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Abstract The study of complex adaptive systems is among the key modern tasks
in science. Such systems show radically different behaviours at different scales and
in different environments, and mathematical modelling of such emergent behaviour
is very difficult, even at the conceptual level. We require a new methodology to
study and understand complex, emergent macroscopic phenomena. Coarse graining,
a technique that originated in statistical physics, involves taking a system with many
microscopic degrees of freedom and finding an appropriate subset of collective
variables that offer a compact, computationally feasible description of the system,
in terms of which the dynamics looks “natural”. This paper presents the key ideas
of the approach and shows how it can be applied to evolutionary dynamics.

1 Introduction

Our understanding of evolution has itself evolved. The journey started with Darwin
and Mendel but it was only with the understanding of the structure of the DNA and
the formulation of the central dogma of Molecular Biology in the 1950s and 1960s
that the microscopic mechanisms of evolution could start to be unravelled. The
central dogma postulates that DNA can be seen as a sort of read-only memory which
encodes all the features and functionality of adult individuals. Through the process
of transcription the information contained in the DNA would then be transferred
into RNA. Then through the process of translation, this information would be
carried by messenger RNA to the ribosomes. These would finally be responsible
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for transforming the information into proteins. Thus, only the processes involved in
reproduction could modify the DNA of an organism.

While of course this picture is a reasonable approximation of a particular function
of the DNA and a particular way in which evolution can happen, over the last few
decades biologists have discovered that there are many more mechanisms through
which the DNA could be modified, even during the lifetime of an individual or of a
cell, and thus there are many more mechanisms through which evolution is likely to
have happened [1].

It is today clear that evolution is extremely complex. However, even if we stick
with the 1970s view of it and we consider the super-simplified forms of evolution
in the computer that were inspired by such a view and used within the field of
evolutionary computation, there is still a huge amount of potential complexity in it.
This is, however, hidden complexity, that we see only if we try to understand
evolution at a deeper level: the level of theory.

What is a theory? A theory is a logically self-consistent framework for describing
the behaviour of a related set of phenomena. It often originates from, or is supported
by, experimental evidence. Thus, a theory is a systematic and formalised expression
of previous observations that is predictive, logical and testable. Why is theory
useful? A successful theory gives an intuitive understanding of the system being
modelled, which permits one to deduce new consequences and explain phenomena.
It allows quantitative predictions, albeit more often than not approximate, about the
system.

Do we have a theory of evolutionary systems? Well, yes and no. In many
areas of evolutionary computation and classical theoretical population genetics, we
have well-defined, complete and precise mathematical frameworks. The models of
population genetics and evolutionary algorithms (EAs) have a lot in common, and
in some cases, it is even arguable that there has been more progress in modelling
natural evolution in EA theory than in population genetics. However, making
progress both with our understanding of evolutionary algorithms and with making
predictions has been an exceedingly difficult task. In this chapter, we will try to
illustrate the nature of the difficulties and show how a technique known as coarse
graining has helped us make progress.

2 Physics and Probability Preliminaries

Let us start with some simple notions from physics. In many systems one can
identify a minimum set of variables, called degrees of freedom (d.o.f.), which
describe the state of the system. For example, the d.o.f. of a set of static marbles on
a table would be the x and y coordinates of each marble. Similarly, the d.o.f. of the
molecules of a gas are the x, y, z coordinates of each molecule and the components
vx , vy , vz of their velocities.

Note that the x and y of each marble would work as d.o.f. also if we glued the
marbles together in some form of geometric arrangement, say a rectangle. However,
now if we moved the rectangle, the marbles in the rectangle rigidly move together,
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i.e., their trajectories are now constrained. Indeed, the position of each marble is
known if we know the position of the rectangle. This has only three d.o.f.—the
coordinates xR and yR of its centre of mass and its rotation �R on the plane.

The x and y coordinates of each marble are said to be the microscopic d.o.f. of
the system, while the rectangle’s d.o.f., xR, yR and �R, are what a statistical physicist
would call the effective degrees of freedom (e.d.o.f.) of the glued marbles. We will
give here a personal definition of e.d.o.f.: a set of effective degrees of freedom for a
system is a minimum set of variables which, at a given scale, naturally, possibly
approximately, describe the states of a system for many practical purposes. So,
while the x; y; z; vx ; vy; vz of a gas molecule’s state are the microscopic d.o.f. for
a gas, in many practical cases, pressure and temperature are a set of (macroscopic)
e.d.o.f. for the gas.

Naturally, all d.o.f. are effective to some degree. Nearly always, in the real world,
any chosen set of d.o.f. (even the most microscopic and complete ones) provide only
an incomplete representation of reality. When we chose to represent the marbles
using their x and y coordinates we had made some assumptions: (a) the marbles’
z coordinates are constant, (b) the marbles’ rotations are either unimportant or
unobservable, (c) the marbles are stationary (no velocities), (d) everything else, e.g.,
the marbles’ temperature, colour, etc., is irrelevant. For some situations this set of
d.o.f. is sufficient to represent the behaviour of the real system. However, it wouldn’t
be appropriate if someone could give a push to a marble.

Related to the notion of effective d.o.f. is the notion of coarse graining. Coarse
graining means taking a system with many microscopic d.o.f. and finding an
appropriate set of e.d.o.f. for it. How do we choose a good set of e.d.o.f.? There
are some criteria: we want e.d.o.f. that offer a more compact, appropriate and
computationally tractable description of the system, and in terms of which the
dynamics looks “natural”. (Often this naturalness manifests itself in terms of finding
variables that are as independent and uncoupled as possible.)

Normally one describes a systems using d.o.f. for a reason: we want to under-
stand how and why the state of the system changes over time. This is what a physicist
would call the dynamics of the system. Also, we may want to describe special states,
e.g., equilibria, where the state variables (d.o.f.) have particular relationships, e.g.,
the gas law PV D RT where P is pressure, V volume, T temperature and R is the
ideal gas constant. In coarse graining, generally, we pass from a description with
one set of d.o.f., and corresponding interactions, to another, where both the e.d.o.f.
and their effective interactions are different as we change scale, i.e., as we change
from one set of e.d.o.f. to another. So, the dynamics and laws governing a system
change as we change d.o.f..

Since a number of sources of randomness influence evolution, models of evolu-
tion will need to make use of probabilities. In particular we will use probability/
event tree diagrams to model evolution. Tree diagrams allow us to see all the
possible outcomes of an event and calculate their probability. Let us briefly discuss
these tools.

We will first consider what tree diagrams can do for us using very simple
examples. Let us start with modelling repeated coin tosses. Spinning a coin has
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Fig. 1 Spinning a coin twice can be modelled using a tree diagram with two levels and four
possible outcomes. The probability of an outcome of a double flip is the product of the probabilities
(1=2) encountered along the edges connecting the root node to the outcome

two outcomes: heads (H) or tails (T). Spinning it twice can be modelled using a
tree diagram with two levels and four possible outcomes: HH, HT, TH and TT. In
general, in a tree, we label each edge with the probability of an event following that
edge and resulting in the corresponding outcome. The probability of an outcome
(e.g., heads followed by another heads) is the product of the probabilities along the
path connecting it to the root of the tree. If the coin is fair, the probabilities along
each edge are all 1=2 as shown in Fig. 1. The probability of the four outcomes of
a double coin flip are the products of the probabilities encountered along the edges
connecting the root node to an outcome: in this case 1=4 for all outcomes.

Once the tree diagram is instantiated, one can use it to compute the probability of
more complex events, such as the probability of having at least one head in two coin
flips, by simply labelling as “success” all the relevant outcomes and adding together
the probabilities of such “successful” outcomes.

Naturally, probability trees can also handle multiple outcomes, as in the case of
drawing beads from a bag containing 2 blue, 3 red and 5 green beads, and, again, the
product rule for computing the probability of outcomes applies. Also in this case,
one can compute the probability of more complex events by simply adding up the
probabilities of the relevant outcomes.

More generally, with probability trees we can find answers to questions such
as: If we have a ˛R (˛B , ˛G) probability of getting a red (blue, green) bead
in one draw, what’s the probability of getting exactly nR red, nB blue and nG

green beads after M draws? For M D 2 we can use a tree diagram to answer the
question. However, for bigger M and also for general values of ˛R, ˛B and ˛G ,
we would really need a formula to find out the answers. Fortunately, the answer is
given in probability textbooks. The repeated draw of beads from the bag follow a
multinomial distribution. In other words,

Pr.nR; nB; nG/ D
 

M

nR; nB; nG

!
˛

nR
R ˛

nB
B ˛

nG
G

where
�

M
nR;nB;nG

� D MŠ
nRŠnBŠnGŠ

are multinomial coefficients.



Taming the Complexity of Natural and Artificial Evolutionary Dynamics 23

Naturally, tree diagrams are useful also to model sequences of events that are
not all of the same type. For example, we can alternate coin flips and bead draws,
and find what’s the probability of the event T,R,T,R from the corresponding tree.
The only problem is that we just cannot use one of the multinomial distribution
shortcuts to add up probabilities for us. Also, tree diagrams work even if events are
not independent. For example, if we were performing bead draws but did not put
the bead drawn back into the bag, the probabilities of drawing beads of different
colour would change after each draw. Nonetheless, the probability of an outcome
(e.g., R,R) is still the product of the probabilities along the path connecting it to the
root.

Note that, in the case just described, in the second level of the tree we are
performing a different kind of draw depending on the result of the first draw. We
could be even more radical, and in fact consider a completely different set of events
and outcomes for each outcome of the first draw. For example, we might draw
another bead (with outcomes R, B and G) if the first bead drawn was red, we might
flip a coin (with outcomes H and T) if the bead was blue and we might roll a dice
(with outcomes 1, 2, 3, 4, 5 and 6) if the bead was green. While the exercise and
the resulting tree (with its set of inhomogeneous outcomes) might seem odd, the
product rule to compute the probability of outcomes would still apply.

3 Models of Evolutionary Algorithms

Modelling EAs means modelling the different events that take place during the
creation of offspring, then modelling the iteration of such events which lead to the
creation of a new generation and, finally, modelling the iterated construction of a
generation to model a full run of the algorithm. We will do this in the following
subsections.

3.1 Modelling the Genetic Operators

For simplicity, we will assume that we use a binary fixed-length representation
and that offspring can be created by either the selection of one parent followed
by mutation or the selection of two parents followed by crossover. More complex
forms of creation can be modelled following the same principles.

The first question we need to answer is: What happens when an offspring is
created in one particular generation? Irrespective of the genetic operators used, the
creation of an offspring at a given time depends only on: what’s in the population at
that particular time (which is variable), the fitness function (which we will assume
to be fixed) and the parameters of the EA, such as the population size (which we
will also assume to be fixed). So, the thing on which offspring creation depends is
the current population.
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Table 1 Degrees of freedom (left) and possible configurations (right) for
a population of three binary strings of length four

d1 d2 d3 d4
d5 d6 d7 d8
d9 d10 d11 d12

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

· · ·
1 1 1 1

1 1 1 1

1 1 1 1

4;096

Selection of 
parent

1100 0011 1110

p(0011) p(1110)p(1100)

Mutation

p(1100->0011)

p(1100->1110)

p(1100->1100)

Offspring

1100 0011 1110 1100 0011 1110 1100 0011 1110

p(0011->0011)

p(0011->1110)

p(0011->1100)

p(1110->0011)

p(1110->1110)

p(1110->1100)

Fig. 2 Simplified tree model of the selection of a parent followed by its mutation

We will need to formalise this dependency in some way. The next question then
is: What are the microscopic d.o.f. of a binary population? Clearly, the d.o.f. of
a population are the bits in every individual of the population. For example, a
population of three four-bit strings has 12 d.o.f. and there are 212 D 4;096 different
configurations, as shown in Table 1.

Let us first consider the case of selection followed by point mutation. Suppose
our current population is one of the configurations in Table 1(right), namely:
f1100; 0011; 1110g. The creation of offspring by selection and mutation is repre-
sented by the tree diagram in Fig. 2, which is simplified for display purposes in that
it assumes that only strings 1100, 0011 and 1110 can ever be generated (which, of
course, isn’t true).

Since point mutation acts on every bit independently, in the diagram, the
probability (along the bottom edges) of mutating a string y to a string x is given
by p.y ! x/ D p

h.x;y/
m � .1 � pm/`�h.x;y/ where h.x; y/ is the Hamming distance

between x and y and ` is the string length. Let us further assume that we use fitness
proportionate selection to select parents. In this form of selection, the selection
probability for a string x, p.x/, is simply the ratio between the fitness of x and
sum of the fitnesses of all individuals in the population.
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Fig. 3 Tree diagram for the selection of two parents followed by crossover

Then, if we know the mutation rate and the fitness function, we can turn the
generic tree in Fig. 2 into a concrete probability tree. For example, if pm D 0:25,
then p.1100 ! 1100/ D 0:250 � 0:754 D 0:316, p.1100 ! 0011/ D 0:254 �
0:750 D 0:004, p.1100 ! 1110/ D 0:251 � 0:753 D 0:105, etc. So, all lower
level edges have numerical probabilities associated with them. Also, suppose we
are solving the OneMax problem,1 then f .1100/ D f .0011/ D 2, f .1110/ D 3

and the sum of fitnesses in the population is seven. So, p.1100/ D p.0011/ D
2
7

D 0:286 and p.1110/ D 3
7

D 0:429. So, the probabilities in the upper part of
the tree diagram are also defined. Of course, the multiplication rule still applies, but
there are multiple paths leading to the same outcome (offspring). So, the offspring
creation probabilities, ˛, are sums of products.

Let us now consider the process of generating offspring by selection followed
by one-point crossover. The selection-crossover diagram for f1100; 0011; 1110g is
shown in Fig. 3. Clearly there are now three events taking place (two selections and
one crossover), so the tree has three levels. The first two levels are exact copies
of the first level of Fig. 2, since they simply represent the selection of the parents
(with reselection allowed). As for the bottom level, since we use four-bit strings,

1In OneMax, fitness is the number of 1s in a bit string and the objective is to maximise that number.
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one-point crossover can choose among three cut points. Each has a probability of 1
3

of occurring.
If we look at the outcomes at the bottom of the tree, we can see that while we

started from a population containing the three strings 1100, 0011, 1110, crossover
can produce nine different strings: 0000, 0010, 0100, 0110, 1011, 1100, 1101,
1110 and 1111. Naturally, the sum-of-products rule still applies even if some
probabilities in the tree are left unspecified. So, we can use the diagram to compute
the creation probability ˛.x/ for the nine outcomes (offspring strings): ˛.0000/ D
1
3
p.0011/p.1100/, . . . , ˛.1111/ D 1

3
p.1100/p.0011/ C 1

3
p.1110/p.0011/ C

1
3
p.1110/p.0011/.

As for mutation, if we know the fitness, we can work out selection probabilities
p.x/, and from these the creation probability for all strings that can be created in
the next generation. Again, if we just focus on the outcomes, we can represent the
process with a tree diagram with just one level.

It is traditional for the process of creation of offspring via selection and crossover
to first require the selection of the two parents and then execute the crossover
operation, which in turns requires selecting a random crossover point. It is, however,
quite clear that choosing the crossover point is totally independent from the selection
of parental types. So, one could reorder these operations without altering the
outcome. For example, selecting crossover points before selecting parents doesn’t
affect results in any way. Naturally, this different way of ordering events leads to a
different but equivalent tree diagram model.

3.2 Coarse Graining and Generalising Models

Having developed models for the process of creating individuals via selection-
mutation and selection-crossover for the specific population f1100; 0011; 1110g we
may ask: What if we had the population f1100; 1100; 0011; 1110g which contains
two copies of the string 1100 instead of just one?

Of course, we could just follow the same steps as before and redevelop tree
diagrams for the events associated with such a population. For example, Fig. 4
shows the diagram for offspring generation via selection-crossover for the new
population. We should note, however, that there is a lot of duplication (identical
sub-trees, identical outcomes) in this diagram with respect to the one for the original
population (Fig. 3).

Let us try to simplify the tree a little. First, we should note that if we doubled
some of the probabilities labelling some of the edges in the tree, we could obtain the
entirely equivalent, but more compact model in Fig. 5.

We now see clearly that this is the same diagram as for f1100; 0011; 1110gexcept
four probabilities have doubled. What is this diagram trying to tell us? Why the
factor 2? Note: 2 is also the number of copies of the string 1100 in the population.
Is this a coincidence?
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Fig. 4 Tree diagram model of the creation of offspring via selection-crossover for the population
f1100; 1100; 0011; 1110g
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Fig. 5 More compact, but equivalent, version of the model in Fig. 4

Naturally, it is not a coincidence. The original tree diagram in Fig. 3 is valid
for both populations provided we interpret the selection of first and second parent
events as the selection of first and second parental types not of particular individuals
and we interpret the p.x/’s as probabilities of selecting a particular type.
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What is a type? The notion of type is best explained with an example. The
population {A, B, B, C, A, A, B} contains seven individuals but only three distinct
types: A, B and C. So, the selection probability for a type is defined as

p.type x/ D
X

s of type x in pop

p.s/ D #(s of type x) � p.s/;

which for fitness proportionate selection becomes

p.x/ D # individuals of type x in population � f .x/

sum of fitnesses of all individuals in population
:

With these changes of interpretation, the model of crossover in Fig. 3 works
for all populations having any number of copies of 1100, 0011 and 1110, e.g.,
{1100, 1100, 1100, 0011, 0011, 1110, 1110, 1110}. Similarly we could coarse grain
selection-mutation models.

A question that immediately comes to mind is: Would the model work for also
the population f0011; 1110g which contains zero copies of the string 1100? The
answer is yes. There are extra outcomes in the tree in Fig. 3 which for the population
f0011; 1110g have a zero probability of occurring, but the model is still formally
correct.

In other words, the probability of selection of types automatically adjusts for the
number of copies (including 0) of a type. Thus, we could generalise the selection
part of the model to any population if we added all possible string types of a
given length as outcomes of the selection process. Naturally, only a small subset
of outcomes would have non-zero probability for any given population.

If we also generalise crossover to strings of a generic length `, we would get
a general model of the selecto-recombination operator which is both independent
from the particular population at hand and from the length of the representation. This
is shown in Fig. 6. The same approach would produce a general selecto-mutation
model.

Note that the models in Figs. 2 and 6 can be collapsed down to a tree with a
single level if we consider the selection-mutation and selection-crossover processes
as a single (composite) event, respectively. Naturally, as shown in Fig. 7, we need to
use an appropriate set of probabilities to label the edges that lead to the outcomes
(offspring), namely the quantities ˛.x/ for all possible values of x.

Let us reconsider at this point the question of how we compute the creation
probabilities ˛. The tree we have just defined has 2` nodes at the first level, 2` � 2`

at the second and .` � 1/ � 2` � 2` at the third level. So, for any realistic value
of ` it is immense. Interestingly, however, it can have “only” 2` distinct outcomes
(offspring). Since 2` � .` � 1/ � 2` � 2`, we should expect to have to multiply and
add an exponential number of probabilities to compute ˛.x/ for each outcome.

Obviously, we cannot do this by hand. So, we introduce a function to help us
do it: �.y; z; n; x/ D 1 if crossing over y and z at position n produces x, and 0
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Fig. 6 General population- and length-independent model of the process of creating offspring via
selection and recombination

00...00

00...01
α(00...00)

α(00...01) .
.
.

11...11
α(11...11)

Fig. 7 The tree representation for a general selection-crossover process and a general selection-
mutation process, represented as a single (composite) event

otherwise. With this, we can now write the creation probability via selection and
crossover for a generic type x, in a general form:

˛.x/ D
X
y2˝

X
z2˝

`�1X
nD1

�.y; z; n; x/

�
p.y/p.z/

` � 1

�
(1)

where ˝ is the space of all possible strings of length `.2

2Naturally, we would like to have an explicit form for �.y; z; n; x/. It exists, but for now we will
not look at it.
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Note that Fig. 7 represents also a general model for the selection-mutation
process, although now we have ˛.x/ D P

y2˝ p.y/p.y ! x/ where p.y ! x/ is
the probability of mutation transforming an individual of type y to an individual of
type x (which we have already computed).

3.3 Modelling One Generation

Now that we have models of the process of creating one offspring, we are in a
position to start constructing models of the iterated application of the offspring-
creation process, in view of modelling a generation.

What happens when an offspring is created in one particular generation? We
have already seen that, irrespective of the genetic operators used, offspring creation
is similar to drawing beads from a bag. Generally, the process is modelled in
Fig. 7 for a generic operator or set of operators (where ˛.x/ is the probability of
creating individual x with the chosen operators). Naturally, the creation process
will have many more than the three possible outcomes of the bead-draw process,
but the principles at work are exactly the same. Then, what happens if we iterate the
creation process, e.g., to create a full new generation? In a generational EA, within
a generation the ˛’s, i.e., the offspring creation probabilities, are constant. So, for
a generation we have a probability tree diagram very much like the one for iterated
bead draws as illustrated in Fig. 8 for a population of three individuals.

Naturally, in general, the general model in Fig. 7 would need to be used at each
level of the tree diagram representing one generation. In either case, this time the
outcomes of the process are populations. For example, for the model in Fig. 8 there
are 27 outcomes:

1111
1111
1111

1111
1111
0000

1111
1111
1010

1111
0000
1111

1111
0000
0000

1111
0000
1010

1111
1010
1111

1111
1010
0000

1111
1010
1010

...
0000
0000
0000

Again, like for multiple bead draws, the multiplication rule applies: when we
want to compute the probability of an outcome, we simply need to multiply
the probabilities along the edges of the path that goes from the root of the tree
to the outcome of interest. So, for example, the probability of the next generation
being the eighth outcome (in boldface) is ˛.1111/ � ˛.1010/ � ˛.0000/.

At this stage we note the possibility of a further coarse graining: coarse graining
on positional symmetries. In other words, do we generally care about the differences
between populations, such as the second and the fourth above, which have exactly
the same strings but in a different order?

We might, if some genetic operator depends on position, e.g., if selection only
allowed mating of neighbouring individuals. However, typically genetic operators
are position independent, so we don’t care about positional differences. Because
these populations are effectively equivalent, we don’t really need to distinguish them
using the original set of d.o.f.. We only care about how many individuals of any
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α(1010)

1111
0000

α(1111)
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α(1010)

1111
0000

α(1111)
α(0000)

1010
α(1010)

1111
0000

α(1111)
α(0000)

1010
α(1010)

11110000α(1111)
α(0000) 1010α(1010)
11110000α(1111)
α(0000) 1010α(1010)
11110000α(1111)
α(0000) 1010α(1010)
11110000α(1111)
α(0000) 1010α(1010)
11110000α(1111)
α(0000) 1010α(1010)
11110000α(1111)
α(0000) 1010α(1010)
11110000α(1111)
α(0000) 1010α(1010)
11110000α(1111)
α(0000) 1010α(1010)
11110000α(1111)
α(0000) 1010α(1010)

| ←− generation (popsize M = 3) −→ |

Fig. 8 Simplified tree diagram model of a generation for a population of three individuals

given type are present in the population. E.g., two of type 1111 and one of type 0000.
So, we can define new (coarse grained) e.d.o.f.: using the number nx of individuals
of a given type x (for all x) as a representation. So, a population with two individuals
of type 1111 and one of type 0000 can be represented as n1111 D 2, n0000 D 0 and
n1010 D 1.

More generally, for ` D 4 and a population of size M , our e.d.o.f. are

0000 n0000
0001 n0001
0010 n0010
0011 n0011

0100 n0100
0101 n0101
0110 n0110
0111 n0111

1000 n1000
1001 n1001
1010 n1010
1011 n1011

1100 n1100
1101 n1101
1110 n1110
1111 n1111

with the constraint
P

x nx D M .
Having now coarse-grained on positional symmetries, have we actually saved

anything in terms of complexity? Simple counting arguments can show that with

strings of length ` there are
�

MC2`�1
2`�1

�
possible populations of M individuals. This

is in general much smaller than the 2M�` populations we would have to consider if
we did not coarse grain. So, the saving is huge.

Of course, as for the beads, if xi is the i -th possible offspring, the probability that
in the next generation one gets n1 individuals of type x1, n2 of type x2, etc., is just
given by the multinomial distribution
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Pr(3,0,0)

...

Pr(2,1,0) Pr(0,0,3)

1111
0000
1010

0
0
3

1111
0000
1010

2
1
0

1111
0000
1010

3
0
0

Fig. 9 Tree model of the process of creating a generation as a single (composite) event. (Here, for
simplicity, we assume that only strings 1111, 0000 and 1010 can be generated. So, there are only
ten possible outcomes)

Pr.n1; n2; � � � / D
 

M

n1; n2; � � �

!
˛.x1/n1˛.x2/n2 � � �

Effectively this equation is a representation for the dynamics of the system in terms
of the new e.d.o.f. nx . With it, we can get (probabilistic) information about the
next generation. For example, we know all the moments of the distribution of next-
generation populations. For instance, the expected number of copies of any xi in the
next generation is simply M˛.xi /.

As we did before with the ˛’s, knowledge of Pr.n1; n2; � � � / allows us to model
a generation, which is the result of a series of offspring-creation events, as one
(composite) generation-creation event, the outcomes of which are populations.
A sample (simplified) tree diagram for the population f1111; 0000; 1010g is shown
in Fig. 9.

3.4 Modelling Runs

Having now “tamed” the complexity of the generation-creation process using the
Pr.n1; n2; � � � / and tree diagrams such as Fig. 9, we are now in a position to model
entire runs.

It is clear that tree diagrams can be used also to model multiple generations and,
thus, runs as illustrated in simplified form in Fig. 10, where we assumed that we
start runs from a given (known) population. In the figure, different edges in the tree
leading to the same population are labelled by different probabilities. The reason for
this is that the action of the genetic operators (e.g., selection) depends on who is in
the population, so the ˛’s and consequently the probabilities Pr.n1; n2; � � � / depend
on it. So, in general we should expect Pr.3; 0; 0/ ¤ Pr 0.3; 0; 0/ and similarly for
most other labels.3

3As a result, we cannot use the multinomial distribution to predict the future over multiple
generations.
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Fig. 10 Tree model of the process of running an EA for multiple generations

Of course, outcomes are now trajectories in population space. For example, if we
ran an algorithm for three generations, an outcome could be

trajectory D ( Initial population ⇒
1111 1
0000 2
1010 0

⇒
1111 2
0000 1
1010 0

⇒
1111 3
0000 0
1010 0

)
Applying the multiplication rule to this sample trajectory we obtain

Pr.trajectory/ D Pr.1; 2; 0/ � Pr 0.2; 1; 0/ � Pr 00.3; 0; 0/

where

Pr.1; 2; 0/ D Pr( getting
1111 2
0000 1
1010 0

from the initial population ),

Pr 0.2; 1; 0/ D Pr( getting
1111 2
0000 1
1010 0

from population
1111 1
0000 2
1010 0

),

Pr 00.3; 0; 0/ D Pr( getting
1111 3
0000 0
1010 0

from population
1111 2
0000 1
1010 0

),

are conditional probabilities. In other words, the probability on the edge from a
population P to population P 0 is the probability of P 0 being the next generation
when we use the creation probabilities ˛ computed for population P . We write this
probability as Pr.P 0 jP/.

Now, let us imagine we numbered all possible populations: P1, P2, and so on.
The probabilities of the edges between all possible pairs of populations could be
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...P
1 P

2

π1 π2

Initial Population

Potential End-of-run Populations

Fig. 11 Tree model of the process of performing a run of an EA as a single (composite) event

represented as a matrix Q D
�

Pr.Pi jPj /
�

, which is effectively the transition

matrix for a Markov chain whose states are all possible populations: P1, P2, and
so forth. So, the probability of the population following a particular trajectory during
a run is the product of a set of elements of Q.

However, in many cases one is not particularly interested in the trajectory
followed by a run, but, more simply, in the population obtained at the end of that
run. In this case, there is a further opportunity for coarse graining: we could consider
populations as outcomes of runs of the EA and ignore all other aspects of the
dynamics that led to such end-of-run populations. For the properties of Markov
chains, we can easily compute the probability of each such outcome. Indeed,
the probability distribution, �t , of the EA being in any state (having a particular
population) at a future generation t is simply

� D Qt�0

where �0 is the initial probability distribution over states, which for a known initial
population is simply a vector with one unitary component (representing the initial
population) and zeros everywhere else.4 So, if we know the initial population, again,
we can treat the complex chain of events taking place in a run as one (composite)
event which we can model with a tree diagram with only one level. This tree is
represented in Fig. 11 where �1, �2, etc. are first, second, etc. component of the
vector � , respectively.

Naturally, many EAs start from a random population, not a known population.
It should, however, be clear by now, that the process of randomising the initial
generation before starting a run simply adds an extra level to the tree-diagram model
of runs in Fig. 10. This does not change at all the resulting model of runs as single
composite events shown in Fig. 11. All that changes is the initial distribution over
populations, �0. So, the case of initial random populations, too, is covered by our
analysis.

4This is Michael Vose’s model for a genetic algorithm [2].
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4 Coarse Graining and the Emergence of Schemata

So far we have already used coarse-graining a number of times: we coarse-grained
over types when performing selection, we coarse-grained over positions in the
population and, finally, we coarse-grained over population dynamics focusing only
on end-of-run populations.

In theory, with Q one can compute everything that can be computed about the
future of a run. For example, we could compute the probability of solving a problem
in say 50 generations. In practice, however, Q is just too big for one to be able to
create and use it. We can only study its properties mathematically. So, while the
theory presented above is an exact theory, it is a theory that is hard to use to make
predictions and to understand why an EA behaves the way it does. The problem is
that the model and its e.d.o.f. are still too microscopic to show us the regularities of
an algorithm. We need something else.

4.1 In Search of New Effective Degrees of Freedom

Earlier we expressed the creation probability via selection and crossover as in
Eq. (1). It is now time to learn more about �.y; z; n; x/.

Let us fix the type of interest as x D 11 (` D 2). From the selection-crossover
event diagram5 we find that �.y; z; n; x/ � 0 except for

�.10; 01; 1; 11/ D �.10; 11; 1; 11/ D �.11; 01; 1; 11/ D �.11; 11; 1; 11/ D 1:

So, ˛.11/ D p.10/p.01/ C p.10/p.11/ C p.11/p.01/ C p.11/p.11/, which
includes only 4 terms out of the possible 16. ˛.11/ can thus can be written as

˛.11/ D .p.10/ C p.11// � .p.01/ C p.11//:

Is this factorisation a coincidence, or is the equation trying to tell us that A D
p.10/ C p.11/ and B D p.01/ C p.11/ would lead to a more natural description
of the creation process as ˛.11/ D A � B? To answer these questions we will need
to find (and work with) an explicit form of �.

The function � is 1 only if there is a match between the offspring’s bits and
the first parent bits before the crossover point and there is a match between the
offspring’s bits and the second parent bits after the crossover point. We can write
this conjunction of multiple requirements as

�.y; z; n; x/ D
Y
i�n

ı.xi D yi /
Y
i>n

ı.xi D zi /

5For ` D 2 there is only one valid crossover point (n D 1).
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where xi , yi and zi are the bits in x, y and z, respectively, and ı.expression/ D 1 if
expression is true, and 0 otherwise.

Substituting this description of � into Eq. (1) yields

˛.x/ D
X
y2˝

X
z2˝

`�1X
nD1

 Y
i�n

ı.xi D yi /
Y
i>n

ı.xi D zi /

!�
p.y/p.z/

` � 1

�
:

We can then reorder the calculation in an interesting way:

˛.x/ D
`�1X
nD1

1

` � 1

0
@X

y2˝

p.y/
Y
i�n

ı.xi D yi /

1
A �

 X
z2˝

p.z/
Y
i>n

ı.xi D zi /

!

That is, like ˛.11/ D A � B , also ˛.x/ can be expressed in a simpler form:

˛.x/ D
`�1X
nD1

1

` � 1
An � Bn;

for An D P
y2˝ p.y/

Q
i�n ı.xi D yi / and Bn D P

z2˝ p.z/
Q

i>n ı.xi D zi /. It is
then natural to ask: What are the factors An and Bn? Why do things look so much
simpler if we calculate ˛ in this way?

4.2 Coarse Graining from Types to Sets

The action of the ı’s in An and Bn is to zero some terms in the corresponding
summations over ˝ , i.e., they limit the range of the summations. That is

An D
X

y2Ln.x/

p.y/ and Bn D
X

z2Rn.x/

p.z/;

for an appropriate choice of the two sets Ln.x/ and Rn.x/, namely Ln.x/ D fy 2
˝ W y1 D x1; � � � ; yn D xng and Rn.x/ D fz 2 ˝ W znC1 D xnC1; � � � ; z` D x`g.
This suggests that there is a further level of coarse-graining that we can do to tame
the complexity of evolution: moving from types to sets of types.

We can easily extend the definition of p.x/ from types to sets as follows:

p.A/ D Prfselecting a individual of a type belonging to set Ag:

Because all events in A are mutually exclusive p.A/ D P
x2A p.x/. Thus, we can

express An D p.Ln.x//, Bn D p.Rn.x//, and

˛.x/ D
`�1X
nD1

1

` � 1
p.Ln.x// � p.Rn.x//:
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Fig. 12 Tree model of the selection-crossover process coarse-grained using sets of types

Let us analyse this result. We see that the probability of creating an offspring of
type x is now decomposed as a sum of products of three probabilities: the probability
of choosing a particular crossover point 1

`�1
, the probability of selecting a first

parent belonging to the set Ln.x/ and the probability of selecting a second parent
belonging to the set Rn.x/. Note that these two sets depend on both x and the choice
of crossover point n. This suggests that the most coarse-grained tree diagram we can
construct to represent these events is one that starts with the choice of a crossover
point at the first level of the tree. Then it focuses on different kinds of selection
events depending on the chosen crossover point, thereby forming a hybrid hierarchy
of the same kind considered at the end of Sect. 2. The different kinds of selection
are the selection of types belonging to the sets Ln.x/ for the second level of the tree
and the sets Rn.x/ for the third level of the tree. Naturally at every level we must
consider not only just the positive outcome (the selected type is in the set) but also
its corresponding negative one (the type is not in the set).

The resulting tree diagram is shown in Fig. 12. Note how much smaller and
simpler than the original in Fig. 6 this is. There are only O.`/ nodes in it as
opposed to the original O.2`/. Clearly, Ln.x/ and Rn.x/ are really good e.d.o.f.
for describing the creation of instances of x. But what are these sets?

4.3 Schemata as Effective Degrees of Freedom

Holland [3] introduced the notion of schema as a tool for analysing EAs. A schema
is a set of individuals represented with a particular pattern: a string of symbols from
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the alphabet f0; 1; �g. The semantics of the symbols is this: (a) all individuals in
the schema must have the specified pattern of 0s and 1s within them, and (b) the
� symbols mean we “don’t care” to check the corresponding bit in the individuals.
For example, the schema 11�� represents all strings of length 4 which start with 11,
i.e., 11�� D f1100; 1101; 1110; 1111g.

With this notion in hand, it is now easy to see that for a fixed x and n, the two
sets Ln.x/ and Rn.x/ are particular schemata, namely Ln.x/ D x1 � � � xn� � � � � and
Rn.x/ D � � � � �xnC1 � � � x`. Hence

˛.x/ D
`�1X
nD1

1

` � 1
p.x1 � � � xn� � � � �/p.� � � � �xnC1 � � � x`/:

In other words, schemata are the right type of coarse-graining to represent the
operation of creating an individual of a particular type through selection and
crossover. Note, however, that there is a slight asymmetry in this equation: we
have used schemata as effective d.o.f. for the right-hand side, but types as e.d.o.f. for
the left-hand side. Could we coarse grain creation events even further by extending
the interpretation of the domain of ˛ from types to sets of types? If A is a schema,
i.e., A D s1s2 � � � s` with sn 2 f0; 1; �g, and we define ˛.A/ D P

x2A ˛.x/, it is
possible to prove [4] that this coarse graining leads to an equation of exactly the
same form as that for ˛.x/, namely:

˛.s1s2 � � � s`/ D
`�1X
nD1

1

` � 1
p.s1 � � � sn� � � � �/p.� � � � �snC1 � � � s`/:

This reveals the hierarchical nature of creation events across multiple genera-
tions. For example, the probability of creating individuals of type 111 at generation
t is determined by the selection probabilities of individuals of the sets 1��, �11,
11� and ��1 at that generation. These selection probabilities depend not only on the
fitness function but also on the number of individuals within each set at generation t .
These were created in the previous generation, t � 1. Their distribution is entirely
determined by the probability of creating individuals in each sets at generation t �1.
For example, the number of individuals in �11 depends on ˛.�11/ at generation
t � 1. In turn ˛.�11/ is controlled by the individuals in sets �1� and ��1 at
generation t � 1. Their number is stochastic, but, of course, depends on ˛.�1�/

and ˛.��1/ at generation t � 2.6

6Note that ˛.s1s2 � � � s`/ becomes particularly simple when all si D � except one. In that case it is
easy to verify that ˛.s1s2 � � � s`/ D p.s1s2 � � � s`/.



Taming the Complexity of Natural and Artificial Evolutionary Dynamics 39

5 Conclusions

Here we have shown that what makes even the simplest forms of evolution
so complicated to analyse mathematically is the explosive number of possible
outcomes of each operation or sequence of operations. We have also shown that
coarse graining has helped us formulate more intuitive models of the dynamics of
EAs, thereby taming their complexity, at least to some degree.

Naturally, many people have attempted to model EAs for many years. So, differ-
ent models and different types of coarse grainings have been used. For example, the
models presented here have been extended to variable-length strings, to non-binary
alphabets, to more general forms of crossover and mutation, to tree-like structures,
to diploidy/polyploidy and multiple chromosomes, to more recently discovered
genetic operations (inversion, transposition, gene duplication, gene deletion, etc.),
etc. [5–8]. Also, there are systems where the natural e.d.o.f. are Fourier (Walsh)
modes and systems that can be characterised by interpreting the crossover operation
as a low-pass filter. It is also possible to apply the Renormalisation Group [9] to
model EAs. Also, search in continuous spaces can be modelled using the finite
element method (coarse-graining the states of the system).

There are, however, also a number of still unresolved issues including, for
instance, deriving convergence proofs using coarse-grained variables, deriving
problem-difficulty indicators based on such variables, relating no-free-lunch theory
to coarse-grained models, and many others.

While coarse graining the d.o.f. and dynamics of evolution is difficult, most
of what has been achieved for EAs is relevant for biological evolution, too. For
example, the key notion of schema and the hierarchical nature of creation via
crossover has been almost completely neglected in population genetics. Much might
be learnt about natural evolution by applying such notion.
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