a finite representation of the set of all its ground instances:
A term-generated interpretation is a model of a clause C if and only it is a model
of all ground instances of C.

When one uses the equality symbol ≈ in a logical language, one is commonly
interested in interpretations A in which ≈A is not an arbitrary binary relation

1 Recall that we require that there is at least one ground term.

172 T. Hillenbrand et al.

but actually the equality relation on the domain of A. We refer to such interpre-
tations as normal. If we want to recover the intuitive semantics of the equality
symbol while working with Herbrand interpretations, we have to encode the in-
tended properties of the equality symbol explicitly using the equality axioms
reflexivity, symmetry, transitivity, and congruence. If N is a set of clauses, then
an interpretation that is a model of N and of the equality axioms is called an
equality model of N . A set of clauses has a normal model, if and only if it has a
term-generated normal model, if and only if it has an equality Herbrand model.
If N and N ′ are sets of clauses and every equality Herbrand model of N is
a model of N ′, we say that N entails N ′ modulo equality and denote this by
N |= N ′.

For simplicity, we will usually assume that equality is the only predicate sym-
bol. This does not restrict the expressivity of the logic: A predicate P different
from≈ can be coded using function symbols p and true, so that P (t1, . . . , tn) is to
be taken as an abbreviation for p(t1, . . . , tn) ≈ true. Under these circumstances,
every Herbrand interpretation is completely characterized by the interpretation
≈A of the equality predicate. For any set EA of ground equations there is exactly
one Herbrand interpretation A in which the equations in EA are true and all
other ground equations are false. We will usually identify A and EA. A positive
ground literal A is thus true in EA, if A ∈ EA; a negative ground literal ¬ A is
true in EA, if A /∈ EA.

In the rest of the paper, we will almost exclusively work with (equality) Her-
brand interpretations and models, or more precisely, with the set EA of equations
corresponding to a Herbrand interpretation A. For simplicity, we will usually
drop the attribute “Herbrand”.

We describe theorem proving calculi using inference rules of the form

I C1 . . . Cn

D1

...
Dm

and reduction rules of the form

R C1 . . . Cn

D1

...
Dm

Both kinds of rules are used to derive new formulas D1, . . . , Dm (conclusions)
from given formulas C1, . . . , Cn (premises) that are contained in some set N ;
an application of an inference rule adds the conclusions to N ; an application
of a reduction rule replaces the premises by the conclusions in N . (The list of
conclusions can be empty; in this case the reduction rule simply deletes the
premises.)

From Search to Computation 173

To prove the completeness of calculi, we have to construct Herbrand inter-
pretations and to check whether a given equation is contained in such an in-
terpretation. Rewriting techniques are our main tool for this task. The rest of
this subsection serves mainly to fix the necessary notation; for more detailed
information about rewrite systems we refer the reader to [2].

As usual, positions (also known as occurrences) of a term are denoted by
strings of natural numbers. t[t′]o is the result of the replacement of the subterm
at the position o in t by t′. We write t[t′] if o is clear from the context.

A binary relation → is called a rewrite relation, if it is stable under substitu-
tions and contexts, that is, if t1 → t2 implies t1σ → t2σ and s[t1]o → s[t2]o for
all terms t1, t2, and s, and for all substitutions σ.

A rewrite rule is a pair (t, t′) of terms, usually written as t → t′. A rewrite
system is a set of rewrite rules. If R is a rewrite system, then the rewrite relation
→R associated with R is the smallest rewrite relation containing t →R t′ for
every rule t→ t′ ∈ R.

For a binary relation →, we commonly use the symbol ← for its inverse
relation, ↔ for its symmetric closure, →+ for its transitive closure, and →∗ for
its reflexive-transitive closure (and thus ↔∗ for its reflexive-symmetric-transitive
closure).

A binary relation→ is called noetherian (or terminating), if there is no infinite
chain t1 → t2 → t3 → · · · . We say that t is a normal form (or irreducible) with
respect to → if there is no t′ such that t → t′; t is called a normal form of
s if s →∗ t and t is a normal form. We say that → is confluent if for every
t0, t1, t2 such that t1 ←∗ t0 →∗ t2 there exists a t3 such that t1 →∗ t3 ←∗ t2. A
terminating and confluent relation is called convergent.

A transitive and irreflexive binary relation� is called an ordering. An ordering
on terms is called a reduction ordering, if it is a noetherian rewrite relation. Well-
known examples of reduction orderings are polynomial orderings, lexicographic
path orderings (LPO), recursicve path orderings (RPO), and Knuth-Bendix or-
derings (KBO) [2].

A well-founded ordering on a set S generates a well-founded ordering on finite
multisets over S. We use this construction to lift a term ordering � to a literal
and a clause ordering: We assign the multiset {s, t} to a positive literal s ≈ t
and the multiset {s, s, t, t} to a negative literal s
≈ t. The literal ordering �L

compares these multisets using the multiset extension of �. The clause ordering
�C compares clauses by comparing their multisets of literals using the multiset
extension of �L. (The subscripts L and C are often omitted.)

We use the symbol % to denote the reflexive closure of an ordering �. If
(S0,�) is an ordered set, S ⊆ S0, and s ∈ S0, then S

≺s is an abbreviation for
{ t ∈ S | t ≺ s }.

3 CEC – Conditional Equational Completion

After having worked on compiler generation and abstract data types for about
ten years, Harald Ganzinger started to work on term rewriting and completion

174 T. Hillenbrand et al.

of algebraic specification in the mid 1980’s. From 1986 to 1990, most of his
work [20–24, 27] centered around the CEC system, serving both as a testbed
to evaluate the usefulness of theoretical results and as an inspiration for further
developments.

Knuth-Bendix completion [34] is a method that attempts to convert a set of
equations into an equivalent convergent rewrite system. The completion proce-
dure is based on two main operations. The first one is orientation: Equations
s ≈ t are turned into rewrite rules s → t if s is larger than t according to some
reduction ordering �. The second one is critical pair computation: If two rewrite
rules s → t and l → r overlap, that is, if a non-variable subterm u of s at the
position o can be unified with l, these two rewrite rules generate a new equation
(s[r]o)σ ≈ tσ (where σ is the most general unifier of u and l). These two main
operations are supplemented by techniques to simplify (or discard) equations
and rules.

The CEC (“Conditional Equational Completion”) system [13], implemented
in Prolog by Hubert Bertling, Harald Ganzinger and Renate Schäfers, generalizes
Knuth-Bendix completion to conditional equations of the form

u1 ≈ v1 ∧ . . . ∧ un ≈ vn ⇒ s ≈ t.

In previous approaches to completion of conditional equations, one had only
considered reductive equations e, that is, conditional equations where the left-
hand side s of the conclusion is larger than every other term occurring in e
and, in particular, contains all variables of e. It is clear that this condition is
quite restrictive and in fact makes most applications of conditional equations
impossible. CEC, on the other side, does not require reductivity, and in fact
even permits conditional equations containing extra variables, that is, variables
that appear in the conditions or in the right-hand side of the conclusion, but not
in the left-hand side.

One method CEC uses to deal with such conditional equations is to declare
them as non-operational [20, 23]. This is the predecessor of a technique that
should later become known as selection of negative literals in the superposition
calculus: Instead of computing overlaps with the term s of a conditional equation
Γ ⇒ s ≈ s′, conditional rewrite rules are superposed on one selected equation
of Γ , yielding new conditional equations. If the resulting conditional equations
can be proved to be convergent, then the non-operational conditional equation
is also convergent; it is irrelevant for the computation of normal forms (unless
the specification is extended).

Moreover, CEC makes it possible to use quasi-reductive conditional equations
in a Prolog-like manner. A conditional rewrite rule u1 ≈ v1 ∧ . . . ∧ un ≈
vn ⇒ s → t is called quasi-reductive [24], if it is deterministic, that is, Var(t) ⊆
Var(s)∪

⋃n
j=1(Var(uj)∪Var(vj)) and Var(ui) ⊆ Var(s)∪

⋃i−1
j=1(Var(uj)∪Var(vj))

for every 1 ≤ i ≤ n, and if ujσ % vjσ for 1 ≤ j ≤ i implies sσ �st ui+1σ and
ujσ % vjσ for all 1 ≤ j ≤ n implies sσ � tσ.2 Intuitively, this condition
means that the instantiation of s yields the instantiation of u1, normalizing any

2 �st is the transitive closure of the union of � and the strict subterm ordering.

From Search to Computation 175

instantiated ui and matching the result against vi yields the instantiation of
ui+1, and normalizing every ui yields the instantiation of t.

CEC also implements rewriting and completion modulo AC to deal with as-
sociative and commutative operators. An interesting feature from the user per-
spective is the ability to specify the term ordering incrementally during the
completion process.

In contrast to an automated theorem prover, a completion procedure like CEC
may fail if it encounters a conditional equation that can neither be oriented nor
discarded. Powerful techniques for simplifying critical pair peaks are therefore
extremely important for a successful completion procedure, and CEC contains
a large repertoire of such techniques. A conditional equation Γ ⇒ s ≈ s′ can be
eliminated if there exists a proof of Γ ⇒ s ≈ s′ that is simpler than Γ ⇒ s ≈ s′

itself. Rewriting in contexts is a method to simplify conditional equations, where
skolemized oriented condition equations are employed to reduce terms in the
conclusion. CEC also uses non-reductive equations Γ ⇒ s→ s′ for simplification:
if Γσ is a subset of Δ, then sσ → s′σ is available to simplify Δ⇒ t ≈ t′. Finally,
CEC makes it possible to make the complexity of a conditional equation history-
dependent: complexities of input formulas can be arbitrarily chosen, whereas
the origin of a derived conditional equation determines the complexity of the
latter [21].

The completeness proof for the procedure implemented in CEC extends
the proof ordering technique of Leo Bachmair, Nachum Dershowitz and Jieh
Hsiang [4]: while Bachmair, Dershowitz and Hsiang use linear proofs and define
an ordering on them as the multiset extension of the ordering of proof steps, one
needs now tree-like proofs, represented as proof terms, which are compared using
an RPO with an ordering on proof operators as precedence. As in [4], completion
inferences lead to smaller proof terms.

CEC has been used, for instance, for the correctness proof for a code generator
(Giegerich [29]) and for semi-functional translation of modal logics (Ohlbach [43]).
It is able to deal with order-sorted specifications [24], including specifications
with non-sort-decreasing rules, for which the procedure of Gnaedig, Kirchner
and Kirchner [30] fails. Other examples include the specification of a maximum
function over a total ordering, including the transitivity axiom [23].

4 Saturate

Among all techniques developed to deal with equality in first-order theorem
proving, the paramodulation calculus of George Robinson and Larry Wos [47]
has been the most influential. The paramodulation rule embodies the ideas of
the resolution calculus and the operation of “replacing equals by equals” that
is fundamental for term rewriting. Whenever a clause contains a positive literal
t ≈ t′, the paramodulation rule permits to rewrite a subterm t occurring in
some literal [¬] A[t] of another clause to t′. For non-ground clauses, equality is

176 T. Hillenbrand et al.

replaced by unifiability, so that the resulting rule is essentially a combination of
non-ground resolution and Knuth-Bendix completion.3

I D′ ∨ t ≈ t′ C′ ∨ [¬] s[w] ≈ s′

(D′ ∨ C′ ∨ [¬] s[t′] ≈ s′)σ

where σ is a most general unifier of t and w.4

Both resolution and completion are (or can be) subject to ordering restrictions
with respect to some syntactical ordering � on atoms or terms: In the Knuth-
Bendix completion procedure,5 only overlaps at non-variable positions between
the maximal sides of two rewrite rules produce a critical pair. Similarly, the
resolution calculus remains a semidecision procedure if inferences are computed
only if each of the two complementary literals is maximal in its premise. It is
natural to ask whether paramodulation may inherit the ordering restrictions
of both its ancestors. More precisely: Let a paramodulation inference between
clauses D = D′ ∨ t ≈ t′ and C = C′ ∨ [¬] s[w] ≈ s′ be given as above, and
let � be a reduction ordering that is total on ground terms. Does the calculus
remain refutationally complete if we require, as in completion, that (i) w is not
a variable, (ii) tσ
+ t′σ, (iii) (s[w])σ
+ s′σ, and, as in ordered resolution, that
(iv) (t ≈ t′)σ is maximal in Dσ, and (v) (s[w] ≈ s′)σ is maximal in Cσ ?

A first result in this direction was obtained by Gerald Peterson [44], who
showed the admissibility of restrictions (i) and (ii). It was extended to (i), (ii),
(iii) for positive literals, and (v) by Michaël Rusinowitch [48], and to (i), (ii),
(iv), and (v) by Jieh Hsiang and Michaël Rusinowitch [31]. The final answer was
given by Leo Bachmair and Harald Ganzinger [5–7]: All five restrictions may
be imposed on the paramodulation rule (which is named superposition then),
however, an additional inference rule becomes necessary to cope with certain
non-Horn clauses: either the merging paramodulation rule, which appeared first
in (Bachmair and Ganzinger [5, 6]), or the equality factoring rule, which is due
to Robert Nieuwenhuis [36]. The resulting inference system is the basis of the
superposition calculus; it consists of the rules superposition, equality resolution
(i. e., ordered resolution with the reflexivity axiom), and either equality factoring
or ordered factoring and merging paramodulation.

The “model construction” technique developed by Bachmair and Ganzinger
to prove the refutational completeness of superposition is based on an earlier idea
by Zhang and Kapur [56]. Let N be saturated and let N̄ be the set of all ground
instances of clauses in N . We inspect all clauses in N̄ in ascending order and
construct a sequence of interpretations, starting with the empty interpretation.
If a clause C ∈ N̄ is false in the current interpretation IC generated by clauses

3 Essentially the same rule (usually restricted to equational unit or Horn clauses)
occurs in narrowing calculi (Fay [18]) used for theory unification.

4 We use the letters I andR to distinguish between inference rules, whose premises are
kept after the conclusions have been added to the given set of clauses, and reduction
rules, whose premises are replaced by the conclusions.

5 Or rather: in its unfailing variant (Bachmair [3]), which is a semidecision procedure
for unit equational logic.

From Search to Computation 177

smaller than C and has a positive and strictly maximal literal A, and if some
additional conditions are satisfied, then a new interpretation is created extending
the current one in such a way that A becomes true. We say that the clause is
productive. Otherwise, the current interpretation is left unchanged. One can
then show that, if N is saturated and does not contain the empty clause ⊥,
then every clause C is either true in IC or productive, so that every clause of
N becomes true in the limit interpretation IN (also known as the perfect model
of N).

The model construction method is the foundation of general notion of re-
dundancy [7]. Essentially, every ground formula C that is true in IC is useless
to show that a set of formulas is not saturated. We call such formulas weakly
redundant. Unfortunately, a formula that is weakly redundant in a set of for-
mulas N may lose this property if we compute inferences from formulas in N
and add the conclusions to N . For this reason, it is usually better to work with
(strong) redundancy: Let N̄≺C be the set of all formulas in N̄ that are smaller
than C. We say that the formula C is (strongly) redundant with respect to N
if N̄≺C |= C, and that an inference with conclusion C is redundant with re-
spect to N if N̄≺D |= C, where D is the maximal premise of the inference.6

Non-ground formulas and inferences are called redundant, if all their ground
instances are redundant. Usual strategies for resolution-like calculi such as tau-
tology deletion or clause subsumption are encompassed by this definition, just
as the simplification steps and critical-pair criteria [3] that can be found in com-
pletion procedures. Superposition can also be enhanced by selection functions,
so that hyperresolution-like strategies become applicable.

The Saturate system [26] has been the first superposition-based theorem
prover. The implementation was originally started by Robert Nieuwenhuis and
Pilar Nivela and later continued by Harald Ganzinger. Written in Prolog, it
lacks the inference speed of later superposition provers, such as E, Spass, or
Vampire; it is still remarkable, though, for the huge number of calculi it uses,
such as constraint superpostion, chaining, and lazy CNF transformation, and
the sophisticated redundancy checks and simplification techniques enabled in
this way. In the rest of this section we present four concrete applications of these
simplification techniques.

4.1 Automatic Complexity Analysis

The automated complexity analysis technique of David Basin and Harald Gan-
zinger [12] is based on the concept of order locality. A set of clauses (without
equality) is called local with respect to a term ordering � if, for every ground
clause C, N |= C implies that there is a proof of C from those instances of N
in which every term is smaller than or equal to some term of C. As a special
case, defining � as the subterm ordering yields the notion of subterm locality
that had been previously investigated by David McAllester [35].

6 Note that “redundancy” is called “compositeness” in [7]. In later papers the standard
terminology has changed.

178 T. Hillenbrand et al.

If the ordering � has the property that for every ground term there are only
finitely many smaller terms, then locality with respect to � implies complexity
bounds for the decision problem N |= C. More precisely, if for every clause of size
n there exist O(f(n)) terms that are smaller than or equal to some term in the
clause and that can be enumerated in time g(n), and if a set N of Horn clauses
is local with respect to �, then N |= C is decidable in time O(f(m)k + g(m)),
where m is the size of C. The constant k depends only on N , it is at most
the maximum of the number of variables of each clause in N . For instance, one
obtains polynomial complexity bounds if one takes the subterm ordering as �;
a Knuth-Bendix ordering yields exponential bounds and a polynomial ordering
doubly exponential bounds.

Order locality is closely related to saturation with respect to ordered reso-
lution: If N is a saturated set of clauses with respect to an atom ordering �′,
then N is local with respect to some term ordering �, provided that certain
compatibility requirements for � and �′ are satisfied.

The Saturate system [26] has been used both to prove saturation (and hence
locality) and to transform sets of clauses into equivalent saturated and local sets.
Formulas like the transitivity axiom show up rather frequently in such clause
sets, and for such clauses, inheritance of ordering constraints is useful to show
saturation. The technique is due to Nivela and Nieuwenhuis [41]: In contrast
to a normal clause C, which can be taken as a representative of all its ground
instances, a constrained clause Θ ‖ C represents only those ground instances of
C that satisfy the constraint Θ, where Θ may be a conjunction of ordering and
equality literals between terms or atoms. In particular, a clause whose constraint
Θ is unsatisfiable is redundant, since it does not represent any ground instance.

Both the ordering restrictions of an inference and the constraints of its premises
are propagated to its conclusion, so we obtain inference rules like the following
for constraint resolution:

I Θ1 ‖ D ∨ A Θ2 ‖ C ∨ ¬B
Θ1 ∧ Θ2 ∧ A = B ∧ Θ ‖ D ∨ C

Here, Θ1 and Θ2 are the constraints of the premises which are propagated to
the conclusion, A = B is the equality constraint of the inference, and Θ is the
ordering constraint of the inference stating that the literals A and B are (strictly)
maximal in their respective clauses.

Examples of theories that have been successfully saturated using the Satu-

rate system are the congruence closure axioms, the theory of tree embedding,
and the theory of partial orderings.

4.2 Church–Rosser Theorems for the λ-Calculus

The λ-calculus, originally conceived by Alonzo Church and Stephen Kleene [16,
33] around 1935, is a model of computability that is based on the notions of
function definition, function application, and recursion. It operates on λ-terms,
which are the closure of a given set of variables x, y, . . . under application (t1 t2)

From Search to Computation 179

and abstraction λx.t. A notion of variable substitution is defined recursively
over the term structure. Since free variables in a substituted expression must
not be bound after substitution, renaming of variables may become necessary.
The result of replacing x in t by s this way is denoted by t[s/x].

The calculus comes with conversion rules which capture when two λ-terms de-
note the same function: α-conversionmodels that the actual names of bound vari-
ables do not matter; β-conversion (λx.t)s ↔β t[s/x] corresponds to function ap-
plication; and η-conversion covers extensional equality of functions: λx.(tx) ↔η t
unless x is free in t. In order to ease the management of variables when manip-
ulating λ-terms, Nicolaas Govert de Bruijn [15] suggested to consider, instead
of x, y, . . . , natural numbers in a fixed order, thereby getting rid of names al-
together, and of α-conversion as well. The remaining conversions, if applied in
left-to-right direction only, constitute reduction systems. A key property of the
λ-calculus is that β-reduction →β enjoys a Church–Rosser theorem: Any two
↔∗

β-convertible terms are →∗
β-reducible to a common successor. The same ap-

plies to →η, and to the union of the two reduction systems.
Tobias Nipkow [39] formalized this family of Church–Rosser theorems within

the Isabelle/HOL system [40], which is a proof assistant for higher-order logic.
Though interactive, Isabelle also features automation of subproofs via a term
rewriting engine and a tableaux prover for predicate logic. Nipkow reported that
the success of the latter depended on the right selection of lemmas supplied
as parameters. For arithmetic goals arising from de Bruijn indices, he added
a special tactic based on Fourier–Motzkin elimination. The proof development
followed the lines of [15, Chapter 3], with an excursus to the approach of [51]
via parallel reductions.

Each of the propositions that Nipkow showed with Isabelle/HOL encapsulates
a single induction or is already deductive, at least modulo the arithmetic reason-
ing in the background; and in the former case the induction scheme was explicitly
given. Therefore the question whether these propositions could be demonstrated
automatically with a first-order theorem prover constituted a real challenge, and
would set a landmark for the applicability of such systems if answered in the
affirmative. This is what Harald Ganzinger and his student Sebastian Winkel
set out for at the end of the 1990’s. Their key idea was to integrate a fragment
of arithmetic into the first-order axiomatization itself. They used a Peano-style
formulation, postulated a total ordering, and related the latter to the succes-
sor and to the predecessor operation. Such theories fall into the domain of the
chaining calculus [8], which specializes resolution and superposition for transi-
tive resolution, and which is implemented in the Saturate system [26]. Notably
Saturate managed to prove all the propositions, within the scope of some min-
utes.

Just to give an impression of the kind of reasoning in this domain, the first-
order axiomatization on top of the approximation of numbers is shown now.
A variable with de Bruijn number i is denoted by var(i); furthermore abs(s)
denotes an abstraction, and app(s, t) an application. In formalizing substitutions,
a function lift(t, i) is needed that increments all free variables in t that are greater

180 T. Hillenbrand et al.

than i or equal to i. Saturate is supplied with a case-split definition according
to the structure of t. This definition corresponds to the usual recursive one, but
its semantics for Saturate is purely first-order. All variables are universally
quantified.

¬(i < k) ∨ lift(var(i), k) ≈ var(i)
¬(k ≤ i) ∨ lift(var(i), k) ≈ var(s(i))

lift(app(s, t), k) ≈ app(lift(s, k), lift(t, k))
lift(abs(s), k) ≈ abs(lift(s, succ(k)))

In a similar fashion, Saturate is provided with a definition of subst(t, s, k),
which shall amount to t[s/k]. Note that within t[s/k], all free variables of t
above k are decremented, for application within β-reduction and η-reduction.

¬(k < i) ∨ subst(var(i), s, k) ≈ var(pred(i))
subst(var(k), s, k) ≈ s

¬(i < k) ∨ subst(var(i), s, k) ≈ var(i)
subst(app(t, u), s, k) ≈ app(subst(t, s, k), subst(u, s, k))
subst(abs(t), s, k) ≈ abs(subst(t, lift(s, 0), succ(k)))

One of the inductive propositions that Nipkow proved in Isabelle about substi-
tution is the identity t[i/i] = t[i/i+1]. As to Saturate, Harald Ganzinger and
Sebastian Winkel first introduced a predicate for the induction hypothesis:

P(t, i) ≡ ¬(0 ≤ i) ∨ subst(t, var(i), i) ≈ subst(t, var(i), succ(i))

Then Saturate was able to discharge the conjunction of the following proof
obligations in a single run, which correspond to the base case respectively the
two step cases of the induction:

P(var(j), i)
¬P(t, k) ∨ P(abs(t), i)

¬P(t, i) ∨ ¬P(u, i) ∨ P(app(t, u), i)

The following clauses correspond to the base case respectively the two step cases
of the induction:

P(var(j), i)
¬P(t, k) ∨ P(abs(t), i)

¬P(t, i) ∨ ¬P(u, i) ∨ P(app(t, u), i)

In the end Saturate discharged the conjunction of these proof obligations in a
single run, retaining no more than 57 clauses as non-redundant. The standard
parameter setting was employed.

Transitivity and other ordering axioms play a vital role in the problem de-
scription. Transitive relations are known to be detrimental to the efficiency of
standard theorem provers. Saturate contains an implementation of the chain-
ing calculus (Bachmair and Ganzinger [8]) with makes it possible to avoid explicit
inferences with transitivity axioms.

From Search to Computation 181

Given a transitive relation R and a well-founded ordering � on ground terms
and literals, the chaining calculus has the following inference rules:

I C ∨ R(s, t) D ∨ R(u, v)

(C ∨ D ∨ R(s, v))σ

I C ∨ R(t, s) D ∨ ¬R(u, v)
(C ∨ D ∨ ¬R(s, v))σ

I C ∨ R(s, t) D ∨ ¬R(v, u)
(C ∨ D ∨ ¬R(s, v))σ

where, for all rules, σ is an mgu of t and u. Moreover, the chaining rules are
equipped with ordering restrictions similar to the superposition calculus; in par-
ticular the inferences only need to be performed if positive R-literals are strictly
maximal in the respective premises, negative R-literals are maximal in the re-
spective premises, and sσ
% tσ and vσ
% uσ.

In order to assess the merits of the chaining calculus for this proof problem,
one may want to compare the 57 clauses kept by Saturate with the corre-
sponding number for a theorem prover like Spass that implements the standard
superposition calculus without chaining. With default setting and the same re-
duction ordering, Spass has to develop 947 non-redundant clauses until a proof
is found. If splitting is turned off, then this number reduces to 342. Seemingly
the presence of the two intertwined transitive relations < and ≤ is a menace to
Spass. If the axiomatization is rephrased in terms of < only, then with a set-
of-support strategy and increased variable weight one gets down to 184 clauses.
Starting with version Spass 3.7 it now also supports chaining.

Via http://isabelle.in.tum.de/dist/library/HOL/Lambda the proof
development within Isabelle is available. The Saturate distribution can be ob-
tained from http://www.mpi-inf.mpg.de/SATURATE/Saturate.html and con-
tains all the mentioned first-order proof formulations.

4.3 Lazy CNF Transformation

Practically all automated theorem provers in use today are based on clausal logic.
The input is preprocessed to obtain clause normal form (CNF), this includes the
replacement of equivalences by conjunctions of implications and the elimination
of existential quantifiers by Skolemization.

Very often it is useful to already exploit properties at the formula level via
appropriate deduction mechanisms. Consider the following example: Suppose we
have an equivalence P ⇔ (Q ∧Q′), where P , Q, Q′ are propositional formulas.
Translation to CNF yields the three clauses P ⇒ Q, P ⇒ Q′, Q ∧ Q′ ⇒ P . If
P � Q,Q′ and C is a clause R ∨ R′ ∨ P , then the two resolution steps deriving
R∨R′∨Q and R∨R′∨Q′ from C constitute a simplification of C: C follows from
the three smaller clauses Q ∧Q′ ⇒ P , R ∨R′ ∨Q and R ∨R′ ∨Q′. This fact is
somewhat hidden within the set of clauses, though, whereas it was rather obvious
considering the original equivalence. The situation is even worse if one side of

http://isabelle.in.tum.de/dist/library/HOL/Lambda
http://www.mpi-inf.mpg.de/SATURATE/Saturate.html

182 T. Hillenbrand et al.

the equivalence contains additional quantified variables, which are skolemized
away during the clausification of one of the two directions of the equivalence.
For example,

∀A.∀B.(A ⊆ B ⇔ ∀x.(x ∈ A ⇒ x ∈ B))

is turned into
¬ A ⊆ B ∨ ¬ x ∈ A ∨ x ∈ B

f(A,B) ∈ A ∨ A ⊆ B
¬ f(A,B) ∈ B ∨ A ⊆ B.

To overcome this problem, Harald Ganzinger and Jürgen Stuber [28] introduced
a variant of the superposition calculus with equivalences between formulas and
lazy quantifier elimination. Its positive superposition rule

I D ∨ u ≈ v C ∨ s[u′] ≈ t

(D ∨ C ∨ s[v] ≈ t)σ

where σ is a most general unifier of u and u′ is applicable both to term equations
and to equivalences, that is, equations between formulas. This allows reasoning
with equivalences as they usually arise from definitions in a natural way: If the
larger side of an equivalence is an atomic formula, it can be used in a positive
superposition; such an inference is a simplification for instance if D is empty and
u′σ = u. If the larger side of an equivalence u ≈ v is not atomic, the equivalence
can be eliminated using rules like

R C ∨ u ≈ v

C ∨ u ≈ ⊥ ∨ v ≈ * R C ∨ u ≈ v

C ∨ u ≈ * ∨ v ≈ ⊥
whose results are then simplified by tableau-like expansion rules such as

R C ∨ (u1 ∧ u2 ≈ *)

C ∨ u1 ≈ * R C ∨ (u1 ∧ u2 ≈ *)

C ∨ u2 ≈ * .

Bound variables are encoded by de Bruijn indices, so a formula ∃x∀y f(x, y) ≈ y
is written as (∃ ∀ (p(2, 1) ≈ 1)) ≈ *, and quantified formulas are handled by γ
and δ expansion rules

R C ∨ (∃u ≈ *)

C ∨ u(f(x1, . . . , xn)) ≈ *

where x1, . . . , xn are the free variables in u and f is a fresh Skolem function, and

R C ∨ (∀u ≈ *)

C ∨ u(z) ≈ *

where z is a fresh variable. Since de Bruijn indices may be replaced by arbitrarily
large terms, they must have greater precedence than all other function symbols
in the recursive path ordering used to compare terms and formulas.

The calculus is implemented in the Saturate system [26]. In applications like
set theory, that are dominated by complex definitions, the number of inferences

From Search to Computation 183

that Saturate performs can be several orders of magnitude smaller compared
to more conventional provers, such as Vampire, or E. Motivated by the experi-
ments with Saturate, in Spass a definition detection and expansion algorithm
has been integrated that can simulate the above reasoning for many practical
cases [1]. The fact that many equivalence transformations are now simplifica-
tions reduces the search space significantly; for certain examples the derivation
of Saturate is completely deterministic and terminates after few steps whereas
other provers do not find a solution within any reasonable time limit.

4.4 Priority Queues

Runtime result checking is a method to ensure software reliability that has been
proposed by Hal Wasserman and Manuel Blum [52]. In this approach, a checker
program runs in parallel to the program to be checked and monitors its inputs
and outputs. The checker either confirms correctness of the program’s output or
reports an error. It does not verify the correctness of the program, though; in
fact it does not look into the program code at all. It only verifies that the output
was correct on a given input.

A priority queue is a data structure that maintains a set of real numbers under
the operations insert element and delete and return minimal element. It can be
implemented in such a way that each operation needs logarithmic time. A checker
for priority queues has been developed by Ulrich Finkler and Kurt Mehlhorn [19].
It runs in parallel to the original priority queue algorithm and associates a lower
bound with every member of the priority queue. The lower bound of an element
e is defined as the maximum of all values that the priority queue returned as
minimal since e was inserted. In the case that the priority queue would return
a non-minimal element, the lower bound of the current minimal element will be
greater than the element itself. When this element will be retrieved, the checker
will report an error. The checker is time-efficient, but an off-line checker; this
means that, when the priority queue is incorrectly implemented, i.e. returns a
non-minimal element, this error will not be noticed immediately, but only at the
moment when one of the smaller elements is returned in a later step.

A formal correctness proof for Finkler’s and Mehlhorn’s priority queue checker
has been given by Ruzica Piskac using the Saturate system. She showed that,
if during the run of the priority queue the checker does not report any error
until the queue is empty, then all returned minimal elements are correct [45].
The verification was done in two stages: in the first stage the correctness of the
algorithm used for the checker was proved, while in the second stage a framework
following more closely the concrete implementation and data structures was
developed (de Nivelle and Piskac [42]).

The problem description defining the behavior of priority queues and of the
checker contained more than 50 formulas (cf. Figure 1). In order to find the
proof, Saturate needed some additional lemmas (which again needed to be
proved by the theorem prover, sometimes making further lemmas necessary). At
the end more than 80 lemmas were used for the complete proof.

184 T. Hillenbrand et al.

quasi-ordered set with bottom element:

p1 ≤ p2 ∧ p2 ≤ p3 ⇒ p1 ≤ p3.

p1 ≤ p2 ∨ p2 ≤ p1.

p ≤ p.

bottom ≤ p.

(p1 < p2) ⇔ (p1 ≤ p2 ∧ ¬p2 ≤ p1).

priority queues:

¬contains pq(create pq, p).

contains pq(insert pq(pq , p1), p2) ⇔ (contains pq(pq , p2) ∨ p1 ≈ p2).

remove pq(insert pq(pq , p), p) ≈ pq .

¬p1 ≈ p2 ∧ contains pq(pq , p2)
⇒ remove pq(insert pq(pq , p1), p2) ≈ insert pq(remove pq(pq , p2), p1).

contains pq(pq , p) ∧ (∀p1.contains pq(pq , p1) ⇒ p ≤ p1)
⇒ find min pq(pq , p) ≈ p.

contains pq(pq , p) ∧ (∀p1.contains pq(pq , p1) ⇒ p ≤ p1)
⇒ remove min pq(pq , p) ≈ remove pq(pq , p).

lower bounds:

¬contains s(create s, p).

contains s(assign s(s,pair(p1, r)), p2)
⇔ (contains s(s, p2) ∨ p1 ≈ p2).

¬pair in s(create s, p, r).

pair in s(assign s(s,pair(p1, r1)), p2, r2)
⇔ (pair in s(s, p2, r2) ∨ (p1 ≈ p2 ∧ r1 ≈ r2)).

remove s(assign s(s,pair(p, r)), p) ≈ s.

¬p1 ≈ p2 ∧ contains s(s, p2)
⇒ remove s(assign s(s,pair(p1, r)), p2)

≈ assign s(remove s(s, p2),pair(p1, r)).

lookup s(assign s(s,pair(p, r)), p) ≈ r.

¬p1 ≈ p2 ∧ contains s(s, p2)
⇒ lookup s(assign s(s,pair(p1, r)), p2)

≈ lookup s(s, p2).

update s(create s, p) ≈ create s.

r < p2
⇒ update s(assign s(s,pair(p1, r)), p2)

≈ assign s(update s(s, p2),pair(p1, p2)).

p2 ≤ r
⇒ update s(assign s(s,pair(p1, r)), p2)

≈ assign s(update s(s, p2),pair(p1, r)).

Fig. 1. Excerpt of the problem description

From Search to Computation 185

Six of the formulas to be proved make heavy use of ordering axioms, and, as
in Sect. 4.2, the chaining inference rule was crucial for the success of Saturate
for these formulas. Being implemented in Prolog, Saturate is in general much
slower than provers like Spass, Vampire, or E. In those cases, however, where
the chaining rule makes it possible to avoid explicit inferences with the transi-
tivity axiom, Saturate can be orders of magnitude faster. We have repeated
the experiments with the same lemmas using Spass, version 3.0, where chaining
is not implemented. The running times of both theorem provers are shown in
Figure 2.

benchmark Saturate Spass

lemma not min elem not check 00:07.98 03:31.46
lemma not ok persistence 00:03.24 −
lemma contains s I remove 00:06.50 −
remove min 02 1 00:03.55 03:08.31
tmp not check 02 00:02.92 −
tmp not check 03 00:04.50 59:21.52

Fig. 2. Table shows time in format min:sec that Saturate and Spass spent on the
problem. The symbol “−” indicates that a prover did not terminate after two hours of
running.

All the experiments with Saturate were done using the standard settings.
It includes tautology deletion, forward subsumption, forward and backward re-
duction, and simplification by totality resolution.

5 Spass

The development of the theorem prover Spass started in 1994 (Weidenbach et
al. [54, 55]). Using memory-efficient data structures and specific indexing tech-
niques, Spass has been the first high speed implementation of the superposition
calculus, followed by E [49] and Vampire [46]. Spass also features an advanced
CNF transformation module, equivalence-based definition extraction and expan-
sion technology, a large collection of simplification methods, a special treatment
of monadic predicates (“sorts”), and a tableau-like splitting rule for dealing with
clauses that can be written as disjunctions of variable-disjoint subclauses.

5.1 Euclidean Geometry

Philippe Balbiani [10, 11] introduced a convergent and terminating conditional
term rewriting system for a subtheory of Euclidean geometry. Lacking a power-
ful general proof procedure, Balbiani developed a Prolog-based proof procedure
just in order to establish the properties of this term rewriting system. Christof
Brinker and Christoph Weidenbach showed that Spass plus a specific form of

186 T. Hillenbrand et al.

contextual rewriting can also be used to produce a complete system for the
Balbiani rule set [14].

The conditional equations in Figure 3 formalize properties of Euclidean geom-
etry on the basis of straight lines, indicated by the letter d, and points, indicated
by the letter p. For convenience, uppercase variable letters represent points and
lowercase variable letters straight lines (sets of points). Then d(X,Y) formalizes
the line through X and Y and in case X = Y an arbitrary but fixed line through
X , fdp(x,X) the line parallel to x through X , fpd(X, x) the projection from X
to x, fdd(x, y) the perpendicular in the intersection of x and y and, in case x
and y are parallel, an arbitrary but fixed perpendicular on y, and p(X, x) the
perpendicular from X on x.

d(X,Y) ≈ d(Y,X) (RGO0)
fdp(x, fpd(X, x)) ≈ x (RGO1)
fpd(X, fdp(x,X)) ≈ X (RGO2)
fdd(y, fdd(x, y)) ≈ y (RGO3)
fdp(p(X, x),X) ≈ p(X, x) (RGO4)
fdd(p(X, x), x) ≈ p(X, x) (RGO5)
fpd(X, d(X,Y)) ≈ X (RGO6)

p(fpd(X, x), fdd(y, x)) ≈ x (RGO7)

fpd(fpd(X, x), x) ≈ fpd(X, x) (RGO8)
fpd(X, p(X, x)) ≈ X (RGO9)

fdp(fdp(x,X),X) ≈ fdp(x,X) (RGO10)
fdp(d(X,Y),X) ≈ d(X,Y) (RGO11)
fdd(fdd(x, y), y) ≈ fdd(x, y) (RGO12)
fdd(x, p(X, x)) ≈ x (RGO13)

p(X, fdd(x, fdp(y,X))) ≈ fdp(y,X) (RGO14)
p(X, fdd(x, p(X, y))) ≈ p(X, y) (RGO15)
p(X, fdd(x, d(X,Y))) ≈ d(X,Y) (RGO16)
p(fpd(X, fdd(x, y)), y) ≈ fdd(x, y) (RGO17)
p(fpd(X, p(Y, x)), x) ≈ p(Y, x) (RGO18)
p(fpd(X, x), p(Y, x)) ≈ x (RGO19)
p(X, p(Y, fdp(x,X))) ≈ fdp(x,X) (RGO20)
p(X, p(Y, p(X, x))) ≈ p(X, x) (RGO21)
p(X, p(Y, d(X,Z))) ≈ d(X,Z) (RGO22)

fpd(X, x)
≈ fpd(Y, x) ⇒ d(fpd(X, x), fpd(Y, x)) ≈ x (RGO23)

X
≈ fpd(Y, fdp(x,X)) ⇒ d(X, fpd(Y, fdp(x,X))) ≈ fdp(x,X) (RGO24)
X
≈ fpd(Y, p(X, x)) ⇒ d(X, fpd(Y, p(X, x))) ≈ p(X, x) (RGO25)
X
≈ fpd(Y, d(X,Z)) ⇒ d(X, fpd(Y, d(X,Z))) ≈ d(X,Z) (RGO26)

Fig. 3. Euclidean Conditional Rewrite System

In its general form, Contextual Rewriting is the reduction rule between a
clauses C and D from a clause set N given below. The notion N̄ τ≺Cτ for a
substitution τ grounding C denotes the set of all ground clauses generated from

From Search to Computation 187

N by instantiating variables with ground terms from the range of τ that are
smaller than Cτ .

Let C = C′ ∨ s ≈ t, D = D′ ∨ [¬] u[s′]p ≈ v be two clauses in N . The reduc-
tion

R C ′ ∨ s ≈ t D′ ∨ [¬] u[s′]p ≈ v

C′ ∨ s ≈ t
D′ ∨ [¬] u[tσ]p ≈ v

where (i) sσ = s′, (ii) sσ � tσ, (iii) D � Cσ, (iv) τ is a Skolem substitution
replacing the variables in Cσ and D by new Skolem constants, (v) N̄ τ≺Cτ |=
D′′τ ∨ ¬Aτ for all negative equations A in C′σ where D′′ are the negative
equations in D′, and (vi) N̄ τ≺Cτ |= ¬Aτ ∨D′′′τ for all positive equations A in
C′σ where D′′′ are the positive equations in D′ is called contextual rewriting.

This general form of contextual rewriting can be effectively computed, but is
very expensive. For example, given the Skolem constants for Cσ and D there
are exponentially many possibilities in the number of variables to instantiate a
clause from N eventually smaller than Cστ by these constants. Furthermore,
Harald Ganzinger implemented the rule in the Saturate system [41] and his
experiments revealed that the complexity shows up in practice. There were ex-
amples where the prover spent hours on the applicability of a single contextual
rewriting application of the above form.

A detailed study of Balbiani’s conditional rewrite system and proof procedure
yielded that considering the context N̄ τ≺Cτ is not needed for termination of the
saturation process. It is sufficient to study contextual rewriting with respect to
the involved clauses and standard reduction of the generated clauses D′′τ ∨¬Aτ
and ¬Aτ ∨D′′′τ . The result is the below local contextual rewriting rule.

Let C = C′ ∨ s ≈ t, D = D′ ∨ [¬] u[s′]p ≈ v be two clauses in N . The reduc-
tion

R C ′ ∨ s ≈ t D′ ∨ [¬] u[s′]p ≈ v

C′ ∨ s ≈ t
D′ ∨ [¬] u[tσ]p ≈ v

where (i) sσ = s′, (ii) sσ � tσ, (iii) D � Cσ, (iv) τ is a Skolem substitution
replacing the variables in Cσ and D by new Skolem constants, (v) |= D′′τ ∨¬Aτ
for all negative equations A in C′σ where D′′ are the negative equations in D′,
and (v) |= ¬Aτ ∨ D′′′τ for all positive equations A in C′σ where D′′′ are the
positive equations in D′ is called Local Contextual Rewriting.

The applicability of local contextual rewriting can be decided in polynomial
time7, because the semantic tautology checks for |= D′′τ∨¬Aτ and |= ¬Aτ∨D′′′τ
can be decided by the well-known congruence closure algorithm [17].

We get the Semantic Tautology Rule

R C

if |= C for free, because we need to decide semantic tautologies for the applica-
bility of local contextual rewriting anyway.

7 If the used ordering ≺ is decidable in polynomial time.

188 T. Hillenbrand et al.

Now with these two extra rules local contextual rewriting and semantic tau-
tology deletion the Balbiani system can be finitely saturated. Spass needs less
than one second to generate the saturated system consisting of 40 conditional
equations. Except for the commutativity of d(X,Y), all clauses have a single
maximal oriented equation containing all variables in the left-hand side of the
equation. Therefore, the saturated system can be effectively used to decide any
ground query, i.e., universally quantified conjecture.

5.2 Soft Typing

The general redundancy notion of superposition is given with respect to the
perfect, minimal (Herbrand) model IN , generated by a (saturated) clause set
N . Any clause C such that Cτ is true in the perfect model generated by all
clauses of the actual clause set N̄ smaller than Cτ for all grounding τ , written
IC |= C, is weakly redundant (see Section 4). One consequence of this result
is that actually any clause C that is implied by smaller clauses from N can be
deleted, i.e., if N≺C |= C then C can be deleted. This is the foundation for most
of all practically used redundancy and simplification notions, e.g., rewriting or
subsumption.

The model-based redundancy notion poses two challenges in practice. First,
it is dynamic. As long as the set N is not saturated and new clauses are derived
the interpretation IN changes and therefore, clauses must not be deleted but can
only be blocked for inferences (see Section 4). Second, the properties IN |= C
and IC |= C are undecidable in general, because they constitute a second-order
property by considering validity in a minimal model of a set of first-order clauses
from N .

One solution to this problem is to define an upper approximation I ′
N of IN

that is (i) stable under inferences in N and for which (ii) the problem I ′
N |= C

becomes decidable. An (Herbrand) interpretation I ′
N is an upper approximation

of IN , written IN ⊆ I ′
N , if for all predicates P : P IN ⊆ P I′

N and the two
interpretations agree on the interpretation of all function symbols. Then such an
approximation can be used to simplify reasoning on N . A first application is the
detection and deletion of redundant clauses. Consider a clause ¬A1∨. . .∨¬An∨C
out of a clause set N such that for any grounding substitution σ the atoms
Aiσ are false in the approximation: I ′

N
|= A1σ ∧ . . . ∧ Anσ. Then the clause
¬A1 ∨ . . . ∨ ¬An ∨C is a tautology and can be deleted. This technique is called
soft typing. There are applications where soft typing is key to finitely saturate
clause sets [25].

In order to effectively obtain an upper approximation I ′
N the idea is to ac-

tually approximate the clause set N by a (consistent) clause set N ′ such that
eventually IN ⊆ IN ′ and N ′ belongs to a decidable clause class. This way, a
second application of soft typing becomes available. Proving properties of N by
considering N ′. If Φ is a universally closed conjunction of atoms and N ′ |= Φ,
then N |= Φ. Thus, if Φ is provable from N ′, which is decidable by construction,
then we need not to consider validity with respect to N , which is undecidable,
in general.

From Search to Computation 189

So we need to find an expressive, decidable sublanguage of first-order clause
logic that can serve as the range class for an upper approximation. Monadic Horn
clause sets are a natural and powerful candidate [32, 37, 53]. There exist several
decidability results and we will show in this section that there also exist natural
and powerful approximations into the class. Monadic Horn clause classes are
typically used to describe sorts or types and serve as a theoretical basis in other
contexts like programming languages or abstract interpretation, supporting the
name soft typing. In order to keep this section simple, we do assume that clause
sets do not contain equations. This is even not a restriction, because the equality
relation can be encoded by explicitly providing the needed axioms.

The theoretical background for the application of approximation functions
given below was developed by Harald Ganzinger, ChristophMeyer, and Christoph
Weidenbach [25]. It was implemented by Enno Keen via the dfg2dfg tool, part
of the Spass distribution since 2001. All rules can be applied separately but
exhaustively and can be actually composed to obtain different overall approxi-
mations. Note that application of the rules may turn a consistent clause set into
an inconsistent one due to the upper approximation of predicates. So checking
consistency of the approximated clause set is mandatory for the approach to
work.

The Horn Rule transforms a non-Horn clause into a set of Horn clauses:

R C ∨A1 ∨ . . . ∨ An

C ∨ A1

...
C ∨ An

where n ≥ 2 and A1 ∨ . . . ∨ An and no more positive atoms are in C.
The next two rules constitute alternative transformations from non-monadic

literals into monadic literals.

The Monadic Term Encoding Rule transforms an n-ary predicate into a monadic
atom by replacing predicate symbols with function symbols and thus moving
non-monadic atoms to the term level.

R C ∨ [¬]P (t1, . . . , tn)
C ∨ [¬]T (p(t1, . . . , tn))

where n ≥ 2, p is a new function corresponding to the predicate P and T is
a special fixed predicate. Applied to a given clause set, all occurrences of P in
the clause set are transformed into the same function p. For all applications the
same predicate T is used.

The Monadic Projection Encoding Rule transforms an n-ary predicate into sev-
eral monadic atoms by argument projection:

R C ∨ [¬]P (t1, . . . , tn)
C ∨ [¬]P1(t1)

...
C ∨ [¬]Pn(tn)

190 T. Hillenbrand et al.

where n ≥ 2, and P1, . . . , Pn are new monadic predicates. All occurrences of P
in the clause set are transformed into the same predicates P1, . . . , Pn.

So far a combination of the rules enables the transformation from an arbitrary
clause set into a monadic Horn clause set. From now on we assume all clause
sets to be Horn and monadic. The following rules approximate a monadic Horn
clause set into a monadic Horn clause set with a decidable entailment problem
by relaxing the term structure. There are several candidates for such clause sets,
relying on linearity and shallowness. A term is called linear if it contains no
repeated variables. A term is called shallow if it is of the form f(x1, . . . , xn).
The Linear Approximation Rule given below reduces the number of non-linear
variable occurrences in a Horn clause by replacing a variable x repeated within
an atom by some new variable x′. Note that the transformation is not applicable
to clauses containing non-monadic literals.

The Linear Approximation Rule eliminates non-linear variable occurrences in
atoms of monadic Horn clauses:

R C ∨ P (t)[x]p[x]q
C{x �→ x′} ∨ C ∨ P (t)[x′]p[x]q

where p
= q, and x′ is a new variable.

Finally, nested terms are transformed into shallow terms by the Shallow Approx-
imation Rule

R C ∨ P (t[s]p)
¬S(x) ∨ C ∨ P (t[x]p)

C ∨ S(s)
where s is a complex term at non-top position p in t, and x is a new variable
and S a new predicate.

The rule can be further refined by considering all occurrences of s in t simul-
taneously and by filtering C with respect to variable dependencies with s.

The transformation rules Horn Transformation, Monadic Projection Encod-
ing, Linear Approximation, Shallow and Relaxed Shallow produce upper approx-
imations of the original clause set.

Eventually the rules can be combined to obtain a decidable approximation for
a given clause set N . A typical sequence is the transformation to Horn clauses,
transformation to monadic literals, linear transformation, and finally shallow
transformation resulting in an approximation Horn clause set N ′ in the above
sense. In practice, the challenge is to find approximations that lead to consistent
and non-trivial upper approximations.

6 Conclusions

Simplification and redundancy detection are the key techniques to reduce the
search space of a theorem prover. Harald Ganzinger has developed the funda-
mental abstract concept of redundancy and simplification for superposition-like
calculi together with Leo Bachmair. His theoretical work, however, has always

From Search to Computation 191

been supplemented by the urge to make it practically useful – by developing
concrete, effective redundancy and simplification criteria to be implemented in
current theorem provers in order to make them beneficial for various application
domains. In this survey, we have tried to give a few representative examples of
this practical side of his scientific work.

References

1. Afshordel, B., Hillenbrand, T., Weidenbach, C.: First-Order Atom Definitions Ex-
tended. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, pp. 309–319. Springer, Heidelberg (2001)

2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

3. Bachmair, L.: Canonical Equational Proofs. Birkhäuser, Boston (1991)
4. Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: [First

Annual] Symposium on Logic in Computer Science, June 16–18, pp. 346–357. IEEE
Computer Society Press, Cambridge (1986)

5. Bachmair, L., Ganzinger, H.: Completion of First-Order Clauses with Equality
by Strict Superposition (extended abstract). In: Okada, M., Kaplan, S. (eds.)
CTRS 1990. LNCS, vol. 516, pp. 162–180. Springer, Heidelberg (1991)

6. Bachmair, L., Ganzinger, H.: On Restrictions of Ordered Paramodulation with
Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 427–441.
Springer, Heidelberg (1990)

7. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

8. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of
transitive relations. Journal of the ACM 45(6), 1007–1049 (1998)

9. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, ch. 2, pp. 19–99.
Elsevier (2001)

10. Balbiani, P.: Equation Solving in Geometrical Theories. In: Lindenstrauss, N.,
Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, Springer, Heidelberg (1995)

11. Balbiani, P.: Mécanisation de la géométrie: incidence et orthogonalité. Revue
d’Intelligence Artificielle 11, 179–211 (1997)

12. Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered reso-
lution. Journal of the ACM 48(1), 70–109 (2001)

13. Bertling, H., Ganzinger, H., Schäfers, R.: CEC: A System for the Completion of
Conditional Equational Specifications. In: Ganzinger, H. (ed.) ESOP 1988. LNCS,
vol. 300, pp. 378–379. Springer, Heidelberg (1988)

14. Brinker, C.: Geometrisches Schließen mit SPASS. Diplomarbeit, Universität des
Saarlandes and Max-Planck-Institut für Informatik, Saarbrücken, Germany (2000);
Supervisors: Ganzinger, H., Weidenbach, C.

15. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church–Rosser theorem.
Indagationes Mathematicae 34(5), 381–392 (1972)

16. Church, A.: An unsolvable problem of elementary number theory. American Jour-
nal of Mathematics 58, 345–363 (1936)

17. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. Journal of the ACM 27(4), 758–771 (1980)

192 T. Hillenbrand et al.

18. Fay, M.: First-order unification in an equational theory. In: Fourth Workshop on
Automated Deduction, pp. 161–167. Academic Press, Austin (1979)

19. Finkler, U., Mehlhorn, K.: Checking priority queues. In: Proceedings of the 10th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999). Society for
Industrial and Applied Mathematics, pp. 901–902 (1999)

20. Ganzinger, H.: A Completion Procedure for Conditional Equations. In: Kaplan, S.,
Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 62–83. Springer, Heidel-
berg (1988)

21. Ganzinger, H.: Completion with History-Dependent Complexities for Generated
Equations. In: Sannella, D., Tarlecki, A. (eds.) Abstract Data Types 1987. LNCS,
vol. 332, pp. 73–91. Springer, Heidelberg (1988)

22. Ganzinger,H.:GroundTermConfluence inParametricConditionalEquational Spec-
ifications. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.) STACS 1987.
LNCS, vol. 247, pp. 286–298. Springer, Heidelberg (1987)

23. Ganzinger, H.: A completion procedure for conditional equations. Journal of Sym-
bolic Computation 11, 51–81 (1991)

24. Ganzinger, H.: Order-sorted completion: the many-sorted way. Theoretical Com-
puter Science 89, 3–32 (1991)

25. Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Resolution. In:
McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 321–335. Springer,
Heidelberg (1997)

26. Ganzinger, H., Nieuwenhuis, R., Nivela, P.: The Saturate system (1994),
http://www.mpi-sb.mpg.de/SATURATE

27. Ganzinger, H., Schäfers, R.: System support for modular order-sorted horn
clause specifications. In: 12th International Conference on Software Engineering,
pp. 150–159. IEEE Computer Society Press, Nice (1990)

28. Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed
clause normal form transformation. Information and Computation 199, 3–23 (2005)

29. Giegerich, R.: Specification and correctness of code generators – an experiment
with the CEC-system. In: Müller, J., Ganzinger, H. (eds.) 1st German Work-
shop “Term Rewriting: Theory and Applications”, SEKI-Report 89/02. Universität
Kaiserslautern (1989)

30. Gnaedig, I., Kirchner, C., Kirchner, H.: Equational completion in order-sorted
algebras. Theoretical Computer Science 72(2&3), 169–202 (1990)

31. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem-proving
strategies: The transfinite semantic tree method. Journal of the ACM 38(3),
559–587 (1991)

32. Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in Extensions of Shallow
Equational Theories. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 76–90.
Springer, Heidelberg (1998)

33. Kleene, S.: A theory of positive integers in formal logic. American Journal of Math-
ematics 57, 153–173, 219–244 (1935)

34. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press, Oxford (1970); Reprinted in Siekmann and Wrightson [50], pp. 342–376

35. McAllester, D.A.: Automatic recognition of tractability in inference relation. Jour-
nal of the ACM 40(2), 284–303 (1993)

36. Nieuwenhuis, R.: First-order completion techniques. Technical report, UPC-LSI,
Cited in Nieuwenhuis and Rubio [38] (1991)

http://www.mpi-sb.mpg.de/SATURATE

From Search to Computation 193

37. Nieuwenhuis, R.: Basic paramodulation and decidable theories (extended abstract).
In: Proceedings 11th IEEE Symposium on Logic in Computer Science (LICS 1996),
pp. 473–482. IEEE Computer Society Press (1996)

38. Nieuwenhuis, R., Rubio, A.: Basic Superposition is Complete. In: Krieg-Brückner,
B. (ed.) ESOP 1992. LNCS, vol. 582, Springer, Heidelberg (1992)

39. Nipkow, T.: More Church–Rosser proofs (in Isabelle/HOL). Journal of Automated
Reasoning 26, 51–66 (2001)

40. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

41. Nivela, P., Nieuwenhuis, R.: Saturation of First-Order (constrained) Clauses with
the Saturate System. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 436–440.
Springer, Heidelberg (1993)

42. de Nivelle, H., Piskac, R.: Verification of an off-line checker for priority queues. In:
Aichernig, B.K., Beckert, B. (eds.) Third IEEE International Conference on Soft-
ware Engineering and Formal Methods (SEFM 2005), pp. 210–219. IEEE, Koblenz
(2005)

43. Ohlbach, H.J.: Translation methods for non-classical logics – an overview. Bulletin
of the IGPL 1(1), 69–90 (1993)

44. Peterson, G.E.: A technique for establishing completeness results in theorem prov-
ing with equality. SIAM Journal on Computing 12(1), 82–100 (1983)

45. Piskac, R.: Formal correctness of result checking for priority queues. Master’s the-
sis, Universität des Saarlandes (February 2005)

46. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Com-
munications 15(2-3), 91–110 (2002)

47. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theo-
ries with equality. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,
ch. 8, pp. 298–313. Edinburgh University Press, Edinburgh (1969); Reprinted in
Siekmann and Wrightson [50], pp. 298–313

48. Rusinowitch, M.: Theorem-proving with resolution and superposition. Journal of
Symbolic Computation 11(1&2), 21–49 (January/February 1991)

49. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3),
111–126 (2002)

50. Siekmann, J., Wrightson, G.: Automation of Reasoning: Classical Papers on Com-
putational Logic 1967-1970, vol. 2. Springer, Berlin (1983)

51. Takahashi, M.: Parallel reductions in λ-calculus. Information and Computa-
tion 118(1), 120–127 (1995)

52. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. Jour-
nal of the ACM 44(6), 826–849 (1997)

53. Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-
Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632,
pp. 314–328. Springer, Heidelberg (1999)

54. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.:
SPASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392,
pp. 275–277. Springer, Heidelberg (2002)

55. Weidenbach, C., Gaede, B., Rock, G.: SPASS & FLOTTER, version 0.42. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104,
pp. 141–145. Springer, Heidelberg (1996)

56. Zhang, H., Kapur, D.: First-Order Theorem Proving using Conditional Rewrite
Rules. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 1–20.
Springer, Heidelberg (1988)

Elimination Techniques for Program Analysis�

Deepak Kapur

Department of Computer Science
University of New Mexico

Albuquerque, NM
kapur@cs.unm.edu

Dedicated to Harald Ganzinger

Abstract. Key ideas in our recent work on automatically generating
polynomial equalities and inequalities as invariants/inductive assertions
for imperative programs are reviewed. Two approaches based on elimina-
tion techniques are briefly discussed. The first approach is algebraic and
is based on giving the semantics of programming language constructs
in terms of polynomial ideals. The second approach is based on assum-
ing a priori the shapes of inductive assertions of interest and then using
quantifier elimination techniques to generate constraints on parameters
specifying the shape. The key ideas of these approaches are illustrated
through examples.

1 Introduction

This paper is an attempt to summarize research in our group on automatically
generating loop invariants using algebraic and logical methods from 2003-2006.
As will be clear later from several examples and the results, it is indeed possible
to automatically generate polynomial equalities and inequalities as loop invari-
ants for programs operating on numbers. Further, input-output specifications or
postconditions of programs are not needed.

Consider a few examples for which loop invariants can be automatically gener-
ated using the techniques discussed in the paper. Let us begin with the following
simple loop for computing the floor of the square root of a natural number.

Example 1. function SquareRoot(N : integer) returns a: integer
var a, s, t: integer end var
a := 0, s := 1, t := 1;
while s ≤ N do

a := a+ 1; t := t+ 2; s := s+ t;
end while

� This paper is based on a talk given at the Ganzinger Memorial Symposium held at
the Max Planck Institute in May 2005. Most of this paper was written in the summer
of 2006. This research was partially supported by NSF awards CCF-0541315 and
CCF-0729097.

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 194–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Elimination Techniques for Program Analysis 195

Using the approach discussed in [29], a conjunction of two polynomial equations,
t = 2a + 1, s = (a + 1)2, can be automatically generated as an invariant. In
fact, this formula can be shown to be the strongest invariant expressed in terms
of polynomial equations. There is no need to provide a postcondition to drive
invariants or give a priori shapes of the desired invariants. The second polynomial
equation, s = (a + 1)2, though an invariant, is not an inductive invariant by
itself; in other words, it is not the case that s = (a + 1)2 =⇒ (((s =
(a + 1)2)|ss+t)

t
t+2)

a
a+1.

1 In contrast, each conjunct in an equivalent strongest
formula t = 2a+ 1∧ s = −a2 + at− a+ t∧ t2 = 2a+ 4s− 3t is an invariant as
well as an inductive invariant.

Here is a somewhat meaningless but historical example taken from a paper of
Cousot and Halbwachs [6], where a method for generating linear inequalities as
invariants was discussed using the abstract interpretation approach [5].

Example 2. var i, j: integer end var
〈i, j〉:=〈2, 0〉;
while b1 do

if b2 then i := i+ 4;
else i := i+ 2, j := j + 1;

end if
end while

Polynomial methods discussed in [29,32,33] cannot be used to automatically
generate an invariant for this example. However, methods based on quantifier-
elimination [16] and Farkas’ lemma [4] can generate an invariant for this example.
Using the quantifier elimination approach illustrated in [16], the conjunction of
inequalities

−j ≤ 0 ∧ −i+ 2j + 2 ≤ 0

can be deduced as an invariant.
The following third example written in the language of guarded commands,

taken from [30] models an Illinois cache coherence protocol.2 The safety of the

1 The notation α|xt stands for replacing all free occurrences of a variable x in a formula
α by an expression t.

2 In this paper, we use a simple side-effect free programming language for writing
programs; evaluation of expressions has no side effects. The language consists of
(multiple) assignments, guarded commands, and a looping construct such as while.
A multiple assignment of the form (x, y) := (a, b), for example, has the effect of
simultaneously evaluating a, b and then assigning the results to x, y. The semantics
of a guarded command is that it is executed only if the guard evaluates to true;
otherwise, it has no effect. In case of multiple guards in a conditional statement, any
guard that evaluates to true is nondeterministically chosen. If the body of a loop is
a guarded command and no guard in it evaluates to true, then the loop terminates.
A while loop also terminates if its test fails. A conditional statement of the form, if
b then S1 else S2, is equivalent to b → S1 [] ¬b → S2; similarly, if b then S1

is equivalent to b → S1 [] ¬b → skip, where the skip statement has no effect
on the program state.

196 D. Kapur

protocol is expressed as (y = 0 ∨ u = 0) ∧ (0 ≤ y ≤ 1). This example illustrates
many interesting aspects: (i) certain bounded integer inequalities such as the
one above can be expressed as a disjunction of equalities (e.g., y = 0 ∨ y = 1),
and (ii) a disjunction of equalities can be expressed as an equality (e.g., uy = 0
is equivalent to u = 0 ∨ y = 0).

Example 3. var x, y, u, v: natural end var

(x, y, u):=(0, 0, 0);
while true do

x = y = u = 0 ∧ v
= 0 → (v, x):=(v − 1, x+ 1);
[] v
= 0 ∧ y
= 0 → (v, y, u):=(v − 1, y − 1, u+ 2);
[] v
= 0 ∧ u
= 0 → (v, u, x):=(v − 1, u+ x+ 1, 0);
[] v
= 0 ∧ x
= 0 → (v, u, x):=(v − 1, u+ x+ 1, 0);
[] x
= 0 → (x, y):=(x− 1, y + 1);
[] u
= 0 → (v, y, u):=(v + u− 1, y + 1, 0);
[] v
= 0 → (v, x, u, y):=(v + x+ y + u− 1, 0, 0, 1);
[] y
= 0 → (y, v):=(y − 1, v + 1);
[] u
= 0 → (u, v):=(u− 1, v + 1);
[] x
= 0 → (x, v):=(x − 1, v + 1);

end while

The above property is not an inductive invariant either; instead a stronger prop-
erty, (y = 0∨u = 0)∧(0 ≤ y ≤ 1)∧(0 ≤ x ≤ 1)∧(x = 0∨u = 0)∧(x = 0∨y = 0),
which is equivalent to yu = 0∧ y2 = y ∧ x2 = x ∧ xu = 0∧ xy = 0, can be auto-
matically generated as an invariant from which the safety property follows. This
example also illustrates that often, a stronger property of a loop is needed to
establish a property of a program.

In this paper, we discuss static methods for automatically generating loop
invariants. The first method uses results from algebraic geometry to generate
conjunctions of polynomial equations as invariants. There is no restriction im-
posed on the degree of polynomials appearing in the invariants. Restrictions on
programs are identified for which this method automatically generates polyno-
mial invariants of arbitrary degree.

In the second approach, candidate formulas for invariants are restricted to
have a certain shape, which is specified using parameters associated with a for-
mula on program variables. Program variables are then eliminated from ver-
ification conditions generated, using quantifier elimination techniques, to get
constraints on parameter values. This approach was first introduced in a techni-
cal report in [15]. Subsequently, it has also been called constraint solving based
method in the literature. It has been found effective in many aspects of formal
methods research – in program analysis, program verification, program synthe-
sis, invariant generation and controller synthesis for hybrid systems, as well as in
termination of programs, particularly for generating polynomial interpretations
and well-founded polynomial orderings. Consequently, it has become an active
research topic.

Elimination Techniques for Program Analysis 197

As stated earlier, the focus in this paper is on research in our group, par-
ticularly, the key ideas in the approaches we have investigated. We will not
have space to do comparisons with related approaches or to do a comprehensive
literature survey of the advances made subsequently. An interested reader can
consult [4,3,33,24,25] for related approaches. We apologize to other researchers
working on related topics for not citing their work properly and duly crediting
them. Further, the paper will not attempt to provide all the details for a curious
reader to use it to generate invariants of even the examples discussed here. For
that, the reader should consult the papers cited above.

2 An Approach Based on Polynomial Ideal Theory

Loop invariants are the key ingredient of the axiomatic approach towards pro-
gram semantics, also called the Floyd-Hoare inductive assertion approach. The
concept of invariant has been used in abstract algebra, particularly algebraic ge-
ometry, for nearly 200 years. However, in computer science, the use of invariants
first appeared in a paper by Hoare on a proof of the program FIND. Since then,
the use of invariants is ubiquitous in understanding the behavior of programs.
Because of my interest in elimination methods in algebraic geometry since the
mid 1980s, it was extremely gratifying to find a close connection between the
concept of loop invariants with algebraic concepts of invariants in invariant the-
ory, as the reader would observe from the discussion in this section.

In a seminal paper dating back to the early 1970s, Webgreit et al. [37,11]
proposed that the semantics of the body of a loop can be expressed as a recur-
rence relation over the program state after the (i + 1)-th iteration in terms of
the program state after the i-th iteration.

For example 1 in the introduction, the value of program variables ai+1, si+1,
and ti+1 after the (i+1)-th iteration can be specified in terms of their values in
previous iterations as

ai+1 = ai + 1, si+1 = si + ti + 2, ti+1 = ti + 2,

with the initial values a0 = 0, s0 = 1, t0 = 1; furthermore, ai = i, the loop index.
These recurrences can be solved in many cases in terms of the loop index. If the
loop index can also be eliminated from these solutions (using a Gröbner basis
algorithm or related elimination methods), relations among program variables
can be computed which do not depend upon the loop index. In this way, loop
behavior can be characterized independently of the loop index. However, Weg-
breit et al. were unable to carry the idea much further, i.e., they were unable to
derive invariants of any nontrivial programs.

In [28], significant progress was made in deriving loop invariants automatically
using related ideas. Below, we discuss the key ideas and present results; more
details can be found in [28,29,31]. Since the following subsection uses algebraic
terminology, the reader is strongly advised to consult [7].

It was proved in [29] that if one just considers polynomial equations (of any
degree) as atomic formulas for specifying invariant properties of programs, then

198 D. Kapur

these polynomial invariants have a nice algebraic structure, called a radical ideal
of polynomials. Given two invariants at a program location, expressed as poly-
nomial equations p1 = 0 and p2 = 0, the following are also invariants:

1. p1 + p2 = 0,

2. qp1 = 0 for any polynomial q, and

3. if p1 = p3
k for some p3 and k > 0, then p3 = 0 is also an invariant.

The above are precisely the defining properties of a radical ideal of polynomials.
In [29], this radical ideal associated with a program location was called the
polynomial invariant ideal.

Theorem 1. The set of invariants expressed as polynomial equations in
Q[x1, . . . , xn] at a given program location constitute a radical ideal, called poly-
nomial invariant ideal. Further, any elimination ideal of this radical ideal is also
a polynomial invariant ideal.3

From a logical perspective, the first property above follows from the fact that
if formulas f1 and f2 are invariants, then so is their conjunction f1 ∧ f2.4 The
second property is a weaker version of the fact that if f1 is in an invariant,
then so is any formula f2 implied by f1 (a disjunction of f1 with any arbitrary
formula f2 is obviously implied by f1). The third property trivially follows from
the idempotency of disjunction.

If f1 is an invariant and it includes a constant, then that constant can be ab-
stracted by a variable that can be existentially quantified. This is a constructive
existential formula.

By Hilbert’s basis theorem, every ideal over a Noetherian ring has a finite
basis. So a polynomial invariant ideal has a finite basis as well. From this fi-
nite basis, a formula which has the structure of a conjunction of disjunctions
of polynomial equations can be generated, from which every polynomial invari-
ant follows. Interestingly, disjunctive polynomial invariants can be easily ex-
pressed in the language using a polynomial equation since pq = 0 is equivalent
to p = 0 ∨ q = 0. Disjunctive invariants are usually not as easy to express in
other frameworks, particularly those based on abstract interpretation. Example
3 in the introduction about the Illinois cache coherence protocol is an excellent
illustration of the expressive power of conjunctions of disjunctions of polynomial
equations as inductive assertions.

The problem of discovering invariants at a program location thus reduces
to computing the associated polynomial invariant ideal at the location. If this
cannot be achieved, our goal is to find the closest possible approximation to this
polynomial invariant ideal, which in ideal-theoretic terms, means computing a
subideal, to this ideal, including the zero ideal, which corresponds to the formula
true.

3 Given an ideal I over a polynomial ring Q[x1, . . . , xn], its j-th elimination ideal Ij
is the set of polynomials only in variables xj+1, . . . xn in I .

4 The polynomial invariant p1 + p2 = 0 is however not equivalent to p1 = 0 ∧ p2 = 0.

Elimination Techniques for Program Analysis 199

The reader would observe that negation of polynomial equations is not al-
lowed. It is an open problem how this approach can incorporate negated equa-
tions as a part of an invariant.5

Assuming that a significant component of program states at a program lo-
cation constitutes an algebraic variety (i.e., polynomials characterizing program
states form a radical ideal), many properties of such states can be characterized
by a conjunction of a finite set of polynomial equations. The approach discussed
in [29] is based on the following ideas:

1. Under certain conditions, semantics of programming language constructs
can be given in terms of ideal-theoretic operations. So a program becomes a
computation on ideals. This is further discussed in the next subsection.

2. The polynomial invariant ideal associated to a loop entry in a program can
be computed as a fixed point. The challenge is to determine conditions under
which this fixed point computation terminates in a finite number of steps, or
can be approximated so that the approximation can be computed in finitely
many steps. Below such conditions are given by imposing restrictions on
programs (see [29] for precise definitions).

In Subsection 2.3, we identify key concepts and results of algebraic geometry used
in obtaining the results reported in the next subsections. It is hoped that these
insights can inspire others to investigate similar properties of logical theories of
other data structures for generalizing our results.

2.1 Semantics as Ideal Operations

In [29], we gave a procedure for computing the polynomial invariant ideal of a
simple loop in a program. The semantics of programming language constructs is
given in terms of manipulating radical ideals (equivalently, algebraic varieties)
characterizing program states [32]. As stated above, states are assumed to be
specified as a conjunction of polynomial equations, where each polynomial equa-
tion is really a disjunction of equations, corresponding to basis elements of a
radical ideal.

Similar to every Hoare triple {P} S {Q} (assuming termination), we have
an input radical ideal I characterizing states before the execution of S, and an
output radical ideal J characterizing states after the execution of S. Thus P is
a conjunction of polynomial equations corresponding to a finite basis of I and
Q similarly corresponds to J . For the forward propagation semantics, we would
like to derive the strongest possible postcondition Q for any given P , which

5 The reader should however note that a negated equation, say p
= 0, can be expressed
as a polynomial equation pz = 1, where z is a new variable. It is unclear how such
variables can be systematically introduced to generate invariants which have negated
equations. A quantifier free formula that is a conjunction of polynomial equations and
inequations defines a quasi-variety, which have been studied in automated geometry
theorem proving [38]. It will be interesting to generalize the method of [29] to work
on algebraic quasi-varieties instead of algebraic varieties.

200 D. Kapur

translates to generating maximal nontrivial radical ideal J from a given radical
input ideal I. For the backward semantics, we would like the weakest possible
precondition P from any given Q. In ideal-theoretic terms, this is equivalent to
generating minimal nonzero radical ideal I from a given radical ideal J .6

For an assignment statement of the form x := e, the strongest postcondition
corresponding to a precondition P is ∃x′(x = e|xx′ ∧P |xx′), whereas the strongest
precondition corresponding to a postcondition Q is Q|xe . Thus Q|xe is equivalent
to substituting e for x in the ideal basis corresponding to Q and then recomput-
ing its radical ideal. If the assignment is invertible, then strongest postcondition
semantics is also relatively easy to compute by substituting for variables, other-
wise a new variable x′ must be introduced to stand for the previous values of x
before the assignment, and the elimination ideal is computed after eliminating
x′ from the radical ideal corresponding to P |xx′ and the polynomial equation
x = e|xx′ .7

The initial ideal is determined by the input state.
The semantics of a conditional statement is often approximated due to the

condition in the statement. If a condition c is expressed as boolean combination
of polynomial equations, then its effect can be expressed using ideal-theoretic op-
erations. Otherwise, the condition c can be approximated by another condition
d such that c =⇒ d and d is a boolean combination of polynomial conditions.
The coarsest approximation is where d is true (the corresponding ideal is the
trivial zero ideal). Since merging of different control paths in a program (due to
a conditional statement or a while statement) leads to the union of states corre-
sponding to each path, this is represented logically as a disjunction of formulas
corresponding to each path. In ideal-theoretic terms, it amounts to the intersec-
tion of the corresponding ideals. For example, if one path leads to x = 0 and the
other path leads to x = 1, when these path merge, states are characterized by
x = 0∨x = 1. For the first path, the ideal is < x >, and the ideal for the second
path is 〈x− 1〉. The intersection of these ideals is 〈x(x− 1)〉, which captures the
disjunction.

In case of a location where program control can pass arbitrarily many times,
we would like to conclude that the ideal corresponding to the states at that con-
trol point eventually stabilizes, i.e., the fixed point is reached approximating the
polynomial invariant ideal. There are potentially infinitely many intersections of
ideals corresponding to each iteration. The main issue is thus whether conditions
can be identified under which this indeed happens.

2.2 Termination of Polynomial Invariant Ideal Computation

In [29,31], we gave a procedure for computing an approximation of the poly-
nomial invariant ideal and proved that the procedure terminates under certain

6 It might be useful to recall relationship between formulas and the associated ideals.
If a formula f =⇒ g, then the ideal associated with g is a subideal of the ideal
associated with f .

7 This suggests that e appearing on the right side of an assignment can be an arbitrary
polynomial.

Elimination Techniques for Program Analysis 201

technical conditions, particularly if assignment mappings are solvable with their
eigenvalues as rational numbers (see [28] for precise details and proofs). This
procedure uses a Gröbner basis algorithm for computing various ideal-theoretic
operations. Instead of computing arbitrarily many intersections of ideals corre-
sponding to the number of times a loop is executed, recurrence relations induced
by the loop body on the values of program variables are solved. The condition of
assignment mappings being solvable ensures that (i) recurrence corresponding
to such an assignment can indeed be solved and (ii) program variables can be
polynomially expressed in terms of the loop counter and some auxiliary variables
standing for exponentials of eigenvalues. In this way, an invariant ideal corre-
sponding to the multiple visits of a path is captured using program variables and
the counter standing for the number of times the path is visited. The termination
of the fixed point computation is established under these conditions by making
use of a beautiful result in algebraic geometry that every algebraic variety can
be decomposed into finitely many irreducible components [7]. This result is used
to show that the algebraic variety of the states at the loop entry has irreducible
components such that the dimension of at least one component goes up in every
iteration of the procedure or the variety stabilizes, leading to the termination of
the procedure. Since the dimension of a polynomial invariant ideal is bounded by
the number of program variables, termination of the fixed point computation is
guaranteed in steps bounded by the number of program variables in a program.
Because of approximations made in the semantics of programming construc-
tions (e.g. tests in conditional statements and loops) , invariants generated by
this approach are strongest relative to these assumptions/approximations.

The following three results about simple loops are proved in [29].

Theorem 2. If the procedure for computing polynomial invariant ideals termi-
nates, then it indeed computes a polynomial invariant ideal of a given simple loop.
In that sense, the approach of computing polynomial invariant ideals is complete
and semidecidable for generating the strongest possible polynomial invariants of
a simple loop.

Theorem 3. If sequences of assignment statements along different branches in
a simple loop body can be executed in any order without affecting the semantics
of the body (i.e., different sequences of assignments commute with each other),
then the polynomial invariant ideal generation procedure terminates in as many
iterations as the number of branches. In other words, the termination does not
depend upon the number of program variables changing in the loop, but rather
on the number of different sequences of assignments which must be considered.

An immediate corollary of the above theorem is:

Corollary 1. If a simple loop body is branch-free, i.e., it is a sequence of as-
signment statements, the procedure for computing its polynomial invariant ideal
terminates in a fixed number of iterations.

Theorem 4. If sequences of assignments along different branches in a simple
loop body do not commute and assignments are solvable mappings with rational

202 D. Kapur

numbers as their eigenvalues, then the procedure terminates in at most m + 1
iterations, where m is the number of program variables that change in the loop
body.

As the reader would notice, in certain cases, it is possible to precisely capture the
semantics of a program in ideal-theoretic terms. In that sense, the semantics of a
program can be derived without needing any postcondition or, for that matter,
the input/output specification of a program.

2.3 Structural Properties of Logical Theories

We list below some key results of algebraic geometry about polynomial ideals
over an algebraically closed field that were used to obtain the above results. It
is hoped that this discussion will provide some guidance about what needs to be
done to extend the above results to other data structures.

– Hilbert’s basis theorem: Every ideal over a Noetherian ring has a finite basis.
If we restrict the invariants to be characterized by a radical ideal, we get
using Hilbert’s basis theorem that there exists a strongest possible invariant
obtained from a basis of the polynomial invariant ideal.

– Every algebraic variety (that corresponds to program states) can be decom-
posed into finitely many irreducible algebraic subvarieties.

– For solvable mappings with rational eigenvalues, progress in computing a
polynomial invariant ideal is ensured because the dimension of at least one
irreducible component of the variety corresponding to the approximating
polynomial invariant ideal increases in every iteration of the fixed point al-
gorithm. This argument appears to be a generalization of the argument used
by Cousot and Halbwachs [6] in case of linear inequalities as loop invariants.

– If assignment mappings are restricted to have an invertible mapping (which
is the case for solvable mappings), then the primality property of ideals is
preserved under inverses of such assignment mappings. This result is used
in the proof of termination.

– Ideal-theoretic operations, including intersections of ideals, elimination ide-
als, radical ideals, quotient ideals, can be algorithmically performed using
Gröbner basis algorithms.

It will be interesting to see how many of the above stated properties generalize
to decidable fragments of theories over other data structures.

A structural property on logical theories that is equivalent to Hilbert’s ba-
sis theorem for polynomial invariant ideals is likely to require that a subtheory
closed under conjunction and implication has a finite axiomatization. It can be
easily shown that propositional calculus satisfies this property. This is not sur-
prising since an equivalent characterization of propositional calculus is a boolean
ring, which is Noetherian. In [18], an algebraic characterization of quantifier-free
first-order predicate calculus with equality is presented. It is shown there that
in general, not every subtheory has a finite basis.

Elimination Techniques for Program Analysis 203

3 A Quantifier Elimination Based Approach

“Soft” verification techniques have become popular and effective, of late. Such
techniques include type checking, absence of memory leaks, absence of null point-
ers, array range-bound techniques, shape analysis of container data structures.
Perhaps the main reason for their effectiveness is that efficient incomplete tech-
niques can be developed for such limited kind of static program analysis in
contrast to full program verification. Another reason for the popularity of such
analyses is that programs can be analyzed as they are, instead of requiring ad-
ditional annotations or a formal specification of their behavior.

The approach discussed in this section has similar advantages. It is assumed
that the shape of possible invariant properties of programs of interest is known.
Perhaps, the shape information can be determined from the postcondition asso-
ciated with the program or by doing an a priori analysis of the program body.
This requirement is similar in spirit to the design of an abstract domain required
in the abstract interpretation framework introduced by Cousot [5].

In this section, we give an overview of an approach that (i) hypothesizes pa-
rameterized assertions at appropriate control points in a program, (ii) generates
verification conditions from them, (iii) uses quantifier elimination techniques to
generate constraints on parameters such that (iv) parameter values satisfying
these constraints lead to valid verification conditions. The hypothesized asser-
tions instantiated with these parameter values are then invariants. It will become
evident that it is not necessary to do full quantifier-elimination; instead it suf-
fices to generate a quantifier-free formula equivalent to ∀X Γ (P,X), where Γ
is also quantifier-free, P are the parameters in hypothesized assertions, and X
are the program variables.

3.1 Parameterized Polynomial Relations for Expressing Shapes

A program is annotated at a sufficient number of control points (such as the
entry of every loop, entry and exit of a procedure body, etc.) with formulas
expressed using program variables and unknown parameters, with the specific
values of the parameters determining the invariant.

Example 2 Continued.: Let us assume that the quantifier-free theory of param-
eterized Presburger arithmetic is used for specifying invariants. I.e., an invari-
ant I(i, j) is hypothesized at the loop entry to be an inequality of the form
c1i + c2j + d ≤ 0, where c1, c2, d are unknown parameters. Values of c1, c2, d
determine the shape of the invariant. That is, for example, if c1 = 0, then i will
not appear in the invariant.8

The following verification conditions are generated using the hypothesized
parameterized formula. As in [6], it is assumed that the boolean test b2 in the
conditional statement is not an inequality; so it is abstracted to be true; if it

8 Of course, if c1 = 0, c2 = 0, d = 0, then the above formula simplifies to true, a trivial
invariant.’

204 D. Kapur

was a linear inequality, it could have been used to further refine the verification
conditions. These conditions are given by

(c1i+ c2j + d ≤ 0) ⇒ ((c1i+ c2j + d) + 4c1 ≤ 0) and
(c1i+ c2j + d ≤ 0) ⇒ ((c1i+ c2j + d) + 2c1 + c2 ≤ 0).

And, from the initial values of program variables i, j, the condition on the pa-
rameters c, d is that 2c1 + d ≤ 0.

There are two technical problems to address: (i) Does a given program loca-
tion of interest satisfy a nontrivial invariant of the given shape? (ii) If it does,
what is such an invariant, i.e., can parameter values be found so that when
instantiated with these specific values, the formula is indeed an invariant asso-
ciated with the program location? Both of these questions are answered using
quantifier-elimination by generating constraints on parameters from the verifica-
tion conditions. The first problem is solved by checking the validity of a formula
∃ P ∀ X Γ (P,X), where Γ (P,X) is a conjunction of quantifier-free verification
conditions. The second problem is solved by finding a quantifier-free formula only
in P equivalent to ∀ X Γ (P,X). Elimination techniques and related heuristics
are used to get constraints on these parameters, so that for any value of param-
eters satisfying these constraints, the instantiated hypothesized parameterized
formula is indeed an invariant. To get the strongest possible invariant of the hy-
pothesized form, a complete quantifier-elimination method is required. However,
incomplete elimination heuristics can also be useful in deriving invariants.

For the above example 2, for an invariant of the above shape to exist,
Φ = ∃c1, c2, d [∀i, j, Γ (c1, c2, d, i, j)], where

Γ (c1, c2, d, i, j) = [(2c1 + d ≤ 0)
∧((c1i+ c2j + d ≤ 0) ⇒ ((c1i+ c2j + d) + 4c1 ≤ 0))
∧((c1i+ c2j + d ≤ 0) ⇒ ((c1i+ c2j + d) + 2c1 + c2 ≤ 0))]

needs to be valid over the integers, which is indeed the case. Had Φ not been
valid, the invariant of the form c1i+ c2j + d ≤ 0 would not exist.9

It should be noted that these formulas fall outside the language of standard
Presburger arithmetic. However, it is from the theory of parameterized Pres-
burger arithmetic, in which coefficients of variables can be linear polynomials in
parameters [16].

To generate an invariant, values of c1, c2, d that make ∀i, j, Γ (c1, c2, d, i, j)
valid need to be computed. After eliminating i, j, the following equivalent
quantifier-free formula can be generated:

[(2c1+d ≤ 0)∧(c1 = 0∨c1 < 0)∧((c1 = 0∧c2 ≤ 0)∨(c1
= 0∧(2c1+2c2) ≤ 0))].

The above constraints can be simplified to

Ψ = [(d ≤ 0 ∧ c1 = 0 ∧ c2 ≤ 0) ∨ (2c1 + d ≤ 0 ∧ c1 < 0 ∧ 2c1 + c2 ≤ 0)].

For any values c1, c2, d that satisfy the above formula, c1i + c2j + d ≤ 0 is an
invariant. As an example, c1 = −2, c2 = 0, d = 0 satisfies the above constraints.

9 In certain cases, the trivial invariant, true, e.g., obtained by making each of c1, c2, d
to be 0, always exists. We are however interested in nontrivial invariants of the
hypothesized shape.

Elimination Techniques for Program Analysis 205

Substituting for these values of parameters in the above template leads to −2i ≤
0 being an invariant. In fact, there are infinitely many values of c1, c2, d satisfying
the above constraints.

Infinitely many solutions of Ψ can be obtained in terms of a generator set
consisting of 〈c1 = 0, c2 = −1, d = 0〉, 〈c1 = −1, c2 = 2, d = 2〉 [34], such that
every linear combination of these vectors is a solution of Ψ . Corresponding to
each generator, there is an invariant obtained by substituting for these values
of parameters into the above template. The conjunction of the invariants cor-
responding to these generators is (−j ≤ 0 ∧ −i + 2j + 2 ≤ 0). This formula
can be shown to be the strongest invariant expressed as a conjunction of linear
inequalities for the above loop. The invariant −2i ≤ 0, for example, is implied
by it.

Note also that the above verification condition Γ can be augmented with ad-
ditional constraints on parameters to get more specific invariants; in particular,
to eliminate the trivial invariant, it can be augmented with ¬(c1 = 0 ∧ c2 =
0 ∧ d = 0).

To generate a strongest possible invariant, there are two conditions which
must be satisfied. Firstly, it should be possible for the subtheory from which
parameterized formulas are drawn, to admit full quantifier-elimination. Secondly,
in the generation of verification conditions, no approximation is made about the
behavior of programming constructs. Both of these requirements can however be
relaxed, but then the proposed approach may not generate the strongest possible
invariant for a program. Further, even if the proposed approach declares that
there does not exist any nontrivial invariant of the hypothesized shape because
of approximations made, an invariant of the hypothesized shape may still exist.

Neither of these two conditions were met for the above example. Even then
the strongest invariant expressed as linear inequalities is generated. This suggests
that these conditions do not always have to be satisfied to derive the strongest
possible invariants.

It is not essential for the subtheory to admit “complete” quantifier-elimination
in order to extract useful information. Incomplete heuristics can be used instead.
The semantics of a programming construct can be approximated to ensure that
the resulting verification conditions are expressible in the underlying subtheory.
As was the case in the above example, if a boolean test in a conditional state-
ment or a loop cannot be expressed in the underlying subtheory, then it can
be approximated with a weaker condition implied by the original test. In the
worst case, it can always be approximated by true. Similarly for assignment
statements, their effect can be approximated as well.

If an invariant for the above loop in Example 2 is hypothesized to be an
nontrivial linear equation, the reader can verify that there does not exist such
an nontrivial invariant (e.g., if I(i, j) = (c1i+c2j+d = 0), since eliminating i, j, d
from the verification condition results in c1 = 0, c2 = 0, d = 0, which simplifies
I to the trivial invariant true).

206 D. Kapur

As stated earlier, the above example was done using the theory of parame-
terized Presburger arithmetic. In [16], we discussed two additional subtheories
to illustrate this approach: (i) the theory of algebraically closed fields (with
+, ∗,= as the primitive operations), and (iii) the theory of real-closed fields
(with +, ∗,=,≤ as the primitive operations). For each of these subtheories, pa-
rameterized invariants restricting the shape can be expressed. An example illus-
trating the use of (i) is discussed below. Even though the theory of real closed
fields admits quantifier-elimination and formulas in this theory are an excellent
candidate for specifying properties of programs, quantifier-elimination methods
are quite impractical, even though they happen to be of the similar complex-
ity as quantifier-elimination methods on other theories, including parameterized
Presburger arithmetic and theory of algebraically closed fields. An interesting
research problem is whether the special structure of formulas arising as verifica-
tion conditions can be exploited to develop specialized heuristics for (incomplete)
quantifier-elimination to generate useful nontrivial invariants expressed as non-
linear inequalities over the reals. An interested reader may consult [28] for some
such attempts.

The approach discussed in this section can be used to automatically generate
invariants for programs with nested loops and procedure calls, as illustrated in
[16]. Below we discuss example 1 to illustrate how nonlinear invariants can be
generated using this approach.

Example 1 continued:Example 1 in the introduction can also be handled by
hypothesizing an invariant of the loop to have a shape of a polynomial equation
where the degree of each term is ≤ 2. That is,

I(a, s, t) ⇔ u1 a
2+u2 s

2+u3 t
2+u4 as+u5 at+u6 st+u7a+u8s+u9t+u10 = 0,

where u1, . . . , u10 are parameters. As discussed in detail in [16], constraints on
parameters are generated using a heuristic for simplifying parametric polyno-
mials (over the theory of an algebraically closed field), from which a basis for
parameter values is generated, leading to multiple independent invariants. Para-
metric Gröbner basis [14] constructions can also be used for this purpose. Below,
we briefly review the derivation.

After eliminating program variables a, s, t from the verification condition, the
following constraints on parameters are generated. Each of u2, u4, u6 becomes 0,
implying that the hypothesized shape of polynomial invariants can be further
restricted by dropping out terms s2, as, st. The following relations among other
parameters are generated:

1. u1 = −u5, 2. u7 = −2u3−u5+2u10, 3. u8 = −4u3−u5, 4. u9 = 3u3+u5−u10.

The above set of constraints has infinitely many solutions. However, this infinite
solution set can be finitely described [34]. Each solution can be obtained from an
independent set of 3 solutions obtained by making exactly one of the independent
parameters, u3, u5 and u10, to be 1, generating three invariants

t = 2a+ 1, s = −a2 + at− a+ t, 4s = t2 − 2a+ 3t.

Elimination Techniques for Program Analysis 207

The reader would have noticed that these invariants are somewhat different
from the ones given in the introduction. They are however logically equivalent.
In fact, each of the above three invariants is also an inductive invariant. Whereas
s = (a+1)2 is a loop invariant, it is not an inductive invariant, as stated earlier.
This invariant can be derived by combining t = 2a+1 and s = −a2 + at− a+ t.
Further, the first invariant is independent. The second invariant is independent
of first one but not of the third one: It can be derived from the first one and
third one. Similarly, the third invariant can be derived from the first and second.
Even though these invariants were generated from independent solutions of a
linear system of equations, variables standing for various power products in the
linear system are related (particularly, a, at and t are related). To get a set of
independent invariants, it thus becomes necessary to check derivability of one
from the others.

It is even possible to show termination of the loop in Example 1 using tem-
plates. Assuming a linear polynomial in the program variables a, s, and t can
be used to show the termination of the loop, a template in a, s, and t can be
hypothesized which takes values over the integers bounded from below (e.g.,
nonnegative integers or integers ≥ −20) and with the condition that every time,
the loop body is executed, its values goes down.

3.2 Specifying Shape by Restricting Polynomial Degree

In [30], we proposed a method based on the framework of abstract interpreta-
tion [5] for generating polynomial equations of a certain degree as invariants.
Restricting the degree of a polynomial is another way of generically specifying
the shape of invariants.

In Section 2, we defined the semantics of programming language constructs
ideal-theoretically. Tests expressed as disequalities in conditional statements and
loops can be handled as well. For giving the semantics of a loop that can be
executed arbitrarily many times, a widening operator á la abstract interpretation
framework was exploited for approximating the semantics.

As an example, consider the loop with a single assignment statement of the
form:

x := x+ 1.

Depending upon the initial value of x, say i, after the loop body has been exe-
cuted two times, we have: x = i ∨ x = i + 1 ∨ x = i + 2, which is equivalent to
the polynomial equation (x− i) ∗ (x− (i+1)) ∗ (x− (i+2)) = 0. Assuming that
there is no a priori restriction on the number of times the loop body is executed,
it is easy to see that there is no polynomial invariant (of any degree) involving
just x. However, if a loop test restricts x to take a finite value, then there is a
polynomial invariant of the degree bounded by the maximum value of x (minus
i). If the shape of polynomial invariants is restricted to be of a certain fixed
degree, then depending upon the number of times the loop body is executed,
this approach may or may not generate a polynomial invariant.

208 D. Kapur

In [30], we defined a widening operator based on the degree of polynomial
invariants of interest. Using this widening operator and exploiting the property
that any finite-dimensional vector space has a finite basis, we proved that the
algorithm for computing invariants will reach a fixed point in finitely many steps
using the proposed widening operator. This also gives us a completeness result,
namely that if tests in conditional statements and loops are ignored, and if all
right hand sides of assignments are linear, then the approach finds all polynomial
invariants of degree ≤ d for any given d.

The experimental results of this method are given in Table 1 below; the
method was implemented by Carbonell in the Macaulay system, and timings
were obtained using the software running a Pentium 4, 2.5 GHZ pc running
Linux. More details can be found in [28]. This approach is able to automatically
generate polynomial invariants for a large class of programs involving nested
loops and computing number-theoretic functions.

3.3 Non-numeric Theories

The proposed approach seems quite promising since a number of theories
and their combination admit quantifier-elimination [17]. Even if a quantifier-
elimination procedure is too expensive or is incomplete, a number of useful
heuristics can be developed to generate constraints on parameters and thus ob-
tain useful invariants automatically.

We enumerate below requirements on a theory for this approach to succeed.

1. It should be possible to specify interesting program properties in parametric
form in the theory.

2. It should be possible to approximate the semantics of programming lan-
guage constructs so as to capture nontrivial properties of programs as well
as generate verification conditions in the theory.

3. It should be possible to “easily” generate constraints on parameters which
ensure that the verification conditions generated using the program seman-
tics and the parametric hypothesized invariants are valid.

4. These constraints on parameters should be solvable, preferably in most gen-
eral form. Each such solution of constraints on parameters instantiates a
parameterized formula, resulting in an invariant.

Combination of Theories. In this subsection, we show how parameterized
formulas over a combination of theories can be used as templates for invariants.
A useful combination of theories is that of Presburger arithmetic and quantifier-
free theory of equality over uninterpreted symbols [36,26]. This combination of
theories is well-supported in SMT solvers along with other theories for which
tremendous progress in their implementation has been reported recently. An un-
interpreted symbol could be used to model a function call about which nothing
can be assumed, or to model memory access, or could stand for a number theo-
retic function, such as ∗, exp, not expressible in Presburger arithmetic. Consider
a simple program from [12], in which f has been used to model memory.

Elimination Techniques for Program Analysis 209

Table 1. Examples

Program It Computes Source No. of No. of No. of Time
Loops Variables Invariants

cohencu cube [2] 5 1 3 0.94s
cohendiv division [2] 6 2 1-3 0.65s
wensley division [37] 6 1 3 0.99s
divbin division [13] 5 2 2-1 0.99s
mannadiv division [22] 6 2 1-3 1.12s
hard division [33] 6 2 3-3 1.31s
euclidex1 extended gcd [20] 10 2 3-4 5.63s
euclidex3 extended gcd [20] 12 3 2-3-5 8.53s
fermat1 divisor [1] 5 3 1-1-1 0.89s
fermat2 divisor [1] 5 1 1 0.92s
knuth divisor [20] 7 1 1 2.61s
lcm1 lcm [33] 6 3 1-1-1 1.22s
lcm2 lcm [9] 6 1 1 1.21s
sqrt square root [22] 3 1 2 0.46s
z3sqrt square root [35] 4 1 1 0.82s
dijkstra square root [9] 5 2 2-1 1.31s
freire1 square root [10] 3 1 1 0.38s
freire2 cubic root [10] 4 1 4 0.85s
petter1 power sum [27] 2 1 1 .5s
petter2 power sum [27] 2 1 1 .8s
petter3 power sum [27] 2 1 1 4.2s
petter4 power sum [27] 2 1 1 t/o
petter5 power sum [27] 2 1 1 t/o
readers simulation [33] 6 1 3 1.95s
illinois protocol [8] 4 1 5 7.68s
mesi protocol [8] 3 1 2 2.65s
moesi protocol [8] 4 1 5 4.28s
berkeley protocol [8] 4 1 4 2.74s
firefly protocol [8] 4 1 5 5.01s

Example 4. var a1, a2, b1, b2, c1, c2: integer end var
a1 := 0; a2 := 0; b1 := 1; b2 := f(1); c1 := 3; c2 := f(4);
while a1 < 100 do

a1 := a1 + 1; a2 := a2 + 2; b1 := f(b1); b2 := f(b2);
c1 := f(c1 + 1); c2 := f(c2 + 1)

end while

A parameterized formula in this combined theory can be a linear inequality
(or equality) over program variables and expressions built using uninterpreted
function symbols which can have linear polynomials as arguments (to stand for
an index expression or location expression in case f as an array, for example).

210 D. Kapur

It is thus of the form A0+A1t1 + · · · ...+Aktk = 0 or ≤ 0, where Ai are param-
eters and ti is either a variable or a term with an uninterpreted symbol whose
arguments either have uninterpreted symbols or + as the outermost symbols.10

Associate a parametric formula as an inductive assertion at the loop entry of
the above program and generate verification conditions. For the above loop, let
us hypothesize an invariant of the form

I : A1 a1 +A2 a2 +B1 b1 +B2 b2 + C1 c1 + C2 c2 + E+

F1 f(A
′
1 a1 +A′

2 a2 +B′
1 b1 +B′

2 b2 + C′
1 c1 + C′

2 c2 + E′) = 0,

whereA1, A2, B1, B2, C1, C2, E, F1, A
′
1, A

′
2, B

′
1, B

′
2, C

′
1, C

′
2, E

′ are parameters and
a1, a2, b1, b2, c1, c2 are program variables. Assuming that f is an array, then the
above formula expresses a relation between program variables and a single array
access.

The verification condition at the loop entry has two parts:

V C0 : B1 +B2 f(1)+3C1+C2 f(4)+E+F1f(B
′
1+B′

2 f(1)+3C′
1+C′

2 f(4)+E′) = 0,

when the loop is entered for the first time, and

V C1 : (I ∧ a1 < 100) =⇒ (A1 (a1 + 1) +A2 (a2 + 2) +B1 f(b1) +B2 f(b2)+

C1 f(c1 + 1) + C2 f(c2 + 1) + E + F1f(A
′
1 (a1 + 1) +A′

2 (a2 + 2)+

B′
1 f(b1) +B′

2 f(b2) + C′
1 f(c1 + 1) + C′

2 f(c2 + 1) + E′) = 0)

for an arbitrary iteration of the loop. If a postcondition had been specified, then
I ∧ a1 ≥ 100 should also imply that postcondition; further, the postcondition
could have been used to impose restrictions on the template, particularly in
terms of program variables likely to appear in I.

The goal once again is to find parameters values which make the above verifi-
cation conditions valid for all possible values of program variables. To generate
constraints on parameters that ensure the validity of the verification conditions
over the combined theory of linear arithmetic and equality theory of uninter-
preted symbols is equivalent to generating parameter constraints which make
the negation of the conjunction of the verification conditions unsatisfiable. In
general, the problem is then to generate parameter constraints which make a
parameterized quantifier-free formula over a combined theory unsatisfiable. This
can be done as follows.

1. A mixed parameterized formula expressed over arithmetic and uninterpreted
symbols is purified by introducing new constant symbols to stand for pure
terms in arithmetic and expressions built using uninterpreted symbols (see
[23] for the purification step).

10 Notice that a formula of the form f(...) = g(...) also has the above form f(...) −
g(....) = 0.

Elimination Techniques for Program Analysis 211

The output of this step is a conjunction of two pure parameterized sub-
formulas — one over arithmetic and another over quantifier-free theory of
equality over uninterpreted symbols, with these subformulas sharing vari-
ables/constants and the equality symbol.

2. The result can, in principle, be converted into disjunctive normal form even
though there may be better heuristics which do not involve explicit conver-
sion to disjunctive normal form. Each conjunction of literals in arithmetic
or equality theory is then considered as discussed below.

3. As in Nelson-Oppen’s method for combining decision procedures of quantifier-
free theories [26], for every possible equivalence relation equating shared con-
stant symbols between pure formulas and disequating otherwise, it is checked
whether there exist parameter values which make every conjunction from the
disjunctive normal form unsatisfiable. If the answer is affirmative, then those
parameter values yield an invariant.

4. If there are infinitely many parameter values which make every conjunction
unsatisfiable, a finite description of these parameter values is then generated,
if possible, to obtain the strongest possible invariant.

Since an example illustrating this combined theory is not discussed in any of our
papers, we provide more details in the next subsection.

Generating Constraints on Parameters for a Combined Theory after
Quantifier Elimination. From the negation of the verification conditions, af-
ter purification and conversion to disjunctive normal form, we have the following
conjunctions (expressed as a set of literals) after introduction of new constants
(represented by wi’s). We discuss below an incomplete heuristic for generat-
ing constraints on parameters from which invariants for the above loop can be
derived.

It is easy to see that each of these conjunctions can be separated into two
parts: a set of literals in Presburger arithmetic and another set of literals in the
theory of equality over uninterpreted symbols.

NV C0 : {w1 = 1, w2 = 4, w3 = f(w1), w4 = f(w2),

w5 = B′
1 +B′

2 w3 + 3C′
1 + C′

2 w4 + E′, w6 = f(w5),

B1 +B2 w3 + 3C1 + C2 w4 + E + F1 w6
= 0}.

NV C1 : {a1 < 100, w7 = A′
1 a1 +A′

2 a2 +B′
1 b1 +B′

2 b2 + C′
1 c1 + C′

2 c2 + E′,

w8 = f(w7), A1 a1 +A2 a2 +B1 b1 +B2 b2 + C1 c1 + C2 c2 + E + F1 w8 = 0,

w9 = a1 + 1, w10 = a2 + 2, w11 = f(b1), w12 = f(b2), w13 = c1 + 1,

w14 = f(w13), w15 = c2 + 1, w16 = f(w15), w18 = f(w17),

w17 = A′
1 a1 +A′

1 +A′
2 a2 + 2A′

2 +B′
1w11 +B′

2w12 + C′
1w14 + C′

2w16 + E′,

A1 a1+A1+A2 a2+2A2+B1 w11+B2 w12+C1 w14+C2 w16+E+F1 w18
= 0}.

212 D. Kapur

A complete method can be obtained by considering all possible equivalence re-
lations on shared constants wi’s and program variables among the subformulas
from the two theories. For each such equivalence relation, parameter constraints
are generated, if any, to make the conjunction unsatisfiable. Recent advances in
SMT technology can be exploited so as to optimize parameter constraint gener-
ation without having to explicitly consider all possible equivalence relations on
shared constants among pure formulas in different theories.

Below, we illustrate a heuristic on the above example by generating constraints
on parameters by focusing on making the first conjunction NV C0, the negation
of the first verification condition V C0, unsatisfiable.

An easy way to make NV C0 unsatisfiable is to make all parameters in the
negated literal to be 0; this leaves only A1, A2, and the primed parameters to
be determined. NV C1, the negation of the second verification condition V C1,
simplifies under these instantiations to

{a1 < 100, w7 = A′
1 a1+A

′
2 a2+B

′
1 b1+B

′
2 b2+C

′
1 c1+C

′
2 c2+E

′, w8 = f(w7),

A1 a1 +A2 a2 = 0, w9 = a1 + 1, w10 = a2 + 2, w11 = f(b1), w12 = f(b2),

w13 = c1 + 1, w14 = f(w13), w15 = c2 + 1, w16 = f(w15), w18 = f(w17),

w17 = A′
1 a1 +A′

1 +A′
2 a2 + 2A′

2 +B′
1w11 +B′

2w12 + C′
1w14 + C′

2w16 + E′,

A1 a1 +A1 +A2 a2 + 2A2
= 0}.

This set is unsatisfiable if A1 = −2A2 because of the literals A1 a1 + A2 a2 =
0, A1 a1 + A1 + A2 a2 + 2A2
= 0. These parameter constraints, along with
all other parameters made 0, make both conjunctions unsatisfiable, leading to
2a1− a2 = 0 as an invariant.

There are other ways to make NV C0 unsatisfiable, particularly by again con-
sidering the last literal B1 + B2 w3 + 3C1 + C2 w4 + E + F1 w6
= 0. Since
w6 = f(w5), w3 = f(1), w4 = f(4), the following two possibilities are considered
by instantiating B1 = C1 = E = 0. (i) C2 = 0, B2 = 1, F1 = −1, which simpli-
fies the last literal to w3 − w6. If we make w5 equal to 1, then the last literal
is unsatisfiable. Making B′

1 = 1 and all other parameters 0 leads to w5 = 1.
After these instantiations of parameters, NV C1 is unsatisfiable since it includes
literals b2− f(b1) = 0 and f(b2)− f(f(b1))
= 0.

Substituting for the parameter values into the above template produces b2 =
f(b1) as an invariant.

(ii) Similarly, instantiating B2 = 0, C2 = 1, F1 = −1 simplifies the last literal
in NV C0 to w4 −w6. If we make w5 to be 4, by making B′

1 = 0, C′
1 = 1, E′ = 1

and all other parameters 0, NV C0 becomes unsatisfiable. NV C1 also becomes
unsatisfiable, leading to parameter values, which when used to instantiate the
above template, gives the invariant c2 = f(c1 + 1).

Elimination Techniques for Program Analysis 213

Both of these invariants relate array contents to program variables.11 Each of
these constraint sets on parameters are independent, thus leading to independent
invariants. Other invariants can be generated in a similar fashion.

As this example illustrates, parameterized formulas in the combined theory of
Presburger arithmetic and theory of equality of interpreted symbols can be used
as candidates for invariants for programs in which assignments are expressed
using addition and array accesses.

As shown in [21], the first-order theory of Boolean algebra admits quantifier-
elimination. Kuncak has used this theory and its combination with Presburger
arithmetic for analyzing shapes of lists and related container data structures. It
will be interesting to identify parameterized formulas in this theory for specifying
properties about container data structures.

In [19], we have proposed a reduction approach for generating decision proce-
dures for quantifier-free theories over complex data structures. A formula express-
ing a property of a complex data structure can be transformed into an equivalent
formula in Presburger arithmetic combined with uninterpreted function symbols.
This approach has been used to generate decision procedure for quantifier-free
theories over finite sets, finite multisets, finite lists, and finite arrays, by just us-
ing a combination of decision procedures for quantifier-free Presburger arithmetic
and the theory of equality over uninterpreted symbols. In [17], a number of results
about theories admitting quantifier elimination are discussed which can be useful
for making the proposed approach more widely applicable.

4 Concluding Remarks

We have discussed two different approaches for automatically generating loop in-
variants. Both approaches depend upon elimination methods.While the approach
based on polynomial ideal theory is exact and does not require any information
other than the program, it is less likely to generalize since it relies heavily on beau-
tiful results from algebraic geometry which have taken many years to arrive at. It
is indeed the case that after all, the computer representation of all data structures
are numbers, but it is less clear whether manipulations of number representations
of data structures can be modeled using polynomials; so it is an intriguing issue
whether this approach carries over after suitable number encodings of other data
structures. Nevertheless, this approach suggests developing elegant decidable frag-
ments and structural properties of theories over data structures used in programs.

The second approach based on knowing a priori shapes of invariants seems a lot
more promising since it reduces to constraint solving in combination of theories.
A challenge here is to identify relevant shapes of invariants of interest as well as to
develop heuristics to determine from a loop body, the likely shapes of loop invari-
ants. A related topic for further investigation is to use postconditions for guessing

11 For the above program, straightforward dependency analysis would have suggested
that array indices depend only bi’s and cj ’s; this information could have been used
to propose a simpler template.

214 D. Kapur

shapes of loop invariants. This approach is also related to the abstract interpreta-
tion approach of Cousot for program analysis, which has been found quite effective
in on commercial software in many applications for finding as well as ensuring the
absence of certain kinds of bugs. The choice of an abstract domain in effect deter-
mines the shape of properties of programs which are of interest.

Acknowledgments. I am grateful to Enric Rodŕıguez-Carbonell for our collab-
oration on the topic of automatic generation of invariants starting from summer
2003 leading to his Ph.D. thesis. I also thank Matthias Forbach for proofreading
the final draft and his comments.

References

1. Bressoud, D.: Factorization and Primality Testing. Springer (1989)
2. Cohen, E.: Programming in the 1990s. Springer (1990)
3. Colón, M.A.: Approximating the Algebraic Relational Semantics of Imperative Pro-

grams. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 296–311. Springer,
Heidelberg (2004)

4. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear InvariantGeneration Using
Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

5. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Con-
ference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Los Angeles, California, pp. 238–252. ACM
Press, New York (1977)

6. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Vari-
ables of a Program. In: Conference Record of the Fifth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Tucson, Arizona,
pp. 84–97. ACM Press, New York (1978)

7. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. An Introduction to
Computational Algebraic Geometry and Commutative Algebra. Springer (1998)

8. Delzanno, G.: Constraint-based verification of parameterized cache coherence pro-
tocols. Formal Methods in System Design 23(3), 257–301 (2003)

9. Dijkstra, E.: A Discipline of Programming. Prentice-Hall (1976)
10. Freire, P.: http://www.pedrofreire.com/crea2_en.htm
11. German, S., Wegbreit, B.: A Synthesizer of Inductive Assertions. IEEE Transac-

tions on Software Engineering 1(1), 68–75 (1975)
12. Gulwani, S., Tiwari, A.: Assertion Checking over Combined Abstraction of Linear

Arithmetic and Uninterpreted Functions. In: Sestoft, P. (ed.) ESOP 2006. LNCS,
vol. 3924, pp. 279–293. Springer, Heidelberg (2006)

13. Kaldewaij, A.: Programming. The Derivation of Algorithms. Prentice-Hall (1990)
14. Kapur, D.: An approach for solving systems of parametric polynomial equations.

In: Saraswat, Hentenryck, V. (eds.) Principles and Practices of Constraint Pro-
gramming, pp. 217–244. MIT Press (1995)

15. Kapur, D.: Automatically Generating Loop Invariants using Quantifier Elimina-
tion. Technical report, Department of Computer Science, University of New Mex-
ico, Albuquerque, NM, USA (2003)

16. Kapur, D.: A Quantifier Elimination based Heuristic for Automatically Generating
Inductive Assertions for Programs. J. of Systems Science and Complexity 19(3),
307–330 (2006)

http://www.pedrofreire.com/crea2_en.htm

Elimination Techniques for Program Analysis 215

17. Kapur, D., Majumdar, R., Zarba, C.: Interpolation for data structures. In: Proceed-
ings of the 14th ACM SIGSOFT Symp. on Foundations of Software Engineering
(2006)

18. Kapur, D., Narendran, P.: An equational approach to theorem proving in first-order
predicate calculus. In: Proceedings of the Ninth International Joint Conference on
Artificial Intelligence (IJCAI 1985), pp. 1146–1153 (1985)

19. Kapur, D., Zarba, C.: A Reduction Approach to Decison Procedures. Technical
Report, Department of Computer Science, UNM, (December 2006)

20. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms,
vol. 2. Addison-Wesley (1969)

21. Kuncak, V.: Modular Data Structure Verification. PhD thesis, Department of
EECS, MIT, Cambridge, MA (2007)

22. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill (1974)
23. Manna, Z., Zarba, C.: Combining Decision Procedures. In: Formal Methods at the

Crossroads: from Panacea to Foundational Support (2003)
24. Müller-Olm, M., Seidl, H.: Program Analysis through Linear Algebra. In: Sympo-

sium on Principles of Programming Languages, pp. 330–341 (2004)
25. Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally Analyzing Polynomial

Identities. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,
pp. 50–67. Springer, Heidelberg (2006)

26. Nelson, G.: Techniques for Program Verification. PhD thesis, Department of Com-
puter Science, Stanford University, Palo Alto, CA (1981)

27. Petter, M.: Berechnung von polynomiellen invarianten. Master’s thesis, Fakultät
für Informatik, Technische Universität München (2004),
http://www2.cs.tum.edu/~petter/da

28. Rodŕıguez-Carbonell, E.: Automatic Generation of Polynomial Invariants for Sys-
tem Verification. PhD thesis, Universitat Politecnica de Catalunya (2006)

29. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic Generation of Polynomial Loop
Invariants: Algebraic Foundations. In: Intl. Symp. on Symbolic and Algebraic Com-
putation (ISSAC), pp. 266–273 (July 2004)

30. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. J. of Science of Program-
ming 64(1), 54–75 (2007)

31. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. of Symbolic Computation 42(4), 443–476 (2007)

32. Rodŕıguez-Carbonell, E., Kapur, D.: An Abstract Interpretation Approach for Au-
tomatic Generation of Polynomial Invariants. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 280–295. Springer, Heidelberg (2004)

33. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear Loop Invariant Generation
using Gröbner Bases. In: Symp. on Principles of Programming Languages (2004)

34. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley (1998)
35. Shelburne, B.J.: Zuse’s Z3 square root algorithm,

http://www4.wittenberg.edu/academics/mathcomp/bjsdir/ZuseZ3Talk.pdf

36. Shostak, R.: A Practical Decision Procedure for Arithmetic with Function Symbols.
J. ACM 26(2), 351–360 (1979)

37. Wegbreit, B.: The Synthesis of Loop Predicates. Communications of the
ACM 17(2), 102–112 (1974)

38. Wu, W.: Basic principles of mechanical theorem proving in geometries. J. of
Automated Reasoning 2, 221–252 (1986)

http://www2.cs.tum.edu/~petter/da
http://www4.wittenberg.edu/academics/mathcomp/bjsdir/ZuseZ3Talk.pdf

Narrowing Based Inductive Proof Search

Claude Kirchner1, Hélène Kirchner1, and Fabrice Nahon2

1 INRIA France
first.last@inria.fr

2 Rectorat Nancy-Metz, France
fabricenahon@googlemail.com

In memory of Harald Ganzinger

Abstract. We present in this paper a narrowing-based proof search
method for inductive theorems. It has the specificity to be grounded
on deduction modulo and to yield a direct translation from a successful
proof search derivation to a proof in the sequent calculus. The method is
shown to be sound and refutationally correct in a proof theoretical way.

Keywords: deduction modulo, sequent calculus modulo, induction,
Noetherian induction, induction by rewriting, equational reasoning, term
rewriting.

Introduction

Proof by induction is a main reasoning principle and is of prime interest in
informatics and mathematics. Typically in hardware and software verification
problems, reasoning on complex data structures with infinite data or states make
a prominent use of induction and most deep mathematical theorem proofs rely on
induction. Two main approaches have been developed for mechanizing induction
proof: explicit induction, used in proof assistants, and implicit induction by
rewriting, used in automated theorem provers. This work was motivated by the
need to have a better understanding of the relation between them. Thanks to the
deduction modulo framework, explicit induction is applied to generate smaller
instances of the property to be proved. These instances can then be used by
the modulo part to implicitly simplify the goals, thanks to a sequent calculus
modulo.

In this context, we provide a proof search mechanism for such inductive proofs.
We show how the induction step can be performed by narrowing at innermost
positions when the theory is axiomatized by a sufficiently complete and conver-
gent rewrite system. This allows us to make precise the relationship between
rewrite-based automated inductive theorem provers like Spike or RRL and case
analysis in proof assistants like Coq or PVS.

We provide a proof theoretic foundation to the proof search procedure which
is described by deduction rules that are proved valid in the sequent calculus
modulo. This provides the ability to build a proof term for a proof assistant and

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 216–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Narrowing Based Inductive Proof Search 217

therefore to be able to formally validate the proof search result. So, starting from
the (inductive) proposition to be proved, the proof search mechanism builds a
proof in the sequent calculus modulo, from which a proof term can be computed
if needed.

This paper was presented at the event organized in 2005 to celebrate Harald
Ganzinger’s memory and research contributions.

The paper is built over the works and results on deduction modulo [13], first-
order presentation of higher-order logic [12], formalization of induction in deduc-
tion modulo [7,8] and on preliminary results on narrowing for induction presented
in [9]. We provide first a summary of these approaches in Section 1 to motivate
the main idea of narrowing based induction proof search. Section 2 introduces
two basic ingredients of the method: ordering on equalities and narrowing with
sufficiently complete rewrite systems. Then Section 3 presents the proof search
system for inductive proofs, which is proved sound and refutationally correct.

For the main notations and classical results on term rewriting, we refer to the
books on that topics like [1] or [20].

1 Deduction Modulo and the Noetherian Induction
Principle

Proofs by structural induction are of main use in proof assistants where the struc-
tural induction principle is generally automatically generated from the definition
of the inductive data types. However, by using sophisticated termination order-
ings, proofs by Noetherian induction performed by rewriting are much more
expressive than structural induction. We recall in this section how deduction
modulo can provide the description, at the proof theoretical level, of proof by
Noetherian induction.

1.1 Deduction Modulo

Let T (Σ,X) be the set of terms build over the signature Σ and the denumerable
set of variables X . We assume for simplicity Σ to be one-sorted, so that any term
is of sort τ . Terms are denoted by letters s, t, u, v, l, r, variables by x, y, z,X, Y, Z,
vectors of variables by −→x , and substitutions on terms by Greek letters α, β, γ.
SubstT (Σ,X) denotes the set of substitutions on T (Σ,X).

Provided a Noetherian relation R and a user defined theory Thu, we are
looking for a proof of a proposition P using a Noetherian induction principle
denoted NoethInd, in the sense of finding a derivation of the sequent:

NoethInd(R), Thu � P

The Noetherian induction principle being by essence a second order proposition,
this is indeed a sequent in higher-order logic.

Since we want to make a primarily use of first-order rewrite concepts and
techniques and to consider first-order theories, we need a first-order presentation

218 C. Kirchner, H. Kirchner, and F. Nahon

of higher-order logic. We use the so-called HOLλσ introduced in [12] which is
based on deduction modulo [13] and reveals to be particularly well-suited for our
concerns. It is clearly out of the scope of this paper to explain in detail the full
approach, and we only sketch here the main ideas. The reader can refer to [7]
and to [8] for a detailed exposition.

In deduction modulo, terms but also propositions can be identified modulo a
congruence. We use a congruence that can typically be defined by conditional
equalities and that takes into account the application context to evaluate the
conditions. Furthermore, since the congruence application should be controlled
closely, an appropriate notion of protective symbol is used, see [7]: actually the
congruence is not allowed to act below a protective symbol. In deduction modulo,
the notions of term and proposition come from many-sorted first-order logic. We
consider theories described by a set of axioms Γ and a congruence, denoted ∼,
defined on terms and propositions. This congruence takes three arguments: the
two objects to be compared and a set of axioms Γ called a local context. When
we want to emphasize this, we denote the congruence ∼Γ . The deduction rules
of the sequent calculus take this equivalence into account. For instance, the right
rule for the conjunction is not stated as usual

Γ � A,Δ Γ � B,Δ
Γ � A ∧B,Δ

but is formulated

Γ �∼ A,Δ Γ �∼ B,Δ

Γ �∼ D,Δ if D ∼Γ A ∧B.

We recall in Figure 1, the definition of the sequent calculus modulo. In these
rules, Γ and Δ are finite multisets of propositions, P and Q denote propositions.
Substituting the variable x by the term u in Q is denoted Q{u/x}. When the
congruence ∼ is simply identity, this sequent calculus collapses to the usual
one [16]. In that case, sequents are written as usual with the � symbol.

Proof checking decidability for the sequent calculus modulo reduces to the
decidability of the relation ∼Γ , since we can check for each rule that the condi-
tions of application are satisfied and we provide the needed information in the
quantifier rules. When ∼Γ is not decidable, we still can use instances for which
one can check the conditions of application, typically using a constraint based
approach [17,21]

We can now introduce the fundamental notion of compatibility: a theory (a
set of propositions) T is said to be compatible with a congruence ∼ when:

T , Γ � Δ if and only if Γ �∼ Δ.

As shown in [7,8], this property is modular: if T 1 is compatible with a congruence
C1 and T 2 is compatible with C2 then T 1 ∪ T 2 is compatible with C1 ∪ C2.

Using the above equivalence, we can internalize propositions into the congru-
ence, and we call this operation “push”. We can also recover them at the level
of the logic, and we call this operation “pop”. Moreover, thanks to modularity,

Narrowing Based Inductive Proof Search 219

Γ, P �∼ Q
axiom if P ∼Γ Q

Γ,P �∼ Δ Γ �∼ Q,Δ

Γ �∼ Δ
cut if P ∼Γ Q

Γ,Q1, Q2 �∼ Δ

Γ, P �∼ Δ
contr-l if (A)

Γ �∼ Q1, Q2,Δ

Γ �∼ P,Δ
contr-r if (A)

Γ �∼ Δ

Γ,P �∼ Δ
weak-l

Γ �∼ Δ

Γ �∼ P,Δ
weak-r

Γ, P,Q �∼ Δ

Γ,R �∼ Δ
∧-l if R ∼Γ (P ∧Q)

Γ �∼ P,Δ Γ �∼ Q,Δ

Γ �∼ R,Δ
∧-r if R ∼Γ (P ∧Q)

Γ, P �∼ Δ Γ,Q �∼ Δ

Γ,R �∼ Δ
∨-l if (B)

Γ �∼ P,Q,Δ

Γ �∼ R,Δ
∨-r if (B)

Γ �∼ P,Δ Γ,Q �∼ Δ

Γ,R �∼ Δ
⇒-l if (C)

Γ, P �∼ Q,Δ

Γ �∼ R,Δ
⇒-r if (C)

Γ �∼ P,Δ

Γ,R �∼ Δ
¬-l if R ∼Γ ¬P Γ, P �∼ Δ

Γ �∼ R,Δ
¬-r if R ∼Γ ¬P

Γ, P �∼ Δ
⊥-l if P ∼Γ ⊥

Γ,Q{t/x} �∼ Δ

Γ,P �∼ Δ
(Q,x, t) ∀-l if (D)

Γ �∼ Q{y/x},Δ
Γ �∼ P,Δ

(Q, x, y) ∀-r if (E)

Γ,Q{y/x} �∼ Δ

Γ,P �∼ Δ
(Q, x, y) ∃-l if (F)

Γ �∼ Q{t/x},Δ
Γ �∼ P,Δ

(Q, x, t) ∃-r if (G)

A = P ∼Γ Q1 ∼Γ Q2, B = R ∼Γ (P ∨ Q) C = R ∼Γ (P ⇒ Q), D = P ∼Γ ∀x Q,
E = P ∼Γ ∀x Q, y fresh variable, F = P ∼Γ ∃x Q, y fresh variable, G = P ∼Γ ∃x Q

Fig. 1. The sequent calculus modulo

this can be done dynamically during the proof. This duality between computa-
tion and deduction is very conveniently reflected by the compatibility property.
In [13], internalization has been done statically and used to identify computation
within the deduction process. Our aim here is to do internalization dynamically
and to use it to design rules for induction by rewriting and an adequate strategy
for Noetherian induction.

In what follows, we consider congruences generated by conditional class
rewrite systems denoted RE and composed of (conditional) term rewrite rules,
(conditional) term equational axioms, (conditional) proposition rewrite rules,
(conditional) proposition equational axioms. Moreover, we assume that the left-
hand side of a proposition rewrite rule and both sides of a proposition equational
axiom have to be atomic propositions. Conditions may be arbitrary propositions.
The variables in the right-hand side and condition of a rule must occur in the
left-hand side. In the case of equational axioms, variables in both sides have to
be the same and (free) variables in the condition have to be a subset of those.

We assume here that ≈ is a binary relation symbol which satisfies the axioms
of equality (the classical denotation = will only represent syntactical equality).

220 C. Kirchner, H. Kirchner, and F. Nahon

In this case, to any conditional class rewrite system RE is associated the the-
ory denoted TRE as follows: for each conditional rewrite rule (l → r if c) or
conditional equality (l ≈ r if c) in RE , TRE contains the proposition:

– ∀x(c⇒ (l ⇔ r)) when l and r are propositions,

– ∀x(c⇒ (l ≈ r)) when l and r are terms,

where all free variables of l, denoted x, are universally quantified.
It is proved in [7] that TRE is compatible with the congruence generated byRE

(see also [11] and [13]). This allows us to freely use the “pushing and popping”
operations. This also ensures that deduction modulo a congruence represented
by a conditional class rewrite system is not a proper extension of first-order logic,
but only a different presentation of it.

1.2 Deduction Modulo for Inductive Proofs

This short introduction to deduction modulo now allows us to give a proof
theoretic understanding of induction by rewriting. In the context of deduction
modulo, the induction hypotheses arising from equational goals can be (dynami-
cally) internalized into the congruence. When doing this, the computational part
of the deduction modulo appears to perform induction by rewriting as done for
instance by systems like Spike [4] or RRL [19].

The powerful principle of these approaches is to allow application of rewrite
rules of the theory at any position of the current goal, as well as application of
induction hypotheses and current conjecture, provided that the applied formula
is smaller in the Noetherian induction ordering than the current goal.

When the ordering contains the relation induced by a terminating rewrite
system, a smaller formula is obtained as soon as a rewrite step is performed.
Moreover, in Spike for instance, the choice of the induction variables and instan-
tiation schemas is done using pre-calculated induction positions and schemas
called test-sets. In the approach described below, we show how to use narrowing
to automatically and completely perform these choices. The whole problem is
formalized in HOLλσ.

Given a property P and a relation R defined on a sort τ , the Noetherian
induction principle NoethInd(P,R, τ) is defined as follows:

∀x ((x ∈ τ ∧ ∀y ((y ∈ τ ∧R(y, x)) ⇒ P (y))) ⇒ P (x)) ⇒ ∀x (x ∈ τ ⇒ P (x))

and we write Noeth(R, τ) to state that R is a Noetherian relation over τ .
Proving that P inductively holds in a user theory Thu, denoted Thu |=Ind P ,

amounts to derive the sequent:

∀R ∀τ (Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ)), Thu � P.

Of course to finish the proof, one should also provide a proof of Noeth(R, τ).
To get a better intuition, let us consider an equational goal Q of the form

Narrowing Based Inductive Proof Search 221

∀x (x ∈ τ ⇒ t1(x) ≈ t2(x)). The remainder of this section gives the main steps
which are detailed in [7]. We start from the sequent:

∀R ∀τ (Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ)), Thu
�
∀x (x ∈ τ ⇒ t1(x) ≈ t2(x))

In the following, we will denote NI the proposition:

∀R ∀τ (Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ))

Choosing a specific relation R (written ≺) and a type still denoted τ , we get:

Noeth(≺, τ) ⇒ ∀P NoethInd(P,≺, τ)), Thu � ∀x (x ∈ τ ⇒ t1(x) ≈ t2(x)).

From this, by the rule⇒-l of the sequent calculus, we get on one hand the sequent
Thu � Noeth(≺, τ) corresponding to the proof that ≺ is indeed Noetherian, on
the other hand the sequent

∀P NoethInd(P,≺, τ)), Thu � ∀x (x ∈ τ ⇒ t1(x) ≈ t2(x))

corresponding to the use of the induction principle to prove our goal.
We instantiate P as the equality to prove and we get:

∀x ((x ∈ τ ∧ ∀x ((x ∈ τ ∧ x ≺ x) ⇒ t1(x) ≈ t2(x))) ⇒ t1(x) ≈ t2(x))
⇒ ∀x (x ∈ τ ⇒ t1(x) ≈ t2(x)), Thu � ∀x (x ∈ τ ⇒ t1(x) ≈ t2(x))

where we have renamed y to x to emphasize that x is a smaller instance of x. A
few easy steps of the sequent calculus later, we get:

Thu � ∀x ((x ∈ τ ∧ ∀x ((x ∈ τ ∧ x ≺ x) ⇒ t1(x) ≈ t2(x))) ⇒ t1(x) ≈ t2(x))

We then instantiate x by a fresh variable that we call X to emphasize this status,
and we get:

Thu � (X ∈ τ ∧ ∀x ((x ∈ τ ∧ x ≺ X) ⇒ t1(x) ≈ t2(x))) ⇒ t1(X) ≈ t2(X).

The ⇒-r and ∧-l rules of the sequent calculus lead to the discovery of the induc-
tion hypothesis:

Thu, X ∈ τ, ∀x ((x ∈ τ ∧ x ≺ X) ⇒ t1(x) ≈ t2(x))) � t1(X) ≈ t2(X).

Using what we have seen on compatible theories, this hypothesis can now be
internalized as a conditional equality denoted in general RE ind(Q,≺, τ)(X):

t1(x) ≈ t2(x) if x ∈ τ ∧ x ≺ X (1)

Note that because of its status of free fresh variable, X behaves like a constant,
while x is universally quantified.

What is crucial in using the induction hypothesis (1) as an equality or a
rewrite rule, is to check its condition. For any many-sorted theory, the x ∈ τ
part of the condition just expresses that the variable is sorted.

One of the main technical point handled in the paper is to justify that in
most cases, the condition x ≺ X is easily checked when an induction hypothesis
like (1) is internalized and used as a simplification rewrite rule.

222 C. Kirchner, H. Kirchner, and F. Nahon

2 Ordering and Narrowing

Before describing the proof search system, we describe in this section the two
main tools of the method, namely orderings on terms and equalities, and the
narrowing properties in sufficiently complete rewrite systems. Most importantly,
we provide the main result (Theorem 1) relating induction as deduction modulo
as presented in the previous section and the Noetherian ordering induced by a
terminating rewrite relation.

2.1 Orders and Quasi-Orders on Terms and Equalities

The set of positions in a term t is denoted Dom(t), the subterm of t at position
ω is denoted t|ω and the symbol at position ω in t by t(ω). The notation t[u]ω
means that the term t contains the subterm u at position ω. These notations
extend to goals t1 ≈ t2 seen as a term with top symbol ≈ of arity 2. Var(t)
denotes the set of (free) variables of the term t and |Var(t)| its cardinality. We

define
−−−−→
Var(t) as the vector of variables assumed linearly ordered by their name.

These notations are extended to equalities, rewrite rules and goals.
From now on, we assume given a quasi simplification order � on T (Σ,X) (see

for example [10]). We denote < its proper part, ≷ its associated equivalence (i.e.
≷ = (� ∩)) and [t] the class of a term t for this equivalence. We assume that
< and ≷ are closed under substitutions and contexts. For instance, it is shown
in [14] that if � is a recursive path ordering (rpo) with status then < and ≷ are
closed under substitutions and contexts.

In order to compare n-tuple of terms, for any natural n, we will use the
standard extension on the Cartesian product �n of �:

∀−→u ,−→v ∈ T (Σ,X)n −→u �n
−→v ⇔ (∀i 1 ≤ i ≤ n⇒ ui � vi)

If we denote <n the proper part of this quasi-order, then <n is Noetherian on the
set T (Σ,X)n provided < is Noetherian. We extend this quasi-order to equalities
in the following way:

s ≈ t �2 s
′ ≈ t′ if s � s′ and t � t′.

Definition 1. Let Q and Q′ be two equational goals, Q′ ≤e Q whenever there
exists a finite sequence of equalities (Qi = si ≈ ti)0≤i≤n such that:

1. Q = Q0 and Q′ = Qn,
2. for any i, si+1 � si and ti = ti+1 or ti+1 � ti and si = si+1.

Now, since � is stable under substitution, we get:

Lemma 1. ≤e is stable under substitution.

Moreover, to compare goals in a finer way, we also will make use of another
ordering on goals similar to the one in [7].

Narrowing Based Inductive Proof Search 223

Definition 2. Let C be the following complexity measure on equalities, where
{[t]} denotes the multiset of terms in the equivalence class of t for ≷.

C(s ≈ t) = ({[s]}, {[t]}) if [t] < [s]
({[t]}, {[s]}) if [s] < [t]
({[s], [t]}, ∅) otherwise

We define a quasi ordering on equalities �e by

s ≈ t �e s
′ ≈ t′ if C(s ≈ t) -lex C(s

′ ≈ t′) or (s ≷ s′ and t ≷ t′)

where -lex is the lexicographic extension of the multiset extension of <. We
denote <e the proper part of �e.

Let us remark that the order<e is well-suited for equalities, since it is invariant
under symmetry of equality: for all t, t′, u, u′ ∈ T (Σ,X), we have:
t ≈ t′ <e u ≈ u′ if and only if t′ ≈ t <e u ≈ u′ if and only if t ≈ t′ <e u

′ ≈ u.
But it is not stable under substitution: for example with the substitution σ =
{x �→ x1, y �→ x1, z �→ z1}, we have:

1. z ≈ x+ z <e y ≈ x+ z since
C(z ≈ x+ z) = ({[x+ z]}, {[z]}) and
C(y ≈ x+ z) = ({[x+ z], [y]}, ∅)

2. but zσ ≈ xσ + zσ �e yσ ≈ xσ + zσ since
C(zσ ≈ xσ + zσ) = ({[x1 + z1]}, {[z1]}) and
C(yσ ≈ xσ + zσ) = ({[x1 + z1]}, {[x1]})

Notice the difference between �e and ≤e, the latter being included in the former
as it can be checked by a simple case analysis. Indeed, stability by substitution
is in particular needed when considering optimized version of the proof search
method developed in [23].

2.2 Induction Hypothesis and Ordering on Goals

Taking into account vectors of variables, we are now in position to instantiate
the Noetherian induction hypothesis RE ind(Q,≺, τ)(X) defined in Section 1.2.

For any equality Q, for any integer n such that n = |Var(Q)|, for any −→x ∈ Xn

such that −→x is the vector of variables of Q, we have:

RE ind(Q,<n, T (Σ)n)
 (−→x ∈ T (Σ)n) ∧ (−→x <n
−→x) ⇒ Q{−→x /−→x }

In order to simplify the notations, and when no confusion can occur, we denote
it simply RE ind(Q,<).

In the same way, we introduce the following notations, where σ is any
substitution:

– RE ind(Q,<)σ
 (−→x ∈ T (Σ)n) ∧ (−→x <n
−→x σ) ⇒ Q{−→x /−→x }

– RE ind(Q,�)
 (−→x ∈ T (Σ)n) ∧ (−→x �n
−→x) ⇒ Q{−→x /−→x }

– RE ind(Q,�)σ
 (−→x ∈ T (Σ)n) ∧ (−→x �n
−→x σ) ⇒ Q{−→x /−→x }

224 C. Kirchner, H. Kirchner, and F. Nahon

A crucial point in inductive proofs will be to compare different instances of a
same equational goal: this is the purpose of the next lemma.

Lemma 2. For any equational goal Q with −→x =
−−−−−→
Var(Q) and n = |−→x |, for all

substitutions σ, μ ∈ SubstT (Σ,X), for all t, t′ ∈ T (Σ,X):

1. If t � t′ then Q[t]ω �e Q[t′]ω
2. If −→x σ �n

−→x μ then Qσ �e Qμ.
3. If Qσ <e Qμ and −→x σ �n

−→x μ then −→x σ <n
−→x μ.

Proof. 1. Let i and ω′, such that ω = i.ω′ (i = 1, 2 since Q is an equality).
Since t � t′, and since � is a reduction ordering, we have:

Q|i[t]ω′ � Q|i[t
′]ω′ (2)

Now, one can easily check the following proposition:

∀s ∀s′ ∀u s � s′ ⇒ s ≈ u �e s
′ ≈ u (3)

And (2) and (3) above lead to Q[t]ω �e Q[t′]ω
2. is obtained from 1 by an easy induction based on the number of occur-

rences of the variables xi in Q
3. Assume −→x σ �n

−→x μ and −→x σ ≮n
−→x μ. Then −→x σ ≷n

−→x μ, hence −→x μ �n−→x σ, thus Qμ �e Qσ by 2, and this contradicts the assumption Qσ <e

Qμ.
�

In other words, for any equational goal Q, for any vector of variables −→x of Q in
Xn, and for all σ, μ ∈ SubstT (Σ,X), in order to prove the proposition−→x σ <n

−→x μ,
and whenever Qσ <e Qμ, it suffices to check all inequalities σ(xi) � μ(xi) for
all component xi of −→x . Indeed, we are going to see in next Lemma that the
inequality Qσ <e Qμ can be automatically checked in many cases.

The next theorem relates the strict ordering <e on goals with a rewrite relation
→. It is a crucial step to justify the correct use of Noetherian rewriting as the
main ingredient to perform Noetherian induction.

Indeed, under technical conditions that can be syntactically checked, this
result ensures that Qσ <e Qμ. It is therefore possible in most of the cases to use
an equational goal Q to reduce an instance of itself, Qμ, as soon as a rewrite
step has been previously performed on Qμ.

Theorem 1 (Main compatibility theorem). Let Q1, Q2, Q3 and Q4 be
equational goals, l → r a rewrite rule (thus l > r), κ0 be either a rewrite rule
lκ0 → rκ0 or an equality lκ0 ≈ rκ0 .
Let us consider the inequality I : (lκ0 ≈ rκ0)σ <e Q1 and assume:

1. Q1 →l→r, j.ωj , θ Q2

2. Q2 	2 Q3.

Narrowing Based Inductive Proof Search 225

3. Q3 →κ0, i.ωi, σ Q4

4. Q3 	e Q4

Then:

1. I is satisfied whenever ωi
= ε or i = j
2. If ωi = ε and i
= j:

(a) If lκ0 > rκ0 , then:

I ⇔ ((Q1|i ≷ lκ0σ) ∧ (Q1|j < Q1|i) ⇒ (Q1|j > rκ0σ))

(b) If lκ0 ≷ rκ0 , then:

I ⇔ ((Q1|i ≷ lκ0σ) ⇒ (Q1|j > rκ0σ))

(c) Otherwise:

I ⇔ (((Q1|i ≷ lκ0σ) ∧ ((Q1|j < Q1|i) ∨ (lκ0σ ≷ rκ0σ)) ∧ (rκ0σ � lκ0σ))

⇒ (Q1|j > rκ0σ))

Proof. The proof of this crucial result is given in [23]. It is based on a technical
case analysis. �

A variant of this theorem is given in [7] for an ordering between goals based on
a complexity C using a set ordering instead of multiset ordering as here.

2.3 Narrowing

To make precise the use of narrowing in the induction process, let us first in-
troduce a few concepts and notations. Narrowing will be performed only with
rewrite rules, i.e. formulas l → r with l > r, but not with equalities. Let R be
a rewrite system on T (Σ,X). The signature Σ is partitioned into a set of con-
structors C and a set of defined symbols D. Constructors are function symbols
which do not occur as a head symbol of a rule left-hand side. A constructor
term is a term built only with constructor symbols. T (C,X) denotes the set of
constructor terms. A ground substitution is a substitution mapping each vari-
able to a ground term, i.e. a term without variables. Let SubstT (Σ) be the set
of all ground substitutions on T (Σ). A rewrite system is said to be ground con-
vergent if it is confluent and terminating over the set of ground terms. For any
ground convergent rewrite system R, a term t is ground R-reducible if tα is
R-reducible for any ground substitution α. Furthermore, a symbol f ∈ D of
arity n is completely defined if f(x1, . . . , xn) is ground reducible, and a ground
convergent rewrite system R is said to be sufficiently complete if all symbols in
D are completely defined.

For ground convergent and sufficiently complete rewrite systems, it is possible
to specify particular positions in terms where reductions must apply, and where
case analysis by rewriting can usefully be done.

226 C. Kirchner, H. Kirchner, and F. Nahon

Definition 3. For any t ∈ T (Σ,X), a position ω in t is called defined-innermost,
and we denote ω ∈ DI(t), if t(ω) ∈ D and t(ω′) ∈ C ∪ X whenever ω < ω′.

For example, considering Peano’s naturals, 0 and s are constructors, + is a
defined symbol and in s((0 + 0) + s(0 + s(x))) the occurrence 1.2.1 is defined-
innermost but 1 is not.

Lemma 3. For any ground convergent rewrite system R, for any term t, and for
any position ω ∈ Dom(t), if t(ω) is completely defined and ω is defined-innermost
in Dom(t), then, for any irreducible ground substitution α, tα is reducible at
position ω.

Proof. Classical and by case analysis �

Definition 4. A goal Q is narrowed into Q′ at a position ω with the rule l → r
and the substitution σ, if σ is the most general unifier (mgu for short) of l and
Q|ω, and Q

′ = Q[r]ωσ. This narrowing step is denoted Q�l→r,ω,σ Q
′.

Indeed, every defined-innermost occurrence is narrowable:

Corollary 1. For any ground convergent rewrite system R, for any equational
goal Q, for any defined-innermost position ω ∈ Dom(Q), for any ground substi-
tution α and for any finite set V of variables such that Var(Q)∪Dom(α ↓) ⊆ V ,
there exists a rule l → r ∈ R, a unifier σ of Q|ω and l, and a ground substitution
μ such that σμ|V = (α ↓)|V .

Proof. It is a consequence of the previous lemma and the classical narrowing
lifting lemma [18,20]. �

Thanks to these settings, we present in the next section, an induction based
proof search system, relying on a main induction rule that uses narrowing to
choose both the induction variables and the instantiation schema.

3 A Proof Search System for Induction

The proof search system IndNarrow for inductive proofs introduced in this section
is based on narrowing and rewriting. The main rule, called Induce, performs the
induction step. This is the key point that provides a bridge between the implicit
and explicit approaches of induction. Correctness and refutational completeness
of this system are proved.

3.1 The Proof Search System IndNarrow

The rules in Figure 2 apply on sequents modulo of the form Γ1|Γ2 �RE1|RE2
Q,

where Γ1 is the deduction part of the definitions, RE1 is their computational
part; Γ2 is the deduction part for other statements, RE2 is their computational
part; Q is an equational goal.

Narrowing Based Inductive Proof Search 227

Induce Γ1|Γ2 �RE1|RE2
Q[t]ω �⊙

κ ∈ RE1

σ = mgu(t, l)

Γ1|Γ2 �RE1|RE2σ∪REind(Q,<)σ (Q[r]ω)σ

if κ = l → r and ω ∈ DI(Q)

Orient Γ1|Γ2 �RE1∪{κ}|RE2
Q � Γ1|Γ2 �RE1∪{l→r}|RE2

Q

if κ = l ≈ r or κ = r ≈ l and l > r

Push1 Γ1, l ≈ r|Γ2 �RE1|RE2
Q � Γ1|Γ2 �RE1∪{l≈r}|RE2

Q

Push2 Γ1|Γ2, l ≈ r �RE1|RE2
Q � Γ1|Γ2 �RE1|RE2∪{l≈r} Q

Rewrite1 Γ1|Γ2 �RE1∪{κ}|RE2
Q[lσ]ω � Γ1|Γ2 �RE1∪{κ}|RE2

Q[rσ]ω

if κ = l → r or κ = l ≈ r or κ = r ≈ l

Rewrite2 Γ1|Γ2 �RE1|RE2∪{κ} Q[lσ]ω � Γ1|Γ2 �RE1|RE2∪{κ} Q[rσ]ω

if κ = l ≈ r or κ = r ≈ l or

κ = RE ind(l ≈ r)μ or κ = RE ind(r ≈ l)μ

and −→x σ <n
−→x μ where −→x =

−−−−−−−→
Var(l ≈ r)

Trivial Γ1|Γ2 �RE1|RE2
t ≈ t � �

Refutation Γ1|Γ2 �RE1|RE2
Q � Refutation

when no other rules can be applied

Fig. 2. The proof search system IndNarrow

The distinction between Γ1/RE1 and Γ2/RE2 is needed because in the Induce
rule, onlyRE1 is used for narrowing. For simplicity, we assume thatRE1 contains
only unconditional rules or equalities and we assume from now on, that RE1 is
sufficiently complete.
Γ2 is initialized with the proposition NI defined in subsection 1.2:

NI : ∀R ∀τ Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ)

and may contain other lemmas. RE2 receives the induction hypotheses provided
by some application of the rule Induce. So RE2 may contain conditional equal-
ities.

⊙
operator that is an associative commutative operator on sequents with

� as a neutral element.
The main rule is Induce as it performs the induction step. It uses narrowing

to choose both the induction variable(s) and the instantiation schema. Narrow-
ing is applied only at defined innermost positions (see Definition 3) DI(Q) of the

228 C. Kirchner, H. Kirchner, and F. Nahon

current goal Q. The other rules are doing the following: Trivial eliminates a
trivial equation, Push pushes an equational hypothesis from the deduction part
to the computational part,Orient orients an equation in the computational part
into a rewrite rule, according to the term ordering, Rewrite (1 or 2) rewrites
using a rule, an equation, or a smaller instance of a previous goal. Push and
Rewrite are duplicated because of the Γ1/RE1 and Γ2/RE2 distinction.

3.2 A Simple Example

To get a better understanding of the way this set of rules is working, let us look
at the proof of addition commutativity in Peano arithmetic. So, the goal is to
prove:

x+ 0 ≈ x, x+ s(y) ≈ s(x+ y)|NI �∅|∅ X + Y ≈ Y +X

Applying Push1 twice, we get:

∅|NI �x+0≈x,x+s(y)≈s(x+y)|∅ X + Y ≈ Y +X

Then, applying Orient twice gives us:

∅|NI �x+0→x,x+s(y)→s(x+y)|∅ X + Y ≈ Y +X

We can now apply Induce since RE1 = {x+0 → x, x+ s(y) → s(x+ y)} is con-
fluent, terminating and sufficiently complete. This could be done at occurrence
1 or 2 of the goal. We arbitrary chose occurrence 1 and this leads us to prove
the two sequents:

∅|NI �RE1|REind(X+Y≈Y+X,<,T 2
Σ){X
→X1;Y
→0} X1 ≈ 0 +X1

∅|NI �RE1|REind(X+Y≈Y+X,<,T 2
Σ){X
→X1;Y
→s(Y1)} s(X1 + Y1) ≈ s(Y1) +X1

We have now to prove in particular that 0 is left-neutral. The only applicable
rule on that goal is Induce again and we get the two new subgoals:

∅|NI �RE1|REind(X + Y ≈ Y + X, <, T2
Σ){X �→ 0; Y �→ 0}

REind(X1 ≈ 0 + X1, <, TΣ){X1 �→ 0}
0 ≈ 0

∅|NI �RE1|REind(X + Y ≈ Y + X, <, T2
Σ){X �→ s(X2); Y �→ 0}

REind(X1 ≈ 0 + X1, <, TΣ){X1 �→ s(X2)}
s(X2) ≈ s(0 +X2)

Trivial gets rid of the first one.Rewrite2 can be applied on the second one since,
because of narrowing, the goal has been reduced and therefore the induction
hypothesis can now be used. We get:

∅|NI �RE1|REind(X + Y ≈ Y + X, <, T2
Σ){X �→ s(X2); Y �→ 0}

REind(X1 ≈ 0 + X1, <, TΣ){X1 �→ s(X2)}
s(X2) ≈ s(X2 + 0)

Applying now Rewrite1 proves that 0 is left-neutral for addition. We are left
with the goal s(X1 + Y1) ≈ s(Y1) + X1 and we will make precise later on how
the proof search finishes.

Narrowing Based Inductive Proof Search 229

3.3 Soundness of IndNarrow

Soundness amounts to show that for each rule of the proof search system Ind-
Narrow of the form:

Γ1|Γ2 �RE1|RE2
Q�

⊙
i∈I

Γ i
1|Γ i

2 �REi
1|REi

2
Qi

then Γ1|Γ2,
−→x ∈ T (Σ)n �RE1|RE2

Q is derivable provided all the Γ i
1|Γ i

2,
−→
xi ∈

T (Σ)n
i �REi

1|REi
2
Qi are. In what follows, we assume that all variables in Γ are

universally quantified.
Let us first state a few basic rules which are needed in the soundness proof.

Lemma 4. The following rules (where P, P1, P2 are propositions) are derivable
in the sequent calculus modulo:

1.
Γ �RE P1 ⇒ P2, Δ

Γ, P1 �RE P2, Δ
imp

2.

Γ, x = y � x ≈ y
ref

3.
Γ �RE ∀x α(x) ≈ β(x) Γ �REα Pα

Γ �REβ Pβ
re

4.

Γ,−→x ∈ T (Σ)n �RE P,Δ

Γ �REα Pα,Δ
rα if

{
α ∈ SubstΣ
−→x is the vector of free variables of RE∪P

5. ∧
α∈SubstΣ

Γ �REα Pα

Γ,−→x ∈ T (Σ)n �RE P
r−→x if −→x is the vector of free variables of RE ∪ P

6. For any proposition P and for any integer n, if |Var(P) ∪ Var(RE)| = n, if
the proposition P is inductive in some context Γ ∪ RE with respect to the
order <n, and if this order is Noetherian in this context, then the proposition
P is valid in the context Γ ∪RE , whenever it contains the proposition NI =
∀R ∀τ (Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ)) (see subsection 3.1)

7.

Γ,−→x ∈ T (Σ)n �RE∪REind(P,<) P Γ �RE Noeth(<n, T (Σ)n)

Γ,−→x ∈ T (Σ)n �RE P
rI

if −→x is the vector of free variables of RE ∪ P

230 C. Kirchner, H. Kirchner, and F. Nahon

We are now ready to prove soundness of IndNarrow in the sequent calculus modulo
by considering in turn each inference rule of IndNarrow.

Theorem 2. For any contexts Γ1, Γ2, rewrite systems RE1,RE2, equational
goal Q, occurrence ω ∈ DI(Q) and integer n, let us assume that:

1. Induce is applied on
Γ1|Γ2 �RE1|RE2

Q[t]ω
to get⊙

l → r ∈ RE1
σ = mgu(t, l)

Γ1|Γ2 �RE1|RE2σ∪REind(Q,<)σ (Q[r]ω)σ;

2. RE1 is ground convergent and sufficiently complete;

3. < is Noetherian, so that Γ1 ∪ Γ2 �RE1∪RE2 Noeth(<n, T (Σ)n);

4. for any rewrite rule l → r ∈ RE1, when σ = mgu(t, l) and −→x σ ∈ Xnσ is the
vector of free variables of REσ ∪Qσ, the sequent

Γ1 ∪ Γ2,
−→x σ ∈ T (Σ)nσ �RE1∪RE2σ∪{REind(Q,<)σ} (Q[r]ω)σ

is derivable in the sequent calculus modulo.

Then, the sequent
Γ1 ∪ Γ2,

−→x ∈ T (Σ)n �RE1∪RE2 Q[t]ω
is derivable in the sequent calculus modulo.

Proof. First, let us introduce the following notations:

Γ denotes Γ1 ∪ Γ2

RE denotes RE1 ∪RE2

RE ′ denotes RE ∪ {RE ind(Q,<)}
REσ denotes RE1 ∪RE2σ
RE ′σ denotes REσ ∪ {RE ind(Q,<)}σ

(4)

Let V denote a finite set of variables and α a ground substitution, such that
Var(RE ∪ {Q}) ⊆ Dom(α) ⊆ V . Let α ↓ be the RE1-normal form of α.
According to the narrowing lemma, we have:

σμ|V = (α ↓)|V (5)

for some substitution μ. Let us consider the following derivations.
Π1

∀x x(α ↓) = xσμ �RE ∀x xα = xσμ
Ax

Π2
� ∀x x(α ↓) = xσμ (by 5)

�RE ∀x x(α ↓) = xσμ, ∀x xα = xσμ
w + push

Π3

Π1 Π2

�RE ∀x xα = xσμ
cut

Γ �RE ∀x xα = xσμ, ∀x xα ≈ xσμ
w

Narrowing Based Inductive Proof Search 231

Π4:

Γ, xα = xσμ � xα ≈ xσμ
ref

Γ, ∀x xα = xσμ � xα ≈ xσμ
∀ − l

Γ, ∀x xα = xσμ � ∀x xα ≈ xσμ
∀ − r

Γ, ∀x xα = xσμ �RE ∀x xα ≈ xσμ
w + push

Π5:
Π3 Π4

Γ �RE ∀x xα ≈ xσμ
cut

Π6:
Γ,−→x σ ∈ T (Σ)n �RE′σ Qσ[rσ]|ω

Γ,−→x σ ∈ T (Σ)n �RE′σ Qσ,Qσ[rσ]|ω
w

Π7

Qσ[rσ]|ω �RE1
Qσ[lσ]|ω

Ax

Γ,−→x σ ∈ T (Σ)n, Qσ[rσ]|ω �RE′σ Qσ[lσ]|ω
w

Γ,−→x σ ∈ T (Σ)n, Qσ[rσ]|ω �RE′σ Qσ

(since lσ = tσ and Q = Q[t]|ω)
Π1,σ:

Π6 Π7

Γ,−→x σ ∈ T (Σ)n �RE′σ Qσ
cut

Denoting PE ind(Q) the canonical proposition associated to RE ind(Q,<),
this leads to:
Π2,σ

Π1,σ

Γ,−→x σ ∈ T (Σ)n,PE ind(Q)σ �REσ Qσ
pop

Γ,−→x σ ∈ T (Σ)n �REσ PE ind(Q)σ ⇒ Qσ
⇒ −r

Since the proposition PE ind(Q)σ ⇒RE Qσ is equivalent to
(PE ind(Q) ⇒RE Q)σ, we have:
Πσ,μ:

Π2,σ

Γ �REσμ (PE ind(Q) ⇒ Q)σμ
rμ

Πα:
Πσ,μ Π5

Γ �REα (PE ind(Q) ⇒ Q)α
re

And since α is any ground substitution, we have:
Π−→x : ∧

α∈SubstΣ
Πα

Γ,−→x ∈ T (Σ)n �RE PE ind(Q) ⇒ Q
r−→x

Γ,−→x ∈ T (Σ)n,PE ind(Q) �RE Q
imp

Γ,−→x ∈ T (Σ)n �RE∪REind(Q,<) Q
push

232 C. Kirchner, H. Kirchner, and F. Nahon

Π :
Π−→x Γ �RE Noeth(<n, T (Σ)n)

Γ,−→x ∈ T (Σ)n �RE Q
rI

and we are done. �

Soundness of Push is simply a consequence of soundness of the sequent calculus
modulo.

Let us now look at the Rewrite inferences.

Theorem 3. For all contexts Γ1, Γ2, for all rewrite systems RE1,RE2, for any
equational goal Q, let us assume that:

1. Rewrite1,2 is applied on
Γ1|Γ2 �RE1|RE2

Q
to get:

Γ1|Γ2 �RE1|RE2
Q′

2. The sequent Γ1|Γ2 �RE1|RE2
Q′ admits a proof.

Then, the sequent Γ1|Γ2 �RE1|RE2
Q is derivable in the sequent calculus modulo.

Proof. Let us use the same notations as in the previous theorem and detail the
most elaborated case, namely the application of Rewrite2. By assumption
1, and by definition of this rule, there exist
κ ∈ RE , (l, r) ∈ T (Σ,X)2, ω ∈ Dom(Q), and σ ∈ SubstT (Σ,X), such that:

– κ = l ≈ r or κ = r ≈ l or
∃μ (μ ∈ SubstT (Σ,X)) and (κ = RE ind(l ≈ r)μ or κ = RE ind(r ≈ l)μ)

– −→y ∈ Xm such that −→y =
−−−−−−−→
Var(l ≈ r) and −→y σ <m

−→y μ
– Q = Q[lσ]|ω and Q′ = Q[rσ]|ω.

Let us then consider the following proof:
Π1:

Γ �RE
−→y σ <m

−→y μ
Γ,Q[rσ] �RE

−→y σ <m
−→y μ,Q[lσ]

w

Π2:

Γ,Q[rσ], lσ ≈ rσ � Q[lσ]
rs

Γ,Q[rσ], lσ ≈ rσ �RE Q[lσ]
w + push

Π3:
Π1 Π2

Γ,Q[rσ],−→y σ <m
−→y μ⇒ lσ ≈ rσ �RE Q[lσ]

⇒l

Π4:
Π3

Γ,Q[rσ], ∀−→y −→y <m
−→y μ⇒ (l ≈ r){−→y /−→y } �RE Q[lσ]

∀l

Γ,Q[rσ] �RE∪{κ} Q[lσ]
push

Narrowing Based Inductive Proof Search 233

Now, since κ ∈ RE , we have:
Π4:

Π3

Γ,Q[rσ], ∀−→y −→y <m
−→y μ⇒ (l ≈ r){−→y /−→y } �RE Q[lσ]

∀l

Γ,Q[rσ] �RE Q[lσ]
push

Π5:
Π4

Γ,−→x ∈ T (Σ)n, Q[rσ] �RE Q[lσ]
w

Π6:
Γ,−→x ∈ T (Σ)n �RE Q[rσ] (assumed)

Γ,−→x ∈ T (Σ)n �RE Q[rσ], Q[lσ]
w

Π :
Π5 Π6

Γ,−→x ∈ T (Σ)n �RE Q[lσ]
cut

and we are done. �

We have already proved soundness of the rewrite system IndNarrow \ {Orient}.
Now, it is easy to see that, for all contexts Γ, Γ ′, for all rewrite systems
RE , RE ′, and for all equational goals Q, Q′, one can build a derivation

Γ �RE Q
∗�IndNarrow\{Orient}Γ

′ �RE′ Q′ whenever there exists a derivation

Γ �RE Q
∗�IndNarrow Γ ′ �RE′ Q′. Therefore, soundness of IndNarrow is a conse-

quence of soundness of IndNarrow \ {Orient}.

3.4 Example (Continued)

Remember that we need to prove:
∅|NI �RE1|REind(X+Y≈Y+X,<,T 2

Σ){X
→X1;Y
→s(Y1)} s(X1 + Y1) ≈ s(Y1) +X1

We can apply Induce at position 2, leading to:
∅|NI �RE1|RE′

2
s(0 + Y3) ≈ s(Y3)

∅|NI �RE1|REind(X+Y ≈Y+X,<,T 2
Σ)σ1σ2

REind(s(X1+Y1)≈s(Y1)+X1,<,T 2
Σ)σ2

s(s(X3) + Y3) ≈ s(s(Y3) +X3)

where RE ′
2 is easy to explicit and where σ1 = {X �→ X1;Y �→ s(Y1)} (coming

from the previous application of Induce) and σ2 = {X1 �→ s(X3);Y1 �→ Y3}.
In the same way as before, the goal s(0 + Y3) ≈ s(Y3) is solved. Reducing with
the Rewrite rules and using Theorem 1 to check the conditions leads directly
to the proof of the last goal, therefore finishing the proof.

Notice that, following the soundness proof above, the proof search devel-
oped in the example can be straightforwardly expanded into a sequent calculus
proof.

234 C. Kirchner, H. Kirchner, and F. Nahon

3.5 Refutational Correctness

Refutational correctness amounts to show that for each rule of the proof search
system IndNarrow of the form:

Γ1|Γ2 �RE1|RE2
Q�

⊙
i∈I

Γ i
1|Γ i

2 �REi
1|REi

2
Qi

then all the Γ i
1|Γ i

2 ,
−→
xi ∈ T (Σ)n

i �REi
1|REi

2
Qi are derivable provided Γ1|Γ2,

−→x ∈
T (Σ)n �RE1|RE2

Q is.
We detail here the most delicate point which is again the case of the rule

Induce, addressed in the following theorem.

Theorem 4. For all contexts Γ1, Γ2, for all rewrite systems RE1, RE2, for
any equational goal Q, for any ω ∈ DI(Q), and for any integer n,

If

Γ1|Γ2 �RE1|RE2
Q[t]ω

Induce�
⊙

l → r ∈ RE1
σ = mgu(t, l)

Γ1|Γ2 �RE1|RE2σ∪REind(Q,<)σ Q[r]wσ

and if the sequent Γ1 ∪Γ2,
−→x ∈ T (Σ)n �RE1∪RE2 Q[t]ω (where −→x ∈ Xn denotes

the vector of free variables of RE2∪Q) admits a proof in sequent calculus modulo,
then, for any σ = mgu(t, l), for any integer nσ, for any vector of free variables
−→x σ of REσ ∪Qσ in Xnσ , one can build a proof of

Γ1 ∪ Γ2,
−→x σ ∈ T (Σ)nσ �RE1∪RE2σ∪{REind(Q,<)σ} Q[r]ωσ

Proof. Recall the notations 4. Let σ = mgu(t, l). For any ground substitution μ,
we have:
Πσ,μ

Γ,−→x ∈ T (Σ)n �RE Q

Γ �REσμ Qσμ
rσμ

Now, let us consider the following derivations:

Π1,σ:

∧
μ∈SubstΣ

Πσ,μ

Γ,−→x σ ∈ T (Σ)nσ �REσ Qσ
r−→x σ

Π2,σ:
Π1,σ

Γ,−→x σ ∈ T (Σ)nσ �REσ Qσ,Qσ[rσ]|ω
w

Denoting ThRE2σ the canonical theory associated to RE2σ, and since
REσ = RE1 ∪RE2σ, we obtain:

Narrowing Based Inductive Proof Search 235

Π3,σ:

Qσ �RE1
Qσ[rσ]|ω

Ax

Γ,−→x σ ∈ T (Σ)nσ , Qσ, ThRE2σ �RE1 Qσ[rσ]|ω
w

Γ,−→x σ ∈ T (Σ)nσ , Qσ �REσ Qσ[rσ]|ω
push

Denoting PE ind(Q) the canonical proposition associated to RE ind(Q,<),
this leads to:

Π4,σ:
Π2,σ Π3,σ

Γ,−→x σ ∈ T (Σ)nσ �REσ Qσ[rσ]|ω
cut

Γ,−→x σ ∈ T (Σ)nσ ,PE ind(Q)σ �REσ (Qσ[rσ]|ω)
w

Γ,−→x σ ∈ T (Σ)nσ �REσ∪REind(Q)σ (Qσ[rσ]|ω)
push

and we are done. �

As a corollary of Theorem 4, we get:

Theorem 5. The proof search system IndNarrow is refutationally correct.

Proof. Induce being handled in Theorem 4, the other inference rules Rewrite
and Orient are proved refutationally correct, in similar ways. Correctness
of the other rules is a consequence of correctness of deduction modulo. �

Moreover, thanks to the Refutation rule which applies when no other rule of
IndNarrow can be applied, we can also prove that when a derivation ends with
Refutation, the original sequent has no proof in deduction modulo.

Lemma 5. For all contexts Γ1, Γ2, for all rewrite systems RE1, RE2, if:

Γ1|Γ2 �RE1|RE2
Q� Refutation

then, the sequent Γ1|Γ2 �RE1|RE2
Q has no proof.

Proof. If Q contains a defined symbol, there exists a defined-innermost position
in Dom(Q), therefore one can apply the rule Induce, and there is a contra-
diction. Since the rule Trivial cannot be applied either, we have Q = t ≈ t′,
with t, t′ constructor terms that are not syntactically equal. Therefore, the
sequent Γ1|Γ2 �RE1|RE2

Q has no proof, since the constructors are assumed
to be free and ≈ satisfies the axioms of equality. �

Theorem 6. For all contexts Γ1, Γ2, for all rewrite systems RE1, RE2, if there
exists an IndNarrow-derivation

Γ1|Γ2 �RE1|RE2
Q

∗�IndNarrow Refutation

then, the sequent Γ1|Γ2 �RE1|RE2
Q has no proof.

236 C. Kirchner, H. Kirchner, and F. Nahon

Proof. Assume: Γ1|Γ2 �RE1|RE2
Q

∗�IndNarrow Refutation
There exist contexts Γ ′

1, Γ
′
2, rewrite systems RE ′

1, RE ′
2 and an equational

goal Q′ such that:

Γ1|Γ2 �RE1|RE2
Q

∗�IndNarrow Γ
′
1|Γ ′

2 �RE′
1|RE′

2
Q′ �IndNarrow Refutation

And, by lemma 5, the sequent Γ ′
1|Γ ′

2 �RE′
1|RE′

2
Q′ has no proof. Therefore,

by the refutation correctness of IndNarrow (Theorem 5), Γ1|Γ2 �RE1|RE2
Q

has no proof either. �

Refutational completeness of the proof search system IndNarrow, i.e. proving
that if a sequent has no proof in deduction modulo, then there is a derivation
leading to Refutation, is not detailed here, but this result can be derived from the
proof given in [24] in the more complex context where associative commutative
theories are considered.

4 Conclusion

We have shown how narrowing can provide the inference mechanism to perform
inductive proof search. Instead of pre-computing induction schemata and induc-
tion variables, this approach has the advantage to target exactly which variables
should be instantiated and how. Moreover, because the method derives directly
from the deduction modulo framework, we take benefit from a direct translation
from a successful proof search derivation to a sequent calculus modulo proof.
Last but not least, the fact that we are precisely specifying the conditions on the
induction ordering allows us to narrow the search space. Although heuristics for
lemma speculation, generalisation and induction rule choice are always in need
for improvement in inductive proof search, it was not the aim of our work here.
For instance, a suitable noetherian ordering is implicitly assumed throughout
the paper, rather than discovered by the search strategy like in explicit induc-
tion methods. Finally, it is now possible to have an automated construction of
inductive proofs into the sequent calculus for insertion into proof assistants.

At the proof level, the general framework of deduction modulo is quite relevant
to keep at the deduction level only the true deduction steps like modus ponens
and to delegate all computational steps on propositions or terms to specialized
provers using equational and rewriting techniques. Then, some parts of the proofs
can be deferred to aside computations, while the true skeleton of the proof is
being built. At the checking level, the experiences described in [9] of translating
equational and inductive proofs to proof terms for Coq should be quite useful.

If the approach is theoretically fruitful and enlightens the relationship be-
tween rewrite based induction methods and Noetherian induction, we are clearly
in need of an implementation of the results presented here. Our goal will be to
achieve this as a way to mechanize proof search in a proof assistant based on
type theory and the rewriting calculus [2,26]. Along these lines, a first prototype
has been written in collaboration with Paul Brauner and is described in [24].
Moreover our approach provides the ability to use an induction principle based

Narrowing Based Inductive Proof Search 237

on Noetherian rewrite systems, therefore strongly enhancing over the structural
induction principle which is, in practice, used in most of the current proof assis-
tants.

This narrowing based approach opens also new fundamental questions, let
us mention three of them. The first one concerns its relationship with the very
useful rippling [5] technique. Indeed, in a way related to rippling, narrowing
makes explicit and links with a Noetherian rewrite system what we are in need
for inductively proving a goal. This analogy should be deepened and possibly
exploited. A second one concerns the extension of rewrite based inductive the-
orem proving to class rewriting. This has been explored in particular in [3] for
associative-commutative theories. The genericity of narrowing modulo may en-
lighten and ease the use of such class rewrite systems to base inductive proof
search. This has been explored in [24]. The third one concerns inductive proof
by consistency which is indeed at the source of the use of rewrite techniques for
induction [22,15,6,25]. The relationship between deduction modulo and such a
consistency technique is worth to be better understood.

Acknowledgments. Many thanks to the members of the Protheo team in
which, from 2004 to 2007, the results presented in this paper have been elabo-
rated, benefitting of stimulating discussions on many of the subjects developed
in this paper. Special thanks to Eric Deplagne whose PhD initiated the ideas
on which this paper is based on and to the anonymous referees for their careful
reading and useful comments.

References

1. Baader, F., Nipkow, T.: Term Rewriting and all That. Cambridge University Press
(1998)

2. Barthe, G., Cirstea, H., Kirchner, C., Liquori, L.: Pure Patterns Type Systems. In:
Principles of Programming Languages (POPL 2003), ACM, New Orleans (2003)

3. Berregeb, N., Bouhoula, A., Rusinowitch, M.: SPIKE-AC: A System for Proofs by
Induction in Associative-Commutative Theories. In: Ganzinger, H. (ed.) RTA 1996.
LNCS, vol. 1103, pp. 428–431. Springer, Heidelberg (1996)

4. Bouhoula, A., Kounalis, E., Rusinowitch, M.: SPIKE: An Automatic Theorem
Prover. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 460–462. Springer,
Heidelberg (1992)

5. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-Level Guidance for
Mathematical Reasoning. Cambridge University Press (2005)

6. Comon, H., Nieuwenhuis, R.: Induction=i-axiomatization+first-order consistency.
Inf. Comput. 159(1-2), 151–186 (2000)

7. Deplagne, E.: Système de preuve modulo récurrence. Thèse de doctorat, Université
Nancy 1 (November 2002)

8. Deplagne, E., Kirchner, C.: Induction as deduction modulo. Research report A04-
R-468, LORIA (November 2004)

9. Deplagne, E., Kirchner, C., Kirchner, H., Nguyen, Q.-H.: Proof Search and Proof
Check for Equational and Inductive Theorems. In: Baader, F. (ed.) CADE 2003.
LNCS (LNAI), vol. 2741, pp. 297–316. Springer, Heidelberg (2003)

238 C. Kirchner, H. Kirchner, and F. Nahon

10. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. I, ch. 9, pp. 535–610. Elsevier Science
(2001)

11. Dowek, G.: La part du Calcul. Université de Paris 7, Mémoire d’habilitation (1999)
12. Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ an intentional first-order expression

of higher-order logic. Mathematical Structures in Computer Science 11(1), 21–45
(2001)

13. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31(1), 33–72 (2003)

14. Ferreira, M.: Termination of Term Rewriting: Well foundedness, Totality and
Transformations. PhD thesis, Utrecht University (1995)

15. Ganzinger, H., Stuber, J.: Inductive theorem proving by consistency for first-order
clauses. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656,
pp. 226–241. Springer, Heidelberg (1992); Published in 1993

16. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science, vol. 7. Cambridge University Press (1989)

17. Huet, G.: Constrained Resolution: A Complete Method for Higher Order Logic.
PhD thesis, Case Western Reserve University (1972)

18. Hullot, J.-M.: Canonical Forms and Unification. In: Bibel, W., Kowalski, R. (eds.)
Proceedings 5th International Conference on Automated Deduction. LNCS, vol. 87,
pp. 318–334. Springer, Heidelberg (1980)

19. Kapur, D., Zhang, H.: An overview of rewrite rule laboratory (RRL). J. Computer
and Mathematics with Applications 29(2), 91–114 (1995)

20. Kirchner, C., Kirchner, H.: Rewriting, solving, proving. A preliminary version of a
book (1999), http://www.loria.fr/~ckirchne/rsp.ps.gz

21. Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints.
Revue d’Intelligence Artificielle 4(3), 9–52 (1990); Special issue on Automatic De-
duction

22. Musser, D.: On proving inductive properties of abstract data types. In: Proceed-
ings, Symposium on Principles of Programming Languages, vol. 7, Association for
Computing Machinery (1980)

23. Nahon, F.: Preuve par induction dans le calcul des séquents modulo. PhD thesis,
Université Henri Poincaré - Nancy I, Nancy, France, October 26 (2007)

24. Nahon, F., Kirchner, C., Kirchner, H., Brauner, P.: Inductive Proof Search Modulo.
Annals of Mathematics and Artificial Intelligence 55(1-2), 123–154 (2009)

25. Steel, G.: Proof by consistency - a literature survey (March 1999)
26. Wack, B.: Typage et déduction dans le calcul de réécriture. Thèse de doctorat,

Université Henri Poincaré - Nancy I, October 7 (2005)

http://www.loria.fr/~ckirchne/rsp.ps.gz

Inst-Gen – A Modular Approach
to Instantiation-Based Automated Reasoning

Konstantin Korovin�

The University of Manchester
School of Computer Science
korovin@cs.man.ac.uk

Abstract. Inst-Gen is an instantiation-based reasoning method for first-order
logic introduced in [18]. One of the distinctive features of Inst-Gen is a mod-
ular combination of first-order reasoning with efficient ground reasoning. Thus,
Inst-Gen provides a framework for utilising efficient off-the-shelf propositional
SAT and SMT solvers as part of general first-order reasoning. In this paper we
present a unified view on the developments of the Inst-Gen method: (i) com-
pleteness proofs; (ii) abstract and concrete criteria for redundancy elimination,
including dismatching constraints and global subsumption; (iii) implementation
details and evaluation.

1 Introduction

The basic idea behind instantiation-based reasoning is to interleave smart generation
of instances of first-order formulae with propositional type reasoning. Instantiation-
based methods can be divided into two major categories: (i) fine-grain interleaving of
instantiation with efficient propositional inference rules, and (ii) modular combination
of instantiation and propositional reasoning. One of the most prominent examples from
the first category is the model evolution calculus (ME) [8] which interleaves instance
generation with DPLL style reasoning. The model evolution calculus is implemented in
a reasoning system called Darwin [6].

Our approach to instantiation-based reasoning [18] falls into the second category,
where propositional reasoning is integrated in a modular fashion and was inspired by
work on hyper-linking and its extensions (see, [35,43,24]). The main advantage of the
modular combination of propositional reasoning is that it allows one to use off-the-shelf
SAT and SMT solvers in the context of first-order reasoning. One of our main goals is
to develop a flexible theoretical framework, called Inst-Gen, for modular combination
of instantiation with propositional reasoning and more generally with ground reason-
ing modulo theories. This framework provides methods for proving completeness of
instantiation calculi, powerful redundancy elimination criteria and flexible saturation
strategies. All these ingredients are crucial for developing reasoning systems which can
be used in practical applications. We also show that most of the powerful machinery
developed in the resolution-based framework (see [3,38]) can be suitably adapted for

� Supported by a Royal Society University Research Fellowship.

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 239–270, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 K. Korovin

the Inst-Gen method. Based on these theoretical results we have developed and im-
plemented an automated reasoning system, called iProver [31]. iProver features state-
of-the-art implementation techniques such as unification and simplification indexes;
semantically-guided inferences based on propositional models; redundancy elimina-
tion based on dismatching constraints, blocking of non-proper instantiations and global
subsumption. For propositional reasoning iProver uses an optimised propositional SAT
solver MiniSAT [15].

One of the major success stories of instantiation-based methods is in reasoning
with the effectively propositional (EPR) fragment of first-order logic, also called the
Bernays-Schönfinkel class. All known instantiation-based methods are decision pro-
cedures for the EPR fragment and experimental results show that instantiation-based
methods considerably outperform other methods on this fragment. In particular, iProver
has been winning the EPR division of the world championship for automated theorem
proving (CASC)1 for the last four years. Recently it was shown that the EPR frag-
ment has a number of applications in areas such as bounded model checking, panning,
logic programming and knowledge representation [40,39,25,16,17,49]. The importance
of the EPR fragment has triggered the development of a number of dedicated methods
[12,41,7], but these are yet to be extensively evaluated and compared with general-
purpose instantiation-based methods.

In this paper we present a unified view on the developments of the Inst-Gen method
from theoretical foundations to implementation and evaluation: (i) completeness proofs;
(ii) abstract and concrete criteria for redundancy elimination; and (iii) implementation
of Inst-Gen in iProver and evaluation.

This paper is structured as follows. Preliminaries are in Section 2. In Section 3 we
introduce the Inst-Gen calculus which is the basis of our framework. We show how
instantiation process can be guided by propositional models of ground abstractions in
Section 4. Simplifications and redundancy elimination which are crucial for practical
applicability of the method are described in Sections 5–7. A combination of instanti-
ation with resolution is described in Section 8. We discuss strategies for interleaving
application of inference rules, simplifications and propositional reasoning in Section 9.
In Section 10 we show that Inst-Gen is a decision procedure for the EPR fragment. In
Section 11 we discuss implementation of Inst-Gen in iProver. iProver is evaluated in
Section 12.

2 Preliminaries

We adopt standard terminology used in first-order reasoning [3,38]. Let Σ = 〈P ,F〉
be a first-order signature, where P is the set of predicate symbols and F is the set
of function symbols. We assume that F contains a designated constant ⊥ (not to be
confused with falsum). Let V be a set of variables. The set of terms over F and V will
be denoted as T (F ,V).

A substitution is a mapping from variables into terms which is the identity on all but
finitely many variables. Substitutions will be denoted by ρ, σ, τ , and θ.

1 http://www.cs.miami.edu/˜tptp/CASC/

http://www.cs.miami.edu/~tptp/CASC/

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 241

A clause is a possibly empty multiset of literals denoting their disjunction and is
usually written as L1 ∨ . . . ∨ Ln, where a literal being either an atomic formula or
the negation thereof. We say that C is a subclause of D, and write C ⊆ D, if C is a
submultiset of D. Variables are usually denoted by x, y, and z, whereas, letters a, b and
c denote constants. If L is a literal, L denotes the complement of L.

A substitution is called a proper instantiator of an expression (a literal or clause)
if at least one variable of the expression is mapped to a non-variable term, otherwise
it is called a non-proper instantiator. Renamings are injective substitutions, mapping
variables to variables. Two clauses are variants of each other if one can be obtained
from the other by applying a renaming. We will ambiguously use ⊥ to denote also the
substitution mapping all variables to the constant ⊥. If S is a set of clauses, by S⊥ we
denote all ground clauses obtained by applying ⊥ to each clause in S.

We will be working with a refined notion of instances of clauses, called closures. A
closure is a pair consisting of a clause C and a substitution σ written C · σ. A closure
C · σ represents the clause Cσ. Let us note that a clause generally has more than one
representation by closures. A closure is called ground if it represents a ground clause. In
this paper we mainly consider ground closures and will implicitly assume that closures
are ground unless specified otherwise. We work modulo renaming, that is, we do not
distinguish between closures C · σ and D · τ for which C is a variant of D and Cσ is
a variant of Dτ . Let S be a set of clauses and C a clause in S, then a ground closure
C · σ is called a ground instance of C in S and we also say that the closure C · σ is a
representation of the clause Cσ in S.

Our restrictions on the instantiation calculus and completeness proofs are based on
an ordering on closures defined as follows. A closure ordering is any ordering � on
closures that is total, well-founded and satisfies the following condition. If C · σ and
D · τ are such that Cσ = Dτ and Cθ = D for some proper instantiator θ, then
C · σ � D · τ . In particular, more specific representations of the same ground clause
are smaller in this ordering than more general representations. For example, (A(x, y)∨
B(y)) · [f(c)/x, c/y] � (A(f(u), v)∨B(v)) · [c/u, c/v]. It is easy to see that any well-
founded ordering on ground clauses can be extended to a total well-founded closure
ordering. For the rest of this paper we assume that � is a closure ordering.

We consider Herbrand interpretations which are sometimes partial, given by consis-
tent sets I of ground literals. A ground literal L is called undefined in I if neither L nor
L is in I . I is called total if for each ground literal, I either contains the literal or its
complement. A clause C is true (or valid) in a partial interpretation I , written I |= C,
if C is true in every total extension of I , and is called false (not valid) in I , otherwise.
We say that an interpretation I is a model of a set of clauses S if all clauses in S are
true in I . We say that a set of clauses S entails a set of clauses S′, denoted by S |= S′,
if every Herbrand model of S is a model of S′. The truth value of a closure is defined
to be equal to the truth value of the clause it represents.

3 Instantiation Calculus

The basic idea behind the modular approach to instantiation-based reasoning is to ap-
proximate the unsatisfiability problem for sets of first-order clauses by a sequence of

242 K. Korovin

propositional problems. This can be done in the following way. Let S be a set of first-
order clauses. We first abstract S by a set of propositional clauses S⊥, obtained by
mapping all variables into a distinguished constant ⊥. If the propositional abstraction
S⊥ is unsatisfiable (which can be shown by any propositional solver), then S is also
unsatisfiable and we are done. If S⊥ is satisfiable then it still possible that S is unsatisfi-
able and we need to add more instances of clauses to S witnessing the unsatisfiability of
S at the ground level. The process continues by refining the ground abstraction adding
appropriate instances of clauses to S, until either an unsatisfiable ground abstraction is
obtained or, possibly in the limit, a set of clauses that can not be refined further. In the
former case the initial set of first-order clauses is unsatisfiable and in the latter case we
can show that the initial set clauses is satisfiable.

There are three major issues to consider:

1. how to generate instances;
2. how to interleave propositional reasoning and instantiation;
3. how to guide instance generation and reduce the number of redundant instances.

For the generation instances we use the Inst-Gen calculus and its refinements described
below. In the later sections we address the rest of these issues. Informally, we instantiate
clauses in S by applying the Inst-Gen inference rule or its refinements, until we either
obtain: i) a set of clauses with unsatisfiable ground abstraction; or ii) a saturated set,
i.e. no new instances can be derived by Inst-Gen. In the former case the soundness of
the Inst-Gen calculus implies that S is unsatisfiable, in the latter case, completeness of
Inst-Gen implies that S is satisfiable (Theorem 1).

Consider a set of clauses S and assume that the ground abstraction S⊥ of S is satis-
fiable.

Inst-Gen

L ∨C L
′ ∨D

(L ∨ C)θ (L
′ ∨D)θ

where (i) θ is the most general unifier (mgu) of L and L′,
(ii) θ is a proper instantiator of L or L′.

The Inst-Gen inference rule resembles resolution but instead of resolving we instantiate
the premises, leaving to propositional reasoning to deal with the obtained instances.

The soundness of Inst-Gen is obvious: conclusions of Inst-Gen logically follow from
the premises. We say that a set of clauses S is Inst-Gen saturated if the conclusion of
any Inst-Gen inference with premises in S is also in S. In other words, if a set of clauses
S is Inst-Gen saturated, then we cannot refine our ground abstraction further using Inst-
Gen. Our first completeness Theorem 1 implies that in this case, satisfiability of the
ground abstraction S⊥ is equivalent to satisfiability of the set of first-order clauses S.

Theorem 1. [18] Let S be an Inst-Gen saturated set of clauses. Then S is satisfiable if,
and only if, S⊥ is satisfiable.

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 243

Theorem 1 will follow from a more general Theorem 4 proved later. Let us consider a
simple example.

Example 1. Let S be the following set of clauses.

S S⊥

A(f(x), b) ∨B(x, y) (1)
¬A(f(f(x)), y) (2)
¬B(f(x), x) (3)

A(f(⊥), b) ∨B(⊥,⊥)
¬A(f(f(⊥)),⊥)
¬B(f(⊥),⊥)

First we note that the propositional abstraction S⊥ of S is satisfiable. Applying Inst-
Gen to (1) and (2) we obtain

S1 = S ∪ {A(f(f(x)), b) ∨B(f(x), y);¬A(f(f(x)), b)}.

Now it is easy to see that S1⊥ is unsatisfiable and we can use any propositional solver
to show this. On the other hand, if we consider a set of clauses S′ consisting of (1)
and (2), then after applying Inst-Gen we obtain an Inst-Gen saturated set of clauses and
Theorem 1 implies that S′ is satisfiable.

One can think of Inst-Gen instantiation inferences as refinements of the ground ab-
straction in the following sense. Consider two closures C · σ and D · τ representing the
same ground clause G, i.e., Cσ = Dτ = G. We say that C · σ is a finer representation
of G than D · τ if D · τ � C · σ. In particular, if C is a proper instance of D then
all ground closures of C are finer representations than corresponding ground closures
of D. A ground abstraction D⊥ of a clause D ∈ S is intended to represent all ground
instances of D which do not have a finer representation in S. Such an abstraction may
need to be refined if we have a clause (L∨C) ∈ S and a literal L

′ ∈ D such that L and
L′ share a common instance, i.e unifiable, but L and L′ have different abstractions, i.e.
L′⊥
= L⊥. Such refinements are reflected by the Inst-Gen inference system.

Inst-Gen is similar to resolution but instead of producing a resolvent we generate
corresponding instances of clauses, leaving the option of producing the resolvent to
the propositional reasoner. There are also subtle differences between Inst-Gen and res-
olution. First, resolution usually produce clauses with increasing number of literals.
Inst-Gen generates instances of the initial clauses and therefore the number of literals
in clauses does not increase. In particular, Inst-Gen is a decision procedure for the ef-
fectively propositional fragment – the clausal fragment where the signature is restricted
to contain only predicate symbols and constants (see Section 10). Second, there is no
recombination of clauses which can result in repeated work in the resolution setting
(see [35] and Example 5).

Let us observe that Inst-Gen uses most general unifiers to focus on relevant conflict-
ing instances of clauses. Inst-Gen already features some restrictions on applicability
imposed by unification and requiring the unifier to be a proper instantiator; nevertheless
Inst-Gen is a very prolific inference system. One source of inefficiency is that any lit-
eral in a clause can participate in an Inst-Gen inference. Next, we show how to restrict
Inst-Gen to only selected literals based on a semantic criterion.

244 K. Korovin

4 Semantic Selection and Hyper-inferences

Semantic selection is motivated by the following observation. Let S be a set of clauses
such that its propositional abstraction S⊥ is satisfiable. Let I⊥ be a propositional model
of S⊥. We try to extend I⊥ to a first-order model of all ground instances of clauses in S
by taking the truth value of a literal Lσ to be the truth value ofL⊥ in I⊥. Such an exten-
sion can rise to conflicts. Let S be the set of clauses {A(f(x))∨C(x);¬A(y)∨D(y)}
and I⊥ a model of S⊥. A conflict arises if both A(f(⊥)) and ¬A(⊥) are true in I⊥,
as, e.g., assigning true to both A(f(a)) and ¬A(f(a)) would result in an inconsistent
interpretation. We can resolve this conflict by applying Inst-Gen inference obtaining
S1 = S ∪ {A(f(x)) ∨ C(x);¬A(f(y)) ∨ D(f(y))}. Now the propositional solver is
supplied with the necessary information about instances of clauses with conflicting lit-
erals and a propositional model of S1⊥ can be extended to a first-order model of S1.
This can be generalised to restrict Inst-Gen inferences to resolve only conflicts relevant
to a propositional model of the propositional abstraction of the current set of clauses.

A selection function sel for a set of clauses S is a mapping from clauses in S to
literals such that sel(C) ∈ C for each clause C ∈ S. We say that sel is based on a
model I⊥ of S⊥, if I⊥ |= sel(C)⊥ for all C ∈ S. Let S be a set of clauses such that
S⊥ is consistent and sel be a selection function based on a model I⊥ of S⊥. Then, the
instance generation calculus SInst-Gen based on sel, is defined as follows.

SInst-Gen

L ∨C L
′ ∨D

(L ∨ C)θ (L
′ ∨D)θ

where (i) θ is the most general unifier of L and L′, and
(ii) sel(L ∨C) = L and sel(L

′ ∨D) = L
′
.

Although we have omitted the requirement on θ to be a proper instantiator, this condi-
tion always holds for SInst-Gen inferences.

Proposition 1. In any inference by SInst-Gen, the mgu θ is a proper instantiator for at
least one of the literals L or L′.

Proof. Literals L and L
′

are selected by sel. Therefore L⊥ and L
′⊥ are true in the

model I⊥ of S⊥. Assume that θ is not proper for both L and L′. Then, L⊥ = Lθ⊥ =

L′θ⊥ = L′⊥ contradicting that both L⊥ and L
′⊥ are true in I⊥. ❏

Selection functions can dramatically restrict the applicability of the inferences.

Example 2. Let S be the following set of clauses:

A(x1, x2, y) ∨ A(x2, x3, y) ∨ . . . ∨ A(xn, xn+1, y) (1)
¬A(c1, d, y) ∨ ¬A(c2, d, y) ∨ . . . ∨ ¬A(cn, d, y). (2)

Unrestricted applications of Inst-Gen will generate exponentially many (wrt. n) differ-
ent instances of the first clause. Indeed, it is easy to see that using Inst-Gen one can

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 245

derive every instance of (1) where each variable xi with an odd index i is mapped
into one of the constants c1, . . . , cn and variables with even indexes are mapped into
d. There are exponentially many such instances. Let us now consider SInst-Gen on
this set of clauses. Consider a model I⊥ of S⊥. Assume that I⊥ |= A(⊥,⊥,⊥) and
I⊥ |= ¬A(c1, d,⊥). Let sel be a selection function based on I⊥ selecting A(x1, x2, y)
in clause (1) and ¬A(c1, d, y) in clause (2). Applying SInst-Gen to clauses (1) and (2)
we obtain the conclusion:

A(c1, d, y) ∨ A(d, x3, y) ∨ . . . ∨ A(xn, xn+1, y). (3)

Now, extending the model I⊥ to satisfy A(d,⊥,⊥) and the selection function to se-
lect A(d, x3, y) in (3) will block all further inferences by SInst-Gen. The completeness
Theorem 2, below, implies that S is satisfiable. This example is also interesting because
most state-of-the-art resolution-based provers (e.g., E, Metis, SPASS and Vampire in
the resolution mode) do not terminate on this set of clauses already for n = 7.

A natural generalisation of SInst-Gen is to consider hyper-inferences. For this we need
to extend selection functions to select sets of literals from a clause rather than one
literal. More formally, let S be a set of clauses such that S⊥ is consistent and I⊥ a
propositional model of S⊥. A hyper-selection function hsel for a set of clauses S is a
mapping from clauses in S to multisets of literals such that ∅
= hsel(C) ⊆ C for each
clause C ∈ S. Literals L in hsel(C) are called selected in C (by hsel). For each clause
C ∈ S let us define a multiset of literals sat⊥(C) = {L ∈ C | I⊥ |= L⊥}. We say that
a hyper-selection function hsel is based on I⊥ if hsel(C) ⊆ sat⊥(C) for every C ∈ S.
Thus, hyper-selection functions select some or all of the literals in a clause, whose ⊥-
instances are true in I⊥. Let hsel be a hyper-selection function based on a model I⊥ of
S⊥. Instance generation, based on hsel, is defined as follows.

SHInst-Gen

L
′
1 ∨ C1 . . . L

′
k ∨ Ck L1 ∨ . . . ∨ Lk ∨D

(L
′
1 ∨ C1)θ . . . (L

′
k ∨ Ck)θ (L1 ∨ . . . ∨ Lk ∨D)θ

where (i) θ is the most general unifier of (L1, L
′
1), . . . , (Lk, L

′
k), and

(ii) hsel(L1 ∨ . . . ∨ Lk ∨D) = {L1, . . . , Lk}, and
(iii) L

′
i ∈ hsel(L

′
i ∨ Ci), for 1 ≤ i ≤ k.

It is easy to see that SInst-Gen is a special case of SHInst-Gen when the hyper-selection
function is restricted to select exactly one literal in each clause. As in the case of SInst-
Gen, conditions on selection functions imply that θ is a proper instantiator for each pairs
of literals (Li, L

′
i), 1 ≤ i ≤ k.

Consider a set of clauses S such that S⊥ is satisfiable and a hyper-selection function
hsel based on a model of S⊥. A set of clauses S is SHInst-Gen saturated wrt. hsel if the
conclusion of any SHInst-Gen inference with premises in S is also in S. Now we can
formulate the completeness theorem for SHInst-Gen, which also applies to SInst-Gen
as a special case.

246 K. Korovin

Theorem 2. [18] Let S be a set of clauses such that S⊥ is satisfiable. If S is SHInst-
Gen saturated wrt. a hyper-selection function based on a model of S⊥ then S is satis-
fiable.

5 Redundancy Elimination

Redundancy elimination is crucial for practical applicability of any calculus. Our frame-
work allows one to formulate a semantic-based notion of redundant clauses and redun-
dant inferences. We first formulate redundancy notions for ground closures, which play
a similar role to ground clauses in the resolution calculus.

Let � be a closure ordering. Consider a set of ground closures U . A ground closure
C · σ is called redundant in U if there exist ground closures C1 · σ1, . . . , Ck · σk in U
such that, (1) C1 · σ1, . . . , Ck · σk |= C · σ and (2) C · σ � Ci · σi for each 0 ≤ i ≤ k.
In other words, a ground closure is redundant in U if it logically follows from smaller
closures (w.r.t. �) in U .

We adapt this redundancy notion to be defined also on clauses by observing that a
clause C is representing the set of all its ground closures C ·σ. Let S be a set of clauses
and Ŝ the set of all ground closures represented by clauses in S. A clause C (possibly
non-ground) is called redundant in S if each ground closure C · σ is redundant in Ŝ.
This abstract redundancy criterion can be used to justify many standard redundancies.

Tautologies. Note that tautologies are implied by the empty set of closures and therefore
are redundant in any set of clauses.

Subsumption. A clause C strictly subsumes a clause C′ if there is a substitution θ such
that Cθ � C′. For example, A(x, y) strictly subsumes A(x, a) ∨B(x). An ordering �
on ground clauses is called strict subsumption compatible if C′ � C for each ground
clauses C and C′ such that C is a strict sub-multiset of C′, i.e., C � C′. A closure
ordering is strict subsumption compatible if its restriction to ground clauses is strict
subsumption compatible. It is easy to see that if the closure ordering � is strict sub-
sumption compatible, then strict subsumption is an admissible redundancy. One can
also eliminate non-strictly subsumed clauses in the case of non-proper instantiators as
follows. An ordering is called non-proper subsumption compatible if C′ · σ � C · θσ
for every closures C′ · σ and C · θσ where Cθ = C′ and θ is a non-proper instantiator
and not a renaming. For example, if the closure ordering � is non-proper subsumption
compatible, then A(x, x) ∨B(x) is redundant w.r.t. A(x, y) ∨B(y). Closure orderings
which are strict and at the same time non-proper subsumption compatible are called
subsumption compatible orderings. It is easy to see that any subsumption compatible
ordering on ground clauses can be extended to a subsumption compatible closure or-
dering. Let us note that full subsumption is not an admissible redundancy. Indeed, all
clauses derived by Inst-Gen are subsumed by the initial clauses.

Instantiation-Specific Redundancy. Our semantic redundancy criteria can also be used
to define instantiation-specific redundancies. In particular, consider a clause C and a
proper instance of C, D = Cθ. Then, all ground closures of C, which are also repre-
sented byD, are redundant. We will discuss this redundancy in detail when we consider
dismatching constraints in Section 6.

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 247

An inference with premises C1, . . . , Cn and a unifier θ (thus deriving conclusions
C1θ, . . . , Cnθ) is redundant in S if for every substitution ρ grounding all the Ciθ there
exists an index i0 such that Ci0 · θρ is redundant in S.

Example 3. Let the set of function symbols in Σ consists of the constants a and b and
assume that � is subsumption compatible. Consider the following set of clauses:

A(x, y) ∨ B(y) (1) B(a) (2)

¬A(a, z) ∨ C(z) (3) C(b) (4)

Let us show that the SInst-Gen inference between clauses (1) and (3) is redundant. Let
θ = {a/x; z/y} be the mgu of atoms of the selected literals in clauses (1) and (3). Then,
for any grounding substitution ρ, either closure (A(x, y) ∨ B(y)) · θρ is redundant (in
the case zρ = a), or closure (¬A(a, z) ∨ C(z)) · θρ is redundant (in the case zρ = b).

An important property of the (SH)Inst-Gen calculus is that adding the conclusion of an
inference makes the inference redundant. The next proposition shows that in order to
make an inference redundant it is sufficient to add to the clause set at least one properly
instantiated clause from the conclusion (such a clause always exits, by Proposition 1).

Proposition 2. Let Cθ be a conclusion of an (SH)Inst-Gen inference and a proper in-
stance of its respective premise C. If Cθ is in S, or is redundant in S, then the inference
is redundant.

Proof. Immediately follows from the definition of redundant inference.

We can have additional flexibility with partial instantiations as follows. Let Cθ be as
in Proposition 2 and θ′ any substitution which is a proper instantiator for C and more
general than θ. Then, adding Cθ′ to S makes the inference redundant.

Example 4. Consider the following set of clauses S = {C,D} where C = A(x, y) ∨
B(x) and D = ¬A(f(a), b). The most general unifier of A(x, y) and A(f(a), b) is
θ = {f(a)/x, b/y}. Consider a proper instantiator of C which is more general than θ,
for example θ′ = {f(z)/x}. Then, adding Cθ′ = A(f(z), y) ∨ B(f(z)) to S makes
the inference between C and D redundant. Such partial instantiations can be useful
for keeping reasoning at a more general level and can be combined with dismatching
constraints (see Section 6).

The idea of partial instantiations is developed further in [18], where it is used to approxi-
mate first-order clauses by clauses from first-order fragments beyond propositional logic.

A set of clauses S is called SHInst-Gen saturated up to redundancy if all inferences
in SHInst-Gen from premises in S are redundant in S. The next theorem shows that
completeness is preserved under redundancy elimination.

Theorem 3. [18] Let S be a set of clauses such that S⊥ is satisfiable. Let hsel be a
hyper-selection function based on a model of S⊥. If S is SHInst-Gen saturated up to
redundancy then S is satisfiable.

This theorem also applies to weaker systems SInst-Gen and Inst-Gen. We show below
that Theorem 3 is a consequence of a more general Theorem 4.

248 K. Korovin

For a finer control over redundancy we consider the notion of inferences and satu-
ration at the level of ground closures. For a set of ground closures U let U denote the
set of clauses C such that C · σ is in U for some grounding substitution σ. Let hsel be
a hyper-selection function for U based on a model I⊥ of U⊥. A SHInst-Gen inference
on ground closures is defined as follows.

SHInst-Gen (ground closures)

(L
′
1 ∨ C1) · σ1 . . . (L

′
k ∨ Ck) · σk (L1 ∨ . . . ∨ Lk ∨D) · σ

(L
′
1 ∨ C1)θ · τ1 . . . (L

′
k ∨ Ck)θ · τk (L1 ∨ . . . ∨ Lk ∨D)θ · τ

where (i) θ is the most general unifier of (L1, L
′
1), . . . , (Lk, L

′
k),

(ii) hsel(L1 ∨ . . . ∨ Lk ∨D) = {L1, . . . , Lk}, and
(iii) L

′
i ∈ hsel(L

′
i ∨ Ci), for 1 ≤ i ≤ k, and

(iv) (L
′
1 ∨ C1)σ1 = (L

′
1 ∨ C1)θτ1, . . . , (L

′
k ∨ Ck)σk = (L

′
k ∨ Ck)θτk,

(L1 ∨ . . . ∨ Lk ∨D)σ = (L1 ∨ . . . ∨ Lk ∨D)θτ

A ground SHInst-inference with premises C1 · σ1, . . . , Cn · σn and conclusion C1θ ·
τ1, . . . , Cnθ · τn is redundant in a set of ground closures U if at least one of the closures
Ci · θτi = Ci ·σi is redundant in U , for 1 ≤ i ≤ n. We say that a set of ground closures
U is SHInst-Gen saturated up to redundancy wrt. hsel , if any ground SHInst-inference
with a premise in U is redundant in U .

Theorem 4. Let U be a set of ground closures such that U⊥ is satisfiable. Let hsel be
a hyper-selection function based on a model of U⊥. If U is SHInst-Gen saturated up to
redundancy wrt. hsel then U is satisfiable.

Proof. For simplicity of exposition we first prove the theorem for a special case of bi-
nary inferences (SInst-Gen) and later show how to modify the proof for hyper-inferences
(SHInst-Gen). The proof is based on an adaptation of the model-generation technique
(see [3,38]).

Let U be a set of ground closures such that U⊥ is satisfiable. First, we construct
a candidate (partial) model IU of U and then show that if U is SInst-saturated up to
redundancy, any total extension of IU is indeed a model of U . Let I⊥ be a model of U⊥
and sel a selection function on clauses in U based on I⊥.

Informally, we construct the model IU by adding literals in a way to satisfy closures
in U . In order to construct IU we construct a sequence of partial models and sets of
literals by induction on closures ordered by � as follows. Let Ĉ = C · σ be a ground
closure. Suppose, as an induction hypothesis, we have defined sets of literals ε

̂D, for all

ground closures D̂ smaller than Ĉ wrt. �. Let I
̂C denote the set

⋃
̂C� ̂D ε ̂D.

We define ε
̂C as follows. Assume Ĉ is in U and define L = sel(C). We define

ε
̂C = {Lσ}, if the following conditions hold:

1. I
̂C
|= Cσ, i.e., there is a total model extending I

̂C in which Cσ is false, and

2. Lσ is undefined in I
̂C , i.e., neither I

̂C |= Lσ nor I
̂C |= Lσ holds.

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 249

Otherwise, if either Ĉ is not in U or at least one of the conditions (1)–(2) is not satisfied,
we define ε

̂C = ∅. In the case when ε
̂C = {Lσ} we say that Lσ is produced by Ĉ.

Define IU =
⋃

̂C ε ̂C . It follows immediately from the construction that IU is consistent.
Now, let us assume that U is SInst-saturated up to redundancy. Let I be any total

extension of IU . In order to prove our theorem we show that I is a model of U .
First, we note that our model construction satisfies the following:

– monotonicity: if a ground closure Ĉ is true in some I
̂C then Ĉ true in all I

̂C′ for

Ĉ′ � Ĉ and also true in I , and
– productiveness: if Ĉ is a productive closure then (i) I

̂C
|= Ĉ, and (ii) Ĉ is true in

I
̂C ∪ ε

̂C and hence Ĉ true in I .

Now, by induction on � we show that every ground closure Ĉ in U is true in I
̂C ∪ ε

̂C .
From this and monotonicity of the model construction our theorem follows. Assume
otherwise. Let Ĉ = C ·σ be the minimal ground closure inU such that I

̂C∪ε ̂C
|= Ĉ. Let

L = sel(C). As Ĉ is not productive and I
̂C
|= Ĉ we have Lσ ∈ I

̂C . Indeed, otherwise

all conditions (1)–(2) of the model construction would be satisfied and Ĉ would be
productive. Let D̂ = D · τ be a closure producing Lσ into I

̂C , where Ĉ � D̂. We have

D = L
′ ∨D′ where L

′
is selected by sel and L

′
τ = Lσ. Therefore, a ground SInst-Gen

inference is applicable to closures Ĉ and D̂ producing Cθ · σ′ and Dθ · τ ′, where (i) θ
is the most general unifier of L and L′, and (ii) Cθσ′ = Cσ and Dθτ ′ = Dτ . By the
assumption of the theorem U is SInst-saturated and hence this inference is redundant.
Therefore, at least one of the closures C · θσ′ = C · σ = Ĉ or Dθ · τ ′ = D · τ = D̂ is
redundant. Assume that Ĉ is redundant. Then, Ĉ follows from smaller (wrt. �) closures
Ĉ1, . . . , Ĉn in U . By induction hypothesis, we have that each Ĉi is true in I

̂Ci
∪ ε

̂Ci
,

and by monotonicity is true in I
̂C , for 1 ≤ i ≤ n. From this it follows that Ĉ is true

in I
̂C , contradicting our assumption. Similarly, we arrive at a contradiction when we

assume that D̂ is redundant. Indeed, if D̂ follows from smaller closures in U , then by
induction hypothesis these closures are true in I

̂D , hence D̂ is true in I
̂D, contradicting

productiveness of D̂. This concludes the proof of this theorem for the case of SInst-Gen.
The case of hyper-inferences is similar, we only need to make the following mod-

ifications: (i) consider hyper-selection hsel in place of selection sel, (ii) in the model
construction, we define ε

̂C = {Lσ} if Ĉ is in U and L ∈ hsel(C) such that conditions
(1)–(2) are satisfied; if there are several such literals we can choose any of them to
define ε

̂C , (iii) we prove that I is a model for U in a similar way as above. ❏

Let us note that completeness Theorem 3 for clauses follows from Theorem 4 as fol-
lows. Let S be a set of clauses such that S⊥ is satisfiable. Assume that S is SHInst-Gen
saturated up to redundancy wrt. a hyper-selection function hsel based on a model of
S⊥. Let U be the set of all ground instances of clauses in S. We have that U = S and
U is SHInst-Gen saturated up to redundancy wrt. hsel. By Theorem 4, U is satisfiable
and therefore S is satisfiable.

Next we describe how our abstract redundancy criteria can be used to justify practi-
cal redundancy elimination. We start by introducing dismatching constraints which are
used to discard redundant ground closures. Then we show how the reasoner for ground

250 K. Korovin

clauses can be used to simplify clauses. Finally we show how the resolution calculus
can be combined with instantiation.

6 Dismatching Constraints

Let us consider a clause C ∈ S. As we have seen, adding a proper instance Cθ of a
clause C (e.g., as a result of applying an SInst-Gen inference) makes some ground clo-
sures represented by C redundant and consequently certain inferences with C redun-
dant. In particular, all closures C · σ such that Cσ = Cθτ for a grounding substitution
τ are redundant in the presence of Cθ. We can efficiently represent this information
about redundant closures using dismatching constraints. Let us note that in the context
of resolution and paramodulation various kinds of constraints have been considered (see
e.g. [38,29,10]). Dismatching constraints are particularly attractive: on the one hand
they provide powerful restrictions for the instantiation calculus, and on the other hand,
checking dismatching constraints can be efficiently implemented.

An atomic dismatching constraint is a pair of variable disjoint tuples of terms, de-
noted 〈s1, . . . , sn〉 � 〈t1, . . . , tn〉, or simply s̄ � t̄. A solution to a constraint s̄ � t̄ is
a substitution σ such that for every substitution γ, s̄σ
≡ t̄γ. For example, consider
an atomic dismatching constraint ϕ(x, y) = 〈x〉 � 〈f(y)〉. Then, the substitution
σ1 = {a/x} is a solution to ϕ(x, y), but σ2 = {f(g(a))/x} is not since there is a
substitution γ = {g(a)/y} such that 〈x〉σ2 ≡ 〈f(y)〉γ. It is easy to see that an atomic
dismatching constraint s̄ � t̄ is satisfiable if and only if for all substitutions γ, s̄
≡ t̄γ.
In other words, an atomic dismatching constraint s̄ � t̄ is not satisfiable if and only if
there is a substitution γ such that s̄ ≡ t̄γ, which is a familiar matching problem.

A dismatching constraint ds(s̄, t̄) = ∧n
i=1s̄i � t̄i is a conjunction of atomic dis-

matching constraints where every t̄i is variable disjoint from all s̄j , and t̄k , for i
= k.
A substitution σ is a solution of a dismatching constraint ∧n

i=1s̄i � t̄i if σ is a solution
of each s̄i � t̄i, for 1 ≤ i ≤ n.

Proposition 3. The satisfiability problem for dismatching constraints can be solved in
linear-time.

Proof. As we noted above, the satisfiability problem for dismatching constraints can be
reduced in linear-time to the matching problem which can be solved in linear-time (see,
e.g., [2]). ❏

A constrained clause C | [ϕ] is a clause C together with a dismatching constraint ϕ.
We will always assume that for a constrained clause C | [∧n

i=1 s̄i � t̄i], the clause
C is variable disjoint from all ti, 1 ≤ i ≤ n. A constrained clause C | [ϕ] represents
the set of ground closures {C · σ | σ is a solution to ϕ}, denoted Cl(C | [ϕ]). An
unconstrained clause C can be seen as a constrained clause with the empty constraint
C | []. For a set S of constrained clauses, Cl(S) denotes the set of all ground closures
represented by constrained clauses in S. Let S be a set of constrained clauses, then S̃
denotes the set of all unconstrained clauses obtained from S by dropping all constraints.
We say that a set of constrained clauses S is well-constrained if Cl (S) |= Cl(S̃). In the
following we consider only well-constrained sets of clauses.

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 251

Now we formulate an extension of SInst-Gen with dismatching constraints, called
DSInst-Gen. For simplicity of the exposition we consider only binary inferences, the
extension to hyper-inferences can be done in a similar way. DSInst-Gen inferences will
generate new instances of clauses and also extend constraints of clauses in the premises.
Let S be a set of constrained clauses such that S̃⊥ is consistent and sel be a selection
function based on a model I⊥ of S̃⊥. Then, DSInst-Gen inference system is defined as
follows.

DSInst-Gen

L ∨ C | [ϕ] L
′ ∨D | [ψ]

L ∨ C | [ϕ ∧ x̄ � x̄θ] (L ∨ C)θ

where (i) x̄ is a tuple of all variables in L, and
(ii) θ is the most general unifier of L and L′, wlog. we assume that

variables in the range of θ do not occur in L ∨C | [ϕ] and
the domain of θ contains all variable in x̄, and

(iii) sel(L ∨ C) = L, and sel(L
′ ∨D) = L

′
, and

(iv) θ is a proper instantiator for L, and
(v) ϕθ and ψθ are both satisfiable dismatching constraints.

DSInst-Gen is a replacement rule, that is replacing the clause in the left premise by
clauses in the conclusion. The clause in the right premise can be seen as a side condition,
that is no instances of this clause are produced.

We can see that in addition to semantic restrictions imposed by the selection func-
tion, instantiation rule is applicable only if dismatching constraints are satisfiable after
applying θ. Let us note that applications of DSInst-Gen preserves well-constrainedness
of sets of clauses.

The notion of redundancy can be easily adapted from clauses to constrained clauses
as dismatching constraints can be seen as a method for discarding redundant ground
closures. A constrained clause C | [ϕ] is redundant wrt. a set of constrained clauses
S if all closures in Cl(C | [ϕ]) are redundant in Cl (S). A DSInst-Gen inference with
the premises C | [ϕ], D | [ψ] and the conclusion C | [ϕ ∧ x̄ � x̄θ], Cθ is
redundant in S if the following holds. For any substitution ρ grounding for Cθ andDθ,
which is a solution to ϕθ and ψθ, either C · θρ or D · θρ is redundant in Cl(S). A set
of constrained clauses S is DSInst-Gen saturated up to redundancy if all inferences by
DSInst-Gen from premises in S are redundant in S. The DSInst-Gen calculus can be
seen as a way of lifting the (binary version of) SHInst-Gen calculus from closures to
constrained clauses.

Theorem 5. Let S be a set of constrained clauses such that S̃⊥ is satisfiable. If S is
DSInst-Gen saturated up to redundancy wrt. a selection function based on a model of
S̃⊥, then Cl (S) is satisfiable.

Proof. Indeed, if S satisfies the assumption of the theorem then Cl(S) is SHInst-Gen
saturated up to redundancy. Therefore the theorem follows from Theorem 4.

DSInst-Gen saturation strategies will be considered in Section 9.

252 K. Korovin

Example 5. Let S be the following set of clauses where selected literals are underlined.

¬A(x) ∨ C(x) (0), A(f(y)) ∨ D1 (1),

A(f i2(y)) ∨ D2 (2),

. . .
A(f in(y)) ∨ Dn (n).

Where ik ≥ 1 for 2 ≤ k ≤ n, and fm(t) denotes m applications of f : f(. . . f(t) . . .).
Applying DSInst-Gen to clauses (0) and (1) will produce¬A(f(x))∨C(f(x)), denoted
as (0′′). We also replace clause (0) with ¬A(x) ∨C(x) | [x � f(z)], denoted as (0′),
obtaining a new set of clauses S′. Assume that the new selection for S′ is the same on
the old clauses (1), . . . , (n) and (0′) inherits the selection from (0). This implies that
C(x) should be selected in (0′′). Therefore S′ will be as follows:

¬A(x) ∨ C(x) | [x � f(z)] (0′), A(f(y)) ∨ D1 (1),

¬A(f(x)) ∨ C(f(x)) (0′′), A(f i2(y)) ∨ D2 (2),

. . .
A(f in(y)) ∨ Dn (n).

We can see that S′ is DSInst-Gen saturated and therefore S is satisfiable by Theorem 5.
Indeed, inferences between clauses (0′) and (1)–(n) are blocked by the dismatching
constraint of the clause (0′). Let us note that without dismatching constraints, we would
need to consider all inferences between clauses (0) and (1)–(n).

Let us compare DSInst-Gen to resolution, assuming that the same selected literals are
eligible for resolution inferences. First we note that all inferences between (0) and (1)–
(n) are applicable. Keeping in mind that a clause can be seen as a representation of all
its ground instances we can note that instances represented by C(x) are copied at each
resolution inference and recombined with different clauses. This can result in repeated
work on the same instances of C(x) and is known as the recombination problem [35].
Dismatching constraints allow one to avoid such problems in the instantiation setting.

Without losing completeness of DSInst-Gen we can replace satisfiability for dismatch-
ing constraints with a stronger notion, called ground satisfiability. We say that a dis-
matching constraint ϕ is ground satisfiable if there is a grounding substitution σ which
is a solution to ϕ. Obviously, if a constraint is ground satisfiable then it is satisfiable but
converse need not hold. Consider a signature consisting of a constant a, a unary function
symbol f and predicate symbols. Then, a constraint x � f(y)∧ x � a is satisfiable but
not ground satisfiable. We can see that ground satisfiability is signature dependent, and
two notions of satisfiability coincide in the case of signatures containing infinite number
of constants. Problems related to ground satisfiability of dismatching constraints were
studied in a number of works [27,34,42]. In contrast to the problem of satisfiability,
which can be solved in linear-time, the problem of ground satisfiability is NP-complete.

Theorem 6. [34,27] The ground satisfiability problem for dismatching constraints is
NP-complete.

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 253

7 Simplification by Propositional Reasoning

Having at hand a powerful propositional solver it is natural to investigate methods for
redundancy elimination which utilise propositional or ground reasoning.

Let us first consider the case of simplifying ground closures. In order to apply our
abstract redundancy criterion to simplify a ground closure C · σ wrt. a set of ground
closures U we consider a set of closures Sim = {D1 · τ1, . . .Dn · τn} (not necessarily
contained in U) such that:

1. U |= D1 · τ1, . . . , U |= Dn · τn, and
2. D1 · τ1, . . . , Dn · τn |= C · σ, and
3. C · σ � D1 · τ1, . . . , C · σ � Dn · τn.

We call Sim a simplification set for C · σ wrt. U . If Sim is a simplification set for
C · σ wrt. U then we can replace C · σ in U by closures in Sim, without losing neither
soundness nor completeness. There are a number of issues to consider in this general
scheme:

– how to choose a candidate for a simplification set Sim ,
– how to check whether conditions (1)–(3) above are satisfied.

In this paper we consider the case when a candidate for a simplification set for a closure
C · σ consists of a strict subclosure of C · σ. A closure D · τ is a strict subclosure of
a closure C · σ, denoted by D · τ � C · σ, if D � C and Dτ � Cσ. In this case,
condition (2) is trivially satisfied. In order to satisfy condition (3) we assume that � is
subsumption compatible (see Section 5). The most difficult is to check condition (1).
Indeed, condition (1) is at least as complex as the initial problem of unsatisfiability of
U . Fortunately, for redundancy elimination it is sufficient to consider sound approxima-
tions of the entailment relation in (1). Next we consider such approximations based on
propositional reasoning.

Let us put these considerations in the context of constrained clauses. Let S be a set of
(well-constrained) clauses. The notion of a simplification set can be readily adapted for
clauses. Together with S, we consider a set of ground clauses Sgr such that S |= Sgr .
For simplicity of exposition we assume that Sgr is an extension of S̃⊥ by auxiliary
ground clauses implied by S. The set Sgr will be used in propositional reasoning for
approximating condition (1). Let us note that clauses in Sgr do not participate in instan-
tiation inferences. In Section 7.1 we consider simplification of ground clauses, and in
Section 7.2 simplification of clauses with variables.

7.1 Simplification of Ground Clauses

In this section we consider the case of simplifying ground clauses wrt. a set of clauses
S. Let C be a ground clause to simplify. As a candidate for a simplification set we
consider a set consisting of a strict subclauseD � C. Using the propositional solver we
can check whether Sgr |= D. If this is the case, addingD to S makes C redundant wrt.
to the new set S ∪{D}. We call this simplification as global propositional subsumption
wrt. Sgr .

254 K. Korovin

Global Propositional Subsumption

D ∨D′

D

where Sgr |= D and D′ is not empty.

Global propositional subsumption is a simplification rule, which allows one to remove
the clause in the premise after adding the conclusion. Let us note that although the
number of possible subclauses is exponential wrt. the number of literals, in a linear
number of implication checks we can find a minimal wrt. inclusion subclause D � C
such that Sgr |= D or show that such a subclause does not exist.

Let us show that global propositional subsumption generalises a number of usual
redundancy eliminations. First, note that global propositional subsumption generalises
strict propositional subsumption. Indeed, if there is a strict subclause D � C such that
D ∈ S then Sgr |= D and therefore C is globally subsumed by Sgr . Next, we consider
propositional subsumption resolution.

Propositional Subsumption Resolution

L ∨D′ L ∨D ∨D′

D ∨D′

Propositional subsumption resolution is a simplification rule, which allows one to re-
move the right premise after adding the conclusion. Let us show that global subsump-
tion generalises subsumption resolution. Indeed, if the premise clauses L ∨ D′ and
L ∨ D ∨ D′ of subsumption resolution are in S then Sgr |= D ∨ D′ and therefore
L ∨D ∨D′ is globally subsumed by Sgr .

In general, global subsumption involves reasoning with the whole set Sgr . For ex-
ample, let Sgr contain the following clauses

A(f(⊥)) ∨B(g(c)); ¬B(g(c)) ∨ A(c); ¬A(f(⊥)) ∨ A(c)

Then, a clause A(c) ∨ B(f(c)) can be simplified to A(c) wrt. to Sgr . In the cases we
consider here, the clauses we try to simplify always follow from the set S (e.g. obtained
by sound derivations from the initial set of clauses). Therefore, the clause we simplify,
itself can be added to Sgr before simplification. For example, if we want to simplify
a clause C = ¬A(c) ∨ B(f(c)) wrt. Sgr above, we can first add C to Sgr obtaining
S′
gr = Sgr ∪ {C} and then C can be simplified to B(f(c)) wrt. S′

gr .

7.2 Simplification of Non-ground Clauses

In this section we consider the case of simplifying non-ground clauses wrt. a set of
clauses S, utilising propositional reasoning. For this we need soundly approximate se-
mantic entailment. The approximation of entailment we use will be based on the fol-
lowing proposition.

Proposition 4. Let ϕ(x̄) and ψ(x̄) be first-order formulas over a signature Σ and c̄ a
tuple of pairwise different constants not in Σ. Then, ϕ(c̄) |= ψ(c̄) implies ∀x̄ϕ(x̄) |=
∀x̄ψ(x̄).

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 255

Proof. We have the following sequence of equivalences and implications:

ϕ(c̄) |= ψ(c̄) ⇔
|= ϕ(c̄) → ψ(c̄) ⇔
|= ∀x̄(ϕ(x̄) → ψ(x̄)) ⇒
|= (∀x̄ϕ(x̄)) → (∀x̄ψ(x̄)) ⇔
∀x̄ϕ(x̄) |= ∀x̄ψ(x̄).

❏

We can use Proposition 4 as follows. Let ΣC be a signature consisting of an infinite
number of constants not occurring in Σ. Let Ω be a set of injective substitutions map-
ping variables to constants in ΣC . We call C′ an Ω-instance of a clause C if C′ = Cγ
where γ ∈ Ω. With each clause C ∈ S we associate a set of Ω instances of C, denoted
CΩ . Let us assume that for every clause C ∈ S, CΩ ⊆ Sgr . Then, if we show that some
Ω-instance of a given clause D is implied by Sgr , from Proposition 4 it follows that S
implies D. Now we can formulate extension of global subsumption to the non-ground
case:

Global Subsumption (Non-ground)

(D ∨D′)θ

D

where (i) θ is a (possibly identity) substitution, and
(ii) Sgr |= Dγ for some γ ∈ Ω, and
(iii) D′ is not empty.

As in the ground case, global subsumption is a simplification rule. Informally, in order
to simplify a clauseC using global subsumption it is sufficient to find a clauseD strictly
subsuming C, (i.e., Dθ � C for a substitution θ), such that an Ω-instance Dγ of D
follows from Sgr . Then, adding D into S makes C redundant in S. There are several
non-trivial issues to consider when we try to apply global subsumption. These are:

1. which Ω-instances of clauses in S to add to Sgr ,
2. which clause D to use as a candidate for the conclusion, and
3. which Ω-instances of the candidate clause D to check for entailment.

Since there are infinitely many possible Ω-instances of a clause, we restrict ourselves
to some heuristics. Let us describe one of them. Assume that constants in ΣC are or-
dered: c1, . . . , ck, For a given clause C, fix an ordering on variables occurring in
C: x1, . . . , xn. We define a substitution γC : {xi �→ ci | 1 ≤ i ≤ n}. Trivially CγC
is an Ω-instance of C. To address issue (1) above we assume that for a clause C ∈ S,
CγC is in Sgr . For (2), we choose candidates for the conclusion of global subsumption
among strict subclauses of a given clause. For (3), we use DγD as an Ω-instance of the
candidate clause D.

Example 6. Consider the following example where S consists of the first four clauses
of SYN-832 problem from the TPTP library [50]. For readability we rename predicate
symbols.

256 K. Korovin

A (1) ¬A ∨B(x1) (2)

¬B(x1) ∨ ¬A ∨ C(x1, x2) (3) ¬C(x1, x2) ∨ ¬B(x1) ∨ ¬A ∨D(x1, x2, x3) (4)

These clauses come from translations of modal formulae [26]. The set Sgr , in addition
to clauses from S⊥ will contain Ω-instances GγG for G ∈ S:

A (1) ¬A ∨B(c1) (2)

¬B(c1) ∨ ¬A ∨ C(c1, c2) (3) ¬C(c1, c2) ∨ ¬B(c1) ∨ ¬A ∨D(c1, c2, c3) (4)

Now, using global subsumption we can simplify clauses in S to the following set of unit
clauses S′:

A (1) B(x1) (2)

C(x1, x2) (3) D(x1, x2, x3) (4)

Let us emphasise that pure propositional reasoning suffices for these simplifications.
In practice, we can employ efficient propositional solvers for such simplifications in
a black-box fashion. One can exploit incrementality of state-of-the-art propositional
solvers such as MiniSAT [15] which allow one to check satisfiability of sets of propo-
sitional clauses under assumed sets of literals. In order to check whether an Ω-instance
Cγ = L1γ∨ . . .∨Lnγ follows from a set of ground clauses Sgr it is sufficient to check
unsatisfiability of Sgr under the assumption consisting of literals L1γ, . . . , Lnγ. Using
linear search, one can find a minimal wrt. inclusion sub-clause of Cγ which follows
from the set of ground clauses in less than n implications checks. Another approach for
obtaining minimal implied sub-clauses can be based on minimal unsatisfiability cores
returned by propositional solvers. Since in practice it is sufficient to approximate simpli-
fications one can use efficient incomplete tests for checking propositional implications
based, e.g., unit propagation or restricting the number of backjumps.

Let us note that global subsumption can be used not only in instantiation-based cal-
culi, but in any calculi where strict subsumption is an admissible redundancy elimina-
tion such as, e.g., resolution. Simplifications by ground reasoning have been indepen-
dently investigated in different settings (see, e.g., [30,31,1,22]).

Generating Implied Clauses by Propositional Reasoning. Using propositional reason-
ing we can generate clauses implied by Sgr . Let Cγ be an Ω-instance of a clause C,
such that Cγ is implied by Sgr . Then, from Proposition 4 it follows that C is implied
by S. Therefore we can add C to S and use C for simplifications of clauses in S. In
particular, we can use implied clauses for simplifications such as strict subsumption.

Let us note the main difference with global subsumption: in global subsumption we
check implications of given clauses (e.g., strict subclauses of a clause to be simplified).
Here we generate implied clauses on the fly, e.g., when we check consistency of Sgr and
use obtained clauses later for simplifications. Most state-of-the-art propositional reason-
ers generate such clauses, called learnt clauses or lemmas, during the proof search. If a
propositional lemma Cγ is generated then Cγ is implied by Sgr and the corresponding
first-order clause C is implied by S. We can use the obtained first-order lemma C for
further simplifications.

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 257

To conclude, we have shown that propositional reasoning can be used not only to
guide the instantiation process but also for simplification of clauses.

8 Combination of Instantiation with Resolution

One of the attractive properties of the instantiation calculus is that the number of literals
in clauses does not increase during instantiation. On the other hand, if we consider the
instantiation calculus without simplifications, the number of literals in the generated
clauses does not decrease. Consequently, instantiation is not well-suited for generating
clauses which can be used in simplifications, such as strict subsumption. We can over-
come this limitation by combining instantiation with the (ordered) resolution calculus.
There are different ways to combine instantiation with resolution, (see, e.g., [20,36]),
here we consider a simple one. We run resolution simultaneously with instantiation to
generate additional clauses that can be used for simplifications. Let us note that clauses
generated by resolution are used only for simplifications and do not participate in in-
stantiation inferences. In addition, we can add Ω-instances of clauses generated by
resolution to Sgr which in turn can be used for propositional-based simplifications dis-
cussed above.

Example 7. Consider the following set of clauses S:

¬A(x) ∨ H(x) (1)
A(f(x)) ∨ B(x) (2)
¬H(f(x)) ∨ B(x) (3)

Assume that in each clause (1)–(3) the first literal is eligible for resolution. Then, ap-
plying resolution to (1) and (2) we obtainH(f(x))∨B(x) (4). Applying resolution to
(4) and (3) and factoring the result we obtain B(x). Now B(x) can be used to simplify
clauses (2) and (3). Therefore, on the instantiation side we can also simplify S into
{¬A(x) ∨H(x);B(x)}.

9 Saturation Strategies

Up to now we referred to the notion of a saturation process only informally. In this
section we formalise this notion, and show that saturated sets can be achieved via fair
saturation processes. First we define the notion of a saturation process for sets of ground
closures. For a set of ground closures U , let U denote the set of clauses C such that
C · σ is in U . An Inst-Gen saturation process is a sequence of triples, called states,
{〈U i, Ii⊥, hsel

i〉}∞i=1, where for every i, U i is a set of ground closures, Ii⊥ a model of

U
i⊥ and hseli a selection function based on that model. In addition we assume U1 |=

U
1
. Given a state 〈U i, Ii⊥, hsel

i〉, a successor state 〈U i+1, Ii+1
⊥ , hseli+1〉 is obtained by

one of these steps:

– (generation step) U i+1 = U i ∪ N , where N is a set of ground closures such that
U i |= N ; or

– (elimination step) U i+1 = U i \N , where every closure in N is redundant in U i.

258 K. Korovin

If for some i, U
i⊥ is unsatisfiable the process terminates with the result “unsatisfiable”.

It immediately follows from the definition of a saturation process that in this case the
initial set of clauses U1 is unsatisfiable. Define U∪ = ∪∞

i=1U
i. The set of persistent

closures is defined as the low limit U∞ = ∪i≥1 ∩j≥i U
j . We will use auxiliary lemmas

about redundant sets of closures, these lemmas are similar to the corresponding lemmas
in resolution setting [3]. For a set of ground closures U , let R(U) denote the set of all
closures redundant in U .

Lemma 1. Let U be a set of ground closures. Then, if a closure C · σ is redundant in
U then C · σ is redundant in U \ R(U). In particular, U \ R(U) |= U .

Proof. Consider a closure C · σ ∈ R(U). Let M = {C1 · σ1, . . . , Cn · σn} be the least
subset of U , wrt. the multiset extension of �, such that M |= C · σ. Then, all closures
inM are non-redundant in U . Therefore,M ⊆ U \R(U), and henceC ·σ is redundant
in U \ R(U). ❏

Lemma 2. Let {〈U i, Ii⊥, hsel
i〉}∞i=1 be a saturation process. Then, (i) U∪ \ R(U∪) =

U∞ \ R(U∞) and (ii) R(U∪) = R(U∞).

Proof. Let us prove (i).
(⊆) If a ground closure C · σ ∈ U∪ is not redundant in U∪ then C · σ is also not

redundant in Uk for any k and therefore C · σ ∈ U∞. Moreover,C · σ is not redundant
in U∞. Therefore U∪ \ R(U∪) ⊆ U∞ \ R(U∞).

(⊇) If a closure C · σ ∈ U∞ is not redundant in U∞, then by (⊆) direction, C · σ
is not redundant in U∪ \ R(U∪) and by Lemma 1 is not redundant in U∪. Therefore
U∞ \ R(U∞) ⊆ U∪ \ R(U∪).

Let us prove (ii). From Lemma 1 it follows that R(U∪) = R(U∪ \ R(U∪)) and
similar R(U∞) = R(U∞ \ R(U∞)). Therefore, (i) implies R(U∪) = R(U∞). ❏

First we note that a saturation process preserves (un)satisfiability of sets of clauses.

Lemma 3. Let {〈U i, Ii⊥, hsel
i〉}∞i=1 be a saturation process. Then, U1 is satisfiable if

and only if U∞ is satisfiable.

Proof. Implication from left to right follows trivially from the definition of a saturation
process. In order to show implication from right to left, assume that U1 is unsatisfiable.
Then, U∪ is also unsatisfiable. Lemma 1 implies U∪ \ R(U∪) is unsatisfiable. Since
U∪ \ R(U∪) ⊆ U∞ we have U∞ is unsatisfiable. ❏

In order to ensure that we obtain an Inst-Gen saturated set in the limit of the saturation
process we need a notion of a fair saturation. For this we consider inference system
SHInst-Gen on ground closures (see Section 5). Informally, a saturation process is fair
if all non-redundant inferences between persisting closures are eventually applied or
otherwise shown to be redundant. Let {〈U i, Ii⊥, hsel

i〉}∞i=1 be a saturation process. An

SHInst-Gen inference between persistent closures (L
′
1 ∨ C1) · σ1, . . . , (L

′
k ∨ Ck) · σk

and (L1 ∨ . . . ∨ Lk ∨D) · σ is called SHInst-persistent if there are an infinite number
of indexes j1, . . . ji, . . . such that these closures are in U ji and the inference is eligible
(upon the same literals) at the state 〈U ji , Iji⊥ , hsel

ji〉 for all i ≥ 1, that is, conditions

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 259

(i)–(iv) on applicability of SHInst-Gen are satisfied. An Inst-Gen saturation process is
SHInst-fair if every SHInst-Gen persisting inference in U∞ is redundant wrt. U∪. Let
us note that our redundancy criterion is effective in the sense of [3], that is adding the
conclusion of the inference makes the inference redundant. Therefore, we can ensure
fairness of a saturation process by adding conclusions of non-redundant SHInst-Gen
persistent inferences.

Now we need to show that in the limit U∞ of an SHInst-Gen fair saturation process
we obtain a saturated set wrt. to a model ofU∞⊥. If we compare our notion of saturation
to saturation in the resolution framework (e.g., [3]), one of the key differences is that
the literal selection can change at each step of the saturation. In particular, we need to
construct a model I∞⊥ of U∞⊥ and a selection hsel∞ based on I∞⊥ such that U∞ is
saturated wrt. hsel∞. Although, compactness implies U∞⊥ is satisfiable if all U i⊥ are
satisfiable, not every model of U∞⊥ is suitable. Indeed, it is possible to construct an
example of an SHInst-Gen fair saturation process with the limit U∞ and a model I such
that U∞ is not saturated wrt. any selection function based on I . Another obstacle in
constructing the required model I∞⊥ is that a literal can be true in a model Ii⊥ and its
complement true in a model Ij⊥ for i
= j. Nevertheless, the following theorem shows
that it is possible to construct a model I∞⊥ of U∞ and a selection function hsel∞ based
on I∞⊥ such that U∞ is saturated wrt. hsel∞.

Lemma 4. [19] Let U∞ be a set of persistent clauses of a SHInst-Gen fair saturation
process {〈U i, Ii⊥, hsel

i〉}∞i=1, and U i⊥ is satisfiable for every i, i ≥ 1. Then, there
exists a model I⊥ of U∞⊥ and a selection function hsel based on I⊥ such that U∞ is
SHInst-Gen saturated wrt. hsel.

Proof. Let {Ci · σi}∞i=1 be an enumeration of closures in U∞. For each n ≥ 1 we
construct a partial interpretation Jn in which all {Ci⊥}ni=1 are true and a selection
function hselnJ for {Ci}ni=1, based on Jn (meaning that all literals in hselnJ(Ci)⊥ are
true in Jn, i.e., true in all total consistent extensions of Jn, for 1 ≤ i ≤ n) by induction
on n. For each n the following invariants will be satisfied.

1. Jn is consistent and hselnJ is a selection function for clauses {Ci}ni=1 based on Jn.
2. Jn−1 ⊆ Jn and hselnJ coincides with hseln−1

J on clauses {Ci}n−1
i=1 .

3. There are infinitely many k such that for the model Ik⊥ of Uk⊥ we have Jn ⊆ Ik⊥
and for all 1 ≤ i ≤ n, hselk(Ci) = hselnJ(Ci).

If n = 1, then it is easy to see that there is a multisetM1 of literals in C1⊥ such that for
infinitely many k, hselk(C1) =M1. We take J1 =

⋃
L∈M1

{L⊥} and hsel1J(C1) =M1.

It is immediate that all invariants (1–3) on J1, hsel1J are satisfied.
Let n ≥ 1 and assume that we have a model Jn and hselnJ for {Ci}ni=1 such that

invariants (1–3) are satisfied. Since (Cn+1 · σn+1) ∈ U∞ we have that for some m
and every p ≥ m, (Cn+1 · σn+1) ∈ Up. From this and invariant (3) it follows that
for some Mn+1 ⊆ Cn+1 there are infinitely many k such that: (i) Jn ⊆ Ik⊥, and (ii)
hselk(Ci) = hselnJ(Ci) for all 1 ≤ i ≤ n, and (iii) hselk(Cn+1) = Mn+1. Define
Jn+1 = Jn ∪

⋃
L∈Mn+1

{L⊥} and hseln+1
J (Ci) = hselnJ(Ci) for 1 ≤ i ≤ n, and

hseln+1
J (Cn+1) =Mn+1. It is easy to see that all invariants (1–3) are satisfied for Jn+1

and hseln+1
J .

260 K. Korovin

We define J = ∪∞
i=1J

i and hsel(Ci) = hseliJ (Ci) for i ≥ 1. From compactness
and invariants (1) and (2), it follows that J is consistent, and hsel is a selection function
based on J . We define I⊥ as a total consistent extension of J , (note that hsel is also
based on I⊥).

Now we need to show that U∞ is SHInst-Gen saturated wrt. hsel. Consider a SHInst-
Gen inference from closures C1 · σ1, . . . , Cn · σn in U∞. Then, from the construction
of hsel and in particular from the invariant (3) it follows that for infinitely many indexes
k we have hselk(Ci) = hsel(Ci), for all 1 ≤ i ≤ n. Since the SHInst-Gen saturation
process is fair, this inference is redundant in U∪ and by Lemma 2 is redundant in U∞.
Therefore, U∞ is SHInst-Gen saturated wrt. hsel. ❏

We summarise the obtained results in the following theorem.

Theorem 7. Let {〈U i, Ii⊥, hsel
i〉}∞i=1, be a SHInst-Gen fair saturation process. Then,

either:

1. for some i, U
i⊥ is unsatisfiable and therefore U1 is unsatisfiable, or

2. for every i, U
i⊥ is satisfiable and therefore (by Lemmas (3,4) and Theorem 4) U1

is satisfiable.

Moreover, if for some i, U i is SHInst-Gen saturated then at this stage we can conclude
that U1 is satisfiable.

In particular, Theorem 7 implies that if a set of closures U is unsatisfiable, then any
SHInst-Gen fair saturation process {〈U i, Ii⊥, hsel

i〉}∞i=1 with the initial set U1 = U
terminates in a finite number of steps, proving unsatisfiability of U .

Saturation for sets of constrained clauses. In practice, we do not deal with closures
directly, but rather with constrained clauses and inference systems such as DSInst-Gen
(see Section 6). In this case a saturation process for clauses naturally corresponds to
an Inst-Gen saturation process for closures. For a set of constrained clauses S, let S̃
denote the set of all unconstrained clauses obtained from S by dropping all constraints.
A DSInst-Gen saturation process is a sequence of triples {〈Si, Ii⊥, sel

i〉}∞i=1, where S1

is well-constrained, Si is a set of constrained clauses such that Ii⊥ a model of S̃i⊥ and
seli a selection function based on Ii⊥, for i ≥ 1. Given 〈Si, Ii⊥, sel

i〉, a successor state
〈Si+1, Ii+1

⊥ , seli+1〉 is obtained by one of these steps:

– (generation step) Si+1 = Si∪N , whereN is a set of constrained clauses such that
Si |= Cl(N); or

– (elimination step) Si+1 = Si\N , where every constrained clause inN is redundant
in Si; or

– (constraint extension step) Si+1 = (Si \ {C | [ϕ]}) ∪ {C | [ϕ ∧ ψ]}, where
C | [ϕ] is in Si and closures in Cl(C | [ϕ]) \ Cl (C | [ϕ ∧ ψ]) are redundant in
Cl(Si).

Let us note that an inference by DSInst-Gen can be split into two saturation steps: gen-
eration and constraint extension steps. For simplicity, we assume that for every i and

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 261

every clauseC ∈ S̃i there is only one constrained clauseC | [ϕ] ∈ Si. If there are sev-
eral constrained clauses corresponding to the same unconstrained clause, we can replace
them with one constrained clause by merging the constraints. Let S̃∞ = ∪i≥1 ∩j≥i S̃

j .
Consider two persistent clauses C,D ∈ S̃∞. Let p be such that for all q ≥ p we have
C,D ∈ S̃q , and corresponding constrained clauses are C | [ϕq], D | [ψq] ∈ Sq.
We say that an DSInst-Gen inference associated with C andD is DSInst-Gen persistent
if there is an infinite number of indexes j ≥ q, such that the inference is eligible on
clauses C | [ϕj], D | [ψj] ∈ Sq at the stage j (upon the same selected literals), that
is conditions (i)–(v) on applicability of DSInst-Gen are satisfied. A DSInst-Gen satu-
ration process is DSInst-Gen fair if every DSInst-Gen persisting inference, associated
with clauses in S̃∞, is redundant in Si for some i.

Theorem 7 can be applied to show completeness of fair DSInst-Gen saturation pro-
cesses.

Theorem 8. Let SP = {〈Si, Ii⊥, sel
i〉}∞i=1, be a DSInst-Gen fair saturation process.

Then, either:

1. for some i, S̃i⊥ is unsatisfiable and therefore S1 is unsatisfiable, or
2. for every i, S̃i⊥ is satisfiable and therefore S1 is satisfiable.

Moreover, if for some i, Si is DSInst-Gen saturated, then at this stage we can conclude
that S1 is satisfiable.

Proof. If for some i, S̃i⊥ is unsatisfiable then from the definition of DSInst-Gen satu-
ration process it immediately follows that S1 is unsatisfiable.

Let us assume that for every i, S̃i⊥ is satisfiable. With the DSInst-Gen saturation
process SP we associate an Inst-Gen saturation process on ground closures ŜP =
{〈Ŝi, Ii⊥, sel

i〉}∞i=1, where Ŝi = Cl(Si). It is straightforward to check that if SP is
DSInst-Gen fair then ŜP is Inst-Gen fair. Now, Theorem 7 implies that Ŝ1 is satisfiable.
Since S1 is equivalent to Ŝ1 we conclude that S1 is also satisfiable. ❏

10 The Effectively Propositional Fragment

Let us consider the effectively propositional fragment (EPR), also called the Bernays-
Schönfinkel fragment. The EPR is a clausal fragment of first-order logic where the sig-
nature is restricted to contain only predicate symbols and constants. This fragment is
decidable and recently has been shown to have a number of applications ranging from
hardware verification [40,17,28] to ontological reasoning [49], see [4] for more exam-
ples. Let us show that DSInst-Gen is a decision procedure for the EPR fragment.

We call a fair DSInst-Gen saturation process pure if all generation and constraint
extension steps are results of application of DSInst-Gen inferences. For a set of con-
strained clauses S, let Ŝ denote the set of ground closures represented by S. Consider a
pure DSInst-Gen saturation process {〈Si, Ii⊥, sel

i〉}∞i=1 with a finite set of initial clauses
S = S1. First, it is easy to see that any inference step is strictly reductive, that is if S′ is
obtained from S by application of a DSInst-Gen inference, then Ŝ �m Ŝ′ (where �m

is the multiset extension of �). Likewise, any elimination step is either strictly reduc-
tive or does not change the set of clauses. Since the initial set of clauses S is finite and

262 K. Korovin

Passive (Queues) Given Clause
simpl. II

Active (Unif. Index)

literal selection change

Instantiation Inferences

Unprocessed
simpl. I

Input

SAT Solver

grounding

Unsatisfiable
propositional model

literal selection

Fig. 1. Inst-Gen loop

all functional symbols in our signature are constants, the set Ŝ is also finite. Therefore,
after a finite number of steps n, the set of clauses will be stabilised, i.e., Sn = Sn+k for
k ≥ 0. Then, Theorem 8 implies S is unsatisfiable if and only if S̃n⊥ is unsatisfiable.
We summarise this in the following theorem.

Theorem 9. DSInst-Gen is a decision procedure for the effectively propositional frag-
ment.

Experimental results presented in Section 12 show that instantiation-based methods and
in particular DSInst-Gen are currently leading on the EPR problems.

11 Implementation of Inst-Gen in iProver

In previous sections we considered instantiation calculi, redundancy criteria and com-
plete saturation strategies. Now we are ready to discuss implementation issues based
on our implementation called iProver. iProver is a reasoning system for first-order logic
based on the DSInst-Gen calculus. iProver incorporates a class of complete strategies
and concrete redundancy elimination methods which we have discussed in the previ-
ous sections. At the core of iProver is the Inst-Gen loop (see Fig. 1) which governs the
instantiation strategy.

Let us informally describe the Inst-Gen loop and its major components. The Inst-
Gen loop is a modification of a well-known given clause algorithm which is a basis
for all state-of-the-art resolution-based theorem provers. One of the main ideas of the
given clause algorithm is to separate clauses into two sets, called active and passive
with the following properties. The set of active clauses is such that all non-redundant
inferences between clauses in this set are performed. The set of passive clauses are the

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 263

clauses waiting to participate in inferences. Let us consider the simplest version of the
given clause algorithm for inference systems such as resolution, where for each clause,
the set of literals eligible for inferences is fixed. Initially, the passive set consists of the
input clauses and the active set is empty. The given clause algorithm consists of a loop
and at each loop iteration the following actions are executed. First, a clause is taken
from the passive set, called the given clause. Then, all inferences between the given
clause and clauses in the active set are performed. Finally, all newly derived clauses
are moved to passive and the given clause is moved to the active set. If the calculus
is sound and at some stage the inconsistency is found, then the input set of clauses is
inconsistent. If the calculus is complete and the selection strategy for the given clauses
is fair, then the given clause algorithm will find an inconsistency in a finite number of
steps. Moreover, if the calculus is complete and the given clause algorithm terminates
with an empty passive set, then the active set of clauses is saturated and we can conclude
that the input set of clauses is satisfiable. Redundancy elimination can be integrated into
the given clause algorithm in various ways: passive and active clause sets are completely
simplified at each iteration of the algorithm (the Otter loop [37]), or only active clauses
are kept inter-simplified (the DISCOUNT loop [13]). In addition, preprocessing can be
applied to the generated clauses such as splitting without backtracking (see [45]).

In order to adapt the standard given clause algorithm for instantiation strategies we
need to: (i) accommodate propositional reasoning, and (ii) reflect dynamic literal se-
lection (based on a propositional model of the ground abstraction), which can result
in moving clauses from active to passive sets. On Fig. 1 we present such an adapta-
tion of the given clause algorithm to the Inst-Gen framework: the Inst-Gen loop. Let
us overview key components of the Inst-Gen loop and how they are implemented in
iProver.

Passive. The passive set are the clauses waiting to participate in inferences. It is well-
known that in the resolution-based setting, the order in which clauses are selected for
inferences from the passive set is an important parameter. Usually, preference is given
to clauses which are heuristically more promising to derive the contradiction, or to the
clauses on which basic operations are easier to perform. In iProver, the passive clauses
are represented by a sequence of priority queues. In order to define priorities we con-
sider numerical/Boolean parameters of clauses such as: the number of symbols, the
number of variables, the age of the clause, the number of literals, whether the clause
is ground, the conjecture distance, whether the clause contains a symbol from the con-
jecture (other than equality or a theory symbol), whether the clause is Horn or in the
EPR. Then, each queue is ordered by a lexicographic combination of orders defined on
parameters. For example, if a user specifies an iProver option:

--inst pass queue1 [+age;-num symb;+ground]

then in the first queue priority is given to clauses generated at the earlier iterations of
the Inst-Gen loop (older clauses), then to clauses with fewer number of symbols and
finally to ground clauses. The user can also specify the ratio between the number of
clauses taken from each queue.

264 K. Korovin

Active. After the given clause is selected from the passive set all eligible inferences
between the given clause and clauses in the active set should be performed. A unifica-
tion index is used for efficient selection of clauses eligible for inferences. In particular,
clauses in the active set are indexed by selected literals. The unification index imple-
mented in iProver is based on non-perfect discrimination trees [21,44]

Let us note that since the literal selection is based on a propositional model of the
ground abstraction of the current set of clauses, selection can be changed during the
Inst-Gen loop iterations. This can result in moves of clauses from active to passive sets,
as shown in Fig. 1 (literal selection change). Changes in selection function and moves
of clauses from active to passive sets result in a number of nontrivial technical issues
such as ensuring fairness, and minimising the number of moves and repeated work,
which are beyond the scope of this paper.

Instantiation Inferences. Instantiation inferences in iProver are based on the DSInst-
Gen calculus. In particular, constrained clauses, dismatching constraint checking and
model-based literal selections are implemented. Dismatching constraints are imple-
mented using a discrimination-type index on atomic constraints to facilitate efficient
satisfiability checking.

Redundancy Elimination. The following redundancy eliminations are implemented:
blocking non-proper instantiations, dismatching constraints, tautology elimination and
global subsumption for both ground and non-ground clauses. The user can select whether
to simplify all newly generated clauses (simpl. I in Fig. 1) or only the given clause
(simpl. II in Fig. 1) or apply simplifications at both stages.

Grounding and SAT Solver. Newly derived clauses are grounded and added to the
propositional solver. Although, in our theoretical considerations we used the desig-
nated constant ⊥ for grounding, it is easy to see that all our arguments remain valid
if we use any ground term in place of ⊥. In particular, for grounding, iProver selects
a constant with the greatest number of occurrences in the input set of clauses, other
heuristics for selecting the term for grounding are also interesting to investigate. After
grounding, clauses are added to the propositional solver. Currently, iProver integrates
MiniSAT [15] for propositional reasoning.

Learning Restarts. It can happen that the Inst-Gen loop fails to terminate due to a poor
choice of the literal selection on the initial set of clauses. Indeed, initially the propo-
sitional solver contains only few instances of the input clauses, and therefore selection
based on the corresponding propositional model can be inadequate. Although the model
and selection can be changed at the later iterations, by that time, the prover can con-
sume most of the available resources. In order to overcome this, iProver implements
restarts of the saturation process, keeping generated propositional clauses in the propo-
sitional solver. After each restart, the propositional solver will contain more instances
of clauses, this can help to find a better literal selection. In addition, after each restart,
global subsumption becomes more powerful.

Equality. iProver integrates equality by adding (internally) the necessary axioms of
equality with an option of using Brand’s transformation [9]. Our experiments show
that even this naive approach of equality integration works reasonably well in the

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 265

instantiation-based setting, most likely due to the semantic literal selection and ab-
sence of recombination of clauses with equality axioms. For more advanced treatment
of equality based on combination of ordered unit superposition with Inst-Gen and the
corresponding system iProver-Eq we refer to [33,32].

Model Representations. Consider a state in which the passive set is empty and the
ground abstraction is satisfiable. Then by the completeness Theorem 8, the set of in-
put clauses is satisfiable. Let us also assume that for each inference by DSInst-Gen
between active clauses (including redundant inferences) the corresponding dismatching
constraint is added to the premise according to the application of the DSInst-Gen in-
ference rule. This can be easily achieved during or after saturation. In this case we can
extract a model representation based on the selected literals in the active set of clauses
and accumulated dismatching constraints. Since dismatching constraints can be natu-
rally expressed in the language of the ground term algebra we can represent models
using first-order definitions of predicates in the ground term algebra. A detailed treat-
ment of model representations is beyond the scope of this paper, let us only mention that
iProver supports several model outputs based on positive/negative predicate definitions
in the ground term algebra.

Finite Models. iProver has a finite model finding mode inspired by translation of finite
model finding into the EPR fragment [5], see also [11]. Since instantiation-based meth-
ods are very efficient on the EPR fragment this approach is particularly promising. The
method is complete for finite model finding: if there is a finite model of the given set of
clauses, then such a model will be eventually found in a finite number of steps.

Combination with Resolution. In addition to the Inst-Gen loop, iProver implements
a complete saturation algorithm for ordered resolution. In this paper, we will not dis-
cuss our implementation of resolution in detail. Let us only mention that the saturation
algorithm is based on the same data structures as the Inst-Gen loop and implements
a number of simplifications such as forward and backward subsumption, forward and
backward subsumption resolution, tautology deletion and global subsumption. We im-
plemented a compressed feature vector index (an extension of the feature vector index
[48]) for efficient forward/backward subsumption and subsumption resolution.

Resolution is combined with instantiation by sharing the propositional solver. In par-
ticular,Ω-instances of clauses generated by resolution and instantiation are added to the
propositional solver and propositional solver is used for global subsumption in both res-
olution and instantiation saturation loops.

12 Evaluation

In this section we evaluate iProver v0.9 on the standard benchmark for first-order the-
orem provers: the TPTP library [50] with the current version 5.2.0. Currently, iProver
does not have a built-in clausifier and we used Vampire [23] for clausification. iProver
has also an interface for clausification using E prover [47] or any user provided clausi-
fier which can output clauses in the TPTP format. Experiments were run on a cluster of

266 K. Korovin

Dell rack servers under Linux v2.6.30 with cpu 2.3GHz, memory 2GB and time limit
300s.

The TPTP library contains 15386 first-order problems, out of which 12420 are un-
satisfiable, 1949 satisfiable and 1017 with unknown status. iProver in the default mode
solves 8554 problems: 7524 unsatisfiable and 1030 satisfiable. Problems in the TPTP
are rated from 0 to 1, where problems with the rating 0 are easy and problems with
the rating 1 can not be solved by any automated reasoning system, including older ver-
sions of iProver, at the time of evaluating the corresponding version of the TPTP library.
In the current version of the TPTP, iProver solved 24 problems with the rating 1, and
157 with rating ≥ 0.9. This indicates that there is a large number of problems in the
TPTP that can only be solved by iProver. In the satisfiability mode, which features finite
model finding, iProver can show satisfiability of 1301 problems out of 1949 known to
be satisfiable in the TPTP.

It is interesting to compare an instantiation-based prover with an ordered resolu-
tion prover. iProver implements both on the same data structures and allows user to
select combination of instantiation with resolution, pure instantiation and pure ordered
resolution. Let us note that in iProver equality reasoning is integrated only in an ax-
iomatic way in both instantiation and resolution parts, we refer to iProver-Eq [32] for
a superposition-based integration. Results are presented in Table 1. We can see that
instantiation considerably outperforms ordered resolution in this setting and the combi-
nation of instantiation and resolution leads to further improvements.

Table 1. iProver v0.9

TPTP v5.2.0 Combination Inst. & Res. Instantiation Resolution
Solved 8554 7680 5724
Unsat. 7524 6731 5160

Sat. 1030 949 564

We compare iProver v0.9 with other state-of-the-art automated reasoning systems
based on the results of the CASC-23 competition, held in 2011 [51]. Tables are repro-
duced from the competition site2, among different versions of the same system we take
one with the best result. In the major FOF division, Table 2, iProver is in the top three
provers along with established leaders Vampire [46,23] and E [47].

In the EPR division, shown in Table 3, iProver considerably outperforms resolu-
tion/superposition based systems. The EPR fragment is of a particular interest since, as
mentioned in the introduction, it has a wide range of applications.

Table 4 shows results in the first-order non-theorems (FNT) division. The FNT di-
vision corresponds to satisfiable first-order problems. Efficient methods for showing
satisfiability are usually based on finite model finding techniques. iProver capitalises on
the translation of the finite model finding problem into the EPR fragment which helped
to place iProver amongst top three system in this division.

To summarise, iProver performs well on both unsatisfiable and satisfiable problems
over the whole TPTP and is leading in the EPR division.

2 http://www.cs.miami.edu/˜tptp/CASC/23/

http://www.cs.miami.edu/~tptp/CASC/23/

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 267

Table 2. CASC-23 (FOF division, 300 problems)

FOF Vampire EP iProver leanCoP iProver-Eq EKRHyper EDarwin Metis LEOII Otter Muscadet
300 0.6 1.4 0.9 2.2 0.7 1.2 1.4 2.3 1.2.8 3.3 4.1

Solved 269 232 192 136 135 109 103 101 97 62 42
av. time 12.95 22.55 9.22 46.80 8.68 8.93 6.97 24.75 25.18 5.84 8.99

Table 3. CASC-23 (EPR division, 150 problems)

EPR iProver Vampire iProver-Eq E Metis E-Darwin FIMO E-KHyper
150 0.9 1.8 0.7 1.4 2.3 1.4 0.2 1.2

Solved 145 127 121 91 78 70 62 60
av. time 12.70 15.79 24.78 7.90 20.85 12.64 1.81 10.02

Table 4. CASC-23 (FNT division: first-order non-theorems, 200 problems)

FNT Paradox FIMO iProver Nitrox iProver-Eq EKRHyper EP EDarwin
200 3.0 0.2 0.9 0.2 0.7 1.2 1.4 1.4

Solved 169 162 159 140 86 85 78 57
av. time 3.33 14.43 34.93 17.42 7.52 15.92 2.40 7.23

13 Conclusions

In this paper we have presented a development of the Inst-Gen framework from theo-
retical foundations to a working implementation. We considered the Inst-Gen calculus,
semantic selection, hyper-inferences, redundancy elimination, dismatching constraints,
simplifications by propositional reasoning, saturation strategies and finally implemen-
tation issues and evaluation. There are number of further extensions, that were not con-
sidered in this paper, such as integration of equational [19,33] and theory reasoning in
the black-box style [20]. These extensions open novel opportunities to utilise efficient
solvers modulo theories, SMT solvers, which have recently gained great popularity due
to demand in applications such as software and hardware verification.

Although our implementation is relatively new, iProver is amongst the leading sys-
tems and shows great potential of the Inst-Gen framework. We expect that integration
of theory reasoning will greatly enhance applicability of iProver in domains such as
verification of software and hardware.

To conclude, we believe that instantiation-based theorem proving, backed by theo-
retical foundations and state-of-the-art implementation techniques, is a promising ap-
proach which can be developed to be utilised in real-world applications.

Acknowledgements. I am very grateful to Harald Ganzinger who introduced me to the
area of instantiation-based reasoning and with whom I had the great pleasure of inves-
tigating this area. I thank Andrei Voronkov for his encouragement, support and helpful
suggestions. I thank Yevgeny Kazakov and an anonymous reviewer for many useful
suggestions and Christoph Sticksel for providing the scripts used in the evaluation.

268 K. Korovin

References

1. Akbarpour, B., Paulson, L.C.: Extending a Resolution Prover for Inequalities on Elementary
Functions. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790,
pp. 47–61. Springer, Heidelberg (2007)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University press,
Cambridge (1998)

3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, vol. I, ch. 2, pp. 19–99. Elsevier Science (2001)

4. Baumgartner, P.: Logical Engineering with Instance-Based Methods. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 404–409. Springer, Heidelberg (2007)

5. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction
to function-free clause logic. J. Applied Logic 7(1), 58–74 (2009)

6. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Interna-
tional Journal on Artificial Intelligence Tools 15(1), 21–52 (2006)

7. Baumgartner, P., Schmidt, R.A.: Blocking and Other Enhancements for Bottom-Up Model
Generation Methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI),
vol. 4130, pp. 125–139. Springer, Heidelberg (2006)

8. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) CADE 2003.
LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

9. Brand, D.: Proving theorems with the modification method. SIAM J. Comput. 4(4), 412–430
(1975)

10. Caferra, R., Zabel, N.: A method for simultaneous search for refutations and models by
equational constraint solving. Journal of Symbolic Computation 13(6), 613–641 (1992)

11. Claessen, K., Sorensson, N.: New techniques that improve mace-style finite model finding.
In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the CADE-19 Workshop: Model
Computation - Principles, Algorithms, Applications (MODEL 2003) (2003)

12. de Moura, L., Bjørner, N.S.: Deciding Effectively Propositional Logic Using DPLL and
Substitution Sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 410–425. Springer, Heidelberg (2008)

13. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT - A distributed and learning equa-
tional prover. Journal of Automated Reasoning 18(2), 189–198 (1997)

14. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause Elimination.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg
(2005)

15. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

16. Eiter, T., Faber, W., Traxler, P.: Testing Strong Equivalence of Datalog Programs - Implemen-
tation and Examples. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005.
LNCS (LNAI), vol. 3662, pp. 437–441. Springer, Heidelberg (2005)

17. Emmer, M., Khasidashvili, Z., Korovin, K., Voronkov, A.: Encoding industrial hardware
verification problems into effectively propositional logic. In: Bloem, R., Sharygina, N.
(eds.) The 10th International Conference on Formal Methods in Computer-Aided Design
(FMCAD 2010), pp. 137–144. IEEE (2010)

18. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc.
18th IEEE Symposium on LICS, pp. 55–64. IEEE (2003)

19. Ganzinger, H., Korovin, K.: Integrating Equational Reasoning into Instantiation-Based The-
orem Proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210,
pp. 71–84. Springer, Heidelberg (2004)

Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning 269

20. Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)

21. Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)
22. Heule, M., Järvisalo, M., Biere, A.: Clause Elimination Procedures for CNF Formulas. In:

Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer,
Heidelberg (2010)

23. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination in Vampire. In:
Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195. Springer, Heidelberg
(2010)

24. Hooker, J.N., Rago, G., Chandru, V., Shrivastava, A.: Partial instantiation methods for infer-
ence in first order logic. Journal of Automated Reasoning 28, 371–396 (2002)

25. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive datalog
programs. In: The Ninth International Conference on Principles of Knowledge Representa-
tion and Reasoning, pp. 152–162. AAAI Press (2004)

26. Hustadt, U., Schmidt, R.: MSPASS: Modal Reasoning by Translation and First-Order Res-
olution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 67–71. Springer,
Heidelberg (2000)

27. Kapur, D., Narendran, P., Rosenkrantz, D., Zhang, H.: Sufficient-completeness, ground-
reducibility and their complexity. Acta Informatica 28(4), 311–350 (1991)

28. Khasidashvili, Z., Kinanah, M., Voronkov, A.: Verifying equivalence of memories using a
first order logic theorem prover. In: The 9th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2009), pp. 128–135. IEEE (2009)

29. Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints. Revue
Francaise d’Intelligence Artificielle 4(3), 9–52 (1990); Special issue on automated deduction

30. Korovin, K.: iProver v0.2. In: Sutcliffe, G. (ed.) The CADE-21 ATP System Competition
(CASC-21) (2007), see also [31]

31. Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order Logic (Sys-
tem Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

32. Korovin, K., Sticksel, C.: iProver-Eq: An Instantiation-Based Theorem Prover with Equal-
ity. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 196–202. Springer,
Heidelberg (2010)

33. Korovin, K., Sticksel, C.: Labelled Unit Superposition Calculi for Instantiation-Based Rea-
soning. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 459–473.
Springer, Heidelberg (2010)

34. Lassez, J.-L., Marriott, K.: Explicit representation of terms defined by counter examples.
Journal of Automated Reasoning 3(3), 301–317 (1987)

35. Lee, S.-J., Plaisted, D.: Eliminating duplication with the Hyper-linking strategy. Journal of
Automated Reasoning 9, 25–42 (1992)

36. Lynch, C., McGregor, R.E.: Combining Instance Generation and Resolution. In: Ghilardi,
S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 304–318. Springer, Heidelberg
(2009)

37. McCune, W.: OTTER 3.0 reference manual and guide. Technical Report ANL-94/6, Argonne
National Laboratory (1994)

38. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier (2001)

39. Navarro Pérez, J.A.: Encoding and Solving Problems in Effectively Propositional Logic. PhD
thesis, University of Manchester (2007)

40. Navarro-Pérez, J.A., Voronkov, A.: Encodings of Bounded LTL Model Checking in Effec-
tively Propositional Logic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603,
pp. 346–361. Springer, Heidelberg (2007)

270 K. Korovin

41. Navarro, J.A., Voronkov, A.: Proof Systems for Effectively Propositional Logic. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 426–440. Springer, Heidelberg (2008)

42. Pichler, R.: Explicit versus implicit representations of subsets of the Herbrand universe.
Theor. Comput. Sci. 290(1), 1021–1056 (2003)

43. Plaisted, D., Zhu, Y.: Ordered semantic hyper-linking. J. Autom. Reasoning 25(3), 167–217
(2000)

44. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, pp. 1853–1964. Elsevier and MIT Press (2001)

45. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Proc. of the 17 International
Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 611–617. Morgan Kaufmann
(2001)

46. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communica-
tions 15(2-3), 91–110 (2002)

47. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)
48. Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Indexing. In: Sut-

cliffe, G., Schulz, S., Tammet, T. (eds.) Proc. of the IJCAR-2004 Workshop on Empirically
Successful First-Order Theorem Proving, Cork, Ireland. ENTCS. Elsevier Science (2004)

49. Suda, M., Weidenbach, C., Wischnewski, P.: On the saturation of YAGO. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 441–456. Springer, Heidelberg (2010)

50. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

51. Sutcliffe, G.: CASC-23 proceedings of the CADE-23 ATP system competition (2011),
http://www.cs.miami.edu/˜tptp/CASC/23/Proceedings.pdf

http://www.cs.miami.edu/~tptp/CASC/23/Proceedings.pdf

Common Knowledge Logic

in a Higher Order Proof Assistant

Pierre Lescanne

Laboratoire de l’Informatique du Parallélisme,
École Normale Supérieure de Lyon

46, Allée d’Italie, 69364 Lyon 07, France
Pierre.Lescanne@ens-lyon.fr

To my old friend and colleague Harald Ganzinger.

Abstract. This paper presents experiments on common knowledge logic,
conducted with the help of the proof assistant Coq. The main feature
of common knowledge logic is the eponymous modality that says that
a group of agents shares a knowledge about a certain proposition in a
inductive way. This modality is specified by using a fixpoint approach.
Furthermore, from these experiments, we discuss and compare the struc-
ture of theorems that can be proved in specific theories that use common
knowledge logic. Those structures manifest the interplay between the
theory (as implemented in the proof assistant Coq) and the metatheory.

1 Introduction

In a previous paper [14], I have presented an implementation of the common
knowledge logic in Coq. There I have shown how this applies to prove mechan-
ically popular puzzles as prolegomenon of other potential applications. In these
experiments I have shown in particular that in the literature (mostly devoted
to study model theory of common knowledge logic) some concepts of proof the-
ory are not clearly brought out and statements made at the meta-level, i.e., in
the meta-theory, are not sorted out from statements made at the level of the
language, i.e., in the theory. In the deep embedding in a proof assistant (where
the logic is fully implemented into the meta-language) the distinction between
meta-theory and theory is made explicit, by construction. The proof assistant
cannot accept ill-formed expressions and forces the user to specify the level of
statements he makes, namely inside the theory or outside the theory. Thus the
kind of implication or quantification or even statement, e.g., axiom or premise
of a logical implication, has to be made precise. On the opposite, in the hand-
written treatments of the puzzles, it is not clear whether a statement is made an
axiom stated as such in the meta-theory or a proposition stated as the premise
of a logical implication. This confusion is especially present in the literature on

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 271–284, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

272 P. Lescanne

economic games [23,8]. Using a quantification in the meta-theory vs a quantifi-
cation in the theory can change dramatically the strength of a statement and its
scope.

In this paper, my approach is this of a proof theorist with inclination to ex-
periments. My goal is twofold. First I present a new axiomatization of common
knowledge logic (axiom FB and rule LFB). Second I discuss a specific problem of
common knowledge logic, namely the dilemma between internalizing or external-
izing implication. Here one needs some explanation. In a proof theoretic approach
there are two kinds of implications: an internal implication (the implication of the
object theory) written here ? ⇒? , and the external implication (the implication
of the meta-theory) written �?

�? . Here , � ϕ means “ϕ is a theorem”. This discus-
sion about the two views of the same problem in common knowledge logic will
be made first through examples and at this exploratory state no meta-theorem is
proved. There are two approaches when solving a puzzle. In the first approach, a
statement is made an axiom, say � ϕ, this axiom leads to the proof of � ψ, prov-
ing the meta implication �ϕ

�ψ . In the second approach, one proves � CG(ϕ) ⇒ ψ,
where CG is the common knowledge modality. From experiments, I have drawn
the following statements. These two approaches seem to be equivalent and show
the interplay between the theory and the meta-theory. An interesting meta-
theorem could be to prove that equivalence (see Section 5). I call external vs in-
ternal the equivalence of �ϕ

�ψ with � CG(ϕ) ⇒ ψ. In this paper all the discussion is
based on experiments made in the proof assistantCoq and the paper can be seen
as the description of those experiments. I discovered in [5] that the correspon-
dence between �ϕ

�ψ and � CG(ϕ) ⇒ CG(ψ) is known, but it is not the one I am
looking for. In what follows, the typewriter font is for code taken from the Coq

implementation. Most of the development in Coq is available on the WEB at
http://perso.ens-lyon.fr/pierre.lescanne/COQ/epistemic_logic.v

(see [14] or a presentation). The rest can be found in [21].

2 Presentation of Common Knowledge Logic

Historical Facts

The concept of common knowledge has been introduced by the philosopher
Lewis [16] and since is used in several context namely distributed systems [13,20],
artificial intelligence [18] and game theory [1].

Epistemic Logic

The basis of common knowledge logic is epistemic logic. In my experiments in
Coq [4], epistemic logic is presented by a Hilbert-style system of rules and ax-
ioms. Since I use second order logic, I define only the (internal) implication
and I derive the other connectors. There are only two rules namely MP, i.e.,
the Modus Ponens and KG also known as Knowledge Generalization and three

http://perso.ens-lyon.fr/pierre.lescanne/COQ/epistemic_logic.v

Common Knowledge Logic in a Higher Order Proof Assistant 273

�K ϕ
Taut

� ϕ

KK� (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ
TK� Kiϕ ⇒ ϕ

� ϕ � ϕ ⇒ ψ
MP

� ψ

� ϕ
KGK� Kiϕ

Fig. 1. The basic rules of epistemic logic: the system T

axioms Taut, K and T. Actually Taut is an axiom scheme as it says that every
classical tautology is a theorem in common knowledge logic. Such an approach
requires a “deep embedding” (see appendix A). The main reason is that modal
logic cannot be easily implemented with natural deduction without changing its
basic philosophy1. Epistemic logic is based on modal logic and in this paper
only the system T (see Figure 1) is considered. Since there is much flexibility
in the terminology, I decided to stick to the terminology of [5]. Epistemic logic
introduces one modality for each agent: it expresses that that agent “knows”
the proposition that follows the modality. More specifically, if ϕ is a proposition,
Ki(ϕ) is the proposition ϕ modified by the modality Ki which means “Agent i
knows ϕ”. In Figure 1, the statement �K ϕ means that ϕ is a theorem in classical
propositional logic (this time,K stands for the German adjective “klassisch” [9]).
Knowing whether classical logic is relevant is a topics of research [24].

Common Knowledge Logic

Now let us suppose that we have a group G of agents. The knowledge of a fact
ϕ can be shared by the group G, i. e., “each agent in G knows ϕ”. We write
EG(ϕ) and the meaning of EG is easily axiomatized by the equivalence given
in Figure 2 which can also be seen as the definition of EG; it is called shared
knowledge.

In common knowledge logic, there is another modality, called common knowl-
edge which is much stronger than shared knowledge. It is also associated with
a group G of agents and is written CG. Given ϕ, CG(ϕ) is the least solution of
the equation

1 The reason why one cannot use a natural deduction of a sequent calculus approach
is essentially due to the rule KG. If one accepts such a rule in natural deduction,
one gets

Γ � ϕ

Ki(Γ) � Ki(ϕ)

This requires to extend the operator Ki to contexts like Γ . If instead of Ki one uses
a modality �, one says that �(Γ) is a “boxed context”. Actually linear logic [10]
is perhaps the archetypical modal logic and the equivalent of Ki is the modality of
course written “!”. The equivalent of KG is a rule called also of course. Without that
rule the proof net presentation is somewhat simple [12]. Its introduction requires a
machinery of boxes which increases its complexity.

274 P. Lescanne

E
� EG(ϕ) ⇔

∧
i∈G

Kiϕ

Fig. 2. Shared knowledge

x⇔ ϕ ∧EG(x).

“Least” should be taken w.r.t. the order induced by ⇒. A proposition ψ is less
than a proposition ρ if ρ⇒ ψ. As well known in the fixed point theory, the least
solution of the above equation is also the least solution of the inequation:

x⇒ ϕ ∧EG(x).

The axiomatization of Figure 3 characterizes CG(ϕ) by two properties. Together
with the system T and the definition of EG it forms the system CKG. It asserts
two things.

1. CG(ϕ) is a solution of the inequation x⇒ ϕ ∧EG(x), axiom FB,
2. If ρ is another solution of the inequation, then ρ implies CG(ϕ), which means

that ρ is greater than CG(ϕ)). This is rule LFB.

One can prove that CG satisfies axioms and rules of T, where Ki is replaced by
CG even when G = ∅. Thus we prove

KC� (CGϕ ∧CG(ϕ⇒ ψ)) ⇒ CGψ
TC

� CGϕ⇒ ϕ

� ϕ
KGC� CGϕ

KGC stands for Common Knowledge Generalization. Notice that TC and �ϕ
�ϕ

on one side and � CGϕ ⇒ CGϕ and KGC on the other side form the two first
instances of external vs internal. Actually one can prove more, namely that CG

satisfies axiom 4C , namely � CG(ϕ) ⇒ CG(CG(ϕ)). It is a variant for common
knowledge logic of the axiom � Ki(ϕ) ⇒ Ki(Ki(ϕ)) of epistemic logic known as
Positive Introspection or 4K . The proof of 4C does not requires this of 4K

2.
Notice that the presentation of common knowledge given in Figure 3 is some-

what new in logic of knowledge. It is more robust than this of Fagin et al. [5]
which itself formalizes this of Aumann [1]. Our axiomatization works even for an
empty set of agents and this is crucial, as starting with an empty set of agents
is the key of a recursive definition of EG and CG. However, as pointed out by
a reader of this paper, this presentation is well known in modal logic and dy-
namic logic [11], since CG is just the reflexive and transitive closure3 of EG and

2 This seems to show that 4, which is a controverted axiom in general, should be
stated more appropriately for the common knowledge of a group of agents rather
than for the knowledge of an individual agent.

3 From a model theory point of view, i.e., if one sees as relations the modality which
are proposition transformers in proof theory.

Common Knowledge Logic in a Higher Order Proof Assistant 275

FB
� CG(ϕ) ⇒ ϕ ∧ EG(CG(ϕ))

� ρ ⇒ ϕ ∧EG(ρ)
LFB

� ρ ⇒ CG(ϕ)

Fig. 3. The rules for common knowledge

(A7) CG(ϕ) ⇒ ϕ

(A8) CG(ϕ) ⇒ EG(CG(ϕ))

(A9) CG(ϕ) ∧ CG(ϕ ⇒ ψ) ⇒ CG(ψ)

(A10) CG(ϕ ⇒ EG(ϕ)) ⇒ ϕ ⇒ CG(ϕ)

(R3)
ϕ

CG(ϕ)

Fig. 4. Meyer and van der Hoek axioms TECG

a presentation by fixpoint is well-known in this framework. Amazingly, Aumann
and Fagin et al. consider only the transitive closure of EG not the reflexive and
transitive which seems more natural whereas the reflexive and transitive closure
seems more natural.

Two Presentations of Common Knowledge Logic

This presentation should be compared with this given by Meyer and van der
Hoek on page 46 of [19] (see Figure 4). The system T ∪ {A7, A8, A9, A10, R3},
together with the definition of EG, is called TECG. One notices that axioms (A7)
and (A8) are just a splitting of axiom Fixpoint, i.e., one splits the conclusion
ϕ ∧ EG(CG(ϕ)). Axiom (A9) is axiom KC mentioned above and (R3) is KGC

also mentioned above. As said, both (A9) and (R3) can be proved as theorems
in CKG. (A10) is more interesting and requires specific consideration. Figure 5
sketches a proof of (A10) as a theorem in CKG. Therefore CKG implies TECG.

TECG implies CKG. Indeed axiom FB is an obvious consequence of TECG

and we prove that rule LFB is a consequence of TECG as follows.

ρ⇒ ϕ ∧ EG(ρ)

ρ⇒ EG(ρ)
(R3)

CG(ρ⇒ EG(ρ))
(A10 +MP)

ρ⇒ CG(ρ)

ρ⇒ ϕ ∧EG(ρ)

ρ⇒ ϕ
(R3)

CG(ρ ⇒ ϕ))
(A9 +MP)

CG(ρ) ⇒ CG(ϕ)
(Transitivityof ⇒)

ρ⇒ CG(ϕ)

276 P. Lescanne

C
G

(ϕ
⇒

E
G

(ϕ
))

∧
ϕ

⇒
ϕ

C
G

(ϕ
⇒

E
G

(ϕ
))

⇒
E

G
(C

G
(ϕ

⇒
E

G
(ϕ

))
)

� �

� �
A

8

C
G

(ϕ
⇒

E
G

(ϕ
))

⇒
(ϕ

⇒
E

G
(ϕ

))
� �

� �
A

7

C
G

(ϕ
⇒

E
G

(ϕ
))

∧
ϕ

⇒
E

G
(ϕ

)

C
G

(ϕ
⇒

E
G

(ϕ
))

∧
ϕ

⇒
E

G
(C

G
(ϕ

⇒
E

G
(ϕ

))
)
∧

E
G

(ϕ
)

C
G

(ϕ
⇒

E
G

(ϕ
))

∧
ϕ

⇒
E

G
(C

G
(ϕ

⇒
E

G
(ϕ

))
∧

ϕ
)
T
ra

ns
it
iv

it
y

of
⇒

C
G

(ϕ
⇒

E
G

(ϕ
))

∧
ϕ

⇒
ϕ

∧
E

G
(C

G
(ϕ

⇒
E

G
(ϕ

))
∧

ϕ
)
L
F
B

C
G

(ϕ
⇒

E
G

(ϕ
))

∧
ϕ

⇒
C

G
(ϕ

)

C
G

(ϕ
⇒

E
G

(ϕ
))

⇒
ϕ

⇒
C

G
(ϕ

)

F
ig
.
5
.
A

p
ro
o
f
o
f
M
ey
er

a
n
d
va

n
d
er

H
o
ek

’s
a
x
io
m

(A
1
0
)

C
G

(ϕ
⇒

E
G

(ϕ
))

⇒
E

G
(C

G
(ϕ

⇒
E

G
(ϕ

))
)

� �

� 	
(A

8)

A
∧

ϕ
⇒

E
G

(A
)

C
G

(ϕ
⇒

E
G

(ϕ
))

⇒
(ϕ

⇒
E

G
(ϕ

))
� �

� 	
(A

7)

C
G

(ϕ
⇒

E
G

(ϕ
))

∧
ϕ

⇒
(ϕ

⇒
E

G
(ϕ

))
∧

ϕ
(ϕ

⇒
E

G
(ϕ

))
∧

ϕ
⇒

E
G

(ϕ
)

C
G

(ϕ
⇒

E
G

(ϕ
))

∧
ϕ

⇒
E

G
(ϕ

)

A
∧

ϕ
⇒

E
G

(A
∧

ϕ
)

(R
10

)
A

∧
ϕ

⇒
C

G
(A

∧
ϕ
)

F
ig
.
6
.
A

p
ro
o
f
o
f
A

∧
ϕ
⇒

C
G
(A

∧
ϕ
)

Common Knowledge Logic in a Higher Order Proof Assistant 277

(R10) Implies (A10). In the above proof, we should notice that instead of
axiom (A10), we use rule

CG(ϕ⇒ EG(ϕ))
(R10)

ϕ⇒ CG(ϕ)

which is a direct consequence of (A10) by MP. By analogy with (A10), we call
that rule (R10). A closer look shows that we use the derived rule

ϕ⇒ EG(ϕ)
(R10′)

ϕ⇒ CG(ϕ)

which is the above rule combined with (R3). See section Discussion below to
understand why we are interested in that rule. Let us come back to (R10) and
let us call TEC′

G the system T ∪ {A7, A8, A9, R10, R3}. Since we have a proof
of CKG in TEC′

G and a proof of TECG, in particular of (A10), in CKG, we have
an indirect proof of TECG in TEC′

G or, in short, of (R10) implies (A10). Here
is a direct proof.

Let us state A ≡ CG(ϕ⇒ EG(ϕ)) in this proof. First, let us prove A∧ ϕ⇒
CG(A ∧ ϕ) (see Figure 6).

The rest is easy. First, we notice that we have CG(A ∧ ϕ) ⇒ CG(ϕ).

A ∧ ϕ⇒ ϕ
(R3)

CG(A ∧ ϕ⇒ ϕ)
(A9) +MP

CG(A ∧ ϕ) ⇒ CG(ϕ)

By transitivity of ⇒, we get A ∧ ϕ ⇒ CG(ϕ). But clearly A ∧ ϕ ⇒ CG(ϕ) is
equivalent to A ⇒ ϕ ⇒ CG(ϕ) which is CG(ϕ ⇒ EG(ϕ)) ⇒ ϕ ⇒ CG(ϕ), e.g.,
(A10).

Discussion

The equivalence between (A10) and (R10′) is a third instance of external vs
internal. Indeed, we have shown that a proposition of the form � CG(ρ) ⇒ ψ is
equivalent to a rule of the form �ρ

�ψ .

3 The Three Wise Men

The first example we address is the well-known example of the three wise men.
See [14] for a more detailed presentation. It is stated usually as follows ([5],
Exercise 1.3): “There are three wise men. It is common knowledge that there are
three red hats and two white hats. The king puts a hat on the head of each of
the three wise men and asks them (sequentially) if they know the color of the hat
on their head. The first wise man says that he does not know; the second wise
man says that he does not know; then the third man says that he knows”. Let

278 P. Lescanne

us call the three wise persons Alice, Bob and Carol. Let us write white Alice

for “Alice wears a white hat” and red Alice for “Alice wears a red hat”. The
puzzle is based on a function which says whether an agent knows the color of
her (his) hat:

Definition Kh := fun i => (K i (white i)) V (K i (red i)).

Clearly one has to prove that Kh Carol holds under some assumptions. To make
clear theses assumptions, we define in addition a few propositions namely

Definition One_hat := \-/(fun i:nat => white i | red i).

which says that every agent wears a red hat or a white hat. If P is a predicate,
\-/P is the logical quantification, i.e., the quantification in the theory not this
in the meta-theory.

Definition Two_white_hats := white Bob & white Carol ==> red Alice.

which says that there are two white hats. Notice that this is stated in a weak
form, indeed it is only when Bob and Carol wear white hats that one can deduce
that Alice wears a red hat. Moreover there are three concepts which say that
each agent sees the hat of the other agents and therefore knows the color of the
hat.

Definition K_Alice_white_Bob := white Bob ==> K Alice (white Bob).

Definition K_Alice_white_Carol := white Carol ==> K Alice (white Carol).

Definition K_Bob_white_Carol := white Carol ==> K Bob (white Carol).

A First Result

In a first attempt [14], the five above propositions were stated as axioms and I
was able to prove:

|- K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob)
==> K Carol (red Carol).

In Coq this would give a statement like

|- One_hat &
K_Alice_white_Bob &
K_Alice_white_Carol &
K_Bob_white_Carol &
Two_white_hats ->

|- K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob)
==> K Carol (red Carol).

where -> is the meta-implication, i.e., this of Coq and as usual |−ϕ says that
proposition ϕ is a theorem.

Common Knowledge Logic in a Higher Order Proof Assistant 279

A Second Result

In the second attempt one proves:

|- K Carol (K Bob (One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol &
(K Alice Two_white_hats) &
¬ Kh Alice) &

¬ Kh Bob)
==> Kh Carol.

This tells exactly the amount of knowledge which Carol requires to deduce that
she knows the color of her hat, actually red. Let us call Alice Bob Carol the
group made of Alice, Bob and Carol. From the above statement, one derives the
corollary:

|- C Alice_Bob_Carol (Two_white_hats &
One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol)

==> K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob) ==> Kh Carol.

which is weaker. But if we state

ϕ ≡ Two_white_hats &
One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol

and

ψ ≡ K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob) ==> Kh Carol

we notice that we have exhibited a fourth instance of external vs internal since
� CG(ϕ) ⇒ ψ and �ϕ

�ψ are equivalent.

4 The Muddy Children

This problem had many variants [17,7,6,8]. It is a typical example of how a
community of agents acquires knowledge. In its politically correct version [5,19],
a group of children have mud on their head after playing during a birthday party.
The kids do not know they have mud on their head. The father of the kid who
organized the party asked the children to come around him in a circle for the
kids to see each other and he tells them that there is at least one child who has
mud on his face so that they clearly all hear him. Then Father asks the kids who

280 P. Lescanne

have mud to step forward. He repeats this last sentence until all the kids step
forward.

Philosophers have been puzzled by the fact that the first sentence of Father
namely “There is at least one child with mud on his face” is absolutely necessary.
This fact is known by the children, but by doing so, Father makes it a common
knowledge. In [14], we have identified that the key lemma is

Lemma Progress :
forall n p : nat,
|- C ([:n+1:]) (At_least (n+1) p) &

E ([:n+1:]) (¬ Exactly (n+1) p)
==> C ([:n+1:]) (At_least (n+1) (p+1)).

In other words, if the fact that there is at least p muddy children is a common
knowledge and all the children know that there is not exactly p muddy children,
then the fact that there is at least p+1 muddy children is a common knowledge.
Together with the first statement of Father:

Axiom First_Father_Statement :
|- C ([:nb_children:]) (At_least n 1).

we are able to prove after n steps C ([:n:]) (At least n n) which means that
the fact that there is at least n muddy children is common knowledge. This is the
final result. Common knowledge is important here because one can “progress” in
common knowledge and not in shared knowledge. Thus the first statement that
provides a first common knowledge allows initialization. The proof of Progress
relies on a statement
Knowledge_Diffusion :
forall n p i : nat,

|- E ([:n:]) (At_least n p) ==>
E ([:n:]) (¬ Exactly n p) ==>
K i (E ([:n:]) (¬ Exactly n p)).

This statement is here to translate what children see after Father has asked the
muddy ones to step forward and none did. They all know that there is at least
p muddy children and they all know that there is not exactly p muddy children
otherwise those with muddy face would have stepped forward, but now each one
knows that all the others know that there is not exactly p muddy children.

Knowledge Diffusion as an Axiom

In a first experiment, we made Knowledge Diffusion an axiom and we were
able to prove Progress in its above form.

Knowledge Diffusion as a Common Knowledge

In the second experiment, we consider that proposition Knowledge Diffusion

should not be made an axiom, i.e., an immutable principle, but it should be

Common Knowledge Logic in a Higher Order Proof Assistant 281

made just a rule of a game upon everyone agrees. Therefore the rules of the
game are common knowledge that everyone accepts; agreeing on these rules
makes everyone to act and reason according to them, i.e., “rationally”. In this
version Progress becomes:

Lemma Progress :
forall n p : nat,
|- C ([:n+1:])(Knowledge_Diffusion) ==>

(C ([:n+1:]) (At_least (n+1) p) &
E ([:n+1:]) (¬ Exactly (n+1) p))
==> C ([:n+1:]) (At_least (n+1) (p+1)).

Discussion

Again we show that we can change an statement of the form �ϕ
�ψ into a statement

of the form � CG(ϕ) ⇒ ψ. Here

ϕ ≡ C ([:n+1:]) (At_least (n+1) p) &
E ([:n+1:]) (¬ Exactly (n+1) p))

and

ψ ≡ C ([:n+1:]) (At_least (n+1) (p+1)).

This is a fifth instance of external vs internal.

5 The Equivalence between Internal and External
Implication

Fagin et al [5] in exercise 3.29 notice, with no reference, that �ϕ
�ψ and

� CG(ϕ) ⇒ CG(ψ) are equivalent. One notice by TC , i.e., � CG(ρ) ⇒ ρ, that
this statement is stronger than external vs internal, which states4 the equiva-
lence between �ϕ

�ψ and � CG(ϕ) ⇒ ψ. The proof of that result cannot be readily
implemented in Coq in our current implementation of common knowledge logic
since this requires a deeper embedding of the theory. In short, in order to mech-
anize that proof, one needs not only internalize the object implication, which
we called internal implication, but also what we called the external implication,
since a meta-proof of the equivalence requires an induction on the proof of �ϕ

�ψ . In
a first step, one can prove in Coq that all the rules of common knowledge logic,
namely MP,KG and LFB have their equivalent in the form � CG(ϕ) ⇒ CG(ψ),
namely:

� CG((ϕ⇒ ψ) ∧ ϕ) ⇒ CG(ψ) � CG(ϕ) ⇒ CG(Ki(ϕ))

� CG(ρ⇒ ϕ ∧ EG(ρ)) ⇒ CG(ρ⇒ CG(ϕ))

4 Provided that ψ does not contain any knowledge modality relative to an agent outside
the set G.

282 P. Lescanne

The first one is a variant, by the means of � CG(χ ∧ ρ) ⇔ CG(χ) ∧ CG(ρ), of
KC or (A9). The second one is a basic result of common knowledge logic. The
third theorem has no equivalent in the literature and has been proved in Coq

for that purpose. Then we get the following interesting result:

� CG(ϕ) ⇒ CG(ψ) �� � CG(ϕ) ⇒ ψ �� �ϕ
�ψ

��

The back arrow is proved by induction of the length of the deduction � ϕ -> � ψ.
Therefore, one notices three levels of implications: the implication ⇒ in the
theory, the implication �?

�? in the metatheory and the implication �� in the
meta-metatheory. From the above diagram one gets

� CG(ϕ) ⇒ ψ �� � CG(ϕ) ⇒ CG(ψ) .

Actually we have
� CG(ϕ) ⇒ ψ

� CG(ϕ) ⇒ CG(ψ)

as follows
� CG(ϕ) ⇒ ψ � CG(ϕ) ⇒ EG(CG(ϕ))

� CG(ϕ) ⇒ ψ ∧ EG(CG(ϕ))
LFB

� CG(ϕ) ⇒ CG(ψ)

since � CG(ϕ) ⇒ EG(CG(ϕ)) is a theorem of common knowledge logic.

6 Conclusion

On another hand, it is worth to mention the study on combining common knowl-
edge logic and dynamic logic we have done with Jérôme Puisségur [22,15]. The
dynamic logic is used to describe changes in the world, but those changes are
purely epistemic (an idea we borrow from Baltag, Moss and Solecki [3,2]). This
means that they affect only knowledge of the agents and nothing else. The muddy
children puzzle has been axiomatized in this framework and a proof of its re-
sults has been fully mechanized in Coq. We can draw already two lessons form
those experiences. First when merging two modal logics it seems that internal-
izing common knowledge is more appropriate. In other words, an approach like
� CG(ϕ) ⇒ ψ should be preferred to setting the axiom � ϕ to prove � ψ, as
one does not know which metatheory a specific statement belongs to: dynamic
logic or common knowledge logic? Second a formalization of predicate logic, al-
lows expressing easily arbitrary depth of shared logic according to the number
of agents. More precisely, common knowledge is not a priori necessary in the
muddy children example and just a specific number of imbricated shared knowl-
edge modalities corresponding to the number of children. This fact was already
noticed by authors [8].

Common Knowledge Logic in a Higher Order Proof Assistant 283

Acknowledgment. I would like to thank Bertrand Prémaillon who made part
of the experiments in Coq and René Vestergaard for stimulating discussions.

References

1. Aumann, R.J.: Backward induction and common knowledge of rationality. Games
and Economic Behavior 8, 6–19 (1995)

2. Baltag, A.: A logic of epistemic actions. In: van der Hoek, W., Meyer, J.-J.,
Witteveen, C. (eds.) Proceedings of the ESSLLI 1999 workshop on Foundations
and Applications of Collective Agent-Based Systems. Utrecht University (1999)

3. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge and private suspicion. In: Proc. of TARK, pp. 43–56. Morgan Kaufmann
Publishers (1998)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
The MIT Press (1995)

6. Gamow, G., Stern, M.: Forthy unfaithful wives. In: Puzzle Math., pp. 20–23. The
Viking Press, New York (1958)

7. Gardner, M.: Puzzles from other worlds. Vintage (1984)

8. Geanakoplos, J.: Common knowledge. In: Aumann, R., Hart, S. (eds.) Handbook
of Game Theory, vol. 2, pp. 1437–1496. Elsevier, Amsterdam (1994)

9. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 210, 405–431 (1935)

10. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

11. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

12. Lafont, Y.: From proof nets to interaction nets. In: Girard, J.-Y., Lafont, Y., Reg-
nier, L. (eds.) Advances in Linear Logic, pp. 225–247. Cambridge University Press
(1995)

13. Lehmann, D.: Knowledge, common knowledge and related puzzles (extended sum-
mary). In: PODC 1984: Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing, pp. 62–67. ACM Press, New York (1984)

14. Lescanne, P.: Mechanizing epistemic logic with Coq. Annals of Mathematics and
Artificial Intelligence 48, 15–43 (2006)

15. Lescanne, P., Puisségur, J.: Dynamic logic of common knowledge in a proof assis-
tant, http://hal-ens-lyon.archives-ouvertes.fr/ensl-00198782

16. Lewis, D.: Convention: A philosophical study. Harvard University Press, Cambridge
(1969)

17. Littlewood, J.E.: Littlewood’s miscellany. Cambridge University Press, Cambridge
(1986)

18. McCarthy, J., Sato, M., Hayashi, T., Igarashi, S.: On the model theory of knowl-
edge. Technical Report AIM-312, Stanford University (1977)

19. Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for Artificial Intelligence and
Computer Science. Cambridge Tracts in Theoretical Computer Science, vol. 41.
Cambridge University Press (1995)

20. Moses, Y.O., Dolev, D., Halpern, J.Y.: Cheating husbands and other stories: a
case study in knowledge, action, and communication. Distributed Computing 1(3),
167–176 (1986)

http://hal-ens-lyon.archives-ouvertes.fr/ensl-00198782

284 P. Lescanne

21. Prémaillon, B.: Logique épistémique, modélisation dans un assistant de preuve.
Master’s thesis, Master Ingénierie Mathématique, Université Claude Bernard, Lyon
(2005)

22. Puisségur, J.: Eléments de construction d’une logique épistémique et dynamique.
Rapport de stage de licence de l’École normale supérieure de Lyon (2005)

23. Samet, D.: Hypothetical knowledge and games with perfect information. Games
and Economic Behavior 17, 230–251 (1996)

24. Vestergaard, R., Lescanne, P., Ono, H.: The inductive and modal proof theory
of Aumann’s theorem on rationality. Technical Report IS-RR-2006-009, JAIST
(2006), http://www.jaist.ac.jp/ vester/Writings/

vestergaard-IS-RR-2006-009.pdf

A Deep Embedding

A logic L, the object logic or the object theory, is said to be deeply embedded
in another logic M, the meta-theory, or in a proof assistant if one considers the
logic M to be this of the proof assistant, if all the constituents of the logic L are
made objects of the logic M and all the connectors and the rules of L are defined
inside the logic M. This is opposed to shallow embedding where L and M may
share connectors and rules. A shallow embedding is usually more concise, but in a
deep embedding a clear distinction is made between the connectors of the object
theory and those of the meta-theory. In a deep embedding the connector and
the corresponding meta-connector can be somewhat connected, but they cannot
match completely. For instance, it could happen that the meta-disjunctions of
two propositions meta-implies the proposition made as the conjunction of the
two propositions and not vice-versa, in a sense made precise in formalizing the
object theory.

Moreover not all the logics can be shallowly embedded. This is the case for
common knowledge logic which cannot be formalized easily in a natural deduc-
tion framework.

http://www.jaist.ac.jp/~vester/Writings/vestergaard-IS-RR-2006-009.pdf
http://www.jaist.ac.jp/~vester/Writings/vestergaard-IS-RR-2006-009.pdf

Constructing Bachmair-Ganzinger Models�

Christopher Lynch

Department of Mathematics and Computer Science Box 5815,
Clarkson University, Potsdam, NY 13699-5815, USA

clynch@clarkson.edu

Abstract. We give some algorithms for constructing models from sets
of clauses saturated by Ordered Resolution (with Selection rules). In the
ground case, we give an efficient algorithm for constructing a minimal
model. Then we generalize minimal models to preferred models, which
may be useful for verification. For the ground case, we also show how to
construct all models for a set of clauses saturated by Ordered Resolution,
in time polynomial in the number of models. We also generalize our
results to nonground models, where we add a restricted splitting rule
to our inference rules, and show that for any set of clauses saturated
by Ordered Resolution (with Selection), a query about the truth of a
particular atom in the model can be decided.

1 Introduction

It is generally believed that a major drawback of Resolution-based theorem prov-
ing methods is that a model is not constructed when the set of clauses is satisfi-
able. If the inference system halts without producing the empty clause, then the
set of clauses is determined to be satisfiable. But there is no model constructed.
The set of clauses produced by the inference system can be considered to rep-
resent a model in some sense. In fact, it is possible to theoretically construct
a model in this case. But in the practical sense, there is no known method for
determining if a ground atom is true in this theoretically constructed model.
This problem has received some attention[9,6,5], and methods have been given
in some restricted cases. The main goal of this paper is to determine a more
general way to accomplish this.

Interestingly, the method of Bachmair and Ganzinger[1] for proving complete-
ness of the resolution inference system actually constructs a model for a set of
clauses saturated by Resolution when the empty clause cannot be produced. But
this is only a theoretical construction. It is difficult to use this practically. In the
ground case (no variables), it can be done. But not in the nonground case.

In this paper, we first define a notion called a Preferred Model for ground
clauses. For each atom, the user defines a preference for that predicate of either
true or false. A model of a set of clauses is a Preferred Model if each atom
receives the preferred truth value whenever that is consistent with the truth

� This work was supported by NSF grant number CCR-0098270.

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 285–301, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

286 C. Lynch

value of all smaller atoms. For example, if each atom is preferred to be false,
then the Preferred Model is the Minimal Model. Each set of clauses has a unique
Preferred Model. We show that if a set of ground clauses S is saturated by
Ordered Resolution, then the Preferred Model of S can be constructed in time
O(|S|lg(|S|)). Preferred Models could be useful in verification. For example if a
program does not meet its specifications, then the programmer would like to see
a counterexample. Since all counterexamples might not make sense, it would be
useful for the programmer to express some preferences.

We then give an algorithm to show that if a set of clauses S has exactly k
models and if S is saturated by Ordered Resolution, then all models of S can
be constructed in time O(|S|lg(|S) + |S|k). In other words, the time needed
to construct all the models of S is just the time it takes to write out all the
models, plus an initialization time to sort the clauses. In general, a set of clauses
may have exponentially many models. But this result shows that if there are
only polynomially many models, then they can all be constructed in polynomial
time.

We extend our results on Preferred Models to nonground clauses saturated by
Ordered Resolution (possibly with selection rules). This is useful, because Or-
dered Resolution is an inference rule that often halts, the only model construc-
tion results of which we are aware which handles clauses saturated by Ordered
Resolution is the one of Peltier[9], but that method only handles some sets of
saturated clauses. Of course, models of nonground clauses may be infinite. We
do not try to schematize all the models. Instead, we are interested in developing
an algorithm which will decide if a given atom is true in the Preferred Model.
The notion of Preferred Model can be extended to nonground clauses by defining
it for the ground instances.

The first result for nonground clauses is related to results for Local Theories.
Given an ordering <, we can define the order type ot(n) to be the number of
atoms smaller than any atom of size n. If S is a set of clauses saturated by
Ordered Resolution, and if A is a ground atom, then it can be decided in time
polynomial in ot(|A|) whether A is true in the Preferred Model of S. We can
extend the result so that if N is a set of ground clauses, then it is decidable in
time exponential in ot(|N | + |A|) whether A is true in the Preferred Model of
S ∪N . The interest of this last result is that rather than just deciding whether
atoms are true in a model of S, we are asking whether atoms are true in a model
of any set of ground clauses modulo the theory of S.

The above results can only work if the order type is finite, and it is not finite for
some orderings. Therefore, we address the problems using a different technique.
First, we add a Splitting rule to the Resolution inference system, which is only
applicable in a restricted number of cases. Our major result is to show that if S is
a set of clauses saturated by Ordered Resolution (plus Selection) with Splitting,
then it is decidable whether A is in the Preferred Model of S. The Splitting rule
is especially restrictive if the Ordering satisfies some simple conditions, which
hold for most standard orderings.

Constructing Bachmair-Ganzinger Models 287

After some preliminaries in Section 2, and a definition of the inference system
in Section 3.1, we give some algorithms for constructing the minimal model for
a set of ground clauses in Section 3.2. We then define preferences and generalize
those algorithms for Resolution with preferences in Section 3.3. The results on
preferences are used to show that if a set of ground clauses is saturated by
Resolution, then all the models can be constructed in time polynomial in the
size of the set of clauses. After that, we extend the results to nonground clauses
by considering queries on clauses, first we give results related to local theories in
Section 4.1, then to all sets of clauses where a Splitting rule is used in Section
4.2. Finally we give some conclusions in Section 5.

2 Preliminaries

We follow standard definitions for Resolution theorem proving.[1]
We assume we are given a set of variables and a set of uninterpreted function

symbols of various arities. An arity is a non-negative integer. Terms are defined
recursively in the following way: each variable is a term, and if t1, · · · , tn are
terms, and f is of arity n ≥ 0, then f(t1, · · · , tn) is a term. If P is a predicate
symbol of arity n, and if t1, · · · , tn are terms, then P (t1, · · · , tn) is an atom. Any
atom or negation of an atom is a literal. A literal is called positive if it has no
negation. It is called negative if it has a negation. A clause is positive if all its
literals are positive. For all literal L, we define L̄ so that Ā = ¬̄A = A for each
atom A. A clause is a disjunction of literals. Any object without variables is
called ground. We will use * to represent true, and ⊥ to represent false.

A substitution is a mapping from the set of variables to the set of terms, such
that it is almost everywhere the identity. We identify a substitution with its
homomorphic extension. If θ is a substitution then Dom(θ) = {x | xθ
= x},
and Ran(θ) = {xθ | x ∈ Dom(θ)}. A substitution θ is a unifier of A and B, if
Aθ = Bθ. σ is a most general unifier of A and B, written σ = mgu(A,B) if σ is
a unifier of A and B, and for all unifiers θ of A and B, there is a substitution ρ
such that σρ = θ.

Given a clause C, define Gr(C) = {Cθ|Cθ is ground }. Given a set of clauses
S, let Gr(S) =

⋃
C∈S Gr(C)}. Let |S| be number the number of occurrences of

symbols in S.
We assume an ordering < which is substitution monotonic, meaning that s < t

implies sθ < tθ, and total on all ground terms and atoms. It can be extended to
literals in any way such that A < ¬A for all atoms A, but there is no literal in
between A and ¬A in the ordering. We consider a clause as the multiset of its
literals, and compare clauses using the multiset ordering. A literal L is said to
be maximum in a clause if it is larger than all other literals in the clause, and
maximal in a clause if no other literal in the clause is larger than it. We will use
“−” to denote set difference.

Define V ars(A) as the set of all variables in A. We will call an ordering
< variable monotonic if A < B implies V ars(A) ⊆ V ars(B) for all atoms A
and B. Most orderings, such as LPO and RPO[4] are variable monotonic on its

288 C. Lynch

terms. But if they are extended to atoms in a way such that P (s1, · · · , sn) <
Q(t1, · · · , tm) for given P and Q and all si and tj then they are not variable
monotonic in general. So, in practice orderings may or may not be variable
monotonic.

An interpretation M is defined to be a set of ground atoms. For a ground
atom A, we write M |= A if and only if A ∈ M . Then, as usual for ground
formulas F1 and F2

– M |= ¬F1 if and only if M
|= F1,
– M |= F1 ∧ F2 if and only if M |= F1 and M |= F2, and
– M |= F1 ∨ F2 if and only if M |= F1 or M |= F2.

If M is an interpretation, and A is an atom, then let MA = {B ∈ M | B < A}.
We can compare two interpretations M and N , and say that M < N if there is
an atom A such that MA = NA but A ∈ N and A
∈ M . Note that this does
not say that M is smaller than N as a multiset. For example, if M = {A,C}
and N = {A,B} and A < B < C, then M < N , but M is larger than N as a
multiset.

If M is an interpretation and S is a set of clauses, then M is a model of C if
M |= C for all C ∈ S. If M is a model of S, then we call M a minimal model of
S if there is no model N of S such that N < M . A clause is a tautology if it is
true in all interpretations.

3 Ground Models

3.1 Resolution Inference System

In this paper, we will be concerned with the Resolution inference system. This
inference system involves an ordering <. Based on that ordering, we have a
selection rule.. A selection rule is a function Sel such that for each clause C,
Sel(C) is a nonempty set of literals in C. If A ∈ Sel(C), then A is said to be
selected in C. A selection rule is called correct if for each clause C, (i) Sel(C)
is a set of positive literals that contains all maximal literals in C or (ii) Sel(C)
contains a negative literal and nothing else. Only selected literals are required
to be involved in inferences, although inferences on other literals are allowed.
If all maximal literals are selected in each clause, then the inference system is
called Ordered Resolution. In Ordered Resolution, inferences are only allowed
on maximal literals. That restriction is useful, because it causes the inference
system to halt in many more cases than the unrestricted case. Figure 1 gives the
Resolution Inference System.

For efficiency, the Resolution Inference System generally uses Redundancy
Deletion rules to delete redundant clauses. A clause is called redundant if it is
implied by smaller clauses, where a clause is viewed as a multiset of its literals
and clauses are compared using the multiset extension of the literal ordering.
Examples of redundancy deletion rules are Subsumption and Tautology Deletion.

The Resolution inference system is obviously sound. It is also complete in
the sense that if a set of clauses is satisfiable then the empty clause can be

Constructing Bachmair-Ganzinger Models 289

Resolution:

Γ ∨A ¬A′ ∨Δ

(Γ ∨Δ)σ

where σ = mgu(A,A′), A is selected in its clause,
and ¬A′ is selected in its clause.

Factoring:

Γ ∨ L ∨ L′

(Γ ∨ L)σ

where σ = mgu(L,L′), and L is selected in Γ ∨
L ∨ L′.

Fig. 1. Resolution Inference System

deduced from it. We say that a set S of clauses is saturated if every inference on
nonredundant clauses of S produces a clause that is either in S or redundant in
S. A saturated set of clauses corresponds in practice to a set of clauses for which
the inference rules have been performed exhaustively. Completeness is expressed
by the following theorem[1].

Theorem 1. Let Sel be a correct selection rule. Let S be a set of clauses. sat-
urated by the Resolution inference system. Then the empty clause is in S if and
only if S is unsatisfiable.

3.2 Minimal Model

The proof of the completeness theorem is given in [1] by contradiction. The
proof assumes that S does not contain the empty clause, and then constructs a
minimal model of Gr(S). We use that construction in this paper. Therefore, we
need to define it. It is a recursive definition. For each clause C, we will define
MM<C to be the model which has been created so far using clauses smaller
than C, and then MM≤C will be the updated model depending on C. So the
definitions of MM<C and MM≤C will be mutually recursive. The final model
created will be called MMS, for some set of clauses S.

Definition 1. Let S be a set of ground clauses. Let MM<C =
⋃

D<C MM≤D.
Let C be a clause, where L is the largest literal in C. If L is a maximum,
positive, selected literal in C, and MM<C
|= C then MM≤C = MM<C ∪ {L}.
Otherwise MM≤C = MM<C. In the first case, we say that C is productive and
that C produces L. Let Prod(S) be the set of all productive clauses in S. Define
MMS =

⋃
C∈S MM≤C.

We can now restate the completeness theorem so that it refers to the constructed
model. We will call this a model completeness theorem.

290 C. Lynch

Theorem 2. Let Sel be a correct selection rule. Let S be a set of clauses. sat-
urated by the Resolution inference system. Suppose that the empty clause is not
in S. Then MMGr(S) is the minimal model of Gr(S).

The proof in [1] actually proves the model completeness theorem. This model
can actually be constructed in O(nlg(n)) time, if S is ground.

Theorem 3. Let Sel be a correct selection rule. Let S be a set of ground clauses.
saturated by the Resolution inference system. Suppose that the empty clause is
not in S. Then MMS can be constructed in O(|S|lg(|S|) time.

Proof. We sort each clause from smallest literal to largest. Then we sort all
the clauses from smallest clause to largest. We have an array or a hash table,
representing whether each atom is true or false. Initially, all atoms are false. Then
we work our way from smallest to largest clause, checking the current values of
each atom in the clause, and updating the largest atom when necessary.

The sorting part of this algorithm can be done in time O(|S|lg(|S|), and the
rest can be done in O(|S|).

There is an obvious dynamic programming algorithm to compute a minimal
model of S, given in Figure 2. We suppose that the clauses have been sorted,
and that they are ordered C1 to Cm from smallest to largest.

function Dyn

MM = ∅
for i = 1 to m

let L be the maximal literal in Ci

if L is maximum, positive and selected and MM
|= Ci

MM = MM ∪ {L}
return MM

Fig. 2. Dynamically Computing Minimal Model

3.3 Preferred Models

We have shown how minimal models can be efficiently constructed for ground
clauses saturated the Resolution Inference System However, in a particular verifi-
cation problem we may not be interested in minimal models. Some other model
may be preferable. In this section, we show that if a ground set of clauses is
saturated by Ordered Resolution then any model at all can be constructed.

Constructing Bachmair-Ganzinger Models 291

First we introduce the notion of a preference predicate. A preference predi-
cate tells whether we prefer an atom to be true(*) or false(⊥). The preference
predicate will be used when constructing a model. For an atom A, we denote
Pref(A) as the preferred value of atom A, either * or ⊥. Based on the prefer-
ence function, we also define a polarity function Pol, such that Pol(A) = A if
Pref(A) = *, and Pol(A) = ¬A if Pref(A) = ⊥. We extend Pref and Pol to
negative literals, so that Pref(¬A) = Pref(A) and Pol(¬A) = Pol(A). A lit-
eral L is said to be preferred if Pol(L) = L. Given a preference function Pref a
selection rule Sel is Pref -correct if for all C, (i) Sel(C) is a set of non-preferred
literals that contains all maximal literals in C or (ii) Sel(C) contains a preferred
literal in C and nothing else.

Definition 2. Given a set of clauses S and a selection function Sel, define
Cl(L) = {Cθ | C ∈ S and Cθ is a non-tautological clause in S containing L as
a maximal and selected literal }. Note that Cl(L) is empty if no clause contains
L as maximal literal.

Given a set of clauses S and a preference predicate Pref , we define a preferred
model of S, as follows.

Definition 3. Let S be a set of ground clauses and Pref be a preference pred-
icate. Suppose that A is an atom. Define PM<A =

⋃
B<A PM≤B. Then define

PM≤A = PM<A ∪ {A} if and only if either

1. Pref(A) = ⊥ and there is a clause C ∈ Cl(A) such that PM<A
|= C in
which case C is called productive and we say that C produces A, or

2. Pref(A) = * and for all C ∈ Cl(¬A), PM<A |= C. If there is a clause C in
Cl(¬A) where PM<A
|= C, then we say that the smallest such C produces
¬A, and that the smallest such C is productive.

Otherwise PM≤C = PM<C.
Define PMS =

⋃
C∈S PM≤C.

The point of the preference predicate is that, as the model is constructed some
atoms are forced to have a particular value. But when the value is not forced,
then the preference predicate will decide what the value will be. Note that if
Pref(A) = ⊥ for all predicates A, then the preferred model is the minimal
model.

Now we prove that if a set of clauses is saturated by Resolution under a Pref -
correct selection rule, and does not contain the empty clause, then it determines
a preferred model. A consequence of this is that if a set of clauses is saturated by
Ordered Resolution and does not contain the empty clause, then any preference
predicate determines a model.

Lemma 1. Let A and B be atoms such that A > B. Then PMS |= B if and
only if PM≤A |= B if and only if PM<A |= B if and only if PM≤B |= B.

Proof. This is trivially true, since no larger atom can affect the truth value of a
smaller one.

292 C. Lynch

Theorem 4. Let Pref be a preference predicate. Let Sel be a Pref -correct
selection rule. Let S be a set of clauses. saturated by Resolution. Suppose that
the empty clause is not in S. Then PMGr(S) |= Gr(S).

Proof. The proof is by induction on the ordering clause ordering. We prove by
induction that PMS |= C for all C ∈ Gr(S). Note that if C is a tautology then
obviously PMS |= C. Suppose that L is the largest literal in C. Then L is either
of the form A or ¬A. First we assume that L is selected in C.

If C ∈ Cl(L) but L is not maximum, then C is of the form D∨L∨L. So there
is a Factoring inference in Gr(S) which gives D ∨ L, and this inference is an
instance of an inference in S. D∨L is smaller than D∨L∨L. So PMS |= D∨L
by the induction hypothesis, and therefore PMS |= D ∨ L ∨ L.

Suppose that C ∈ Cl(A) and Pref(A) = ⊥. Then either PM<A |= A or
PM<A
|= A. If PM<A |= A, then PM≤A |= A. If PM<A
|= A, then by definition
A ∈ PM≤A so M≤A |= C.

A similar argument holds if C ∈ Cl(¬(A) and Pref(A) = *.
Now suppose that C ∈ Cl(¬A) and Pref(A) = ⊥. If A
∈ PM≤A then

PM≤A |= C. So suppose that A ∈ PM≤A. That means there is some clause
D of the form D′ ∨ A responsible for adding A to the interpretation. Let C
be the clause C′ ∨ ¬A. Then there must be a resolution inference between C
and D, whose conclusion is E = C′ ∨ D′. This inference is an instance of an
inference between two clauses in S. E is smaller than C. Let B be the maximum
literal in E. Then B is smaller than A. Therefore, by the induction hypothesis,
PM≤B |= E. If PM<A
|= D′∨A, then PM<A
|= D′, and therefore PM≤B
|= D′,
which means that PM≤B |= C′ and therefore PM<A |= C. On the other hand,
if PM<A |= D′ ∨ A, then, by definition, PM<A |= C.

A similar argument holds if C ∈ Cl(A) and Pref(C) = *.
The other case is where L is maximum but not selected. This implies that there

is another literal in C which is selected and preferred. By the same argument
as above, there is a smaller clause and an inference which can be done, which
implies by induction that C is true.

Just like the minimal model, the preferred model can also be constructed in
O(|S|lg(|S|) time. Note that the above theorem could also be proved by renaming
literals so that the preferred model is minimal.

Theorem 5. Let Pref be a preference predicate. Let Sel be a Pref -correct
selection rule. Let S be a set of ground clauses saturated by Resolution. Suppose
that the empty clause is not in S. Then PMS can be constructed in O(|S|lg(|S|)
time.

Proof. The proof is the same idea as for the minimal model.

Given the right preference predicate, every model of S can be constructed. In
particular, given a model M of S, we can define a preference predicate that
assigns every atom to the truth value given in M . Then PMS will be M , because
the only time an atom is given a value that is not preferred is if it is forced to
have that value in order to satisfy some clause.

Constructing Bachmair-Ganzinger Models 293

Theorem 6. Let M be a model of S. Define a preference predicate Pref such
that, for all atoms A, Pref(A) = * if and only if A ∈ M . Then PMS = M .

Proof. The proof is by contradiction. Suppose that PMS
= M . Then let A be
the smallest atom such that A ∈ PMS and A
∈ M , or A ∈ M and A
∈ PMS.

We take each possibility separately. Suppose that A ∈ PMS and A
∈ M .
Suppose there is a clause C ∈ Cl(A) such that PM<A
|= C. Let C = C′ ∨ A.
Then PM<A
|= C′. Since A
∈ M and M |= C, it must be true that M |= C′.
But this is a contradiction, because A is the smallest atom where PMS and M
differ.

We also need to consider the case where for all C ∈ Cl(¬A), PM<A |= C
and PM<A |= Pref(A). But this gives a contradiction, because A
∈ M , so
Pref(A) = ⊥.

Now suppose that A ∈ M but A
∈ PMS. Since A
∈ PMS, this means that
there is a C ∈ Cl(¬A) such that PM<A
|= C or PM<A
|= Pref(A). The second
condition is clearly false, since A ∈ M and therefore Pref(A) = *. So consider
the first condition. Let C = C′ ∨¬A. Then PM<A
|= C′. But PMS agrees with
M on everything smaller than S, and M |= C′, so PMS |= C′.

Because every preference predicate determines a model, we can actually give an
algorithm that constructs all the models of a set of ground clauses saturated by
Ordered Resolution. We call our algorithm, the Preferred Model Construction
(PMC) Algorithm. Of course, there is a trivial algorithm to construct all models
of a set of clauses. The trivial algorithm just enumerates all the truth values, and
then checks if each truth value satisfies all the clauses. In the trivial algorithm,
one may spend an exponential amount of time looking for a model, when the set
of clauses has only one model. In the PMC Algorithm, no effort will be wasted.
Every truth value will lead to a model. Therefore, we get the nice result that the
running time of the PMC Algorithm is proportional to the number of models.
In other words, if a set of clauses has only polynomially many models, then
the PMC Algorithm will find all those models in polynomial time. The PMC
Algorithm is based on the preferred model construction. We initiate the PMC
algorithm by calling PMC(∅, 1). The PMC Algorithm is given in Figure 3.

The PMC Algorithm is reminiscent of the DPLL Algorithm [3], However, the
PMC Algorithm never has any false paths.

We now prove the correctness and the complexity of the PMC Algorithm, but
we need a few lemmas first. First we need to say that everything the algorithm
outputs is correct.

Lemma 2. Let S be a set of ground clauses saturated by Ordered Resolution,
such that S does not contain the empty clause. If PMC prints an interpretation
PM , then PM |= S.

Proof. We define a preference predicate Pref corresponding to PM , such that
for all atoms A, Pref(A) = * if A ∈ PM and Pref(A) = ⊥ if A
∈ PM . We
will prove that that PM will be the model PMS constructed for the preference
predicate Pref , and therefore PM |= S

294 C. Lynch

function PMC(PM, i)

if (i == n+ 1)
print PM

else
if for all clauses C ∈ Cl(¬A), PM<A |= C

PMC(PM ∪ {Ai}, i+ 1)
if for all clauses C ∈ Cl(A), PM<A |= C

PMC(PM, i+ 1)

Fig. 3. Preferred Model Construction Algorithm

The proof is by contradiction. Suppose PM
= PMS. Then let A be the
smallest atom such that A ∈ PMS and A
∈ PM , or A ∈ PM and A
∈ PMS .

We take each possibility separately. Suppose that A ∈ PMS and A
∈ PM .
Suppose there is a clause C ∈ Cl(A) such that PM<A
|= C. But A
∈ PM ,
therefore for all clauses C ∈ Cl(A), PM<A |= C. Contradiction

We also need to consider the case where for all C ∈ Cl(¬A), PM<A |= C and
PM<A |= Pref(A). But A
∈ PM implies that Pref(A) = ⊥. Contradiction.

Now suppose that A ∈ M but A
∈ PMS. Since A
∈ PMS, this means that
there is a C ∈ Cl(¬A) such that PM<A
|= C or PM<A
|= Pref(A). The second
condition is clearly false, since A ∈ PM and therefore Pref(A) = *. So consider
the first condition. Let C = C′ ∨¬A. Then PM<A
|= C′. But PMS agrees with
M on everything smaller than S, and M |= C′, so PMS |= C′.

Now a lemmas to say that the algorithm never outputs the same models twice.

Lemma 3. The PMC algorithm never outputs the same interpretation twice.

Proof. This is clear from the algorithm, since the recursive calls always give a
different value to Ai, and that is never revisited.

Finally, we need to prove that every model of S is eventually output.

Lemma 4. Let S be a set of ground clauses. Suppose that M is a model of S.
Then PMC will eventually output M .

Proof. The proof is by contradiction. Suppose that PMC does not output M .
Then let PM be the interpretation output by PMC with the largest value i
such that M and PM disagree on Ai but M and PM agree on all Aj with j < i.
Suppose that Ai ∈ M but Ai
∈ PM . Then there cannot be a clause C ∈ Cl(¬A)
such that PM<A
|= C. Therefore the PMC algorithm add Ai to PM . And since

Constructing Bachmair-Ganzinger Models 295

all paths output something, PMC will eventually output a model which agrees
on M for all j ≤ i.. Contradiction. A symmetric argument can be made for the
case where Ai
∈ M and Ai ∈ PM .

Those lemmas immediately give us the required theorem.

Theorem 7. Let S be a set of ground clauses saturated by Ordered Resolution,
such that S does not contain the empty clause. The output of PMC is exactly
the set of models of S.

Proof. We have shown that everything output is a model of S, and that all
models of S are output exactly once.

Now we examine the complexity of PMC, and show that it is proportional to
the number of models output.

Theorem 8. PMC runs in O(|S|lg(|S|)+ |S|k), where k is the number of mod-
els of S.

Proof. We have shown that each model of S is output exactly once. It takes time
O(|S|lg(|S|) to sort each clause, and the set of clauses. In order to produce each
model, each clause is examined once. The amount of time to test the truth of
each clause is linear in the size of the clause, because we can store the truth of
each atom as it is established. Therefore, it takes O(|S|) time to output a single
model, and O(|S|k) time to output all of them.

A verification algorithm could use the PMC algorithm to run for a period of
time to produce several models, and then examine those models. Or a verification
algorithm could create a preference predicate to find a model that meets certain
specifications. This could be more valuable than just constructing a minimal
model.

If we want to know the truth value of a particular atom, it would be simpler
to do that in a recursive algorithm. Also, in the nonground case, we will not be
able to construct the entire model, but we still may be able to determine the
truth value of a given atom. Therefore, here we give a recursive algorithm to
compute the value of a given atom A in the preferred model. The algorithm is
given in Figure 4. It is initialized by calling Rec(A). It will return a Boolean
value.

The algorithm for could be simplified for the minimal model. This recursive
algorithm can run in exponential time. However, if memoization is used, then we
get linear running time, just like the dynamic programming algorithm for con-
structing the minimal model. But the memoized algorithm can be more efficient
in practice for determining if a particular atom is true, because it only examines
the atoms whose truth value is necessary in order to know the queried atom.
There may be far fewer of these atoms than there are atoms in the language.

296 C. Lynch

function Rec(A)

t = Pref(A)
for all C ∈ Cl(¬Pol(A))

u = ¬Pref(A)
for all non-preferred literals B in C − {¬Pol(A)}

if Rec(B)
u = Pref(A)

for all preferred literals B in C − {¬Pol(A)}
if ¬Rec(B)

u = Pref(A)
if Pref(A) = ⊥

t = t ∨ u
else

t = t ∧ u
return t

Fig. 4. Recursive Preferred Model

4 Nonground Models

In this section, we examine model construction in the context of nonground
clauses saturated by Resolution. The methods in the previous section for con-
structing models apply to the ground and the nonground case. But there is a
problem in the nonground case. In that case, the model may be infinite. There-
fore, it is impossible to construct the model. Verification procedures then cannot
count on seeing the whole model. The only thing we can hope is that the al-
gorithm can ask queries to find out if particular ground atoms are true in that
model. This may be enough in practice, since the programmer probably cares
about the values of certain atoms. If the clauses are saturated by any Resolution
with any complete selection rule, then the programmer can ask queries about
the minimal model. The programmer can additionally give a preference predicate
and ask questions about the preferred model. In this section, we look for criteria
to determine in which cases the programmer can be guaranteed an answer to
those queries.

In this section, we consider theories saturated by Ordered Resolution or Res-
olution with Selection Rules (which we have simply called Resolution), since
these inference rules are used a lot in practice, since they may be more likely to
terminate. We try to find if a ground atom is true in a certain model. But we
also want to be able to decide if we can find the truth of a ground atom, when
the saturated theory has again been saturated by some ground clauses. Such a
result would be useful for verification problems

Constructing Bachmair-Ganzinger Models 297

4.1 Local Theories

First we consider Local Theories, as in [8,2,7]. We are assuming an ordering on
the atoms that is total on all ground clauses. For the results of Local Theories,
we also need to assume certain facts about the ordering.

Definition 4. Let < be an ordering such that every atom has only finitely many
smaller atoms. Then there must be some function ot(n) such that every atom of
size n has no more than ot(n) smaller atoms. Then the function ot(n) is called
the order type of <. For a clause C, let n(C) be the number of literals in C. For
a set of clauses S, let n(S) = {max(n(C)) | C ∈ S}.

Basin and Ganzinger[2] have shown the following complexity result.

Theorem 9. Let < be an ordering, such that a set of clauses S is closed under
Ordered Resolution, and S does not contain the empty clause. Let ot(n) be the
order type of <. Let C be a ground clause. Then it can be decided whether S |= C
in co-nondeterministic time O(ot(C)n(S)). If S contains only Horn Clauses and
if C is a Horn clause, then it can be decided in time O(ot(C)n(S)) whether S |= C.

In this theorem, there are several things to note. If ot(n) is polynomial, then
decidability for Horn Clauses is in polynomial time. But for general clauses, it
becomes co-NP, the same complexity as unsatisfiability for ground clauses. The
other thing to note is that, since < is required to be a total order, ot(n) must be
at least exponential unless the signature contains only one function symbol. In
addition, that function symbol must be unary. In other words, ot(n) is almost
always at least exponential. Basin and Ganzinger get around that problem by
showing that the ordering can be partial, and then the clauses must be saturated
for Ordered Resolution under all total extensions of the partial ordering

We can get a similar theorem for determining if an atom is in the constructed
model.1

Theorem 10. Let Pref be a preference function. Let Sel be a Pref -correct
selection rule. Let < be an ordering, such that a set of clauses S is closed under
Resolution, and S does not contain the empty clause. Let ot(n) be the order type
of <. Let A be a ground atom. Let N be a set of ground clauses such that S ∪N
is satisfiable.

1. It can be decided in time O(ot(A)n(S)) whether PMS |= A
2. If S is saturated by Ordered Resolution, then let S′ be the saturation of S∪N .

It can be decided in O(2ot(N∪{A})) whether PMS′ |= A

Proof. In order to determine if PMS |= A, we only need to examine instances
of S whose literals are smaller than A. Each clause in S has at most n(S)
literals, and each instance of one of those literals will be a literal smaller than
A. Therefore the size of the set of all those instances is O(ot(A)n(S)). This

1 For simplicity, we are assuming in this theorem that the clauses have already been
sorted.

298 C. Lynch

is ground, so we apply the procedure Rec from the previous section to decide
whether PMS |= A.

Now we consider the case of deciding whether PMS∪N |= A. First we saturate
S ∪ N , and then calculate the preferred model of that. In this saturation, we
select all the maximal literals in each clause of N . The only instances we need
for the saturation and for checking whether PMS∪N is a model of A are those
instances that are smaller than A or some literal in N . So when we saturate
those instances of S ∪N , we get O(2ot(N∪{A})) instances of clauses smaller than
A and N , and then we apply the procedure Rec from the previous section to see
if this implies A.

There are several differences between the case from [2] where they are interested
in a decision procedure and our case of deciding if a clause is in the model. Just
for deciding a model, it is not necessary that the clauses are closed under Ordered
Resolution. Any selection rule will do. Also, in the case of just constructing a
model, the complexity for the general case is not worse than the complexity
for Horn Clauses. But there is one big disadvantage to the model construction
case. That is that it is not good enough to have partial orders. We insist on
total orders, and we have not been able to prove this theorem if we only require
that it is saturated under all extensions of a partial order. This means that the
complexity will almost always be exponential.

4.2 Covered Clauses

In the last subsection, we considered Local Theories, and we say that it is pos-
sible to decide if an atom is true in the minimal model or preferred model.
In this subsection we consider an alternative method, which does not give any
requirements on the order type of the ordering.

First we define what it means for a clause to be covered. Basically, it means
that the maximal literals of that clause must contain all the variables, unless
that literal is not needed for the construction of the preferred model. Then we
show that if a clause is saturated by Resolution, and all the clauses in the set
are covered, then, given an atom A, it can be determined if A is true in the
preferred model. Peltier [9] has a similar result for minimal models.

In addition, we show that it is still decidable to determine if A is in the
preferred model if we further saturate S with any set of ground clauses N . This
is better than the previous section, when it is required that the initial saturation
is by Ordered Resolution.

Definition 5. Let C be a clause. Then C is said to be covered if one of the
following is true for all maximal and selected literals L in C:

1. L contains all the variables in C,
2. L = ¬A and Pref(Aθ) = ⊥ for all ground substitutions θ, or
3. L = A and Pref(Aθ) = * for all ground substitutions θ.

A set of clauses S is covered if all C in S are covered.

Constructing Bachmair-Ganzinger Models 299

Another way to word this is to say that a clause is covered if every maximal and
selected and not preferred literal in the clause contains all the variables in the
clause.

Theorem 11. Let Pref be a preference predicate. Let Sel be a Pref -correct
selection rule. Let S be a set of clauses saturated by Resolution, which does not
contain the empty clause. Suppose that S is covered. Let A be a ground atom.
Then it is decidable whether PMS |= A. If N is a set of ground clauses such
that S ∪N is satisfiable, let S′ be the result of the saturation of S∪N, then it is
also decidable whether PMS′ |= A.

Proof. To decide if PMS |= A, we only need to call Rec(A) on Gr(S), as given
earlier in this paper. The algorithm was given for ground clauses earlier, however
if S is covered then it will still work. Note that the algorithm loops through all
clauses C ∈ Cl(¬Pol(A)). By definition of covered, each such clause must be
ground. By induction, we see that the algorithm is repeatedly called on smaller
atoms. Therefore the algorithm will halt.

For the case of S ∪N , we just need to show that the saturation of S ∪N will
halt. We select the maximum literal of each clause in N and clauses produced in
the saturation. Each clause will only have finitely many inferences with a clause
from S. The conclusion of each inference will be a ground clause, whose literals
are all smaller than the maximum literal in the premise. This process must halt.
In addition, all the clauses produced are ground. So all the clauses are covered.

Now we want to deal with the general case, where clauses are not necessarily
covered. We add a new redundancy deletion rule called Splitting to our inference
system. This is a rule which will take a single clause as a premise. We need to
apply it when there is a literal K in a clause which contains a variable not
contained in a maximal literal L. In this case, it is necessary to split the clause
into two smaller clauses which imply the original clause. If K is maximal and the
ordering is variable monotonic, then this is only required to be performed when
K is not preferred. This is an important restriction on the splitting rule. For
example, if the ordering is variable monotonic which many orderings are, and
if we use the usual preference which prefers negative literals, then the splitting
inference only needs to be performed on positive literals containing an extra
variable.

Splitting:

Γ ∨K ∨ L

Γ ∨K ∨ ¬p(x1, · · · , xn) p(x1, · · · , xn) ∨ L

where

1. L is maximal, selected, and not preferred,
2. K is not preferred if the ordering is variable monotonic,
3. K contains a variable which is not in L,
4. x1, · · · , xn are the variables in common between Γ ∨K and L, and
5. p is a new predicate symbol, defined so that p(x1, · · · , xn) < L.

300 C. Lynch

After this inference is performed, the premise must be deleted. The premise will
be redundant because the two conclusions are smaller than the premise, and
together they imply the premise.

Now we show that if S is saturated by Resolution plus the Splitting rule, then
S is covered.

Lemma 5. Let S be saturated by the Resolution inference system with Splitting.
Then S is covered.

Proof. Let C be a clause in S. Suppose C is of the form Γ ∨ L, where L is a
maximal and selected literal in C, that is not preferred. We want to show that
L contains all the variables in C.

Suppose there is another literal K in C that contains a variable not in L. If
K is not preferred, or if the ordering is not variable monotonic, then C would
have been removed by Splitting.

So suppose that K is preferred, and the ordering is variable monotonic. By
definition of correct selection function, K cannot be maximal in C. Since the
ordering is variable monotonic, V ars(K) ⊆ V ars(L).

Finally, we get the main theorem.

Theorem 12. Let Pref be a preference predicate. Let Sel be a Pref -correct
selection rule. Let S be a set of clauses saturated by the Resolution Inference
System with Splitting, which does not contain the empty clause. Let A be a ground
atom. Then it is decidable whether PMGr(S) |= A.

Proof. We have shown that S is covered. Therefore, it is decidable if PMGr(S)) |=
A. We just apply Rec on S.

5 Conclusion

We have clarified some practical questions about constructing models in Reso-
lution. For the ground case, the theoretical model construction technique[1] can
be easily expressed as an efficient algorithm to construct the minimal model.

We generalized minimal models to preferred models, where a user is allowed
to suggest a preferred value for each atom. We give an efficient algorithm to
construct a preferred ground model, which is basically equivalent to the mini-
mal model construction, but we believe preferred models have some interest in
verification problems. For example, in software verification, a model represents
a bug in the program, and a programmer may be interested in finding a bug of
a particular type.

We also show a result that is new, as far as we are concerned, to construct
all models for a set of ground clauses saturated by Ordered Resolution in time
polynomial in the number of models. This could also be used by a programmer
to find all bugs in a program. This algorithm can be viewed as a kind of DPLL
procedure [3] without any backtracking.

Constructing Bachmair-Ganzinger Models 301

The problem of finding nonground models has been studied[9,6,5]. In [6,5],
models are constructed for certain classes of clauses. In [9] is given a method to
construct a model for a set of clauses saturated by Ordered Resolution when the
clauses are covered.

The first question for nonground models is what do we mean by a model? In
this paper, a model in the nonground case means it is possible to determine if
a particular atom is true or false in the preferred model. We add a restricted
splitting rule to the Resolution inference system, and we show that if a set
of clauses is saturated by Ordered Resolution (with selection), with a set of
preference rules, then any query to the preferred model can be decided. As far
as we know, this is the first such result for Ordered Resolution, aside from the
result in [9] about covered clauses.

The most interesting piece of future work is to extend this result to equality.
It would also be interesting to make the splitting rule more restrictive.

Acknowledgments. I would like to thank Nicolas Peltier and Christian
Fermüller for pointers to related work.

References

1. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. North-Holland
(2001)

2. Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered resolu-
tion. J. Association for Computing Machinery 48(1), 70–109 (2001)

3. Davis, M., Logemman, G., Loveland, D.: A Machine Program for Theorem Proving.
Communications of the ACM 5, 394–397 (1962)

4. Dershowitz, N.: Termination of Rewriting. Journal of Symbolic Computation 3,
69–116 (1987)

5. Fermüller, C., Leitsch, A., Tammet, T., Zamov, N.: Resolution Methods for the
Decision Problem. LNCS, vol. 679. Springer, Heidelberg (1993)

6. Fermüller, C., Moser, G.: Have Spass with OCC1Ng=. LPAR 7, 114-130 (2000)
7. Ganzinger, H.: Relating Semantic and Proof-Theoretic Concepts for Polynomial

Time Decidability of Uniform Word Problems. In: Proceedings 16th IEEE Sympo-
sium on Logic in Computer Science, LICS 2001, Boston (2001)

8. McAllester, D.: Automated Recognition of Tractability in Inference Relations. Jour-
nal of the ACM 40(2), 284–303 (1993)

9. Peltier, N.: Building Infinite Models for Equational Clause Sets: Constructing Non-
Ambiguous Formulae. Logic Journal of the IGPL 11(1), 97–129 (2003)

Planning with Effectively Propositional Logic

Juan Antonio Navarro-Pérez and Andrei Voronkov

The University of Manchester

Abstract. We present a fragment of predicate logic which allows the use
of equality and quantification but whose models are limited to finite Her-
brand interpretations. Formulae in this logic can be thought as syntactic
sugar on top of the Bernays-Schönfinkel fragment and can, therefore, still
be effectively grounded into a propositional representation. We motivate
the study of this logic by showing that practical problems from the area
of planning can be naturally and succinctly represented using the added
syntactic features. Moreover, from a theoretical point of view, we show
that this logic allows, when compared to the propositional approach, not
only more compact encodings but also exponentially shorter refutation
proofs.

1 Introduction

Planning has been the focus of attention of many researchers in the field of artifi-
cial intelligence, where it was originally conceived as a formalisation of deduction
processes [7]. Alternatively, the problem of finding a sequence of actions to reach,
from an initial state, a set of desired goals, has also been reduced to the problem
of finding a satisfying truth assignment for a propositional logic formula [9, 10].

In this paper we follow a similar approach but, instead of a propositional
encoding, we use a fragment of predicate logic which allows some limited use of
equality and quantification. This fragment, which we call finite domain predicate
logic, allows a much more succinct and natural representation of problems. The
size of the resulting formula is linear in the size of, for example, a STRIPS
description [5] of the original planning problem.

We show, moreover, that any formula in the proposed logic can be translated
to an equisatisfiable formula in the Bernays-Schönfinkel fragment of predicate
logic. Formulae in this fragment have an ∃∗∀∗ prefix when written in prenex
normal form and do not allow the use of function symbols. This makes their
Herbrand universe finite and, therefore, to test satisfiability one can effectively
replace a formula by all its propositional ground instances. This is why formulae
in this class are also referred to as effectively propositional (EPR), such as in
one of the categories of the CASC system competitions [16].

Another motivation for using this logic as a formalism to represent problems
is the fact that, as we show in this paper, not only descriptions can be much
more concise, but inference steps can also be exponentially more efficient than
in the propositional case. It is a well known fact that resolution proofs in first
order logic can be exponentially shorter than those possible when restricted to

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 302–316, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Planning with Effectively Propositional Logic 303

propositional inferences, see e.g. [1]; in this paper we probe that our reduced
fragment of first order logic also maintains this property.

On the other hand, our encoding may also turn out to be useful for proposi-
tional, SAT-based, approaches to planning. Indeed, it preserves the structure of
the original planning problem in the obtained effectively propositional formula
and reduces the problem of finding an optimised propositional encoding to the
problem of finding an optimised propositional instantiation of the EPR descrip-
tion. Thinking in this more general fragment of first order logic, often allows
one to find simplifications or alternative encodings that one might miss if only
focused in the propositional case.

Reasoning with effectively propositional theories is a relatively new area of
research, which seems to offer a language with a good compromise between
expressibility and complexity. There are many computer scientists currently de-
veloping ideas and procedures in order to more efficiently deal with this kind of
formulae, including the efforts of Claessen and Sörensson [4]; Baumgartner and
Tinelli [3]; as well as Ganzinger and Korovin [6].

Unfortunately, at the time there is also a lack of benchmarks for researchers
to experiment and test their systems. An important contribution of this paper
is to aid filling in this gap by providing a new and rich source of problems
with close links to real-life applications. Such problems are now accessible to the
community through the TPTP Library [15].

Our paper is structured as follows: In Section 2 we introduce the syntax and
semantics of the finite domain predicate logic and show that it can be reduced to
the Bernays-Schönfinkel fragment of predicate logic. We also present an example
of a family of effectively propositional unsatisfiable formulae, whose refutation
proofs are exponentially shorter than those possible in the propositional setting.
Then in Section 3 we formally introduce the notions of planning to later give,
in Section 4, the encoding of planning problems in terms of our finite domain
predicate logic.

2 Finite Domain Predicate Logic

In this section we introduce the finite domain predicate logic. It allows the use
of equality, evaluated under the unique name assumption, and quantification
over finite domains. We will also later show that formulae in this logic can be
reduced to the Bernays-Schönfinkel fragment of predicate logic. The added syn-
tactic sugar will be useful in later sections to describe our encodings of planning
problems more naturally.

Definition 1. The language of finite domain predicate logic consists of a set of
predicate symbols P , a finite set of constant symbols D, and a set of variables V .
Predicate symbols are, moreover, associated with a positive integer which we
call its arity. The set D is also referred to as the domain of the logic. A term is
either a variable or a constant symbol. A predicate atom is an expression of the
form p(t1, . . . , tn) where p ∈ P is a predicate symbol of arity n and each ti is a
term. An equality atom is an expression of the form t = t′ where both t and t′

304 J.A. Navarro-Pérez and A. Voronkov

are terms. An atom is either a predicate or an equality atom. A ground atom is
an atom all whose terms are constant symbols.

We consider the following as primitive connectives of the logic: falsity (⊥),
negation (¬φ), conjunction (φ∧ψ) and quantification (∀X ∈ C. φ); where φ and
ψ are formulae, X a variable and C ⊆ D a set of constant symbols. Duals of
these operators and additional connectives can be introduced as abbreviations:

* ≡ ¬⊥ ∃X ∈ C. φ ≡ ¬(∀X ∈ C.¬φ)
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ) φ→ ψ ≡ ¬φ ∨ ψ

The standard notion of free and bound variables with respect to the scope of
quantifiers also applies here. A closed formula is a formula with no free variables.
We will often use X to denote a sequence of variables X1, . . . , Xn whose length
is specified in the context where it is used. This allows, for example, to write
∃X̄ ∈ Cn. φ instead of the longer expression ∃X1 ∈ C . . . ∃Xn ∈ C. φ. Similarly
we will write X = Y as a shorthand for

∧n
i=1Xi = Yi.

A substitution is a function σ that maps variables to terms, and behaves like
the identity function almost everywhere.We denote by φσ the result of applying a
substitution σ to a formula φ, i.e. the formula obtained after uniformly replacing
every free variable X in φ with the term Xσ. We also say that φ′ is an instance
of φ if there is a substitution σ such that φ′ = φσ; and that σ is a unifier of
the formulae φ and φ′ if φσ = φ′σ. A substitution is often denoted by explicitly
enumerating its mappings, e.g.: {X1 → t1, . . . , Xn → tn}.

A Herbrand interpretation is a set of ground predicate atoms. The notion of
whether a Herbrand interpretation I is a model of a closed formula φ, denoted
by I |= φ, is defined as follows:

I
|= ⊥
I |= p(c̄) iff p(c̄) ∈ I,
I |= c = c′ iff c coincides with c′,
I |= ¬φ iff I
|= φ,
I |= φ ∧ ψ iff I |= φ and I |= ψ,
I |= ∀X ∈ C. φ iff I |= φ{X → c} for every constant c ∈ C,

where c̄ denotes a tuple of constant symbols of the length equal to the arity of p.
When we we speak about models of non-closed formulae, we assume the free
variables of these formulae to be implicitly universally quantified. A formula is
said to be satisfiable if it has at least one model. �
In the sequel we assume to deal with a logic having a fixed domain D. For
example, all formulae may only use constants from D. Observe that equality is
evaluated syntactically with respect to the constant symbol names, i.e. using the
unique name assumption, and does not depend on the interpretation I. We will
now show how this restricted kind of equality can be removed from formulae
while preserving its satisfiability status.

We will also call formulae constraints and assume that a finite set of con-
straints represents the conjunction of all its elements. A clause is a simple dis-
junction of literals, that is, atoms or their negations. A formula is said to be

Planning with Effectively Propositional Logic 305

in clause normal form if it is a conjunction of clauses. Although we do not al-
ways write sets of constraints in clause normal form, they can often be easily
rewritten in such form using simple logical identities (e.g. changing implication
for disjunction).

Definition 2. Let C = {c1, . . . ck} be a set of constant symbols. We introduce
the fresh new predicate symbols succC , less, inC , and eq and define the set of
constraints OrdC using these symbols as follows:

succC(c1, c2) ∧ · · · ∧ succC(ck−1, ck)

succC(X,Y)→ inC(X) ∧ inC(Y)

also the set of constraints EQ is defined as:

succD(X,Y)→ less(X,Y)

less(X,Y) ∧ less(Y, Z)→ less(X,Z)

less(X,Y)→¬eq(X,Y) ∧ ¬eq(Y,X)

eq(X,X) �

The intuition behind the set OrdC is to enumerate all constant symbols in the
set C by providing a predicate succC that allows one to iterate over them. The
intended meaning of inC(X) is to represent that X ∈ C. Note that OrdC defines
only the positive polarity of the predicate symbols succC , less and inC . In other
words, if c ∈ C then the predicate inC(c) should be true in models of OrdC , but
the converse does not necessarily have to hold.

When we use this construction to enumerate all the elements in the domain,
i.e. OrdD, then the set EQ defines an additional predicate eq(X,Y) that can be
used to replace the built-in equality X = Y .

Theorem 1. Let φ be a closed formula, and let φeq be the formula obtained by
replacing all equality atoms t = t′ in φ with eq(t, t′). The pair of formulae φ and
OrdD ∧ EQ ∧ φeq are equisatisfiable.

Proof. The result follows from the fact that, if an interpretation I is a model
of the formula OrdD ∧ EQ then i < j implies I |= less(ci, cj) and, using the rest
of the constraints in EQ, we have I |= eq(ci, cj) iff i = j iff ci = cj (from the
unique name assumption). �

Also note that, since quantification is done with respect to a fixed finite set of
constant symbols, a quantified subformula ∀X ∈ C. φ(X) can actually be un-
folded into the conjunction

∧
c∈C φ{X → c}. Although naively unfolding quan-

tifiers this way could produce an exponential blow-up in the size of the formula,
we now show an alternative approach that only incurs in a linear increase. It
follows the style of structural clause form translations as proposed by Plaisted
and Greenbaum [13].

In order to simplify the exposition, and avoid dealing with the polarity of
subformulae, we assume that formulae are first put in negation normal form. This
can be easily achieved by pushing negation inwards and replacing implications

306 J.A. Navarro-Pérez and A. Voronkov

with disjunctions. The resulting logic formulae can therefore use any of the
connectives: ⊥,*,∧,∨, ∀, ∃; and negation is restricted to the front of atoms only.

Definition 3. Let Γ be a set of constraints. The set Γ ea is defined as the result
of iterating the following procedure to remove all explicit quantifiers in Γ

– If there is a subformula ψ = ∀X ∈ C. φ(X,Y), where X,Y are all the free
variables in φ and C = {c1, . . . , cd}, then replace the subformula ψ with the
atom forallψ(Y) and add the constraint:

inC(X) ∧ forallψ(Y)→ φ(X,Y)

– Similarly, replace a subformula of the form ψ = ∃X ∈ C. φ(X,Y) with the
atom existsψ(Y) and add the constraints:

existsψ(Y)→ findψ(c0, Y)

findψ(X,Y)→ φ(X,Y) ∨ xfindψ(X,Y)

succC(X,Z) ∧ xfindψ(X,Y)→ findψ(Z, Y)

xfindψ(cd, Y)→⊥

The set of constraints OrdC is also appended to Γ ea for each set C originally
appearing in a quantifier. �

Theorem 2. The sets of constraints Γ and Γ ea are equisatisfiable.

Proof. The argument is similar to the one used in structural clause form trans-
lations where subformulae are replaced by fresh new atoms and constraints are
added to give a meaning to those atoms.

In particular it can be shown that if I |= ψea ∧ forallψ(Y) for a given inter-
pretation I, then I |= ∀X ∈ C.ψ and, for the converse, that if I |= ∀X ∈ C.ψ
then one can always find an interpretation I ′ such that I ′ |= ψea ∧ forallψ(Y).
And analogously for the existential quantifier. �

Using the previous two results, it is then possible to eliminate equality and
quantifiers from finite domain predicate formulae thus leaving formulae in the
Bernays-Schönfinkel fragment. Moreover, the resulting formula is of linear size
with respect to the original input. Additionally, these results complement the
translation of Plaisted and Greenbaum [13] allowing one to write arbitrary finite
domain predicate formulae in clause normal form. In the following we will then
freely use equality and finite quantification knowing that they do not add any
complexity to the logic.

2.1 Compact Proofs

In order to further motivate the use of Bernays-Schönfinkel formulae as a formal
language to represent problems, we prove in this section that reasoning within
this fragment can also be exponentially more efficient than in propositional logic.
This shows that the language not only provides means for creating more compact

Planning with Effectively Propositional Logic 307

encodings, but that the actual solving time could also be reduced by the use of
this approach.

We consider, in particular, proofs using the resolution inference system which
operates on sets of clauses. It consists of two inference rules: resolution and
factoring. We refer to the work of Bachmair and Ganzinger [2] for the definitions.

Given a set of clauses Γ , a proof of φ from Γ is a sequence of clauses φ1, . . . , φl =
φ such that each φi is either an instance of a clause in Γ or the result of applying
resolution to two previous clauses. If one can obtain a proof of the empty clause
from Γ , then the set Γ is unsatisfiable and the proof is known as a refutation
of Γ . A propositional proof is a proof where all the clauses in the sequence are
ground.

The following example shows that there is a family of sets of clauses Γm with
respective unsatisfiability proofs Φm, where the shortest propositional refutation
of Γm is exponentially larger than Φm.

Theorem 3. There is a sequence of sets of clauses S1, S2, . . . of increasing sizes
such that each Si has a refutation of a size quadratic in i and the shortest propo-
sitional refutation of Si has a size exponential in i.

Proof. In the set Si we will use two constants: 0 and 1 and a single predicate
symbol s of arity i. We will denote by 0̄, 1̄, x̄ etc. sequences of constants 0, 1
and variables, respectively, whose length will be clear from the context. The set
Si consists of the following clauses:

s(0̄). (1)

i clauses of the form:
¬s(x̄, 0, 1̄) ∨ s(x̄, 1, 0̄). (2)

The clause
¬s(1̄). (3)

This set of clauses is unsatisfiable and its size is quadratic in i.
Note that every ground atom is of the form s(b̄), where b̄ is a sequence of bits

representing a number between 0 and 2i − 1 written in binary notation. For a
number n such that 0 ≤ n < 2i let us denote by n the sequence of bits denoting
this number. Then (1) asserts s(0) and (3) asserts ¬s(2i − 1), while the ground
instances of clauses in (2) assert ¬s(n) ∨ s(n+ 1). Using this observation it is
not hard to argue that every unsatisfiable set of ground instances of clauses in
Si contains all ground instances of (2), and so all propositional refutations of
this set have a size exponential in i.

Let us show that Si has a non-ground refutation of a quadratic size. To this
end, we will show, by induction on the length of a non empty sequence of con-
stants 1̄, resolution proofs of the clauses

¬s(x̄, 0̄) ∨ s(x̄, 1̄), (4)

having a number of steps linear in the length of 1̄.

308 J.A. Navarro-Pérez and A. Voronkov

When the length is 1, then (4) is an instance of (2). When the length is greater
than 1, we can assume, by induction, that there is such a refutation of a clause

¬s(x̄, y, 0̄) ∨ s(x̄, y, 1̄). (5)

From this and (2) we can derive by a resolution inference the clause

¬s(x̄, 0, 0̄) ∨ s(x̄, 1, 0̄).

From this and (5) we can derive by a resolution inference the clause

¬s(x̄, 0, 0̄) ∨ s(x̄, 1, 1̄).

and we are done.
This implies that there is a resolution proof of the clause

¬s(0̄) ∨ s(1̄)

having a number of steps linear in i, and hence a refutation having a number of
steps linear in i. Moreover, the size of each clause in the refutation is linear in i,
so the size of the refutation is quadratic in i. �

3 Planning

In this section we formally introduce several notions and concepts related to
planning. We first introduce the notion of a planning domain where applicable
actions, their preconditions and consequences, are described. We then proceed to
define what a planning problem and its solutions are. Our formalism corresponds
to STRIPS style planning as introduced by Fikes and Nilsson [5].

Definition 4. The language of a planning domain consists of a triple of finite
sets of symbols (O,F ,A) which are respectively called object, fluent and action
symbols. Fluent and action symbols have, moreover, an associated natural num-
ber which we call the arity of the symbol. If f is a fluent symbol of arity m, then
an expression of the form f(t1, . . . , tm), where each ti is either a variable or an
object symbol, is called a fluent.

An action is a triple (αreq, αadd, αdel) where α = a(X1, . . . , Xn), for an action
symbol a ∈ A of arity n, is the signature of the action. Each element in the
triple is a set of fluents of the form f(t1, . . . , tm) where each ti is either an object
symbol or a variable Xj with 1 ≤ j ≤ n. We say that these are the fluents
that, respectively, the action requires, adds and deletes when it is executed. A
planning domain Dom is simply a set of actions and its size, denoted |Dom|, is
defined as the number of symbols occurring in the description of all its actions.

An action instance α′ = ασ, where σ is any substitution, corresponds to the
triple of sets of fluent instances (α′

req, α
′
add, α

′
del), where α

′
req = αreqσ, etc. �

Planning with Effectively Propositional Logic 309

Example 1. We will consider as a running example for this section, a planning
domain in the context of logistics. This domain has, among others, an action
load-truck that takes three parameters: a packageX1 to load, a truckX2 where to
load the package, and a locationX3 where the loading takes place. The definition
of such an action would probably look like:

load-truck(X1, X2, X3)

Req: at(X1, X3), at(X2, X3)

Del: at(X1, X3)

Add: in(X1, X2)

where at and in are binary fluent symbols. In words, the load-truck action requires
both the package, represented by the variable X1, and the truck, represented by
X2, to be at the same location, represented by X3. The action removes the
package from the location and places it, instead, in the truck. A ground instance
of this action, say load-truck(pk3,w238,man), would load the particular package
pk3 into the truck with license plate w238 when both items are in Manchester
(man).

The size of such definition is 16 (1 action symbol + 4 fluent symbols + 11
variable occurrences). We can imagine that the planning domain also contains
other actions to unload the truck and drive it from one location to another; as
well as more object symbols to identify different packages, trucks and locations.

Definition 5. Let α and β be two distinct ground actions. We say that α
interferes with β, if the action α deletes fluents that are either required or added
by β (i.e. αdel ∩ (βreq ∪ βadd)
= ∅). We say that a pair of ground actions is
interfering if one of them interferes with the other. �

Example 2. The ground action load-truck(pk3,w238,man) interferes with the
other ground action load-truck(pk3, y659,man) since the former deletes the flu-
ent at(pk3,man) while the later requires it. Note that this is how, implicitly, the
functionality of the fluent at is preserved, i.e. no object is allowed to end up at
two different places simultaneously.

Definition 6. Given a set of ground fluents S and a set of ground actions A,

we say that A is executable in S and produces S′, denoted by S
A−→ S′, if:

– A does not contain interfering actions,
– Areq ⊆ S,
– S′ = S \Adel ∪Aadd.

where Areq =
⋃

α∈A αreq, etc. �

Definition 7. A planning problem is given as a pair I,G of sets of ground
fluents, respectively known as the initial and goal states of the problem.

A solution plan for the problem is a sequence A1, . . . ,Ak of sets of ground

actions such that the sequence S1
A1−−→ S2

A2−−→ · · · Ak−−→ Sk+1 holds, the set I = S1

and G ⊆ Sk+1. �

310 J.A. Navarro-Pérez and A. Voronkov

The kind of plans just defined are often known as plans with parallel actions. The
semantics of such plans is that, at each step, the actions in a set Ai can be exe-
cuted in any order (even simultaneously) while still reaching the same outcome.
In our example one could simultaneously execute both load-truck(pk3,w238,man)
and load-truck(pk4,w238,man) in order to load both packages pk3 and pk4 into
the truck w238. Alternatively, a linear plan is a plan where each Ai is a single-
ton. Trivially, any plan with parallel actions can be converted into a linear plan
just by sequencing parallel actions into an arbitrary order, e.g. first load package
pk3, then load pk4.

4 Encoding of Planning Problems

In this section we will consider an encoding of planning problems into finite
domain predicate logic. Given a planning domain and a bound k, we construct
a set of constraints Γk whose models correspond to plans of length k. Linear
plans of shorter lengths (< k) can also be encoded by allowing the use of a nop
action that does nothing or, in plans with parallel actions, having steps where
no action is executed (i.e. an empty Ai).

Although fluents and actions were already defined as atoms in predicate logic,
these predicate symbols will now play the role of constant symbols so that we
can quantify over them in our encoding. For example, if f(Y) is a fluent in a
planning domain then the predicate holds(f, Y , T) will be used to denote the
fact that an instance of the fluent f(Y) holds at a step T of the plan.

Note that this sort of encoding requires, however, all fluents (resp. actions)
to have the same arity. This can be easily achieved by padding actions with
additional variables (which will be unused in its fluents), and padding fluents in
actions with some dummy constant symbol o ∈ D.

We will split the encoding of a planning domain into four groups of clauses.
The first group Boundk specifies the length of the plans to be considered, the sec-
ond group ActDom encodes the definitions of actions, the third ProbI,G encodes
the initial and goal states of a particular problem instance, and the fourth and
last one FrameDom encodes the frame conditions. Frame conditions are the ones
responsible to state that all fluents whose status is not changed by the actions
executed must remain unmodified. We will, actually, show two different encod-
ings for frame conditions which can be used to obtain plans which are either
linear or with parallel actions.

In the following we will use A, B as variables that stand for actions and
F as a variable to represent a fluent. Also T is a variable that represents the
current step in the plan, and U the next step. A number of constant symbols
{s0, . . . , sk} ⊂ D are used to denote the actual steps in the plan.

Definition 8. Given a positive number k, the set Boundk is simply defined as
the set containing next(si, si+1) for every i ≤ 0 < k. �
This simple set with a size of O(k) is used to define an order among steps in the
plan and to determine, from each step, which is the next one. The following set
encodes the actions available in the domain.

Planning with Effectively Propositional Logic 311

Definition 9. Given a planning domain Dom, the domain definition ActDom is
the set that contains, for each action in the domain, the constraints:

reqs(a,X, f, Y σ) for each f(Y)σ required by a(X)

dels(a,X, f, Y σ) for each f(Y)σ deleted by a(X)

adds(a,X, f, Y σ) for each f(Y)σ added by a(X)

together with the following three constraints that make actions have their cor-
responding preconditions and effects:

reqs(A,X, F, Y) ∧ ¬holds(F, Y , T)→¬executes(A,X, T)

next(T, U) ∧ adds(A,X, F, Y) ∧ executes(A,X, T)→ holds(F, Y , U)

next(T, U) ∧ dels(A,X, F, Y) ∧ executes(A,X, T)→¬holds(F, Y , U) �

Example 3. In our running example, the action load-truck would be encoded as:

reqs(load-truck, X1, X2, X3, at, X1, X3)

reqs(load-truck, X1, X2, X3, at, X2, X3)

dels(load-truck, X1, X2, X3, at, X1, X3)

adds(load-truck, X1, X2, X3, in, X1, X2)

Similar constraints are added for other actions in the domain. The last few
constraints of ActDom would ensure that an action is not executed when one of
its requirements does not hold or, if the action is executed, that fluents are added
or deleted accordingly. It is also easy to see that ActDom has a size of O(|Dom|).

We now move to the encoding of a problem instance using the set of constraints
ProbI,G. Typically, in propositional encodings of a planning problem, one has to
completely specify the initial state I stating, for every ground fluent, whether
f(c̄) or ¬f(c̄) should hold. To avoid this, we define a special action setup that
adds all the ground fluents to be true at the initial state and does not require or
delete anything. Quantifying over all fluents it is easy to express that “initially
nothing holds” and then make the setup action execute at the step zero of the
plan, the frame conditions will then ensure that everything not added by setup
remains false.

Definition 10. Given a planning problem defined by an initial state I and
goals G, the encoding of the problem instance ProbI,G is defined as the set of
constraints:

¬holds(F, Y , s0)

adds(setup, X, f, c̄) for every f(c̄) in I

executes(setup, ō, s0)

next(T, U)→¬executes(setup, X, U)

holds(f, c̄, sk) for every f(c̄) in G

where ō simply represents the sequence o, . . . , o of dummy constant symbols of
the required length. �

312 J.A. Navarro-Pérez and A. Voronkov

Example 4. Suppose that initially we have two packages in Manchester, a truck
in London, and our goal is to get the packages to Edinburgh. This corresponds to
I = {at(pk3,man), at(pk4,man), at(w238, lon)}, G = {at(pk3, edn), at(pk4, edn)}
and would be encoded in the component ProbI,G as:

¬holds(F, Y1, Y2, s0)

adds(setup, X1, X2, X3, at, pk3,man)

adds(setup, X1, X2, X3, at, pk4,man)

adds(setup, X1, X2, X3, at,w238, lon)

executes(setup, o, o, o, s0)

next(T, U)→¬executes(setup, X1, X2, X3, U)

holds(at, pk3, edn, sk)

holds(at, pk4, edn, sk)

The first constraint makes all fluents false at time s0, then we have the definition
of the setup action. A pair of constraints follow that make setup to execute at the
first state, and only at that state. Finally we specify that the goals should hold at
the final state sk. Note again that we do not have to specify where packages are
not, such as ¬at(pk3, lon), or that the truck is empty (because there is nothing
in it).

We finally proceed to describe the rules that actually encode the frame con-
ditions and, at the same time, to disallow the execution of interfering actions.
The following sections consider two alternatives that correspond to plans that
are either linear or with parallel actions.

4.1 Linear Plans

One possibility is to allow only one action to execute at a time, and the frame
conditions can be directly expressed stating that the truth value of fluents not
added or deleted by an action do not change. Moreover, in order to allow plans
whose length is shorter than the bound k, a nop action that does nothing should
be added to the definition of the planning domain.

Definition 11. Given a planning domain Dom, the linear frame encoding of the
domain, denoted by LFrameDom, is the set containing, for each action symbol
a ∈ A and fluent f ∈ F , the constraint

next(T, U) ∧ executes(a,X, T) ∧
∧

σ∈Ξa,f
Y
= Y σ →
holds(f, Y , T)↔ holds(f, Y , U)

and the pair of constraints

∃A,X ∈ A×On. executes(A,X, T)

executes(A,X, T) ∧ executes(B,Z, T)→ A = B ∧X = Z

Planning with Effectively Propositional Logic 313

where the set Ξa,f contains all substitutions σ for which the fluent f(Y)σ is
either added or deleted by a(X). �

Example 5. In our example the linear frame conditions for the load-truck action
would be expressed as follows:

next(T, U) ∧ executes(load-truck, X1, X2, X3, T) ∧
¬(Y1 = X1 ∧ Y2 = X3)→ holds(at, Y1, Y2, T)↔ holds(at, Y1, Y2, U)

next(T, U) ∧ executes(load-truck, X1, X2, X3, T) ∧
¬(Y1 = X2 ∧ Y2 = X3)→ holds(in, Y1, Y2, T)↔ holds(in, Y1, Y2, U)

In words these constraints state that, except for the package X1 moved by the
action, all other objects remain at their same locations and in their same con-
tainers. The last few constraints of LFrameDom encode the fact that one, and
only one, ground action executes at any given time.

Note that this encoding requires |A||F| constraints to represent the frame condi-
tions, where |A| (resp. |F|) denotes the number of action (resp. fluent) symbols.
Additionally, each fluent added or deleted by actions must appear represented
as a substitution in the set Ξa,f for one of such constraints. Therefore the set of
constraints LFrameDom has a size of O(|A||F|+ |Dom|).

4.2 Plans with Parallel Actions

Alternatively, several actions could be executed at once as long as they do not
interfere with each other. We consider an explanatory encoding following ideas
proposed by Haas [8], Schubert [14] and later applied in the propositional case
by Kautz et al. [10]; where it is expressed that, if a fluent changes its value
from one step to another, then one of the actions that modify it must have been
executed.

Definition 12. Given a planning domain Dom, the parallel frame encoding of
the domain, denoted by PFrameDom, is the set containing, for each fluent f ∈ F ,
the constraints:

added(f, Y , T)→
∨

(a,σ)∈Δf
∃X ∈ On.(executes(a,X, T) ∧ Y = Y σ)

deleted(f, Y , T)→
∨

(a,σ)∈∇f
∃X ∈ On.(executes(a,X, T) ∧ Y = Y σ)

together with the three constraints

next(T, U) ∧ ¬holds(F, Y , T) ∧ holds(F, Y , U)→ added(F, Y , T)

next(T, U) ∧ holds(F, Y , T) ∧ ¬holds(F, Y , U)→ deleted(F, Y , T)

dels(A,X, F, Y) ∧ reqs(B,Z, F, Y)∧
executes(A,X, T) ∧ executes(B,Z, T)→ A = B ∧X = Z

where the set Δf (resp. ∇f) contains the pair (a, σ) whenever the fluent f(Y)σ
is added (resp. deleted) by the action a(X). �

314 J.A. Navarro-Pérez and A. Voronkov

Example 6. In this case, the predicates added and deleted are defined for each
fluent. Consider for instance the following constraint that encodes the frame
conditions for the fluent at(Y1, Y2):

added(at, Y1, Y2, T)→
∃X ∈ O3.(executes(unload-truck, X) ∧ Y1 = X1 ∧ Y2 = X3)

∨ ∃X ∈ O3.(executes(drive-truck, X) ∧ Y1 = X1 ∧ Y2 = X3)

If a fluent at(Y1, Y2) is added at some state, then it must be the case that either
a package Y1 = X1 was unloaded at a location Y2 = X3 (from some truck X2)
or, similarly, a truck was driven to that location from another.

The last few constraints trigger the predicates added and deleted, whenever a
change in the truth value of a fluent occurs, in order to search for an explanation
of such change. The final constraint disables the execution of two actions when
one deletes a requirement of the other and, therefore, they are interfering. It is
also not possible to execute two actions such that one deletes the fluent added by
the other, a contradiction will occur in ActDom when both actions try to assign
contradictory values to the fluent.

Note that, in this case, the number of clauses in PFrameDom is linear with respect
to the number of fluent symbols in F . Moreover, the size of the clauses only
depends on the number of actions that could add or delete a given fluent. Overall,
PFrameDom has only a size of O(|Dom|) and does not directly depend on the
number of actions or fluents as in the previous case.

Theorem 4. Given a planning domain Dom, a problem I,G and a bound k, the
finite domain predicate formula Boundk ∧ ActDom ∧ ProbI,G ∧ FrameDom, where
FrameDom is either LFrameDom or PFrameDom, is satisfiable if and only if the
planning problem has a solution plan, respectively linear or with parallel actions,
of length ≤ k.

Proof. It can be shown that if an interpretation I is a model of the encoding,
then the plan where Ai = {a(c̄) | I |= executes(a, c̄, si)}, for 1 ≤ i ≤ k, is a valid
solution to the planning problem.

Conversely it can be shown that, if A1, . . . ,Ak′ is a solution plan (linear or
with parallel actions) with k′ < k, then an interpretation I can be built, giving
appropriate values to predicates, such that I is a model of the encoding. �

5 Conclusions

In this paper we have introduced the finite domain predicate logic, which corre-
sponds to a decidable fragment of first order logic with features such as equality
and finite quantification. Formulae in this logic are non-propositional, but its
models can be interpreted in a finite Herbrand universe. We also show that for-
mulae in this logic can be linearly translated to the Bernays-Schönfinkel class
of formulae, which also corresponds to the category of effectively propositional
problems of the CASC system competition [16].

Planning with Effectively Propositional Logic 315

The motivation for developing such a logic is that it enables us to suc-
cinctly and naturally encode problems from applications. In particular we show
how planning problems, including their frame conditions, can be easily encoded
within the proposed logic. Moreover, the size of the generated formula is linear
with respect to size of a standard description, e.g. in the STRIPS language, of
the original planning problem. This is in contrast with propositional encodings
where the size of the resulting formula is often exponential in the size of the
input.

Furthermore, we also show that reasoning with effectively propositional for-
mulae can be exponentially more efficient than in the propositional setting. We
show in particular a family of unsatisfiable formulae whose refutation proofs
using first order resolution can be exponentially shorter than any propositional
resolution proof. This serves to suggest that, in principle, the use of a finite
domain predicate encoding can be useful both to obtain more compact repre-
sentations of problems and to solve them more efficiently.

On the other hand, the ideas presented here might also turn out to be useful
for propositional SAT-based approaches. Since the problem of finding optimised
propositional encodings, including but not limited to planning, is reduced to
finding an appropriate instantiation of the obtained finite domain formula.

We think that our work is of great value to the automated reasoning commu-
nity since it provides a new and relevant source of benchmarks for developers
of first order reasoners, particularly those geared towards the effectively propo-
sitional fragment. Specifically, problem instances derived from the work of this
paper have been contributed and are now part of the TPTP Library in the
planning domain (PLA) since v3.5.0 [15]. Furthermore, follow up research work
has demonstrated the use of finite domain predicate logic to encode problems
from a wide range of domains, including temporal logics and software/hardware
verification [11, 12].

References

[1] Baaz, M., Leitsch, A.: Complexity of resolution proofs and function introduction.
Annals of Pure and Applied Logic 57(3), 181–215 (1992)

[2] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 2, pp. 19–99.
Elsevier (2001)

[3] Baumgartner, P., Tinelli, C.: The Model Evolution Calculus with Equality.
In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 392–408.
Springer, Heidelberg (2005)

[4] Claessen, K., Sörensson, N.: New techniques that improve MACE-style model
finding. In: MODEL 2003: Proceedings of the Workshop on Model Computation
(2003)

[5] Fikes, R., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

[6] Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg
(2006)

316 J.A. Navarro-Pérez and A. Voronkov

[7] Green, C.: Application of theorem proving to problem solving. In: IJCAI 1969:
Proceedings of the 1st International Joint Conference on Artificial Intelligence,
Washington, DC, USA, pp. 219–239 (1969)

[8] Haas, A.R.: The case for domain specific frame axioms. In: Brown, F.M. (ed.)
Proceedings of the 1987 Workshop on The Frame Problem in Artificial Intelligence,
pp. 343–348. Morgan Kaufmann, Lawrence (1987)

[9] Kautz, H., Selman, B.: Planning as satisfiability. In: ECAI 1992: Proceedings of
the 10th European Conference on Artificial Intelligence, pp. 359–363. John Wiley
& Sons, Inc, Vienna (1992)

[10] Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic.
In: KR 1996: Proceedings of the 5th International Conference on Principles of
Knowledge Representation and Reasoning, Boston, MA, USA (1996)

[11] Navarro Pérez, J.A.: Encoding and Solving Problems in Effectively Propositional
Logic. PhD thesis, The University of Manchester (2007)

[12] Navarro-Pérez, J.A., Voronkov, A.: Encodings of Bounded LTL Model Checking in
Effectively Propositional Logic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 346–361. Springer, Heidelberg (2007)

[13] David, A.: Plaisted and Steven Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation 2(3), 747–7171 (1986) ISSN: 0747-
7171

[14] Schubert, L.K.: Monotonic solution of the frame problem in the situation calcu-
lus: An efficient method for worlds with fully specified actions. In: Kyburg, H.,
Loui, R., Carlson, G. (eds.) Knowledge Representation and Defeasible Reasoning,
pp. 23–67. Kluwer Academic Publishers, Dordrecht (1990)

[15] Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

[16] Sutcliffe, G., Suttner, C.B.: The state of CASC. AI Communications 19(1), 35–48
(2006)

The Relative Power of Semantics and Unification

David A. Plaisted and Swaha Miller�

Department of Computer Science
UNC Chapel Hill

Chapel Hill, NC 27599-3175
plaisted@cs.unc.edu

Abstract. The OSHL theorem proving method is an attempt to extend
propositional theorem proving techniques to first-order logic by work-
ing entirely at the ground level. A disadvantage of this approach is that
OSHL does not perform unifications between non-ground literals, as res-
olution does. However, OSHL has the capability to use natural semantics
to guide the proof search. The question arises whether the advantage of
proof guidance using semantics can make up for the loss of unification
between non-ground literals that other methods employ. This question
is studied and some evidence is given that a properly chosen semantics
causes OSHL to implicitly perform unifications between non-ground lev-
els, suggesting that OSHL may have some of the advantages of theorem
proving methods based on unification as well as some of the efficiencies
of propositional theorem provers. Some implementation results of OSHL
with and without nontrivial semantics are also presented to illustrate its
properties.

Keywords: Theorem proving, propositional calculus, semantics, unifi-
cation, OSHL.

1 Introduction

Techniques for deciding the satisfiability of propositional calculus formulas are
advancing rapidly. The announcement of the Special issue of the Journal of
Automated Reasoning for SAT 2005 [1] stated, “Systematic methods can now
routinely solve verification problems with thousands or tens of thousands of vari-
ables, whilst local search methods can solve hard random 3SAT problems with
millions of variables.” It would be desirable to incorporate some of these propo-
sitional techniques into first-order theorem provers to improve their efficiency.

The OSHL theorem proving method [2] is one of several propositional methods
for first order logic that have been developed. Others include FDPLL [3], DCTP
[4], model evolution[5–8], the method of Ganzinger and Korovin [9–11], and
clause linking [12]. A recent survey[13] of instance-based methods gives many
more references. OSHL differs from other instance-based methods in two main

� This research was partially supported by the National Science Foundation under
grant CCR-9972118.

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 317–344, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

318 D.A. Plaisted and S. Miller

respects: 1. It works entirely at the ground level, and makes no use of true
unification between non-ground literals. 2. It permits the use of very general
semantics to guide the proof search, in this respect reminiscent of the geometry
theorem prover of Gelernter [14]. In particular, OSHL can make use of any
semantics that is decidable on ground literals. The method of Ganzinger and
Korovin also makes use of semantics; this method grounds a set of clauses by
replacing variables by constants and tests the ground set for satisfiability. If the
set is unsatisfiable, a refutation has been found; otherwise, a model of the ground
set is found, and this model guides the generation of new instances of the clauses.
So Ganzinger and Korovin’s method uses semantics, but the model they obtain
is the one that a satisfiability checker returns, and not one that a user may have
input at the beginning.

OSHL was implemented [15], and even without sophisticated semantics, spe-
cial methods for equality, or efficient data structures it had a performance that
came within a factor of two of a respectable resolution prover, and in some cases
exceeded it, though it was still far behind the best provers in existence at the
time. The natural question is whether the disadvantage of lacking true unifica-
tion can be compensated for by the advantage of using semantics. In this paper
we attempt to gain a better understanding of the relative power of semantics and
unification. Also, we sketch the state of the implementation and its performance
on the TPTP problem set [16] at the time the tests were run. The performance
of OSHL on some examples run with a nontrivial semantics is also presented.
This work was begun while the first author was a visitor at Max Planck Institute
in 1994-95.

1.1 Terminology

The arity of a function or predicate symbol is the number of arguments it takes.
A first-order language L(P,F,X) consists of a finite set F of function symbols of
various arities, a countably infinite set X of variable names, and a finite set P of
predicate symbols of various arities. A function symbol of arity zero is also called
a constant symbol. It is assumed that F contains at least one constant symbol,
even if this symbol does not appear in the set S of clauses being considered.
A term over L is a well-formed expression composed of function symbols in
F, including constant symbols in F, and variables in X. An atom over L is a
predicate symbol in P followed by a list of terms over L as arguments. A literal
over L is an atom or an atom preceded by a negation sign. If L is an atom then
the literals L and ¬L are said to be complementary and L is called a positive
literal and ¬L a negative literal. If L is a literal then at(L) is its atom, defined
by at(A) = A and at(¬A) = A for atoms A. If L is a negative literal then ¬L is
sometimes identified with at(L).

If L is an atom then ||L||lin is the number of occurrences of function, con-
stant, and predicate symbols in L when it is written out as a string, so that
||P (a, f(x))|| = 4. Also, ||L||dag is the length of L when it is expressed as a di-
rected acyclic graph, so that repeated subterms are only counted once. For this,

The Relative Power of Semantics and Unification 319

L is assumed to be represented as a sequence of symbols with repeated subterms
represented by pointers, so that P (f(a), f(a)) would be represented by the se-
quence P, f, a, 2 where the 2 indicates a pointer to the second symbol, an f . Then
||P (f(a), f(a))||dag = 4 because the sequence P, f, a, 2 is of length four. These
measures are extended to literals by ||¬L||lin = ||L||lin and ||¬L||dag = ||L||dag.

A clause over L is a set of literals over L representing their disjunction. If C
is a clause then at(C) = {at(L) : L ∈ C}. A clause is a unit clause if it contains
exactly one literal and it is a Horn clause if it contains at most one positive
literal. Variables in a clause are assumed to be universally quantified. A term,
literal, or clause without variables is said to be ground. If C is a clause then
||C||lin is the sum of ||L||lin for all literals L in C, and similarly for ||C||dag.

A set S of clauses represents the conjunction of the clauses in the set. S is
called a Horn set if all clauses in S are Horn clauses. It is assumed that a set S
of clauses over L(P,F,X) is given, F is the set of constant and function symbols
appearing in S, with a new constant symbol added if F has none, and P is the
set of predicate symbols appearing in S.

A substitution is a mapping from variables in X to terms over F and X, in which
only finitely many variables are changed. If t is a term and ρ is a substitution
then tρ indicates the application of ρ to the term t, and similarly for literals and
clauses; this represents t with all variables systematically replaced as specified by
ρ. The term tρ is called an instance of t and similarly for literals and clauses. Note
that this definition restricts instances to terms over L(P,F,X). A substitution is
a variable renaming if all variables are mapped to variables, and no two variables
are mapped to the same variable. If ρ is a variable renaming and A is an atom
then Aρ is called a variant of A, and similarly for terms and clauses.

An interpretation gives meanings to function symbols as functions over some
domain, and interprets predicate symbols as relations over the same domain. Us-
ing these meanings, ground atoms can be mapped to {true, false}. The domain
may also contain elements that do not correspond to ground atoms. A Her-
brand interpretation I over L is a mapping from ground atoms over L to {true,
false}. One can think of non-Herbrand interpretations as augmenting the list F
of symbols by an arbitrary set of constant symbols representing elements of some
domain of objects. We only consider Herbrand interpretations in this discussion.
If I(A) = true for ground atom A then one writes I |= A or I satisfies A, and
otherwise I
|= A, I contradicts A, or A contradicts I. I is extended to literals
by I |= ¬A iff I
|= A. I is extended to clauses by I |= C iff ∃L ∈ C(I |= L). I
is extended to non-ground clauses in a standard way. For our purposes, if C is a
non-ground clause then I |= C iff for all ground instances D of C, I |= D; this is
a property of Herbrand interpretations, but other interpretations may not satisfy
this property. An interpretation I is extended to sets of clauses so that I |= S
iff I |= C for all C in S. If I |= S then I is called a model of S. If S has a model
then S is satisfiable, else it is unsatisfiable. If I is an interpretation and L1 . . . Ln

are literals then I[L1 . . . Ln] is the interpretation defined by I[L1 . . . Ln] |= L if
L = Li for some i, or I |= L and at(L)
∈ {at(L1), . . . , at(Ln)}.

320 D.A. Plaisted and S. Miller

If I and J are two interpretations, then I ≤pos J iff for all atoms A, I |= A
implies J |= A. A model I is a ≤pos minimal model of a set S of clauses if I is
a model of S and there is no model J of S distinct from I such that J ≤pos I.

1.2 Exhaustive Enumeration Methods

OSHL is similar to some of the early enumeration-based methods for first-order
theorem proving. The idea of exhaustive enumeration is as follows:

If S is a set of clauses let HS be the set of ground instances of clauses in
S, where all symbols appearing in clauses in HS appear in S, except for one
additional constant symbol in HS if S has no constant symbols. Let S be a set
of first order clauses. Then the exhaustive enumeration method for first-order
theorem proving is the following:

procedure enumerate(S)
T0 ← {}
for i = 1 step 1 until ∞ do
if Ti−1 = HS then return “satisfiable”
let D be an element of HS − Ti−1 chosen fairly
Ti ← Ti−1 ∪ {D};
If Ti is unsatisfiable then return “unsatisfiable”

od
end enumerate;

This procedure is complete in the sense that if S is unsatisfiable, the proce-
dure will eventually return “unsatisfiable.” If HS is finite then this procedure
will eventually return “satisfiable.” Otherwise the procedure will run forever.
The completeness of this procedure is a straightforward application of what is
commonly known as Herbrand’s theorem.

The paper [17] by Davis and Putnam in 1960 was the first one to apply this
blind enumeration algorithm to clause form first-order theorem proving, and in
addition, this paper used a reasonably efficient decision procedure (the original
Davis and Putnam procedure, involving ground resolution) to test the sets Ti

for unsatisfiability. Others had used enumeration procedures before this, but
none had used Skolem functions together with clause form and none had used
as efficient a propositional decision procedure.

Later Robinson [18] developed the resolution procedure which avoids blind
enumeration of ground instances by use of the unification algorithm. Since then
many other strategies have been developed that also use the unification algorithm
in various ways.

Recently there has been a resurgence of interest in propositional approaches
to first-order theorem proving. However, OSHL differs from most instance-based
methods in that it works strictly at the ground level. This feature enables so-
phisticated semantic guidance to be used with OSHL. Thus OSHL does not
perform true unification between non-ground literals. This lack of unification is
a potential handicap to OSHL, so there is a question whether the ability to use

The Relative Power of Semantics and Unification 321

semantics can compensate for the lack of unification. This paper presents some
evidence in the affirmative.

2 OSHL

OSHL has the following general features. It enumerates HS and tests the sets Ti

for unsatisfiability. However, OSHL uses an enumeration procedure that differs
from the above one in that it guarantees that no ground instance will be a logical
consequence of previously generated instances. It also uses a backtracking pro-
cedure similar to DPLL[19] as a decision procedure instead of the original Davis
and Putnam method. If Ti is unsatisfiable, then OSHL reports “unsatisfiable.”
Otherwise, OSHL continues generating ground instances. Also, OSHL does not
perform separate satisfiability tests on each Ti but interleaves these tests with
the generation of the successive Ti to avoid repeated work.

The following version of OSHL is very general but is still complete. A more
specialized version of OSHL that more closely approximates the actual imple-
mentation will be presented later.

procedure OSHLgeneral(S)
T ← φ;
for i = 0 step 1 until ∞ do
if T is unsatisfiable then return “unsatisfiable”
pick interpretation Ii that satisfies all clauses in T ;
if no clause in HS contradicts Ii then return “satisfiable”
pick a clause Di in HS that contradicts Ii;
T ← T ∪ {Di};

od;
end OSHLgeneral ;

Definition 1. The sequence D0, D1, D2 . . . is an instance sequence of OSHL for
input S. This sequence is not unique for a given S.

The actual implementation of OSHL differs from the given procedure; the imple-
mentation sometimes performs resolutions on clauses in the instance sequence
to detect when this sequence is unsatisfiable.

Definition 2. Let A1, A2, A3 . . . be an enumeration of all ground literals over
L(P,F,X). Suppose I and J are two interpretations over L. Then I and J are
k-similar if I and J agree on Aj for all j, 1 ≤ j ≤ k, that is, I |= Aj iff J |= Aj

for all such j.

Theorem 1. Assuming that the clauses Di are chosen fairly, the procedure
OSHLgeneral is complete.

Proof. Suppose S is unsatisfiable. Let S′ be an unsatisfiable set of ground in-
stances of S. Suppose that the procedure OSHLgeneral runs forever. Then there

322 D.A. Plaisted and S. Miller

must be some limiting interpretation I having the property that for all k there
are infinitely many i such that I is k-similar to Ii. I can be constructed by noting
that at least one of the literals A1, ¬A1 is satisfied by infinitely many Ii; choose
I to satisfy this literal. Then among the Ii that are 1-similar to I, there must
be infinitely many that satisfy A2 or ¬A2; choose I to satisfy this literal, too.
Continuing in this way, I can be completely specified.

Because S is unsatisfiable, some clause in S has a ground instance that I
contradicts. By fairness, eventually some such clause Dk will be chosen and will
become a member of T . Let m be the maximum integer such that the atom Am

in the enumeration A1, A2, A3 . . . appears either positively or negatively in Dk.
Then any Ii that is m-similar to I must contradict Dk. Because I is a limiting
interpretation, there are infinitely many i such that I is m-similar to Ii. All
such Ii contradict Dk, in particular, some Ii must contradict Dk. This cannot
be so because all Ii must satisfy all clauses in T , and Dk ∈ T . Therefore such
a limiting interpretation I does not exist, so the procedure OSHLgeneral does
not run forever. The only way that this procedure can halt on an unsatisfiable
input is if it detects unsatisfiability. This argument shows that the procedure
OSHLgeneral is complete.

OSHLgeneral is further constrained to obtain “OSHLspecific ,” which lets the user
choose I0 and then chooses each Ij as a minimal model of T in a certain ordering
on interpretations. This version of OSHL can employ an interpretation I0 as its
initial semantics if I0 is ground decidable.

Definition 3. An interpretation I is ground decidable if the following question
is decidable: Given a ground literal L, does I satisfy L? Here I is fixed but L
varies.

Not all semantics are ground decidable; any interpretation having ground lit-
erals expressing the halting of arbitrary Turing machines, for example, is not.
OSHLspecific assumes that I0 is ground decidable, and it then follows that all
succeeding Ii are also ground decidable.

Also, in OSHLspecific, Di is chosen as a clause that Ii contradicts and is min-
imal in a certain ordering on clauses, subject to this condition. The orderings
on interpretations and clauses guarantee fairness and therefore completeness of
OSHLspecific.

In particular,OSHLspecific orders clauses by an ordering>c such that for every
ground clause C there are only finitely many ground clausesD such that C >c D.
This ordering satisfies the following property: If C1 and C2 are clauses then
(at(C1)
= at(C2)) ≡ (C1 >c C2 ∨ C2 >c C1). Thus only clauses with different
sets of atoms are ordered in this ordering. Also, <c is defined by C1 <c C2 iff
C2 >c C1. If at(C1) = at(C2) then C1 and C2 are treated as identical by the
ordering, so that for all clausesD, C1 >c D iff C2 >c D and C1 <c D iff C2 <c D.
OSHL also orders atoms L and M by a well-founded total ordering >t. This
ordering is extended to interpretations as follows: Say that two interpretations
I and J agree on atom L if (I |= L) ≡ (J |= L), that is, both I and J satisfy L
or I and J contradict L. Suppose the interpretation I0 has been specified. Let

The Relative Power of Semantics and Unification 323

I and J be arbitrary distinct interpretations. Let L be the >t-smallest atom
such that I and J do not agree on L. Then J >t I if I and I0 agree on L and
I >t J otherwise. This ordering >t on interpretations is not well-founded if HS

is infinite, it turns out. The procedure OSHLspecific is a version of OSHLgeneral

in which Ii is always chosen to be the >t minimal interpretation that satisfies
T and Di is chosen to be the >c minimal ground clause in HS that contradicts
Ii. Even though the ordering >t on interpretations is not well-founded, such a
minimal interpretation Ii and minimal clause Di always exist.

Our implementations of OSHL are based on OSHLspecific . The current imple-
mentation is augmented by “U rules”[15] that permit a more intelligent choice
of ground instances in many cases. From now on the term OSHL refers either to
OSHLspecific or the current OSHL implementation unless otherwise specified.

For purposes of analyzing complexity, it will be assumed that >c is defined
so that C1 >c C2 if ||C1||lin > ||C2||lin, unless otherwise specified.

Proposition 4. For OSHLspecific, there is a unique instance sequence.

Proof. Each interpretation Ij is uniquely determined by minimality in the or-
dering >t, it turns out. Also, the ordering >c on clauses is well-founded and
always orders clauses having different sets of atoms, so there is always a unique
minimal ground instance contradicting Ij .

This result means that OSHLspecific is deterministic and there is no backtracking.
In [2] it is shown that in the procedure OSHLspecific, the interpretations Ii all
have a special form. Recall the following definition:

Definition 5. If I is an interpretation and L1 . . . Lm are literals no two of which
are complementary, then I[L1 . . . Lm] is the interpretation such that I[L1 . . . Lm]
|= L iff at(L)
∈ {at(L1), . . . , at(Lm)} and I |= L, or L = Lj for some j. Thus
the Lj are “exceptions” to I that define I[L1 . . . Lm].

Theorem 2. [2] In the procedure OSHLspecific, all interpretations Ii are of the
form I0[L1 . . . Lm] where for all i, 1 ≤ i ≤ m, there exists j < i such that
Li ∈ Dj.

Literals Li as in the theorem will be called exception literals or eligible literals.

Corollary 1. Suppose D is a clause in the instance sequence of OSHLspecific

and L is a literal of D. Then either L is the complement of an exception literal
or I0 contradicts L.

One advantage of semantics as utilized by OSHL (that is, by OSHLspecific) is
that a properly chosen semantics guarantees that only “relevant” instances Di

of clauses in S are chosen. In the following definition, and from now on, T refers
to a subset of S and not the set of Di as before.

Definition 6. Suppose S is a set of clauses and T is a subset of S consisting
of clauses from the negation of the particular theorem, so that S − T consists

324 D.A. Plaisted and S. Miller

of general axioms and is satisfiable. Then the set R of relevant instances of the
clauses in S is the smallest subset of HS satisfying the following properties:

1. All ground instances of clauses in T are in R.
2. If D1 and D2 are two clauses in HS, and L1 and L2 are literals in D1 and

D2, respectively, and L1 and L2 are complementary, and D1 is in R, then D2 is
in R.

Note that R depends on both S and T .

The idea here is that clauses containing complementary literals are related to
each other. Thus a relevant clause is either part of the particular theorem T , or
related to a clause in T , or related to a clause that is related to a clause in T ,
et cetera. Relevance is especially important for very large clause sets.

If the initial model I0 is a model of S−T , then the instance sequence generated
by OSHL (that is, OSHLspecific) consists entirely of relevant instances [2]. The
reason for this is that any clause Di that contradicts I0 is relevant by definition.
Other clauses Di contain literals that are complementary to an exception literal
from a previously chosen clause Dj , so such clauses Di are also relevant.

However, this relevance property is not true of OSHLgeneral , and it is not true
of OSHLspecific if I0 is not chosen in this way. This is one evidence of the influence
of semantics and of the importance of choosing an appropriate semantics.

It is possible[20] to formulate OSHL as a set of rules on “ascending sequences”
of ground clauses. These rules can be viewed as constructing an infinite semantic
tree.

3 Complexity

The asymptotic time complexity of a theorem prover is a useful measure of its
performance. This measure helps in understanding the comparative performance
of OSHL and resolution. For this purpose, the complexity of OSHL without se-
mantics, that is, with a trivial semantics, is compared to the complexity of reso-
lution. It turns out that with a trivial semantics, for some problems OSHL is two
exponentials slower than resolution. However, on many practical problems, this
slowdown is not observed. A modification of OSHL without semantics reduces
the complexity handicap by one exponential. The question remaining is whether
semantics can overcome the resulting single exponential complexity handicap.
There is some evidence in the affirmative.

Consider first the simple case where S = {{L}, {¬M}} consists of two unit
clauses, L and ¬M are literals, and L and M are unifiable. For this clause set,
a single resolution produces the empty clause. If OSHL is run with a positive
semantics that interprets all atoms to true or a negative semantics that interprets
all atoms to false this problem can be much harder because OSHLmust generate
a common ground instance G of L and M and this ground instance can be
exponential in size compared to L and M . Because the ordering >c on clauses is
by linear size, OSHL would have to enumerate all ground instances of size less
than G, which is a double exponential number, before generating G. Resolution
requires only a time polynomial in the lengths of L and M to obtain the proof.

The Relative Power of Semantics and Unification 325

Now, the complexity of OSHL on this example can be reduced by one expo-
nential by representing terms as directed acyclic graphs (dags) in which common
subterms are represented only once. Recall that ||t||dag is the dag complexity of
t, namely, the number of distinct subterms of t, and ||t||lin is the length of t
when t is written out as a linear sequence of symbols. These size measures are
defined for literals and clauses in a similar way. The dag representation of a term
can be smaller than the linear representation by an exponential amount. In fact,
unification only increases dag complexity by a linear amount, it turns out, so
the dag complexity of G is proportional to the sum of that of L and M . Suppose
OSHLspecific is implemented with >c defined by C1 >c C2 if ||C1||dag >c ||C2||dag
rather than the more usual definition C1 >c C2 if ||C1||lin >c ||C2||lin. (On
clauses of the same size but with different sets of atoms, >c must be defined in
some other way.) Then OSHL only has to enumerate all ground literals whose
dag complexity is less than or equal to ||G||dag in order to obtain a proof. How
many literals are there in all to enumerate? Suppose that dags are represented as
linear sequences of function and constant symbols containing also integer point-
ers to other symbols in the sequence, the integer i being a pointer to the i-th
symbol in the sequence. Such a data structure represents dags efficiently because
common subterms need only be represented once, with other occurrences repre-
sented by pointers. Then a sequence of length n can only have pointers bounded
by n with a fixed number c of other function and constant symbols, so there
are c + n choices for each element in all, and at most (c + n)n or O(2n logn)
such sequences of length n, which is single exponential in n. Even adding in the
number of sequences of length less than n, the total complexity is still single
exponential.

Thus this dag representation yields one exponential of improvement in the
complexity of OSHL, but OSHL is still an exponential slower than resolution on
this example. Such an analysis on large terms is reasonable because large terms
do arise during theorem proving; see [21] for a natural example where literals of
size 2,940 arise by unification during theorem proving.

To get better performance from OSHL it is necessary to use semantics, that
is, to choose I0 carefully. The speedup that can be obtained in this way will be
considered next.

4 Semantics

Gelernter [14] obtained a significant increase in power in his geometry theo-
rem prover using semantics. Gelernter’s prover drew diagrams of theorems in
geometry. By examining these diagrams, the prover was able to discard certain
conjectures as false and thereby not waste effort attempting to prove them. His
prover essentially applied to Horn clause problems. Since Gelernter’s work, the
application of semantics to first-order theorem provers has been comparatively
neglected, despite the importance of diagrams and semantics to humans in prov-
ing theorems. The goal of OSHL is to make use of semantics in a similar way to

326 D.A. Plaisted and S. Miller

Gelernter’s prover for general first-order Horn clause problems, not necessarily
about geometry, and also to generalize this use of semantics to non-Horn clauses.

In order to compare the performance of OSHL and resolution or unification
in a formal way, it is helpful to approximate the set of instances generated by
resolution proofs. This is done as follows, assuming that all clauses in S have
disjoint sets of variables:

Definition 7. Suppose C = {L1, . . . , Lm} is a clause in S. Let Unif (C) be
{CΘ : there exist clauses C1 . . . Cn ∈ S and literals M1, . . .Mn such that the
complement of Mi is in Ci for all i and Θ is a simultaneous most general unifier
of Li and Miρi for all i, where ρi are renamings of variables of Mi such that for
all i, Li and Mi have no common variables, and for all i
= j, Mi and Mj have
no common variables}. Let Unif (S) be {Unif (C) : C ∈ S}.

The idea is that if a clause C appears in a resolution refutation, then each literal
of C has to participate in a resolution at some point, and thus must unify with
the complement of a literal in some other clause. Unif (S) represents the set of
instances C′ of clauses in S obtained by unification of all literals of C′ with
literals of other clauses in S. These instances C′ correspond, roughly speaking,
to instances of clauses that can appear in resolution proofs. In fact, they are
instances obtained by a sequence of resolutions involving clauses C of S, but
without deleting the literals of C. The set Unif (S) therefore represents instances
of clauses in S obtained by the unifications that might appear in a resolution
proof. Note that if S′ is a minimal unsatisfiable set of ground instances of S,
then all elements of S′ are instances of clauses in Unif (S).

Definition 8. If S is a set of clauses and I is an interpretation then InstI(S)
is the set of clauses appearing in the instance sequence of OSHL with initial
semantics I.

It is of interest to know the relationship between Unif (S) and InstI(S). In par-
ticular, for which I does InstI(S) consist entirely of clauses that are all instances
of clauses in Unif (S)? The analysis contained here has not previously appeared
in the literature.

4.1 Two Complementary Literals

The case of two complementary unit clauses is easiest to analyze. Recall the
behavior of OSHL in this case; with a trivial positive or negative semantics,
the performance of OSHL is worse than resolution by one or two exponentials.
However, a better choice of semantics can lead to a significant speedup for OSHL.

Theorem 3. Suppose S = {{L}, {¬M}} consists of two unit clauses {L} and
{¬M} where L and M are atoms and L and M are unifiable. Let I0 be a model
of L that is minimal in the ordering ≤pos subject to this condition. That is, for
atoms A over L(P,F,X), I0 |= A iff A is a ground instance of L. Then for all D
in InstI0(S) there is a clause D′ in Unif (S) such that D is an instance of D′.

The Relative Power of Semantics and Unification 327

Proof. Let D0, D1, D2 . . . be the instance sequence for OSHL with initial inter-
pretation I0 and set S of input clauses. Then D0 is a ground instance of a clause
in S such that D0 is not satisfied by I0. For convenience assume that L and M
have no common variables. Because I0 satisfies L, D0 cannot be an instance of
{L}, so D0 must be an instance of {¬M}. Because ¬M is negative, all ground
instances of ¬M are negative literals, but I0 satisfies all negative literals except
those that are instances of L since I0 is a minimal model of L. Because I0 does
not satisfy D0, D0 must be an instance of {¬L}. Now D0 is already an instance
of {¬M}, so D0 is an instance of ¬M mgu(L,M). In fact, because the ordering
>c is by linear size, D0 is a minimal (linear) size instance of ¬M mgu(L,M).
Among clauses having the same size as D0, one of them, namely D0, is the
smallest in the ordering >c. The clause ¬M mgu(L,M) or a variant of it is in
Unif (S) and D0 is an instance of this clause.

Suppose D0 = {¬M ′}. The clause D1 must be a >c minimal ground instance
of a clause in S contradicting the interpretation I1 = I0[¬M ′]. D1 is either
another instance of {¬M} or an instance of {L}. The clause {M ′} is an instance
of {L} that contradicts I1 and will be chosen as D1 unless some other instance
of L or ¬M contradicting I1 is smaller. However, no other equally small ground
instance of a clause in S contradicts I1 because it either contradicts I0, and D0

is the minimal instance of a clause in S contradicting I0, or it contradicts ¬M ′,
and {M ′} is the minimal instance of a clause in S contradicting ¬M ′.

Thus D1 is {M ′}, which is an instance of {L}. Also, D1 is an instance of L
mgu(L,M), and either this clause or a variant of it is in Unif (S). Because D0

and D1 are contradictory, {D0, D1} is unsatisfiable and OSHL will stop after
generating D1. Thus all clauses in the instance sequence are instances of clauses
in Unif (S).

The use of semantics with OSHL in this case eliminates the exponential or double
exponential gap in complexity compared to resolution, regardless of whether the
clause ordering is based on a linear or dag complexity measure.

4.2 Horn Problems

The preceding result shows that with an appropriate semantics, OSHL is im-
plicitly performing unifications even though it works entirely at the ground level
and never explicitly unifies non-ground literals. This result will be extended in
several ways, beginning with an extension to Horn sets. Recall the ordering ≤pos

on interpretations defined by I ≤pos J if for all atoms A, if I |= A then J |= A.
If S is a set of Horn clauses, define the axioms of S to be the clauses of S con-
taining a positive literal, and possibly some negative literals. Thus the axioms
of S are all clauses other than the all-negative clauses of S.

Now, for Horn sets S, each logical consequence of the axioms of S is an
instance of a clause derivable by resolution. Also, the positive literal, if any, of
D must be the complement of an exception literal, because for Horn sets with
axioms defined in this way the exception literals will always be negative and all
the negative literals of D must be false in I0. From these facts it easily follows

328 D.A. Plaisted and S. Miller

that for all elements D of the instance sequence there is a clause D′ in Unif (S)
such that D is an instance of D′. This implies the following result:

Theorem 4. Suppose that S is an unsatisfiable set of Horn clauses and I0 is a
ground decidable ≤pos minimal model of the axioms of S. Then for all clauses
D in the instance sequence of S there is a clause D′ in Unif (S) such that D is
an instance of D′.

Proof. Note that all positive literals that are true in I0 are logical consequences
of the axioms of S. It was shown[2] that if S is an unsatisfiable Horn set and I0
is a ≤pos minimal model of the axioms of S then all clauses D in the instance
sequence of OSHL have the following property: For all negative literals ¬L in D,
L is a logical consequence of the axioms of S, and the positive literal L in D, if
it exists, is also a logical consequence of the axioms of S.

This can be seen as follows: Let D0 be the first instance chosen by OSHL.
The complements of negative literals in D0 must be logical consequences of
the axioms of S, because I0 satisfies all other negative literals. Therefore the
positive literal of D0, if any, must also be a logical consequence of the axioms of
S. Therefore this positive literal of D0 is satisfied by I0, which cannot be. So D0

must be an all-negative clauses, and all exception literals immediately after D0

is chosen are negative literals. (In fact, there will be only one exception literal
then.) The complements of negative literals of D1 must also be consequences of
the axioms of S, because they are false in I1 and these negative literals cannot
be the complements of negative exception literals. The positive literal, if any,
of D1 is also a consequence of the axioms of S, and is therefore satisfied by I0,
so it must be the complement of an exception literal. After D1 is chosen, all
exception literals will still be negative. Continuing in this way, for all clauses Di

in the instance sequence, the complements of the negative literals of Di will be
consequences of the axioms of S and the positive literal will be the complement
of an exception literal.

Suppose ¬L is a negative literal of Di. Because the complements of negative
literals of Di are consequences of the axioms of S, L is a consequence of the
axioms of S and is therefore an instance of a literal derivable from the axioms of
S by resolution. Also, the positive literal of Di, if any, is the complement of an
exception literal. Thus all the literals of Di are unifiable with the complements
of literals in other clauses of S, so Di is an instance of a clause in Unif (S).

However, it is easy to construct examples where Unif (S) contains clauses that
do not have any instances in InstI(S). This seems to give evidence that for Horn
sets, OSHL is in some sense superior to resolution. But this argument does not
take into account that OSHL needs semantics, while resolution does not. This
also does not take into account that clauses generated by resolution can be more
general than clauses in InstI(S), so there may be fewer of them altogether. On
the other hand, OSHL generates clauses in order of size, that is, a clause minimal
in the ordering >c is found each time. This will tend to make the instances found
by OSHL small and may reduce their number. Another issue is that in practice
the interpretations used forOSHLmay not be minimal models of the axioms of S.

The Relative Power of Semantics and Unification 329

Instead, the semantics will probably be obtained from general mathematical
knowledge of the properties of the axioms. In such cases one hopes that the
power of the semantics approximates the power obtained by a minimal model,
but this may not always be so.

If S is an unsatisfiable Horn set and I0 is as above, and I0 is ground decidable,
then it is not necessary to construct a proof at all. Let T be the set of all-negative
clauses of S; then S−T is the axioms of S and I0 models S−T . Then if there is
a ground instance D of a clause in T such that D is false in I0, one knows that S
is unsatisfiable without constructing a proof, because D must be an all-negative
clause, and the complements of all literals in D must be logical consequences of
the axioms of S. Thus we have the following modified OSHL procedure in this
case:

procedure OSHLHorn(S,T)
for i = 0 step 1 until ∞ do
pick a new ground instance D of a clause in T , if such exists;
if no such instance exists then return “satisfiable”
if D contradicts I0 then return “unsatisfiable”

od;
end OSHLHorn ;

It may be possible to find such ground instances D faster than by a brute force
search. Of course, such instances can be enumerated by a theorem prover gener-
ating all unit consequences of S − T , and enumeration is all that is required for
OSHLHorn . However, there may be faster ways than this to find them.

Definition 9. A semantic instantiation procedure for an interpretation I is a
procedure which, given a clause C, returns a ground instance D of C such that
I
|= D, if such exists, else loops. A semantic instantiation test for I, given C,
returns “true” if such a ground instance D exists, and “false” otherwise.

Note that any ground decidable interpretation has a semantic instantiation pro-
cedure based on exhaustive enumeration. If I0 has a semantic instantiation pro-
cedure more efficient than this, then this procedure can be used in OSHLHorn to
reduce the search; in fact, OSHLHorn could simply call such a procedure on all
clauses of T and return “unsatisfiable” if the semantic instantiation procedure
for I0 halts for some C in T . If there is a semantic instantiation test for I0, then
by calling it on all clauses in T one obtains a procedure to decide whether S is
unsatisfiable. If a clause C is non-ground, then a semantic instantiation test for
I can be used to find all ground instances of C that contradict I by creating a
set of possibly non-ground instances of C, applying the test to them, and further
processing those that are non-ground and pass the test.

If S is not a Horn set but I0 is chosen as an ≤pos-minimal model of a set H
of Horn clauses that is a subset of S, and D is a ground instance in the instance
sequence of S, then any negative literals of D that contradict I0 can simply
be deleted from D, because their complements are logical consequences of H .
Detecting such literals is possible because I0 is ground decidable. In this way
one can combine computation and theorem proving in the general case.

330 D.A. Plaisted and S. Miller

4.3 Unique Model

It is possible to generalize the above results.

Definition 10. A satisfiable set S of clauses has a unique Herbrand model if
there is only one Herbrand interpretation that satisfies S.

Theorem 5. Suppose S is an unsatisfiable set of clauses and T is a subset of S.
Suppose S−T has a unique Herbrand model and this model is ground decidable.
If I0 is chosen as this unique Herbrand model of S − T , then for all elements D
of InstI0(S) there is a clause D′ in Unif (S) such that D is an instance of D′.

Proof. Suppose Di is an arbitrary clause in the instance sequence for S, and L
is a literal in Di. By Corollary 1, either L is the complement of an exception
literal or I0 contradicts L. (a) If L is the complement of an exception literal,
then ¬L is a member of Dj for some j < i, and Dj is an instance of a clause in
S. (b) Suppose I0 contradicts L. Then (S − T)∪ {L} is unsatisfiable because I0
is the only model of S − T and I0 does not satisfy L. Therefore there is a finite
unsatisfiable set G of ground instances of (S−T)∪{L}, by Herbrand’s theorem.
Some clause D in G must contain the literal ¬L; if not then G− {L} would be
unsatisfiable, which contradicts the fact that S−T is satisfiable. Thus L unifies
with the complement of a literal in some clause in S − T . In both cases (a) and
(b), L is the complement of a literal in an instance of a clause of S. This is true
for all literals L in Di, so Di is an instance of a clause in Unif (S).

This gives another condition under which semantics in some sense simulates uni-
fication for first-order theorem proving. However, if there is a unique Herbrand
model, then it is not necessary to find the proof at all. After the first ground
instance of T contradicting I0 is found, one knows by the fact that I0 is the
unique Herbrand model of S − T , and is ground decidable, that S is unsatisfi-
able. This yields the following modified OSHL procedure in this case, where I0
is the unique Herbrand model of S − T :

procedure OSHLunique(S,T)
for i = 0 step 1 until ∞ do
pick a new ground instance D of a clause in T , if such exists;
if no such instance exists then return “satisfiable”
if D contradicts I0 then return “unsatisfiable”

od;
end OSHLunique ;

This procedure is actually identical to OSHLHorn . As before, OSHLunique can be
implemented by calling a semantic instantiation procedure for I0, if one exists,
and returning “unsatisfiable” if the procedure halts on some clause of T . If there
is a semantic instantiation test for I0, then one obtains a procedure to decide
whether S is unsatisfiable by calling the test on all clauses of T .

There is an optimization that can be applied to OSHL for clause sets having a
unique Herbrand model. Let D0 = {L1 . . . Ln} be a minimal size ground instance

The Relative Power of Semantics and Unification 331

of a clause of T that is falsified by I0. Then I0
|= Li for all i, 1 ≤ i ≤ n. Also,
(S − T) ∪ {Li} is unsatisfiable because I0 is the only model of S − T and I0
does not satisfy Li. Therefore one can prove separately for each literal Li that
(S − T) ∪ {Li} is unsatisfiable, which should be easier than proving that S is
unsatisfiable, because this is in effect splitting up the original problem into a
number of easier problems. Thus for the separate problems, one has D0 = {Li}
for various i. Consider the next clause D1 in the instance sequence for one
such subproblem. The clause D1 contradicts I0[Li]. If D1 contradicts I0, then a
similar technique can be applied to split the subproblem into simpler problems.
Otherwise, D1 contains the literal {¬Li}. Then D1−{¬Li} contradicts I0, which
is the only model of S−T . Therefore the set of clauses (S−T)∪ (D1−{¬Li}) is
unsatisfiable, but the clause (D1−{¬Li}) is derivable fromD1 and the unit clause
{Li} by ground unit resolution. Instead of refuting the original subproblem, it
is then only necessary to refute the clause set (S − T) ∪ (D1 − {¬Li}). Because
the clause (D1 − {¬Li}) contradicts I0, this clause can again be split into unit
clauses. This process can be continued. Thus considerable simplification of the
problem can be obtained if S − T has a unique Herbrand model.

It may be that S − T does not have a unique Herbrand model, but part of
the model is unique, that is, it may be known that many ground literals L are
logical consequences of S − T . In this case, whenever these ground literals L or
their complements appear in a proof, the proof attempt can be simplified by
proving separately that L is a consequence of S − T and then assuming L and
proving the rest of the theorem. Some of these proofs that L is a consequence of
S − T may only require a subset of S − T that has a unique Herbrand model,
and then these proofs can be done by the procedure OSHLunique , thus combining
deduction and computation.

4.4 General Case

What if S − T is non-Horn and does not have a unique Herbrand model? What
can one say then about the advantage of semantics? In this case it is still possible
to obtain a partial result along the lines of Theorem 4. For this, a more restricted
version of Unif (S) is necessary.

Definition 11. Suppose C is a clause in S and {L1, . . . , Lm} are the negative
literals in C. Let Unifneg(C) be {CΘ : there exist clauses C1 . . . Cn in S and
literals M1, . . .Mn such that the complement of Mi is in Ci for all i, and Θ is a
simultaneous most general unifier of Li and Miρi for all i where ρi are renamings
of variables of Mi such that for all i, Li and Mi have no common variables,
and for all i
= j, Mi and Mj have no common variables}. Let Unifneg(S) be
{Unifneg(C) : C ∈ S}.

Recall that the axioms of a Horn set H are the clauses of H having a positive
literal.

Theorem 6. Suppose S is an unsatisfiable set of clauses and T is a subset of S.
Suppose S − T is satisfiable. Let H be a set of Horn clauses such that for all C

332 D.A. Plaisted and S. Miller

in H, there is a clause C’ in S−T such that C is a subset of C’. If I0 is chosen
as a ≤pos minimal model of the axioms of H, and I0 is ground decidable, then
for all elements D of InstI0(S) there is a clause D′ in Unifneg(S) such that D
is an instance of D′.

Proof. Suppose Di is an arbitrary clause in the instance sequence for S and L
is a negative literal in Di. By Corollary 1, either L is the complement of an
exception literal or I0 contradicts L. If L is the complement of an exception
literal, then ¬L is a member of Dj for some j < i, and Dj is an instance of a
clause in S. Suppose I0 contradicts L. Then ¬Li is a positive literal satisfied by
I0. Because I0 is a minimal model of H , ¬L must appear in some instance of a
clause in H and therefore ¬L appears in some instance of a clause in S. In either
case, L is the complement of a literal in an instance of a clause of S. This is true
for all negative literals L in Di, so Di is an instance of a clause in Unifneg(S).

In particular,H can be chosen as a set of clauses containing only negative literals;
in this case, H has no axioms so I0 is the model making all the positive literals
false. It is also possible to choose H having more positive literals than this. For
general clause sets, it may be desirable to choose I0 to be a minimal model of
H where H is chosen so that for each C in S − T there is a clause C’ in H
containing all the negative literals of C and one of the positive literals, if any,
of C because this choice of H approximates S as closely as possible. A problem
with this approach is that I0 only models the clauses of S − T having at least
one positive literal. Thus I0 does not satisfy the negative clauses of S, and this
weakens the relevance property of OSHL; the instances Di generated by OSHL
need not be related to T at all, but may be related to one of the negative clauses
of S − T . The following result overcomes this objection.

Theorem 7. Suppose S is an unsatisfiable set of clauses and T is a subset of
S. Suppose S−T is satisfiable. Let I0 be a model of S−T that is ≤pos minimal;
that is, there does not exist any other model of S−T that is strictly smaller than
I0 in the ordering ≤pos . Suppose I0 is ground decidable. Then for all elements
D of InstI0(S) there is a clause D′ in Unifneg(S) such that D is an instance of
D′.

Proof. If L is a positive ground literal satisfied by I0, then L is an instance of
a literal appearing in a clause C of S − T . For, consider the model I ′ that is
identical to I0 but fails to satisfy L. This model is strictly smaller than I0 in the
ordering ≤pos . Because I0 is minimal in this ordering, I ′ must not be a model of
S−T , so there is some ground instance C’ of a clause of S−T that is not satisfied
by I ′. The clause C’ is satisfied by I0 because I0 is a model of S − T . Because
these two models only differ in their interpretation of L, C’ must contain L.

Now, consider a negative literal M that appears in a clause Di in the instance
sequence of OSHL. Either I0 contradicts M or M is the complement of an
exception literal, by Corollary 1. If I0 contradicts M then I0 satisfies ¬M which
is a positive literal, so ¬M is a member of an instance of some clause of S − T
as shown above. If M is the complement of an exception literal ¬M then ¬M

The Relative Power of Semantics and Unification 333

is a member of a clause of S previously chosen in the instance sequence. In all
cases, M is the complement of a literal contained in some ground instance of a
clause of S. Because this is true for all such literals M , Di is an instance of some
clause in Unifneg(S).

This theorem suggests that ≤pos minimal models may be good choices for the
semantics of OSHL for non-Horn clauses. A possible problem with this choice of
semantics is that such models may be difficult to construct.

In general, for clause sets without unique Herbrand models, it is necessary to
choose a model. For this, it is possible to give some guidelines and some theo-
retical justification for which models should work best as semantics for OSHL.
Many sets of clauses are nearly Horn sets, which means that the clauses have
many negative literals and few positive literals. In this case, it is reasonable to
choose a semantics that makes as many positive literals false as possible, because
this semantics maximizes the probability that a negative literal will be true. The
clauses Di are chosen to be false in the models Ii, which implies that all literals
of Di are false in Ii. If Di has many negative literals, then the probability that
Ii will contradict Di is minimized by choosing Ii to satisfy as many negative
literals as possible. This will minimize the number of clauses Di that can be
chosen, and in this way will reduce the search space.

There is another way in which semantics can be used in OSHL. If one has many
models of S−T , then clauses or subsets of clauses that are true in all these models
can be conjectured to be true and a proof attempt can be performed on them.
If a proof is found, then these clauses may be helpful to simplify the original
proof.

5 Lifting OSHL

Because OSHL works at the ground level, it is natural to ask if there is a method
of lifting OSHL to the non-ground level. One problem with this is the use of se-
mantics; a non-ground version of OSHL would need a procedure that, given a
clause C, would produce possibly non-ground instances CΘ of C such that all
ground instances of CΘ contradict the semantics I. Another problem is that
OSHL needs to know whether literals are identical or complementary to excep-
tion literals when deciding whether Di contradicts Ii; this can be difficult to
determine for non-ground literals, because some of their instances may be iden-
tical and some of them may not be. Thus some method of constraint handling
or disunification would be needed.

In particular, for evaluating semantics on non-ground literals, one needs to
lift the semantic instantiation procedure of Definition 9 for interpretations I to
the non-ground level, obtaining a procedure which, given a clause C, enumerates
a set X of (possibly non ground) instances CΘ of C such that I contradicts all
ground instances of CΘ, and such if D is a ground instance of C false in I, then
D is an instance of some element of X . In this way, a non-ground clause can
represent all of its ground instances, and it will be known that I contradicts all
of them. One would hope that such a procedure exists that is more efficient than

334 D.A. Plaisted and S. Miller

exhaustive enumeration of ground instances of C, which can always be done if
I is ground decidable. Semantic instantiation appears to be closely related to
constraints, equational unification, and possibly to Stickel’s theory unification
[22]. Although many details remain to be worked out, it may be possible to
use this approach to extend OSHL to the non-ground level. This idea may also
permit FDPLL, DCTP, and other propositional style provers to utilize nontrivial
semantics.

Note that this use of semantic instantiation does not make it possible to
remove any axioms, it just helps OSHL to instantiate at the non-ground level.
A problem with this approach is that some interpretations may not have an
efficient lifting of the semantic instantiation procedure. Thus there is an interest
in seeing how well OSHL can perform at the ground level.

6 Implementation

OSHL was implemented by Zhu [2] but this implementation did not entirely
conform to the method as described in the paper. A more faithful implementation
was done by Das [15] and tested. This implementation is capable of using any
ground decidable semantics, as was Zhu’s. Also, if the set T of ground instances
Di is found to be satisfiable, then in the current implementation an additional
test is performed on each satisfying interpretation I of the atoms appearing in
Ti to see if additional intelligently generated ground instances of S contradict
I. The implementation was tested on the TPTP problem set, version 2.5.0. The
basic OSHL method obtained only 228 of the TPTP problems [16, 23] in 30
seconds with a trivial (all positive or all negative) semantics. However, with the
addition of U rules [15] and various optimizations, the prover was able to get 1027
of the TPTP problems in 30 seconds with a trivial semantics. It is interesting
that OSHL could have this level of performance even with a trivial semantics,
working at the ground level, and without any special methods for equality or
any efficient data structures for representing terms and performing unifications.

This implementation was compared with Otter [24] using the “auto” flag.
In 30 seconds, Otter obtained 1697 of the TPTP problems. Also, the number
of inferences used by OSHL and Otter was compared on TPTP problems for
which both provers found proofs. It turned out that OSHL obtained more proofs
than Otter in a given number of inferences on non-Horn clause sets, but Otter
obtained more proofs in a given number of inferences on Horn sets. For Otter,
each resolution or hyper-resolution was counted as an inference, and for OSHL,
each generation of an instance of a clause or a resolution of two clauses, was
counted. Also, OSHL actually outperformed Otter in terms of total proofs found
on the groups FLD (field theory) and SET (set theory) of the TPTP problem
set; both groups are highly non-Horn.

These results raise the possibility that OSHL with a more efficient implemen-
tation and natural semantics may outperform resolution and similar theorem
proving methods such as model elimination on non-Horn sets. The results also
suggest that different strategies should be used on Horn and non-Horn clause

The Relative Power of Semantics and Unification 335

sets; hyper-resolution actually works very well on Horn sets. In fact, it would be
helpful to have a hybrid strategy that operates differently on the Horn part of a
problem than on the non-Horn part. However, with a natural semantics, OSHL
might perform much better on Horn problems. There are other propositional
style provers such as DCTP[4], FDPLL[3], model evolution[5], Equinox[25], and
iProver[10] that obtain more proofs than OSHL with a trivial semantics on the
TPTP problem set. Equinox is actually very similar in philosophy to OSHL,
and operates at the ground level, but has a better equality mechanism and per-
forms respectably well in the CASC competitions[26]. In fact, the performance
of Vampire[27] on the FOF division improved dramatically between 2009 and
2010 in the CASC competition, possibly because in 2010 Vampire added some
special facilities for handling ground clauses. Because OSHL operates at the
ground level, it can use any ground decidable semantics. This paper attempts to
compare the use of such sophisticated semantics with the use of unification.

7 Examples of Natural Semantics in OSHL

OSHL combines efficient propositional proof methods and semantic guidance
during proof search. The semantics provides the prover with guidance specific
to the problem. The OSHL algorithm was originally intended to be used only in
conjunction with semantic guidance to avoid blind enumeration. This accounts
for the relatively poor performance of the OSHL strategy using trivial seman-
tics. In general, natural semantics – that is, a semantics that corresponds to the
mathematical or physical meaning of the symbols and satisfies all the axioms
– could help the proof search by providing to the automated theorem prover
the same kind of information that is available to a human mathematician. Stan-
dard semantics are known for many domains, and it seems reasonable to allow
the prover to take advantage of this knowledge. The following results demon-
strate that semantics can indeed be used to better guide instance generation. We
measure the search space, i.e., the number of clauses generated, and execution
times to show that the performance of OSHL can be improved with the use of
non-trivial semantics.

7.1 An Example: “Who Killed Aunt Agatha?”

We give an example of the use of semantics on the problem PUZ001-2 from
the PUZ (puzzles) domain of the TPTP problems. This problem has 15 clauses,
three of which are non-Horn, and five involving equality. This problem is easy for
many current theorem provers, which solve it with a small number of inferences.
Even Otter 3.3 solved it in half a second, generating 34 clauses. This problem
is harder for OSHL because OSHL does not have special methods for equality.
However, on this example, OSHL performs considerably better with a natural
semantics than without.

336 D.A. Plaisted and S. Miller

The logic puzzle, stated in English, is as follows:

Someone who lives in Dreadbury Mansion killed Aunt Agatha. Agatha,
the butler, and Charles live in Dreadbury Mansion, and are the only
people who live therein. A killer always hates his victim, and is never
richer than his victim. Charles hates no one that Aunt Agatha hates.
Agatha hates everyone except the butler. The butler hates everyone not
richer than Aunt Agatha. The butler hates everyone Aunt Agatha hates.
No one hates everyone. Agatha is not the butler. Therefore, Agatha killed
herself.

The input consists of 26 clauses, with the equality axioms added, and 53 lit-
erals. The predicates in the problem are equal(X,Y), lives at dreadbury(X),
hates(X,Y), richer(X,Y) and killed (X,Y). The constants are aunt agatha,
butler, charles and someone; everyone but (X) is a Skolem function that arises
from the statement – No one hates everyone.

A human is able to reason about the puzzle and solve it, even without the use
of formal logic. But if one were to present the same problem, replacing all the
predicates, functions, and constants with names such as pred1, pred2, func1,
and so on, then it would become a lot more difficult for the human to solve. This
is because a human is able to interpret the semantics of the problem in a certain
way, which helps him or her solve the problem. For example, a human “knows”
that there are only 3 persons and one of those 3 persons is the killer. This
means that the domain of definition to consider in solving this problem should
have 3 elements. A human also “knows” that a person can not be richer than
himself/herself, and interprets the richer(X,Y) predicate accordingly. However,
with a purely syntactic formulation of the problem, such additional semantic
information is lost, making it harder to solve the problem. Because an auto-
mated theorem prover lacks this kind of human “knowledge” of the problem, a
human user can supply this extra information to the prover through a semantic
model. The semantic model provides the prover with an initial interpretation
that incorporates extra information that the human user knows about the prob-
lem.

In order to solve this problem, OSHL was supplied with a non-trivial semantic
model consisting of 3 elements. We did not provide a fully natural semantics.
Some of the input clauses are not modeled by our initial semantics, which maps
the killed predicate such that Charles is the killer. Also, it may not be appar-
ent to a human user how the function everyone but (arising from Skolemiza-
tion) should be interpreted. We mapped the function to be consistent with the
mapping for the hates predicate. The domain of definition D = {1, 2, 3}. The
mappings of the constants, function, and predicates are as follows.

aunt agatha �→ 1
butler �→ 2
charles �→ 3
someone �→ 1

The Relative Power of Semantics and Unification 337

everyone but : D �→ D
1 �→ 2
2 �→ 2
3 �→ 3

equal : D ×D �→ {True, False}
(X,Y) �→ True, if X = Y
(X,Y) �→ False, otherwise

lives at dreadbury : D �→ {True, False}
1 �→ True
2 �→ True
3 �→ True

hates : D ×D �→ {True, False}
(1, 1) �→ True
(1, 2) �→ False
(1, 3) �→ True
(2, 1) �→ True
(2, 2) �→ False
(2, 3) �→ True
(3, 1) �→ False
(3, 2) �→ True
(3, 3) �→ False

richer : D ×D �→ {True, False}
(1, 1) �→ False
(1, 2) �→ False
(1, 3) �→ True
(2, 1) �→ True
(2, 2) �→ False
(2, 3) �→ True
(3, 1) �→ False
(3, 2) �→ False
(3, 3) �→ False

killed : D ×D �→ {True, False}
(X,Y) �→ True, if X = 3 and Y = 1.
False, otherwise

With the non-trivial semantics described, OSHL found the proof in 5 minutes
49 seconds, generating 1795 clauses. On changing the described semantics to
model Aunt Agatha as the killer, OSHL found the proof in 5 minutes 48 sec-
onds, generating 1632 clauses. On changing the described semantics by using
different mappings for the hates and the richer predicates, OSHL still obtained
the proof in about 6 minutes. With an all-positive or all-negative semantics,

338 D.A. Plaisted and S. Miller

OSHL ran for over 3 hours generating more than 50,000 clauses, without finding
a proof. Therefore, in this case, a user-specified semantics produces significant
improvement in OSHL performance over a trivial semantics. Even a semantics
that does not model all of the axioms and gives a false answer to the question
“Who killed Aunt Agatha?” helps significantly. The version of OSHL used for
this was OSHL-U[15], which has U rules added.

7.2 Semantics in Group Theory Problems

We also tested the use of user-specified semantics on some group theory (GRP)
problems from TPTP. Table 1 shows the results obtained with OSHL using a
non-trivial semantics compared to those with OSHL using trivial semantics and
with Otter in the “auto” mode, on these problems. Cases when a prover timed
out without generating a proof are marked with “fail” and the execution time
allotted to the proof attempt is noted.

In mathematics, a group is a set, with a binary operation on elements of
the set, such as multiplication or addition, satisfying certain axioms. We used a
non-trivial natural semantics that models a finite group of size 4. The domain
elements were mapped to the integers 0, 1, 2, 3 and the binary operation was
addition modulo 4. The semantics chosen was suitable for all the problems in
Table 1 except GRP008-1. These problems are theorems about identity and
inverse functions in a group and have only Horn clauses; problem GRP008-1 is
stated to be a theorem of “unknown meaning” and has one non-Horn clause. On
some of the problems, use of this semantics gives the proof faster and with the
generation of fewer clauses than using either of the trivial semantics. Use of the
semantics also helps to obtain proofs of some problems that could not be proved
with trivial semantics. Problems in GRP are mostly all Horn, so Otter exhibits
good performance on these problems. However, there are a couple of problems
proved by the semantics that even Otter, in the autonomous mode, could not
prove.

We also tested non-natural semantics on some GRP problems. In these cases,
the groups were sets of integers of size 2 ({0,1}) and 4 ({0,1,2,3}). However, the
binary operation was selected to be such that the axioms of group theory are not
all satisfied by the model. Table 2 shows the result of these tests. These indicate
that even a non-natural semantics can perform better than trivial semantics on
some problems.

We performed the experiments with natural semantics of larger sizes using
groups of sizes 16, 24, and 40. The results were similar to those with groups of
size 4. Using larger semantics, proofs of the same problems were found as with
semantics of size 4 generating the same number of clauses in similar execution
times. Adding more elements did not increase the information conveyed by the
semantics; proofs of the same problem were not found any faster and no new
proofs were found. At the same time, an increase in the number of terms did not
result in more clauses being generated.

The Relative Power of Semantics and Unification 339

Table 1. Execution time and number of clauses generated with OSHL and a non-trivial
natural semantics, with OSHL and trivial semantics (all-positive and all-negative), and
with Otter in the “auto” mode. The number of clauses generated and the execution
time in seconds are shown. 300+ (600+) means that the prover timed out in 300 (600)
seconds without finding a proof.

Problem Natural All-pos All-neg Otter
gen. time(sec) gen. time(sec) gen. time(sec) gen. time(sec)

GRP003-1 140 119.20 fail 300+ fail 300+ 116 0.01
GRP004-1 53 28.00 fail 300+ fail 300+ 129 0.00
GRP004-2 222 716.50 fail 300+ fail 300+ 335 0.01
GRP007-1 17 0.38 18 1.99 58 3.8 85 0.01
GRP008-1 396 226.30 fail 600+ fail 600+ fail 600+
GRP017-1 241 16.05 fail 300+ fail 300+ 210 0.02
GRP018-1 15 0.48 36 6.40 108 6.14 266 0.01
GRP019-1 14 0.24 39 7.90 fail 300+ 267 0.01
GRP020-1 20 1.55 68 33.80 fail 300+ 265 0.02
GRP021-1 18 0.87 45 5.55 fail 300+ 264 0.01
GRP022-1 36 17.90 fail 600+ fail 600+ 448 0.02
GRP023-1 16 0.50 15 0.33 fail 300+ 79 0.01
GRP023-2 36 1.91 23 0.69 fail 300+ fail 300+

Table 2. Execution time and number of clauses generated with OSHL and a non-
trivial non-natural semantics, with OSHL and trivial semantics (all-positive and all-
negative), and with Otter in the “auto” mode. The domain size is given for the non-
trivial semantics. The number of clauses generated and the execution time in seconds
are shown. 300+ (600+) means that the prover timed out in 300 (600) seconds without
finding a proof.

Problem Non-natural All-pos All-neg Otter
size gen. time(sec) gen. time(sec) gen. time(sec) gen. time(sec)

GRP005-1 2 6 0.02 6 0.02 6 0.02 57 0.02
GRP008-1 2 90 16.6 fail 600+ fail 600+ fail 600+
GRP018-1 2 21 0.97 36 6.40 108 6.14 266 0.01
GRP019-1 2 22 1.570 39 7.920 fail 300+ 267 0.01
GRP034-3 4 25 2.242 44 4.183 84 10.185 141 0.01

Table 3. Timing of FOLPLAN and OTTER on a set of test examples. Times are in
seconds. — means no proof in 1000 secs. Both programs are run on a SPARC-20 model
612.

FOLPLAN OTTER

blocksworld 12.7 —

briefcase 9.7 0.5

monkey 69.4 —

weather 0.7 0.4

pinball 1.2 0.5

maze 157.6 —

340 D.A. Plaisted and S. Miller

7.3 Planning Problems

Zhu’s implementation of OSHL[2] was run on some planning problems[28]. This
discussion is largely taken from that work. The application of OSHL to planning
problems was done in a system called FOLPLAN. Input axioms were expressed
in first-order clause format. For each problem an input semantics was given to
approximate the reachability predicate of the planning problem. The semantics
was expressed in PROLOG.

We illustrate the axiomatization used for planning problems with a simple
example. It contains a car at location l0, and two gas stations at l1 and l2; these
are individual constants. The variable S is a situation variable. There is a traffic
light which is either green or red at any moment. The car can only go straight at
the green light and can only turn right at the red right.1 The problem is to show
that the car can always get to a gas station. The axioms are listed in Figure 1.
Figure 7.3 lists the set of unsatisfiable instances of the axioms in Figure 1.

¬canF illTank(car, S).
canF illTank(car, S) :- at(car, l1, S).
canF illTank(car, S) :- at(car, l2, S).
at(car, l1, drive(straight,S)) :-

at(car, l0, S), greenlight(S).
at(car, l2, drive(turn, S)) :-

at(car, l0, S), redlight(S).
greenlight(S)∨ redlight(S).
at(car, l0, s0).

Fig. 1. Axioms for the traffic light example

1. ¬canF illTank(car, drive(straight, s0)).
2. ¬canF illTank(car, drive(turn, s0)).
3. canF illTank(car, drive(straight, s0)) :-

at(car, l1, drive(straight, s0)).
4. canF illTank(car, drive(turn, s0)) :-

at(car, l2, drive(turn, s0)).
5. at(car, l1, drive(straight, s0)) :-

at(car, l0, s0), greenlight(s0).
6. at(car, l2, drive(turn, s0)) :-

at(car, l0, s0), redlight(s0).
7. greenlight(s0) ∨ redlight(s0).
8. at(car, l0, s0).

Fig. 2. An unsatisfiable set of instances for the traffic light example

We ran a number of well known examples such as blocks world, monkey and
bananas, briefcase problems, et cetera. Some examples were also tested contain-
ing states with incomplete information. “weather” is the problem of finding a

1 The car is not allowed to turn right at the green light.

The Relative Power of Semantics and Unification 341

path between two cities. Depending on the weather and the season, different
paths are needed. “pinball” is the problem of showing a pinball will eventually
fall into a pocket, where at every step, the ball might roll to two possible po-
sitions. “maze” describes an 8 by 8 maze where the state of some intersections
is not completely known. Input semantics were manually generated by using
approximate finite automata representations of the problems. Non-ground de-
cision procedures were constructed based on breath-first traversal of the finite
automata states. These procedures test if a non-ground clause has any instances
that contradict the semantics; thus they are the same as the semantic instantia-
tion test presented in Definition 9. Such tests can be used to find ground instances
of a clause C that contradict the semantics, as indicated earlier. This helps the
efficiency of OSHL. These planning problems are probably difficult to represent
naturally using STRIPS[29, 30] and ADL[31, 32], neither of which allows dis-
junctive postconditions. Domain axioms are used to represent the commutativity
of the connection between rooms in the maze problem and the monkey and ba-
nanas problem. In Table 3, the performance of our planner and that of OTTER,
a well known resolution-based theorem prover, are listed. OTTER is slightly
faster than FOLPLAN on the simpler problems due to its efficient implementa-
tion. FOLPLAN is faster on the more difficult examples. Its better performance
can be attributed to the effective use of semantics to guide the search and the
utilization of an efficient propositional procedure in OSHL to handle non-Horn
clauses.

8 Discussion

The instantiation mechanism of OSHL has been compared to the instantiation
produced by simultaneous unification of all the literals or all the negative literals
of a clause with complementary literals in other clauses. An example is given
to show that OSHL with a trivial semantics is two exponentials slower than
resolution. With a modified clause ordering, this complexity handicap can be
reduced to one exponential. However, with a better choice of the semantics, the
performance ofOSHL is improved relative to unification and resolution. For Horn
sets or clause sets having a unique Herbrand model, if the semantics is chosen
properly then OSHL will only generate instances that could have been generated
by simultaneous unifications. For the general case, this property can only be
guaranteed for simultaneous unification of the negative literals of a clause, and
this also requires a proper choice of semantics. This gives some evidence that
OSHL is capable of performing simultaneous unifications even though it works
entirely at the ground level, and suggests that with an appropriate choice of
semantics OSHL may have performance comparable to that of resolution and
other first-order strategies using unification. This also gives some evidence of
the value of semantic guidance for a theorem prover. There are some resolution
strategies[33] that could theoretically be adapted to the use of semantics, and it
would be interesting to study their properties as well.

342 D.A. Plaisted and S. Miller

For propositional calculus, especially for non-Horn clauses, DPLL[19] is gener-
ally understood to be much more efficient than resolution. OSHL can be viewed
as an extension of DPLL to first-order logic. Therefore, if OSHL can overcome
the disadvantage of not performing unification, it may also benefit from the
efficiency of DPLL and have the potential to be superior to methods based on
resolution. The results presented here give evidence that OSHL does in fact have
much of the power of unification in its operation, posing the question whether
OSHL can become more efficient than resolution for first-order clause sets, with
a comparable implementation.

Some implementation results suggest that OSHL obtains more proofs with a
comparable number of inferences than Otter does on non-Horn clause sets, and
in many cases obtains proofs of the same theorem with many fewer inferences
than Otter. This also suggests the possibility that OSHL might be superior to
resolution if it were implemented with comparable efficiency.

The theoretical results presented in this paper assume a specially chosen
“ideal” semantics. This semantics may be difficult to supply in many cases.
Instead, a natural semantics based on common mathematical knowledge may
be used. It remains to be seen how well OSHL with such a semantics will per-
form, but one would expect that the performance of such natural semantics
will improve as it more closely approximates the ideal semantics required by
the previously stated theorems. Some examples have been given to show how
the performance of OSHL improves with a natural semantics. The improvement
should be more marked for much larger clause sets, in which relevance to the
theorem will be much more important.

In addition to the ability to simulate unification, another feature of semantics
suggests that the performance of OSHL may be superior to that of resolution
and related methods. This is the fact that a model of a set S − T of clauses is
a global property that depends on all the clauses in the set. On the other hand,
unification as performed in resolution is a local property that only depends on
the two clauses being resolved. Because semantics is a global property, it may
give superior performance. One way to see this is that OSHL with semantics
not only essentially performs a unification between literals of C and complemen-
tary literals of other clauses Ci, it also requires that these clauses Ci permit
unifications of their literals with complementary literals of yet other clauses, et
cetera. Thus the instances generated by OSHL with semantics entail a multitude
of unifications among many clauses of S.

In order to better assess the potential of OSHL with semantics it will be
necessary to obtain a much more efficient implementation in a language such
as C or C++, and also implement special methods for equality. The task of
implementing OSHL is not as easy as it may seem, because choosing a clause C
contradicting I such that C is minimal in the ordering >c is not a trivial task.
Thus a more efficient implementation of OSHL may entail more work than it
appears at first glance.

The Relative Power of Semantics and Unification 343

9 Conclusion

The relative performance of OSHL and unification-based theorem proving strate-
gies for first-order logic has been studied, and some results show that OSHL
with a properly chosen semantics implicitly performs simultaneous unifications.
These results suggest that OSHL may perform as well or better than conven-
tional unification-based strategies for first-order logic with a comparable imple-
mentation and appropriate semantics. Some preliminary implementation results
also give limited evidence of the properties of OSHL and the value of a natural
semantics. It will be interesting to see how other propositional approaches to
first-order logic develop as their implementations also improve. A suggestion for
extending OSHL to the non-ground level, while still permitting the use of nat-
ural semantics, has been presented. This idea may also apply to other methods
such as FDPLL and DCTP.

References

1. Giunchiglia, E., Walsh, T.: SAT 2005 (January 2004)

2. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper linking. Journal of Automated
Reasoning 25(3), 167–217 (2000)

3. Baumgartner, P.: FDPLL – A First-Order Davis-Putnam-Logeman-Loveland Pro-
cedure. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 200–219.
Springer, Heidelberg (2000)

4. Letz, R., Stenz, G.: DCTP - A Disconnection Calculus Theorem Prover - Sys-
tem Abstract. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS
(LNAI), vol. 2083, pp. 381–385. Springer, Heidelberg (2001)

5. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

6. Baumgartner, P., Tinelli, C.: Model Evolution with Equality Modulo Built-in Theo-
ries. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 85–100. Springer, Heidelberg (2011)

7. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus as a First-Order DPLL
Method. Artificial Intelligence 172(4-5), 591–632 (2008)

8. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus with Equality. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 392–408. Springer,
Heidelberg (2005)

9. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving.
In: Proc. 18th IEEE Symposium on Logic in Computer Science, pp. 55–64. IEEE
Computer Society Press (2003)

10. Korovin, K., Sticksel, C.: iProver-Eq: An Instantiation-Based Theorem Prover with
Equality. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 196–202.
Springer, Heidelberg (2010)

11. Ganzinger, H., Korovin, K.: Integrating Equational Reasoning into Instantiation-
Based Theorem Proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS,
vol. 3210, pp. 71–84. Springer, Heidelberg (2004)

12. Lee, S.-J., Plaisted, D.: Eliminating duplication with the hyper-linking strategy.
Journal of Automated Reasoning 9(1), 25–42 (1992)

344 D.A. Plaisted and S. Miller

13. Baumgartner, P., Thorstensen, E.: Instance based methods — a brief overview. KI
- Künstliche Intelligenz 24, 35–42 (2010)

14. Gelernter, H., Hansen, J.R., Loveland, D.W.: Empirical explorations of the geom-
etry theorem proving machine. In: Feigenbaum, E., Feldman, J. (eds.) Computers
and Thought, pp. 153–167. McGraw-Hill, New York (1963)

15. Das, S., Plaisted, D.: An improved propositional approach to first-order theorem
proving. In: Baumgartner, P., Fermueller, C. (eds.) CADE-19 Workshop W4 Model
Computation - Principles, Algorithms, Applications, Miami, Florida, USA (2003)

16. Suttner, C.B., Sutcliffe, G.: The TPTP problem library (TPTP v2.0.0). Techni-
cal Report AR-97-01, Institut für Informatik, Technische Universität München,
Germany (1997)

17. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the Association for Computing Machinery 7, 201–215 (1960)

18. Robinson, J.: A machine-oriented logic based on the resolution principle. Journal
of the Association for Computing Machinery 12, 23–41 (1965)

19. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

20. Yahya, A., Plaisted, D.A.: Ordered semantic hyper tableaux. Journal of Automated
Reasoning 29(1), 17–57 (2002)

21. McCune, W.: Fascinating XCB inference. AAR Newsletter 66 (February 2005)
22. Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated

Reasoning 1, 333–355 (1985)
23. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF

and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)
24. McCune, W.: Otter 2.0 (theorem prover). In: Stickel, M.E. (ed.) CADE 1990.

LNCS, vol. 449, pp. 663–664. Springer, Heidelberg (1990)
25. Claessen, K.: Equinox, a new theorem prover for full first-order logic with equality.

In: Dagstuhl Seminar 05431 on Deduction and Applications (October 2005)
26. Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48

(2006)
27. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI

Commun. 15(2-3), 91–110 (2002)
28. Zhu, Y., Plaisted, D.: FOLPLAN: A semantically guided first-order planner. In:

Proceedings of the 10th International FLAIRS Conference (1997)
29. Fikes, R., Nilsson, N.J.: STRIPS: A new approach to the application of theorem

proving to problem solving. Artif. Intell. 2(3/4), 189–208 (1971)
30. Lifschitz, V.: On the semantics of STRIPS. In: Reasoning about Actions and Plans:

Proceedings of the 1986 Workshop, pp. 1–9. Morgan Kaufmann (1987)
31. Penberthy, J.S., Weld, D.S.: UCPOP: A sound, complete, partial order planner for

ADL. In: The Third International Conference on Knowledge Representation and
Reasoning (KR 1992), pp. 103–114 (1992)

32. Edwin, P.D.: Pednault. ADL and the state-transition model of action. J. Log.
Comput. 4(5), 467–512 (1994)

33. Bonacina, M., Hsiang, J.: On semantic resolution with lemmaizing and contraction
and a formal treatment of caching. New Generation Computing 16(2), 163–200
(1998)

First-Order Resolution Methods

for Modal Logics

Renate A. Schmidt1 and Ullrich Hustadt2

1 The University of Manchester, UK
Renate.Schmidt@manchester.ac.uk

2 University of Liverpool, UK
U.Hustadt@csc.liv.ac.uk

Abstract. In this paper we give an overview of results for modal logic
which can be shown using techniques and methods from first-order logic
and resolution. Because of the breadth of the area and the many appli-
cations we focus on the use of first-order resolution methods for modal
logics. In addition to traditional propositional modal logics we consider
more expressive PDL-like dynamic modal logics closely related to de-
scription logics. Without going into too much detail, we survey different
ways of translating modal logics into first-order logic, we explore different
ways of using first-order resolution theorem provers to solve a range of
reasoning problems for modal logics, and we discuss a variety of results
which have been obtained in the setting of first-order resolution.

1 Introduction

The main motivation for reducing problems in one logic (the source logic) to
‘equivalent’ problems in another logic (the target logic) is to exploit results of
the target logic to draw some conclusions about the initial problems and use
existing methods and tools of the target logic for the purpose of solving prob-
lems in the source logic. Reduction of modal logic problems to first-order logic is
the pertinent case considered in this paper. There are good reasons for following
this approach. First, a plethora of results on first-order logic and subclasses of it
are available, including (un)decidability results, complexity results, correctness
results for a wide range of calculi for first-order logic, and results on practical
aspects and optimisation of the implementation of these calculi. Second, over
the years a number of first-order logic theorem provers have been developed,
and the current generation of provers has reached a high level of sophistication
and has been extensively tuned for efficiency. These two points together make
first-order logic a natural choice as a target logic, in particular, for source log-
ics reducible to first-order logic. A wide range of non-classical logics, either in
the guise of modal logics or description logics, fall into this category. For these
logics, the advantage of using a translation approach is that no major implemen-
tation effort is necessary, most often all that is required is the implementation of
translation routines. This contrasts with special-purpose approaches for which
either an implementation needs to be developed from scratch or requires an ex-
isting implementation to be adapted and extended for each new logic. In the

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 345–391, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

346 R.A. Schmidt and U. Hustadt

case of modal logic a number of translation approaches are already implemented
in mspass [64, 104] so that in this case no implementation overhead is needed,
because mspass can be used directly as a modal logic theorem prover.

There are however not only practical advantages to using translation-based
approaches. There are also significant theoretical advantages. By using trans-
lations it is often possible to transfer results and insights about one logic to
another logic, similarly it is possible to transfer knowledge about certain classes
of problems to other classes of problems. For example, in logic and computer
science decidability and undecidability results are often shown by methods of
translation, usually referred to as methods of interpretation or reduction meth-
ods. Complexity theory is another example where translations play a key role.
In this case reductions are used for obtaining worst-case complexity results. This
allows for the classification of decidable problems into broad complexity classes.
Mathematicians and logicians usually just use interpretation methods and reduc-
tions as tools for proving, say, decidability, undecidability or complexity results,
but are not normally interested in developing algorithms or proof procedures
which could exploit these methods. Often the reductions are indeed not prac-
tically feasible, but when they are constructive then there is a possibility that
these can be turned into efficient, implemented algorithms. There are few exam-
ples where such possibilities have been seriously explored. It is therefore perhaps
not surprising that some authors are put off by the idea of using a translation
approach for automated deduction. Such attitudes are however completely un-
justified. From the perspective of computer science, adopting the translation
approach is like using compilers to convert programs into machine code instruc-
tions for execution (or like converting text files into dvi files). In programming
it is generally acceptable to use compilers and interpreters and we see no reason
why the use of translation approaches for reasoning should not be equally ac-
ceptable. If we think about it then all inference steps of any deduction calculus
are just transformation steps anyway.

In this paper it is our intention to give an overview of some of the many uses
of translation approaches and techniques at the heart of automated reasoning.
Over the years a powerful and versatile framework of first-order resolution has
evolved, which is increasingly applied to obtain strong results in numerous fields,
both inside as well as outside of automated reasoning. Recent results suggest that
the modern framework of (first-order) resolution provides perhaps the most suc-
cessful, current approach for developing practical decision procedures, certainly
within the scope of first-order logic. Very many modal logics and expressive de-
scription logics are decidable by resolution. Moreover, the same refinements of
resolution that decide these logics can be seen to decide very expressive frag-
ments of first-order logic (guarded fragments, the two-variable fragment, fluted
logic, Maslov’s class K, and the Bernays-Schönfinkel class). It can be shown
that there is a one-to-one correspondence between most tableau methods for
modal logics, including description logics, and a certain refinement of first-order
resolution. This simulation by resolution has a number of fundamental con-
sequences. It provides valuable insight into the similarities and differences of

First-Order Resolution Methods for Modal Logics 347

resolution and tableau methods. Since for present day modal logic and descrip-
tion logic systems simulations in the other direction are currently absent this
also shows that resolution-based methods are very powerful, and in many cases
provably more powerful. Simulation results show a close connection between dif-
ferent styles of proof methods and can also be used as a basis for systematically
developing specialised reasoning methods. In this way it has been possible to
develop completely new tableau-like calculi for expressive modal and description
logics within the resolution framework. Many results which are traditionally
proved using model-theoretical constructions can in fact be proved within the
resolution framework (soundness and completeness of special-purpose proof sys-
tems, the finite model property, correspondence properties, interpolation, etc).
First-order logic theorem proving tools are therefore not only useful for solv-
ing reasoning problems in modal logics, but can be exploited for realising and
testing theoretical results about modal logics. In contrast to special-purpose ap-
proaches no major implementation effort is necessary; often all that is required is
the implementation of translation routines. Decision procedures and simulations
of other styles of deduction can then be obtained by simply selecting a correct
set of parameters for the first-order prover. All this makes the combination of
the translation approach and resolution very attractive for solving all kinds of
problems requiring reasoning within and about modal logics (but not just modal
logics).

Without going into too much detail the purpose of this paper is to give a high-
level overview of the application of first-order resolution methods to modal logic.
We focus on a large class of modal logics, including traditional propositionalmodal
logics and more expressive PDL-like dynamic modal logics which are closely re-
lated to description logics. We review a variety of the different uses of first-order
resolution for these logics. In particular, we focus on the development of practical
inferencemethods, for studying specific issues such as decidability, the finite model
property, the automatic generation of models, automated correspondence theory,
and the relationships to other deduction approaches such as tableaux.

The paper is structured as follows. In Section 2 we recall standard definitions
of resolution-based first-order theorem proving. Section 3 defines the essential
concepts of the modal logics considered in this paper, namely syntax, the stan-
dard relational semantics and the corresponding relational translation method.
These are defined for two kinds of modal logics: traditional style modal log-
ics (Section 3.1) and dynamic modal logics (Section 3.2). Section 4 describes
numerous alternative translations methods which are classified as syntactic ap-
proaches (Section 4.1), semantic approaches (in particular, approaches based
on functional translations, Section 4.2), and approaches combining syntactic
and semantic elements (in particular, the axiomatic translation approaches, Sec-
tion 4.3). Section 5 reviews solvable first-order fragments and solvable clausal
classes to which modal logics can be mapped using these different translation
approaches. Fragments and classes relevant to the relational translation (Sec-
tion 5.2), the semi-functional translation (Section 5.3), the optimised functional
translation (Section 5.4), and the axiomatic translation methods (Section 5.5)

348 R.A. Schmidt and U. Hustadt

are discussed in turn. The topic of Section 6 is decision procedures. Various kinds
of resolution decision procedures ranging from decision procedures not relying
on any kind of refinements (Section 6.1), decision procedures based on ordering
refinements (Section 6.2) and selection-based refinements (Section 6.3) are con-
sidered. Section 7 focusses on the connection between resolution and tableaux,
and how this connection has been exploited to simulate, develop and study
modal tableau proof approaches. Resolution-based methods are also suitable for
automatically generating Herbrand models. The application of such methods to
modal logics is discussed in Section 8. Section 9 discusses resolution-based al-
gorithms capable of transforming modal logic axioms into their corresponding
first-order frame properties. Finally, in the Conclusion we give pointers to sur-
vey papers on related topics and summarise the direct contributions of Harald
Ganzinger to modal logic theorem proving.

2 The Modern Resolution Framework

The resolution calculus operates on sets of clauses. Clauses are quantifier free
disjunctions of literals which may contain function symbols. The variables in
clauses are implicitly assumed to be universally quantified. Any first-order for-
mula can be transformed into a satisfiability equivalent set of clauses.

Theorem 1. There is a polynomial or linear reduction Cls of any first-order
formula to a set of clauses such that ϕ is valid in first-order logic iff Cls(¬ϕ) is
unsatisfiable.

The clausal form is obtained by transformation to conjunctive normal form,
Skolemisation and crucially involves structural transformation which introduces
new predicate symbols and definitions. Since resolution is a refutation calculus,
instead of proving theoremhood, resolution attempts to refute the negation of a
given formula.

The (unrefined) propositional resolution calculus is very simple and consists
of two inference rules, the resolution rule and the factoring rule, and no axioms.
For propositional logic the resolution rule is just the operation that infers a clause
C ∨ D from two clausesC ∨ A andD ∨ ¬A. The factoring rule is a form of simpli-
fication rule which eliminates multiple copies of the same literal from one clause,
that is, it infers C ∨ A from C ∨ A ∨ A. These two rules suffice to give us a sound
and complete calculus for propositional logic and sets of ground clauses. We ob-
tain a sound and complete inference system for full first-order logic and first-order
clause sets, if we augment the rules with unification. This calculus, the basic res-
olution calculus, due to Robinson [100], is sound and complete for full first-order
logic and first-order clause sets. It is however hopelessly inefficient. This was al-
ready noticed in the very early stages of the development of first-order resolution
methods (by Robinson and others). The first papers on refinements of resolution
appeared in the same year that Robinson published his famous paper which in-
troduced resolution. Since the mid-sixties the advances have been impressive. The
current generation of theorem provers, which include spass [120, 121], E [114] and

First-Order Resolution Methods for Modal Logics 349

vampire [98] (in order of creation), are based on the modern framework of reso-
lution and superposition to whose development Harald Ganzinger has made im-
portant contributions. In the following, when we refer to resolution we mean the
resolution (and superposition) framework described in a series of papers by Bach-
mair and Ganzinger [7–9], see also for example [82].

The main ingredients of this framework are refinements of the inference rules
which restrict their applicability and a general notion of redundancy. Refine-
ments of inference rules are defined in terms of two parameters: an ordering �
and a selection function S. The idea is that inferences do not need to be per-
formed (but can) unless they are on literals maximal under the given ordering or
on (negative) literals selected by the selection function S. The selection function
can override the ordering. That is, if a literal is selected then it is the preferred
candidate for an inference step even though there may be ‘larger’ literals in the
clause. The ordering and selection function are used to limit the number of possi-
ble inferences. It is clear that, in general, if we can reduce the number of possible
inferences without losing completeness then a proof can be found more quickly
as the search space for the proof is reduced. There is a general completeness
proof due to Bachmair and Ganzinger which requires only weak conditions for
the admissibility of orderings and selection functions.

Simplification and deletion rules are important regardless of the style of de-
duction one uses. In the resolution framework these are based on a general no-
tion of redundancy, which is based on considerations of the model construction
which is at the centre of the completeness proof of the framework. Standard sim-
plification rules like elimination of duplicate literals within a clause, tautology
deletion, subsumption deletion (forward and backward subsumption deletion)
and condensing are instances of this notion [9].

Let Rred
sp be the resolution calculus defined by the rules of Figure 1. (The

meaning of ‘red’ in the notation is ‘with redundancy’ and the meaning of ‘sp’
is ‘with splitting’.) In our presentation we distinguish four kinds of rules. The
Deduce rules are the ordered resolution and positive factoring rules. The order-
ing � is a parameter which can be any admissible ordering and S is any selection
function of negative literals.

The Delete and Simplify rules are deletion and replacement rules compatible
with the general notion of redundancy of [9, 10]. Essentially, a ground clause is
redundant with respect to a set N and the ordering � if it follows from smaller
instances of clauses in N , and a non-ground clause is redundant in N if all its
ground instances are redundant in N . Tautology deletion is a familiar instance
of the Delete rule. Other examples are the forward and backward subsumption
deletion rules. A clause D subsumes a clause C iff there exists a substitution σ
such that Dσ ⊆ C (strictly speaking, in the framework Dσ ⊂ C has to hold).
Condensing is an instance of the Simplify rule. The condensation cond(C) of
a clause C is a minimal multiple (positive or negative) factor of C which sub-
sumes C (minimality is with respect to the number of literals in the clause).
A clause C is condensed if there is no proper subclause of C which is a factor
of C. Testing for redundancy in its general form is an expensive operation; in

350 R.A. Schmidt and U. Hustadt

Deduce:
N

N ∪ {C} if C is a factor or resolvent of premises in N .

Delete:
N � {C}

N
if C is redundant with respect to N .

Simplify:
N

(N\M) ∪M ′
if (N\M)∪M ′ is satisfiable when N is satisfiable
and every clause in M is redundant with respect
to (N\M) ∪M ′.

Split:
N � {C ∨ D}

N ∪ {C} | N ∪ {D} if C and D are variable-disjoint.

Resolvents and factors are computed with:

Ordered resolution:
C ∨ A ¬B ∨ D

(C ∨ D)σ

provided (i) σ is the most general unifier of A and B, (ii) no literal is selected in C,
and Aσ is strictly �-maximal with respect to Cσ, and (iii) ¬B is either selected, or
¬Bσ is maximal with respect to Dσ and no literal is selected in D.

Ordered factoring:
C ∨ A ∨ B

(C ∨ A)σ

provided (i) σ is the most general unifier of A and B, and (ii) no literal is selected in
C and Aσ is �-maximal with respect to Cσ.

Fig. 1. The calculus Rred
sp

first-order logic general redundancy elimination is undecidable. For this reason
one does not find theorem provers that implement redundancy elimination in its
full generality. Only effectively computable instances of the Delete and Simplify
rules are normally implemented in theorem provers.

The Split rule is a rule familiar from DPLL algorithms and tableau calculi.
Instead of refuting N ∪ {C ∨ D} one refutes both N ∪ {C} and N ∪ {D} [18].
Alternatively, it is possible to use the complement splitting rule, which means
that instead of refuting N ∪ {C ∨ D} one refutes both N ∪ {C} and N ∪
{¬C,D}. The splitting rule is don’t know non-deterministic and usually requires
backtracking. However, in the resolution framework splitting can be simulated
by transformation steps that introduce new propositional symbols. If C ∨ D is
a clause that can be split into two split components C and D, then it is possible
to replace C ∨ D by two clauses C ∨ q, and ¬q ∨ D. The new symbol q is made
minimal in the ordering �, and ¬q is selected [23, 99].

The calculus without the splitting rule is denoted by Rred and R is the calculus
with just Deduce rules.

Theorem 2 ([9, 10]). (i) Rred
sp is a sound and complete refutation system for

clause sets. (ii) Rred (without splitting) is a sound and complete refutation system
for clause sets.

Corollary 1. R is a sound and complete refutation system for clause sets.

First-Order Resolution Methods for Modal Logics 351

Ordered hyperresolution:
C1 ∨A1 . . . Cn ∨An ¬B1 ∨ . . . ∨ ¬Bn ∨D

(C1 ∨ . . . ∨ Cn ∨D)σ

provided (i) σ is the most general unifier such that Aiσ = Biσ for every i, 1 ≤ i ≤ n,
(ii) Aiσ is strictly �-maximal with respect to Ciσ, and the Ci are positive clauses, for
every i, 1 ≤ i ≤ n, and (iii) for every i, 1 ≤ i ≤ n, ¬Bi is selected and D is a positive
clause.

Ordered factoring:
C ∨ A ∨ B

(C ∨ A)σ

provided (i) σ is the most general unifier of A and B, and (ii) C is positive and Aσ is
�-maximal with respect to Cσ.

Fig. 2. The Deduce rules of ordered hyperresolution

The (ordered) hyperresolution calculus is based on maximal selection of neg-
ative literals. This means the selection function selects exactly the set of all
negative literals in any non-positive clause. Let OHred

sp be the calculus based
on maximal selection and an ordering �, where the Deduce rules are given
by the rules in Figure 2. This means the rules are the above hyperresolution
rule, positive factoring, redundancy elimination and splitting. Similar as above,
OHred, respectively OH, denotes the calculus OHred

sp but without the splitting
rule, respectively the calculus just consisting of Deduce rules. For completeness
an ordering refinement is optional. We use the notation Hred

sp , Hred, and H for
the unordered versions.

Corollary 2. OHred
sp , OHred, OH, Hred

sp , Hred and H are sound and complete
refutation systems for clause sets.

3 Modal Logic and the Classical Relational Translation

We are interested in a broad class of modal logics. These include the traditional
modal logics which have been extensively studied since the 1960ies and even well
before then. There are also PDL-like modal logics, which we refer to as dynamic
modal logics, because they have a dynamic component (that is, relational oper-
ators) that traditional modal logics do not have. Dynamic modal logics are of
particular interest because of the close relationship to description logics. Descrip-
tion logics are popular in the area of knowledge representation and have become
a topic of much interest in connection with the semantic web and ontologies.

3.1 Traditional Modal Logics

The language of modal logic is an extension of the language of propositional
logic with a family of unary modal operators �i (the box operators). More
precisely, given a countably infinite set of propositional variables p, p1, p2, . . .,
modal formulae are defined inductively as follows. Every propositional variable

352 R.A. Schmidt and U. Hustadt

Axiom A Correspondence property

T �ip → p reflexivity ∀xRi(x, x)
B �i�ip → p symmetry ∀xy (Ri(x, y) → Ri(y, x))
D �ip → �ip seriality ∀x∃yRi(x, y)
4 �ip → �i�ip transitivity ∀xyz (Ri(x, y) ∧ Ri(y, z) → Ri(x, z))
alt1 �ip → �ip functionality ∀xyz (Ri(x, y) ∧ Ri(x, z) → y ≈ z)
5 �i�ip → �ip Euclideanness ∀xyz (Ri(x, y) ∧ Ri(x, z) → Ri(y, z))

Fig. 3. Axioms and relational background theories

is a modal formula. If φ and ψ are modal formulae, then so are ¬φ, (φ ∧ ψ),
and �iφ. Other familiar connectives such as ⊥, *, ∨, → and ↔ can then be
defined as expected. As usual we let �iφ =def ¬�i¬φ. A substitution σ is a
mapping from propositional variables to modal formulae that can be lifted to
modal formulae in the standard way. The application of σ to a modal formula φ
is denoted by φσ and φσ is called an instance of φ. A modal axiom (schema) is
a modal formula φ representing the set of all instances of φ.

A (normal) modal logic is defined by a set of modal formulae which includes
all propositional tautologies and the axiom �i(p → q) → (�ip → �iq), called
the axiom K, for each �i modality in the language. In addition this set is closed
under the rule of uniform substitution (if � p and σ is a substitution, then � pσ),
modus ponens (if � p and � p → q then � q) and the rule of necessitation (if � p
then � �ip). K(m) is the weakest multi-modal logic, that is, the logic given by
the smallest set of modal formulae constituting a normal modal logic. Other
modal logics commonly considered in the literature and used in applications
are extensions of the logic K(m) with additional axioms such as those listed in
Figure 3. In this paper we refer to these logics as traditional modal logics to
distinguish them from the dynamic modal logics considered in the next section.
Let Δ denote a finite set of formulae. By K(m)Δ we denote the smallest modal
logic extending K(m) that includes all substitution instances of formulae in Δ
(the formulae in Δ are the extra axioms) and is closed under the inference rules.
A modal formula ϕ is a theorem of K(m) or one of its extensions iff ϕ can be
derived by using the axioms and the rules of the logic.

The standard semantics of propositional modal logics, known as the Kripke
semantics or possible world semantics, is given in terms of relational structures
called frames. A frame of a modal logic is a pair F = (W, {Ri}i) of a non-empty
set of worlds W and a family of binary accessibility relations Ri over W . The
defining class of frames of a modal logic determines, and is determined by, a
corresponding class of models. A (relational) model is a pair M = (F , v) of a
frame F and a valuation function v . v assigns subsets of W to atomic propo-
sitional variables. The model M is therefore said to be based on the frame F .
Truth in any model M and any world x ∈ W is defined inductively by:

M, x |= p iff x ∈ v(p) M, x |= ¬φ iff M, x
|= φ

M, x |= (φ ∧ ψ) iff both M, x |= φ and M, x |= ψ

M, x |= �iφ iff (x, y) ∈ Ri implies M, y |= φ, for any y ∈ W

First-Order Resolution Methods for Modal Logics 353

If M, x |= ϕ holds then we say ϕ is true at x in M and M satisfies ϕ. A modal
formula ϕ is satisfiable iff there exists a model M and a world x in M such that
M, x |= ϕ. A modal formula is valid in a frame iff it is valid in all models based
on the frame. The basic multi-modal logic K(m) is completely determined by the
class of all frames.

Normal modal logics can be studied systematically by considering the classes
of frames they define. In general, these are subclasses of the class of all frames
that define the basic modal logic K(m). A modal logic K(m)Δ is said to be
sound (respectively complete) with respect to a class of frames iff for any modal
formula ϕ, any frame in the class validates ϕ if (respectively iff) ϕ is a theorem in
K(m)Δ. A modal logic is said to be complete iff it is complete with respect to some
class F of frames. Given a modal logic K(m)Δ and a class F of frames for which it
is sound and complete, F can be characterised by a second-order formula Ψ , that
is, there is a second-order formula Ψ such that a frame F is in F iff Ψ is true for
F . In some cases, but not always, the second-order formula Ψ is equivalent to a
first-order formula ψ and ψ is then called a first-order correspondence property
for K(m)Δ. A class of frames comprising of all frames satisfying a set of first-order
conditions is an elementary class. Figure 3 lists the first-order correspondence
properties satisfied by classes of frames for extensions K(m)Δ for a selection of
common axioms.

When given a modal formula ϕ, the problem of determining whether there
exists a model M and a world x in M such that ϕ is true at x in M is also
called the local satisfiability problem. By contrast, the global satisfiability problem
is the problem of determining whether there exists a modelM such that for every
world x in M, the given ϕ is true at x in M.

We are also interested in inference problems relative to finite sets of assump-
tions or background theories. We use the notation Γ for background theories. The
modal formulae in Γ are referred to as non-logical axioms, because by definition
they are formulae true in every world of a model but are not logical axioms which
are required to be true in every world in every model of a class. A model M
(globally) satisfies a background theory Γ if, for each world x in M and each
ρ ∈ Γ , it is the case that M, x |= ρ. We can then consider the local satisfiability
of a modal formula ϕ with respect to a background theory Γ , that is, whether
there exists a model M and a world x in this model so that ϕ is true in x and Γ
is globally true in M. Global satisfiability with respect to a background theory
is defined as expected.

The standard interpretation of (first-order definable) modal logics inside first-
order logic is given by the classical (relational) translation mapping, here denoted
by πr. It maps modal formulae to first-order formulae by uniquely associating
each propositional variable p with a unary predicate symbol Qp and simply
mimicking the semantic definitions of the operators.

πr(p, x) = Qp(x) πr(φ ∧ ψ, x) = πr(φ, x) ∧ πr(ψ, x)

πr(¬φ, x) = ¬πr(φ, x) πr(�iφ, x) = ∀y (Ri(x, y) → πr(φ, y))

Let Corr(Δ) denote the set of first-order frame properties of the axioms in Δ.

354 R.A. Schmidt and U. Hustadt

Theorem 3. Let L be a first-order definable propositional multi-modal logic
K(m)Δ which is complete with respect to the class of frames satisfying Corr(Δ).
Then, for any formula ϕ and any finite set Γ of non-logical axioms, (i) πr can
be computed in linear time, (ii) ϕ is locally satisfiable in L iff Corr(Δ) ∧∧

ρ∈Γ ∀xπr(ρ, x) ∧ ∃xπr(ϕ, x) is satisfiable in first-order logic, and (iii) ϕ is
globally satisfiable in L iff Corr(Δ) ∧

∧
ρ∈Γ ∀xπr(ρ, x) ∧ ∀xπr(ϕ, x) is satisfi-

able in first-order logic.

3.2 Dynamic Modal Logics

Dynamic modal logics provide another kind of extension of the basic modal
logic K(m). They are PDL-like modal logics in which the modal operators are
parametrised by relational formulae. These can be used to formalise dynamic
notions such as actions or programs and are useful in linguistic or AI applica-
tions. Logics which belong to this family of logics, or are closely related, are
propositional dynamic logic PDL itself, but also Boolean modal logic BML [42],
tense logic, information logics [28], dynamic modal logic [25], logics expressing
inaccessibility and sufficiency [43, 55, 56] as well as a large class of description
logics.

The strongest logic in the class of dynamic modal logics we consider in this
paper is called Peirce logic. Peirce logic subsumes all the logics mentioned in
the previous paragraph except for PDL (but can be easily extended to also
subsume PDL). Peirce logic is a logical formalisation of representable Peirce
algebras [80, 112] and is closely related to de Rijke’s dynamic modal logic [25].

Formally, Peirce logic is the modal logic defined over relations which form a
relation algebra. The language of Peirce logic consists of two syntactic types:
dynamic modal formulae and relational formulae. The logical connectives are
(i) the connectives of the modal logic K(m), with the difference that the modal
operators are indexed with relational formulae, instead of just numbers, (ii) the
standard connectives of relational logics, namely: ; (composition), � (converse),
id (identity), and (iii) a left cylindrification operator c. (Instead of the left cylin-
drification operator one could have chosen the test operator of PDL, domain
restriction, range restriction, or cross product, cf. [19]; the symbol id is a logical
constant which is interpreted as the identity relation.) Given countably many
propositional variables denoted by pj as before, and countably many relational
variables, denoted by ri, dynamic modal formulae and relational formulae are
defined inductively as follows. Every propositional variable is a dynamic modal
formula and every relational variable is a relational formula. If φ, ψ are dy-
namic modal formulae and α, β are relational formulae, then ¬φ, (φ ∧ ψ), [α]φ
are dynamic modal formulae and id, ¬α, (α ∧ β), (α ;β), α�, φc are relational
formulae.

We define the set of formulae of Peirce logic to be the set of dynamic modal
formulae. The definition in [112] allows also relational formulae as first-class

First-Order Resolution Methods for Modal Logics 355

citizens, but these can be expressed in terms of dynamic modal formulae (see
below). This variation in the definition is thus inconsequential.

The semantics of Peirce logic is defined in terms of frames, where a frame is a
tuple (W,R) of a non-empty set W (of worlds) and a mapping R from relational
formulae to binary relations over W satisfying:

R¬α = W 2\Rα Rα∧β = Rα ∩Rβ Rα ;β = Rα ;Rβ

Rα� = R�
α Rid = IdW Rφc = {(x, y) ∈ W 2 |x ∈ v(φ)}.

Here and in the rest of the paper we prefer to use the notationRα instead ofR(α).
IdW denotes the identity relation on the set W , while R� denotes the converse
(or inverse) of a relation R. A model is now given by a triple M = (W,R, v),
where (W,R) is a frame and v is a mapping from propositional variables to
subsets of W satisfying the same conditions as before with the following change.

M, x |= [α]φ iff (x, y) ∈ Rα implies M, y |= φ, for any y ∈ W

The definitions of the notions of satisfiability and validity remain the same. The
notions of local satisfiability, global satisfiability and satisfiability with respect
to a set of non-logical axioms are also defined as for traditional modal logics.

There is a natural hierarchy of dynamic modal logics in which K(m) forms
the weakest logic and Peirce logic forms the strongest logic. It is not difficult
to see that K(m) is just the reduct of Peirce logic in which relational formulae
are limited to m relational variables rj . Dynamic modal logics are defined over
the language of K(m) but include in addition to the operators of K(m) and rela-
tional variables also finitely many relational operators �1, . . . , �k. By relational
operators we mean relation formula forming operators, namely those of Peirce
logic: relational ¬, ∨, ∧, ; , �, id, c plus relational operators definable in terms
of the operators of Peirce logic. A logic K(m)(�1, . . . , �k) is then defined to be
the multi-modal logic defined over relations closed under the set-theoretic oper-
ations corresponding to the relational operators �1, . . . , �k. The class of dynamic
modal logics forms therefore a lattice in which K(m) is the weakest logic and
every other logic is obtained by enhancing the language with one or more re-
lational operators �i. Clearly some of the logics in this lattice are expressively
equivalent. Peirce logic is equivalent to the top element in the lattice. Tense
logic coincides with the logic K(m)(), BML coincides with K(m)(¬,∧), and the
description logic ALB [63] coincides with K(m)(¬,∧,, �). The operator � is the
domain restriction operator, that is, α�φ =def (α ∧ φc). Range restriction may
be defined by α � φ =def (α��φ)�.

Relational formulae as ‘independent’ formulae are implicit in all dynamic
modal logics with relational negation and relational conjunction or disjunc-
tion. For example, implication between relational formulae can be defined by
(α → β) =def (* → [α ∧ ¬β]⊥). Then it is also possible to specify properties
of the underlying accessibility relations. Figure 4 gives some properties of the
accessibility relation associated with r which can be specified by relational for-
mulae in Peirce logic. If r is a relational variable then the universal modality

356 R.A. Schmidt and U. Hustadt

Property of Rr Relational formula Property of Rr Relational formula

reflexivity id → r transitivity r ; r → r

symmetry r → r� functionality r� ; r → id
seriality � → r ;� or � → 〈r〉� Euclideanness r ; r� → r

Fig. 4. Relational properties expressed as relational formulae. (The relational operators
are assumed to have higher priority than →.).

can be defined by either [*]φ =def [r ∨ ¬r]φ or [*]φ =def [¬(r ∧ ¬r)]φ. The
test operator of PDL can be defined by φ? =def (id ∧ φc). We also define the
operator id(·) by id(α) =def (α ∧ id).

The standard (relational) translation of Peirce logic into first-order logic is
specified by the following.

πr(p, x) = Qp(x) πr(φ ∧ ψ, x) = πr(φ, x) ∧ πr(ψ, x)

For dynamic modal formulae:

πr(¬φ, x) = ¬πr(φ, x) πr([α]φ, x) = ∀y (τ(α, x, y) → πr(φ, y))

τ(r, x, y) = Qr(x, y) τ(α ∧ β, x, y) = τ(α, x, y) ∧ τ(β, x, y)
For relational formulae:

τ(¬α, x, y) = ¬τ(α, x, y) τ(α ;β, x, y) = ∃z (τ(α, x, z) ∧ τ(β, z, y))

τ(α�, x, y) = τ(α, y, x) τ(φc, x, y) = πr(φ, x)

τ(id, x, y) = x ≈ y

Theorem 4. Let L be a logic in the lattice of dynamic modal logics and let Σ
be a (possibly empty) set of first-order relational frame properties. Then, for any
formula ϕ, (i) πr(ϕ, x) can be computed in linear time, and (ii) ϕ is satisfiable
in L with respect to Σ iff Σ ∧ ∃xπr(ϕ, x) is first-order satisfiable.

4 Different Translation Methods

The standard translation of propositional modal logics and dynamic modal log-
ics presented in the previous section is just one among many other reductions
of these logics to first-order logic. A variety of non-standard translation map-
pings have been developed and studied. Experience shows that the performance
of a first-order logic prover depends heavily on the translation chosen as well
as subsequent transformations. Choosing a suitable translation mapping for a
particular modal logic is therefore an important decision to make.

Broadly there are three types of translation methods: (i) syntactic translation
methods, (ii) semantic translation methods, and (iii) a mixture of both.

4.1 Syntactic Translation

If a sound and complete axiomatisation exists for a logic then it is normally straight-
forward to interpret the logic inside first-order logic. Take for example the

First-Order Resolution Methods for Modal Logics 357

Hilbert-style axiomatisations of the modal logic S4 . This consists of an axioma-
tisation of propositional logic, the axioms K , T and 4 , and uniform substitution,
modus ponens and necessitation. This can be straightforwardly embedded in first-
order logic by encoding formulae as terms and using a special T predicate repre-
senting the truth (entailment) relation. Each axiom A is then encoded as a uni-
versally quantified formula of the form ∀p T (πt(A)), for example the axiom 4 is
encoded as the following term, πt(4) = i(b(p), b(b(p))), where i and b are desig-
nated function symbols representing implication and box. The rules are encoded
as ∀p1p2 ((T (p1) ∧ T (i(p1, p2))) → T (p2)) for modus ponens and ∀p (T (p) →
T (b(p))) for necessitation. This kind of syntactic translation is quite old and is
regularly used by Wos, McCune and others in their investigations into the exis-
tence of small axiom bases for algebras and other mathematical problems. Syn-
tactic translations, or T -encodings as Ohlbach [89] calls them, are quite widely
applicable. For instance, in contrast to semantics-based encodings they are read-
ily applicable to a great many modal logics and algebras including second-order
(modal) logics for which no first-order semantic characterisations are known.

4.2 Semantic Translations

In modal logic semantic translations are more often used than syntactic transla-
tions. The main reason for this is that it is easier to control the theorem proving
processes and reduce the search space of a theorem prover, and it is easier and
more natural to prove interesting properties of the logics. In the previous section
we gave the definitions of the classical translation of modal logics into first-
order logic. Because the translation just follows the standard definition of the
standard semantic definition in terms of accessibility relations this translation is
often referred to the relational translation approach.

Functional Translations. The semantics of modal logics can also be specified
as structures based on accessibility functions rather than accessibility relations.
Corresponding translations to first-order logic, so-called functional translations,
have been introduced and studied by a variety of authors, including [6, 32, 87,
103]. In this paper we want to highlight some results obtained in Saarbrücken
and therefore confine ourselves to the semi-functional translation method due to
Nonnengart [83] as well as the optimised functional translation method studied
by Ohlbach and others [52, 92, 122].

Semi-functional Translation. The semi-functional translation approach [83, 85]
combines the advantages of the relational and functional translation approach
and tries to avoid their disadvantages. For an elaboration of the considerations
leading to the development of the semi-functional translation approach please
refer to Nonnengart [84]. The translation is called semi-functional as it translates
box modalities in the standard way, while diamond modalities are translated
functionally. In the following we focus on the modal logic K and its extensions
by a set of axiom schemas Δ, because in the case of just one modality, the semi-
functional translation provides an elegant encoding of Δ which in turn allows us
to obtain strong decidability results.

358 R.A. Schmidt and U. Hustadt

The semi-functional translation maps modal formulae to many-sorted first-
order formulae. We distinguish between the sorts W and AF for worlds and
accessibility functions. Unary predicate symbols have sort W , the binary pred-
icate symbol R associated with the accessibility relation has sort W × W , the
constant symbol ε has sort W , and the binary (left-associative) function [·, ·]
has sort W × AF → W . Then the semi-functional translation πsf is defined as
follows.

πsf (p, s) = Qp(s) πsf (φ ∧ ψ, s) = πsf (φ, s) ∧ πsf (ψ, s)

πsf (¬ψ, s) = ¬πsf (ψ, s) πsf (�ψ, s) = ∀y(R(s, y) → πsf (ψ, y))

πsf (�ψ, s) = def(s) ∧ ∃απsf (ψ, [sα])

Note that ∀y quantifies over a variable of sort W while ∃α quantifies over a
variable of sort AF . The expression [sα] is of sort W . Since the semi-functional
translation incorporates both the relational representation and the functional
representation of the accessibility relation, it is necessary to relate the two rep-
resentations by means of the following formula.

Simsf = ∀x∀α(def(x) → R(x, [xα])) ∧ ∀xy(R(x, y) → def(x))

The two conjuncts of Simsf are called the simulator axioms for R. The following
theorem states that the translation preserves the satisfiability and unsatisfiability
of modal formulae.

Theorem 5 (Nonnengart [84]). Let KΔ be a complete modal logic with first-
order definable relational frame properties Corr(Δ). A modal formula ϕ in nega-
tion normal form is satisfiable iff πsf (ϕ, ε) ∧ Simsf ∧ Corr(Δ) is satisfiable.

Note that for any modal formula ϕ in negation normal form, πsf (ϕ, ε) only
contains negative R-literals, that is, negative literals with predicate symbol R.
Consequently, positive R-literals can only come from Simsf and from Corr(Δ),
the set of first-order frame properties associated with a set of axioms Δ. This
allows us to compute the consequences C of Simsf and Corr(Δ) without the need
to take πsf (ϕ, ε) into account. In fact, we are not interested in all consequences C
of Simsf and Corr(Δ), but only in the subset CR of positive R-literals of C. Then,
πsf (ϕ, ε)∧Simsf ∧Corr(Δ) is satisfiable iff πsf (ϕ, ε)∧Simsf ∧CR is satisfiable. This
approach can be taken further. Instead of CR, which might be infinite, we may
use any (finite) set of first-order formulae C′ which has as logical consequences
the same set CR of positive R-literals, that is, πsf (ϕ, ε) ∧ Simsf ∧ Corr(Δ) is
satisfiable iff πsf (ϕ, ε) ∧ Simsf ∧ C′ is satisfiable. The set C′ can be seen as an
alternative representation of CR. Figure 5 lists the formulae we obtain follow-
ing this approach for a variety of well-known extensions of K by the axiom
schemas 4 , 5 , B , D , and T . While the set of consequences of a set of first-order
formulae can be computed automatically, for example, using resolution, there is
as yet no way to automatically compute its alternative representation.

First-Order Resolution Methods for Modal Logics 359

K4 ∀xy∀α((def(x) → R(x, [xα])) ∧
((def(x) ∧ R(x, y)) → R(x, [yα])))

K45 ∀xy∀α((def(x) → def(y)) ∧
(def(y) → R(x, [yα])))

KB ∀xy∀α((def(x) → def(y)) ∧
(def(x) → R(x, [xα])) ∧
(def(x) → R([xα], x)))

KD4 ∀xy∀α(def(x) ∧
R(x, [xα]) ∧
(R(x, y) → R(x, [yα])))

S4 ∀xy∀α(def(x) ∧
R(x, x) ∧
(R(x, y) → R(x, [yα])))

K5 ∀xy∀αβ((def(x) → def(y)) ∧
(def(ε) → R(ε, [εα])) ∧
((def(x) ∧ def(y)) → R([xα], [yβ])))

KD ∀x∀α(def(x) ∧
R(x, [xα]))

KD45 ∀xy∀α(def(x) ∧
R(x, [yα]))

KDB ∀x∀α(def(x) ∧
R(x, [xα]) ∧
R([xα], x))

KT ∀x∀α(def(x) ∧
R(x, x) ∧
R(x, [xα]))

S5 ∀xy(def(x) ∧
R(x, y))

KD5 ∀xy∀αβ(def(x) ∧
R(ε, [εα]) ∧
R([xα], [yβ]))

Fig. 5. Logics and semi-functional frame properties

Theorem 6 (Nonnengart [84]). Let Δ be a subset of {4 , 5 ,B ,D ,T}. Let
SF(Δ) be the first-order formula representing the frame properties of KΔ accord-
ing to Figure 5. Then a modal formula ϕ in negation normal form is satisfiable
iff πsf (ϕ, ε) ∧ SF(Δ) is satisfiable.

Optimised Functional Translation. The (monadic) optimised functional trans-
lation is as the name suggests an improvement of the functional translation.
It maps the basic modal logic K(m) to many-sorted first-order logic, more pre-
cisely, to a monadic fragment of sorted first-order logic, called basic path logic,
and maps extensions of K(m) with axioms to extensions of the basic path logic
by equational theories [92, 103]. Basic path logic has a sort SW for the set of
worlds W and a sort Si for each modality �i in the logic. For each i there is a
binary, left-associative function [·, ·]i of sort SW ×Si → W . Also there are special
unary predicates defi of sort SW representing subsets of W . Each propositional
variable p is uniquely associated with a unary predicate symbols Qp of sort SW .

Commonly, the (monadic) optimised functional translation πof is defined as
a two step process: (i) the application of the functional translation to a modal
formula which translates it to basic path logic, followed by (ii) the application of
a quantifier exchange operation which converts the first-order formula obtained
from the functional translation into prenex normal form and moves all existential
quantifiers outwards as far as possible (or inwards, depending on one’s point of
view). Since we focus here only on the satisfiability problem, we can give a
simplified presentation of the optimised functional translation obtained in just
one step.

360 R.A. Schmidt and U. Hustadt

Axiom A Functional correspondence property

D �ip → �ip ∀x:SW defi(x)
T �ip → p ∀x:SW ∃y:Si (defi(x) ∧ x ≈ [x y])
B p → �i�ip ∀x:SW ∀y:Si ∃z:Si (defi(x) → defi[x y]) ∧

(defi(x) → x ≈ [x y z])
4 �ip → �i�ip ∀x:SW ∀y, z:Si ∃u:Si (defi(x) ∧ defi[x y]) →

[x y z] ≈ [x u]
5 �ip → �i�ip ∀x:SW ∀y, z:Si ∃u:Si (defi(x) → defi[x z]) ∧

(defi(x) → [x y] ≈ [x z u])
G �i�ip → �i�ip ∀x:SW ∀y, z:Si ∃u, u′:Si (defi(x) → (defi[x y] ∧ defi[x z] ∧

[x y u] ≈ [x z u′]))
alt1 �ip → �ip ∀x:SW ∀y, z:Si (defi(x) → [x y] ≈ [x z])

Fig. 6. Axiom schemas and functional correspondence properties

πof (p, s) = Qp(s) πof (ϕ ∧ ψ, s) = πof (ϕ, s) ∧ πf (ψ, s)

πof (¬ϕ, s) = ¬πof (ϕ, s) πof (�iϕ, s) = ∀y:Si(defi(s) → πof (ϕ, [s y]i))

πof (�iϕ, s) = defi(s) ∧ πof (ϕ, [s y]i)

The symbol s denotes a path and y denotes a variable of sort Si. The intuition
of the term [s y]i is that it represents an i-successor world which is reached via
the path s to its predecessor world followed by a y transition of type Si. This
means [s y]i represents both a world and the path via which it is reached from the
initial world. The inclusion of a specification for diamond formulae in the above
definition is intentional and so is the omission of the quantifiers. The optimised
functional translation of a modal formula ϕ is given by πof (ϕ, x), where x is an
arbitrary variable of sort SW , and x as well as the y from πof (�iϕ, s), are free
variables that are implicitly existentially quantified.

Similar as for the relational semantics, the functional semantics of extensions
of K(m) can be characterised by frame properties, this time they are formu-
lated over accessibility functions. Figure 6 gives a selection of modal axioms and
equivalent first-order formulae of the functional frames. For some schemas (such
as D, T and 4) these properties may be simplified by a form of globalisation;
see [92, 103] for details.

Theorem 7 ([92]). Let K(m)Δ be a complete modal logic such that the func-
tional frame properties corresponding to the axioms in Δ are a set Σ of first-
order formulae. Then, a modal formula ϕ is satisfiable in K(m)Δ iff the formula

Σ ∧ ∃x:SW ∃y:Si πof (ϕ, x) is first-order satisfiable.

An important advantage of the optimised translation is that a wider class of
modal logics can be embedded into first-order logic than can be done with the
relational translation method, cf. [92, 102].

If we are only interested in establishing the satisfiability of formulae in the
basic modal logic K(m) or extensions of K(m) by the axiom D for some or all

First-Order Resolution Methods for Modal Logics 361

modalities, then the use of sorted first-order logic and binary function symbols
can be avoided by using k-ary predicates where the sort information is coded
into the predicate names [60], see also [53]. The k-ary predicate symbols are Qp,σ

and defi,σ where p denotes a propositional symbol, and σ is a sequence of length k
of natural numbers. We use x to denote a sequence of variables x1, . . . , xk, and
we denote by ‘ε’ and ‘.’ the empty sequence and the concatenation operation on
sequences, respectively. Then the polyadic optimised functional translation π′

of

is given by the following.

π′
of (p, x, k, σ) =

{
Qp,ε if σ = ε and k = 0

Qp,σ(x1, . . . , xk) otherwise

π′
of (¬ϕ, x, k, σ) = ¬π′

of (ϕ, x, k, σ)

π′
of (ϕ ∧ ψ, x, k, σ) = π′

of (ϕ, x, k, σ) ∧ π′
of (ψ, x, k, σ)

π′
of (�iϕ, x, k, σ) = ∀xk+1 (defi,σ(x) → π′

of (ϕ, x.xk+1, k+1, σ.i))

π′
of (�iϕ, x, k, σ) = defi,σ(x) ∧ π′

of (ϕ, x.xk+1, k+1, σ.i)

In this definition the variable sequence in the argument position two of π′
of repre-

sents the world, and its path from the initial world, where the formula in argument
position one is true. The translation of amodal formula ϕ is given by π′

of (ϕ, ε, 0, ε).
In the case of the modal logic KD , and for any modal logic where an accessibility
relation Ri is serial, all occurrences of defi,σ can be replaced by the logical con-
stant *. The following is an easy consequence of the previous theorem.

Theorem 8. For any multi-modal logic L with K-modalities and D-modalities
only, a modal formula ϕ is satisfiable in L iff ∃x π′

of (ϕ, ε, 0, ε) is first-order sat-
isfiable.

4.3 Mixed Syntactic-Semantic Translations

The axiomatic translation method has a mixed syntactic-semantic flavour, be-
cause it is based on the standard semantic translation method, but instead of us-
ing correspondence properties it incorporates some or all of the additional modal
axioms into the first-order translation [110, 111]. The method can be viewed as
an almost semantic approach obtained by partially reducing the Hilbert-style
syntactic encoding according to the definitions of the logical operators. The gen-
eral motivation of this approach is to substitute the first-order theory expressed
as correspondence properties by a theory with better computational and mathe-
matical properties. Of course it must be a minimal requirement that satisfiability
and unsatisfiability are preserved by the substitute theory.

It is necessary to define some extra notation before proceeding with a formal
definition of the axiomatic translation mapping. Let Sf(ϕ) denote the set of
all subformulae of ϕ. If ψ denotes a modal formula then let ∼ψ denote the
complement of ψ, that is, ∼ψ =def φ if ψ = ¬φ, and ∼ψ =def ¬ψ otherwise. For
any subformula ψ of ϕ, let the following represent the definition of Qψ.

362 R.A. Schmidt and U. Hustadt

Def(ψ) = ∀x (Qψ(x) → π(ψ, x))

∧ ∀x (Qψ(x) → ¬Q∼ψ(x)) ∧ ∀x (Q∼ψ(x) → π(∼ψ, x))

Qψ is a new predicate symbols uniquely associated with the modal formula ψ,
and π(ψ, x) is a first-order formula (with one free variable x) given by:

π(p, x) = * π(¬p, x) = ¬Qp(x)

π(ψ ∧ φ, x) = Qψ(x) ∧ Qφ(x) π(¬(ψ ∧ φ), x) = Q∼ψ(x) ∨ Q∼φ(x)

π(�iψ, x) = ∀y (Ri(x, y) → Qψ(y)) π(¬�iψ, x) = ∃y (Ri(x, y) ∧ Q∼ψ(y))

Theorem 9. Let L be a first-order definable propositional multi-modal logic
K(m)Δ which is sound and complete. For any modal formula ϕ, (i) ϕ is sat-
isfiable in L iff Corr(Δ) ∧ ∃xQϕ(x) ∧

∧
{Def(ψ) |ψ ∈ Sf(ϕ)} is first-order

satisfiable, and (ii) the translation can be computed in linear time.

The definition of the encoding in this theorem is based on the standard relational
semantics and structural transformation which introduces new symbols for each
modal subformula. In the axiomatic translation the correspondence properties
are replaced by a set of instances of so-called schema clauses. Figure 7 lists
the schema clauses of some common axioms. They can be easily read off from
the axioms or can be automatically computed from the modal axioms with the
theorem prover mspass. The clauses are assumed to be closed under universal
quantification of the free (first-order) variables. For each A ∈ Δ, let XA be a
predetermined set of modal formulae. The intention is that each XA is the in-
stantiation set for the axiom A. Let AxA(ψ) be the conjunction of (the universal
closure of) all clauses C{p/ψ}, where C is a schema clause in the schema clause
set associated with A. Further, let X =def {IndA(ψ) | A ∈ Δ, ψ ∈ XA}, where
IndA(ψ) denotes the set of modal formulae occurring in the indices of the in-
stances of the clauses associated with A as determined by the instance set XA.
Then, if ϕ is a modal formula, the axiomatic translation of ϕ for K(m)Δ, relative
to {XA | A ∈ Δ}, is the following conjunction.

∃xQϕ(x) ∧
∧

{Def(ψ) |ψ ∈ Sf(ϕ)}∧
{AxA(ψ) | A ∈ Δ, ψ ∈ XA}∧
{Def(ψ) |ψ ∈ Sf(X)}∧
{∀x (¬Q∼ψ(x) → Qψ(x)) |ψ ∈ Sf(X) ∪ Sf(ϕ)}

There is an implicit restriction in this definition to axioms with one free variable,
but the definition can be generalised for modal axioms in more than one variable.

In [110, 111] we have proved the following soundness and completeness results.

Theorem 10. Let L be a consistent propositional modal logic K(m)Δ with Δ
a finite set. Let ϕ be any L-formula and assume

⋃
{XA | A ∈ Δ} is a (finite)

set of L-formulae. If ϕ is L-satisfiable then the axiomatic translation of ϕ for L
relative to {XA | A ∈ Δ} is first-order satisfiable.

First-Order Resolution Methods for Modal Logics 363

Axiom A Schema clause AxA(p)

T �ip → p ¬Q�ip(x) ∨ Qp(x)
B ¬�i¬�ip → p ¬Ri(x, y) ∨ ¬Q�ip(y) ∨ Qp(x)
D �ip → ¬�i¬p ¬Q�ip(x) ∨ Q¬�i¬p(x)
4 �ip → �i�ip ¬Q�ip(x) ∨ ¬Ri(x, y) ∨ Q�ip(y)

alt1 ¬�i¬p → �ip ¬Q¬�ip(x) ∨ Q�i¬p(x)
5 ¬�i¬�ip → �ip ¬Ri(x, y) ∨ ¬Q�ip(y) ∨ Q�ip(x)

Fig. 7. Schema clauses for the axiomatic translation

Theorem 11. For each of the modal logics K4 , KT, KD, KB, Kalt1 , KT4 ,
KTB, KDB, KD4 , K5, K4B, KT4B, or their fusions, and any modal formula
ϕ, there is an effectively computable set X =def {XA | A ∈ Δ} such that (i) ϕ is
satisfiable in K(m)Δ iff the axiomatic translation of ϕ relative to X is first-order
satisfiable, and (ii) the translation can be computed in linear time.

In [111] we also show that the axiomatic translation can be applied to extensions
of K with some generalised axioms (altκ1,κ2

1 , 4κ, 5κ).
In addition, we show that the classical translation using correspondence prop-

erties and the axiomatic translation can be used together. We refer to this as
the combined axiomatic-relational translation.

Theorem 12. Let L be a consistent propositional modal logic K(m)Δ with Δ a
finite set. Suppose Δ can be partitioned into two sets, Δ′ and Δ′′, so that all ax-
ioms occurring in Δ′ are first-order definable. Further suppose

⋃
{XA | A ∈ Δ′′}

is a finite set, and ϕ is any L-formula. If ϕ is L-satisfiable then the conjunc-
tion of Corr(Δ′) and the axiomatic translation of ϕ relative to {XA | A ∈ Δ′′} is
first-order satisfiable.

This theorem gives a general soundness result for the combined axiomatic-
relational translation method. Completeness can be proved for S5 where the
correspondence properties are used for the axioms T and B , while for the ax-
iom 4 instantiations of the schema clause for 4 with all box subformulae of the
input problem are sufficient. Other completeness results can be given for the
logics KDB and KD4 , and their fusions with any of the logics in Theorem 11.
The axiomatic translation has the advantage that it can reduce also second-order
modal logics to first-order logic. We expect it can be shown that any modal logic
complete via the filtration construction can be reduced to first-order logic by
this method. All the results are also true in the presence of non-logical axioms
and for global satisfiability.

4.4 Other Translations

There are many more ways of interpreting modal logics in other logics. Due to
space restrictions we were forced to be selective about which translation methods
to discuss. Other translations worth mentioning are the following. First, Areces

364 R.A. Schmidt and U. Hustadt

et al [5] introduced a tree layered translation for the basic modal logic into first-
order logic. It can be shown that there is a one-to-one correspondence between
this translation and the (optimised) functional translation. Methods based on
this translation can therefore be linearly simulated with the (optimised) func-
tional translation method.

Second, with the translation of Demri and De Nivelle [27] all modal regular
grammar logics with converse RGL(�) can be reduced to GF 2, the two-variable
guarded fragment, and decided by decision procedures for GF 2. This is a strong
result because many of the common modal logics belong to RGL(�). In some
instances it can be easily seen that the axiomatic translation is equivalent to the
translation of Demri-De Nivelle. In other instances the connection appears to be
less immediate and deserves further investigation.

Third, translations to logics other than first-order logic exist as well. There is
also a close relationship between modal logics and particularly the family of dy-
namic modal logics to description logics. Although their origins and motivations
are different mathematically modal logics and description logics are the same.
This means modal logic problems can be encoded as description logic problems,
and vice versa. Further, it is easy to see that many traditional modal logics can
be embedded into suitably expressive dynamic modal logics, for example, Peirce
logic and K(m)(¬) or K(m)(*), or even just K(m) possibly with serial modalities.
In order to exploit fast SAT procedures we might even prefer to translate modal
logics into propositional logic. The possibilities are endless.

5 Modal Fragments, First-Order Fragments and Clausal
Classes

Where do the different translations take us? Every translation described in the
previous section associates a particular fragment of first-order logic to the modal
source logic. Since the translations are all sound and complete it is immediate
that any first-order logic theorem prover can be used as a prover for the consid-
ered source logic. All the translations for the modal logics considered here are
linear time computable and the different target fragments inherit all the essential
properties of the source modal logic, for example, decidability, the finite model
property, and computational complexity. Our aim is to use existing first-order
logic provers and we want decision procedures for the fragments of first-order
logic which correspond to decidable modal logics. For this reason we take a
closer look at the decidability of the target logics of the different translations
and review the most important decidable clausal classes that are relevant.

5.1 Syntactic Translation

Syntactic translations, that is, encodings of Hilbert-style axiomatisations, take us
to fragments of first-order logic with function symbols. Very few papers can be
found in the literature on this kind of translation for modal logics. Consequently
there are currentlymore open questions than answers. For example, since the ‘syn-
tactic modal fragments’ are decidable for decidable modal logics, are there

First-Order Resolution Methods for Modal Logics 365

resolution methods for deciding these fragments, or can such methods be devel-
oped? Are solvable first-order fragments known which subsume these fragments?

5.2 Relational Translation

First-Order Target Logics. The target logic of the basic modal logic K(m) ob-
tained via the classical relational translation is the (relational) modal fragment
of first-order logic [119]. The modal fragment is the monadic fragment of first-
order logic but the quantifiers are replaced by conditional quantifiers of the
form ∀y R(·, y) → . . . and ∃y R(·, y) ∧ . . . involving binary predicate symbols.
A generalisation of this fragment is the guarded fragment and its many exten-
sions [3, 4, 50, 49]. The guarded fragment has many of the same good properties
as modal logics. It is decidable, it has the finite model property, it has the tree
model property, etc. Thus, since its introduction the guarded fragment has taken
over the role of the two-variable fragment of first-order logic (FO2) as being re-
garded as a good generalisation of the modal fragment. FO2 is decidable but
Craig interpolation, Beth definability, and invariance for bisimulation fail. The
guarded fragment subsumes more than just the (relational) modal fragment, it
is also the target logic of a number of extensions of K(m), for example, it encom-

passes the dynamic modal logic K(m)(∧,∨,� , id, ?) via the relational translation
(cf. [111]). The standard translation of any formula with relational negation is
not a guarded formula however.

FO2, by contrast, has the advantage that it subsumes the relational frag-
ment associated with dynamic modal logics with relational negation, for example
Boolean modal logic, that is, the logic K(m)(¬,∧). It seems that the most ex-

pressive dynamic modal logic subsumed by FO2(≈), the two-variable fragment
with equality, is the logic K(m)(¬,∧,� , id,c).

There are other solvable first-order fragments that encompass modal logics via
the relational translation method. One is the class DK containing conjunctions
of formulae in the dual of Maslov’s class K [77]. This logic contains a variety
of classical, solvable fragments, including the monadic class mon, the initially
extended Skolem class [∃∗∀∃∗, ∀∗], and the Gödel class ∃∗∀2∃∗. FO2 (without
equality) can also be embedded into DK in a satisfiability-equivalence preserving
way. Perhaps the most expressive dynamic modal logic subsumed by DK is the
extension K(m)(¬,∧,� , ;pos ,c), where ;pos means that occurrences of composition
are restricted to positive occurrences only.

Another solvable first-order fragment that encompasses modal logics via the
relational translation is fluted logic (FL). Fluted logic was introduced by Quine
as part of the definition of predicate functor logic [96, 97]. Fluted logic and
extensions of fluted logic with binary converse and equality were shown to be
decidable by Purdy [94, 95]. Fluted logic is actually quite closely related to modal
logic, because the dyadic fluted fragment, that is, the set of fluted formulae over
unary and binary predicate symbols, is in fact the target logic of K(m)(¬,∧) via
the relational translation. One can prove [66] the following:

366 R.A. Schmidt and U. Hustadt

Theorem 13. (i) For any formula ϕ in K(m)(¬,∧), the formula Qxπr(ϕ, x),
where Q ∈ {∀, ∃}, is a dyadic fluted formula. (ii) For any closed dyadic fluted
formula ψ there is a formula ϕ in K(m)(¬,∧) such that ψ is logically equivalent
to Qxπr(ϕ, x), where Q ∈ {∀, ∃}.

From a modal logic perspective, this result states that the dyadic fragment of
fluted logic is the relational modal fragment of first-order logic associated with
Boolean modal logic K(m)(¬,∧). Analogous statements are respectively true for

K(m)(¬,∧,�) and FL(�), that is, fluted logic with converse, and K(m)(¬,∧,� , id)

and FL(�,≈), that is, fluted logic with converse and equality.
More frame correspondence properties belong to FO2(≈), DK and the fluted

logic FL(�,≈) than the guarded fragments, but there are correspondence prop-
erties which do not belong to any of these fragments. Most notable examples are:
transitivity and Euclideanness, the correspondence properties of the axioms 4
and 5 , respectively. Transitivity and Euclideanness are formulae which belong to
the Bernays-Schönfinkel class, that is, the ∃∗∀∗ prefix class, which is decidable.
Unfortunately, this is not of general use, because few modal formulae reduce to
this class by the relational translation mapping; local satisfiability problems of
modal formulae in which no existential modal operators occur below universal
modal operators do. Here, by existential (universal) modal operators we mean
positive (negative) occurrences of diamond operators and negative (positive)
occurrences of box operators.

Solvable Clausal Classes. It is usually the case that the class of clauses corre-
sponding to a solvable first-order fragment can be defined more generally. Two
clausal clauses important in connection with modal logics are the class of guarded
clauses and a class called DL∗.

The class of guarded clauses is a generalisation of the clausal class correspond-
ing to the guarded fragment introduced by Ganzinger and De Nivelle [37]. The
definition of this class makes use of the notions of shallow terms, simple literals
and simple clauses, which are defined as follows. A term is shallow iff either it
is a variable or a term f(t1, . . . , tn) such that each ti is a variable or a constant
(0 ≤ n, 1 ≤ i ≤ n). A literal L is simple iff each term in L is shallow, and a
clause C is simple iff all literals in C are simple. A simple clause C is guarded
iff it satisfies one of the following conditions:

1. C is a positive, non-functional, single-variable clause.
2. Every functional subterm of C contains all the variables of C, and, if C is

non-ground, then C contains a non-functional negative literal, called a guard,
that contains all the variables of C.

The class of all guarded clauses over the first-order language without equality
is denoted by GC , with equality the class is denoted by GC (≈). The class
GC (≈) is in fact slightly more general than the class of guarded formulae. In
the next theorem the notation cpos means that occurrences of cylindrification
are restricted to positive occurrences.

First-Order Resolution Methods for Modal Logics 367

Theorem 14. The (global) satisfiability problem in K(m)(∧,∨,� , ;pos , id, ?,c pos)
with respect to a set of non-logical axioms of a formula ϕ is linearly reducible
via the relational translation mapping to GC (≈).

The class DL∗ [24] is a variation of the class of DL-clauses, which was in-
troduced in [63] with the purpose of handling expressive description logics. For
reasons of simplicity we assume that all clauses are maximally split (that is,
the clauses cannot be partitioned into distinct variable-disjoint subclauses). A
maximally split clause C is a DL∗-clause iff the following conditions are satisfied.

1. All literals are unary or binary.
2. There is no nesting of function symbols.
3. Every functional term in C contains all the variables of C.
4. Every binary literal (even if it has no functional terms) contains all the

variables of C.

Theorem 15. The (global) satisfiability problem of a formula ϕ in the logic
K(m)(¬,∧,� , ;pos ,c) with respect to a set of non-logical axioms is linearly re-
ducible via the relational translation mapping to a set of clauses in DL∗.

It is still the case that the clausal form of some relational correspondence
properties including transitivity and Euclideanness do not belong to either GC
or DL∗. The clausal classes associated with fluted logic [108] or Maslov’s class
DK [61] are no help here either.

5.3 Semi-functional Translation

According to Theorem 6, a modal formula φ is KΔ-satisfiable iff πsf (φ, ε) ∧
SF(Δ) is satisfiable, where SF(Δ) is a first-order formula representing the frame
properties of KΔ according to Figure 5, where Δ is a subset of {4 , 5 ,B ,D ,T}.
First, looking just at the translation mapping πsf , we can see that the resulting
first-order formulae do not belong to the guarded fragment, fluted logic, nor to
the two-variable fragment due to the presence of the binary function symbol [·, ·].
For the same reason, the clauses corresponding to the semi-functional translation
of a modal formula do not belong to the clausal classes associated with these
three decidable fragments of first-order logic. However, the clauses belong the
clausal class DKC [61, 57] corresponding to the decidable class DK. Inspecting
the formulae in Figure 5, one can see that the same is true for the clauses we
obtain from the axioms D , T , B , and their combinations.

Theorem 16 ([57]). Let Δ be any combination of the axiom schemas D, T,
and B. Let ϕ be a modal formula and let N be the clausal form of πsf (ϕ, ε) ∧
SF(Δ). Then N belongs to the clausal class DKC.

By contrast, the first-order formulae and clauses corresponding to the axiom
schemas 4 and 5 , and their combination with other axiom schemas do not belong
to DKC. In [57] two decidable clausal classes are defined, the class of small SF-
clauses and the class of SF-clauses.

368 R.A. Schmidt and U. Hustadt

Theorem 17 ([57]). Let Δ be the axiom schema 5, or its combination with 4 ,
D, and T. Let ϕ be a modal formula in negation normal form and N be the
clausal form of πsf (ϕ, ε) ∧ SF(Δ). Then N consists only of small SF-clauses.

Theorem 18 ([57]). Let Δ be any combination of the axiom schemas 4 , D, and
T. Let ϕ be a modal formula and N be the clausal form of πsf (ϕ, ε) ∧ SF(Δ).
Then N consists only of SF-clauses.

5.4 Optimised Functional Translation

The target logics of the optimised functional translation is a class of path logics
of which the basic path logic is the weakest logic. Basic path logic corresponds
to the basic modal logics which in this case are K(m) and K (D)(m), that is, K(m)

adjoined with serial modalities. Basic path logic is a fragment of the monadic
Bernays-Schönfinkel class with one designated two-place function symbol and a
constant. It is possible to prove that the monadic class with one binary function
symbol is undecidable. Still, if we consider translations obtained via the polyadic
optimised functional translation π′

of , then we can observe the following.

Theorem 19. The polyadic optimised functional translation π′
of of any modal

formula is equivalent to a formula in the Bernays-Schönfinkel class.

In fact, the target logic of the π′
of variation of the optimised functional trans-

lation for K(m) (possibly adjoined with serial modalities) is a fragment of the
Bernays-Schönfinkel class (and predicate symbols are not limited to monadic
predicate symbols). Formulae in the π′

of fragment of K (D)(m) and formulae
in path logics satisfy an interesting syntactic restriction called prefix-stability.
Prefix stability says that every variable in πof (ϕ, x:SW) (and π′

of (ϕ, ε, 0, ε)) has
a unique prefix. This property is due to a characteristic ordering of variables
in the path terms determined by the structure of modal formulae and is a re-
flection of the property of modal logic that the truth of a formula in a world
depends only on the truth of subformula in the world and does not depend on
predecessor worlds. Prefix stability is fundamental to the optimised functional
translation, because it provides justification for the non-standard exchange of
quantifiers (step (ii) in the transformation described on page 359). As a con-
sequence the clausal classes corresponding to path logics have two important
properties: (i) their input clauses do not contain any Skolem terms other than
Skolem constants, and (ii) every occurrence of a variable or constant in an input
clause has a unique prefix. These properties are preserved by inference steps in
essentially any resolution procedure for those path logics for which the back-
ground theory does not include equational literals [102, 103].

Although we are focussing in this section on the optimised functional transla-
tion there is an interesting observation worth making about the (non-optimised)
functional translation. Suppose we take the variation of the functional transla-
tion, used in the definition of π′

of , where the paths are encoded by k-ary argu-
ment sequences rather than path terms. We refer to it here as the π′

f translation.

First-Order Resolution Methods for Modal Logics 369

It can be shown that the π′
f translation of any modal formula is a fluted for-

mula [66, 102]. It therefore turns out that, besides dyadic fluted logic, there
is another natural fragment of fluted logic relevant to modal logic. This is the
functional modal fragment, a logic defined by Herzig in [53] with the original
name ‘ordered first-order logic’. This fragment is the target logic of the men-
tioned π′

f variation of the functional translation mapping for local satisfiability
in K (D)(m). As a consequence all of the properties of K (D)(m) carry over to
the functional modal fragment, in particular also the applicability of the non-
standard quantifier exchange operator which is used in the optimised functional
translation mapping. With this operator the functional modal fragment can be
mapped into the Bernays-Schönfinkel class [60]. The transformed fragment coin-
cides with the target logic of the optimised functional translation given by π′

of .

5.5 Axiomatic Translation

A drawback of the guarded fragments when using the relational translation
is that the correspondence properties such as transitivity, Euclideanness and
functionality are not guarded formulae, and the guarded fragment extended
with transitivity of binary predicates is undecidable [50] (but the monadic two-
variable guarded fragment with transitive guards is decidable as shown by Gan-
zinger, Meyer, and Veanes [40]). Therefore a number of common modal logics
apparently lie beyond the scope of the guarded fragment. Similar observations
can be made for the other solvable fragments. Are important logics like S4 , S5 ,
KD45 therefore outside the reach of decision procedures based on translation
methods? The answer is no, the situation changes when using the axiomatic
translation instead of the relational translation.

Theorem 20 ([111]). For each of the modal logics K4 , KT, KD, KB, Kalt1 ,
KT4 , KTB, KDB, KD4, K5 , K4B, KT4B, or their fusions, we have: (i) The
axiomatic translation of any modal formula is equivalent to a GF 2 formula.
(ii) The axiomatic translation of any modal formula can be linearly reduced to a
set of DL∗ clauses. (iii) The axiomatic translation of any modal formula can be
linearly reduced to the modal fragment.

Thus, the axiomatic translation always reduces (local and global satisfiability)
problems (with non-logical axioms) in any of the traditional modal logics, for
which completeness of the axiomatic translation can be proved, to GF 2 as well
as DL∗ and there are standard methods to reduce them to the modal fragment.
This is the case for all the logics given in Theorem 11. The mixed axiomatic and
relational translation, where some axioms are represented by correspondence
properties while others are represented by an internalisation of axioms, might of
course cross the boundaries of GF 2 and/or DL∗; this depends on whether the
correspondence properties can be expressed in GF 2 (DL∗) or not.

5.6 Summary

We have seen that the basic modal logic K(m) can be embedded in one way or an-
other into all the important decidable first-order fragments. This is summarised

370 R.A. Schmidt and U. Hustadt

GF ∃∗∀∗ FL FL(�) DK GC DL∗ DKC

[∃∗∀∃∗,∀∗] • • •
∃∗∀2∃∗ • • •
FO2 • • • •
πr fragment for K(m) (1) • • • • • • •
πr fragment for K(m)(¬,∧) (2) • • • • •
π′

f fragment for K(m) (3) • •
π′

of fragment for K(m) (4) •
πsf fragment for K(m) •

(1) πr fragment for K(m)

(2) πr fragment for K(m)(¬,∧)
(3) π′

f fragment for K(m)

(4) π′
of fragment for K(m)

∃∗∀∗

DK

GF

FL

FL(�)

34 1
2

Fig. 8. Modal fragments, decidable first-order fragments and clausal classes

GF FO2 DK FL FL(�) GC DL∗ DKC

K(m)(∧,∨,� ,c pos) • • • • • • • •
K(m)(∧,∨,� , ;pos ,c pos) • • • •
K(m)(∧,∨,� ,c) • • • • •
K(m)(∧,∨,� , ;pos ,c) • • •
K(m)(¬,∧) • • • • • •
K(m)(¬,∧,� ,c) • • • • •
K(m)(¬,∧,� , ;pos ,c) • • •

Fig. 9. Dynamic modal logics and decidable fragments

in Figure 8. A dot means that the fragment associated with the row is subsumed
by the fragment or clausal class associated with the column. Figures 9 and 10
summarise the relationship between dynamic modal logics and decidable first-
order fragments with and without equality into which they can be embedded by
the relational translation method.

6 Decision Procedures

From the previous section a number of decidability results can be formulated for
modal logics as consequences of the decidability of the first-order fragments into
which they can be reduced. We can also use the decision procedures available
for these fragments as decision procedures for the modal logics they incorporate.

First-Order Resolution Methods for Modal Logics 371

GF (≈) FO2(≈) FL(�,≈) GC (≈)

K(m)(∧,∨,� , id, ?) • • • •
K(m)(∧,∨,� , ;pos , id, ?) •
K(m)(∧,∨,� , id,c) • •
K(m)(¬,∧,� , id,c) • •

Fig. 10. Dynamic modal logics and decidable fragments with equality

In this section we review results that have been obtained with different instances
of the resolution framework.

Before we go on we want to note that most modern first-order logic theorem
provers are implementations based on the Bachmair-Ganzinger framework of
resolution. All of the ordering and selection-based refinements described in this
section and subsequent sections are actually implemented in theorem provers
such as (m)spass, vampire and E. Consequently, these provers immediately
provide practical decision procedures for all the modal logics and solvable frag-
ments covered by the decidability results stated in this section. Since the ma-
jority of the refinements are specified in general ways and can be realised in a
number of ways also outside the framework of Bachmair-Ganzinger, it is possible
to use resolution provers as decision procedures as well. Sometimes some mod-
est implementation effort is necessary for implementing the required translation
mapping, but many of translation mappings are already implemented in the the-
orem prover mspass. mspass [64, 104] has served as the experimental platform
for much of our research. It is an extension of spass and differs from spass in
that it accepts also formulae as input from (traditional and dynamic) modal log-
ics, description logic and relational logic. We have also extended the converter
of first-order logic formulae to clausal form. mspass supports non-logical axioms
and global satisfiability/validity. In addition, it is possible to specify additional
frame properties, or other first-order restrictions on the translated formulae. A
converter to TPTP syntax is also available so that other first-order theorem
provers can be used.

6.1 Unrefined Resolution

First we consider whether decision procedures can be based on unrefined reso-
lution, that is, there is no ordering restriction and the selection function S is
empty.

Using the Optimised Functional Translation. The basic unrefined resolution cal-
culus R plus condensing provides a decision procedure for propositional logic,
but it does not decide the standard (relational) modal fragment of the basic
modal logic [102, 103]. The latter may appear surprising given the great variety
of other proof methods (tableaux, sequent systems, natural deduction) that de-
cide the modal logic K(m). However, on the one hand, modal tableau decision
procedures can be regarded as refinements of resolution that are decision proce-
dures for K(m) (see Section 7). On the other hand, it has been shown that the

372 R.A. Schmidt and U. Hustadt

basic modal logics can be decided by unrefined resolution when the optimised
functional translation, or essentially equivalent translations, are used.

Theorem 21 ([102, 103]). R with condensing is a decision procedure for (i) the
clausal form of the basic path logic, and (ii) the clausal form of the πof ′ fragment
for K (D)(m).

This result can be formulated as giving general criteria under which unrefined
resolution with condensing, theory unification and theory normalisation provides
a decision procedure for path logics extended with equational theories and con-
sequences for modal logics that meet these conditions; see [102, 103] for details.
These results are interesting both from a theoretical and practical perspective
because Theorem 21 says that no special refinements are required and, in fact:

Theorem 22 ([102, 103]). Any refinement of resolution with condensing is a
decision procedure for basic path clauses and the local satisfiability of problems
in K (D)(m).

Corollary 3. For any admissible ordering and any selection function any res-
olution procedure based on Rred or Rred

sp with condensing are decision procedures
for basic path clauses and local satisfiability problems in K (D)(m).

Since condensing is explicitly present in many resolution provers, or if not, can
be simulated by factoring and subsumption deletion, which are present in all
state-of-the-art resolution provers, Theorem 22 means that any complete and
fair use of a first-order resolution prover is a decision procedure for K (D)(m),

when the (monadic or polyadic) optimised functional translation is used. This
gives essentially complete freedom in the way the theorem provers can be used for
these logics without sacrificing guaranteed (normal) termination. In other words,
unrestricted use and fine-tuning of ordering restrictions, selection functions and
redundancy criteria is possible. This implies that, for example, (m)spass, vam-
pire and E are decision procedures for the translation of K (D)(m). What about
tableaux-based theorem provers for first-order logic? Since basic path logic is a
fragment of the Bernays-Schönfinkel class and this class can be decided by almost
all tableaux provers, it follows that these tableaux-based theorem provers (and
instantiation-based methods, for example, dctp [117], first-order DPLL [12], the
model evolution approach [16], the inst-gen approach [39]) are also decision
procedures for K (D)(m).

6.2 Ordered Resolution

Using the Semi-functional Translation. According to Theorem 17 the clausal
form of the semi-functional translation of a formula ϕ in K5 and its extensions
by an arbitrary combination of the axiom schemas 4 , D , and T is a set of
small SF-clauses. The satisfiability of a set of small SF-clauses can be decided
by ordered resolution based on a general class of atom orderings [57]. Namely,
let �COV be any atom ordering compatible with the multiset extension �s

mul of
the strict subterm ordering �s on the complexity measure cL on literals, where
for any literal L, cL is the multiset of arguments of L.

First-Order Resolution Methods for Modal Logics 373

Theorem 23 ([57]). Let Δ be a combination of the axiom schema 4, D, and T
plus the axiom schema 5. Let ϕ be a modal formula in negation normal form
and let N be the clausal form of πsf (ϕ, ε) ∧ SF(Δ). Any derivation from N by
ordered resolution and ordered factoring based on the ordering �COV terminates.

In analogy, according to Theorem 18 the clausal form of the semi-functional
translation of a formula ϕ in K extended by an arbitrary combination of the
axiom schemas 4 , D , and T is a set of SF-clauses. In contrast to the class of
small SF-clauses, we need a selection function in addition to an atom ordering
to ensure termination of derivations from sets of SF-clauses. We also need to be
more restrictive concerning the atom ordering that we are allowed to use.

Let � be any total reduction ordering on ground terms in which the constant ε
is the minimal term. For every ground literal L, let c′L = (maxL, arL, polL, sL)
where (i) maxL is the maximal argument of L with respect to �, (ii) arL is the
arity of L, (iii) polL is 1, if L is negative, and 0 otherwise, and (iv) sL is 1,
if L is a dyadic literal ¬r(s, t) and s � t, and 0 otherwise, The ordering �c

over the complexity measure is then the lexicographic combination of �, >N,
>N, and >N. For example, if s � t, then the complexity of r(s, t) is (s, 2, 0, 1),
whereas the complexity of ¬r(t, s) is (s, 2, 1, 0). Observe that the maximal term
is the main criterion, and a negative literal is considered more complex than a
positive literal with the same maximal term. Note that �c represents a strict
partial and well-founded ordering on ground literals. Any total and well-founded
extension (again denoted by �) of �c is an admissible ordering in the sense
of [7]. Let �ML be any such ordering. The ordering �ML is lifted to non-ground
expressions in the standard manner.

In addition, we make use of a selection function SML which is defined as
follows. If a ground clause C contains a negative dyadic literal of the form ¬r(s, t)
such that s is an occurrence of a �-maximal term in C, then S selects one such
literal. No other literals are selected by SML. A literal L is selected in a non-
ground clause C, Lσ is selected in Cσ, for all ground instances, by a substitution
σ, of an inference with Cσ by ordered resolution or ordered factoring such that
the ordering constraints are satisfied.

Theorem 24 ([57]). Let Δ be any combination of the axiom schemas 4 , D,
and T. Let ϕ be a modal formula in negation normal form and let N be the
clausal form of πsf (ϕ, ε) ∧ SF(Δ). Any derivation from N by ordered resolution
and ordered factoring with selection based on the ordering �ML and the selection
function SML terminates.

Using the Relational Translation. We have seen that using the relational trans-
lation method many of the modal logics we consider reduce to the two decidable
clausal classes, GC (≈) and DL∗.

Let >d be an ordering on terms defined as follows: s >d t if s is deeper
than t, and every variable that occurs in t, occurs deeper in s. This ordering is
lifted to atoms using a multiset extension. Let S be the selection function which
selects all guard literals in each non-ground guarded clause. Let R�,S denote
any resolution procedure with condensing based on an ordering � compatible

374 R.A. Schmidt and U. Hustadt

Axiom Correspondence property

Det [β]p → 〈γ〉p ∀x∃y (Rβ(x, y) ∧ Rγ(x, y))
Sym 〈α〉[β]p → p ∀x∀y (Rα(x, y) → Rβ(y, x))
Gr [β]p → [α]p ∀x∀y (Rα(x, y) → Rβ(x, y))
Conf 〈α〉[β]p → 〈γ〉p ∀x∀y (Rα(x, y) → ∃z (Rγ(x, z) ∧ Rβ(y, z)))

Fig. 11. Modal axioms and their relational correspondence properties

with >d, and the selection function S. In S�,S the rules are those of R�,S , and
for equality, ordered paramodulation is added.

Theorem 25 (Ganzinger and De Nivelle [37]). (i) R�,S is a decision pro-
cedure for GC . (ii) S�,S is a decision procedure for GC (≈).

Corollary 4. Let L be a dynamic modal logic in the sublattice bounded by K(m)

and K(m)(∧,∨,� , ;pos , id, ?,c pos), let ϕ be an L-formula, and let Σ be a finite
set of relational properties expressible in GC (≈). Then, (i) there is a linear
transformation of Σ ∧ ∃xπr(ϕ, x) into a set N of GC (≈) clauses, (ii) any
derivation from N in S�,S terminates, and (iii) ϕ is unsatisfiable in L iff there
is a refutation of N in S�,S. (Analogously, for global satisfiability and non-logical
axioms.)

The clausal class DL∗ can be decided by standard ordering refinements of
resolution based on the ordering >d, without the need for a specific selection
function. In particular, let R� denote any resolution procedure with condensing
based on an ordering � compatible with >d, and the empty selection function.

Theorem 26 ([24, 63]). R� is a decision procedure for DL∗.

This theorem has the following consequences for modal logics [109].

Corollary 5. Let L be a dynamic modal logic in the sublattice bounded by K(m)

and K(m)(¬,∧,� , ;pos ,c), and let ϕ be an L-formula, let Σ be a finite set of
relational properties expressible in DL∗. Then, (i) there is a linear transformation
of Σ ∧ ∃xπr(ϕ, x) into a set N of DL∗ clauses, (ii) any derivation from N in R�

terminates, and (iii) ϕ is unsatisfiable in L iff there is a refutation of N in R�.
(Analogously, for global satisfiability and non-logical axioms.)

Corollary 6. Let Δ be any finite set of instances of formulae in Figure 11,
where α is a relational formula built from relational variables and disjunction
only, while β and γ denote either a relational variable or a relational formula
built from relational variables using disjunction and composition. Then, (i) the
satisfiability problem in K(m)Δ is decidable, and (ii) it can be decided by re-

duction to DL∗ (via the relational translation) and R�. (Analogously, for global
satisfiability and non-logical axioms.)

First-Order Resolution Methods for Modal Logics 375

The above results are not stated in the most general form possible, because in
fact a slight extension of DL∗ can be decided by resolution (cf. [109]). However
Corollary 5 cannot be strengthened further by removing the restriction on occur-
rences of composition. From the undecidability result of the equational theory
of Boolean algebras with composition in [72] it follows that allowing arbitrary
occurrences of composition leads to undecidability.

Theorem 27. The satisfiability problem in K(m)(¬,∧, ;) and every logic in the
family of dynamic modal logics extending K(m)(¬,∧, ;) is undecidable.

Using the Axiomatic Translation. Some of the common traditional modal logics
which escape embedding into decidable fragments by the other translation meth-
ods can be decided when using the axiomatic translation method. The results
stated here have been formulated and proved for local satisfiability without any
non-logical axioms in [111], but are also true for global satisfiability and non-
logical axioms.

Theorem 28 ([111]). Let L be a (sound and) complete modal logic K(m)Δ.
Then, L is decidable, whenever the following conditions are satisfied. (i) Δ is
finite. (ii) For any L-formula ϕ, there are effectively computable sets XA for each
A ∈ Δ such that, if the axiomatic translation of ϕ for L relative to {XA | A ∈ Δ}
is first-order satisfiable, then ϕ is satisfiable in L.

Corollary 7 ([111]). Each of the modal logics K4 , KT, KD, KB, Kalt1 , KT4 ,
KTB, KDB, KD4 , K5, K4B, KT4B, and their fusions are decidable.

The decidability of the logics K4κ, K5κ and Kaltκ1 ,κ2

1 can also be shown using
the axiomatic translation method.

Theorem 29. Both R� and R�,S decide the axiomatic translation of satisfia-
bility problems in all modal logics satisfying the conditions of Theorem 28.

Theorem 30 ([111]). Let L be a (sound and) complete propositional modal
logic K(m)Δ and suppose Δ is partitioned into two sets Δ′ and Δ′′. Then, L is
decidable, whenever the following conditions are satisfied. (i) Δ is finite. (ii) For
each axiom A in Δ′, Corr(A) is expressible in DL∗. (iii) For any L-formula ϕ,
there are effectively computable sets XA for each axiom A in Δ′′ such that, if ψ
is the axiomatic translation of ϕ relative to {XA | A ∈ Δ′′} then Corr(Δ′) ∧ ψ
is satisfiable in first-order logic then ϕ is satisfiable in L.

Theorem 31 ([111]). R� decides the encoding of satisfiability problems in all
modal logics satisfying the conditions of Theorem 30.

For example, R� decides the combined axiomatic-relational translation of prob-
lems in the logics KT4 , KDB and KD4 .

The ideas and principles underlying the axiomatic translation are quite general
and are applicable not just to traditional modal logics. For example, the principle
can be used to obtain decision procedures for the monadic two-variable guarded
fragment with transitivity studied in Ganzinger, Meyer and Veanes [40].

376 R.A. Schmidt and U. Hustadt

6.3 Selection-Based Resolution

The logic K(m)(∧,∨,� ,c pos), and dynamic modal logics below it, have the prop-
erty that they can be decided by a refinement of resolution that is defined solely
by a selection function of negative literals, and as a particular case hyperreso-
lution. The results stated here are (in some cases slightly strengthened results)
from [24, 63]. Let Htaut

sp denote the (unordered) hyperresolution calculus Hred
sp

with splitting and at least tautology deletion. All results hold also for positive
resolution and ordered hyperresolution OHred

sp (the latter is more restrictive and
means that the search space is smaller).

Theorem 32. Let L be a dynamic modal logic in the sublattice bounded by K(m)

and K(m)(∧,∨,� ,c pos). Let ϕ be any L-formula. Then, ϕ can be reduced via the

relational translation into a clause set N such that, (i) any Htaut
sp -derivation

from N terminates, and (ii) ϕ is unsatisfiable in L iff there is a refutation of N
by Htaut

sp .

Theorem 33. Let L be a dynamic modal logic in the sublattice bounded by K(m)

and K(m)(∧,∨,� ,c pos). Let Σ be a finite Htaut
sp -saturated set of clauses consisting

of two kinds of split components.

1. Clauses with at most two free variables, which are built from finitely many
binary predicate symbols Rj, no function symbols, and containing at least one
guard literal (that is, this literal is negative and includes all the variables of
the clause).

2. Clauses built from one variable, finitely many function symbols (including
constants), and finitely many binary predicate symbols Rj, with the restric-
tion that (a) the argument multisets of all non-ground literals coincide, and
(b) each literal which contains a constant is ground.

Suppose ϕ is an L-formula. Then, ϕ can be reduced via the relational translation
into a clause set N such that, (i) any Htaut

sp -derivation from N ∪Σ terminates,
and (ii) ϕ is unsatisfiable in L with respect to Σ iff there is a refutation of N ∪Σ
by Htaut

sp .

Ordered resolution and hyperresolution are refinements of resolution which
traverse the search space in different manners. Ordering refinements are designed
to prevent term depth growth, whereas in general in hyperresolution derivations
terms get larger for translated modal formulae. An important technical problem
therefore is to find criteria and mechanisms for preventing unbounded growth
of terms. Our studies in [45, 46] have shown that, in general, terms do not grow
indefinitely and hyperresolution procedures terminate when the clauses satisfy a
certain acyclic dependency relation. This acyclicity condition is satisfied for the
logics for which positive results are stated above. In the absence of this property
hyperresolution (Htaut

sp or OHred
sp) is in general not a decision procedure for (the

relational translation of) modal logics. What would be required is an additional
mechanism for detecting repetitions. In many cases the use of a blocking deduc-
tion rule [62] combined with equality reasoning suffices. At certain points during

First-Order Resolution Methods for Modal Logics 377

Relational property GC DL∗ Thm 33

∀x∀y (Rα(x, y) → Rβ(x, y)) • • •
∀x∀y (Rα(x, y) → Rγ(x, y)) • •
∀x∃yRβ(x, y) • •
∀x∃yRδ(x, y) •
∃x∃yRδ(x, y) • •
∃x∃yRε(x, y) • • •

α is built from relational variables and ∧, ∨, �

β is built from relational variables and ∧, ∨, �, ⊥
γ is built from relational variables and ∧, ∨, �, ; , c, �, �, ⊥
δ is built from relational variables and ∧, ∨, �, ; , c, �, �

or ¬, ∧, ∨, �, c, �, �
ε is built from relational variables and ∧, ∨, �, ;

Fig. 12. Categorisation of some relational properties

a derivation this rule adds equations t1 ≈ t2 between ground terms t1 and t2 to
the clause set, rendering inferences on literals involving the greater of the two
terms redundant. The methods introduced in [14] provide related, alternative
solutions.

6.4 Categorisation of Relational Properties

In Figure 12, we give a non-exhaustive categorisation of the expressibility of
some relational frame properties in the mentioned classes to give the reader a
glimpse into the scope of the results stated in this section.

7 Relationship to Tableaux

It is possible to show that many forms of modal tableau calculi can be linearly
simulated with standard techniques in resolution-based theorem proving. For
example, in [65] we give details of how to simulate the single-step prefixed tableau
calculi of [78] using the hyperresolution calculus Htaut

sp (see also [24, 54, 109]).
Simulation results of tableau procedures for description logics can be found in
[62, 63], see also [33].

From the proofs of these simulation results the view emerges that labelled
semantic tableau algorithms are just hyperresolution with on-the-fly translation
to first-order logic. The same can be said for many tableau algorithms without
the use of labels and without explicit representation of accessibility, but this is
less obvious, cf. [54]. The following question arises as a consequence: Is it possible
to develop new tableau inference calculi within the resolution framework? The
answer is: yes. In [24] we show how the relationship between hyperresolution
and tableau can be exploited for systematically developing sound, complete and
terminating tableau procedures for dynamic modal logics. The tableau calculus

378 R.A. Schmidt and U. Hustadt

(⊥)
s : ψ, s : ¬ψ

s : ⊥ (∧) s : ψ ∧ φ

s : ψ, s : φ
(∨) s : ψ ∨ φ

s : ψ | s : φ

(�)
s : 〈α〉ψ

(s, t) : α, t : ψ
with t new to the branch (�)

(s, t) : α, s : [α]ψ

t : ψ

(�)
(s, t) : α�

(t, s) : α
(∧r)

(s, t) : α ∧ β

(s, t) : α, (s, t) : β
(∨r)

(s, t) : α ∨ β

(s, t) : α | (s, t) : β

(�I)
(t, s) : α

(s, t) : α� (∧r
I)

(s, t) : α, (s, t) : β

(s, t) : α ∧ β
(∨r

I)
(s, t) : α

(s, t) : α ∨ β

Fig. 13. Tableau calculus for K(m)(∧,∨,�). For the rules (�I), (∧r
I) and (∨r

I) the side
conditions are that the relational formulae in the denominator, that is, α�, α ∧ β or
α ∨ β, occur as subformulae of the relational formula γ of a box formula s : [γ]ψ on
the current branch. It is assumed that in a derivation no rule is applied twice to the
same instance of the nominator.

extracted for K(m)(∧,∨,�) is defined in Figure 13 (the formulae are w.lo.g. as-
sumed to be in negation normal form). It follows from Theorem 32 that:

Theorem 34 ([24]). The tableau calculus defined in Figure 13 is sound, com-
plete and terminating for local satisfiability in K(m)(∧,∨,�).

The calculus in Figure 13 is unusual in that it requires the rules for the
relational operators to be applied in two directions. Thus, the calculus comprises
both elimination rules and introduction rules. Consequently the calculus can also
be viewed as a restricted form of natural deduction calculus. While introduction
rules could jeopardise decidability, the side conditions specify restrictions which
imply that any procedure based on this calculus is a decision procedure. This
means in particular that blocking mechanisms are not required. To our knowledge
the calculus in Figure 13 was the first non-resolution calculus to be defined for
local satisfiability in K(m)(∧,∨,�). Standard methods can be used to extend this
calculus for testing global satisfiability and handling non-logical axioms.

It is actually possible to derive sound and complete tableau-like calculi via any
of the translation methods we have discussed. When Htaut

sp is a decision procedure
for the appropriate clause forms then decidability follows also immediately.

Let us take the axiomatic translation. Figure 14 gives examples of tableau
calculi that can be more or less immediately read off from the combination of the
axiomatic translation and hyperresolution [109, 111]. It follows from Corollary 7
that:

Theorem 35 ([111]). The tableau calculi defined in Figure 14 are sound and
complete for local satisfiability in the logics specified in the figure.

Similarly sound and complete tableau calculi can be derived for the logics: K4κ,
Kaltκ1 ,κ2

1 , K5κ, K4B and KT4B . Again, standard methods can be used to ex-
tend these calculi for testing global satisfiability and handling non-logical axioms.

First-Order Resolution Methods for Modal Logics 379

(⊥)
s : ψ, s : ¬ψ

s : ⊥ (¬) s : ¬¬ψ
s : ψ

(∧) s : ψ ∧ φ

s : ψ, s : φ
(¬∧) s : ¬(ψ ∧ φ)

s : ∼ψ | s : ∼φ

(¬�) s : ¬�ψ
(s, t) : R, t : ∼ψ

where t is new to the branch (�)
(s, t) : R, s : �ψ

t : ψ

(T)
s : �ψ

s : ψ
(D)

s : �ψ

s : ¬�¬ψ (B)
(s, t) : R, t : �ψ

s : ψ

(4)
s : �ψ, (s, t) : R

t : �ψ
(alt1)

s : ¬�ψ
s : �∼ψ

K : (K) KD : (K), (D) KT : (K), (T)
KB : (K), (B) K4 : (K), (4) Kalt1 : (K), (alt1)
KTB : (K), (T), (B) KDB : (K), (D), (B) KD4 : (K), (D), (4)
S4 : (K), (T), (4)

Fig. 14. Tableau calculi obtained via the axiomatic translation. It is assumed that in
a derivation no rule is applied twice to the same instance of the nominator.

Interestingly the calculi in Figure 14 either coincide with or are equivalent
to labelled semantic tableau calculi developed in [21, 48, 78] for example. This
means that our implementation of the axiomatic translation and any first-order
logic theorem prover supporting hyperresolution can be used as a tableau prover
for these logics. Moreover, mspass can essentially be used as a tableau theorem
prover for K(m)(∧,∨,�) by just choosing the appropriate combination of flag

settings that simulate the tableau inference steps for K(m)(∧,∨,�). This shows
that in resolution, not only do we have a theoretical framework for studying and
developing tableau methods, but also that we can get fully operational tableau
provers essentially for free.

8 Automated Model Generation

A problem closely related to satisfiability problems is the problem of generating
(counter-)models. Hyperresolution can be used for constructing Herbrand models
(and representations of Herbrand models) [33]. A Herbrand interpretation is a set
of ground atoms. By definition a ground atom A is true in an interpretation H
iff A ∈ H and it is false in H iff A
∈ H . The definition extends as expected to
(non-)ground clauses, and sets of clauses.

The results below are consequences of properties of classes of range restricted
clause sets. For range restricted clause sets hyperresolution procedures implicitly
generate Herbrand models [20, 44, 46]. For a class of solvable range restricted
clauses, if hyperresolution terminates on a clause set N without having produced
a refutation then a model can be extracted from any complete, open branch in
the derivation. The model is given by the set of ground unit clauses in the limit

380 R.A. Schmidt and U. Hustadt

of the branch. In general the generated Herbrand model can be infinite, but
using Theorems 32 and 33 we get (cf. [24, 65]):

Theorem 36. The combination of the relational translation and Htaut
sp can be

used as a Herbrand model generator for the local satisfiability in any dynamic
modal logic in the ideal generated by K(m)(∧,∨,�).

Theorem 37. Let L and Σ be as in Theorem 33. For any modal formula lo-
cally satisfiable in L with respect to Σ a finite modal model can be effectively
constructed on the basis of hyperresolution and the relational translation.

This implies the finite model property for the relevant modal logics. By the
simulation results in the previous section these results extend also to the corre-
sponding tableau calculi.

Corollary 8 ([24]). If L is a dynamic modal logic in the ideal generated by
K(m)(∧,∨,�), and ϕ is locally satisfiable in L then a finite modal model can
be effectively constructed on the basis of the tableau calculus for L given by the
appropriate subset of inference rules in Figure 13.

With the exception of non-serial and non-functional modal logics it can be
inferred from the completeness proofs in [111] that the model constructed by
hyperresolution (with a blocking deduction rule) for the axiomatic encoding of
a modal formula ϕ is a tree model. This model can be easily mapped into a
corresponding modal (tree) model. In general this model is however not a model
of the considered formula ϕ, but can be viewed as a skeleton model which can be
completed with respect to the appropriate correspondence properties to a model
of ϕ. Thus:

Theorem 38 ([111]). Let L be any of following logics or their fusions: K4 ,
KT, KB, KT4 , KTB, , K5, K4B, KT4B. If a modal formula ϕ is L-satisfiable
then (i) it is satisfiable in a model with at most 2O(|ϕ|) elements, that is, L has
the small model property, and (ii) resolution can be used to construct an L-model
for ϕ.

The result holds also for the logics K4κ and K5κ.
In general Herbrand models are not unique and can be large. Methods for gen-

erating ‘small’ Herbrand models are therefore of interest. Various approaches to
generating minimal Herbrand models with hyperresolution are known
[13, 20, 51, 81]. An interpretation H is a minimal Herbrand model for a set
N of clauses iff H is a Herbrand model of N and for no Herbrand model H ′

of N , H ′ ⊂ H holds. With a moderate extension of hyperresolution Htaut
sp it is

possible to guarantee the generation of all and only minimal Herbrand models
for any modal and description logics reducible to a decidable class of range re-
stricted clauses. This follows from [20] and investigations of a fragment of the
guarded fragment and the class BU [44, 45]. An alternative approach proposed
in [44, 45] uses a variant of a local minimality test developed for propositional
logic.

First-Order Resolution Methods for Modal Logics 381

It is not difficult to see that model generation procedures and the mentioned
minimal Herbrand model generation procedures can be developed by using hy-
perresolution, or ordered resolution with maximal selection, and any of the other
translation methods. Because of the close connection to tableau, corresponding
tableau procedures can be defined and all results carry over to this setting.

9 Automated Correspondence Theory

Modal correspondence theory is concerned with the study of the characteristic
properties of Kripke frames in the semantics of traditional modal logics, see [119]
and also [17, 71] for example. One of the most general results in correspondence
theory is Sahlqvist’s theorem [101] where two facts are proved for a large, syn-
tactically defined class of modal formulae, now called Sahlqvist formulae: (i) All
Sahlqvist formulae define first-order conditions on (standard relational) frames
and these properties can be effectively computed (correspondence result), and
(ii) all Sahlqvist formulae are canonical, that is, valid in their canonical (rela-
tional) frames and hence axiomatise completely the classes of frames satisfy-
ing the corresponding first-order properties (completeness result). Sahlqvist and
others have developed a variety of methods for reducing individual axioms to
relational first-order correspondence properties [71, 101, 119]. While these meth-
ods are specific to modal correspondence theory (in the form described), there
are also two generalised methods that can be used for computing correspondence
properties from modal axioms and have been automated: scan [31, 35, 90] and
dls [29, 30, 118]. Both these methods provide algorithms for eliminating second-
order quantifiers from second-order formulae. Interestingly both algorithms are
based on a form of resolution. Here we focus just on the scan algorithm, but
more details of dls and other quantifier elimination algorithms can be found
in [29, 36, 86, 118].

Computing the first-order equivalents of modal formulae (if they exists)
amounts to the elimination of universal or existential monadic second-order
quantifiers. For example, if we are interested in establishing the relational frame
properties corresponding to a modal axiom ϕ, then we either have to eliminate
the universal monadic second-order quantifiers from ∀Qpi∀xπr(ϕ, x), or, equiv-
alently, the existential monadic second-order quantifiers from

Ψ = ∃Qpi∃xπr(¬ϕ, x).

There can be no algorithm which is guaranteed to find a first-order equivalent
formula if there exists one, that is, no algorithm can be complete in general,
but still scan (and dls) provide a partial solution to the quantifier elimina-
tion problem. scan basically uses a special kind of constraint (or hierarchical)
first-order resolution to generate logical consequences of the initial formula Ψ ,
eventually keeping from the resulting set of clauses only those in which none of
the second-order variables occur. In general, termination cannot be guaranteed.
If the saturation process terminates then scan attempts to restore first-order
quantifiers from the Skolem functions by reversing Skolemisation. If the reversal

382 R.A. Schmidt and U. Hustadt

of Skolemisation succeeds then scan produces an equivalent first-order formula.
This last step is not always possible, and in this case scan outputs an equivalent
formula involving second-order Henkin quantifiers.

Experiences with scan are very positive. For example, it can compute the
frame correspondence properties for very many well-known axioms such as T ,
4 , 5 , and the others from Figure 3. In fact, recent work has shown:

Theorem 39 ([47]). The scan algorithm is complete for the class of Sahlqvist
formulae, in the sense that, when given a Sahlqvist formula, it successfully com-
putes an equivalent first-order formula for it.

Because of their generality the applicability of algorithms such as scan and
dls is not limited to correspondence theory with respect to the classical rela-
tional semantics. These algorithms, and in particular scan, which has a dedi-
cated interface for modal logic, have proved useful in the investigations of non-
standard translation methods, see for example [84, 89, 102], but the algorithms
have also other numerous other applications, see [36].

10 Conclusion

Because we are interested in the big picture brought to view by the results and
methods surveyed in this paper, and also due to lack of space and time, we have
omitted many details and could not cover all important topics in the area. We
therefore want to point the interested reader to a selected list of survey papers
and books: [32, 88, 89, 91] on various translation approaches for non-classical
logics, [32] surveys also other methods including resolution methods; [36, 86] on
second-order quantifier elimination; [54] on resolution and tableau approaches to
modal logic; [66] on decidable first-order fragments relevant to description and
modal logics; and [8, 9, 82] on the modern framework of resolution.

Let us conclude this survey with some remarks on the contributions of Harald
Ganzinger to automated reasoning in modal logic. His direct contributions to
modal logic include decision procedures for transitive modal logics based on the
ordered chaining calculus [38] (cf. also [41]), and a generalisation of the scan

algorithm of [35] as an instance of hierarchical theorem proving for first-order
logic [11]. Also relevant is his work on solvable first-order fragments [10], and
especially the work on the solvability of the guarded fragment and extensions
with transitivity [37, 40]. For us the development and presentation of a uniform
framework of resolution (and ultimately automated reasoning), together with
Leo Bachmair [7–9] and Uwe Waldmann [10], was, above anything, the most im-
portant contribution of Harald Ganzinger. Within this framework it is actually
possible to obtain more general results than presented here, and the applica-
tion and potential of the underlying principles and methods clearly go beyond
just modal logics and related logics. The underlying principles and methods are
quite general—universal even, as is more than amply demonstrated by past and
present research in the area of automated reasoning.

First-Order Resolution Methods for Modal Logics 383

About This Paper/Postscript

For us there was no doubt that the topic of this paper should be about automated
reasoning and specifically resolution. We could have made this an overview pa-
per of automated reasoning and resolution for solvable first-order classes, for
description logics or for modal logics. We decided on an overview of automated
reasoning and resolution for modal logics because a significant part of the re-
search carried out in Harald Ganzinger’s research group, to which we had the
privilege of belonging from 1991 to 1997/8, has been in this area. In addition,
because of the close relationship between modal logics and description logics all
results and observations about modal logics carry over to description logics.

Since this volume is a dedication to Harald this survey is intentionally biased
towards work that originated at the Max-Planck Institute in Saarbrücken. We
apologise for this bias, because important results have also been obtained else-
where, but due to a lack of space, reference to other work has been kept to a
minimum.

The paper was written in 2005–2006. Since then various new results have
been obtained that could have been included in the paper. We have decided to
preserve the paper in the original form except for addressing the comments of
the reviewer (for which we are thankful), making minor additional improvements
and updating some of the references. However to further illustrate the power of
resolution and explain our optimism about the applicability and potential of
the methods that Harald has been working on, we mention examples of relevant
work published in the meantime.

The features and facilities for supporting automated reasoning in traditional
and dynamic modal logics and related logics implemented in mspass have been
upgraded and integrated into spass since Version 3.0 [121]. This means that
many of the translation methods and decision procedures described in this pa-
per are available in the latest version of spass. An extension of spass 3.0 with
the axiomatic translation is described in [115, 116]. An adaptation of spass 3.5,
which translates resolution proofs back into modal tableau proofs and first-order
models into modal models is presented in [1, 2]. This provides a new and slightly
unusual implementation of a modal tableau prover. Currently it caters for the
dynamic modal logic K(m)(∧,∨,� , �) and extensions with first-order frame cor-
respondence properties.

In Section 7 we discussed that it is possible to linearly simulate many forms
of modal or description logic tableau calculi with techniques of first-order reso-
lution theorem proving and mentioned that the simulations can be exploited to
read off tableau rules from the clausal forms of the translations used. This has
been turned into the so-called ‘develop via first-order resolution approach’ to de-
vising various deduction calculi, not only tableau calculi, in [106]. The approach
allows us to develop different calculi and directly compare them in a common
framework. A short overview of two methods for synthesising deduction calculi
from the semantic specification of a logic is given in [107].

Though blocking has so far mainly been used in conjunction with tableau
methods for non-classical logics, we mentioned in Section 6.3 that blocking

384 R.A. Schmidt and U. Hustadt

can be used in a first-order setting. We have defined and experimented with
a technique, called unrestricted blocking [113], and various restricted forms of
blocking as enhancements of bottom-up model generation methods for first-order
logic [15]. Bottom-up model generation methods are closely related to hyperreso-
lution and hypertableau methods. Using these methods in combination with the
unrestricted blocking mechanism, it should be possible to devise new decision
procedures for a wide range of logics and solvable first-order fragment.

The paper [105] introduces refined calculi and procedures for solving the prob-
lem of second-order quantifier elimination in modal logic. The approach is used
to compute first-order frame correspondence properties for modal axioms and
modal rules. It is shown to solve two new classes of formulae wider in scope than
the Sahlqvist class and other existing classes known to be solvable by second-
order quantifier elimination methods.

As mentioned earlier, description logics are closely related to the modal logics
considered in this paper and consequently resolution decision procedure exist
for a variety of description logics. In recent work, decision procedures based on
the basic superposition calculus for the description logics SHIQ and SHOIQ
were presented in [59] and [68], respectively. Both procedures require auxiliary
decomposition rules that introduce new predicate and constant symbols com-
bined with redundancy elimination to prevent unbounded term depth growth in
a derivation.

In [79] an alternative decision procedure based on hypertableau is introduced
for the description logic SHOIQ+ that extends SHOIQ with local reflexivity
and disjoint, reflexive, irreflexive, symmetric, and asymmetric roles. This ap-
proach is closely related to hyperresolution with the splitting rule Hsp combined
with blocking. In [67] a saturation procedure for ontologies in the Horn fragment
of SHIQ is described where the deduction rules combine several resolution in-
ferences into meta inference rules.

A resolution-based method for reducing queries with respect to a TBox and
an ABox to queries with respect to the ABox for a class of decidable description
logics expressible in Horn logic has been introduced in [93]. Experiments of
an implementation have shown that this approach is significantly better than
other (non-first-order) approaches available. Further performance improvements
have been obtained by [22] based on a sophisticated implementation of an input
resolution approach.

There is now extensive work on resolution calculi for propositional linear time
and branching time temporal logics as well as monodic first-order linear time
temporal logic [26, 34, 58, 70, 73, 75, 124, 125]. In these discrete temporal logics,
reasoning about the interaction between the �-operator (meaning always in the
future) and the �-operator (meaning in the next moment in time) requires a form
of induction. This inductive reasoning can be realised by a series of saturation
processes using ordered resolution. While resolution calculi for temporal logics
are typically presented as direct resolution calculi operating on temporal logic
formulae in a clausal normal form, the basic inference steps map to inferences
in ordered first-order resolution with selection. This correspondence forms the

First-Order Resolution Methods for Modal Logics 385

basis for implementations of a number of theorem provers, including TRP++ for
propositional linear time temporal logic [58, 69], CTL-RP for computation tree
logic [123, 126], and TSPASS for monodic first-order linear time temporal logic
over expanding domains [74, 76], the latter two being obtained by modifying and
extending spass 3.0.

References

1. AlBarakati, R.G.: Development of a tableaux resolution prover. Master’s thesis,
The University of Manchester, UK (2009)

2. AlBarakati, R.G.: spass-tab (2009),
http://www.cs.man.ac.uk/~schmidt/spass-tab/

3. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded frag-
ments of predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)

4. Andréka, H., van Benthem, J., Németi, I.: Back and forth between modal logic
and classical logic. Bulletin of the IGPL 3(5), 685–720 (1995)

5. Areces, C., Gennari, R., Heguiabehere, J., de Rijke, M.: Tree-based heuristics in
modal theorem proving. In: Proc. ECAI 2000, pp. 199–203. IOS Press (2000)

6. Auffray, Y., Enjalbert, P.: Modal theorem proving: An equational viewpoint. Jour-
nal of Logic and Computation 2(3), 247–297 (1992)

7. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

8. Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based theorem
proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction—A Basis for
Applications, vol. I, pp. 353–397. Kluwer (1998)

9. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier
(2001)

10. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with Simplification
as a Decision Procedure for the Monadic Class with Equality. In: Mundici, D.,
Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer,
Heidelberg (1993)

11. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Applicable Algebra in Engineering, Communication
and Computing 5(3/4), 193–212 (1994)

12. Baumgartner, P.: A First-order Davis-Putnam-Logeman-Loveland Procedure. In:
McAllester, D. (ed.) CADE-17. LNCS (LNAI), vol. 1831, pp. 200–219. Springer,
Heidelberg (2000)

13. Baumgartner, P., Horton, J.D., Spencer, B.: Merge Path Improvements for Min-
imal Model Hyper Tableaux. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS
(LNAI), vol. 1617, pp. 51–66. Springer, Heidelberg (1999)

14. Baumgartner, P., Schmidt, R.A.: Blocking and Other Enhancements for Bottom-
Up Model Generation Methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 125–139. Springer, Heidelberg (2006)

15. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up
model generation methods. Manuscript (2008)

16. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

http://www.cs.man.ac.uk/~schmidt/spass-tab/

386 R.A. Schmidt and U. Hustadt

17. Blackburn, P., de Rijke, M., Venema, V.: Modal Logic. Cambridge Tracts in
Theoretical Computer Science, vol. 53. Cambridge University Press (2001)

18. Bledsoe, W.W.: Splitting and reduction heuristics in automatic theorem proving.
Artificial Intelligence 2, 55–77 (1971)

19. Brink, C., Britz, K., Schmidt, R.A.: Peirce algebras. Formal Aspects of Comput-
ing 6(3), 339–358 (1994)

20. Bry, F., Yahya, A.: Positive unit hyperresolution tableaux for minimal model
generation. Journal of Automated Reasoning 25(1), 35–82 (2000)

21. Castilho, M.A., Fariñas del Cerro, L., Gasquet, O., Herzig, A.: Modal tableaux
with propagation rules and structural rules. Fundamenta Informaticae 32(3-4),
281–297 (1997)

22. Chortaras, A., Trivela, D., Stamou, G.: Optimized Query Rewriting for OWL 2
QL. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI),
vol. 6803, pp. 192–206. Springer, Heidelberg (2011)

23. de Nivelle, H.: Splitting through New Proposition Symbols. In: Nieuwenhuis, R.,
Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 172–185. Springer,
Heidelberg (2001)

24. de Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal
logics. Logic Journal of the IGPL 8(3), 265–292 (2000)

25. de Rijke, M.: Extending Modal Logic. PhD thesis, University of Amsterdam, The
Netherlands (1993)

26. Degtyarev, A., Fisher, M., Konev, B.: Monodic temporal resolution. ACM Trans-
actions in Computational Logic 7(1), 108–150 (2006)

27. Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through
first-order logic. Journal of Logic, Language and Information 14(3), 289–329
(2005)

28. Demri, S., Gabbay, D.: On modal logics characterized by models with relative
accessibility relations: Part II. Studia Logica 66(3), 349–384 (2000)

29. Doherty, P., Lukaszewicz, W., Szalas, A.: Computing circumscription revisited:
A reduction algorithm. Journal of Automated Reasoning 18(3), 297–336 (1997)

30. Doherty, P., Lukaszewicz, W., Szalas, A., Gustafsson, J.: dls (1996),
http://www.ida.liu.se/labs/kplab/projects/dls/

31. Engel, T.: Quantifier elimination in second-order predicate logic. Diplomar-
beit, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany
(1996)

32. Fariñas del Cerro, L., Herzig, A.: Modal deduction with applications in epistemic
and temporal logics. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Hand-
book of Logic in Artificial Intelligence and Logic Programming: Epistemic and
Temporal Reasoning, pp. 499–594. Clarendon Press (1995)

33. Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision proce-
dures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
pp. 1791–1849. Elsevier (2001)

34. Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions
on Computational Logic 2(1), 12–56 (2001)

35. Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate
logic. South African Computer Journal 7, 35–43 (1992)

36. Gabbay, D.M., Schmidt, R.A., Sza�las, A.: Second-Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. Studies in Logic: Mathe-
matical Logic and Foundations, vol. 12. College Publications (2008)

37. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: Proc. LICS-14, pp. 295–303. IEEE (1999)

http://www.ida.liu.se/labs/kplab/projects/dls/

First-Order Resolution Methods for Modal Logics 387

38. Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A resolution-based decision
procedure for extensions of K4. In: Advances in Modal Logic. Lecture Notes, vol. 2,
119, pp. 225–246. CSLI Publications (2001)

39. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem prov-
ing. In: Proc. LICS-18, pp. 55–64. IEEE (2003)

40. Ganzinger, H., Meyer, C., Veanes, M.: The two-variable guarded fragment with
transitive relations. In: Proc. LICS-14, pp. 24–34. IEEE (1999)

41. Ganzinger, H., Sofronie-Stokkermans, V.: Chaining techniques for automated the-
orem proving in finitely-valued logics. In: Proc. ISMVL 2000, pp. 337–344. IEEE
(2000)

42. Gargov, G., Passy, S.: A note on Boolean modal logic. In: Mathematical Logic:
Proceedings of the 1988 Heyting Summerschool, pp. 299–309. Plenum Press
(1990)

43. Gargov, G., Passy, S., Tinchev, T.: Modal environment for Boolean speculations.
In: Mathematical Logic and its Applications: Proceedings of the 1986 Gödel Con-
ference, pp. 253–263. Plenum Press (1987)

44. Georgieva, L., Hustadt, U., Schmidt, R.A.: Computational Space Efficiency
and Minimal Model Generation for Guarded Formulae. In: Nieuwenhuis, R.,
Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 85–99. Springer,
Heidelberg (2001)

45. Georgieva, L., Hustadt, U., Schmidt, R.A.: A New Clausal Class Decidable by
Hyperresolution. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392,
pp. 260–274. Springer, Heidelberg (2002)

46. Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae.
Journal of Symbolic Computation 36(1–2), 163–192 (2003)

47. Goranko, V., Hustadt, U., Schmidt, R.A., Vakarelov, D.: SCAN is Complete
for all Sahlqvist Formulae. In: Berghammer, R., Möller, B., Struth, G. (eds.)
RelMiCS 2003. LNCS, vol. 3051, pp. 149–162. Springer, Heidelberg (2004)

48. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
297–396. Kluwer (1999)

49. Grädel, E.: Decision Procedures for Guarded Logics. In: Ganzinger, H. (ed.)
CADE 1999. LNCS (LNAI), vol. 1632, pp. 31–51. Springer, Heidelberg (1999)

50. Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64,
1719–1742 (1999)

51. Hasegawa, R., Fujita, H., Koshimura, M.: Efficient Minimal Model Generation
using Branching Lemmas. In: McAllester, D. (ed.) CADE-17. LNCS (LNAI),
vol. 1831, pp. 184–199. Springer, Heidelberg (2000)

52. Herzig, A.: Raisonnement automatique en logique modale et algorithmes
d’unification. PhD thesis, University Paul-Sabatier, Toulouse, France (1989)

53. Herzig, A.: A new decidable fragment of first order logic. In: Abstracts of 3rd
Logical Biennial, Summer School & Conf. in honour of S. C. Kleene, Bulgaria
(1990)

54. Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.A.: Computational modal logic.
In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic.
Studies in Logic and Practical Reasoning, pp. 181–245. Elsevier (2007)

55. Humberstone, I.L.: Inaccessible worlds. Notre Dame Journal of Formal
Logic 24(3), 346–352 (1983)

56. Humberstone, I.L.: The modal logic of ‘all and only’. Notre Dame Journal of
Formal Logic 28(2), 177–188 (1987)

388 R.A. Schmidt and U. Hustadt

57. Hustadt, U.: Resolution-Based Decision Procedures for Subclasses of First-Order
Logic. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (1999)

58. Hustadt, U., Konev, B.: TRP++: A temporal resolution prover. In: Collegium
Logicum, pp. 65–79. Kurt Gödel Society (2004)

59. Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the
framework of resolution. Information and Computation 206(5) (2008)

60. Hustadt, U., Schmidt, R.A.: An empirical analysis of modal theorem provers.
Journal of Applied Non-Classical Logics 9(4), 479–522 (1999)

61. Hustadt, U., Schmidt, R.A.: Maslov’s Class K Revisited. In: Ganzinger, H. (ed.)
CADE 1999. LNCS (LNAI), vol. 1632, pp. 172–186. Springer, Heidelberg (1999)

62. Hustadt, U., Schmidt, R.A.: On the relation of resolution and tableaux proof
systems for description logics. In: IJCAI 1999, pp. 110–115. Morgan Kaufmann
(1999)

63. Hustadt, U., Schmidt, R.A.: Issues of Decidability for Description Logics in the
Framework of Resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS
(LNAI), vol. 1761, pp. 191–205. Springer, Heidelberg (2000)

64. Hustadt, U., Schmidt, R.A.: MSPASS: Modal Reasoning by Translation and
First-Order Resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI),
vol. 1847, pp. 67–71. Springer, Heidelberg (2000)

65. Hustadt, U., Schmidt, R.A.: Using resolution for testing modal satisfiability and
building models. Journal of Automated Reasoning 28(2), 205–232 (2002)

66. Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order frag-
ments and description logics. Journal of Relational Methods in Computer Sci-
ence 1, 251–276 (2004)

67. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Proc.
IJCAI 2009, pp. 2040–2045 (2009)

68. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. Jour-
nal of Automated Reasoning 40(2-3), 89–116 (2008); Erratum in Journal of Au-
tomated Reasoning 40(4), 357 (2008)

69. Konev, B.: TRP++ 2.1, (2010)
http://www.csc.liv.ac.uk/~konev/software/trp++/

70. Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-
order temporal resolution. Information and Computation 199(1–2), 55–86 (2005)

71. Kracht, M.: Tools and Techniques in Modal Logic. Studies in Logic, vol. 142.
Elsevier (1999)

72. Kurucz, Á., Németi, I., Sain, I., Simon, A.: Undecidable varieties of semilattice-
ordered semigroups, of Boolean algebras with operators and logics extending lam-
bek calculus. Bulletin of the IGPL 1(1), 91–98 (1993)

73. Ludwig, M.: Advancing Formal Verification: Resolution-Based Methods for
Linear-Time Temporal Logics. PhD thesis, University of Liverpool, UK (2010)

74. Ludwig, M.: TSPASS 0.94 (2010),
http://www.csc.liv.ac.uk/~michel/software/tspass/

75. Ludwig, M., Hustadt, U.: Fair Derivations in Monodic Temporal Reasoning. In:
Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 261–276. Springer,
Heidelberg (2009)

76. Ludwig, M., Hustadt, U.: Implementing a fair monodic temporal logic prover. AI
Communication 23(2-3), 69–96 (2010)

77. Maslov, S.J.: The inverse method for establishing deducibility for logical calculi.
In: Orevkov, V.P., Petrovskǐı, I.G., Nikol’skǐı, S.M. (eds.) Proc. of the Steklov
Institute of Mathematics, vol. 98, pp. 25–96. Amer. Math. Soc., Providence (1968)

http://www.csc.liv.ac.uk/~konev/software/trp++/
http://www.csc.liv.ac.uk/~michel/software/tspass/

First-Order Resolution Methods for Modal Logics 389

78. Massacci, F.: Single step tableaux for modal logics: Computational properties,
complexity and methodology. Journal of Automated Reasoning 24(3), 319–364
(2000)

79. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
Journal of Artifical Intelligence Research 36, 165–228 (2009)

80. Nellas, K.: Reasoning about sets and relations: A tableaux-based automated the-
orem prover for Peirce logic. Master’s thesis, The University of Manchester, UK
(2001)

81. Niemelä, I.: A Tableau Calculus for Minimal Model Reasoning. In: Miglioli, P.,
Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS (LNAI),
vol. 1071, pp. 278–294. Springer, Heidelberg (1996)

82. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robin-
son, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443.
Elsevier (2001)

83. Nonnengart, A.: First-order modal logic theorem proving and functional simula-
tion. In: Proc. IJCAI 1993, pp. 80–85. Morgan Kaufmann (1993)

84. Nonnengart, A.: A Resolution-Based Calculus For Temporal Logics. PhD thesis,
Universität des Saarlandes, Saarbrücken, Germany (1995)

85. Nonnengart, A.: Resolution-Based Calculi for Modal and Temporal Logics. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104,
pp. 598–612. Springer, Heidelberg (1996)

86. Nonnengart, A., Ohlbach, H.J., Sza�las, A.: Elimination of predicate quantifiers.
In: Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Essays in
Honor of Dov Gabbay, pp. 159–181. Kluwer (1999)

87. Ohlbach, H.J.: Semantics based translation methods for modal logics. Journal of
Logic and Computation 1(5), 691–746 (1991)

88. Ohlbach, H.J.: Translation methods for non-classical logics: An overview. Bulletin
of the IGPL 1(1), 69–89 (1993)

89. Ohlbach, H.J.: Combining Hilbert Style and Semantic Reasoning in a Resolution
Framework. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI),
vol. 1421, pp. 205–219. Springer, Heidelberg (1998)

90. Ohlbach, H.-J., Engel, T.: scan (1994),
http://www.mpi-inf.mpg.de/departments/d2/software/SCAN/

91. Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.: Encoding two-valued
nonclassical logics in classical logic. In: Robinson, A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, pp. 1403–1486. Elsevier (2001)

92. Ohlbach, H.J., Schmidt, R.A.: Functional translation and second-order frame
properties of modal logics. Journal of Logic and Computation 7(5), 581–603 (1997)

93. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewrit-
ing under description logic constraints. Journal of Applied Logic 8(2), 186–209
(2010)

94. Purdy, W.C.: Decidability of fluted logic with identity. Notre Dame Journal of
Formal Logic 37(1), 84–104 (1996)

95. Purdy, W.C.: Quine’s ‘limits of decision’. Journal of Symbolic Logic 64(4), 1439–
1466 (1999)

96. Quine, W.V.: Variables explained away. In: Proc. American Philosophy Society,
vol. 104, pp. 343–347 (1960)

97. Quine, W.V.: Algebraic logic and predicate functors. In: Rudner, R., Scheffler, I.
(eds.) Logic and Art: Esssays in Honor of Nelson Goodman. Bobbs-Merrill (1971)

98. Riazanov, A., Voronkov, A.: Vampire. In: Ganzinger, H. (ed.) CADE 1999. LNCS
(LNAI), vol. 1632, pp. 292–296. Springer, Heidelberg (1999)

http://www.mpi-inf.mpg.de/departments/d2/software/SCAN/

390 R.A. Schmidt and U. Hustadt

99. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Proc. IJCAI 2001,
pp. 611–617. Morgan Kaufmann (2001)

100. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM 12(1), 23–41 (1965)

101. Sahlqvist, H.: Completeness and correspondence in the first and second or-
der semantics for modal logics. In: Proc. 3rd Scandinavian Logic Symposium,
pp. 110–143. North-Holland (1973-1975)

102. Schmidt, R.A.: Optimised Modal Translation and Resolution. PhD thesis, Uni-
versität des Saarlandes, Saarbrücken, Germany (1997)

103. Schmidt, R.A.: Decidability by resolution for propositional modal logics. Journal
of Automated Reasoning 22(4), 379–396 (1999)

104. Schmidt, R.A.: MSPASS (1999), http://www.cs.man.ac.uk/~schmidt/mspass/
105. Schmidt, R.A.: Improved Second-Order Quantifier Elimination in Modal Logic.

In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI),
vol. 5293, pp. 375–388. Springer, Heidelberg (2008)

106. Schmidt, R.A.: A new methodology for developing deduction methods. Annals of
Mathematics and Artificial Intelligence 55(1–2), 155–187 (2009)

107. Schmidt, R.A.: Simulation and synthesis of deduction calculi. Electronic Notes in
Theoretical Computer Science 262, 221–229 (2010)

108. Schmidt, R.A., Hustadt, U.: A Resolution Decision Procedure for Fluted Logic. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 433–448. Springer,
Heidelberg (2000)

109. Schmidt, R.A., Hustadt, U.: Mechanised Reasoning and Model Generation for
Extended Modal Logics. In: de Swart, H., Or�lowska, E., Schmidt, G., Roubens,
M. (eds.) Theory and Applications of Relational Structures as Knowledge Instru-
ments. LNCS, vol. 2929, pp. 38–67. Springer, Heidelberg (2003)

110. Schmidt, R.A., Hustadt, U.: A Principle for Incorporating Axioms into the First-
Order Translation of Modal Formulae. In: Baader, F. (ed.) CADE 2003. LNCS
(LNAI), vol. 2741, pp. 412–426. Springer, Heidelberg (2003)

111. Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic.
ACM Transactions on Computational Logic 8(4), 1–55 (2007)

112. Schmidt, R.A., Orlowska, E., Hustadt, U.: Two Proof Systems for Peirce Algebras.
In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051,
pp. 238–251. Springer, Heidelberg (2004)

113. Schmidt, R.A., Tishkovsky, D.: Using Tableau to Decide Expressive Description
Logics with Role Negation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 438–451. Springer, Heidelberg (2007)

114. Schulz, S.: E: A brainiac theorem prover. Journal of AI Communications 15(2–3),
111–126 (2002)

115. Smith, K.J.: The axiomatic translation of modal logic into first order logic. Mas-
ter’s thesis, The University of Manchester, UK (2008)

116. Smith, K.J.: Downloads for project in Axiomatic Translation of Modal Logic
2007/8 Manchester (2008), http://project.kjsmith.net/

117. Stenz, G.: DCTP 1.2 - System Abstract. In: Egly, U., Fermüller, C. (eds.)
TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 335–340. Springer, Heidelberg
(2002)

118. Sza�las, A.: On the correspondence between modal and classical logic: An auto-
mated approach. Journal of Logic and Computation 3(6), 605–620 (1993)

http://www.cs.man.ac.uk/~schmidt/mspass/
http://project.kjsmith.net/

First-Order Resolution Methods for Modal Logics 391

119. van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenther, F. (eds.)
Handbook of Philosophical Logic, pp. 167–247. Reidel, Dordrecht (1984)

120. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.:
SPASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392,
pp. 275–279. Springer, Heidelberg (2002)

121. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
Description: Spass Version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

122. Zamov, N.K.: Modal resolutions. Soviet Mathematics 33(9), 22–29 (1989); Trans-
lated from Izv. Vyssh. Uchebn. Zaved. Mat. 9(328), 22–29 (1989)

123. Zhang, L.: CTL-RP 00.25 (2010),
http://www.csc.liv.ac.uk/~lan/softwares.html

124. Zhang, L.: Clausal Reasoning for Branching-Time Logics. PhD thesis, University
of Liverpool, UK (2011)

125. Zhang, L., Hustadt, U., Dixon, C.: A Refined Resolution Calculus for CTL. In:
Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 245–260. Springer,
Heidelberg (2009)

126. Zhang, L., Hustadt, U., Dixon, C.: CTL-RP: A computation tree logic resolution
prover. AI Communication 23(2-3), 111–136 (2010)

http://www.csc.liv.ac.uk/~lan/softwares.html

On Combinations of Local Theory Extensions

Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, Saarbrücken, Germany
sofronie@mpi-inf.mpg.de

Abstract. In this paper we study theory extensions in which efficient
reasoning is possible. We study local extensions (in which hierarchical
reasoning is possible) and give several examples from computer science
or mathematics in which such extensions occur in a natural way. We then
identify situations in which combinations of local extensions of a theory
are again local extensions of that theory. We thus obtain criteria both
for recognizing wider classes of local theory extensions, and for modular
reasoning in combinations of theories over non-disjoint signatures.

1 Introduction

Many problems in mathematics and computer science can be reduced to proving
the satisfiability of conjunctions of literals in a background theory (which can be
the extension of a base theory with additional functions – e.g., free, monotone, or
recursively defined – or a combination of theories). It is therefore very important
to identify situations where reasoning in complex theories can be done efficiently
and accurately. Efficiency can be achieved for instance by:

(1) reducing the search space (preferably without losing completeness);
(2) modular reasoning, i.e., delegating some proof tasks which refer to a specific

theory to provers specialized in handling formulae of that theory.

We are interested in identifying situations in which both these goals can be
achieved without loss of completeness.

Controlling the Search Space. The quest for identifying theories where the search
space can be controlled without loss of completeness led McAllester and Givan
to define local theories, that is sets N of Horn clauses with the property that
for any ground clause G, N |= G iff G can already be proved using only those
instances N [G] of N containing only ground terms occurring in G or in N . For
local theories, validity of ground Horn clauses can be checked in polynomial time.
In [BG96, BG01], Ganzinger and Basin defined the more general notion of order
locality and showed how to recognize (order-)local theories and how to use these
results for automated complexity analysis.

Similar ideas also occurred in algebra, where the main interest was to identify
classes of algebras for which the uniform word problem is decidable in polynomial
time. In [Bur95], Burris proved that if a quasi-variety axiomatized by a set K of
Horn clauses has the property that every finite partial algebra which is a partial

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 392–413, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Combinations of Local Theory Extensions 393

model of the axioms in K can be extended to a total algebra model of K then
the uniform word problem for K is decidable in polynomial time. In [Gan01],
Ganzinger established a link between proof theoretic and semantic concepts for
polynomial time decidability of uniform word problems. He defined two notions
of locality for equational Horn theories, and established relationships between
these notions of locality and corresponding semantic conditions, referring to
embeddability of partial algebras into total algebras.

Modular Reasoning. When reasoning in extensions or combinations of theories
it is very important to find ways of delegating some proof tasks which refer to
a specific theory to provers specialized in handling formulae of that theory. Of
particular interest are situations when reasoning can be done:

– in a hierarchical way (that is, for reasoning in a theory extension a prover
for the base theory can be used as a black-box), or

– in a modular way (that is, for reasoning in a combination of theories rea-
soning in the component theories is “decoupled”, i.e., the information about
the component theories is never combined and only formulae in the joint
signature are exchanged between provers for the components).

In [GSSW04, GSSW06] we analyzed possibilities of modular reasoning (using
special superposition calculi) in combinations of first-order theories involving
both total and partial functions. The calculi are shown to be complete provided
that functions that are not in the intersection of the component signatures are
declared as partial. Cases where the partial models can always be made total
are identified: in such cases modular superposition is also complete with respect
to the standard (total function) semantics of the theories. Inspired by the link
between embeddability and locality established by Ganzinger in [Gan01], such
extensions were called local.

Reasoning in Local Theory Extensions and Their Combinations. In [GSSW04],
[GSSW06] and, later, in [SS05] we showed that for local theory extensions efficient
hierarchic reasoning is possible. For such extensions the two goals previously
mentioned can be addressed at the same time: the locality of an extension allows
to reduce the search space, but at the same time (as a by-product) it allows
to perform an easy reduction to a proof task in the base theory (for this, a
specialized prover can be used as a black box).

Many theories important for computer science or mathematics are local exten-
sions of a base theory: theories of data structures, theories of monotone functions
or of functions satisfying the Lipschitz conditions at a given point. However,
often it is necessary to consider complex extensions, with various types of func-
tions (such as, for instance, extensions of the theory of real numbers with free,
monotone and Lipschitz functions). It is important to have efficient methods
for hierarchic and/or modular reasoning for such combinations as well. Find-
ing methods for reasoning in combinations of extensions of a base theory is
far from trivial: as these are usually combinations of theories over non-disjoint
signatures, classical combination results such as the Nelson-Oppen combination

394 V. Sofronie-Stokkermans

method [NO79] cannot be applied; methods for reasoning in combinations of the-
ories over non-disjoint signatures – as studied by Ghilardi et al. [Ghi04, BG07]
– may also not always be applicable (unless the base theory is universal and the
extensions satisfy certain model-theoretic compatibility conditions required in
[Ghi04, BG07]).

In this paper we identify situations in which a combination of local extensions
of a base theory is guaranteed to be itself a local extension of the base theory.
We thus obtain criteria for recognizing complex local theory extensions, and for
efficient reasoning in such combinations of theories (over non-disjoint signatures)
in a modular way.

Structure of the paper: The paper is structured as follows: Section 2 contains
generalities on partial algebras, weak validity and embeddability of partial al-
gebras into total algebras. In Section 3 the notion of local theory extension is
introduced. In Section 4 links between embeddability and locality of an exten-
sion are established. In Section 5, examples of local theory extensions are given.
In the following two sections we identify situations under which a combination of
local extensions of a base theory is guaranteed to be itself a local extension of the
base theory, under stronger (Section 6) or weaker (Section 7) embeddability con-
ditions for the components. Some ideas on hierarchical and modular reasoning
in such combinations are discussed in Section 8. Section 9 contains conclusions
and plans for future work.

Many of the results presented here are a natural continuation of joint work
with Harald Ganzinger. His work on locality and especially the links he estab-
lished between locality and embeddability [Gan01] were a source of inspiration
for the similar criteria for local theory extensions. In addition, the results on
combinations of local extensions of a base theory presented in this paper gener-
alize results on combinations of local theories obtained in [GSS01].

2 Preliminaries

This section contains the main notions and definitions necessary in the paper.

2.1 Partial Structures

Let Π = (Σ,Pred) be a signature where Σ is a set of function symbols and Pred
a set of predicate symbols.

Definition 1. A partial Π-structure is a structure (A, {fA}f∈Σ, {PA}P∈Pred),
where A is a non-empty set and for every f ∈ Σ with arity n, fA is a partial
function from An to A. The structure is a (total) structure if all functions fA
are total.

In what follows we usually denote both an algebra and its support with the same
symbol. Details on partial algebras can be found in [Bur86].

On Combinations of Local Theory Extensions 395

The notion of evaluating a term t with respect to a variable assignment β :
X → A for its variables in a partial algebra A is the same as for total algebras,
except that this evaluation is undefined if t = f(t1, . . . , tn) and either one of
β(ti) is undefined, or else (β(t1), . . . , β(tn)) is not in the domain of fA.

Definition 2. We define weak validity in structures (A, {fA}f∈Σ, {PA}P∈Pred),
where Pred is a set of predicate symbols and (A, {fA}f∈Σ) is a partial Σ-algebra.
Let β : X → A.

(1) (A, β) |=w t ≈ s if and only if (a) β(t) and β(s) are both defined and equal;
or (b) at least one of β(s) and β(t) is undefined.

(2) (A, β) |=w t
≈ s if and only if (a) β(t) and β(s) are both defined and different;
or (b) at least one of β(s) and β(t) is undefined.

(3) (A, β) |=w P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn))∈PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(4) (A, β) |=w ¬P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined
and (β(t1), . . . , β(tn))
∈ PA; or (b) at least one of β(t1), . . . , β(tn) is unde-
fined.

(A, β) weakly satisfies a clause C (notation: (A, β) |=w C) if (A, β) |=w L for at
least one literal L in C. A weakly satisfies C (notation: A |=w C) if (A, β) |=w C
for all assignments β. A weakly satisfies a set of clauses K (notation: A |=w K)
if A |=w C for all C ∈ K.

Example 1. Let A be a partial Σ-algebra, where Σ = {car/1, nil/0}. Assume
that nilA is defined and carA(nilA) is not defined. Then A |=w car(nil) ≈ nil and
A |=w car(nil)
≈ nil (because one term is not defined in A).

Definition 3. A weakΠ-embedding between the partial structures (A, {fA}f∈Σ,
{PA}P∈Pred) and (B, {fB}f∈Σ, {PB}P∈Pred) is a total map i : A → B such that

– whenever fA(a1, . . . , an) is defined then fB(i(a1), . . . , i(an)) is defined and
i(fA(a1, . . . , an)) = fB(i(a1), . . . , i(an));

– i is injective;
– i is an embedding w.r.t. Pred, i.e. for every P ∈ Pred with arity n and every

a1, . . . , an ∈ A, PA(a1, . . . , an) if and only if PB(i(a1), . . . , i(an)).

In this case we say that A weakly embeds into B.

2.2 Theories and Extensions of Theories

Theories can be regarded as sets of formulae or as sets of models. Let T be a
Π-theory and φ, ψ be Π-sentences. We say that T ∧φ |= ψ (written also φ |=T ψ)
if ψ is true in all models of T which satisfy φ.

In what follows we consider extensions of theories, in which the signature
is extended by new function symbols (i.e. we assume that the set of predicate
symbols remains unchanged in the extension). If a theory is regarded as a set of
formulae, then its extension with a set of formulae is set union. If T is regarded

396 V. Sofronie-Stokkermans

as a collection of models then its extension with a set K of sentences (in the
extended signature) consists of all structures (in the extended signature) which
are models of K and whose reduct to the signature of T0 is in T0. In this paper
we regard theories as sets of models. All the results of this paper can easily be
reformulated to a setting in which T0 is a collection of formulae (but then the
remarks on compactness in Theorem 1 become superfluous).

Let T0 be an arbitrary theory with signature Π0 = (Σ0,Pred), where the set
of function symbols is Σ0. We consider extensions T1 of T0 with signature Π =
(Σ,Pred), where the set of function symbols is Σ = Σ0 ∪ Σ1. We assume that
T1 is an extension of T0 with a set K of (universally quantified) clauses.

Definition 4. A partial Π-algebra A is a weak partial model of T1 with totally
defined Σ0-function symbols if (i) A|Π0

is a model of T0 and (ii) A weakly satisfies
all clauses in K.

If the base theory T0 and its signature are clear from the context, we will refer
to weak partial models of T1. We will use the following notation:

– PModw(Σ1, T1) is the class of all weak partial models of T1 in which the
Σ1-functions are partial and all the other function symbols are total;

– PModfw(Σ1, T1) is the class of all finite weak partial models of T1 in which
the Σ1-functions are partial and all the other function symbols are total;

– PModfdw (Σ1, T1) is the class of all weak partial models of T1 in which the
Σ1-functions are partial and their definition domain is a finite set, and all
the other function symbols are total;

– Mod(T1) denotes the class of all models of T1 in which all functions in Σ0∪Σ1

are totally defined.

Embeddability. For theory extensions T0 ⊆ T1 = T0 ∪ K, where K is a set of
clauses, we consider the following condition:

(Embw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model of T1.

We also define a stronger notion of embeddability, which we call completability:

(Compw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model B of T1

such that A|Π0
and B|Π0

are isomorphic.

Weaker conditions, which only refer to embeddability of finite partial models, will
be denoted by (Embfw), resp. (Compfw). Conditions which refer to embeddability
of partial models in PModfdw (Σ1, T1) will be denoted by (Embfdw), resp. (Compfdw).

3 Locality

Thenotion of local theorywas introducedbyGivan andMcAllester [GM92,McA93].

Definition 5 (Local theory). A local theory is a set of Horn clauses K such
that, for any ground Horn clause C, K |= C only if already K[C] |= C (where
K[C] is the set of instances of K in which all terms are subterms of ground terms
in either K or C).

On Combinations of Local Theory Extensions 397

The notion of locality in equational theories was studied by Ganzinger [Gan01],
who also related it to a semantical property, namely embeddability of partial
algebras into total algebras. In [GSSW04, GSSW06, SS05] the notion of locality
for Horn clauses is extended to the notion of local extension of a base theory.

Let K be a set of clauses in the signature Π = (Σ0 ∪Σ1,Pred). In what follows,
when we refer to setsG of ground clauses we assume that they are in the signature
Πc = (Σ ∪Σc,Pred), where Σc is a set of new constants. If Ψ is a set of ground
Σ0 ∪Σ1 ∪Σc-terms, we denote by KΨ the set of all instances of K in which all
terms starting with a Σ1-function symbol are ground terms in the set Ψ . If G is
a set of ground clauses and Ψ = st(K, G) is the set of ground subterms occurring
in either K or G then we write K[G] := KΨ .

We will focus on the following type of locality of a theory extension T0 ⊆ T1,
where T1 = T0 ∪ K with K a set of (universally quantified) clauses:

(Loc) For every set G of ground clauses T1 ∪G |=⊥ iff T0 ∪ K[G] ∪G has
no weak partial model in which all terms in st(K, G) are defined.

A weaker notion (Locf) can be defined if we require that the respective conditions
hold only for finite sets G of ground clauses. An intermediate notion of locality
(Locfd) can be defined if we require that the respective conditions hold only for
sets G of ground clauses containing only a finite set of terms starting with a
function symbol in Σ1.

Definition 6. An extension T0 ⊆ T1 is local if it satisfies condition (Locf).

A local theory [Gan01] is a local extension of the empty theory (i.e. of the pure
theory of equality).

4 Locality and Embeddability

There is a strong link between locality of a theory extension and embeddability
of partial models into total ones. Links between locality of a theory and embed-
dability were established by Ganzinger in [Gan01]. We show that similar results
can also be obtained for local theory extensions.

In what follows we say that a non-ground clause is Σ1-flat if function symbols
(including constants) do not occur as arguments of function symbols in Σ1. A
Σ1-flat non-ground clause is called Σ1-linear if whenever a variable occurs in
two terms in the clause which start with function symbols in Σ1, the two terms
are identical, and if no term which starts with a function in Σ1 contains two
occurrences of the same variable.

We first show that for sets of Σ1-flat clauses locality implies embeddability. This
generalizes results presented in the case of local theories in [Gan01].

Theorem 1. Assume that K is a family of Σ1-flat clauses in the signature Π.

(1) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Loc) then it satisfies (Embw).

398 V. Sofronie-Stokkermans

(2) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Locf) then it satisfies (Embfw).
(3) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Locfd) then it satisfies (Embfdw).
(4) If T0 is compact and the extension T0 ⊆ T1 satisfies (Locf), then T0 ⊆ T1

satisfies (Embw).

Proof : We prove (4) and show how the proof can be changed to provide proofs for
(1), (2) and (3). Let A be a partial Π-algebra with totally defined Σ0-functions,
which is a model of T0 and weakly satisfies K. Let

Δ(A) = {f(a1, . . . an) ≈ a | if fA(a1, . . . , an) is defined and equal to a}
∪{f(a1, . . . an)
≈ a | if fA(a1, . . . , an) is defined and not equal to a}
∪{P (a1, . . . , an) | P ∈ Pred and (a1, . . . , an) ∈ PA}
∪{¬P (a1, . . . , an) | P ∈ Pred and (a1, . . . , an)
∈ PA}
∪{a
≈ a′ | a
= a′, a, a′ ∈ A}

We prove that T0∪K∪Δ(A) is consistent, where the elements of A are regarded as
new constants. Assume T0∪K∪Δ(A) |=⊥. By compactness of T0, T0∪K∪Γ |=⊥,
for some finite subset Γ of Δ(A). We know that A is a model of T0. Every term
starting with a function symbol in Σ1 contained in the clauses in K[Γ] is either
a ground (subterm of a) term occurring in Γ (and, hence, a constant a ∈ A, or
a term f(a1, . . . , an), where fA(a1, . . . , an) is defined), or is a ground subterm in
K, i.e. a constant, and hence, again defined in A. Therefore, all terms occurring
in the clauses in K[Γ] are defined in A, so A satisfies all these clauses, i.e. A is
a model of T0 ∪ K[Γ]. Since Δ(A) is obviously true in A and Γ ⊆ Δ(A), A is a
partial model of T0 ∪ K[Γ] ∪ Γ , in which all ground terms occurring in K or Γ
are defined. This contradicts the fact that T1 is a local extension of T0. Hence,
the assumption that T0 ∪K∪Δ(A) |=⊥ was false, so T0 ∪K∪Δ(A) has a model
A′ in which, therefore, A weakly embeds.

(1) If (Loc) holds then we can choose Γ = Δ(A). (2) If A is finite we can choose
Γ = Δ(A), so the compactness of T0 is not needed. (3) If all functions in Σ1 have
a finite domain of definition in A, then Δ(A) contains only finitely many terms
starting with a Σ1-function. Therefore also in this case we can choose Γ = Δ(A).

�

Conversely, embeddability implies locality. The following results appear in [SS05]
and [SSI07a, SSI07b]. This result allows to give several examples of local theory
extensions.

Theorem 2 ([SS05, SSI07a, SSI07b]). Let K be a set of Σ1-flat and Σ1-
linear clauses.

(1) If the extension T0 ⊆ T1 satisfies (Embw) then it satisfies (Loc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embfw),
then T0 ⊆ T1 satisfies (Locf).

(3) T0 ⊆ T1 satisfies (Embfdw). Then T0 ⊆ T1 satisfies (Locfd).

On Combinations of Local Theory Extensions 399

5 Examples of Local Theory Extensions

We present several examples of theory extensions for which embedding conditions
among those mentioned above hold and are thus local. For details cf. [SS05,
SS06a, SSI07a, SSI07b].

Extensions with free functions. Any extension T0 ∪ Free(Σ) of a theory T0
with a set Σ of free function symbols satisfies condition (Compw).

Extensions with selector functions. Let T0 be a theory with signatureΠ0 =
(Σ0,Pred), let c ∈ Σ0 with arity n, and let Σ1 = {s1, . . . , sn} consist of n
unary function symbols. Let T1 = T0 ∪ Selc (a theory with signature Π =
(Σ0 ∪ Σ1,Pred)) be the extension of T0 with the set Selc of clauses below.
Assume that T0 satisfies the (universally quantified) formula Injc (i.e. c is
injective in T0) then the extension T0 ⊆ T1 satisfies condition (Compw) [SS05].

(Selc) s1(c(x1, . . . , xn)) ≈ x1

· · ·
sn(c(x1, . . . , xn)) ≈ xn

x ≈ c(x1, . . . , xn) → c(s1(x), . . . , sn(x)) ≈ x

(Injc) c(x1, . . . , xn) ≈ c(y1, . . . , yn) → (
n∧

i=1

xi ≈ yi)

Extensions with functions satisfying general monotonicity conditions.
In [SS05] and [SSI07a, SSI07b] we analyzed extensions with monotonicity
conditions for an n-ary function f w.r.t. a subset I ⊆ {1, . . . , n} of its argu-
ments:

(MonIf)
∧
i∈I

xi≤iyi∧
∧
i�∈I

xi=yi→f(x1, .., xn)≤f(y1, .., yn).

Here, Mon∅f is equivalent to the congruence axiom for f . If I = {1, . . . , n}
we speak of monotonicity in all arguments; we denote Mon

{1,...,n}
f by Monf .

Monotonicity in some arguments and antitonicity in other arguments is mod-
eled by considering functions f :

∏
i∈I P

σi

i ×
∏

j �∈I Pj → P with σi ∈ {−,+},
where P+

i = Pi and P−
i = P ∂

i , the order dual of the poset Pi. The corre-
sponding axioms are denoted by Monσf , where for i ∈ I, σ(i) = σi ∈ {−,+},
and for i
∈ I, σ(i) = 0. The following hold [SS05, SSI07a, SSI07b]:

1. Let T0 be a class of (many-sorted) bounded semilattice-ordered Σ0-
structures. Let Σ1 be disjoint from Σ0 and T1 = T0∪{Monσ(f)|f ∈ Σ1}.
Then the extension T0 ⊆ T1 satisfies (Compfdw), hence is local.

2. Any extension of the theory of posets with functions in a set Σ1 satisfying
{Monσf | f ∈ Σ1} satisfies condition (Embw), hence is local.

This provides us with a large number of concrete examples. For instance
the extensions with functions satisfying monotonicity axioms Monσf of the
following (possibly many-sorted) classes of algebras are local:

400 V. Sofronie-Stokkermans

– any class of algebras with a bounded (semi)lattice reduct, a bounded
distributive lattice reduct, or a Boolean algebra reduct ((Compfdw) holds);

– any extension of a class of algebras with a semilattice reduct, a (dis-
tributive) lattice reduct, or a Boolean algebra reduct, with monotone
functions into an infinite numeric domain ((Compfdw) holds);

– T , the class of totally-ordered sets; DO, the theory of dense totally-
ordered sets ((Compfdw) holds);

– the class P of partially-ordered sets ((Embw) holds).

Similarly, it can be proved that any extension of the theory of reals (integers)
with functions satisfying Monσf into a fixed infinite numerical domain is local

(condition (Compfdw) holds).

Boundedness conditions. Any extension of a theory for which ≤ is reflexive
with functions satisfying (Monσf) and boundedness (Boundtf) conditions is
local [SS06a, SSI07a, SSI07b].

(Boundtf) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a term in the base signature Π0 with variables among
x1, . . . , xn (such that in any model the associated function has the same
monotonicity as f).

Similar results can be given for guarded monotonicity conditions with mutu-
ally disjoint guards [SS06a].

Extensions with Lipschitz functions. The extension R ⊆ R∪(Lλf) of R with
a unary function which is λ-Lipschitz in a point x0 (for λ > 0) satisfies
condition (Compw).

(Lλf) ∀x |f(x)− f(x0)| ≤ λ · |x− x0|

The results described before can easily be extended to a many-sorted framework.
Therefore various additional examples of (many-sorted) theory extensions related
to data structures can be given cf. e.g. [SS06b].

6 Combinations of Local Extensions Satisfying (Compw)

In this and the following sections we study the locality of combinations of lo-
cal theory extensions. In the light of the results in Section 4 we concentrate on
studying which embeddability properties are preserved under combinations of
theories. For the sake of simplicity, in what follows we only consider the condi-
tions (Embw) and (Compw). Analogous results can be given for the conditions
(Embfw), (Compfw), resp. (Embfdw), (Compfdw) and combinations thereof.

We start with a simple case of combinations of local extensions of a base the-
ory: we consider the situation when both components satisfy the embeddability
condition (Compw). We first analyze the simple case of combinations of local
extensions of a base theory T0 by means of sets of mutually disjoint function
symbols. Then some results on combining extensions with non-disjoint sets of
function symbols are discussed.

On Combinations of Local Theory Extensions 401

Theorem 3. Let T0 be a first-order theory with signature Π0 = (Σ0,Pred) and
T1 = T0 ∪K1 and T2 = T0 ∪K2 two extensions of T0 with signatures Π1 = (Σ0 ∪
Σ1,Pred) and Π2 = (Σ0 ∪ Σ2,Pred), respectively. Assume that both extensions
T0 ⊆ T1 and T0 ⊆ T1 satisfy condition (Compw), and that Σ1∩Σ2 = ∅. Then the
extension T0 ⊆ T = T0 ∪ K1 ∪ K2 satisfies condition (Compw). If, additionally,
in Ki all terms starting with a function symbol in Σi are flat and linear, for
i = 1, 2, then the extension is local.

Proof : Let P ∈ PModw(Σ1 ∪ Σ2, T). Then P|Π1
∈ PModw(Σ1, T1), hence P|Π1

weakly embeds into a total model B of T1, such that P|Π0
and B|Π0

are isomor-
phic. Let i : P|Π0

→ B|Π0
be the isomorphism between these two Π0-structures.

We use the isomorphism i to transfer also the Σ2-structure from P to B. That
is, for every f ∈ Σ2 with arity n, and every b1, . . . , bn ∈ B, we define:

fB(b1, . . . , bn) =

⎧⎪⎨⎪⎩
i(fP (i

−1(b1), . . . , i
−1(bn))) if fP (i

−1(b1), . . . , i
−1(bn))

is defined in P

undefined otherwise

With these definitions of Σ2-functions, B|Π2
∈ PModw(Σ2, T2). Therefore, B|Π2

weakly embeds into a total model C of T1, such that B|Π0
and C|Π0

are isomor-
phic. Let j : B|Π0

→ C|Π0
be the isomorphism between these two structures. We

use this isomorphism to transfer, as explained above, the (total) Σ1-structure
from B to C. The algebra A obtained this way from C is a total model of T , and
j◦i : P|Π0

→ A|Π0
is an isomorphism. Thus, the extension T0 ⊆ T = T0∪K1∪K2

satisfies condition (Compw). The last claim is an immediate consequence of The-
orem 2. �

Example 2. The following combinations of theories (seen as extensions of
a first-order theory T0) satisfy condition (Compw) (or in case (4) condition
(Compfdw)):

(1) T0 ∪ Free(Σ1) and T0 ∪ Selc if T0 is a theory and c ∈ Σ0 is injective in T0.
(2) R ∪ Free(Σ1) and R ∪ Lipλc (f), where f
∈ Σ1.
(3) R ∪ Lipλ1

c1 (f) and R ∪ Lipλ2
c2 (g), where f
= g.

(4) T0 ∪ Free(Σ1) and T0 ∪Monσf , where f
∈ Σ1 has arity n, σ : {1, . . . , n} →
{−1, 1, 0}, if T0 is, e.g., a theory of algebras with a bounded semilattice reduct.

A more general result holds, which allows to prove locality also for extensions
which share non-base function symbols.

Theorem 4. Let T0 be an arbitrary first-order theory, and T1 = T0 ∪ K1 and
T2 = T0 ∪ K2 two extensions of T0 with functions in Σ1 and Σ2 respectively,
which satisfy condition (Compw). Assume that there exists a set K of clauses
in signature Σ0 ∪ Σ, where Σ = Σ1 ∩ Σ2 ⊂ Σi, i = 1, 2, such that every
model of T0 ∪Ki is a model of T0 ∪K for i = 1, 2. Then the extension T0 ∪K ⊆
(T0∪K)∪K1∪K2 again satisfies condition (Compw) and hence is a local extension.

402 V. Sofronie-Stokkermans

Proof : Note that if T0 ⊆ T0 ∪Ki satisfies condition (Compw) then the extension
T0 ∪ K ⊆ (T0 ∪ K) ∪ Ki also satisfies condition (Compw). The conclusion now
follows from Theorem 3, taking into account the fact that the signatures (Σ1\Σ)
and (Σ2\Σ) are disjoint. �

Example 3. The following theory extensions satisfy condition (Compw):

(1) T0 ∪ Free(Σ) ⊆ (T0 ∪ Free(Σ ∪Σ1)) ∪ (T0 ∪ Free(Σ) ∪ Selc), provided that T0
is a theory containing an injective function c.

(2) R∪ Free(f) ⊆ (R∪Monf ∪Mong)∪ (R∪ Free(f)∪ Lipλc (h)), where f, g, h are
different function symbols.

(3) R ∪ Lipλ2
c (f) ⊆ (R ∪ Lipλ1

c (f) ∪ Mon(g)) ∪ (R ∪ Lipλ2
c (f) ∪ Free(h)), where

f, g, h are different function symbols and λ1 ≤ λ2.

Proof : Immediate consequences of Theorem 4. (1) is obvious; for (2) note that
every model of R∪Monf ∪Mong is a model of R∪ Free(f); for (3) note that, as

λ1 ≤ λ2, every model of R ∪ Lipλ1
c (f) ∪Mon(g) is a model of R ∪ Lipλ2

c (f). �

7 More General Combinations of Local Theory
Extensions

The result above can be extended to the more general situation in which one of
the extensions, say T0 ⊆ T1 = T0 ∪K1, satisfies condition (Embw) and the other
extension T0 ⊆ T2 = T0 ∪ K2 satisfies condition (Compw), or if both extensions
satisfy condition (Embw). The natural analogon of the proof of Theorem 3 would
be the following: Start with a partial model P of T0 ∪ K1 ∪ K2; extend it, using
property (Embw), to a total model A of T1. The technical problem which occurs
when we now try to use the embedding property for T2 is that we need to be
sure that A remains also a partial model of T2, with the operations inherited
from P . Unfortunately this may not always be the case, as shown below.

Example 4. Let Π0 = ({f},Pred) and let T0 be a Π0-theory (we assume here
that Pred = ∅). Let T1 = T0∪K1, and T2 = T0∪K2 be two theories over extensions
of Π0 with function symbols in Σ1, Σ2. Assume that Σ2 = {g}, Σ1 ∩ Σ2 = ∅,
and K2 = {x = f(x) → g(y) = y} (f and g are unary function symbols).

Let P = ({a, b}, fP , gP , {σP }σ∈Σ1) be a partial Σ0 ∪Σ1 ∪Σ2- algebra, where:

fP is total with fP (a) = b and fP (b) = a;
gP is partial with gP (a) = b and gP (b) is undefined.

P weakly satisfies K2 because the premise of the clause in K2 is always false in
P . Assume that P weakly embeds into a total model A of T1 via a Π1-embedding
h : P ↪→ A, and that A contains an element c
∈ {h(a), h(b)}, such that fA(c) = c.
The algebra A “inherits” the Σ2-operation g from P via h, in the sense that:

– we can define gA(h(a)) := h(gP (a)) = h(b) and
– we assume that gA is undefined in everywhere else.

On Combinations of Local Theory Extensions 403

However, with the Σ2-operation defined this way A does not weakly satisfy K2:
Let β : X → A with β(x) = c and β(y) = h(a). (A, β) does not weakly satisfy
the clause in K2, since:

β(f(x)) = fA(β(x)) = fA(c) = c, whereas

β(g(y)) = gA(β(y)) = gA(h(a)) = h(gP (a)) = h(b)
= h(a) = β(y).

This happens because the variable x in the clause in K2 does not occur below any
function symbol in Σ2.

In what follows we identify conditions which ensure that an extension A of a
partial algebra P which weakly satisfies K2 remains a partial model of K2 with
the Σ2-operations inherited from P .

7.1 Preservation of Truth under Extensions

Lemma 5. Let T0 be a theory with signature Π0 = (Σ0,Pred), and let T0 ⊆
T := T0 ∪K be a theory extension by means of a set K of Σ-flat clauses over the
signature Π = (Σ0∪Σ,Pred). Assume that for each clause C of K all occurrences
of variables in C are below some Σ-function symbol.

Let P ∈ PModw(Σ, T), A ∈ Mod(T0), and h : P ↪→ A be a Π0-embedding.
Then a partial Σ-structure can be defined on A such that A weakly satisfies K,
and h is a weak Π-embedding.

Proof : For every a1, . . . , an ∈ A and every f ∈ Σ define

fA(a1, . . . , an) :=

⎧⎪⎪⎨⎪⎪⎩
a if ∃p1, . . . , pn ∈ P such that all ai = h(pi),

fP (p1, . . . , pn) is defined in P,
and a = h(fP (p1, . . . , pn))

undefined otherwise.

As h is injective, fA is well-defined. By hypothesis, h is a Π0-embedding. With
the definition of operations in Σ given above, h is also a weak Σ-homomorphism.
Let p1, . . . , pn ∈ P and f ∈ Σ be such that fP (p1, . . . , pn) is defined. Then, by the
definition of fA, fA(h(p1), . . . , h(pn)) is defined and equal to h(fP (p1, . . . , pn)).

We now prove that with the operations defined as shown before A weakly
satisfies K. Let C ∈ K and let β : X → A be an assignment of elements in
A to the variables in C. Assume that for every term t occurring in C, β(t) is
defined in A (otherwise, due to the definition of weak satisfiability, (A, β) |=w C
trivially). In order to show that (A, β) |=w C, we construct an assignment α of
elements in P to the variables in C, and use the fact that (P, α) |=w C.

Let t = f(t1, . . . , tk) be an arbitrary term occurring in C, with f ∈ Σ. As β(t)
is defined, fA(β(t1), . . . , β(tk)) is defined in A, hence there exist p1, . . . , pk ∈ P
such that h(pi) = β(ti), fP (p1, . . . , pk) is defined, and fA(β(t1), . . . , β(tk)) =
h(fP (p1, . . . , pn)). As all clauses in K are Σ-flat, all terms ti are variables. In
this way we can associate with every variable x occurring as argument in a term
f(t1, . . . , tn) of C with f ∈ Σ an element px ∈ P such that h(px) = β(x). Assume

404 V. Sofronie-Stokkermans

that for some such (variable) subterm x, two elements of P , say px and qx, can
be associated in this way. Then h(px) = β(x) = h(qx), and the injectivity of
h guarantees that px = qx. This shows that an assignment α : X → P can be
defined, such that for all variables in C occurring below a function symbol in Σ
(hence for all variables in C) α(x) := px. It is easy to see that for every term t
occurring in C, h(α(t)) = β(t). As (P, α) |= C and h is a weak Π-embedding it
follows that (A, β) |= C. �

The result above will be applied in Theorems 7 and 8 in the following form:

Corollary 6. Let T0 be a first-order theory with signature Π0 = (Σ0,Pred). Let
Σ1, Σ2 be two disjoint sets of function symbols, and let Πi = (Σ0 ∪ Σi,Pred),
i = 1, 2, and Π = (Σ0 ∪ Σ1 ∪ Σ2,Pred). Let K2 be a set of Σ2-flat clauses over
Π2. Assume that for each clause C of K2 all variables in C occur below some
function symbol in Σ2.

Let P be a partial Π-structure such that P|Π0
is a total model of T0, and

P weakly satisfies K2. Let A be a total Π1-structure, and let h : P ↪→ A be a
weak Π1-embedding. Then a partial Σ2-structure can be defined on A such that
A weakly satisfies K2, and h is a weak Π-embedding.

7.2 Combining Local Extensions, One of Which Satisfies (Compw)

We now analyze the case of combinations of theories in which one component
satisfies condition (Compw) and the other component satisfies condition (Embw).

Theorem 7. Let T0 be a first-order theory with signature Π0 = (Σ0,Pred), and
let T1 = T0 ∪ K1 and T2 = T0 ∪ K2 be two extensions of T0 with signatures
Π1 = (Σ0 ∪Σ1,Pred) and Π2 = (Σ0 ∪Σ2,Pred), respectively. Assume that:

(1) T0 ⊆ T1 satisfies condition (Compw),
(2) T0 ⊆ T2 satisfies condition (Embw),
(3) K1 is a set of Σ1-flat clauses in which all variables occur below a Σ1-function.

Then the extension T0 ⊆ T0 ∪ K1 ∪ K2 satisfies (Embw). If, additionally, in Ki

all terms starting with a function symbol in Σi are flat and linear, for i = 1, 2,
then the extension is local.

Proof : Let P ∈ PModw(Σ1 ∪ Σ2, T0 ∪ K1 ∪ K2). Then P|Π2
∈ PModw(Σ2, T2),

hence P|Π2
weakly embeds into a total model B of T2. By (3), in K1 all variables

occur below some function symbol in Σ1, and all clauses in K1 are Σ1-flat. Then,
by Lemma 5, we can transform B into a weak partial model B′ of T1 (with the
Σ2-structure inherited from B and the Σ1-structure inherited from P). But then
B′ weakly embeds into a total model C of T1 such that B′

|Π0
and C|Π0

are Π0-

isomorphic. We can use this isomorphism to transfer the (total) Σ2-structure
from B to C. This way, we obtain a total model A of T0 ∪ K1 ∪ K2 in which P
weakly embeds. The last claim is an immediate consequence of Theorem 2. �

On Combinations of Local Theory Extensions 405

Example 5. The following theory extensions satisfy (Embw), hence are local:

(1) Eq ⊆ Free(Σ1)∪L, where Eq is the pure theory of equality, without function
symbols, and L the theory of lattices.

(2) T0 ⊆ (T0 ∪ Free(Σ1)) ∪ (T0 ∪Mon(Σ2)), where Σ1 ∩Σ2 = ∅, and T0 is, e.g.,
the theory of posets.

An analogon of Theorem 4 holds also in this case.

7.3 Combinations of Theory Extensions Satisfying (Embw)

We identify conditions under which embeddability conditions for the component
theories imply embeddability conditions for the theory combination.

Theorem 8. Let T0 be an arbitrary theory in signature Π0 = (Σ0,Pred). Let
K1 and K2 be two sets of clauses over signatures Πi = (Σ0 ∪ Σi,Pred), where
Σ1 and Σ2 are disjoint. We make the following assumptions:

(A1) The class of models of T0 is closed under direct limits of diagrams in
which all maps are embeddings (or, equivalently, T0 is a ∀∃ theory).

(A2) Ki is Σi-flat and Σi-linear for i = 1, 2, and T0 ⊆ T0 ∪ Ki, i = 1, 2
are both local extensions of T0.

(A3) For all clauses in K1 and K2, every variable occurs below some ex-
tension function.

Then T0 ∪ K1 ∪ K2 is a local extension of T0.

Proof : The proof uses the semantical characterization of locality in Theorems 1
and 2. Assumption (A2) guarantees that the extensions T0 ⊆ T0 ∪ Ki, i = 1, 2
are both local and that, by Theorem 1, they satisfy condition (Embw). We show
that T0 ⊆ T0∪K1∪K2 satisfies condition (Embw), hence, by Theorem 2, is local.

Let Π = (Σ0 ∪ Σ1 ∪ Σ2,Pred) and let P be a partial Π-algebra which weakly
satisfies K1 ∪ K2 and whose Π0-reduct is a total model of T0. By the locality of
the extension T0 ⊆ T0 ∪ K1, there exists a total Π1-model of T0 ∪ K1, which we
denote P 1

1 , and a weak embedding π1
1 : P ↪→ P 1

1 . By Lemma 5 and Corollary 6,
a partial Σ2-structure can be defined on P 1

1 such that P 1
1 weakly satisfies K2

and π1
1 is a weak Π-embedding.

Thus, P 1
1 becomes a partial Π2-algebra which weakly satisfies K2, and is a

total Π0-model of T0. By the locality of the extension T0 ⊆ T0 ∪ K2, there
exists a total Π2-model of T0 ∪K2, which we denote P 1

2 , and a weak embedding
π1
2 : P 1

1 ↪→ P 1
2 . Again, a partial Σ1-structure can be defined on P 1

2 such that P 1
2

weakly satisfies K1 and π1
2 is a weak Π-embedding.

By iterating this process we obtain a sequence of partial Π-structures P i
1, P

i
2 ,

i ≥ 1, all of whose reducts to Π0 are total models of T0, which weakly satisfy
K1 ∪ K2, and have the property that, for every i ≥ 1, P i

1 is a total Σ1-algebra,
P i
2 is a total Σ2-algebra, and there are weak Π-embeddings πi

1 : P i
1 → P i

2 and
πi
2 : P i

2 → P i+1
1 .

406 V. Sofronie-Stokkermans

P 1
1

π1
1

���
��

��
��

P 2
1

π2
1

���
��

��
��

P 3
1

π3
1

���
��

��
��

�
. . .

P

π1

����������
P 1
2

π1
2

���������
P 2
2

π2
2

���������
P 3
2 . . .

If P i
l precedes P j

k in the chain above (where k, l ∈ {1, 2} and i, j ≥ 1), let

gkjli : P i
l → P j

k be the composition of the corresponding weak embeddings from P i
l

to P j
k . Being a composition of weak embeddings, gkjli is itself a weak embedding.

Let P
∐

(
∐

i≥1(P
i
1

∐
P i
2)) be the disjoint union of all partial Π-structures con-

structed this way. In this disjoint union we identify all elements that are images
of the same element in some P i

k. This is, we define an equivalence relation ≡ on

this disjoint union by x ≡ y if x ∈ P i
l , y ∈ P j

k and either

(i) P i
l precedes P j

k in the chain above and gkjli (x) = y, or

(ii) P j
k precedes P i

l in the chain above and glikj(y) = x.

As for every l ∈ {1, 2}, i ≥ 1, glili is the identity map, if x ≡ y for x, y ∈ P i
l then

x = y. It is easy to see that ≡ is an equivalence relation.

Let A0 := P
∐

(
∐

i≥1(P
i
1

∐
P i
2))/≡. We show that total functions in Σ0∪Σ1∪Σ2

and predicates in Pred can be defined on A0 such that the expansion A of A0

obtained this way is a (total) model of T0∪K1∪K2, and that the map g : P → A
defined by g(p) = [p] (the equivalence class of p in A) is a weak Π-embedding.

A Π-structure on A can be defined in a canonical way (the usual way of con-
structing direct limits). For the sake of completeness, we present the details of
the construction in what follows:

– Interpretation of signature Π0. We first define the Σ0-functions. Let f ∈ Σ0

with arity n, and let [a1], . . . , [an] ∈ A. Then, for every 1 ≤ j ≤ n, there exist

ij ≥ 1 such that aj ∈ P
ij
1

∐
P

ij
2 . Let m = max{ij | 1 ≤ j ≤ n}. Let b1, . . . , bn

be the images of a1, . . . , an in Pm+1
1 . By the definition of ≡, [bj] = [aj] for

every 1 ≤ j ≤ n. Pm+1
1 is a total Σ0-algebra, so b = fPm+1

1
(b1, . . . , bn)

exists in Pm+1
1 . The fact that the definition does not depend on the rep-

resentatives follows from the fact that all embeddings in the diagram are
Σ0-homomorphisms.

The predicates in Pred are defined in a similar way. The fact that the defini-
tions do not depend on the choice of representatives in the equivalence classes
follows from the fact that all the maps in the diagram are Π0-embeddings.

– Interpretation of the signature Σ1 ∪ Σ2. We define the Σ1-functions (the
Σ2-functions can be defined similarly). Let f ∈ Σ1 with arity n, and let
[a1], . . . , [an] ∈ A. Then, for every 1 ≤ j ≤ n, there exist ij ≥ 1 such that

aj ∈ P
ij
1

∐
P

ij
2 . Let m = max{ij | 1 ≤ j ≤ n}. Let b1, . . . , bn be the images

of a1, . . . , an in Pm+1
1 . By the definition of ≡, [bj] = [aj] for every 1 ≤ j ≤ n.

On Combinations of Local Theory Extensions 407

Pm+1
1 is a total Σ1-algebra, so b = fPm+1

1
(b1, . . . , bn) exists in Pm+1

1 . The

equivalence class of b does not depend on the choice of representatives of
the equivalence classes [a1], . . . , [an]. Indeed, assume that c1, . . . , cn are im-

ages of a1, . . . , an in P k+1
1 , with e.g. k ≥ m. By the definition of g1,k+1

1,m+1 :

Pm+1
1 → P k+1

1 , cj = g1,k+1
1,m+1(bj). As fPm+1

1
(b1, . . . , bn) is defined in Pm+1

1 ,

we know that g1,k+1
1,m+1(fPm+1

1
(b1, . . . , bn)) = fPk+1

1
(g1,k+1

1,m+1(b1), . . . , g
1,k+1
1,m+1(bn))

= fPk+1
1

(c1, . . . , cn). It follows therefore that b ≡ fPk+1
1

(c1, . . . , cn), so the

equivalence class of b does not depend on the choice of the representatives
of [a1], . . . , [an]. We can define fA([a1], . . . , [an]) := [b]. fA is well-defined for
every f ∈ Σ1.

The Π-structure A is the direct limit of the diagram defined by the partial
structures P i

j and the corresponding Π-embeddings πi
j , i ∈ N, j ∈ {1, 2}.

It can be seen that for every k, i, the map gik : P i
k → A defined by g(x) := [x] is

a weak Π-embedding.

– The fact that gik is a Σ0-homomorphism is obvious.

– We show that gik is a weak Σ1-homomorphism. Let f ∈ Σ1 of arity n and
x1, . . . , xn ∈ P i

k be such that fP i
k
(x1, . . . , xn) is defined. Then, by the defini-

tion of fA, fA([x1], . . . , [xn]) = [fP i
k
(x1, . . . , xn)] = gik(fP i

k
(x1, . . . , xn)).

The fact that gik is a Σ2-homomorphism can be proved analogously.

– We prove that gik is injective. Assume that gik(x) = gik(y) for x, y ∈ P i
k. Then

x ≡ y, hence gkiki(x) = y, i.e. x = y (since gkiki is the identity map). This also
shows that g : P → A, g(p) = [p] is an injective weak homomorphism.

– We prove that gik is an embedding w.r.t. Pred. Let Q ∈ Pred be an n-ary
predicate symbol, and let x1, . . . , xn ∈ P i

k. We show that QP i
k
(x1, . . . , xn)

if and only if QA(g
i
k(x1), . . . , g

i
k(xn)). By the way QA is constructed it is

obvious that if QP i
k
(x1, . . . , xn) then QA([x1], . . . , [xn]). Conversely, assume

that QA([x1], . . . , [xn]). By definition, there exists m and b1, . . . , bn ∈ Pm+1
1

such that [x1] = [b1], . . . , [xn] = [bn] and QPm+1
1

(b1, . . . , bn). The conclusion

now follows from the fact that the composition of all maps in the diagram
leading from P i

k to Pm+1
1 (or vice versa) is a weak Π-embedding, and hence

also QP i
k
(x1, . . . , xn).

The reduct to Π0 of A is the direct limit of a diagram of models of T0, in which
all maps are embeddings. Therefore, if T0 is closed under such direct limits (i.e.
it is a ∀∃ theory) then A is a model of T0.

Finally, we show that A satisfies all clauses in K1∪K2. Let C ∈ K1 (the case C ∈
K2 is similar). Let β : X → A. We know that every variable of C occurs below a
function symbol in Σ1, and that all terms of C containing a function symbol in
Σ1 are of the form f(x1, . . . , xn). For every variable x occurring in C, β(x) = [ax],
where ax ∈ P jx

k for some jx ≥ 1. Let m = max{jx | x variable of C}, and let bx

408 V. Sofronie-Stokkermans

be the image of ax in Pm+1
1 for each variable x of C. Then β(f(x1, . . . , xn)) is

defined in Pm+1
1 for every term of C of the form f(x1, . . . , xn). In fact, it is easy

to see that for every term occurring in C, β(t) = [bt] for some bt ∈ Pm+1
1 . Let

α : X → Pm+1
1 with α(x) := bx for every variable x of C. It can be seen that

gm+1
1 (α(t)) = β(t) for every subterm t of C. As Pm+1

1 satisfies C and all terms
in C are defined under the assignment α it follows that there exists a literal L
in C such that (Pm+1

1 , α) |=w L. We know that gm+1
1 : Pm+1

1 ↪→ A is a weak
embedding w.r.t. Π1. It therefore preserves the truth of positive and negative
Π1-literals. Therefore, as g

m+1
1 (α(t)) = β(t) for every term t of C, (A, β) |= L.

�

Example 6. The following combinations of theories (seen as extensions of the
theory T0) satisfy condition (Embw):

(1) The combination of the theory of lattices and the theory of integers with
injective successor and predecessor is local (local extension of the theory of
pure equality).

(2) T0 ⊆ T0 ∪ Mon(Σ), where Mon(Σ) =
∧

f∈Σ Mon
σ(f)
f , and T0 is one of the

theories of posets, (dense) totally-ordered sets, (semi)lattices, distributive lat-
tices, Boolean algebras, R.

8 Hierarchical and Modular Reasoning

In what follows we discuss some issues related to modular reasoning in combi-
nations of local theory extensions. By results in [SS05], hierarchical reasoning is
always possible in local theory extensions. In this section we analyze possibilities
of modular reasoning, and, in particular, the form of information which needs
to be exchanged between provers for the component theories when reasoning in
combinations of local theory extensions.

8.1 Hierarchical Reasoning in Local Theory Extensions

Consider a local theory extension T0 ⊆ T0 ∪K, where K is a set of clauses in the
signature Π = (Σ0 ∪ Σ1,Pred). The locality condition requires that, for every
set G of ground clauses, T1 ∪ G is satisfiable if and only if T0 ∪ K[G] ∪ G has
a weak partial model with additional properties. All clauses in K[G] ∪ G have
the property that the function symbols in Σ1 only occur at the root of ground
terms. We can therefore flatten and purify K[G] ∪G:

Flattening and Purification. K[G]∪G can be flattened and purified (i.e. the
function symbols in Σ1 are separated from the other symbols) by introducing,
in a bottom-up manner,

– new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ1, gi ground
Σ0 ∪Σc-terms (where Σc is a set of constants which contains the constants
introduced by flattening, resp. purification), together with

– corresponding definitions ct ≈ t.

On Combinations of Local Theory Extensions 409

The process clearly terminates. It transforms the class of formulae K[G]∪G into:

– a class K0 ∪G0 of Π0 ∪Σc-clauses obtained from K[G] ∪G by replacing all
Σ1-terms with new constants; and

– a set D of equalities of the form cf(g1,...,gn) ≈ f(g1, . . . , gn) obtained in the
purification process, where f ∈ Σ1 and g1, . . . , gn are ground Σ0∪Σc-terms.

Example 7. Assume that T0 is the theory R of real numbers.

(1) Let Σ1 = {f} and K = {∀x, y(x ≤ y → f(x) ≤ f(y))}. Let G consist of the
following ground clauses {a = b+ 1, f(a) < f(b)}. Then K[G] consists of all
instances of K in which the terms starting with the extension function f are
among the subterms in G, i.e.:

K[G] = {a ≤ a → f(a) ≤ f(a), a ≤ b → f(a) ≤ f(b),
b ≤ a → f(b) ≤ f(a), b ≤ b → f(b) ≤ f(b)}

To flatten K[G] ∪ G we introduce new subterms c1 and c2 for the ground
terms f(a) resp. f(b), together with definitions D = {c1 ≈ f(a), c2 ≈ f(b)}.
We thus transform K[G] ∪ G into K0 ∪ G0 ∪D where D is as above, G0 =
{a = b+ 1, c1 < c2} and:

K0 = {a≤a → c1 ≤ c1, a≤ b → c1 ≤ c2, b≤ a → c2 ≤ c1, b≤ b → c2 ≤ c2}

Since ≤ is reflexive, the presentation of K[G] and K0 can be simplified by
omitting the redundant clauses (in this case the first and last clause).

(2) Assume now that K has the form:

∀x, y, z(x ≤ z ∧ z ≤ y ∧ z ≤ 100 → f(x) ≤ f(y)).

Let G = {a = b + 1, f(a) < f(b)} as above. Since there are variables in K
which do not occur below function symbols K[G] is of the form:

{∀z(a≤z ∧ z≤a ∧ z≤100 → f(a)≤f(a)), ∀z(a≤z ∧ z≤b ∧ z≤100 → f(a)≤f(b)),
∀z(b≤z ∧ z≤a ∧ z≤100 → f(b)≤f(a)),∀z(b≤z ∧ z≤b ∧ z≤100 → f(b)≤f(b))}

i.e. contains universally quantified variables. The flattening of K[G] ∪ G
proceeds as before, and transforms K[G] ∪G into K0 ∪G0 ∪D where D and
G0 are as above and:

K0 = {∀z(a≤z ∧ z≤a ∧ z≤100 → c1≤c1), ∀z(a≤z ∧ z≤b ∧ z≤100 → c1≤c2),
∀z(b≤z ∧ z≤a ∧ z≤100 → c2 ≤ c1), ∀z(b≤z ∧ z≤b ∧ z≤100 → c2≤c2)}

(3) Let Σ1 = {f, g, h}, K = {∀x f(g(x)) > x}, G = {h(f(g(a))) = b}, where
a, b are constants. Then K[G] = {f(g(a)) > a}; K0 is obtained by first
replacing g(a) with a new constant c1, then replacing f(c1) with c2, and
finally replacing h(c2) with c3 (and adding c1 ≈ g(a), c2 ≈ f(c1), and c3 ≈
h(c2) to D). The purified set of clauses consists of:

K0 = {c2 > a}, G0 = {c3 = b}, D = {c1 ≈ g(a), c2 ≈ f(c1), c3 ≈ h(c2)}.

Assume now that G is h(g(a)) = b. There are no instances of K which only
contain extension subterms occurring in G. Thus, in this case K[G] = ∅.

410 V. Sofronie-Stokkermans

These flattening and purification transformations preserve both satisfiability and
unsatisfiability with respect to total algebras, and also with respect to partial
algebras in which all ground subterms which are flattened are defined [SS05].

For the sake of simplicity in what follows we will always flatten and then purify
K[G] ∪ G. Thus we ensure that D consists of ground unit clauses of the form
f(c1, . . . , cn)≈c, where f ∈ Σ1, and c1, . . . , cn, c are constants.

Lemma 9 ([SS05]). Let K be a set of clauses and G a set of ground clauses,
and let K0 ∪G0 ∪D be obtained from K[G]∪G by flattening and purification, as
explained above. Assume that T0 ⊆ T0 ∪ K is a local theory extension. Then the
following are equivalent:

(1) T0 ∪K[G]∪G has a partial model in which all terms in st(K, G) are defined.
(2) T0∪K0∪G0∪D has a partial model with all terms in st(K0, G0, D) defined.
(3) T0 ∪ K0 ∪G0 ∪N0 has a (total) model, where

N0 = {
∧n

i=1 ci ≈ di → c ≈ d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

Example 8. Let T0 be the theory R of real numbers, Σ1 = {f}, K = {∀x, y(x ≤
y → f(x) ≤ f(y))} and G = {a = b + 1, f(a) < f(b)} as in Example 7(1).
Any extension of R with a monotone function f is local. Hence, by Lemma 9,
T0 ∪ K ∪G |=⊥ iff T0 ∪K0 ∪G0 ∪N0 |=⊥, where G0 = {a = b+ 1, c1 < c2},

K0 = {a≤ a → c1 ≤ c1, a≤ b → c1 ≤ c2, b≤a → c2 ≤ c1, b≤ b → c2 ≤ c2}
N0 = {a≈ a → c1 ≈ c1, a≈ b → c1 ≈ c2, b≈a → c2 ≈ c1, b≈ b → c2 ≈ c2}

Since ≤ and ≈ are reflexive, the presentation can be simplified by omitting the
first and last clause in K0 and N0. It is easy to check that R∪K0 ∪G0 ∪N0 |=⊥.

8.2 Modular Reasoning in Local Combinations of Theory
Extensions

Let T1 and T2 be theories with signatures Π1 = (Σ1,Pred) and Π2 = (Σ2,Pred),
and G a set of ground clauses in the joint signature with additional constants
Πc = (Σ0∪Σ1∪Σ2∪Σc,Pred). We want to decide whether T1 ∪ T2 ∪G |=⊥.

The set G of ground clauses can be flattened and purified as explained above. For
the sake of simplicity, everywhere in what follows we will assume w.l.o.g. that
G = G1 ∧ G2, where G1, G2 are flat and linear sets of clauses in the signatures
Π1, Π2 respectively, i.e. for i = 1, 2, Gi = G0

i ∧ G0 ∧ Di, where G0
i and G0

are clauses in the base theory and Di a conjunction of unit clauses of the form
f(c1, . . . , cn) = c, f ∈ Σi.

Corollary 10. Assume that T1 = T0 ∪K1 and T2 = T0 ∪K2 are local extensions
of a theory T0 with signature Π0 = (Σ0,Pred), where Σ0 = Σ1 ∩ Σ2, and that
the extension T0 ⊆ T0 ∪K1 ∪K2 is local. Let G = G1 ∧G2 be a set of flat, linear
and purified ground clauses, such that Gi = G0

i ∧G0∧Di are as explained above.
Then the following are equivalent:

On Combinations of Local Theory Extensions 411

(1) T1 ∪ T2 ∪ (G1 ∧G2) |=⊥,
(2) T0 ∪ (K1 ∪ K2)[G1 ∧G2] ∪ (G0

1 ∧G0 ∧D1) ∧ (G0
2 ∧G0 ∧D2) |=⊥,

(3) T0 ∪ K1[G1] ∪ K2[G2] ∪ (G0
1 ∧G0 ∧D1) ∧ (G0

2 ∧G0 ∧D2) |=⊥,
(4) T0 ∪ K0

1 ∪ K0
2 ∪ (G0

1 ∪G0) ∪ (G0
2 ∪G0) ∪N1 ∪N2 |=⊥, where

N1 = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D1}

N2 = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D2}

and K0
i is the formula obtained from Ki[Gi] after purification and flattening,

taking into account the definitions from Di.

Proof : Direct consequence of Lemma 9. The fact that (K1 ∪ K2)[G1 ∧ G2] =
K1[G1]∪K2[G2] is a consequence of the fact that Gi are flattened and for i = 1, 2,
Ki contains only function symbols in Σi. The equivalence of (3) and (4) follows
from the fact that Σ1 and Σ2 only have function symbols in Σ0 in common. �

The method for hierarchic reasoning described in Corollary 10 is modular, in the
sense that once the information about Σ1∪Σ2-functions has been separated into
a Σ1-part and a Σ2-part, it does not need to be recombined again. For reasoning
in the combined theory one can proceed as follows:

– Purify (and flatten) the goal G, and thus transform it into an equisatisfiable
conjunction G1 ∧ G2, where Gi consists of clauses in the signature Πi, for
i = 1, 2, and Gi = G0

i ∧G0 ∧Di, as above.
– The formulae containing extension functions in the signature Σi, Ki[Gi]∧Gi

are “reduced” (using the equivalence of (3) and (4)) to the formula K0
i ∧

G0
i ∧G0 ∧Ni in the base theory.

– The conjunction of all the formulae obtained this way, for all component
theories, is used as input for a decision procedure for the base theory.

Remark 11. Let T0 ⊆ T0 ∪ Ki be local extensions for i = 1, 2. Assume that
Ki are Σi-flat and Σi-linear and all variables in clauses in Ki occur below a
Σi-symbol, and that the extension T0 ⊆ T0 ∪ K1 ∪ K2 is local. Let G = G1 ∧G2

be as constructed before. Assume that T0 ∪ (K1 ∧ G1) ∧ (K2 ∧ G2) |=⊥. Then
we can construct a ground formula I which contains only function symbols in
Σ0 = Σ1 ∩Σ2 such that (T0 ∪ K1) ∧G1 |= I and (T0 ∪K2) ∧G2 ∧ I |=⊥.

Proof : We assumed that the goal is flat and linear, i.e. Gi = G0
i ∧G0 ∧Di where

G0
i , G0 contains only function symbols in Σ0 and Di is a set of definitions of the

form c ≈ f(c1, . . . , cn) with f ∈ Σi. If T0 ∪ (K1 ∧G1) ∧ (K2 ∧G2) |=⊥ then, by
Corollary 10 (with the notations used there):

T0 ∪ K0
1 ∪ K0

2 ∪ (G0
1 ∪G0) ∪ (G0

2 ∪G0) ∪N1 ∪N2 |=⊥.

Obviously, every model of T0 which satisfies K1∧G0
1∧G0∧D1 is also a model of

T0 ∪K0
1 ∪G0

1 ∪G0 ∪N1, and every model of T0 which satisfies K2 ∧G0
2 ∧G0 ∧D2

412 V. Sofronie-Stokkermans

is also a model of T0 ∪ K0
2 ∪G0

2 ∧G0 ∪N2. Let I = K0
1 ∪G0

1 ∪G0 ∪N1. Then

T1 ∧G0
1 ∧G0 ∧D1 |= I,

I ∧ T2 ∧G0
2 ∧G0 ∧D2 |= T0 ∪ (K0

1 ∪G0
1 ∪G0 ∪N1) ∪ (K0

2 ∪G0
2 ∪G0 ∪N2) |=⊥ .

All variables in clauses in Ki occur below a Σi-symbol, so Ki[Gi] (hence also K0
i)

is ground for i = 1, 2, i.e. I is quantifier-free. �

If the goal is not flattened, then we can flatten and purify it first and use The-
orem 11 to construct an interpolant I1. We can now construct I from I1 by
replacing each constant ct introduced in the purification process (and therefore
contained in a definition ct ≈ t in D1∪D2) with the term t. It is easy to see that
I satisfies the required conditions. We can in fact prove that only information
over the shared signature (i.e. shared functions and constants) is necessary.

Theorem 12 ([SS06a]). With the notations above, assume that
G1∧G2 |=T1∪T2⊥. Then there exists a ground formula I, containing only con-
stants shared by G1 and G2, with G1 |=T1∪T2 I and I ∧G2 |=T1∪T2⊥.

9 Conclusions

We presented criteria for recognizing situations in which combinations of theory
extensions of a base theory are again local extensions of the base theory. We
showed, for instance, that if both component theories satisfy the embeddabil-
ity condition (Compw), which guarantees that we can always embed a partial
model into one with isomorphic support, then the combination of the two the-
ories again satisfies condition (Compw). The main problem which we needed to
overcome when considering more general combinations of local theory exten-
sions was the preservation of truth of clauses when extending partial operations
to total operations in a partial algebra. We identified some conditions which
guarantee that this is the case. These results allow to recognize wider classes of
local theory extensions, and open the way for studying possibilities of modular
reasoning in such extensions. From the point of view of modular reasoning in
such combinations of local extensions of a base theory, it is interesting to analyze
the exact amount of information which needs to be exchanged between provers
for the component theories. We showed that if we start with a goal in purified
form G = G1 ∧G2, it is sufficient to exchange only ground formulae containing
only constants and function symbols common to G1 ∧T1 and G2 ∧T2. We would
like to understand whether there are any links between the results described
in this paper and other methods for reasoning in combinations of theories over
non-disjoint signatures e.g. by Ghilardi [Ghi04].

References

[BG96] Basin, D.A., Ganzinger, H.: Complexity analysis based on ordered reso-
lution. In: Proc. 11th IEEE Symposium on Logic in Computer Science
(LICS 1996), pp. 456–465. IEEE Computer Society Press (1996)

[BG01] Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered
resolution. Journal of the ACM 48(1), 70–109 (2001)

On Combinations of Local Theory Extensions 413

[BG07] Baader, F., Ghilardi, S.: Connecting many-sorted theories. The Journal of
Symbolic Logic 72(2), 535–583 (2007)

[Bur86] Burmeister, P.: A Model Theoretic Oriented Approach to Partial Algebras:
Introduction to Theory and Application of Partial Algebras, Part I. Math-
ematical Research, vol. 31. Akademie-Verlag, Berlin (1986)

[Bur95] Burris, S.: Polynomial time uniform word problems. Mathematical Logic
Quarterly 41, 173–182 (1995)

[Gan01] Ganzinger, H.: Relating semantic and proof-theoretic concepts for poly-
nomial time decidability of uniform word problems. In: Proc. 16th IEEE
Symposium on Logic in Computer Science (LICS 2001), pp. 81–92. IEEE
Computer Society Press (2001)

[Ghi04] Ghilardi, S.: Model theoretic methods in combined constraint satisfiability.
Journal of Automated Reasoning 33(3-4), 221–249 (2004)

[GM92] Givan, R., McAllester, D.: New results on local inference relations. In: Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR 1992), pp. 403–412. Morgan Kaufmann Press
(1992)

[GSS01] Ganzinger, H., Sofronie-Stokkermans, V.: Combining local equational Horn
theories. Unpublished manuscript (2001)

[GSSW04] Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular Proof
Systems for Partial Functions with Weak Equality. In: Basin, D., Rusinow-
itch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 168–182. Springer,
Heidelberg (2004)

[GSSW06] Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof
systems for partial functions with Evans equality. Information and Compu-
tation 204(10), 1453–1492 (2006)

[McA93] McAllester, D.: Automatic recognition of tractability in inference relations.
Journal of the Association for Computing Machinery 40(2), 284–303 (1993)

[NO79] Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems (1979)

[SS05] Sofronie-Stokkermans, V.: Hierarchic Reasoning in Local Theory Extensions.
In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234.
Springer, Heidelberg (2005)

[SS06a] Sofronie-Stokkermans, V.: Interpolation in Local Theory Extensions. In:
Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 235–250. Springer, Heidelberg (2006)

[SS06b] Sofronie-Stokkermans, V.: Local reasoning in verification. In: Autexier, S.,
Mantel, H. (eds.) IJCAR 2006 Workshop: VERIFY 2006: Verification Work-
shop. IJCAR 2006 Workshop Proceedings, pp. 128–145, Seattle, USA (2006)

[SSI07a] Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local
extensions of ordered structures. In: Proceedings of ISMVL 2007, paper 1.
IEEE Computer Society (2007)

[SSI07b] Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local
extensions of ordered structures. Journal of Multiple-Valued Logics and Soft
Computing 13(4–6), 397–414 (2007)

Interprocedural Shape Analysis
for Effectively Cutpoint-Free Programs

J. Kreiker1, T. Reps2,�, N. Rinetzky3,��, M. Sagiv3,
Reinhard Wilhelm4, and E. Yahav5,���

1 Technical University of Munich
joba@model.in.tum.de

2 University of Wisconsin
reps@cs.wisc.edu
3 Tel Aviv University

{maon,msagiv}@tau.ac.il
4 University des Saarlandes
wilhelm@cs.uni-sb.de

5 Technion, Haifa, Israel
yahave@cs.technion.ac.il

Abstract. We present a framework for local interprocedural shape analysis that
computes procedure summaries as transformers of procedure-local heaps (the
parts of the heap that the procedure may reach). A main challenge in procedure-
local shape analysis is the handling of cutpoints, objects that separate the input
heap of an invoked procedure from the rest of the heap, which—from the view-
point of that invocation—is non-accessible and immutable.

In this paper, we limit our attention to effectively cutpoint-free programs—
programs in which the only objects that separate the callee’s heap from the rest
of the heap, when considering live reference fields, are the ones pointed to by
the actual parameters of the invocation. This limitation (and certain variations of
it, which we also describe) simplifies the local-reasoning about procedure calls
because the analysis needs not track cutpoints. Furthermore, our analysis (con-
servatively) verifies that a program is effectively cutpoint-free,

1 Introduction

Shape-analysis algorithms statically analyze a program to determine information about
the heap-allocated data structures that the program manipulates. The algorithms are
conservative (sound), i.e., the discovered information is true for every input. Handling
the heap in a precise manner requires strong pointer updates [3]. However, performing

� Supported by NSF under grants CCF-0540955, CCF-0810053, and CCF-0904371, by ONR
under grant N00014-09-1-0510, by ARL under grant W911NF-09-1-0413, and by AFRL
under grant FA9550-09-1-0279.

�� Supported in part by a Royal Academy of Engineering research fellowship, and in part by
EPSRC.

��� Deloro Fellow.

A. Voronkov and C. Weidenbach (Eds.): Ganzinger Festschrift, LNCS 7797, pp. 414–445, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 415

strong pointer updates requires a flow-sensitive and context-sensitive analysis and ex-
pensive heap abstractions, which may be doubly-exponential in the program size [25].
The presence of procedures escalates the problem because of interactions between the
program stack and the heap [22] and because recursive calls may introduce additional
exponential factors in an analysis. This makes interprocedural shape analysis a chal-
lenging problem.

This paper introduces a new approach for local [10,18] interprocedural shape analy-
sis for a class of imperative programs. The main idea is to restrict the aliasing between
live access paths at procedure calls. This allows procedure invocations to be analyzed
ignoring non-relevant parts of the heap, more specifically, the parts of the heap not
reachable from actual parameters. Moreover, shape analysis verifies that the above re-
strictions are satisfied.

The restricted class of programs is chosen based on observations made in [20].
There, Rinetzky et al. present a non-standard semantics in which procedures operate
on procedure-local heaps containing only the objects reachable from actual parame-
ters. The most complicated aspect of [20] is the treatment of sharing from the global
heap and local variables of pending calls into the procedure-local heap. The problem
is that the local heap can be accessed via access paths that bypass actual parameters.
Therefore, objects in the local heap are treated differently when they separate the local
heap (accessible by a procedure) from the rest of the heap (which—from the viewpoint
of that procedure—is non-accessible and immutable). These objects are referred to as
cutpoints [20].

Example 1. Fig. 1 illustrates the notions of local heaps and cutpoints. To gain intuition, Fig. 1
shows these notions using the familiar store-based semantics. (See, e.g., [18]). The figure depicts
a memory state of a program comprised of four procedures: main, foo, bar, and zoo. The
figure depicts a memory state that may occur at the entry to zoo. The stack of activation records
is depicted on the left side of the diagram. Each activation record is labeled with the name of the
procedure it is associated with. Thus, as we can see, zoo was invoked by bar; procedure bar
was invoked by foo; and foo was invoked by the main procedure. The activation record at the
top of the stack pertains to the current procedure (zoo). All other activation records pertain to
pending procedure calls. Thus, for example, the access paths z1.f1.f1, y9, and x5.f2 are
pending access paths.

Heap-allocated objects are depicted as rectangles labeled with their location. The value of
a reference variable (resp. field) is depicted by an edge labeled with the name of the variable
(resp. field). The shaded cloud marks the part of the heap that zoo can access (i.e., the part of the
heap containing the relevant objects for the invocation). The cutpoints for the invocation of zoo
(u8 and u9) are heavily shaded. Note that u7 is not a cutpoint because it is also pointed to by
h7 , zoo’s formal parameter.

Cutpoints present a major challenge for shape abstractions: Procedure-local heaps to-
gether with special handling of cutpoints was found to be key in obtaining efficient
and precise interprocedural shape-analysis algorithms [28]. Thus, the shape abstraction
cannot abstract away the sharing patterns induced by cutpoints between the procedure-
local heap of the procedure and the rest of the heap. These sharing patterns may lack
any regular shape. However, the regularity of the sharing pattern is, in fact, what enables
the effective shape abstraction of unbounded linked data structures.

416 J. Kreiker et al.

f1

f2

f1

f1

f1

f2

f1

f1 f2

f1

u7

u11
u12

u8
u10

u9u6

u5

u1
u2

u3

u4

f2
f1

Stack Heap

zoo

bar

foo

main 1

x7

y9

x5

9

xx5

h7

z
z

x9

Fig. 1. An illustration of the cutpoints for an invocation in a store-based small-step (stack-based)
operational semantics at the entry to zoo. We assume that h7 is zoo’s formal parameter.

We observe that cutpoints need special treatment in the analysis of a procedure be-
cause the caller may use its direct references to the cutpoint after the procedure returns.
We develop an interprocedural shape analysis in which such direct usages are forbid-
den. We refer to a reference that, at the time when a procedure is invoked, points to a
cutpoint and does not come from an object in the callee’s local heap as a piercing refer-
ence for that invocation. An execution is effectively cutpoint-free if in every invocation
that occurs during the execution, all the piercing references for that invocation are not
live [26] at the time of the invocation, i.e., their r-values are not used later on in the
execution before being set. A program is effectively cutpoint-free if all its executions
are. When analyzing effectively cutpoint-free programs, there is no need to give special
care to cutpoint objects. However, to verify that a program is effectively cutpoint-free,
special care needs to be taken regarding future usages of piercing references.

In this paper we present ECPF, a small-step operational semantics [16] that handles
effectively cutpoint-free programs. This semantics is interesting because procedures op-
erate on local heaps, i.e., every procedure invocation starts executing on a memory state
in which parts of the heap not relevant to the invocation are ignored. Thus, ECPF sup-
ports the notion of heap-locality [10,18] while permitting the usage of a global heap and
destructive updates. Moreover, the absence of cutpoints drastically simplifies the mean-
ing of procedure calls. ECPF tracks the set of piercing references and checks that their
values are never used, thus dynamically verifying that the program execution is indeed
effectively cutpoint-free. As a result, ECPF is applicable to arbitrary programs, and
does not require an a priori classification of a program as effectively cutpoint-free. We
show that for effectively cutpoint-free programs, ECPF is observationally equivalent
to the standard global heap semantics.

ECPF gives rise to a functional [6,27] interprocedural shape analysis for effectively
cutpoint-free programs. The analysis tabulates abstractions of memory states before
and after procedure calls. Mimicking the semantics, memory states are represented in
a procedure-local way ignoring parts of the heap not relevant to the procedure with no

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 417

special abstraction for cutpoints. This reduces the complexity of the analysis because
the analysis of procedures does not represent information about references and the heap
from calling contexts. Indeed, this makes the analysis local in the heap and thus allows
reusing the summarized effect of a procedure at different calling contexts.

Technically, our algorithm is built on top of the 3-valued logical framework for pro-
gram analysis of [13, 25]. Thus, it is parametric in the heap abstraction and in the
concrete effects of program statements, which allows experimenting with different in-
stances of interprocedural shape analyzers. For example, we can employ different ab-
stractions for singly-, doubly-linked lists, and trees. Also, a combination of theorems
in Appendix A.2 and [25] guarantees that every instance of our interprocedural frame-
work is sound (see Sec. 5).

Main Results. The contributions of this paper can be summarized as follows:
1. We define the notion of effectively cutpoint-free programs, in which the context

not reachable from a procedure’s actual parameters can be ignored when reasoning
about the procedure’s possible effect.

2. We define an operational semantics for a simple imperative language with refer-
ences and procedures. The semantics dynamically checks that a program execution
is effectively cutpoint-free. Procedures operate on procedure-local heaps, thus sup-
porting the notion of heap-locality while permitting the usage of a global heap and
destructive updates.

3. We present an interprocedural shape analysis for effectively cutpoint-free pro-
grams. The analysis is local in the heap and thus allows reusing the effect of a
procedure at different calling contexts and at different call-sites.

4. We describe several extensions to our approach that allow its efficiency, precision,
and applicability to be improved by utilizing a limited form of user-supplied anno-
tations.

Outline. The rest of the paper is organized as follows. Sec. 2 presents an informal
overview of our approach. Sec. 3 introduces our programming model. Sec. 4 defines our
new local heap semantics, which checks whether a program is effectively cutpoint-free.
Sec. 5 conservatively abstracts this semantics and provides the semantic foundation of
the local interprocedural shape analysis algorithm described in Sec. 6. Sec. 7 describes
certain efficiency-oriented extensions of our approach and certain relaxations of our
restrictions aimed at increasing the class of effectively cutpoint-free programs. Sec. 8
describes related work, and Sec. 9 concludes.

2 Overview

This section provides an overview of our framework for interprocedural shape analysis
using procedure-local heaps. The presentation is at an intuitive level; a more detailed
treatment of this material is presented in the later sections of the paper.

2.1 Motivating Example

Fig. 2 shows a simple Java program that splices three non-shared, disjoint, acyclic
singly-linked lists using a recursive splice procedure. This program serves as a run-
ning example in this paper.

418 J. Kreiker et al.

public class List{
List n = null;
int data;

public List(int d){
this.data = d;

}

static public List create3(int k) {
List t1 = new List(k);
List t2 = new List(k+1);
List t3 = new List(k+2);
t1.n = t2; t2.n = t3;
return t1;

}

static public int getData(List w) {
assert(w != null);
int d = w.data;
return d;

}

public static List splice(List p, List q) {
List w = q;
if (p != null) {

List pn = p.n;
p.n = null;
p.n = splice(q, pn);
w = p;

}
return w;

}

public static void main(String[] argv) {
List x = create3(1);
List y = create3(4);
List z = create3(7);
List t = splice(x, y);
List s = splice(t, z);
int i = 0;
�0 : // if (y == null) i++;
�1 : // if (y == x) i++;
�2 : // int i = getData(y);
print(i);

}
}

Fig. 2. An effectively-cutpoint-free program written in Java

2.2 Procedure-Local Heaps

In our semantics, procedures operate on local heaps. The local heap contains only the
part of the program’s heap accessible to the procedure. Thus, procedures are invoked on
local heaps containing only objects reachable from actual parameters. We refer to these
objects as the relevant objects for the invocation.

Example 2. Fig. 3 shows the concrete memory states that occur at the call t=splice(x,y).
Sc

3 shows the state at the point of the call, and Se

3 shows the state on entry to splice. Here,
splice is invoked on local heaps containing the (relevant) objects reachable from either x or y.

The fact that the local heap of the invocation t=splice(x,y) contains only the lists
referenced by x and y guarantees that destructive updates performed by splice can
only affect access paths that pass through an object referenced by either x or y.

call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

3

6

9

2

5

8

1

4

7

x

y

z n n

n n

n n 3

6

2

5

1

4

p

q n n

n n 3

6

2

5

1

4

p,w

q n n
n n n

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

(Sc

3) (Se

3) (Sx

3) (Sr

3)

Fig. 3. Concrete states for the invocation t = splice(x, y) in the running example

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 419

2.3 Cutpoints and Cutpoint-Freedom

Obviously, this is not always the case. In particular, consider the second call in
the example program, s=splice(t,z). Fig. 4(a) shows the concrete states when
s=splice(t,z) is invoked. Sccp

4 shows the state on invocation, and S
rcp

4 the state
when the call returns. As shown in the figure, the destructive updates of the splice

procedure change not only paths from t and z, but also change the access paths from y.
To emphasize the effect of this invocation, consider a variant of the example pro-

gram in which the invocation s=splice(t,z) has been replaced with an invocation
s=splice(y,z), as shown in Fig. 4(b). In this variant, the invocation can only affect
access paths that pass through an object referenced by either y or z.

We capture the difference between these invocations by introducing the notion of a
cutpoint [20]. A cutpoint for an invocation is an object that is: (i) reachable from an
actual parameter, (ii) not pointed-to by an actual parameter, and (iii) reachable without
going through an object that is pointed-to by an actual parameter (that is, it is either
pointed-to by a variable or by an object not reachable from the parameters). In other
words, a cutpoint is a relevant object that separates the part of the heap that is reachable
for the invocation from the rest of the heap, but not pointed-to by a parameter.

For example, the object pointed-to by y at the call s=splice(t,z) (Fig. 4(a)) is
a cutpoint, thus this invocation is not cutpoint-free [23]. In contrast, in the invocation
s=splice(y,z) (Fig. 4(b)) no object is a cutpoint, and thus this invocation is cutpoint-
free [23].

call splice(t,z) return s=splice(t,z) call splice(y,z) return s=splice(y,z)

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4y n
n

987z
nn

x,s,
n

n

n

n

t 3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4

x,t

s,y
n

n
n n n

987z
n nn

(S
ccp

4) (S
rcp

4) (Sc

4) (Sr

4)

(a) (b)

Fig. 4. Concrete states for: (a) the invocation s=splice(t,z) in the program of Fig. 2;
(b) a variant of this program with an invocation s=splice(y,z).

2.4 Effective Cutpoint-Freedom

The importance of cutpoints is that they allow the analysis to handle more precisely
the notion of procedure local variables: No invocation of splice can modify the local
variables of main. Thus, when control returns to main, it is guaranteed that the local
variable y points to the same object that it pointed to before the invocation, and the
main procedure can use the y reference to access directly that object. In general, it is
very challenging to design a shape analysis that can track relations between arbitrary

420 J. Kreiker et al.

objects across the execution of procedure calls. However, if the caller does not use its
direct references to the cutpoints after the procedure returns, the analysis does not need
to track this relation.

For example, note that after main regains control, it does not use the value of the y
variable. Thus, although the invocation s=splice(t,z) has a cutpoint, and is thus not
cutpoint-free, in the context of the whole execution this invocation is effectively cutpoint
free.

The semantics utilizes the above observation and instead of giving special treatment
to the cutpoint objects, it assigns a special inaccessible value to all piercing references.
The inaccessible value is used to track references which should not be used. It is a
simple mechanism which the semantics uses to check (in runtime) whether a piercing
pointer is used , e.g., in a dereference operation or during the evaluation of a condition,
and if such a usage occurs to abort the execution and report that the program is not
effectively cutpoint-free. (See Sec. 4).

Example 3. Fig. 5 shows the concrete memory states that occur at the call s=splice(t,z).
Sc

5 shows the state at the point of the call, in which the object pointed to by y is a cutpoint. In
Sr

5, the return state of that call, y no longer points to an object, instead it has the inaccessible
value, depicted by a black bullet. The semantics intentionally does not utilize the information it
has regarding the identity of objects. It acts as if it “forgets” that the object referenced by y at
the call state is the third node in the returned list, mimicking in the concrete semantics the loss
of information that occurs in the analysis. Note that the cutpoint object is not treated differently
during the execution of splice, e.g., Se

5 and Sx

5 show the states on entry to splice of the call
and at its exit, respectively.

Also note that if any of the statements in lines 0 − 2 was to be uncommented, variable y
would have been live at the time of the call s=splice(t,z), and thus the execution would not
have been effectively cutpoint-free.

call s=splice(t,z) enter splice(p,q) exit splice(p,q) return s=splice(t,z)

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4

p
n n

n n n

987q n n

3

6

2

5

1

4 n
n

987q
nn

p,w

n

n

n
n

3

6

2

5

1

4y n
n

987z
nn

x,s,
n

n

n

n

t

(Sc

5) (Se

5) (Sx

5) (Sr

5)

Fig. 5. Concrete states for the invocation s = splice(t, z) in the running example

2.5 Interprocedural Shape Analysis

The algorithm computes procedure summaries by tabulating pairs of abstract input
memory-states and abstract output memory-states. The tabulation is restricted to
abstract memory-states that occur in the analyzed program. The tabulated abstract

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 421

memory-states represent procedure-local heaps, but do not keep track of cutpoints.
However, they do record the inaccessible values. Therefore, these abstract states are
independent of the context in which a procedure is invoked. As a result, the summary
computed for a procedure could be used at different calling contexts and at different
call-sites while sustaining enough information to verify effective cutpoint freedom.

3 Programming Model

For expository reasons we limit our attention to a small imperative programming lan-
guage. It has references to objects. Objects have fields, which can be either references
to other objects or integers. The analyses developed here can be applied to Java-like
languages and other imperative pointer languages alike (unless pointer arithmetic is
used).

We abstract from specific control-flow statements and simply assume the presence
of one control-flow graph per procedure. Control-flow graph edges are annotated with
any one of the following statements below, where x.f denotes the f field of the object
referenced by x. The statement x = alloc() returns a reference to a newly created
object. Conditionals are implemented using assume statements.

stms ::= x = null | x = y | x = y.f |
x.f = y | x = alloc() | assume(x �� y) |
y = p(x1, . . . , xk) | return

In our running example we take the liberty to use integer variables and fields as well.
In the rest of the paper, we assume that we are working with a fixed arbitrary pro-

gram P . For a procedure p, Vp denotes the set of its local variables and Fp ⊆ Vp denotes
the set of its formal parameters. A procedure returns a value by assigning it to a des-
ignated variable ret. We assume that parameters are passed by value and that formal
parameters cannot be assigned to. The set of all local variables of P is written V . We
write F to denote the set of all field names in P .

We assume a standard store-based operational semantics for our language, very much
like GSB defined previously in [19, 20]. GSB treats live cutpoints properly.

4 Concrete Semantics

In this section, we define ECPF (effectively cutpoint-free), a non-standard semantics
that checks whether a program execution is effectively cutpoint-free. ECPF defines the
execution traces that are the foundation of our analysis.

ECPF is a store-based semantics (see, e.g., [18]). A traditional aspect of a store-
based semantics is that a memory state represents a heap comprised of all the allocated
objects. ECPF , on the other hand, is a procedure-local heap semantics [20]: A memory
state that occurs during the execution of a procedure does not represent objects that, at
the time of the invocation, are not reachable from the actual parameters.

422 J. Kreiker et al.

ECPF is a small-step operational semantics [16]. Instead of encoding a stack of
activation records inside the memory state, as is traditionally done, ECPF maintains a
stack of program states [12, 21]: Every program state consists of a program point and
a memory state. The program state of the current procedure is stored at the top of the
stack, and it is the only one that can be manipulated by intraprocedural statements. We
refer to this memory state as the current memory state. When a procedure is invoked,
the entry memory state of the callee is computed by a Call operation according to the
caller’s current memory state, and pushed onto the stack. When a procedure returns, the
stack is popped, and the caller’s return memory state is updated using a Ret operation
according to its memory state before the invocation (the call memory state) and the
callee’s (popped) exit memory state. The Call and Ret operations of ECPF are defined
in Fig. 8.

The use of a stack of program states allows us to represent in every memory state
the (values of) local variables and the local heap of just one procedure. The lifting of an
intraprocedural semantics to an interprocedural semantics, that uses a stack of program
states, is formally defined in [19].

An execution trace of a program P always begins with P ’s main executing on an
initial memory state in which all its reference variables have the value null and the heap
is empty. We say that a memory state is reachable in a program P if it occurs as the
current memory state in an execution trace of P .

ECPF is a procedure-local heap semantics [20]: when a procedure is invoked, it
starts executing on an input heap containing only the set of relevant objects for the
invocation. An object is relevant for an invocation if it is a parameter object, i.e., either
referenced by an actual parameter or reachable from one.

A procedure-local heap semantics and its abstractions benefit from not having to rep-
resent irrelevant objects. However, in general, the semantics needs to take special care
of cutpoints. In this paper, we avoid the need to take special care of cutpoint objects by
assuming and verifying that a program is effectively cutpoint free: We refer to a refer-
ence that at invocation time points to a cutpoint and does not come from an object in the
callee’s local heap as a piercing reference for that invocation. An execution is effectively
cutpoint-free if in every of its invocations during an execution all the piercing references
for that invocation are dead at the time of the invocation, i.e., their r-values are not used
before being set. A program is effectively cutpoint-free if all of its executions are.

For effectively cutpoint-free programs, there is no need to give special care to cut-
point objects. However, to verify that a program is effectively cutpoint-free, special care
needs to be taken regarding the piercing references. In this section, we describe the way
ECPF validates at runtime that an execution is effectively cutpoint-free.

4.1 Memory States

Fig. 6 defines the concrete semantic domains and the meta-variables ranging over them.
We assume Loc to be an unbounded set of locations. A value v ∈ Val is either a
location, null, or •, the inaccessible value used to represent references to locations that
should not be accessed.

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 423

l ∈ Loc
v ∈ Val = Loc ∪ {null} ∪ {•}
ρ ∈ E = V ⇀ Val
h ∈ H = Loc ⇀ F ⇀ Val
σ ∈ Σ = E×2Loc×H

Fig. 6. Semantic domains

A memory state in the ECPF semantics is, essentially, a 2-level store. Formally, a
memory state is a 3-tuple σ = 〈ρ, L, h〉: ρ ∈ E is an environment assigning values for
the variables of the current procedure. L ⊂ Loc is the set of allocated locations. (A
dynamically allocated object is identified by its location. We interchangeably use the
terms object and location.) h ∈ H assigns values to fields of allocated objects.

In ECPF , reachability is defined with respect to relevant objects: Informally, an
object l2 is reachable from an object l1 in a memory state σ if there is a directed path
in the heap of σ from l1 to l2. An object l is reachable in σ if it is reachable from a
location that is pointed-to by some variable. Note that •-valued references do not point
to any object.

4.2 Operational Semantics of Intraprocedural Statements

The meaning of atomic statements is described by a transition relation
i�⊆ (Σ ×

stms)× Σ ! {σ•}, where σ• is a special error state indicating a forbidden usage of the
inaccessible value.

Fig. 7 defines the axioms for atomic intraprocedural statements. These are handled
as in a standard 2-level store semantics like GSB.7 The main difference between the
ECPF semantics and GSB with respect to the meaning of intraprocedural statements
is captured by the side-conditions of the form ρ(x) = • or ρ(y) = •, which prevent
usage of the inaccessible locations.

4.3 Operational Semantics of Interprocedural Statements

Fig. 8 defines the meaning of the Call and Ret operations pertaining to an arbitrary
procedure call y = p(x1, . . . , xk) assuming p’s formal parameters are z1, . . . , zk, the
memory state at the call site is σc = 〈ρc, Lc, hc〉, and the memory state at the exit of p
is σx = 〈ρx, Lx, hx〉. The Call operation is used to compute the state update along a
call edge in the control-flow graph; the Ret operation computes the state update along a
return edge. As defined in Sec. 3, variable ret is used to communicate the return value.
We use the function Rh(L) to compute the locations that are reachable in heap h from
the set of locations L. This function is formally defined in Appendix A.1.

Procedure Calls. The Call operation computes the callee’s entry memory state (σe)
from the state at the call-site (σc). The entry memory state is computed by binding
the values of the formal parameters in the callee’s environment to the values of the
corresponding actual parameters (ρe) and restricting the caller’s heap to the relevant
objects for the invocation (Lrel).

424 J. Kreiker et al.

〈x = null, σ〉 i� 〈ρ[x �→null], L, h〉

〈x = y, σ〉 i� 〈ρ[x �→ρ(y)],L, h〉

〈x = y.f, σ〉 i� 〈ρ[x �→h(ρ(y), f)], L, h〉 ρ(y) ∈ Loc

〈y.f = x, σ〉 i� 〈ρ, L, h[(ρ(y), f) �→ρ(x)]〉 ρ(y) ∈ Loc

〈x = alloc(), σ〉 i� 〈ρ[x �→ l], L∪{l}, h[l �→I]〉 l∈Loc \ L

〈assume(x �� y), σ〉 i� σ ρ(x) �� ρ(y)

〈x = y, σ〉 i� σ• ρ(y) = •

〈x = y.f, σ〉 i� σ• ρ(y) = • or h(ρ(y)) = •

〈y.f = x, σ〉 i� σ• ρ(y) = • or ρ(x) = •

〈assume(x �� y), σ〉 i� σ• ρ(x) = • or ρ(y) = •

Fig. 7. Axioms for intraprocedural statements, where in each line σ is understood as a shorthand
for 〈ρ,L, h〉 . I denotes the function λf ∈ F .null. �� stands for either = or
=. When convenient,
we sometimes treat h as an uncurried function, i.e., as a function from Loc × F to Val .

Cally=p(x1,...,xk)(σc) = σe

σe = 〈ρe, Lc, hc|Lrel 〉
ρe = [zi �→ ρc(xi) | 1≤ i≤k]

Rety=p(x1,...,xk)(σc, σx) = σr

σr = 〈ρr, Lx, hr〉
ρr = (block ◦ ρc)[y �→ρx(ret)]

hr = (block ◦ hc|Lc\Lrel
) ∪ hx

where:
Lparameters = {ρc(xi) ∈ Loc | 1≤ i≤k}
Lrel = Rhc(Lparameters)

Lcutpoints = (Lrel \ Lparameters) ∩
({ρc(z) | z ∈ Vq} ∪ {hc(l)f ∈ Loc | l ∈ Lc \ Lrel , f ∈ F)

block = λv ∈ Val .

{
• v ∈ Lcutpoints

v otherwise

Cally=p(x1,...,xk)(σc) = σ• ρc(x1) = • or · · · or ρc(xk) = •
Rety=p(x1,...,xk)(σc, σx) = σ• ρx(ret) = •

Fig. 8. Call and Ret operations for an arbitrary procedure call y = p(x1, . . . , xk) by an arbitrary
procedure q, where it is understood that σc = 〈ρc, Lc, hc〉, σx = 〈ρx, Lx, hx〉, and Vq denotes
the set of local variables of procedure q.

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 425

Example 4. Fig. 3 shows the entry state Se

3 that results from applying the Call operation
pertaining to the invocation t=splice(x, y) to the call memory state Sc

3. Fig. 5 shows
the entry state Se

5 that results from applying the Call operation pertaining to the invocation
s=splice(t, z) to the call memory state Sc

5.

Procedure Returns. The Ret operation maps the memory state at the exit of a proce-
dure (σx) together with the state at call-site (σc) to the return state σr from which the
caller resumes its computation. Ret updates the caller’s memory state by carving out
the input heap passed to the callee from the caller’s heap (hc|Lc\Lrel

) and replacing it
with the callee’s (possibly) mutated heap (hx).

In ECPF , an object never changes its location, and locations are never reallocated.
Thus, any pointer to a relevant object in the caller’s memory state (either by a field of
an irrelevant object or a variable) points after the replacement to an up-to-date version
of the object.

Blocking Piercing References. ECPF detects forbidden accesses that violate the
effective-cutpoint-freedom condition, and aborts the program in an error state if such an
access is detected. Technically, when a procedure invocation returns, ECPF assigns the
special value • to all piercing references, an operation which we refer to as blocking,
and uses this special value to detect forbidden accesses. (Recall that in an effectively
cutpoint-free execution, every live reference that points to an object which separate the
callee’s heap from the caller’s heap should point to a parameter object, i.e., to one of
the objects in Lparameters .)

Example 5. Fig. 3 shows the return state Sr

3, that results from applying the Ret operation per-
taining to the invocation t=splice(x, y) to the call memory state Sc

3 and the exit memory
state Sx

3. Fig. 5 shows the return state Sr

5, that results from applying the Ret operation pertaining
to the invocation s=splice(t, z) to the call memory state Sc

5 and the exit memory state Sx

5.
The second node in the list pointed to by t at the call state Sc

5 is a cutpoint. Thus, variable y gets
blocked when computing Sr

5.

4.4 Observational Soundness

We say that two values are comparable in ECPF if neither one is •. We say that a
ECPF memory state σ is observationally sound with respect to a standard semantics
σG if for every pair of access paths that have comparable values in σ, they have equal
values in σ iff they have equal values in σG. ECPF simulates the standard 2-level store
semantics: Executing the same sequence of statements in the ECPF semantics and in
the standard semantics either results in a ECPF memory states that is observationally
sound with respect to the resulting standard memory state, or the ECPF execution gets
to an error state due to a constraint breach (detected by ECPF). A program is effectively
cutpoint-free if it does not have an execution trace that gets to an error state. (Note that
the initial state of an execution in ECPF is observationally sound with respect to its
standard counterpart).

Our goal is to detect structural invariants that are true according to the standard
semantics. ECPF acts like the standard semantics as long as the program’s execution
satisfies certain constraints. ECPF enforces these restrictions by blocking references

426 J. Kreiker et al.

that a program should not access. Similarly, our analysis reports an invariant concerning
equality of access paths only when these access paths have comparable values.

An invariant concerning equality of access paths in ECPF for an effectively
cutpoint-free program is also an invariant in the standard semantics. This makes abstract
interpretations of ECPF suitable for verifying data-structure invariants, for detecting
memory access violations, and for performing compile-time garbage collection.

5 Abstract Interpretation

In this section, we present ECPF#, an abstract interpretation [5] of the ECPF se-
mantics. ECPF# is the basis of our static-analysis algorithm which uses the 3-valued
logic-based framework of [25]. The soundness of the abstract semantics with respect to
GSB1 is guaranteed by the combination of the theorems in Appendix A.2 and [25]:

– In Appendix A.2, we show that for effectively cutpoint-free programs, ECPF is
observationally equivalent to GSB.

– In [25], it is shown that every program-analyzer that is an instance of the 3-valued
logic-based framework is sound with respect to the concrete semantics it is based
on.

5.1 Abstract States

We conservatively represent unbounded sets of unbounded memory states using a
bounded set of bounded 3-valued logical structures, which we refer to as abstract states.
Note that there are actually three different notions of concrete states. The most concrete
states are those in GSB, containing full information including integer variables and
fields. Integers are already abstracted away when we talk about ECPF , which, on top
of that, also yields errors when cutpoint references are illegally used. ECPF states
are equivalently encoded into two-valued logical structures by viewing objects as in-
dividuals in a logical structure and references as binary predicates (see below). Note,
however, that location identifiers play no role in the logical structure encoding. Indeed,
the semantics does not distinguish between isomorphic structures.

We use the term concrete state whenever we talk about a state that is not a 3-valued
logical structure. We believe that, despite the resulting imprecision, our intentions are
clear. In drawings, we use the same graphical notations to depict concrete states in all
of the aforementioned semantics. (Integer values, when drawn, should be ignored when
considering a figure to be a graphical depiction of a state in ECPF or of a logical
structure.)

3-Valued Logical Structures. A 3-valued logical structure is a logical structure with an
extra truth-value 1

2 , which denotes values that may be 1 or may be 0. The information
partial order on the set {0, 12 , 1} is defined as 0 " 1

2 1 1, and 0 � 1 = 1
2 . Formally, a

3-valued logical structure is S�=〈US�

, ιS
�〉 where:

1 GSB is a standard two-level store semantics for heap-manipulating programs. It is formally
defined in [20].

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 427

– US�

is the universe of the structure.
– ιS

�

is an interpretation function mapping predicates to their truth-value in the struc-

ture, i.e., for every predicate p ∈ P of arity k, ιS(p) : US�k → {0, 12 , 1}.

A 2-valued logical structure is a 3-valued logical structure where the truth-values of
predicates are either 0 or 1. The set of 3-valued logical structures is denoted by 3Struct .
The set of 2-valued logical structures is denoted by 2Struct .

Abstraction Function. We abstract sets of ECPF memory states by a point-wise appli-
cation of an extraction function β : Σ ⇀ 3Struct mapping an ECPF memory state
to its best representation by an abstract state. The extraction function β is defined as
a composition of two functions: (i) βshape : Σ ⇀ 2Struct , which maps an ECPF
memory state to a 2-valued logical structure and (ii) canonical abstraction [25], which
maps 2-valued logical structures to a bounded number of 3-valued logical structures.

Representing Memory States Using 2-Valued Logical Structures. We represent
ECPF memory states using 2-valued logical structures. Every individual in the struc-
ture corresponds to a heap-allocated object. Predicates of the structure correspond to
properties of heap-allocated objects.

Core Predicates. Tab. 1 shows the core predicates used in this paper. A binary pred-
icate f(v1, v2) holds when the f ∈ F field of v1 points to v2. The designated binary
predicate eq(v1, v2) is the equality predicate, which records equality between v1 and v2.
A unary predicate x(v) holds for an object that is referenced by the reference variable
x ∈ V of the current procedure.2 The predicate ia holds only for a unique individual,
which represents the inaccessible locations. The role of the predicates inUc and inUx
is explained in Sec. 5.2.

Instrumentation Predicates. Instrumentation predicates record derived properties of in-
dividuals, and are defined using a logical formula over core predicates. Instrumentation
predicates are stored in the logical structures like core predicates. They are used to
refine the abstract semantics, as we shall shortly see. Tab. 2 lists the instrumentation
predicates used in this paper. We use F (v1, v2) as a shorthand to denote that v1 has a
field f ∈ F which points to v2 and F ∗(v1, v2) as the reflexive transitive closure of F .
(For a formal definition, see Appendix B).

2-valued logical structures are depicted as directed graphs. We draw individuals as
boxes. We depict the value of a reference variable x by drawing an edge from x to the
individual representing the object that x references. For all other unary predicates p,
we draw p inside a node u when ιS(p)(u) = 1; conversely, when ιS(p)(u) = 0 we do
not draw p in u. A directed edge between nodes u1 and u2 that is labeled with a binary
predicate symbol p indicates that ιS(p)(u1, u2) = 1. For clarity, we do not draw the
binary equality predicate eq . The inaccessible value is depicted as a line ending with •.

2 For simplicity, we use the same set of predicates for all procedures. Thus, our semantics en-
sures that ιS(x) = λu.0 for every local variable x that does not belong to the current call.

428 J. Kreiker et al.

Table 1. Predicates used to represent (concrete) memory states

Predicate Intended Meaning

f(v1, v2) the f-field of object v1 points to object v2
eq(v1, v2) v1 and v2 are the same object

x(v) reference variable x points to the object v

ia(v) v is an inaccessible location

inUc(v) v originates from the caller’s memory state at the call site

inUx(v) v originated from the callee’s memory state at the exit site

Table 2. The instrumentation predicates used in this paper

Predicate Intended Meaning Defining Formula

robj (v1, v2) v2 is reachable from v1 by some field path ¬ia(v1) ∧ ¬ia(v2) ∧ F ∗(v1, v2)

ils(v) v is locally shared. i.e., v is pointed-to by ∃v1, v2 : ¬ia(v)
a field of more than one object in the local heap ¬eq(v1, v2) ∧ F (v1, v) ∧ F (v2, v)

c(v) v resides on a directed cycle of fields ∃v1 : F (v, v1) ∧ F ∗(v1, v)

rx(v) v is reachable from variable x ¬ia(v) ∧ ∃vx : x(vx) ∧ F ∗(vx, v)

Example 6. The structure Sc

3 of Fig. 3 shows a 2-valued logical structure that represents the
memory state of the program at the call t=splice(x, y). The depicted numerical values are
only shown for presentation reasons, and have no meaning in the logical representation.

The structure Sr

5 of Fig. 5 shows a 2-valued logical structure that represents the memory state
of the program at the return of s=splice(t, y). Note that the value of y is the inaccessible
value.

Bounded Abstraction. We now formally define how memory states are represented
using abstract memory states. The idea is that each object from the (concrete) state is
mapped to an individual in the abstract state. An abstract memory state may include
summary nodes, i.e., individuals that correspond to one or more concrete nodes in one
of the concrete states represented by the abstract state. For a summary node u ∈ U � in
abstract state S� = 〈U �, ι�〉 it holds that ι(eq)(u, u) = 1

2 .

Canonical Abstraction. A 3-valued logical structure S� is a canonical abstraction
of a 2-valued logical structure S if there exists a surjective function υ : US → US�

satisfying the following conditions: (i) For all u1, u2 ∈ US , υ(u1) = υ(u2) iff for all
unary predicates p ∈ P , ιS(p)(u1) = ιS(p)(u2), and (ii) for all predicates p ∈ P of
arity k and for all k-tuples u�

1, u
�
2, . . . , u

�
k ∈ US�

,

ιS
�

(p)(u�
1, u

�
2, . . . , u

�
k) =

⊔
u1,...,uk∈Us

υ(ui)=u�
i

ιS(p)(u1, u2, . . . , uk).

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 429

3-valued logical structures are also drawn as directed graphs. Definite values
(0 and 1) are drawn as for 2-valued structures. Binary indefinite predicate values (12)
are drawn as dotted directed edges. Summary nodes are depicted by a double frame.

Example 7. Fig. 9 shows the abstract states (as 3-valued logical structures) representing the con-
crete states of Fig. 3. Note that only the local variables p and q are represented inside the call
to splice(p,q). Representing only the local variables inside a call ensures that the number
of unary predicates to be considered when analyzing the procedure is proportional to the num-
ber of its local variables. This reduces the overall complexity of our algorithm to be worst-case
doubly-exponential in the maximal number of local variables rather than doubly-exponential in
their total number (as in e.g., [22]).

splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

x

y

z

rx

ry

rz

n

n

n rx

ry

rz

n

n

n

p

q

rp

rq
n

n

rq

n

n

rp p,w

q

rp

rp n

n
rw

n

rq

rp rw
rq

rw x,t

y

z

rx

ry

rz

n

n

rt

rz

n

n

rx rt
ry

rx rt

(Sc#

9) (Se#

9) (Sx#

9) (Sr#

9)

Fig. 9. Abstract states for the invocation t = splice(x, y); in the running example

The Importance of Reachability. Recording derived properties by means of instrumen-
tation predicates may provide additional information that would have been otherwise
lost under abstraction. In particular, because canonical abstraction is directed by unary
predicates, adding unary instrumentation predicates may further refine the abstraction.
This is called the instrumentation principle in [25]. In our framework, the predicates
that record reachability from variables play a central role. They enable us to identify
the individuals representing objects that are reachable from actual parameters. For ex-
ample, in the 3-valued logical structure Sc#

9 depicted in Fig. 9, we can detect that the
top two lists represent objects that are reachable from the actual parameters because
either rx or ry holds for these individuals. None of these predicates holds for the indi-
viduals at the (irrelevant) list referenced by z. We believe that these predicates should
be incorporated in any instance of our framework.

5.2 Abstract Operational Semantics

The meaning of statements is described by a transition relation
��⊆ (3Struct ×stms)×

3Struct . Because our framework is based on [25], the encoding of the meaning of state-
ments in ECPF (as transformers of 2-valued structures), also defines the corresponding
abstract semantics (as transformers of 3-valued structures). This abstract semantics is
obtained by reinterpreting logical formulae using a 3-valued logic semantics and serves

430 J. Kreiker et al.

as the basis for our static analysis. In particular, reinterpreting the side conditions of in-
traprocedural statements conservatively verifies that the program is effectively cutpoint-
free.

For brevity, we omit the aforementioned encoding from the body of the paper and
provide it in Appendix B. We wish to note that all the transformers, including the inter-
procedural operations Call and Ret are specified using predicate-update formulae3 in
first-order logic with transitive closure.

6 Interprocedural Static Analysis

Abstract interpretation of the ECPF semantics provides the semantic foundations for
an interprocedural static-analysis algorithm that computes procedure summaries by tab-
ulating abstract input memory-states to abstract output memory-states. The tabulation
is restricted to abstract memory-states that occur in the analyzed program. The inter-
procedural tabulation algorithm is the variant of the IFDS-framework [17] presented
in [23], adapted to assume and verify effective cutpoint freedom.

enter splice(p,q) exit splice(p,q)

p qrp rq
nn rq

n n

rp p,w

q
rp rq

nnrw

n
rp rw

rq

rp rw

p qrp rq
n rq

n

p,w

q
rp rq

nnrw

n
rp rw

rq

rp rw

q rq
n rq

n

q,w rq
nrw

n

rq rw

Fig. 10. Partial tabulation of abstract states for the splice procedure

Example 8. Fig. 10 shows a partial tabulation of abstract local heaps for the splice procedure
of the running example. The figure shows 3 possible input states of the list pointed-to by p.
Identical possible input states of the list pointed-to by q, and their combinations are not shown.
As mentioned in Sec. 1, the splice procedure is only analyzed 9 times before its tabulation is

3 Predicate-update formulae express the semantics of statements: Suppose that σ is a memory
state that arises before statement st , that σ′ is the store that arises after st is evaluated on σ,
and that S is the 2-valued logical structure that encodes σ. A collection of predicate-update
formulae–one for each predicate p in the vocabulary of S–allows one to obtain the structure S′

that encodes σ′. When evaluated in structure S, the predicate-update formula for a predicate
p indicates what the value of p should be in S′. See [25, Observation 2.6]. Evaluation of the
predicate-update formulae in 3-valued logic captures the transfer function for st of the abstract
semantics. See [25, Observation 2.9].

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 431

complete, producing a summary that is then reused whenever the effect of splice(p, q) is
needed.

Note that this tabulation represents the input/output relation for any call to splice, including
ones with cutpoints, e.g., the call s=splice(t, y) and all recursive calls to splice in our
running example.

7 Extensions and Relaxations

In this section, we describe several extensions that use a limited form of annotations on
procedures to improve the analysis algorithmic’s efficiency, precision, and applicability.

7.1 Blindspots

ECPF records in every state the value of every formal parameter at the entry to the
procedure. This is done to allow the caller to observe the (possibly mutated) part of the
heap that was relevant to the callee after the callee returns. However, in certain cases,
such observations are not needed or even desirable.

For example, in the program of Fig. 2, the variable y is not used after the call
t=splice(x, y). Thus, the effort invested to restore its value when the call returns
is, for all practical purposes, wasted. Furthermore, direct access to the list returned by
splice through one of the actual parameters might be considered a form of bad pro-
gramming. (A clearer example might be a merge procedure that merges two sorted lists.
When an invocation of merge returns, one actual parameter references the head of the
list and the other one references one of the list elements. Using the actual parameters at
this point makes the code less readable and more sensitive to the implementation details
of merge. Thus, it is reasonable to expect that the caller uses the returned value, but not
the actual parameters.)

Blindspots (for a procedure invocation) are parameter objects for which all the vari-
ables and fields pointing to them at the time of the call, excluding fields of relevant
objects for the invocation, are dead when the procedure returns.4 ECPF , and its ab-
stract interpretations, can utilize an annotation (e.g., in the form of a subset of the ac-
tual/formal parameters) that states which of the parameter objects are blindspots. Such
information can improve the efficiency of the analysis algorithim by allowing it to avoid
tracking unnecessary information. It also allows verifying good programming style.

For example, Fig. 11 shows the call, entry, exit, and return states that occur in the
ECPF during the invocation t=splice(x,y) when both parameter objects are an-
notated as a blindspots. Based on this annotation, the exit state does not record the value
of the formal parameters, allowing for more compact summaries. Note that at the return
state, x and y are blocked. As a result, the returned list can be accessed only through t.

7.2 Tolerance for a Bounded Number of Cutpoints

ECPF , and its abstract interpretations, can allow for procedure invocations to have
up to a bounded number of live cutpoints, i.e., cutpoints that are accessed directly by

4 Note that a blindspot for a procedure invocation is not necessarily a dead object.

432 J. Kreiker et al.

call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

3

6

9

2

5

8

1

4

7

x

y

z n n

n n

n n 3

6

2

5

1

4

p

q n n

n n 3

6

2

5

1

4

w

n n
n n n

3

6

2

5

1

4

t

y
n n

n n n

987z n n

x

(Sc

11) (Se

11) (Sx

11) (Sr

11)

Fig. 11. Concrete states for the invocation t = splice(x, y) when both parameter objects
are annotated as a blindspots

a piercing reference after the procedure returns. The main idea is to treat cutpoints
as additional parameters: Every procedure is modified to have k additional (hidden)
formal parameters (where k is the bound on the number of allowed cutpoints). When
a procedure is invoked, the (modified) semantics binds the additional parameters with
references to the cutpoints.

We can allow for a bounded number of cutpoints by having an annotation regarding
the maximal number of allowed cutpoints5 or by having the user provide a specification
(using first-order formulae with transitive closure) of a distinguished set of explicitly-
allowed cutpoints. For example, a cutpoint at the last element of a list can be treated
differently then other cutpoints.

Fig. 12 depicts the call, entry, exit, and return states that occur in the ECPF during
the invocation s = splice(t, z) when procedures are allowed to have at least
one cutpoint, or, alternatively, when the second element of the first list is specified as an
explicitly-allowed cutpoint. The hidden parameter X1 gets bound to the cutpoint at the
entry state and used to restore the value of y at the return state.

7.3 Restricted Access to the Inaccessible Value

For a program to be effectively cutpoint-free, every piercing reference must not be live
at the time of the actual invocation. The reason behind this requirement is to allow
the semantics/analysis to avoid maintaining certain aliasing relations, yet still main-
tain a certain notion of observational soundness with respect to the standard semantics.
However, certain usages of piercing references are innocuous, i.e., our notion of obser-
vational soundness is still maintained as long as programs use piercing references in
certain restricted ways. For example, statements such as x = y, as well as conditions
involving comparisons between •-valued references and null, are innocuous. In the
former case, the assignment neither affects the control flow of the program nor may
lead to a memory fault. In the latter case, it always holds that a •-valued reference is not
null-valued; thus the condition of the assume statement always evaluates to the same
value in both semantics.

5 This is the essence of the treatment of cutpoints by Gotsman et al. [8].

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 433

call splice(t,z) enter splice(p,q) exit splice(p,q) return s=splice(t,z)

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4

p
n n

n n n

987q n n

X1

3

6

2

5

1

4 n
n

987q
nn

p,w
n

n

n

n
X1

3

6

2

5

1

4y n
n

987z
nn

x,s,
n

n

n

n

t

(Sc

12) (Se

12) (Sx

12) (Sr

12)

Fig. 12. Concrete states for the invocation s = splice(t, z) when one cutpoint is allowed
or alternatively, when access path t.n is specified as an explicitly-allowed cutpoint

Effectively, the above observation allows us to relax the requirements of executions
to be effectively cutpoint-free: Instead of forbidding all future usages of piercing ref-
erences (i.e., requiring that they are not live when the invocation of the callee returns),
we need only to forbid “effective” future usages of this pointers, i.e., we need only to
forbid them from being dereferenced or compared with non-null values both in assume
statements and in assertions.

7.4 Arbitrary Cutpoints in Pure Procedures

An additional relaxation regarding the requirements of a procedure invocation to be
effectively cutpoint-free is possible when a procedure invocation is found to be pure. A
pure invocation does not modify the shared state. Thus, the abstract representation of
the heap at the call site can be reused at the return site. As a result, for reconstructing
the layout of the heap, the number of cutpoints is irrelevant, and piercing references do
not need to be blocked.

The above approach has one rather significant complication: In case the procedure’s
return value is a pointer to a heap-allocated object, figuring out which object in the call
state corresponds to the one returned by the procedure is not simple. (This complication
arises because the abstract semantics does not retain the identity of locations.)

One possible remedy is not to use this relaxation when the return value of the invoked
procedure is a (non-null) reference. Another possible remedy is to apply a meet operator
between the call state and the exit state (after certain renaming operations, similar to the
ones used in [11]). We note that the framework of [25] provides an algorithmic meet
operator [1]. We also note that (some) information regarding cutpoints can (potentially)
make the results of the meet operator more precise.

8 Discussion and Related Work

In this section, we review closely related work.
Rinetzky and Sagiv [22] explicitly represent the runtime stack and abstract it as a

linked-list. In this approach, the entire heap, and the runtime stack are represented at
every program point. As a result, the abstraction may lose information about properties
of the heap for parts of the heap that cannot be affected by the procedure at all.

434 J. Kreiker et al.

Jeannet et al. [11] consider procedures as transformers from the (entire) heap before
the call to the (entire) heap after the call. Irrelevant objects are summarized into a single
summary node. Relevant objects are summarized using a two-store vocabulary. One
vocabulary records the current properties of the object. The other vocabulary encodes
the properties that the object had when the procedure was invoked. The latter vocabulary
allows to match objects at the call-site and at the exit-site. Note that this scheme never
summarizes together objects that were not summarized together when the procedure
was invoked. For cutpoint-free programs, this may lead to needlessly large summaries.
Consider for example a procedure that operates on several lists and nondeterministically
replaces elements between the list tails. The method of [11] will not summarize list
elements that originated from different input lists. Thus, it will generate exponentially
more mappings in the procedure summary than the ones produced by our method. On
the other hand, the method of [11] can establish properties of called procedures that
our method cannot establish (e.g., that a procedure to reverse a list actually reverses all
elements of the list).

Rinetzky et al. [20] present a procedure-local storeless concrete semantics and de-
scribe an abstract interpretation of their semantics that can be used for interprocedural
shape-analysis for programs manipulating singly linked lists. Their abstract interpreta-
tion algorithm explicitly records cutpoint objects in the local heap, and may become
imprecise when there is more than one cutpoint. Our algorithm can be seen as a special-
ization of [20] that provides a partial answer to this problem. In addition, because we
restricted our attention to effectively cutpoint-free programs, our semantics and analysis
are much simpler than the ones in [20].

In [23], the problem of abstracting cutpoint-induced sharing patterns is addressed by
forbidding cutpoints: We developed an interprocedural shape analysis for the class of
cutpoint-free programs, in which program invocations never generate cutpoints. In the
present paper, we extend the framework developed in [23] to a larger class of programs:
effectively cutpoint-free programs. One can see [23] as an eager form of enforcing ef-
fective cutpoint-freedom, while the present paper takes a more lazy approach.

Hackett and Rugina [9] develop a staged analysis to obtain a relatively scalable in-
terprocedural shape analysis. Their approach uses a scalable imprecise pointer-analysis
to decompose the heap into a collection of independent locations. The precision of this
approach might be limited because it relies on pointer-expressions that appear in the
program’s text. The analysis tabulates global heaps, potentially leading to a low reuse
of procedure summaries.

For the special case of singly-linked lists, another approach for modular shape anal-
ysis is presented by Chong and Rugina [4] without an implementation. The main idea
there is to record for every object both its current properties and the properties it had at
that time the procedure was invoked.

Gotsman et al. [8] describe a heap-modular interprocedural shape analysis for singly
linked lists that can handle a bounded numbers of cutpoints. The main idea is to treat
a bounded number of cutpoint-labels as, essentially, additional parameters: Every pro-
cedure can be seen as having k additional (hidden) formal parameters (where k is the
bound on the number of allowed cutpoints). When a procedure is invoked, their anal-
ysis (non-deterministically) binds these additional parameters with references to the

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 435

cutpoints. If the procedure has more than k cutpoint, they turn every piercing reference
to a dangling pointer, which, essentially, makes the reference inaccessible. Thus, their
analysis does not differentiate between dangling references and piercing references.
However, every program that it manages to analyze is a k-cutpoint-tolerant effectively
cutpoint-free program.

Yang et al. [28] present a heap-modular interprocedural shape analysis that, similar
to [8], is based on a domain of separation-logic formulae. Their experimental results in-
dicate that the use of local heaps provides a speedup of 2−3× in the analysis compared
to a global heap analysis. Furthermore, the use of an interprocedural analysis that passes
only the reachable portion of the heap was found to be one of the three key reasons for
the scalability of their analysis. (The other two key reasons being an efficient join op-
erator and the discard of intermediate states.) In this analysis, cutpoints are passed as
additional (hidden) parameters to called procedures, but their number is not bounded.
This is one of the possible reasons that their analysis may not terminate (although in
many interesting cases it does). In later work [2], the problem of cutpoint abstraction
is reduced because the compositional nature of the analysis allows to represent only a
subset of the reachable heap.

Marron et al. [14] present a context-sensitive shape analysis that is employed for au-
tomatic parallelization of sequential heap manipulating programs. The interprocedural
analysis is based on an abstraction of local heaps with cutpoints. The analysis employs
an abstraction of cutpoint-labels that uses two main ideas: (i) avoid summarizing cut-
points that are generated by the local variables of the immediate caller and (ii) abstract
all other cutpoints by recording the set of roots of access paths. The analysis also uses
liveness information to avoid recording as cutpoints objects that are only pointed to by
dead references.

Rubinstein [24] provides a preliminary study regarding the classification of cutpoints
that occur in real-life Java programs. The study is conducted by monitoring program ex-
ecutions. Algorithms for detecting usages of piercing references6 are presented but not
implemented. While the experimental results are non-conclusive, they do indicate that
in several interesting cases the unbounded number of cutpoints occur when the program
manipulates shared immutable data structures. This can motivate special treatment for
pure (i.e., readonly) methods (see Sec. 7.4).

A local interprocedural may-alias analysis is given in [7]. The key observation there
is that a procedure operates uniformly on all aliasing relationships involving variables
of pending calls. This method applies to programs with cutpoints. However, the lack
of must-alias information may lead to a loss of precision in the analysis of destructive
updates. For more details on the relation between [7] and local heap shape analysis
see [19].

Local reasoning [10, 18] provides a way of proving properties of a procedure inde-
pendently of its calling contexts by using the “frame rule”. In some sense, the approach
used in this paper is in the spirit of local reasoning. The ECPF semantics resembles the
frame rule in the sense that the effect of a procedure call on a large heap can be obtained
from its effect on a subheap. Local reasoning allows for an arbitrary partitioning of the

6 The term a live cutpoint is used in [24] to refer to an object which gets dereferenced using a
piercing reference.

436 J. Kreiker et al.

heap based on user-supplied specifications. In contrast, in our work, the partitioning
of the heap is built into the concrete semantics, and abstract interpretation is used to
establish properties in the absence of user-supplied specifications.

Another relevant body of work is that concerning encapsulation, also known as
confinement or ownership. (A review about different encapsulation models can be
found in [15]). These works allow modular reasoning about heap-manipulating (object-
oriented) programs. The common aspect of these works, as described in [15], is that
they all place various restrictions on the kind of sharing allowed in the heap, while
pointers from the stack are generally left unrestricted. In our work, the semantics al-
lows for arbitrary heap sharing within the same procedure, but restricts both the heap
sharing and the stack live sharing across procedure calls.

9 Conclusions and Future Work

In this paper, we presented an interprocedural shape analysis for effectively cutpoint-
free programs. The analysis is local in the heap and thus allows reusing the effect of
a procedure at different calling contexts. We presented the first non-trivial solution for
procedure calls with an unbounded number of cutpoints. The solution is limited because
it applies only to pure (read-only) procedures; however, we believe that it opens the
door for future work to address the important, and still open, problem of handling an
unbounded number of live cutpoints under abstraction.

In general, we believe that the distinction between live piercing references and dead
ones can benefit analyses that abstract an unbounded number of cutpoints by allowing
them to focus on only abstracting cutpoints that are pointed to by live piercing refer-
ences. We consider this issue to be future work.

References

1. Arnold, G., Manevich, R., Sagiv, M., Shaham, R.: Combining Shape Analyses by Intersecting
Abstractions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 33–48. Springer, Heidelberg (2006)

2. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means
of bi-abduction. In: Symp. on Princ. of Prog. Lang. (POPL), pp. 289–300. ACM (2009)

3. Chase, D.R., Wegman, M., Zadeck, F.: Analysis of pointers and structures. In: Conf. on Prog.
Lang. Design and Impl., PLDI (1990)

4. Chong, S., Rugina, R.: Static analysis of accessed regions in recursive data structures. In:
Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 463–482. Springer, Heidelberg (2003)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximation of fixed points. In: Symp. on Princ. of Prog.
Lang. (POPL), pp. 238–252. ACM Press, New York (1977)

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive procedures.
In: Neuhold, E.J. (ed.) Formal Descriptions of Programming Concepts (IFIP WG 2.2, St.
Andrews, Canada), pp. 237–277. North-Holland (August 1977)

7. Deutsch, A.: Interprocedural alias analysis for pointers: Beyond k-limiting. In: Conf. on Prog.
Lang. Design and Impl. (PLDI) (1994)

8. Gotsman, A., Berdine, J., Cook, B.: Interprocedural Shape Analysis with Separated Heap
Abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260. Springer, Heidelberg
(2006)

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 437

9. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In: Symp. on
Princ. of Prog. Lang. (POPL) (2005)

10. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In:
Symp. on Princ. of Prog. Lang. (POPL) (2001)

11. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A Relational Approach to Interprocedural
Shape Analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 246–264. Springer,
Heidelberg (2004)

12. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Int. Conf. on Comp.
Construct. (CC) (1992)

13. Lev-Ami, T., Sagiv, M.: . TVLA: A framework for Kleene based static analysis. In: Interna-
tional Static Analysis Symposium (SAS) (2000),
http://www.math.tau.ac.il/˜tvla

14. Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient context-sensitive shape
analysis with graph based heap models. In: Int. Conf. on Comp. Construct. (CC), pp. 245–259
(2008)

15. Noble, J., Biddle, R., Tempero, E., Potanin, A., Clarke, D.: Towards a model of encapsu-
lation. In: The First International Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming (IWACO) (2003)

16. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus (1981)

17. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reacha-
bility. In: Symp. on Princ. of Prog. Lang. (POPL) (1995)

18. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Symp. on Logic
in Computer Science (LICS) (2002)

19. Rinetzky, N.: Interprocedural and Modular Local Heap Shape Analysis. PhD thesis, Tel Aviv
University (June 2008)

20. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for procedure local
heaps and its abstractions. In: Symp. on Princ. of Prog. Lang. (POPL) (2005)

21. Rinetzky, N., Poetzsch-Heffter, A., Ramalingam, G., Sagiv, M., Yahav, E.: Modular Shape
Analysis for Dynamically Encapsulated Programs. In: De Nicola, R. (ed.) ESOP 2007.
LNCS, vol. 4421, pp. 220–236. Springer, Heidelberg (2007)

22. Rinetzky, N., Sagiv, M.: Interprocedural shape analysis for recursive programs. In: Int. Conf.
on Comp. Construct. (CC) (2001)

23. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural Shape Analysis for Cutpoint-Free Pro-
grams. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 284–302. Springer,
Heidelberg (2005)

24. Rubinstein, S.: On the utility of cutpoints for monitoring program execution. Master’s thesis,
Tel Aviv University, Tel Aviv, Israel (2006)

25. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst. (TOPLAS) 24(3), 217–298 (2002)

26. Shaham, R., Yahav, E., Kolodner, E.K., Sagiv, M.: Establishing Local Temporal Heap Safety
Properties with Applications to Compile-time Memory Management. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 483–503. Springer, Heidelberg (2003)

27. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Muchnick,
S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applications, ch.7, pp. 189–234.
Prentice-Hall, Englewood Cliffs, NJ (1981)

28. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-
able Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

http://www.math.tau.ac.il/~tvla

438 J. Kreiker et al.

A Formal Details Pertaining to the ECPF Semantics

In this section, we provide the technical details that were glanced over in Sec. 4.

A.1 Reachability

In this section, we give formal definitions for the notions of reachability. These def-
initions are based on the corresponding standard notions in 2-level stores. Intuitively,
location l2 is reachable from a location l1 in a memory state σ if there is a directed
path in the heap of σ from l1 to l2. A locations l is reachable in σ if it is reachable
from a location which is referenced by some variable. Note that the inaccessible value,
similarly to the null value, is not a location.

Definition 1 (Heap path). A sequence of locations ζ : {0, . . . , n | n ∈ N} → Loc is
a directed heap path in a heap h ∈ H, if for every 0≤ i < |ζ| − 1 there exists fi ∈ F
such that h(ζ(i), fi) = ζ(i + 1). A directed heap path ζ goes from l1, if ζ(0) = l1, it
goes to l2 if ζ(|ζ| − 1) = l2. A heap path ζ traverses through l if there exists i such that
0≤ i< |ζ| and l = ζ(i).

Definition 2 (Reachability). A location l2 is reachable from a location l1 in a memory
state σ = 〈ρ, L, h〉, if there is a directed heap path in h going from l1 to l2.

Definition 3 (Reachable locations). A locations l is reachable in σ if it is
reachable from a location which is referenced by some variable. We de-
note the set of reachable locations in σ ∈ Σ by R(σ), i.e., R(σ) =
{l ∈ L|x ∈ V and l is reachable in σ from ρ(x) ∈ Loc} .

A.2 Properties of the ECPF Semantics

In this section, we formally define the notions of observational soundness and of sim-
ulation between the ECPF semantics and the standard semantics. To be precise, when
referring to the standard semantics we refer to the standard store-based semantics GSB
defined in [19, 20]. In short, memory states in GSB are represented in the same way as
memory states in ECPF . The main difference between GSB and ECPF is that the op-
erational semantics never blocks references in GSB, and thus • is not a possible value.

Access paths We introduce access paths, which are the only means by which a program
can observe a state. Note that the program cannot observe location names.

Definition 4 (Field Paths). A field path δ ∈ Δ = F∗ is a (possibly empty) sequence of
field identifiers. The empty sequence is denoted by ε.

Definition 5 (Access path). An access path α = 〈x, δ〉 ∈ AccPath = V ×Δ is a pair
consisting of a local variable and a field path.

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 439

Definition 6 (Access path value in the ECPF semantics). The value of an access path
α = 〈x, δ〉 in state σ = 〈ρ, L, h〉 of the ECPF semantics, denoted by [[α]]ECPF (σ), is
defined to be ĥ(ρ(x), δ), where

ĥ : Val ×Δ ⇀ Val such that

ĥ(v, δ) =

⎧⎨⎩
v if δ = ε (note that v might be •)
ĥ(h(v, f), δ′) if δ = fδ′, v ∈ Loc
undefined otherwise (note that v might be •)

Note that an access to a field of the inaccessible value is not defined.

Definition 7 (Comparable values). A pair of values of the ECPF semantics v1, v2 ∈
Val are comparable, denoted by v1

?
�� v2, if v1
= • and v2
= •.

Definition 8 (Access path value in the GSB semantics). The value of an access path
α = 〈x, δ〉 in state σG = 〈ρ, L, h〉 of the GSB semantics, denoted by [[α]]GSB(σG), is
defined to be h(ρ(x), δ), where ValG = Val \ {•} and

h : ValG ×Δ ⇀ ValG such that

h(v, δ) =

⎧⎨⎩
v if δ = ε

h(h(v, f), δ′) if δ = fδ′, v ∈ Loc
undefined otherwise

Observational soundness We define the notion of observational soundness between
a ECPF memory state σ and a standard 2-level store σG of the GSB semantics as
the preservations in σG of all equalities and inequalities which hold in σ.7 Note that
the preservation in the other direction is not required. Also note that an equality resp.
inequality of values of access paths holds in σ only when the two access paths have
comparable values. For simplicity, we define [[null]]ECPF (σ) = [[null]]GSB(σ) = null.

Definition 9 (Observational soundness). The memory state σ ∈ Σ is observationally
sound with respect to memory state σG ∈ ΣG, denoted by σG � σ, if for every α, β ∈
AccPath ∪ {null} it holds that

if [[α]]ECPF (σ)
?
�� [[β]]ECPF (σ) then

[[α]]ECPF (σ)) = [[β]]ECPF (σ)⇔ [[α]]GSB(σG) = [[β]]GSB(σG)

We define the notion of observational soundness between two ECPF memory states
(resp. two standard memory states) in a similar manner.

Simulation Before we define the notion of simulation we briefly review some execution
traces accessing-functions (formally defined in [19]). Given an execution trace π, the
initial resp. final memory state of an execution trace π, denoted by in(π) resp. out(π),
is the current memory state in the first resp. last stack of program states. π(i) returns
the stack at the ith step of the execution and |π(i)| returns its height. path(π) is the se-
quence of program points which the execution traverses. i.e., path(π)(i) is the program
point in the ith step of the execution. (We assume that every statement is labeled by a
program point.)

440 J. Kreiker et al.

The following theorem shows that ECPF simulates the standard semantics. In the
lemma, we denote by path(π) the sequence of intraprocedural statements and Call and
Return operations executed in π. We also use [π]k to denote the memory state of the
current procedure at π(k), the kth program state of π

Theorem 1 (Simulation). Let P be an effectively cutpoint-free program according to
the ECPF semantics. Let πS be a trace of a program P according to the standard
semantics. There exists a trace πE of P according to the ECPF semantics such that
the folowing holds (i) |πS | = |πE |, (ii) path(πS) = path(πE), and (iii) [πS]k � [πE]k
for every 0 ≤ k < |πS |.
Sketch of Proof: The proof is done by induction on the length of the execution. We look
at memory states as graphs. The graph nodes are the allocated objects and the graph
edges are the object fields. The graph nodes may be labeled by variables. The graph
edges are labeled by field names.

We prove that observational equivalence is preserved by showing a stronger property:
every memory state [πE]k produced by the ECPF can be seen as a subgraph of [πS]k,
the corresponding memory state of the GSB semantics. Furthermore, that two graphs
agree on the values of live references.

We maintain an injective and a surjective function from the set of objects that are
reachable from the variables of the current procedure in a memory state of the GSB to
the set of objects in the corresponding memory state of the ECPF semantics. Clearly
when a program starts, and prior to the allocation of any object, the two memory states
are isomorphic. It is easy to verify that atomic statement preserves the isomorphism:
 remains unchanged, except that object allocation maps the new location to the new
individual.

When a procedure is invoked, the mapping is projected on the set of objects passed
to the invoked procedure. When a procedure returns, the mapping of locations that
were irrelevant for the invocation remains as in the call site. The mapping for locations
that were relevant for the invocation, as well as those that were allocated during the
invocation, are taken from the exit site. Note that the induction assumption ensures that
the above scheme is well defined.

To show that the return memory state produced by the ECPF semantics is a subgraph
of the corresponding return memory state of the GSB semantics agrees with it on the
values of live references, we make the following argument: The computation of return
states in the ECPF semantics blocks piercing references. The computation of the return
states in the GSB semantics does not. Thus, it remains to show that all the references
that gets blocked by the ECPF semantics are not live in the GSB semantics.

The computation of return states in the ECPF semantics restores all references from
the caller’s local heap to parameter objects which, by the induction assumption, must be
in the relation. It only blocks the value of piercing references (i.e., it changes the value
of every pointer field or variable pointing to a cutpoint). The execution πS never uses a
a field f of an object o such that the f -field in (o) at the corresponding ECPF points
to the inaccessible location. Otherwise, πE is a non effectively cutpoint-free execution
of P in ECPF which is a contradiction to the assumption that P is effectively cutpoint-
free. For similar reasons, the value of a variable which gets blocked by the ECPF
semantics does not get used by the GSB semantics.

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 441

Lemma 1. Let P be an effectively cutpoint-free program. The following holds:

[Invariants] An invariant concerning equality of values of access paths in the ECPF
semantics is an invariant in the standard semantics

[Cleanness] P does not dereferences null references in the standard semantics.

Lemma 2. Let P be an effectively cutpoint-free program. A reference, that at a given
program point always has the inaccessible value, is not live at that program point in the
standard semantics.

Definition 10 (Observational equivalence). The ECPF memory states σ1, σ2 ∈ Σ
are observationally equivalent, denoted by σ1 ≶ σ2, if σ1 � σ2 and σ2 � σ1.

The following lemma shows that ECPF is indifferent to location names.

Theorem 2 (Indifference to location names). Let π1, π2 be execution traces of a pro-
gram P according to the ECPF semantics. If |π1(1)| = |π2(1)| = 1, in(π1) ≶ in(π2)
and path(π1) = path(π2) then out(π1) ≶ out(π2).

B Update Formulae

In this section, we encode the abstract transformers using the notations of [25].

B.1 Intraprocedural Statements

The meaning of assignments is specified by defining the values of the predicates in
the outgoing structure using first-order logic formulae with transitive closure over the
incoming structure [25]. The inference rules for assignments are rather straightforward.
We encode conditional using assume() statements.

The operational semantics for assignments is specified by predicate-update formu-
lae: for every predicate p and for every statement st , the value of p in the 2-valued
structure which results by applying st to S, is defined in terms of a formula evaluated
over S.

The predicate-update formulae of the core-predicates for assignment is given in
Fig. 13. The table also specifies the side condition which enables that application of
the statement. These conditions check that null-dereference is not performed and that
the inaccessible value is not used. The value of every core-predicate p after the state-
ment executes, denoted by p′, is defined in terms of the core predicate values before the
statement executes (denoted without primes). Core predicates whose update formula is
not specified, are assumed to be unchanged, i.e., p′(v1, . . .) = p(v1, . . .).

None of the assignments, except for object allocation, modifies the underlying uni-
verse. Object allocation is handled as in [25]: A new individual is added to the universe
to represent the allocated object; the auxiliary predicate new is set to hold only at that
individual; only then, the predicate-update formulae is evaluated.

The semantics transitions into the error state (σ•) under the same conditions as the
ECPF semantics, i.e., when an inaccessible-valued variable or field are accessed. (See
Fig. 7). The following side condition trigers such a transition when a variable x points
to an inaccessible location ∃v : x(v) ∧ ia(v2). Similarly, the following side condition
trigers such a transition when the f-field of the object pointed to by a variable x points
to an inaccessible location ∃v1, v2 : x(v1) ∧ f(v1, v2) ∧ ia(v2).

442 J. Kreiker et al.

Statement Predicate-update formulae side− condition

y = null y′(v) = 0

y = x y′(v) = x(v) ∀v1 : ¬(x(v1) ∧ ia(v1))

y = x.f y′(v) = ∃v1 : x(v1) ∧ f(v1, v) ∃v1 : x(v1) ∧ ¬ia(v1) ∧
∀v2 : ¬(x(v1) ∧ f(v1, v2) ∧ ia(v2))

y.f = null f ′(v1, v2) = f(v1, v2) ∧ ¬y(v1) ∃v1 : y(v1) ∧ ¬ia(v1)
y.f = x f ′(v1, v2) = f(v1, v2) ∨ (y(v1) ∧ x(v2)) ∃v1 : y(v1) ∧ ¬ia(v1) ∧

∀v2 : ¬(x(v2) ∧ ia(v2))

y = alloc eq ′(v1, v2) = eq(v1, v2) ∨ new(v1) ∧ new(v2)

new ′(v) = 0

Fig. 13. The predicate-update formulae defining the operational semantics of assignments. Note
that we always assume that a reference variable is nullified before re-assigned.

B.2 Interprocedural Statements

The treatment of procedure call and return could be briefly described as follows: (i) con-
structing the memory state at the callee’s entry site (Se) and (ii) the caller’s memory
state at the call site (Sc) and the callee’s memory state at the exit site (Sx) are used to
construct the caller’s memory state at the return site (Sr). We now formally define and
explain these steps.

Fig. 14 specifies the procedure call rule for an arbitrary call statement y =
p(x1, . . . , xk) by an arbitrary function q. The rule is instantiated for each call state-
ment in the program.

Computing the Memory State at the Entry Site. Se, the memory state at the en-
try site to p, represents the local heap passed to p. It contains only these individuals
in Sc that represent objects that are relevant for the invocation. It also contains the in-
dividual representing the inaccessible value. The formal parameters are initialized by
updCally=p(x1,...,xk)

q , defined in Fig. 15(a). The latter, specifies the value of the predi-
cates in Se using a predicate-update formulae evaluated over Sc. We use the convention
that the updated value of x is denoted by x′. Predicates whose update formula is not
specified, are assumed to be unchanged, i.e., x′(v1, . . .) = x(v1, . . .). Note that only
the predicates that represent variable values are modified. In particular, field values,
represented by binary predicates, remain in p’s local heap as in Sc.

Computing the Memory State at the Return Site. The memory state at the return-site
(Sr) is constructed as a combination of the memory state in which p was invoked (Sc)
and the memory state at p’s exit-site (Sx). Informally,Sc provides the information about
the (unmodified) irrelevant objects and Sx contributes the information about the de-
structive updates and allocations made during the invocation.

The main challenge in computing the effect of a procedure is relating the objects at
the call-site to the corresponding objects at the return site. The fact that the invocation
is effectively cutpoint-free guarantees that the only live references into the local heap
are references to objects referenced by an actual parameter. This allows us to reflect the

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 443

Table 3. Formulae shorthands and their intended meaning

Shorthand Formula Intended Meaning
F (v1, v2)

∨
f∈F f(v1, v2) v1 has a field that points to v2

ϕ∗(v1, v2) (eq(v1, v2) ∨ the reflexive transitive closure of ϕ
(TC w1, w2 : ϕ(w1, w2))(v1, v2))

R{x1,...,xk}(v) ¬ia(v) ∧ v is reachable from x1 or x2∨
x∈{x1,...,xk} ∃v1 : x(v1) ∧ F ∗(v1, v) or . . . or xk

isCPq,{x1,...,xk}(v) R{x1,...,xk}(v) ∧ v is a cutpoint
(¬x1(v) ∧ . . . ∧ ¬xk(v)) ∧
(
∨

y∈Vq
y(v) ∨

∃v1 : ¬R{x1,...,xk}(v1) ∧ F (v1, v))

Cally=p(x1,...,xk)(Sc) = Se Rety=p(x1,...,xk)(Sc, Sx) = Sr

where

Se = 〈Ue, ιe〉 where
Ue = {u ∈ USc | Sc |= R{x1,...,xk}(u) ∨ ia(v)}
ιe = updCally=p(x1,...,xk)

q (Sc)

Sr = 〈Ur, ιr〉 where
Let U ′ = {u.c | u ∈ Uc} ∪ {u.x | u ∈ Ux}

ι′ = λp ∈ P.

⎧⎨
⎩

ιc[inUc �→ λv.1](p)(u1, . . . , um) : u1 = w1.c, . . . , um = wm.c
ιx[inUx �→ λv.1](p)(u1, . . . , um) : u1 = w1.x, . . . , um = wm.x
0 : otherwise

in Ur = {u ∈ U ′ | 〈U ′, ι′〉 |= inUx (u) ∨ (inUc(u) ∧ ¬ia(u) ∧ ¬R{x1,...,xk}(u))
ιr = updRety=p(x1,...,xk)

q (〈U ′, ι′〉)

Cally=p(x1,...,xk)(Sc) = σ• Sc |= ∃v : ia(v) ∧ (x1(v) ∨ · · · ∨ xk(v))

Rety=p(x1,...,xk)(Sc, Sx) = σ• Sx |= ∃v : ia(v) ∧ ret(v)

Fig. 14. The inference rule for a procedure call y = p(x1, . . . , xk) by a procedure q. The func-
tions updCally=p(x1,...,xk)

q and updRety=p(x1,...,xk)
q are defined in Fig. 15.

effect of p into the local heap of q by: (i) replacing the relevant objects in Sc with Sx,
the local heap at the exit from p; (ii) redirecting all references to an object referenced
by an actual parameter to the object referenced by the corresponding formal parameter
in Sx; (iii) block every piercing reference.

Technically, Sc and Sx are combined into an intermediate structure 〈U ′, ι′〉. The
latter contains a copy of the memory states at the call site and at the exit site. To dis-
tinguish between the copies, the auxiliary predicates inUc and inUx are set to hold for
individuals that originate from Sc and Sx, respectively.

444 J. Kreiker et al.

a. Predicate update formulae for updCally=p(x1,...,xk)
q

z′(v) =

{
xi(v) : z = hi

0 : z ∈ V \ {h1, . . . , hk}

b. Predicate update formulae for updRety=p(x1,...,xk)
q

z′(v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

retp(v) : z = y

inUc(v) ∧ z(v) ∧ ¬R{x1,...,xk}(v) ∨ : z ∈ Vq \ {y}
∃v1 : z(v1) ∧match{〈h1,x1〉,...,〈hk,xk〉}(v1, v) ∨
∃v1 : z(v1) ∧ isCPq,{x1,...,xk}(v1) ∧ inUx (v) ∧ ia(v)

0 : z ∈ V \ Vq

f ′(v1, v2) = inUx (v1) ∧ inUx (v2) ∧ f(v1, v2) ∨
inUc(v1) ∧ inUc(v2) ∧ f(v1, v2) ∧ ¬ia(v2) ∧ ¬R{x1,...,xk}(v2) ∨
inUc(v1) ∧ inUx (v2) ∧ ∃vsep : f(v1, vsep) ∧match{〈h1,x1〉,...,〈hk,xk〉}(vsep , v2) ∨
inUc(v1) ∧ inUx (v2) ∧ ∃vsep : f(v1, vsep) ∧ isCPq,{x1,...,xk}(vsep) ∧ ia(v2)

inUc′(v) = inUx ′(v) = 0

Fig. 15. Predicate-update formulae for the core predicates used in the procedure call rule. We
assume that the p’s formal parameters are h1, . . . , hk. There is a separate update formula for
every local variable z ∈ V and for every field f ∈ F .

Pointer redirection is specified by means of predicate update formulae, as defined
in Fig. 15(b). The most interesting aspect of these update-formulae is the formula
match{〈h1,x1〉,...,〈hk,xk〉}, defined below:

match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2)
def
=

inUc(v1) ∧ ia(v1) ∧ inUx(v2) ∧ ia(v2) ∨∨k
i=1 inUc(v1) ∧ xi(v1) ∧ inUx(v2) ∧ hi(v2)

This formula matches an individual that represents a (parameter) object which is ref-
erenced by an actual parameter at the call-site, with the individual that represents the
object which is referenced by the corresponding formal parameter at the exit-site. The
assumption that formal parameters are not modified allows us to match these two in-
dividuals as representing the same object. Once pointer redirection is complete, all in-
dividuals originating from Sc and representing relevant objects are removed, resulting
with the updated memory state of the caller. In addition, the formula matches the indi-
vidual representing the inaccessible value at the call site with the one representing the
inaccessible value at the return site, thus preserving the value of inaccessible references
from before the call.

We block piercing references using formula isCP q,{x1,...,xk}(v), defined in Tab. 3.
The formula holds when v is a cutpoint object. It is comprised of three conjuncts. The
first conjunct, requires that v be reachable from an actual parameter. The second con-
junct, requires that v not be pointed-to by an actual parameter. The third conjunct, re-
quires that v be an entry point into p’s local heap, i.e., is pointed-to by a local variable
of q (the caller procedure) or by a field of an object not passed to p.

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs 445

Predicate Update Formulae for Instrumentation Predicates. Fig. 16 provides the up-
date formulae for instrumentation predicates used by the procedure call rule. We use
PTX(v) as a shorthand for

∨
x∈X x(v). The intended meaning of this formula is to

specify that v is pointed to by some variable from X ⊆ V . We use bypassX(v1, v2)
as a shorthand for (F (v1, v2) ∧ ¬RX(v1))

∗. The intended meaning of this formula
is to specify that v2 is reachable from v1 by a path that does not traverse any ob-
ject which is reachable from any variable in X ⊆ V . Note that, again, formula
match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2) again plays a central role.

a. Predicate update formulae for updCally=p(x1,...,xk)
q

ils ′(v) = ils(v) ∧ ¬(PTx1,...,xk(v) ∨ isCPq,{x1,...,xk}(v))∨
∃v1, v2 : R{x1,...,xk}(v1) ∧ R{x1,...,xk}(v2) ∧

F (v1, v) ∧ F (v2, v) ∧ ¬eq(v1, v2))

r′y(v) =

{
rxi (v) : y = hi

0 : y ∈ V \ {h1, . . . , hk}

b. Predicate update formulae for updRety=p(x1,...,xk)
q

ils ′(v) = ils(v) ∧ (inUc(v) ∧ ¬R{x1,...,xk}(v) ∨ inUx(v)) ∨
PTx1,...,xk(v) ∧ ∃v1, v2, v3 : match{〈h1,x1〉,...,〈hk,xk〉}(v1, v) ∧ ¬eq(v2, v3) ∧

inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∧ F (v2, v1) ∧
(inUc(v3) ∧ ¬R{x1,...,xk}(v3) ∧ F (v3, v1) ∨ inUx(v3) ∧ F (v3, v))

r′obj (v1, v2) = robj (v1, v2) ∧ inUx(v1) ∧ inUx(v2) ∨
robj (v1, v2) ∧ inUc(v1) ∧ inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∨
inUc(v1) ∧ inUx(v2) ∧ ∃va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf) ∧
bypass{x1,...,xk}(v1, va) ∧ robj (vf , v2)

r′x (v) = inUc(v) ∧ rx (v) ∧ ¬R{x1,...,xk}(v) ∨
inUx(v) ∧ ∃vx, va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf) ∧

x(vx) ∧ bypass{x1,...,xk}(vx, va) ∧ robj (vf , v)

Fig. 16. The predicate update formulae for the instrumentation predicates used in the procedure
call rule. We give the semantics for an arbitrary function call y = p(x1, . . . , xk) by an arbitrary
function q. We assume that the p’s formal parameters are h1, . . . , hk.

Author Index

Bockmayr, Alexander 19
Bonacina, Maria Paola 35

Dershowitz, Nachum 35

Gaillourdet, Jean-Marie 72
Goubault-Larrecq, Jean 90

Hanus, Michael 123
Hillenbrand, Thomas 169
Hustadt, Ullrich 345

Jouannaud, Jean-Pierre 90

Kapur, Deepak 1, 194
Kirchner, Claude 216
Kirchner, Hélène 216
Korovin, Konstantin 239
Kreiker, J. 414

Lescanne, Pierre 271
Lynch, Christopher 285

Michel, Patrick 72
Miller, Swaha 317

Nahon, Fabrice 216
Navarro-Pérez, Juan Antonio 302
Nieuwenhuis, Robert 1

Piskac, Ruzica 169
Plaisted, David A. 317
Poetzsch-Heffter, Arnd 72

Rauch, Nicole 72
Reps, T. 414
Rinetzky, N. 414

Sagiv, M. 414
Schmidt, Renate A. 345
Siebert, Heike 19
Sofronie-Stokkermans, Viorica 392

Voronkov, Andrei 1, 302

Waldmann, Uwe 169
Weidenbach, Christoph 1, 169
Wilhelm, Reinhard 1, 414

Yahav, E. 414

	Preface
	Table of Contents
	Harald Ganzinger’s Legacy: Contributions to Logics and Programming
	Introduction
	From Compilers to Automated Deduction: Breadth and Depth of Ganzinger's Contributions
	Mid 70's to Mid 80's: Compiler Construction
	Mid 80's to Early 90's: Abstract Data Type Specifications, Reasoning, and Completion of Conditional Equations
	90's Onwards: Superposition Calculus and Its Applications

	Seminal Contribution to the Theory Underlying Modern Automated Reasoning Systems
	Incorporation of Theories
	Superposition Extensions
	Decidability
	Computation
	Systems and Applications

	Effective Contributions to the Development of Systems and Implementation Techniques
	Promotion of Automated Reasoning
	References

	Bio-Logics: Logical Analysisof Bioregulatory Networks
	Introduction
	Network Structure and Dynamics
	The Mammalian Cell Cycle: An Example
	Linking Structure and Dynamics
	Model Checking for Biological Networks
	Incorporating Time Delays
	Conclusion
	References

	Canonical Ground Horn Theories
	Motivation
	Background
	Preliminaries
	Canonical Systems
	A Clausal Ordering

	Implicational Systems
	Moore Families
	Direct Systems
	Computing Minimal Models
	Direct-Optimal Systems
	Rewrite Optimality

	Conditional Rewrite Systems
	Decreasing Systems
	Reduced Systems

	Horn Normal Forms
	Trivial Proofs
	Ground-Preserving Linear Input Proofs
	Linear Input Unit-Resulting Proofs
	Valley Proofs
	Nested Valley Proofs
	Quasi-Horn Theories
	Beyond Quasi-Horn
	Knowledge Representation

	Discussion
	References

	A Generic Functional Representation of Sorted Trees Supporting Attribution
	Introduction
	The Programmer's Side of the Approach
	Motivation and Related Work
	Motivational Background
	Related Work

	Trees in Purely Functional Programming
	Typed Tree Positions
	Type Classes for Positions
	Instantiating the Type Classes for Positions
	Generic Programming with Positions

	Implementation Aspects
	Generator
	Memoized Attribute Functions

	Conclusions
	References

	The Blossom of Finite Semantic Trees
	Introduction
	Ordered Resolution with Selection
	Ordered Resolution
	Ordered Resolution with Selection
	Redundancy Elimination and Games
	Where Trees Matter: Completeness of Linear Resolution

	Ordered Resolution, Paramodulation and Factoring
	Inference Rules
	Ordering Terms, Atoms and Clauses
	Herbrand Equality Interpretations
	Semantic Trees and Generating Interpretations
	Refutational Completeness of ORP

	Conclusion
	References

	Functional Logic Programming: From Theory to Curry
	Introduction
	Foundations of Functional Logic Programming
	Basic Concepts
	Narrowing
	Constructor-Based Rewriting Logic
	Residuation
	Flat Programs

	Language Concepts: Curry
	Semantics
	Constraints
	Higher-Order Operations
	Encapsulated Search

	Implementation
	Extensions
	Constraints
	Functional Patterns
	Distributed Programming

	Applications
	Conclusions and Related Languages
	References

	From Search to Computation: Redundancy Criteria and Simplification at Work
	Introduction
	Preliminaries
	CEC – Conditional Equational Completion
	Saturate
	Automatic Complexity Analysis
	Church–Rosser Theorems for the -Calculus
	Lazy CNF Transformation
	Priority Queues

	Spass
	Euclidean Geometry
	Soft Typing

	Conclusions
	References

	Elimination Techniques for Program Analysis
	Introduction
	An Approach Based on Polynomial Ideal Theory
	Semantics as Ideal Operations
	Termination of Polynomial Invariant Ideal Computation
	Structural Properties of Logical Theories

	A Quantifier Elimination Based Approach
	Parameterized Polynomial Relations for Expressing Shapes
	Specifying Shape by Restricting Polynomial Degree
	Non-numeric Theories

	Concluding Remarks
	References

	Narrowing Based Inductive Proof Search
	Deduction Modulo and the Noetherian Induction Principle
	Deduction Modulo
	Deduction Modulo for Inductive Proofs

	Ordering and Narrowing
	Orders and Quasi-Orders on Terms and Equalities
	Induction Hypothesis and Ordering on Goals
	Narrowing

	A Proof Search System for Induction
	The Proof Search System IndNarrow
	A Simple Example
	Soundness of IndNarrow
	Example (Continued)
	Refutational Correctness

	Conclusion
	References

	Inst-Gen – A Modular Approach to Instantiation-Based Automated Reasoning
	Introduction
	Preliminaries
	Instantiation Calculus
	Semantic Selection and Hyper-inferences
	Redundancy Elimination
	Dismatching Constraints
	Simplification by Propositional Reasoning
	Simplification of Ground Clauses
	Simplification of Non-ground Clauses

	Combination of Instantiation with Resolution
	Saturation Strategies
	The Effectively Propositional Fragment
	Implementation of Inst-Gen in iProver
	Evaluation
	Conclusions
	References

	Common Knowledge Logic in a Higher Order Proof Assistant
	Introduction
	Presentation of Common Knowledge Logic
	The Three Wise Men
	The Muddy Children
	The Equivalence between Internal and External Implication
	Conclusion
	References

	Constructing Bachmair-Ganzinger Models
	Introduction
	Preliminaries
	Ground Models
	Resolution Inference System
	Minimal Model
	Preferred Models

	Nonground Models
	Local Theories
	Covered Clauses

	Conclusion
	References

	Planning with Effectively Propositional Logic
	Introduction
	Finite Domain Predicate Logic
	Compact Proofs

	Planning
	Encoding of Planning Problems
	Linear Plans
	Plans with Parallel Actions

	Conclusions
	References

	The Relative Power of Semantics and Unification
	Introduction
	Terminology
	Exhaustive Enumeration Methods

	OSHL
	Complexity
	Semantics
	Two Complementary Literals
	Horn Problems
	Unique Model
	General Case

	Lifting OSHL
	Implementation
	Examples of Natural Semantics in OSHL
	An Example: ``Who Killed Aunt Agatha?''
	Semantics in Group Theory Problems
	Planning Problems

	Discussion
	Conclusion
	References

	First-Order Resolution Methods for Modal Logics
	Introduction
	The Modern Resolution Framework
	Modal Logic and the Classical Relational Translation
	Traditional Modal Logics
	Dynamic Modal Logics

	Different Translation Methods
	Syntactic Translation
	Semantic Translations
	Mixed Syntactic-Semantic Translations
	Other Translations

	Modal Fragments, First-Order Fragments and Clausal Classes
	Syntactic Translation
	Relational Translation
	Semi-functional Translation
	Optimised Functional Translation
	Axiomatic Translation
	Summary

	Decision Procedures
	Unrefined Resolution
	Ordered Resolution
	Selection-Based Resolution
	Categorisation of Relational Properties

	Relationship to Tableaux
	Automated Model Generation
	Automated Correspondence Theory
	Conclusion
	References

	On Combinations of Local Theory Extensions
	Introduction
	Preliminaries
	Partial Structures
	Theories and Extensions of Theories

	Locality
	Locality and Embeddability
	Examples of Local Theory Extensions
	Combinations of Local Extensions Satisfying (Compw)
	More General Combinations of Local Theory Extensions
	Preservation of Truth under Extensions
	Combining Local Extensions, One of Which Satisfies (Compw)
	Combinations of Theory Extensions Satisfying (Embw)

	Hierarchical and Modular Reasoning
	Hierarchical Reasoning in Local Theory Extensions
	Modular Reasoning in Local Combinations of Theory Extensions

	Conclusions
	References

	Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs
	Introduction
	Overview
	Motivating Example
	Procedure-Local Heaps
	Cutpoints and Cutpoint-Freedom
	Effective Cutpoint-Freedom
	Interprocedural Shape Analysis

	Programming Model
	Concrete Semantics
	Memory States
	Operational Semantics of Intraprocedural Statements
	Operational Semantics of Interprocedural Statements
	Observational Soundness

	Abstract Interpretation
	Abstract States
	Abstract Operational Semantics

	Interprocedural Static Analysis
	Extensions and Relaxations
	Blindspots
	Tolerance for a Bounded Number of Cutpoints
	Restricted Access to the Inaccessible Value
	Arbitrary Cutpoints in Pure Procedures

	Discussion and Related Work
	Conclusions and Future Work
	References

	Author Index

