
Chapter 1

On the Potential for Improved Measurement
in the Human and Social Sciences

William P. Fisher Jr. and A. Jackson Stenner

Abstract Geometry is the most ancient branch of physics. All linear measurement is

essentially a form of practical geometry. Following Maxwell’s method of drawing

analogies from geometry, Rasch conceptualized measurement models as analogous

to scientific laws. Rasch likely absorbed Maxwell’s method via close and prolonged

interactions with colleagues known for their use of it. Examination of the common

form of the relationships posited in the Pythagorean theorem, multiplicative natural

laws, and Rasch models leads to a new perspective on the potential unity of science.

To be fully realized in the social sciences, Rasch’s measurement ideas need to be

dissociated from statistics and IRT, and instead rooted in the Maxwellian sources

Rasch actually drew from. Following through on the method of analogy from

geometry may make human and social measurement more intuitive and useful.
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1.1 Introduction

All linear measurement makes use of the geometric figure of the line. For persons

educated in basic scientific conventions, quantitative comparisons automatically bring

images of a number line to mind. Despite these associations, most statistical methods

in the social sciences do not require experimental tests of the hypothesis that any given

numeric difference stands for a constant unit amount. Further, to many the very idea
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that geometry could provide a useful basis for measurement in the social sciences

seems implausible. To what extent, however, might this implausibility be more a

function of unexamined prejudices than careful reasoning? There may be more of

value in this line of thinking than meets the eye.

1.2 Linear Measurement as Practical Geometry

In the natural sciences, the basis for quantitative units is established, in effect, via

analogies from geometry. The Pythagoreans considered tonal proportions to be the

geometry of motion, for instance, encompassing sound, celestial bodies, and

the human soul in a comprehensive cosmology (Isacoff 2001, p. 38). Similarly,

the essential question for Copernicus was not “Does the earth move?” but, rather,

“. . .what motions should we attribute to the earth in order to obtain the simplest and

most harmonious geometry of the heavens that will accord with the facts?” (Burtt

1954, p. 39). Both Boscovich and Legendre based their contributions to the method

of least squares in geometrical formulations (Stigler 1986, pp. 42, 46, 47, 57).

Galileo “derived his rule relating time and distance using geometry” (Heilbron

1998, p. 129). Einstein (1922) considered geometry to be “the most ancient branch

of physics,” according “special importance” to his view that “all linear measure-

ment in physics is practical geometry,” “because without it I should have been

unable to formulate the theory of relativity” (p. 14).

Though the method of least squares is foundational to contemporary statistical

analysis, it was originally formulated by Boscovich, who “followed in a Newtonian

tradition of giving geometric descriptions rather than analytic ones“ (Stigler 1986,

pp. 42–43, 51). Boscovich’s work was only later expressed analytically, by

Laplace. Pledge (1939) makes the historical connection between geometry and

natural law in the general point that

as the Greeks gave us the abstract ideas (point, line, etc.) with which to think of space, and

the 17th century those (mass, acceleration, etc.) with which to think of mechanics, so

Carnot gave us those needed in thinking of heat engines. In each case the ideas are so

pervasive that we use them even to state that they never apply exactly to visible objects

(p. 144).

Narens (2002) explicitly roots measurement theory in a Pythagorean sense

of scientific definability focused on meaningfulness as invariance across

transformations. Maxwell provides the clearest method for making linear measure-

ment analogous with practical geometry (Black 1962; Nersessian 2002; Turner

1955). Inventing the contemporary concept of mathematical modeling (Hesse 1961,

p. 206), Maxwell freed physics from the constraints of Newtonian mechanics via

his concept of the abstract mathematical field (Rautio 2005, p. 53; McMullin 2002).

His work still stands as one of the most productive examples of how to draw

geometric analogies of phenomena (Klein 1974, p. 474; Rautio 2005).

To understand Maxwell’s method of analogy, it is important to know that, in the

eighteenth and nineteenth centuries, scientists and philosophers in many fields

employed Newton’s laws of motion as a framework for structuring investigations
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of a wide range of different phenomena. Newton’s theory of gravitation provided

the form of a Standard Model adopted across the sciences of nature as the hallmark

criterion of scientific method (Heilbron 1993, pp. 5–6).

Nersessian (2002) concurs, saying “After Newton, the inverse-square-law model

of gravitational force served as a generic model of action-at-a-distance forces for

those who tried to bring all forces into the scope of Newtonian mechanics” (p. 139).

Maxwell learned the method of drawing analogies from the standard model from

his colleague William Thomson (Lord Kelvin), and told him that he “intended to

borrow it for a season. . .but applying it in a somewhat different way” (Nersessian

2002, p. 144).

The difference between Thomson’s method and Maxwell’s use of it is telling.

Like Maxwell, Thomson constructed a number of analogies, such as between heat

and electrostatics. But Thomson merely took existing equations describing a known

physical system and changed the names of the parameters to match the system

under investigation (Nersessian 2002, p. 144). This was the typical way in which

the Standard Model was applied in research up to that time.

The superficiality of this method, however, made it vulnerable to two errors

Maxwell (1965/1890, p. 155) sought to avoid, distraction by abstract mathematical

analyses and by too-literal preconceptions of the physical phenomenon. As Max-

well put it,

By referring everything to the purely geometrical idea of the motion of an imaginary fluid, I

hope to attain generality and precision, and to avoid the dangers arising from a premature

theory professing to explain the cause of the phenomena. . . [so that one might in due course

arrive at] a mature theory, in which physical facts will be physically explained (Maxwell

1965/1890, p. 159).

Maxwell (1965/1890, p. 155) considered a too-quick leap to mathematical

analysis a distraction, saying purely mathematical simplifications are likely to

cause the investigator “entirely lose sight of the phenomena to be explained; and

though we may trace out the consequences of given laws, we can never obtain more

extended views of the connexions of the subject.” In the human and social sciences,

little attention is paid to modeling constructs, though there are several significant

exceptions (Burdick et al. 2010; Dawson et al. 2006; Stenner et al. 1983; Wilson

2005, 2008) that take up the challenge in ways analogous to the approach advocated

by Maxwell, in terms of psychosocial explanations of psychosocial facts.

Maxwell, then, started from simple geometric ideas and built up an understand-

ing of the construct via analogy (Black 1962; Nersessian 2002; Turner 1955). In so

doing, he provided “the prototype for all the great triumphs of twentieth-century

physics” (Dyson, in Rautio 2005, p. 53). Ludwig Boltzmann considered Maxwell’s

method of analogy as important as his scientific work (Boumans 2005, pp. 24, 28).

Boltzmann’s student, Ehrenfest, and Ehrenfest’s student, Tinbergen, each

employed Maxwell’s approach to mathematical modeling and his method of anal-

ogy in their studies in economics (Boumans 2005, pp. 24, 28, 31, 41).

Rasch was, then, connected through his associations with Tinbergen, Frisch, and

Koopmans (Frisch’s and Tinbergen’s student) with a direct line of intellectual

descent from Maxwell (Fisher 2010). Rasch (1960, pp. 110–115) established a
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basis for a Maxwellian Standard Model in the social sciences when he structured his

models in the pattern of Maxwell’s analysis of mass, force, and acceleration. Few

researchers to date, however, have noted or expanded upon the connection Rasch

drew between his models and Maxwell’s analysis, in large part because Rasch

himself did not effectively follow through to a full implementation of Maxwell’s

method. The quality of research using Rasch’s models suffers for this loss.

Rasch presented his models in a manner similar to Thomson’s method of merely

substituting parameter names across the different phenomena studied, and this is, in

effect, exactly how Rasch models are usually applied. Easily performed computer

analyses disconnect statistical considerations from the conceptualization and eval-

uation of the construct (Stenner et al. 1983; Wilson 2013). The question then arises

as to how a shift from Thomson’s method to Maxwell’s might be achieved in the

human and social sciences.

Significant untapped potential for such a shift can be found in the shared

mathematical formalism of the Pythagorean theorem, the multiplicative structure

of natural laws, and Rasch models. These connections suggest much could be

gained from closer study of Maxwell’s reasoning process (Nersessian 2002) and

the ways in which it is similar to and different from predictive construct models.

1.3 Geometry and Natural Law

Figure 1.1 illustrates a proof of the Pythagorean theorem, where the square of the

hypotenuse of a right triangle is equal to the sum of the squares of the other two

sides:

a2 þ b2 ¼ c2

For Fig. 1.1, this works out as:

32 þ 42 ¼ 52 ¼ 9þ 16 ¼ 25

Most scientific laws are, however, written in a multiplicative form (which also

includes equations involving division) (Crease 2004; Taagepera 2008; Burdick

et al. 2006), like this:

a ¼ f=m

or

f ¼ m � a

where the acceleration of an object can be estimated by dividing the applied force

by the object’s mass, or the force is estimated by multiplying the mass by the
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acceleration. This, of course, is how Maxwell (1920/1876) presented Newton’s

Second Law.

Other geometric relationships have the same multiplicative form as scientific

laws, such as the definition of the circle as a closed arc equidistant from a single

point, with the circumference equal to pi times the radius squared. The Pythagorean

theorem can also be written in the form of a multiplicative law, by means of the

number e (2.71828. . .) (Maor 1994):

e9 � e16 ¼ e25

Substituting a for e9, b for e16, and c for e25 in this description of the triangle in

Fig. 1.1 gives:

a � b ¼ c

and could be solved as

8103 � 8; 886; 015 � 72; 003; 378; 611

Converting back to the additive form using the natural logarithm, the equation

looks like this:

lnð8; 103Þ ¼ lnð72; 003; 378; 611Þ � lnð8; 886; 015Þ

and this

9 ¼ 25� 16:

Fig. 1.1 A proof of the

Pythagorean theorem
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Whether expressed in multiplicative or additive forms, Newton’s Second Law

and the Pythagorean theorem both define the way changes in one parameter in a

mathematical model result in proportionate changes in the other parameters.

Furthermore, the empirical relational structure stays the same no matter what

unit characterizes the numerical relational structure. Maxwell presented Newton’s

Second Law in this form:

Avj ¼ Fj= Mv:

Applying catapult j’s force F of 7.389 N (53.445 poundals) to object v’s mass

M of 1.6487 kg (3.635 lb) results in an acceleration of 4.4817 m (14.70 ft) per

second, per second. (That is, 7.389/1.6487 ¼ 4.4817, or 53.445/3.635 � 14.70).

The proportional relationships are constant no matter which units are used,

satisfying the criterion of meaningfulness (Mundy 1986; Narens 2002; Rasch,

1961). In this context, Rasch (1960, 112–113; Burdick et al. 2006) noted that,

If for any two objects we find a certain ratio of their accelerations produced by one

instrument, then the same ratio will be found for any other of the instruments. Or, in a

slightly mathematized form: The accelerations are proportional.

Conversely, it is true that if for any two instruments we find a certain ratio of the

accelerations produced for one object, then the same ratio will be found for any

other objects.

Rasch’s (1961, p. 322) model for measuring reading ability and text reading

difficulty has the multiplicative form of

εvi ¼ θvσi

and the additive form (Rasch 1961, p. 333):

εvi ¼ θvþσi:

Rasch (1960, pp. 110–115) cites Maxwell’s presentation of Newton’s Second

Law as his source for these formulations. This model takes reading comprehension

ε as the product (or the sum) of person v’s reading ability θ and item i’s text

complexity σ. The model is also often written as

Pr fXni ¼ 1g ¼ eβn�δi= 1þ eβn�δi

or

Pni ¼ expðBn � DiÞ= 1þ expðBn � DiÞ½ �

or

ln Pni= ð1� PniÞ½ � ¼ Bn � Di
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which is to say that the log-odds of a correct response from person n on item i is
equal to the difference between the estimate B of person n’s ability and the estimate

D of item i’s difficulty (Wright 1997; Wright and Stone 1979). Moving the effect of

e from one side of the equation to the other makes the response odds equal to e taken
to the power of the difference between B and D, divided by one plus e to that power.

In light of the proportionality obtained in these relationships, Rasch (Rasch

1960; also see his 1961, p. 325) formulated a separability theorem in terms that

apply to both additive and multiplicative forms of the models, saying

It is possible to arrange the observational situation in such a way that from the responses of

a number of persons to the set of tests or items in question we may derive two sets of

quantities, the distributions of which depend only on the test or item parameters, and only

on the personal parameters, respectively. Furthermore, the conditional distribution of the

whole set of data for given values of the two sets of quantities does not depend on any of the

parameters (p. 122).

The separability of the parameters is evident in the proportionality of the

relationships expected by the model. As any one parameter is varied relative to a

second parameter, values for the third are predictable. For example, for a person-

item interaction in which there is a 0.82 likelihood of a correct response, the odds

ratio of 4.556 (0.82/0.18) gives a log-odds (logit) difference of 1.5 between the

person ability and item difficulty estimates (see Wright and Stone 1979, p. 16, for a

table relating response probabilities to logit differences). Any ability measure that

is 1.5 logits different from a difficulty calibration implies a 0.82 probability of a

correct response.

If the 1.5 logit difference results from a comparison of a person measure of 2.0

and an item calibration of 0.5, then, to obtain the multiplicative form of the model,

εvi ¼ θvσi

we have, with the previous values entered

e2:0 ¼ e1:5 �e0:5;

which is exactly the same equation as that previously used to illustrate Newton’s

Second Law: 7:389 ¼ 4:4817 �1:6487:

1.4 Predictive Construct Modeling

Rasch (1960, 2010/1972) explained how the structure of Newton’s second law of

motion (relating force, mass, and acceleration) is analogous to the structure of a law

relating reading ability, text complexity, and comprehension rates. Rasch held that,

Where this law can be applied it provides a principle of measurement on a ratio scale of

both stimulus parameters and object parameters, the conceptual status of which is compa-

rable to that of measuring mass and force. Thus. . .the reading accuracy of a child . . . can be
measured with the same kind of objectivity as we may tell its weight. . .. (p. 115)
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Wright (1997, p. 44), a physicist who worked with Nobelists Townes and

Mulliken before turning to psychology and collaborations with Rasch, concurs,

saying, “Today there is no methodological reason why social science cannot

become as stable, as reproducible, and hence as useful as physics.” Andrich

(1988, p. 22) observes that “. . .when the key features of a statistical model relevant

to the analysis of social science data are the same as those of the laws of physics,

then those features are difficult to ignore.”

In his retirement speech, after describing multiple examples and elaborating the

logic of the analogy in detail, as he also had in his book (Rasch 1960, pp. 110–115),

Rasch (2010/1972) concluded that,

With all of this available to us, we will have an instrumentarium with which many kinds of

problems in the social sciences can be formulated and handled with the same types of

mathematical tools that physics has at its disposal—without it becoming a case of superfi-

cial analogies (p. 1272).

But nowhere in his book, retirement lecture, or other publications does Rasch

provide a theory of a substantive construct behaving in accord with the structure of

a lawful regularity. As Maxwell understood would happen, the convenient analyti-

cal formulation of Rasch’s models has caused us to lose sight of the phenomena to

be explained, such that we “never obtain more extended views of the connexions of

the subject” (Maxwell 1965/1890, p. 155). Rasch emphasized the positing and

testing of invariances, but ignored the constitutive cause and effect relationships.

In asserting that “Thereby you can gradually reach a clarification of the field of

validity of the law,” and in next taking “a closer look at the contents of the law,”

Rasch (2010/1972, p. 1254) does not follow Maxwell’s process. Rasch does not try

to explain individual-centered variation in a psychological or social phenomenon in

psychological or social terms, as one would in investigations emulating Maxwell’s

interest in explaining a physical phenomenon in physical terms. Instead, Rasch’s

focus on the contents of the law is strictly mathematical. His concern is with the

nature of the independence of the comparisons made in a context of infinite

possibility. He shows how the frame of reference provides a means for defining

all possible relevant observational situations, but he does not show, as does Max-

well for electromagnetism, what makes any given observation conform to the

model in the way that it does.

In the wake of Rasch’s work and later large-scale studies equating high stakes

reading tests (Jaeger 1973; Rentz and Bashaw 1977), however, Stenner and

colleagues (Stenner 2001; Stenner et al. 2006) developed an effective and parsimo-

nious predictive theory of what makes text easy or difficult to read. Others have

similarly devised predictive models of other cognitive and behavioral constructs

(Dawson et al. 2006; Embretson 1998; Fischer 1973; Fisher 2008; Green and

Kluever 1992; Wilson 2008) with the aim of achieving the degree of control over

the instrumentation needed for the reliable and highly efficient automated produc-

tion of assessment items (Bejar et al. 2003; Stenner and Stone 2003).

Generalizing these accomplishments requires a systematic and methodical way

of interweaving substantive qualitative content and abstract mathematical construct
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issues. Various systems for assessing constructs (Embretson 1998; Stenner and

Smith 1982; Stenner et al. 1983; Burdick et al. 2010; Wilson 2005) set the stage for

fuller realizations of model-based reasoning in the psychosocial sciences by

prioritizing theory development. In the context of these systems, hypotheses are

formulated and tested by iterating through a sequence of moments in a method, any

one of which may serve as a point of entry or exit. Building on the way in which

data, instruments, and theory have each historically served to mediate each other’s

interrelations in the history of science (Ackermann 1985), and focusing on the

predictive control of the construct, new horizons for qualitatively-informed quanti-

tative social science can be envisioned.
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