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Abstract A mathematical model based on Random Boolean Networks (RBNs) has
been recently proposed to describe the main features of cell differentiation. The
model captures in a unique framework all the main phenomena involved in cell
differentiation and can be subject to experimental testing. A prominent role in the
model is played by cellular noise, which somehow controls the cell ontogenetic
process from the stem, totipotent state to the mature, completely differentiated one.
Noise is high in stem cells and decreases while the cell undergoes the differentiation
process. A limitation of the current mathematical model is that RBNs, as an
ensemble, are not endowed with the property of showing a smooth relation between
noise level and the differentiation stages of cells. In this work, we show that it is
possible to generate an ensemble of Boolean networks (BNs) that can satisfy such
a requirement, while keeping the other main relevant statistical features of classical
RBNSs. This ensemble is designed by means of an optimisation process, in which a
stochastic local search (SLS) optimises an objective function which accounts for the
requirements the network ensemble has to fulfil.

1 Introduction

Cell differentiation is the process whereby stem cells, which can develop into
different types, become more and more specialised. A mathematical model of cell
differentiation has been recently proposed by Serra et al. [1, 2]. The model is an
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abstract one (i.e., it does not refer to a specific organism or cell type) and aims
at reproducing the most relevant features of cell differentiation, which are the
following:

1. there exist different degrees of differentiation that span from totipotent stem cells
to fully differentiated cells;

2. there are both deterministic differentiation, where signals trigger the progress
of multipotent cells into more differentiated types, in well-defined lineages,
and stochastic differentiation, where populations of identical multipotent cells
stochastically generate different cell types;

3. limited reversibility: differentiation is almost always irreversible, but there are
limited exceptions under the action of appropriate signals;

4. induced pluripotency: fully differentiated cells can come back to a pluripotent
state by modifying the expression of some genes;

5. induced change of cell type: modification of the expression of few genes can
directly convert one differentiated cell type into another.

The differentiation model is based on a noisy version of a well-known model
of gene networks, that is, the Random Boolean Network (RBN) model. In spite
of the assumption of discreteness, RBNs have been proven to describe important
experimental facts concerning gene expression [3—5]. The dynamics of “classical”
RBNSs is discrete and synchronous, so fixed points and cycles are the only possible
asymptotic states in finite networks; typically, a single RBN owns more than one
attractor. Attractors of RBNs are unstable with respect to noise even at low levels,
e.g., transient flips of randomly chosen nodes. In fact, even if the flips last for a
single time step, one often observes transitions from one attractor to another one.
Ribeiro and Kauffman [6] observed that it is possible to identify in the attractors’
landscape subsets of attractors, which they called Ergodic Sets (ESs), which entrap
the system in the long time limit, so the system continues to jump between attractors
which belong to the set. Unfortunately, it turns out that most noisy RBNs have just
one such set: this observation rules out the possibility to associate them with cell
types. The model proposed by Serra et al. overcomes this problem by observing
that flips are a kind of fairly intense noise, as they amount to silencing an expressed
gene or to express a gene which would otherwise be inactive: this event may happen
with a very low probability in the cell lifetime. It is possible therefore to introduce
a threshold 6, and neglect all the transitions whose occurrence probability is lower
than 6. In such a way, the notion of ES has to be modified in that of Threshold
Ergodic Set (TESyp), a set of attractors linked only by jumps having a probability
higher than 6, that entrap the system in the long time limit. A TESy is therefore a
subset of attractors which are 6-reachable' from each other, directly or indirectly,
and from which no transition can allow escaping. The threshold is related to the
level of noise in the cell, and scales with its reciprocal (the frequency of flips) [1].
Hence, cell types are associated with TESs, which represent coherent stable ways

Reachable by means of transition whose probability exceeds the threshold 6.



Automatic Design of Boolean Networks for Modelling Cell Differentiation 79

of functioning of the same genome even in the presence of noise. According to this
framework, RBNs can host more than one TES, avoiding in such a way the problem
that hampered the straightforward association of cell types with ES. At high noise
level the system can jump among all the attractors, modelling stem cells while, as
the threshold is increased (i.e., noise is reduced), the cell becomes entrapped in a
smaller TES, that represents a multipotent cell. At very high threshold values all
the attractors are also TES, a condition likely to describe final cell types. Indeed,
there are experimental indications in favour of the key hypothesis that noise in stem
cells is higher than in more differentiated ones. In this model, cell differentiation
is an emerging property originating from the interactions of many genes: its main
features therefore should be shared by a variety of different organisms.

This single model is able to capture all the phenomena encompassed by cell
differentiation and its application to real cell differentiation processes is open
to validations.? Nevertheless, the model could be ameliorated in some important
aspects. In fact, while for RBNs it is true that the number of TESs increases with
the threshold 6, the largest amount of this increase takes place for a very narrow
range of values, necessitating in such a way a very sophisticated control to precisely
tune the correct threshold for the required differentiation level. This paper presents
a way of overcoming this weakness by providing a method for designing Boolean
networks (BNs) such that the range of threshold values over which the number of
TESs varies is as large as possible.

This contribution is structured as follows. Section 2 details the limitation of the
current model and introduces the revision needed to accomplish the proper relation
between number of TES and threshold. In Sect. 3, we illustrate the method we used
for obtaining such BNs. Section 4 describes the experiments we made and present
a statistical analysis of the results. Finally, Sect. 5 summarises the main outcome of
this contribution and outlines future work.

2 Improved Model

The mathematical model previously illustrated can capture all the relevant phe-
nomena of cell differentiation. Precise quantitative analyses can be undertaken
depending on the availability of experimental data, which unfortunately are scarce
and incomplete at the present time. However, the relevance of the model can be
assessed in the context of the so-called ensemble approach [7], which aims at finding
classes of genetic regulatory network models that match statistical features of living
cells. In the case of cell differentiation, the model proposed by Serra et al. succeeds
in describing the way in which a lineage tree is hierarchically organised and can
also explain the other phenomena involved in the differentiation process from the
ensemble approach standpoint. Nevertheless, as already emphasised, it requires

2There are some positive but not yet definitive experimental data.
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a precise control in a very narrow threshold range, resulting in this aspect not
completely satisfactory with respect to biological feasibility. In fact, in the ensemble
of noisy RBNs considered in the model, the number of TESs varies approximately
as a Heaviside step function of 8: one or very few TESs can be found for 6 < 6,
and the maximum number of TESs (equal to the number of attractors) is achieved
with @ just above 6y.> This behaviour is prone to errors in identifying the correct
differentiation level within the lineage tree, and therefore biologically not plausible.
Therefore, we would like to find an ensemble of BNs such that the main properties
characterising RBNs are preserved and the number of TESs scales smoothly with
the threshold 6. This goal can be achieved by applying a recently proposed method,
which consists in converting the BN design problem into an optimisation one and
solve it through stochastic local search (SLS) [8]. This automatic design method has
been proven to successfully solve BN design problems [9-11] and will be detailed,
for the case at hand, in the following section.

3 Methods

The problem of designing a BN or a set of BNs meeting given dynamical require-
ments can be stated as an optimisation problem. In particular, one has to define the
decision variables and the objective function.* In principle, the optimisation problem
can be solved by any search method; however, SLS has been shown to be very
effective in tackling these kinds of problems and is thus our preferential choice.
For this specific case, we assume that the topology of the network is set initially
according to a random model [12] and kept fixed during search. The decision
variables of the problem manipulate the Boolean functions of the BN nodes: for BNs
with N nodes, each with K inputs, we introduce 2K N Boolean decision variables,
which define the transition functions of network nodes. Therefore, the local search
can explore the space of all possible assignments of Boolean functions to the nodes,
trying to minimise an objective function which estimates the distance between a
current BN instance and the requirements posted.

The local search algorithm employed here is an Iterated Local Search (ILS), a
well-known SLS framework successfully applied to many hard combinatorial opti-
misation problems. An outline of the high-level algorithm is given in Algorithm 1.
In a nutshell, ILS applies a local search to an initial solution until it finds a local
optimum (Line 3); then, it perturbs the solution (Line 5) and it restarts the local
search (Line 6). A user-supplied acceptance criterion selects between the current
best solution, also called incumbent solution, and the one found by the local search

30f course, the property is typical of the ensemble and isolated exceptions could be found. The
value 6y depends on the specific instance considered.

4We assume that constraints are either implicitly satisfied or that they are relaxed and included in
the objective function.
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Algorithm 1 Iterated local search high-level framework

: INPUT: A LOCAL SEARCH

: § < generatelnitialSolution()

s* < localSearch(s)

: while termination conditions not met do
s” <— perturbation(spes;)

s/, < localSearch(s”)

s* <«— acceptanceCriterion(s™, ‘Yl/s )

: end while

: return s*

CENDUE WS

(Line 7). This design makes it possible to combine the efficiency of local search
with the capability of escaping from the basins of attraction of local optima. An
overview on the theory and applications of ILS can be found in [8, 13].

Like many metaheuristic frameworks, we must implement problem-specific
choices in order to apply ILS to the problem at hand. Following the successful
design described in [10], we committed to the following choices to instantiate the
ILS framework.

Acceptance criterion: we accept a new solution if it is better than the incumbent
one (extreme intensification).

Perturbation: for each node function, we perform a single random flip in the truth
table. This choice makes ILS not too close to random restart, while keeping the
perturbation computationally fast and easy to implement. As a drawback, we will
see that local search moves can undo the effects of such a perturbation, albeit
unlikely.

A clarification on the perturbation step is needed. In the limit case where the
perturbation performed in Line 5 is independent of the incumbent solution Spes—
for instance, s’ could be randomly generated—ILS would degenerate into a random
restart. Our experiments involve networks with input connectivity K = {2, 3},
therefore the truth tables have either four or eight elements. With such low figures,
many more flips in the perturbation step would reduce the correlation between the
incumbent solution syes; and the perturbed solution s” too much, thereby making our
algorithm a “quasi-random” restart.

The last component to be defined is the embedded local search procedure. We
opted for Stochastic Descent (SD), a simple local search in which a neighbour of
the current solution is randomly picked and accepted if it is at least as good as the
current one. The neighbourhood is implicitly defined by the modifications, or moves,
that the current solution may undertake. In our implementation, a move consists in
randomly choosing a node, then flipping a bit—chosen at random—in the truth table
of its function.

As a final algorithmic remark, we can say that, in a sense, our combination of
ILS with SD can be regarded as an iterated version of an adaptive walk in which
restart is not random but performed in such a way that diversification is increased
gradually.



82 S. Benedettini et al.
3.1 Objective Function

The aim of our local search is to find BNs endowed with the two following
properties:

1. the number of TESs should grow smoothly with the threshold 6;

2. attractors should be stable, i.e., the probability of transition @ — a, where a is
an attractor, should be high. This property ensures that we can put into relation
the attractors of the BN with the cell types of completely differentiated cells.
Some attractors may be sensitive to small perturbations, but the majority should
be stable [14].

The objective function closely reflects the requirements mentioned above. In
particular, we opted for a linear relation between the number of TESs and the
threshold 6, which is the simplest, yet effective choice. The computation of
the objective function requires first the calculation of the transition graph, i.e.,
a directed graph whose vertices V ={v;} are attractors and edges (indicated
as e;;) represent transitions between attractors. Edges are weighted with transition
probabilities (weights are denoted as w;;). The transition graph ¢ (V, E) is calculated
by the algorithm specified in [2]. The objective function consists of the following
two terms:

Attractor stability: the first contribution to the objective function is given by a
term S calculated as the fraction of vertices in ¢4 with a self-loop with weight
greater than or equal to 0.8. We chose this value in order to aim at stable enough
attractors.

1
S = Vi Z [wi > 0.8]. (L

viEV

where [P] is the Iverson Bracket and equals to 1 if predicate P is true, 0
otherwise.

Number of TESs as a linear function of 6: the second term E (E stands for error
as we see in Eq. (2)) is calculated as follows: let us select a sequence © of n
equally spaced values from interval [0, 0.5[, i.e., ® = 0, %, %, e, % Let us

also define the sequence 5;,0 < i < n, as the number of TESg, (TESs with

threshold ;) in 4. This term is defined as:

n

E = Si_ b 2)
im0 !Sn M
Objective function: the objective function to be minimised is
2-9S)E 3)

Let us motivate our choices. The term S directly reflects the requirement
on attractor stability. We should make clear that the resulting networks do not



Automatic Design of Boolean Networks for Modelling Cell Differentiation 83

necessarily have transition graphs with self-loops of weight 0.8, but they are forced
to have most of the attractors with this property. Contribute E addresses the first
requirement; basically, we ask for a sequence s; that is as smooth as possible, i.e.,
we want §; to gradually grow to its maximum value s,, the linear growth we are
using in this paper being the simplest option among an ampler set of possibilities.
In Eq. (2) we divide s; by s, so that E is not dependent on the number of TESs.
Finally, the two contributes are composed so that S takes the role of a penalty: the
smaller S, the larger the term by which error E is weighted.

The choice of 0.5 as the maximum threshold value of sequence ®, although
partly arbitrary, is directly related to the first requirement on the stability of network
attractors. By definition of transition graph, the sum of the weights of the outgoing
edges for each vertex amounts to one. By the first requirement, we seek networks
whose transition graphs have self-loops with high weight: this effectively limits the
range of weights of the remaining edges.’ By this argument, we understand that
it is useless to calculate TESs by setting too high a threshold because, ideally, the
number of TESys should be maximal for & = 0.2 and then it should stay constant
for threshold values greater than 0.2. Of course, as remarked above, we cannot
guarantee that all transition graphs have self-loops with weight 0.8 or greater, so
we calculate TESs also for threshold values greater than 0.2.

We conclude this section with some remarks on our design choices. The choice
of the specific objective function is being guided by the requirement of obtaining a
smooth grow of the number of TESs as threshold 6 increases. Since experimental
data concerning the functional relation between number of TESs and 6 are not
available, we opted for a simple linear model. Hence the function used in Eq. (2).
However, this function can be changed according to specific hypotheses, so as
to have a better fit with given experimental data. Moreover, the choices of some
parameters, for example, the values 0.8 (the self-loop desired weight) or 0.5
(the interval length spanned by sequence ®), are partly arbitrary; evaluating the
robustness of our results with respect to variations in these parameters lies beyond
the purpose of the present work and will be the aim of further investigations.

Finally, an algorithmic detail. From a graph theoretical point of view, the number
of TESs can be calculated as follows: first we remove from ¢ all edges with weight
less than 6, then we compute the condensation of ¢ [15] and count the vertices with
null out-degree.

4 Results

Typical RBNs are characterised by constant input connectivity K and Boolean
functions chosen at random with on average 2% p true entries in the truth table,
where p € [0, 1] is called bias. Depending on the values of K and p the dynamics

SIdeally, the sum of transitions going out of a vertex, except for self-loops, should not be greater
than 0.2.
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of RBNs is ordered or disordered (also called chaotic, with a slight abuse of terms).
In the first case, the majority of nodes in the attractors is frozen; any moderate-size
perturbation is rapidly dampened and the network returns to its original attractor.
Conversely, in disordered dynamics, attractor cycles are very long and the system is
extremely sensitive to small perturbations: slightly different initial states lead to
exponentially diverging trajectories in the state space. RBNs temporal evolution
undergoes a second order phase transition between order and chaos, governed by
the following relation that defines a curve in the bidimensional space of parameters
K and p:

1
B 2pe(1 = pe)

where the subscript ¢ denotes the critical values [16]. The curve defined by Eq. (4)
separates the ordered from the disordered regime [17]. RBNs whose parameters are
chosen along the critical line are the ones that best match living cell features [5, 18].

We tested our algorithm on two test sets, both composed of critical RBNs with
N = 100 nodes and constant in-degree. The first test set consists of 30 critical RBN's
with in-degree K = 2 (whence p = 0.5); the second test set contains 30 critical
RBNs with in-degree K = 3 (whence p ~ 0.788). Networks in these two ensem-
bles constitute the initial solutions of our local search and will be collectively
referred to as initial ensemble. Similarly, the set of BNs obtained after running our
local search constitutes our optimised ensemble.

In order to compute our objective function we had to compute the transition
graph. We initialise the algorithm with attractors found after a sample of 1,000 initial
conditions (more attractors may of course be found during algorithm execution
and are recursively considered in the algorithm). We considered only trajectories
with at most 1,500 steps: if an attractor is not found in this number of steps, the
sample is discarded. As for ILS, we set a runtime limit of 3 h per experiment. All
experiments were executed on a desktop PC equipped with a Intel Core 2 Quad
2.83 GHz with 8 GB RAM and running Ubuntu Server 10.04; the implementation
of the SLS algorithm presented in this paper was written in C++ and was compiled
with GCC 4.4.3 with the -03 optimisation option turned on.

“

c

4.1 Analysis of Network Properties

In order to analyse a BN we sampled its state space in 100,000 random initial
conditions, since an exhaustive test would be prohibitive. For each network, we
recorded the number of attractors, their relative basin sizes and their periods. In
addition, we computed the transition graph and the sequence of the number of TESs
(actually, the sequence s; as defined in Sect. 3.1).

The first remarkable result is that the number of TESs of the networks designed
through our local search smoothly increases with the threshold. A typical case is
depicted in Fig. 1, where we can observe that the number of TESs increases within
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Fig. 1 Number of TES as a function of the threshold in a random BN (a) and an automatic
designed one (b). (a) is the typical plot that characterises RBNs and displays their undesirable
features, with respect to the cellular differentiation model, as explained at the end of Sect. 1.
(a) A random BN. (b) Automatically designed BN

Fig. 2 Attractor transition graph for an automatically designed BN

a wide threshold range. The transition graph corresponding to this automatically
designed network is drawn in Fig.2. This property is common to almost all the
networks generated by the search procedure and can be considered as an invariant
of the ensemble.®

6Since the search process is stochastic, we can consider our design method as a biased sampling in
the space of BNs.



86 S. Benedettini et al.
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Fig. 3 Attractor stability and transitions for initial and optimised BNs in all test sets. (a) and (b)
depict the distribution of attractor stability across all networks in either test set; the distribution
is constructed by merging all data samples gathered. Data depicted in (¢) and (d) characterise the
distribution of edge weights in the transition graph as explained in the text. (a) Attractor stability
(K = 2). (b) Attractor stability (K = 3). (c) Transitions (K = 2). (d) Transitions (K = 3)
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Fig. 4 Distributions of the number of attractors (a and b) on initial and optimised networks.
(a) Number of attractors (K = 2). (b) Number of attractors (K = 3)

Statistics on attractors stability, weights in the transition graph, number of
attractors, their relative basin sizes and their periods are summarised by boxplots
in Figs.3, 4 and 5. Boxplots graphically summarise the main statistics of a
distribution [19]. The values represented are:

— The median (second quartile of the distribution)—line inside the box.
— The lower quartile (first quartile, Q1)—lowermost side of the box.
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Fig. 5 (a)-(d) summarise the distribution of median attractor period (a and b) and median
normalised basin size (¢ and d), respectively. (a) Attractor periods (K = 2). (b) Attractor periods
(K = 3). (¢) Attractor basins (K = 2). (d) Attractor basins (K = 3)

— The upper quartile (third quartile, Q3)—uppermost side of the box.

— Uppermost and lowermost whiskers are drawn at 1.5 x (Q3 — Q1), from the first
and third quartile, respectively.

— Outliers (i.e., values lying far from first and third quartile more than 1.5 x (Q3 —
Q1))—open dots.

Each figure depicts the main statistics of a measure on the initial ensemble (left
boxplot) and the optimised ensemble (right boxplot) for all test sets.

Figure 3 shows two measures that try to characterise weights of the transition
graph and thereby statistically demonstrate the effectiveness of our method in
designing BNs with the characteristics stated in Sect. 3.1. The networks’ transition
graphs can be represented by a weight matrix W = (w;),0 < wy < 1, where wy;
represents the probability of the network to go from attractor i to the basin of
attractor j after a random flip; w; = 0 <& 3e;;. Self-loops weights w;; indicate how
insensitive to random flips the attractor 7 is; in general, we want this probability to
be high.

Figure 3a, b describes the distribution of attractor stability in the initial and
optimised ensembles. Since we have one stability figure for each attractor for each
network, in order to clearly report summaries of our results, we decided to merge
together the data for all networks in each ensemble. Figure 3c, d characterises,
instead, the distribution of the weights of edges e;,i # j, i.e., we disregard self-
loop. For each BN, we collect in a set P all non-zero elements of W outside the
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main diagonal; afterwards, we compute the difference max P —min P. Figure 3c, d
shows the distribution of such differences for the initial and the optimised networks.
It can be observed that attractor stability (Fig. 3a, b) is lower but close to the initial
ensemble (requirement (/) in Sect. 3.1); at the same time, edge weights wy;,i # j,
are more spread out, according to our objective (requirement (2) in Sect.3.1). We
also remark that, for the reasons explained in Sect. 3.1, the quantity min P is rather
small, so we actually have max P — min P ~ max P.

Figure 4 depicts the distribution of the number of attractors. As a result of the
search process, the number of attractors does not vary in a statistically significant
way, although it seems to grow a bit.

Figure 5 shows basin sizes and attractor periods. Since a network can have more
than one attractor, a single BN is characterised by a set of attractor periods and basin
sizes. To adequately summarise these two statistics, boxplots in Fig.5 depict the
distribution of the median basin size and attractor period calculated on each BN. We
observe that attractors’ period does not statistically vary, but the distribution of basin
sizes is remarkably different; specifically, the search process tends to shrink basin
sizes. Intuitively, we can say that attractors with small basin sizes are likely to be
less robust than attractors with larger basin sizes simply because the basins of the
latter contain more states. Therefore, one would expect that networks with smaller
basins (a feature typical of optimised networks) are also characterised by unstable
attractors. However, Fig.3a, b clearly shows that attractor stability is essentially
unchanged. From these data we can conclude that the search process reorganises
the basins of the attractors in such a way as to satisfy our stated requirements: the
basins are therefore “rebalanced” so as to have generally stable attractors. It appears
that, in order to achieve this goal, our local search had to reduce the size of some
of the larger basins. This is the motivation why the median stability in Fig.3a, b
slightly decreases (about a 0.2 decrease for networks with K = 2 and a decrement
less than 0.1 for networks with K = 3).

5 Conclusion and Future Work

In this paper we have proposed an improvement of a mathematical model for cell
differentiation that makes use of RBNs. An ensemble of BNs that match the dynam-
ical requirements deriving from biological plausibility has been designed by means
of an optimisation process that uses SLS. The BNs generated are characterised by
a more realistic relation between the number of TESs and the threshold, conserving
the other relevant properties of the RBN ensemble. In particular, results show that
in the ensemble generated by the optimisation process the number of TESs grows
smoothly with the threshold and attractors are robust.

Future work will address the extension of the model by introducing in the
optimisation process further features of cell differentiation, such as properties
concerning deterministic and stochastic differentiation. Furthermore, besides the
ensemble approach, we are planning to validate the model against experimental data
collected for specific organisms.
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