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Preface

Traditionally, artificial evolution, complex systems, and artificial life were separate
fields, each with its own research community, but we are now seeing increased
intertwinement and hybridization among them. It is now hard to imagine any work
in one of these areas that does not refer to techniques or theoretical results normally
considered to belong to one of the other two.

Evolution and complexity characterize both biological life and artificial life,
whenever direct modeling of biological processes is pursued or populations of
interacting artificial biologically inspired entities are created, from which complex
behaviors can emerge and evolve.

The latter consideration, besides offering a proof of the tight connections existing
between these disciplines, also gives an idea of the breadth of the related topics of
interest, and of the different study viewpoints, ranging from purely scientific and
exploratory approaches aimed at verifying biological theories to technology-focused
applied research aimed at solving difficult real-world problems raised by practical
and industrial tasks.

As a result of the hybridization between these disciplines, the same is happening
to the corresponding research communities, and common conference tracks and
workshops are being organized worldwide.

We conceived the idea of editing a book to collect contributions offering a wide
panoramic view of the opportunities that cooperation among the three disciplines
can produce when we started organizing the fourth edition of WIVACE, the Italian
Workshop on Evolutionary Computing and Artificial Life, which was held in Parma
in February 2012.

This edited book includes invited chapters from leading scientists in the fields
of artificial life, complex systems, and evolutionary computing, aimed at authori-
tatively introducing readers to some of the main research topics that are not only
shared by the three research fields, but that, in some cases, can only exist, thanks to
the contribution of all three disciplines.

The book also contains a selection of the best papers presented at WIVACE 2012,
thoroughly revised and extended by the authors.
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vi Preface

The contributions, ranging from fundamental theoretical issues to state-of-the-
art real-world applications, have been organized into five parts, based either on
their kind (research-oriented or application-oriented) or topics (biological modeling,
mind and society, evolution).

This subdivision denotes how the modeling of biological systems, both
anatomical-functional and social, constitutes the wide general field in which
evolution, complexity, and artificial life coexist most closely and which is studied
most frequently.

This is not surprising, as artificial life and evolution are biologically inspired
disciplines per se, while it is hard to imagine something which is more complex
than the functioning of the human body and, possibly even more so, human society.

In the following we provide a brief overview of each chapter. On one hand, to
allow readers to figure out a general picture of the composite research field induced
by the interactions of the three disciplines, and, on the other hand, to let readers
quickly locate the chapters which look most interesting to them.

Part I: Research Issues

The first chapter, by Domenico Parisi, discusses the challenges posed by construct-
ing embodied artificial agents (i.e., robots) not as practical applications but as a
means to understand human behavior. Since there are many ways to construct an
artifact that reproduces a single (human) phenomenon, the author argues that robots
constructed as theories of behavior should attempt to reproduce many different
phenomena at the same time, as the more phenomena an artifact reproduces,
the more likely it is that the artifact actually explains reality rather than being
a “toy.” Hence, Parisi discusses a number of different phenomena that robots
should try to reproduce in order to explain human behavior and that are currently
underinvestigated in robotics and artificial life.

The second chapter, by Riccardo Poli and Christopher R. Stephens, deals with
the difficult problem of building a theory of evolutionary systems with which we
can understand and predict natural evolutionary dynamics. In particular, as a means
to develop such a theory, their chapter proposes a technique originally used in
statistical physics named coarse graining. The method consists of finding a set of
collective variables that may offer a computationally feasible description of a system
that has too many degrees of freedom to be analyzed. After describing the general
technique, the authors show how to apply it to evolutionary systems in order to
describe and understand their complex dynamics.
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Part II: Biological Modeling

This part of the book examines the important issue of the organization principles of
living systems. In particular, the main focus is on the organization of the relation-
ships among the parts inside living beings: complementary to the reductionist and
physical approaches, this kind of strategy searches for the structure of feedbacks that
constitute the organizational processes of living beings, and that drive and channel
their future changes, i.e., their evolution. In doing so, signal exchange and noise play
a fundamental role: what these chapters interestingly show is that these drivers do
not counteract each other but rather they integrate in order to allow the emergence
of recurrent patterns of activation that, in turn, are an important part of the cells’
regulatory processes. Notably these regulating entities are dynamical objects whose
monitoring requires us to introduce new concepts and ideas.

The chapter “Models of Gene Regulation: Integrating Modern Knowledge into
the Random Boolean Network Framework” introduces the theme of regulatory
genetic networks, modeled by means of random Boolean networks—RBN for
short—an abstract framework introduced four decades ago and now becoming
one of the major models for complex systems due to their interesting dynamical
behavior. In recent years interest in this approach has been renewed through
important theoretical advances and also, as far as the application to genetics
is concerned, by the availability of genome-wide expression data which can be
properly described by RBNs. Moreover, the new versions of this framework can
now describe complex phenomena like cell differentiation and whole organisms or
tissues. This framework is a common feature of the first three chapters of this part
of the book. Thus, Christian Darabos, Mario Giacobini, Jason H. Moore, and Marco
Tomassini introduce into RBNs abstractions inspired by recent advances in genetics
and biology. In particular, they discuss the topological structure of gene relations
and the effects of the adjournment strategy on the model results.

Marco Villani and Roberto Serra discuss the stability properties of RBNs,
introducing a new measure (attractor sensitivity) that seems particularly relevant
for their application to the dynamics of gene regulatory networks. They also review
results that show that RBNs can properly account for data on perturbations induced
by gene knock-out in real organisms, thus revealing that living beings tend to live
in, or close to, critical states. Last but not least, the authors show that adding noise
to RBN framework can lead to a nice model of cell differentiation.

Stefano Benedettini, Andrea Roli, Roberto Serra, and Marco Villani show that
it is possible to generate (evolve, train) an ensemble of Boolean networks that can
accomplish particular requirements, while keeping the other main relevant statistical
features of classical RBNs. This ensemble can be designed by means of optimization
processes in which metaheuristics can optimize suitable objective functions.

The chapter by Pasquale Stano, Giordano Rampioni, Luisa Damiano, Francesca
D’Angelo, Paolo Carrara, Livia Leoni, and Pier Luigi Luisi shares the spirit of
these studies, focusing on the chemical communications among cells, seen as
autopoietic objects, stressing again the importance of the structure of feedbacks
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that constitute the current organizational processes of living beings. The authors
moreover introduce the theme biological/chemical information and communication
technology (bio/chem-ICT), which aims at extending the well-known field of ICT,
up to now classically based on the transmission of electrical or electromagnetic
signals, to the biological/chemical world of molecules.

Part III: Mind and Society

This part of the book presents models that deal with organism behavior and
sociocultural phenomena. The chapters that make up this part reflect different
approaches to artificial life: from biomimetic models (Santucci et al.), to models
that try to reveal general principles (Pugliese), to models that are directly related
to natural phenomena (Acerbi et al.), to the use of artificial life techniques for
applicative purposes (Gigliotta et al.).

Building artificial agents able to autonomously learn new skills and to easily
adapt to different and complex environments is an important goal for robotics and
machine learning. In their chapter, Vieri G. Santucci, Gianluca Baldassarre, and
Marco Mirolli propose that artificial agents with a learning signal that resembles
some characteristic of dopaminergic neurons would be an advancement in the
development of more autonomous and versatile systems, thanks to the enabling of
cumulative learning abilities. To validate this hypothesis they perform experiments
with a simulated robotic system that has to learn different skills to obtain rewards,
showing that the proposed learning signal is able to drive the cumulative acquisition
of different skills in a way that would not be possible otherwise.

The contribution by Francesco Pugliese presents evolutionary robotics models
of the development of categorization abilities. Two different experiments are
described, one involving mobile robots that perceive the color of the floor through
ground sensors, and the other involving a robotic camera that can move on images.
In both cases, the environments contain noisy images that must be categorized,
and in both cases evolved robots are able to perform the task. More importantly,
in both experiments, the robots that during evolution are facilitated by receiving
linguistic signals that tell the robot the category of the perceived image achieve
better performance than the robots that did not receive any help, even when, after
evolution, the facilitating signals are not provided. Hence, the reported simulations
suggest that social linguistic input may exert a facilitating role for the individual
development of categorization abilities.

It is not only individual behavior that can be explained through computational
models, but also social and cultural phenomena. The next contribution, by Alberto
Acerbi, Stefano Ghirlanda, and Magnus Enquist, presents simple models of cultural
evolution that try to explain cultural dynamics. In particular, the contribution deals
with regulatory traits, that is traits that are culturally transmitted but that, in turn,
regulate cultural transmission, such as the propensity to copy others or the ability
to influence others. The authors study how the evolution of these traits influences
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cultural phenomena like the emergence of open or conservative societies or the
ups and downs of cultural traits, i.e., fashions, and they conclude that the presence
of regulatory traits renders cultural evolution more flexible than genetic evolution,
requiring substantially different models.

In the last chapter of this part, Onofrio Gigliotta, Orazio Miglino, Massimiliano
Schembri, and Andrea Di Ferdinando show two ways to build serious game systems
exploiting the power of artificial life (AL) techniques for educational purposes; in
particular, the authors apply agent-based models, neural networks, genetic algo-
rithms, and robotics. In the first approach, neural networks and genetic algorithms
are utilized as open tools to guide artificial organisms design, in order to make it
possible for users to learn the fundamental principles of autonomous robotics. In the
second case AL techniques are used to model game mechanics—e.g., artificial team
dynamics and avatar behavior—whereas the user learns psychological leadership
theories by governing a team of artificial agents, the followers. The two cases
show how AL techniques can boost serious game systems toward a new level of
usability in the context of bioinspired evolutionary design processes and in the field
of management training.

Part IV: Applications

This part of the book contains five chapters that give readers an idea of the
wide range of applications that can be tackled using techniques derived from the
disciplines under consideration and from their hybridization. As shown, apart from
the immediately perceptible diversity of the application fields, it is interesting to
note how the very nature of results belong to different domains, from very concrete
and direct industrial applications, among which signal and image processing and
analysis techniques are rather popular, to the creation of models which can be used
to forecast the actions of drugs and to assess patient life expectations, from software
agents developed to live in and patrol virtual environments such as communication
networks to physical agents that can interact with biological tissues.

An example of this latter, futuristic kind of application is offered in the chapter
by Oleg Semenov, Darko Stefanovic, and Milan N. Stojanovic, where they study
the behavior of synthetic nanoscale walkers made with catalytic DNA legs attached
to a rigid body, called molecular spiders, which are able to move across a surface
propelled by the multivalent chemical interactions of their multiple legs with the
surface itself. Molecular spiders may find important use in biomedical applications,
such as searching for clinically relevant targets on the surface of a cell. The authors
present simulation-based results on the efficiency of concurrent search for multiple
targets by multiple molecular spiders, which influence each other’s motion through
stigmergic processes.

The two following chapters provide examples of the use of evolutionary compu-
tation techniques to solve pattern recognition problems of biomedical interest.
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Mario Giacobini, Paolo Provero, Leonardo Vanneschi, and Giancarlo Mauri
use genetic programming (GP) to analyze the genetic profile of cancer patients
to forecast the outcome of the pathology and to tailor therapy individually. The
so-called 70-gene signature was analyzed using a number of pattern-recognition
techniques, against which the authors’ GP-based approach was compared and shown
to outperform the others.

Antonia Azzini, Mauro Dragoni, and Andrea G.B. Tettamanzi apply the results
of their years-long research into the hybridization between EC and neural nets
to a dataset of ECG recordings, acquired using cheap devices and transmitted
over low-band connections with a configuration designed to meet the needs of
African countries where cardiologists are not available on-site and the quality of
communications is often very low. The dataset on which the evolutionary networks
have been tested was previously used in a contest, so the results of the hybrid
evolutionary neural system could be compared with those obtained by a large
number of other approaches, performing comparably to the best of these.

The chapter by Yvonne Bernard, Lukas Klejnowski, David Bluhm, Jörg Hähner,
and Christian Müller-Schloer describes a system which also relies on evolutionary
computation techniques. Their approach is based on the ideas of a discipline,
called organic computing, which studies the development of agents that are able
to cooperate and continuously self-adapt to cope with changing environmental
conditions. In their chapter the authors develop evolutionary agents that act in the
Trusted Desktop Grid, a distributed computing environment, with no central control,
which optimizes the sharing of computing resources.

Massively multiplayer online games (MMOGs) are increasingly successful, since
they allow players to explore huge virtual worlds and to interact in many different
ways, either cooperating or competing. Given the huge and ever-growing number
of users, game designers have to apply strong scalable real-time strategies in order
to maintain control of the system. Stefano Sebastio, Michele Amoretti, Jose Raul
Murga, Marco Picone, and Stefano Cagnoni present a middleware called PATROL,
based on a structured peer-to-peer overlay scheme. Among other features, PATROL
provides AI-based modules to detect cheating attempts that the decentralized
communication infrastructure may favor: in particular, the authors show how honest
bots can detect cheating bots in real time, using strategies based on neural networks.
The evolutionary agents’ community is evaluated in three different situations:
coexistence and competition with the best-performing adaptive agents developed in
previous studies; behavior in the presence only of evolutionary agents; and, finally,
in an environment in which the presence of egoistic agents introduces disturbance
into the system.
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Part V: Evolution

The last part of the book is dedicated to research issues in evolutionary computation
and deals with two hot topics in the field, of which the former is more theory-
oriented, while the latter is more technology-related.

Multiobjective optimization consists of the search for a set of so-called non-
dominated solutions which provide a sampling of the Pareto front for the problem,
i.e., the set of optimal values which can be obtained for each criterion, once the
values of the other, independent and usually counteracting, criteria have been set.

Parallel implementation of evolutionary algorithms has always been a popular
issue, thanks to their intrinsically parallel structure, but it is presently booming
since multicore CPUs and handy development environments have become available,
making multicore or general-purpose Graphics Processor Unit (GP-GPU) comput-
ing a higher-level task; this contrasts with the effort that was required to develop
similar programs for exploiting the low-level features of processors and, especially,
of GPUs, using traditional programming languages that did not have specific support
for parallel computation.

Hernán Aguirre, Akira Oyama, and Kiyoshi Tanaka describe an evolutionary
multiobjective algorithm which tries to bias the convergence of the population
of trade-off solutions onto the Pareto front such that they assume a desired
statistical distribution. To this end, they propose Adaptive �-Ranking, which iterates
a sampling procedure that applies �-dominance with a suitable mapping function.
An analysis of the experimental results, made on the functions of the DTLZ family
with six objectives, shows that recombination plays a crucial role in finding a set of
solutions with the desired distribution.

Finally, Kiyoharu Tagawa proposes a parallel Java implementation of differential
evolution for multicore processors, of which two versions are compared: one
is demonstrated to be computationally preferable, as it is able to exploit the
multiprocessor’s parallel capabilities more efficiently, while the other appears to
provide more consistent results over different functions and thread configurations.
Both versions benefit from a significant speed-up with respect to a sequential
implementation, up to 60� when high-dimensional problems are tackled.

Parma, Italy Stefano Cagnoni
Rome, Italy Marco Mirolli
Reggio Emilia, Italy Marco Villani
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Part I
Research Issues



One Artefact: Many Phenomena

Domenico Parisi

Abstract Robots are a new way of expressing theories of behaviour. If a robot
behaves like a real organism, the ideas which have been used to construct the robot
capture what lies behind behaviour and therefore explain behaviour. But robots can
be “toys” that do not tell us very much of truly interesting about the behaviour of real
organisms. Current robots—especially because they are constructed with specific
applications in mind—tend to follow the principle “one artefact/one phenomenon”
and, if one follows this principle, many different artefacts can be constructed
which reproduce the same phenomenon and it is arbitrary to choose among them.
To avoid constructing “toy” robots, one should follow the opposite principle “one
artefact/many phenomena” and one and the same robot should reproduce a variety
of known phenomena concerning behaviour. We illustrate a variety of different
phenomena concerning the behaviour of human beings and their societies which
robots that can be properly called “human” (and not just “humanoid”) should be
able to reproduce.

1 Introduction

Imagine you want to understand the behaviour of living organisms by constructing
artefacts which behave like living organisms. If you can show that the artefact
actually behaves like a living organism, you are entitled to claim that the ideas on
the basis of which you have constructed the artefact explain the behaviour of the
living organism. This is a new approach to doing science: understanding reality by
remaking reality. Traditionally, science explains reality by proposing mathematical
theories or theories expressed in words. The new approach formulates scientific

D. Parisi (�)
Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
e-mail: domenico.parisi@istc.cnr.it

S. Cagnoni et al. (eds.), Evolution, Complexity and Artificial Life,
DOI 10.1007/978-3-642-37577-4_1, © Springer-Verlag Berlin Heidelberg 2014
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theories not by using mathematical or verbal symbols but by incorporating them in
artefacts.

The problem with trying to understand the behaviour of living organisms by
constructing artefacts that behave like living organisms is that the artefacts can be
“toys”, something which can be interesting and entertaining but does not tell us
very much about reality. The problem is not that the artefacts simplify with respect
to reality. The artefact is a theory and all theories simplify with respect to reality
and they let us understand reality because they capture the basic mechanisms and
processes that underlie the observed phenomena, leaving everything else out. The
problem is that the artefact may not make the appropriate simplifications and it may
not capture what is truly important about the phenomena of interest. So, the answer
to the question ‘Is the artefact a “toy” or does it really let us understand reality?’ is
not clear, and this may explain why traditional scientific disciplines do not appear
to be much interested in artefacts as theories. (There are also other reasons for
this lack of interest: expressing theories as artefacts is a big change in how to do
science which will take time to impose itself and scientists are not routinely taught
the necessary skills and methodologies for expressing theories as artefacts and for
understanding the theories so expressed.)

One way of dealing with the problem of theories/artefacts as “toys” is to apply
the principle “one artefact/many phenomena”. Most current theories/artefacts follow
the opposite principle: “one artefact/one phenomenon”. One single phenomenon can
be reproduced by constructing many different artefacts, and it may be arbitrary to
choose among these different artefacts. (In most cases the criterion for choosing
is that it is “my” artefact.) On the contrary, if the same artefact reproduces many
different phenomena, there are fewer possible artefacts that can reproduce all the
phenomena and choosing among them becomes easier and less arbitrary.

Artefacts that are intended to reproduce the behaviour of living organisms are
called robots. Robotics is flourishing today but current robots are technologies, not
science. They are not constructed to express theories of behaviour and as tools to
better understand the behaviour of living organisms but with practical applications in
mind. Robots are constructed for industrial and military applications, for assistance
to ill or old people, for medicine and surgery, for training and entertainment, and
for other practical uses. Robots as science and robots as technologies should not
be completely separated because robots as technologies can pose new problems
to science and robots as science can suggest new practical applications. But the
two research fields should not be confused because they have different criteria of
success. The criterion of success for robots as technologies is “Does the robot have
practical applications and economic value?” while the criterion of success for robots
as science is “Does the robot help us to better understand the behaviour of living
organisms?” Today, most research money is for robots as technologies and this
has the consequence that the potential of robots for developing a new and more
powerful science of behaviour is not really exploited. This has implications for
our problem of artefacts as “toys”. Robots as technologies do only one thing—
the practical application for which they have been constructed—and, therefore, they
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follow the principle “one artefact/one phenomenon”. Robots as science must follow
the opposite principle “one artefact/many phenomena”.

In this chapter we discuss a number of different behavioural phenomena that our
robots should be able to reproduce. Some of these phenomena are found in all sorts
of animals but many of them only exist in human beings. Today, one often hears of
humanoid robots but humanoid robots are robots which externally resemble human
beings, exhibit some elementary human behaviours such as reaching and grasping
an object with the hand or walking on two legs, respond appropriately to sounds
(words), and move their eyes and face so as to express human-like emotions. But
their resemblance to human beings is very limited and, often, superficial and they
tell us very little of interest about human beings because they do not follow the
principle “one artefact/many phenomena”.

Human beings are very complex animals and constructing human robots is a
very complex task—and it mainly remains a task for the future. But constructing
human robots by following the principle “one artefact/many phenomena” has an
interesting implication. Reality is a very large ensemble of different phenomena
and science inevitably segments reality into separate parts and entrusts the study
of these different parts to separate scientific disciplines. The problem is that all
the phenomena of reality are linked together and, often, the phenomena which
are studied by one scientific discipline can only be understood and explained by
taking into consideration the phenomena studied by another scientific discipline.
The problem is not so serious for the sciences that study nature—physics, chemistry,
biology—because these sciences share the same empirical methods, the same type
of theories, and the same conception of reality as made of physical causes that
produce physical effects and as possessing an intrinsic quantitative nature. For
the sciences that study human beings the situation is different. These sciences—
psychology, linguistics, anthropology, sociology, economics, political science—
have very different methods, very different theories and conceptual traditions, and
do not have a shared conception of the object of their study—human beings. Human
beings are very complex animals but one important reason why we still do not
understand them is the existence of separate scientific disciplines for studying them.

Constructing human robots by following the principle “one artefact/many phe-
nomena” implies ignoring the divisions among the different disciplines and sub-
disciplines that study human beings. The robots should not have only skills and
capacities but also motivations and emotions, they should not have only behaviours
but also a mental life, they should have languages, cultures, technologies, societies,
economies, and political organizations. This is clearly a difficult task. But by
following the principle “one artefact/many phenomena”, robotics can become a
“lingua franca” that unifies all the different disciplines that study human beings—
much as mathematics is a “lingua franca” which unifies all the disciplines that study
nature.
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2 Human Robots

In this section we briefly describe a number of human phenomena that we should
reproduce with robots if we want to be justified in calling the robots “human robots”.
All these phenomena should be reproduced by using the same robotic platform.

2.1 Robots that Evolve, Develop, Learn, and Have Cultures
and Technologies

Most current robots are programmed by us to exhibit the behaviours they exhibit
but robots as science cannot be programmed by us because real organisms are not
programmed by anyone. If we follow the principle “one artefact/many phenomena”,
our robots should not only exhibit the same behaviours which are exhibited by real
organisms but they should also acquire those behaviours in the same way as real
organisms acquire them. Real organisms autonomously acquire their behaviours
through a variety of different processes. One is evolution: changes that occur
in a succession of generations of individuals which reproduce selectively and
with the constant addition of random variations to the inherited genotypes due
to recombination and genetic mutations. Another one is development: changes
which occur during the life of an individual and which are mainly specified in
the inherited genotype. A third one is learning: changes which also occur during
the life of the individual but which are mainly due to the particular experiences
that the individual happens to make in the environment in which it lives. The
last two ones are almost uniquely human: cultural changes and technological
changes. Cultural changes are changes in the behaviours shared by a community
of individuals that interact together and learn from each other (culture) and which
are due to the selective imitation of behaviours and the constant addition of new
invented behaviours. Technological changes are due to copying the best existing
artefacts and purposefully changing them to make them better. As we have said,
culture and technology are almost exclusive human adaptations. Unlike nonhuman
animals, human beings live in an artificial environment which they themselves have
created with their cultures and technologies and, since they continuously change
this environment, the environment continuously changes them.

There is some work on robots that evolve and learn and much less work on
robots that develop, while there is almost no work on robots that have cultures
and technologies (on robots that have cultures and technologies, see Sect. 2.10
below). But what is crucial is that, in human beings, all the different processes
of change occur together. Therefore, we should not construct robots that either
evolve or learn or develop or have cultures and technologies but we should construct
robots which at the same time evolve, learn, develop, and change their cultures and
technologies. Only if we construct robots like these, we will be able to reproduce
with our robots how the different processes of change interact together and influence
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each other. There is some work on robots that both evolve and learn and on robots
that both evolve and develop according to a development program encoded in their
genotype, but most of the work is still to be done. Among the problems which
should be addressed by adopting the principle “one artefact/many phenomena” are
the following. How evolution creates the rewarding value of some stimuli and the
punishing value of other stimuli which both play a crucial role in learning? How
evolution creates the basis for learning from others and, therefore, the emergence of
cultures? Is there an influence of learning on evolution and of culture on evolution?

2.2 Robots in Their Natural Environment and in the
Experimental Laboratory

Organisms are what they are because of the particular environment in which they
live and to which they are adapted. Therefore, our robots should live, evolve,
develop, and learn in an environment. This is not what is done in today’s robotics.
Even when a robot is not programmed by us but it learns to do what it does, the
robot is trained in a sort of experimental laboratory in which the robot learns to
respond to the stimuli provided by us and the context in which learning occurs
is either absent or controlled by us. The experimental method is a fundamental
tool of science but, when it is applied to the study of behaviour, it has many
limitations because the natural environment to which an organism is adapted is very
different from the experimental laboratory. In the natural environment the stimuli
that arrive to the organism’s sensors are not decided by the experimenter but are
largely determined by the organism’s own behaviour and context always exists and
it is unpredictable and mostly uncontrollable. Psychologists study behaviour in the
experimental laboratory because studying behaviour in the natural environment is
very difficult and expensive. This is where robots can be useful. By applying the
principle “one artefact/many phenomena”, we should study the behaviour of a robot
both in the “natural environment” in which the robot lives and in an “experimental
laboratory” controlled by us. And, in addition, we can make “natural experiments”
which are impossible to do with real animals: we let different populations of robots
live and evolve in different environments and look at the consequences that these
different environments have for the robots’ behaviour and adaptive pattern. Studying
the behaviour of robots both in their “natural environment” and in an “experimental
laboratory” will allow us to better understand why real animals and real human
beings behave as they behave in laboratory experiments and may suggest what to
look for in their natural environment.

2.3 Neurorobots

The behaviour of most animals is controlled by a brain. Therefore, the principle
“one artefact/many phenomena” requires that we work not just with robots but with
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neurorobots, that is, robots whose behaviour is controlled by a “brain”: an artificial
neural network made up of neuron-like units and synapse-like connections. The
neural network that controls the robots’ behaviour can be much simplified with
respect to the real brain but what is important is that this simplified neural network
reproduces interesting behaviours. Progressively, these simplifications should be
eliminated and more and more of the actual anatomy and physiology of the brain
should be reproduced in the neural network of the robots so that the robot is able to
reproduce more behaviours and more sophisticated behaviours. However, the neural
network of a neurorobot should not reproduce what neuroscientists know about the
brain as an end in itself—as is often done in computational neuroscience—but it
should allow us to understand how the different structures and processes of the
brain identified by neuroscientists control behaviour. Biological entities can only
be understood if we understand their function. We cannot understand the heart
or the lungs unless we understand how they control the circulation of blood and
air in the body. The function of the brain is to control behaviour, and we cannot
understand the brain if we do not understand how its different anatomical structures
and physiological processes result in behaviour.

2.4 Robots that Have Both Halves of the Mind

The human mind—and the mind of all animals—has two halves: the cognitive half
and the motivational/affective half. Most work on robots is dedicated to the cognitive
half of the mind, to capacities, skills, knowledge, thinking, reasoning, and planning.
But one cannot really explain the behaviour of nonhuman animals and human beings
if one ignores the other half of their mind: their motivations, their emotions, the
value of things for them. Two reasons explain why the motivational/affective half
of the mind plays a marginal role in robotics. One is that objective and quantitative
empirical data on the motivational/affective half of the mind are more difficult to
obtain and to reproduce than objective and quantitative data on the cognitive half
of the mind. The other reason is linked to the applied nature of current robotics.
Robots as practical applications can be cognitively autonomous but they cannot be
motivationally autonomous. Given a task, they should autonomously carry out the
task. This is cognitive autonomy. But they cannot have their own motivations and
decide autonomously which motivation to try to satisfy with their behaviour at any
given time because they should not do things for themselves but for us. Therefore,
they cannot have motivational autonomy.

Constructing robots that have both halves of the mind has other implications
for the principle “one artefact/many phenomena”. Current robots have a body and
neurorobots also have a brain. But the body of robots is a body with an external
shape and external sensory and motor organs, and their brain only interacts with the
external environment. The body of real organisms does not only have an external
shape and external sensory and motor organs but it also has internal organs and
systems and their brain interacts not only with the external environment but also



One Artefact: Many Phenomena 9

with these internal organs and systems. Adding an “internal” robotics to the current
“external” robotics is an important step forward from the point of view of the
principle “one artefact/many phenomena”.

Robots with motivational autonomy are robots which can actually have emotions,
in opposition to current robots which only appear to have emotions because they
reproduce emotional expressions in their face. An organism has many different
motivations but it cannot satisfy all its motivations at the same time. Therefore, at
any given time the organism must “decide” which motivation to try to satisfy with
its behaviour, and these motivational decisions are even more important, for the
organism’s survival and reproduction, than the skills and cognitive capacities that
allow the organism to satisfy its motivations. Emotions are states of the organism’s
brain/body that allow the organism to take better and faster motivational decisions.
The principle “one artefact/many phenomena” requires that we construct robots that
make motivational decisions and have emotions. And this has implications for the
robots’ neural network which must be more realistic and must include not only
neurotransmission but also neuromodulation.

While the “cognitive” circuits based on neurotransmission mainly respond to
sensory input from the external environment (and to sensory input self-generated
inside the brain; see Sect. 2.6 below) the neuromodulatory circuits which encode
emotional states interact with the rest of the body, with both the internal organs and
systems inside the body and the external shape and appearance of the body. This
causes the external expression of emotions which plays such a crucial role in social
interaction and, given this role, it is possible that the effects of emotional states
on the external shape and appearance of the body have been an important adaptive
pressure for developing emotional states.

2.5 Robots that Have Language

Language is a crucial component of the adaptive pattern of human beings and
there is considerable work on robots that have “language”. The language of today’s
robots, like human language, is made of sounds which have arbitrary meanings
(words) but from all other points of view it is more like an animal communication
system than human language. Its rarely has grammatical classes of words (verbs,
nouns, adjectives, etc.), signals made up of smaller signals (compositionality),
“syntactic rules” to put together the meaning of smaller signals and generate
the meaning of larger signals, ambiguous words, abstract words, metaphors, and
idiomatic expressions. These are all semantic and syntactic limitations of the
“language” of current robots. But the “language” of current robots is not like human
language especially from a pragmatic point of view. Human beings do all sorts of
things with language: they describe, inform, ask, command, pray, suggest, try to
convince, etc. Most current robots do only one of two things with their “language”:
they either name objects and actions or they respond to commands.
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But language is important for human beings not only as a communication tool
but because it shapes the human mind. Words co-vary with separate components
of the individual’s overall nonlinguistic experiences and these co-variations are
incorporated in the brain of an individual so that nonlinguistic experiences are
segmented into parts which can be recombined together in novel ways, making
human behaviour more articulated and creative. For example, the overall nonlin-
guistic experience of seeing someone who grasps a glass with his or her hand can
be accompanied, in different occasions, by hearing a word that co-varies with the
action of grasping but not necessarily with grasping glasses, or with glasses but not
necessarily with grasping them, or with the person who is grasping the glass but
not necessarily with the person when he or she is grasping the glass. This capacity
to segment nonlinguistic experiences is a crucial aspect of human language which
should be reproduced with robots if the robots are to be legitimately called human
robots and if we want to follow the principle “one artefact/many phenomena”.

Other crucial properties of human language that should be reproduced with
robots are its innate bases and the role played by learning specific languages. One
should evolve a population of robots which are born with a genotype which allow
them to learn the specific language spoken in the robots’ community, whatever the
language. The robots which are not born with that type of genotype should not be
able to learn any language but the specific language learned by the robot should
segment the robot’s nonlinguistic experiences in specific ways (see above).

2.6 Robots that Have a Mental Life

Another crucial component of the human adaptive pattern is that human beings
have a mental life. Mental life is the self-generation of sensory inputs by the brain.
Sensory inputs normally are caused by events in the external environment or inside
the organism’s body but outside the brain. But the brain of human beings can also
self-generate its own sensory inputs and respond to these self-generated sensory
inputs, perhaps by self-generating other sensory inputs. This is remembering,
imagining, predicting, planning, thinking, dreaming, and having hallucinations. The
self-generated sensory inputs can be nonlinguistic sensory inputs but language plays
a central role in the mental life of human beings because human beings talk to
themselves. Their brain self-generates linguistic sounds and they respond to these
self-generated linguistic sounds as they respond to the linguistic sounds produced
by other human beings.

Both nonlinguistic and linguistic mental life should be reproduced in robots if
we want to construct human robots by respecting the principle “one artefact/many
phenomena”. The robot’s neural network includes some units whose pattern of
activation is very similar to the pattern of activation observed in the neural network’s
sensory units and is processed in very similar ways but while the pattern of activation
of the sensory units is caused by events outside the brain, the pattern of activation
of these units is self-generated inside the brain.
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One crucial aspect of mental life is the ability to predict. Predicting should
be distinguished from anticipating. All animals anticipate future sensory inputs
because their brain incorporates in its structure the co-variations between successive
sensory inputs. But only human beings predict, where predicting is self-generating
in one brain’s a sensory input which is like some future sensory input. Predicting
is important because it allows the brain to replace missing sensory inputs with
predicted sensory inputs and to judge if the predicted effects of a planned action
are “good” or “bad” and, on this basis, to decide whether to actually execute the
action, and it becomes particularly effective when the predicted sensory inputs are
linguistically labeled.

Mental life plays an important role not only with respect to the cognitive half
of the human mind but also with respect to its affective half. In all animals sensory
inputs often cause “good” or “bad” emotional states because they are associated with
either an increase or a decrease in the organism’s survival and reproductive chances.
Seeing one’s mate or one’s offspring causes a “good” emotional state because it is
associated with the reproduction of one’s genes. Seeing a predator causes a “bad”
emotional state because it is associated with the risk of dying. Nonhuman animals do
not have a mental life and therefore for them “good” and “bad” emotional states are
only evoked by actual sensory inputs from the external environment or from inside
their body. The human brain self-generates sensory inputs and these self-generated
sensory inputs can evoke “good” and “bad” emotional states. This is why, unlike
nonhuman animals, human beings can be happy and unhappy, where happiness is
the tendency to have many “good” emotional states and unhappiness is the tendency
to have many “bad” emotional states because these “good” or “bad” emotional states
are evoked by continuously self-generated sensory inputs.

The self-generation of sensory inputs which cause “good” or “bad” emotional
states also explains other human phenomena. Many forms of psychopathology are
associated with the inability to block the self-generation of sensory inputs that
cause “bad” emotional states. (On psychopathological robots, see Sect. 2.7 below.)
Religious beliefs and practices have the function both to favour the self-generation
of sensory inputs that cause “good” emotional states (imagining a protecting god)
and to block the self-generation of sensory inputs that cause “bad” emotional
states (imagining a life after death). Meditation can be seen as entirely blocking
mental life and the tendency to self-generate all sorts of sensory inputs. Art is the
self-generation of “good” sensory inputs by physically acting on the environment
by creating paintings, music, and literary works—and even “bad” sensory inputs
because practicing art both as author and public can be useful to become more
sophisticated in dealing with “bad” sensory inputs in real life. Human robots should
have psychopathologies, religious practices and beliefs, meditation, and art, and
endowing them with a mental life as the self-generation of sensory inputs is a
necessary pre-condition.
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2.7 Robots that Are Inter-Individually Different and Have
Psychopathologies

An important property of living organisms is that no two individuals are identical
and, if we want to follow the principle “one artefact/many phenomena”, we should
reproduce inter-individual differences with robots. We should construct populations
of robots, not individual robots, and we should examine how one robot is different
from all other robots. This can be done if the robots acquire their behaviours
through biological or cultural evolution (see Sect. 1 above) which both take place
in populations of inter-individually different robots. However, genetic and cultural
algorithms are often used in robotics as a technique to arrive at the best solution to
some pre-defined problem and, therefore, one is interested in the best robot, not in
all the robots of the population and in what makes one robot different from other
robots. In contrast, in many cases one can better understand behaviour by studying
individuals which are not very good at doing what is needed for their survival and
reproduction.

Another limitation of current evolutionary robotics is that what one is interested
in is the “fitness” of the robots, which is a single measure of a robot’s behaviour,
while two robots can have the same fitness but they are very different if one exam-
ines their behaviour in the controlled conditions of an “experimental laboratory”.
For example, one robot can be very good at approaching food when it sees the food
but the robot does not explore adequately the environment when it does not see any
food, while another robot may not be very good at approaching food when it sees
the food but it explores many parts of the environment and, in this way, increases the
probability to find the food. The robots have different degrees of the two capacities,
approaching food and exploring the environment, but they have the same fitness.

Inter-individual differences exist with respect to both the cognitive half of
the mind and its motivational/affective half. Two robots can be equally good at
approaching food but one robot immediately stops looking for food and flies away
when a predator appears, while the other robot is slower to react to the predator
or it becomes paralysed when it sees the predator. Inter-individual differences are
linked to pathologies since pathologies are conditions which cause an individual to
exhibit behaviours which seriously damage the individual’s chances to survive and
reproduce, or be happy. By applying the principle “one artefact/many phenomena”,
we should reproduce with robots not only healthy behaviours but also pathological
behaviours, and the pathological behaviours should concern both the cognitive half
of the mind (neurological illnesses) and the motivational/affective half (psychiatric
or psychological illnesses). We should examine not only the behaviour of ill robots
but also their brain, we should study what has caused their pathological condition,
and we should make predictions on their illness and find how to cure mentally ill
robots.

Clearly, inter-individually different robots and pathological robots do not make
sense if robots are constructed for practical applications. Industrial production is
based on making identical copies of a prototype, inter-individually different robots
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are not reliable and their behaviour cannot be predicted, and certainly one does
not want robots that have pathologies. This clearly demonstrates that robots as
technology and robots as science are very different and that the principle “one
artefact/many phenomena” can only be applied to robots as science.

2.8 Life History, Sexual Differences, and Families

Current robots just exist. Human beings do not just exist but they are born, develop,
become reproductive, have offspring, age, and die. And at each stage of their
life history not only their body changes but their mind and their behaviour also
change. Furthermore, human beings are not just human beings but they are male
and female human beings, and male and female human beings have different roles
in reproduction and may have different minds and different behaviours because of
genetic and cultural reasons. If we want to follow the principle “one artefact/many
phenomena”, we should not construct “robots” but we should construct robots that
are born and die, that have a life history, and that are male and female. Some work
is being done on infant robots and on how they develop and learn but most current
robotics ignore life history and sexual differences.

Human beings, and animals more generally, do not behave in the same way
towards other human beings who have the same genes and towards genetically
extraneous human beings. Parents feed and care for their offspring, mothers, fathers,
and their offspring live together in families, young offspring stay near to their
parents to be protected by them and to learn from them. Generally, human beings
behave altruistically towards other individuals who have similar genes, where
behaving altruistically is behaving in ways that increase the survival/reproductive
chances of the other individual and decrease the survival/reproductive chances
of the individual who behaves altruistically, while they tend to behave selfishly
towards genetically extraneous individuals. These differences in behaviour should
be reproduced with robots, and robots should also help us to find out when and
in what conditions altruistic behaviours are exhibited towards genetically unrelated
individuals.

2.9 Robots Which Obtain What They Need from Other Robots

Many animals are social animals. They interact not only with inanimate objects
and members of other animal species but also with members of their same species.
Human beings are an eminently social species and, therefore, the principle “one
artefact/many phenomena” for human robots requires us to construct robots which
have a rich and complex social life. Current robotics ignores most aspects of social
behaviour and sociality. Ant or swarm robotics reproduces colonies of insect-like
robots which have the same genes and this makes it impossible to study the very
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important phenomena linked to sociality among genetically unrelated individuals
(see Sect. 2.8 above). And in any case the behaviours exhibited by the robots of ant
and swarm robotics are extremely simple. Some robots are constructed to interact
with us but these robots are only practical applications and they ignore that sociality
is among members of the same species. So, a social robotics is a task for the future.

As we have said, human beings are an especially social species and, in fact, many
human phenomena are social phenomena: human societies, cultures, economies,
political organizations. But even social life as inter-individual interaction has
many complexities. All organisms interact with the environment to obtain from
the environment what they need to survive, reproduce, and live well. But the
social environment made up of conspecifics is very different from the non-social
environment made up of inanimate objects. While to obtain from inanimate objects
what they need, organisms act physically on them—they walk of them, grasp them,
move them, modify them, construct them, etc.—to obtain what they need from their
conspecifics, they must manipulate the motivations of their conspecifics so that
their conspecifics behave in ways that satisfy their needs. This is a crucial aspect
of social life that we should reproduce with robots. Social life is the capacity to
manipulate the motivations of others. So, if we want to reproduce social life with
robots, our robots should have motivations and they should be able to know what
are the motivations of other robots and how to manipulate the motivations of other
robots.

2.10 Robots Which Have Cultures and Technologies

Human beings learn not only by interacting with the inanimate environment but
they also learn by interacting with their conspecifics. They imitate their conspecifics
and they are taught by their conspecifics. Learning from others is one of the most
important advantages of living socially because it is faster and generally more
effective than learning by interacting with the non-social environment and because
it leads to the emergence of shared behaviours, beliefs, and values which are called
the culture of the group and which make the behaviour of others more predictable.
Learning from others has many similarities with genetic inheritance. As selective
reproduction, genetic recombination, and the constant addition of random mutations
to the inherited genotypes lead to biological evolution, in the same way selective
imitation and the constant addition of both random noise and purposeful innovation
to what is learned from others lead to cultural evolution. But biological evolution
and cultural evolution also have many differences. One necessarily inherits one’s
genotype from one’s parents while one can learn from any member of one’s
community—and the size of the community of individuals from which one can
learn is important and can accelerate cultural change. In fact, this may have been
a pressure for increasing the size of human societies. Another factor which may
have accelerated cultural change is that, as we have already said, what is learned
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from others is not only changed by random noise or imperfect learning but also by
purposeful innovation.

Another species-specific trait of human beings is that they change the environ-
ment in which they live by modifying the environment and by constructing all sorts
of artefacts. This is very important to reproduce with human robots because, while
nonhuman animals adapt to the environment as they find it, human beings change the
environment to make the environment more adapted to them. Artefacts are copied
from existing artefacts and the evolution of artefacts (technological evolution) has
similarities with both biological evolution and cultural evolution. The artefacts
which are taken as models to be copied are selected from the best artefacts—
those which allow their users to live better—and they are modified so as to make
them better. In technological evolution, purposeful innovation plays an even more
important role than in cultural evolution and we can explain—and should reproduce
with robots—science as a human trait which has culturally evolved because of its
role in technological innovation.

Clearly, if we want to construct human robots by following the principle “one
artefact/many phenomena”, our robots should have cultures and technologies.
A robot learns from a “model” robot by comparing its response to some sensory
input to the model’s response to the same sensory input and by progressively
changing the connection weights of its neural network so that at the end it responds
in the same way as its model. (Learning from others represents a pressure on robots
to live near to other robots, even if they are not genetically related robots.) Cultural
change occurs because robots choose their models based on the success (fitness)
of potential models and they add random changes to the behaviour that they copy
from their models. A robot copies the artefacts which exist in its community in that
its neural network has sensory neurons which encode the properties of an artefact
and motor neurons which encode the actions which produce a copy of the artefact.
In this case too, the artefacts of the most successful robots are taken as models to
be copied and random changes are added so that the copy is not identical to the
model. If we allow the robots to learn from the other members of their community
and to copy the artefacts existing in their community, the size of the population
from which a robot selects its models turns out to be an important variable in
the evolution of both cultures and technologies. For example, if the robots limit
themselves to copying the artefacts which are used within their family (by their
parents), the quality of the artefacts takes more generations to improve compared to
a population of robots which choose the best artefacts as models to be copied from
the entire pool of artefacts used in their community. This, again, may have been a
pressure for increasing the size of human communities.

2.11 Robotic Economies

If we define a “good” as anything which an organism tries with its behaviour to
have, the number of things which are goods for human beings is much greater than
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the number of things which are goods for nonhuman animals, and in human societies
this number tends to increase exponentially. This is linked to the complexity
of human economies in which new goods are created by using existing goods,
different individuals specialize in the production of different goods, most goods
are obtained from others through the exchange of goods, and many individuals
coordinate themselves to produce goods that no single individual would be able to
produce by working alone. If we want to construct human robots by following the
principle “one artefact/many phenomena”, clearly our robots should have complex
economies. This is a completely new research area but the first steps can already be
made.

The first step is to construct robots that have external stores in which they put
their goods and to which only one robot, the owner of the goods, has access.
Some nonhuman animals store their food for future use but external stores and
the ownership of goods is a typical and extremely important human specialty.
The possession of external stores allows a robot to survive in difficult seasonal
environments and to traverse zones of the environment without food and reach new
zones which are rich in food. External stores can be personal stores or family stores,
and family stores imply economic inheritance if at birth a robot does inherit not only
the genes of its parents but also their goods. As we have said, external stores imply
the ownership of goods but, while in ancient human communities the ownership
of goods is guaranteed by the owner with its only forces, in modern societies the
guarantee of the ownership of goods is entrusted to a central authority—and this has
been an important factor in the emergence of states.

Among the most important consequences of possessing external stores for one’s
goods are the exchange of goods and the emergence of specialization in the
production of goods. If the robots need two different types of food to survive,
some robots specialize in collecting one type of food and other robots specialize
in collecting the other type of food and then all robots can have both types of food
by exchanging one type for the other type. Specialization and the exchange of goods
increases the robots’ fitness in all sorts of environments but it is especially useful
if some goods can only be found in one zone of the environment and other goods
can only be found in another zone of the environment or if collecting (producing)
different types of goods requires different skills.

The exchange of goods leads to the emergence of money as a good which is
exchanged in all exchanges and which is only used to obtain goods from others.
Money facilitates the exchange of goods because, while one exchanges one good for
another good only if it needs the good which it will obtain through the exchange, one
always wants to exchange goods for money because money can be used to obtain
any good in future exchanges. Money makes it also possible to assign a quantitative
value to goods. Goods by definition have value because an organism behaves in
ways that allow the organism to have the good. But, in the absence of money, value
can only be measured in relative terms: one good has more value than another good.
The relative value of goods for a robot can be determined by putting the robot in
an experimental laboratory and exposing the robot to two different goods. The good
which has more value for the robot is the good which the robot approaches and
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reaches. This, as we have said, is the relative value of good and goods have a relative
value even for nonhuman animals. But human beings have money, and money is a
metrics for measuring the absolute value of goods (or, at least, of the goods which
are exchanged for money). Money is made up of identical units and the absolute
value of a good is the number of money units which are given in exchange for the
good. The absolute value of a good—the price of the good—is determined by the
quantity of that good which is offered in exchange for money (selling the good) and
the quantity of that good which is asked in exchange for money (buying the good).

Starting with robots that reproduce these basic phenomena, we should reproduce
many other phenomena that characterize human economies. Some robots (workers)
give their work to another robot (entrepreneur) in exchange for money and the other
robot uses their work to produce goods that no single robot would be able to produce
by working alone (private enterprises). Borrowing money emerges as a new type of
good which is exchanged for money (interest). Another good which exists in human
economies is insurance against risk. Risk is the possibility that something which
is “bad” for a robot will actually happen. The robot obtains insurance against this
risk from another robot, which means that the robot gets some money from the
other robot if the risk becomes reality—and, in exchange the first robot gives some
money to other robot. And human economies are political economies because in
human societies all the members of the society give some of their money (under the
form of taxes) to a central authority which uses this money to produce new goods
(health, education, and pension systems, infrastructure, a system for discovering
and punishing other-damaging behaviours, the capacity to make both defensive and
offensive wars) which it then distributes to all the members of the society.

3 Conclusion

Let us summarize. Computers have made it possible to do science in an entirely
new way by constructing artefacts that reproduce reality. A scientific theory is no
more expressed by using mathematical symbols or the words of common language,
perhaps with some redefinitions of terms, but by using the theory to construct an
artefact. If the artefact behaves like the piece of reality that we want to understand,
the theory which has been used to construct the artefact is confirmed. This new
approach to science is particularly useful when science wants to understand and
explain the behaviour of human beings. Theories that explain the behaviour of
human beings, their mind and their societies, tend to be expressed in words,
and words have unclear, ill-defined, and ambiguous meanings, and from verbally
expressed theories it is often difficult to derive precise and unambiguous empirical
predictions. The artefacts that reproduce the behaviour of human beings—and
other animals—are robots. Robots are theories of behaviour, and they are better
theories of behaviour than verbally expressed theories because we perfectly know
the artefact, we can inspect its internal functioning, and we can observe and measure
its behaviour in all sorts of conditions.
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But current robots have two problems. They are mostly constructed for practical
applications and not to better understand the behaviour of human beings and
other animals and they follow the principle “one artefact/one phenomenon” (“on
robot/one phenomenon”). Robots for practical applications have different criteria of
success than robots as science and robots that reproduce only one single behaviour
may be “toys” which reproduce that behaviour in arbitrary ways which do not tell
us very much about the real behaviour. So, we have proposed that we explicitly
and clearly recognize that robots can be purely scientific tools and that robots as
scientific tools should follow the principle “one artefact/many phenomena” (“one
robot/many phenomena”) because this increases the probability that the robots
actually capture what is essential about the observed phenomena and explains
them. The principle “one robot/many phenomena” is especially important because
it makes it possible to go beyond the disciplinary divisions which are an obstacle to
our understanding of the behaviour of human beings. Robots will become a unified
science of human beings and they will eliminate the different scientific disciplines
that study human beings except as sources of data.

Constructing human robots that respect the principle “one robot/many phenom-
ena” is a very difficult task because human behaviour and human societies are
extremely complex phenomena and because the robotic approach to the study of
human beings is so new. But we think that the first steps in this direction are already
being made and in this chapter we have described some of these steps.
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Abstract The study of complex adaptive systems is among the key modern tasks
in science. Such systems show radically different behaviours at different scales and
in different environments, and mathematical modelling of such emergent behaviour
is very difficult, even at the conceptual level. We require a new methodology to
study and understand complex, emergent macroscopic phenomena. Coarse graining,
a technique that originated in statistical physics, involves taking a system with many
microscopic degrees of freedom and finding an appropriate subset of collective
variables that offer a compact, computationally feasible description of the system,
in terms of which the dynamics looks “natural”. This paper presents the key ideas
of the approach and shows how it can be applied to evolutionary dynamics.

1 Introduction

Our understanding of evolution has itself evolved. The journey started with Darwin
and Mendel but it was only with the understanding of the structure of the DNA and
the formulation of the central dogma of Molecular Biology in the 1950s and 1960s
that the microscopic mechanisms of evolution could start to be unravelled. The
central dogma postulates that DNA can be seen as a sort of read-only memory which
encodes all the features and functionality of adult individuals. Through the process
of transcription the information contained in the DNA would then be transferred
into RNA. Then through the process of translation, this information would be
carried by messenger RNA to the ribosomes. These would finally be responsible
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for transforming the information into proteins. Thus, only the processes involved in
reproduction could modify the DNA of an organism.

While of course this picture is a reasonable approximation of a particular function
of the DNA and a particular way in which evolution can happen, over the last few
decades biologists have discovered that there are many more mechanisms through
which the DNA could be modified, even during the lifetime of an individual or of a
cell, and thus there are many more mechanisms through which evolution is likely to
have happened [1].

It is today clear that evolution is extremely complex. However, even if we stick
with the 1970s view of it and we consider the super-simplified forms of evolution
in the computer that were inspired by such a view and used within the field of
evolutionary computation, there is still a huge amount of potential complexity in it.
This is, however, hidden complexity, that we see only if we try to understand
evolution at a deeper level: the level of theory.

What is a theory? A theory is a logically self-consistent framework for describing
the behaviour of a related set of phenomena. It often originates from, or is supported
by, experimental evidence. Thus, a theory is a systematic and formalised expression
of previous observations that is predictive, logical and testable. Why is theory
useful? A successful theory gives an intuitive understanding of the system being
modelled, which permits one to deduce new consequences and explain phenomena.
It allows quantitative predictions, albeit more often than not approximate, about the
system.

Do we have a theory of evolutionary systems? Well, yes and no. In many
areas of evolutionary computation and classical theoretical population genetics, we
have well-defined, complete and precise mathematical frameworks. The models of
population genetics and evolutionary algorithms (EAs) have a lot in common, and
in some cases, it is even arguable that there has been more progress in modelling
natural evolution in EA theory than in population genetics. However, making
progress both with our understanding of evolutionary algorithms and with making
predictions has been an exceedingly difficult task. In this chapter, we will try to
illustrate the nature of the difficulties and show how a technique known as coarse
graining has helped us make progress.

2 Physics and Probability Preliminaries

Let us start with some simple notions from physics. In many systems one can
identify a minimum set of variables, called degrees of freedom (d.o.f.), which
describe the state of the system. For example, the d.o.f. of a set of static marbles on
a table would be the x and y coordinates of each marble. Similarly, the d.o.f. of the
molecules of a gas are the x, y, z coordinates of each molecule and the components
vx , vy , vz of their velocities.

Note that the x and y of each marble would work as d.o.f. also if we glued the
marbles together in some form of geometric arrangement, say a rectangle. However,
now if we moved the rectangle, the marbles in the rectangle rigidly move together,
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i.e., their trajectories are now constrained. Indeed, the position of each marble is
known if we know the position of the rectangle. This has only three d.o.f.—the
coordinates xR and yR of its centre of mass and its rotation �R on the plane.

The x and y coordinates of each marble are said to be the microscopic d.o.f. of
the system, while the rectangle’s d.o.f., xR, yR and �R, are what a statistical physicist
would call the effective degrees of freedom (e.d.o.f.) of the glued marbles. We will
give here a personal definition of e.d.o.f.: a set of effective degrees of freedom for a
system is a minimum set of variables which, at a given scale, naturally, possibly
approximately, describe the states of a system for many practical purposes. So,
while the x; y; z; vx ; vy; vz of a gas molecule’s state are the microscopic d.o.f. for
a gas, in many practical cases, pressure and temperature are a set of (macroscopic)
e.d.o.f. for the gas.

Naturally, all d.o.f. are effective to some degree. Nearly always, in the real world,
any chosen set of d.o.f. (even the most microscopic and complete ones) provide only
an incomplete representation of reality. When we chose to represent the marbles
using their x and y coordinates we had made some assumptions: (a) the marbles’
z coordinates are constant, (b) the marbles’ rotations are either unimportant or
unobservable, (c) the marbles are stationary (no velocities), (d) everything else, e.g.,
the marbles’ temperature, colour, etc., is irrelevant. For some situations this set of
d.o.f. is sufficient to represent the behaviour of the real system. However, it wouldn’t
be appropriate if someone could give a push to a marble.

Related to the notion of effective d.o.f. is the notion of coarse graining. Coarse
graining means taking a system with many microscopic d.o.f. and finding an
appropriate set of e.d.o.f. for it. How do we choose a good set of e.d.o.f.? There
are some criteria: we want e.d.o.f. that offer a more compact, appropriate and
computationally tractable description of the system, and in terms of which the
dynamics looks “natural”. (Often this naturalness manifests itself in terms of finding
variables that are as independent and uncoupled as possible.)

Normally one describes a systems using d.o.f. for a reason: we want to under-
stand how and why the state of the system changes over time. This is what a physicist
would call the dynamics of the system. Also, we may want to describe special states,
e.g., equilibria, where the state variables (d.o.f.) have particular relationships, e.g.,
the gas law PV D RT where P is pressure, V volume, T temperature and R is the
ideal gas constant. In coarse graining, generally, we pass from a description with
one set of d.o.f., and corresponding interactions, to another, where both the e.d.o.f.
and their effective interactions are different as we change scale, i.e., as we change
from one set of e.d.o.f. to another. So, the dynamics and laws governing a system
change as we change d.o.f..

Since a number of sources of randomness influence evolution, models of evolu-
tion will need to make use of probabilities. In particular we will use probability/
event tree diagrams to model evolution. Tree diagrams allow us to see all the
possible outcomes of an event and calculate their probability. Let us briefly discuss
these tools.

We will first consider what tree diagrams can do for us using very simple
examples. Let us start with modelling repeated coin tosses. Spinning a coin has
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Fig. 1 Spinning a coin twice can be modelled using a tree diagram with two levels and four
possible outcomes. The probability of an outcome of a double flip is the product of the probabilities
(1=2) encountered along the edges connecting the root node to the outcome

two outcomes: heads (H) or tails (T). Spinning it twice can be modelled using a
tree diagram with two levels and four possible outcomes: HH, HT, TH and TT. In
general, in a tree, we label each edge with the probability of an event following that
edge and resulting in the corresponding outcome. The probability of an outcome
(e.g., heads followed by another heads) is the product of the probabilities along the
path connecting it to the root of the tree. If the coin is fair, the probabilities along
each edge are all 1=2 as shown in Fig. 1. The probability of the four outcomes of
a double coin flip are the products of the probabilities encountered along the edges
connecting the root node to an outcome: in this case 1=4 for all outcomes.

Once the tree diagram is instantiated, one can use it to compute the probability of
more complex events, such as the probability of having at least one head in two coin
flips, by simply labelling as “success” all the relevant outcomes and adding together
the probabilities of such “successful” outcomes.

Naturally, probability trees can also handle multiple outcomes, as in the case of
drawing beads from a bag containing 2 blue, 3 red and 5 green beads, and, again, the
product rule for computing the probability of outcomes applies. Also in this case,
one can compute the probability of more complex events by simply adding up the
probabilities of the relevant outcomes.

More generally, with probability trees we can find answers to questions such
as: If we have a ˛R (˛B , ˛G) probability of getting a red (blue, green) bead
in one draw, what’s the probability of getting exactly nR red, nB blue and nG

green beads after M draws? For M D 2 we can use a tree diagram to answer the
question. However, for bigger M and also for general values of ˛R, ˛B and ˛G ,
we would really need a formula to find out the answers. Fortunately, the answer is
given in probability textbooks. The repeated draw of beads from the bag follow a
multinomial distribution. In other words,

Pr.nR; nB; nG/ D
 

M

nR; nB; nG

!
˛

nR
R ˛

nB
B ˛

nG
G

where
�

M
nR;nB;nG

� D MŠ
nRŠnBŠnGŠ

are multinomial coefficients.
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Naturally, tree diagrams are useful also to model sequences of events that are
not all of the same type. For example, we can alternate coin flips and bead draws,
and find what’s the probability of the event T,R,T,R from the corresponding tree.
The only problem is that we just cannot use one of the multinomial distribution
shortcuts to add up probabilities for us. Also, tree diagrams work even if events are
not independent. For example, if we were performing bead draws but did not put
the bead drawn back into the bag, the probabilities of drawing beads of different
colour would change after each draw. Nonetheless, the probability of an outcome
(e.g., R,R) is still the product of the probabilities along the path connecting it to the
root.

Note that, in the case just described, in the second level of the tree we are
performing a different kind of draw depending on the result of the first draw. We
could be even more radical, and in fact consider a completely different set of events
and outcomes for each outcome of the first draw. For example, we might draw
another bead (with outcomes R, B and G) if the first bead drawn was red, we might
flip a coin (with outcomes H and T) if the bead was blue and we might roll a dice
(with outcomes 1, 2, 3, 4, 5 and 6) if the bead was green. While the exercise and
the resulting tree (with its set of inhomogeneous outcomes) might seem odd, the
product rule to compute the probability of outcomes would still apply.

3 Models of Evolutionary Algorithms

Modelling EAs means modelling the different events that take place during the
creation of offspring, then modelling the iteration of such events which lead to the
creation of a new generation and, finally, modelling the iterated construction of a
generation to model a full run of the algorithm. We will do this in the following
subsections.

3.1 Modelling the Genetic Operators

For simplicity, we will assume that we use a binary fixed-length representation
and that offspring can be created by either the selection of one parent followed
by mutation or the selection of two parents followed by crossover. More complex
forms of creation can be modelled following the same principles.

The first question we need to answer is: What happens when an offspring is
created in one particular generation? Irrespective of the genetic operators used, the
creation of an offspring at a given time depends only on: what’s in the population at
that particular time (which is variable), the fitness function (which we will assume
to be fixed) and the parameters of the EA, such as the population size (which we
will also assume to be fixed). So, the thing on which offspring creation depends is
the current population.
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Table 1 Degrees of freedom (left) and possible configurations (right) for
a population of three binary strings of length four

d1 d2 d3 d4
d5 d6 d7 d8
d9 d10 d11 d12

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

· · ·
1 1 1 1

1 1 1 1

1 1 1 1

4;096

Selection of 
parent

1100 0011 1110

p(0011) p(1110)p(1100)

Mutation

p(1100->0011)

p(1100->1110)

p(1100->1100)

Offspring

1100 0011 1110 1100 0011 1110 1100 0011 1110

p(0011->0011)

p(0011->1110)

p(0011->1100)

p(1110->0011)

p(1110->1110)

p(1110->1100)

Fig. 2 Simplified tree model of the selection of a parent followed by its mutation

We will need to formalise this dependency in some way. The next question then
is: What are the microscopic d.o.f. of a binary population? Clearly, the d.o.f. of
a population are the bits in every individual of the population. For example, a
population of three four-bit strings has 12 d.o.f. and there are 212 D 4;096 different
configurations, as shown in Table 1.

Let us first consider the case of selection followed by point mutation. Suppose
our current population is one of the configurations in Table 1(right), namely:
f1100; 0011; 1110g. The creation of offspring by selection and mutation is repre-
sented by the tree diagram in Fig. 2, which is simplified for display purposes in that
it assumes that only strings 1100, 0011 and 1110 can ever be generated (which, of
course, isn’t true).

Since point mutation acts on every bit independently, in the diagram, the
probability (along the bottom edges) of mutating a string y to a string x is given
by p.y ! x/ D p

h.x;y/
m � .1 � pm/`�h.x;y/ where h.x; y/ is the Hamming distance

between x and y and ` is the string length. Let us further assume that we use fitness
proportionate selection to select parents. In this form of selection, the selection
probability for a string x, p.x/, is simply the ratio between the fitness of x and
sum of the fitnesses of all individuals in the population.
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Fig. 3 Tree diagram for the selection of two parents followed by crossover

Then, if we know the mutation rate and the fitness function, we can turn the
generic tree in Fig. 2 into a concrete probability tree. For example, if pm D 0:25,
then p.1100 ! 1100/ D 0:250 � 0:754 D 0:316, p.1100 ! 0011/ D 0:254 �
0:750 D 0:004, p.1100 ! 1110/ D 0:251 � 0:753 D 0:105, etc. So, all lower
level edges have numerical probabilities associated with them. Also, suppose we
are solving the OneMax problem,1 then f .1100/ D f .0011/ D 2, f .1110/ D 3

and the sum of fitnesses in the population is seven. So, p.1100/ D p.0011/ D
2
7
D 0:286 and p.1110/ D 3

7
D 0:429. So, the probabilities in the upper part of

the tree diagram are also defined. Of course, the multiplication rule still applies, but
there are multiple paths leading to the same outcome (offspring). So, the offspring
creation probabilities, ˛, are sums of products.

Let us now consider the process of generating offspring by selection followed
by one-point crossover. The selection-crossover diagram for f1100; 0011; 1110g is
shown in Fig. 3. Clearly there are now three events taking place (two selections and
one crossover), so the tree has three levels. The first two levels are exact copies
of the first level of Fig. 2, since they simply represent the selection of the parents
(with reselection allowed). As for the bottom level, since we use four-bit strings,

1In OneMax, fitness is the number of 1s in a bit string and the objective is to maximise that number.
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one-point crossover can choose among three cut points. Each has a probability of 1
3

of occurring.
If we look at the outcomes at the bottom of the tree, we can see that while we

started from a population containing the three strings 1100, 0011, 1110, crossover
can produce nine different strings: 0000, 0010, 0100, 0110, 1011, 1100, 1101,
1110 and 1111. Naturally, the sum-of-products rule still applies even if some
probabilities in the tree are left unspecified. So, we can use the diagram to compute
the creation probability ˛.x/ for the nine outcomes (offspring strings): ˛.0000/ D
1
3
p.0011/p.1100/, . . . , ˛.1111/ D 1

3
p.1100/p.0011/ C 1

3
p.1110/p.0011/ C

1
3
p.1110/p.0011/.

As for mutation, if we know the fitness, we can work out selection probabilities
p.x/, and from these the creation probability for all strings that can be created in
the next generation. Again, if we just focus on the outcomes, we can represent the
process with a tree diagram with just one level.

It is traditional for the process of creation of offspring via selection and crossover
to first require the selection of the two parents and then execute the crossover
operation, which in turns requires selecting a random crossover point. It is, however,
quite clear that choosing the crossover point is totally independent from the selection
of parental types. So, one could reorder these operations without altering the
outcome. For example, selecting crossover points before selecting parents doesn’t
affect results in any way. Naturally, this different way of ordering events leads to a
different but equivalent tree diagram model.

3.2 Coarse Graining and Generalising Models

Having developed models for the process of creating individuals via selection-
mutation and selection-crossover for the specific population f1100; 0011; 1110gwe
may ask: What if we had the population f1100; 1100; 0011; 1110g which contains
two copies of the string 1100 instead of just one?

Of course, we could just follow the same steps as before and redevelop tree
diagrams for the events associated with such a population. For example, Fig. 4
shows the diagram for offspring generation via selection-crossover for the new
population. We should note, however, that there is a lot of duplication (identical
sub-trees, identical outcomes) in this diagram with respect to the one for the original
population (Fig. 3).

Let us try to simplify the tree a little. First, we should note that if we doubled
some of the probabilities labelling some of the edges in the tree, we could obtain the
entirely equivalent, but more compact model in Fig. 5.

We now see clearly that this is the same diagram as for f1100; 0011; 1110gexcept
four probabilities have doubled. What is this diagram trying to tell us? Why the
factor 2? Note: 2 is also the number of copies of the string 1100 in the population.
Is this a coincidence?



Taming the Complexity of Natural and Artificial Evolutionary Dynamics 27

0011

0011 1110

1 2 3 1 2 3

p(0011) p(1110)

p(0011)

p(1110)

1
3

1
3

1
3

1
3

1
3

1
3

OFFSPRING

0
0
1
1

0
0
1
1

0
0
1
1

0
1
1
0

0
0
1
0

0
0
1
0

1
1
1
1

1100

1100 0011 1110

1 2 3 1 2 3

p(0011)

p(1110)

1
3

1
3

1
3

1
3

1
3

1
3

1
0
1
1

1
1
0
1

1
1
1
0

1
1
1
0

1
1
0
0

1 2 3

1
3

1
3

1
3

1
1
0
0

1
1
0
0

1
1
0
0

p(1100)

1100

1 2 3

1
3

1
3

1
3

1
1
0
0

1
1
0
0

1
1
0
0

p(1100)

p(1100)

1
1
1
1

1100

1100 0011 1110

1 2 3 1 2 3

p(0011)
p(1110)

1
3

1
3

1
3

1
3

1
3

1
3

1
0
1
1

1
1
0
1

1
1
1
0

1
1
1
0

1
1
0
0

1 2 3

1
3

1
3

1
3

1
1
0
0

1
1
0
0

1
1
0
0

p(1100)

1100

1 2 3

1
3

1
3

1
3

1
1
0
0

1
1
0
0

1
1
0
0

p(1100)

p(1100)

1100

p(1100)

1 2 3

1
3

1
3

1
3

0
1
0
0

0
0
0
0

0
0
1
0

1100

p(1100)

1 2 3

1
3

1
3

1
3

0
1
0
0

0
0
0
0

0
0
1
0

1100

1 2 3

p(1100)

1
3

1
3

1
3

1
1
0
0

1
1
0
0

1
1
1
0

1
1
1
1

Selection of 
first parent

1110

1100 0011 1110

1 2 3 1 2 3 1 2 3

p(1100)

p(0011)

p(1110)

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
1
0
0

1
1
0
0

1
1
1
0

1
0
1
1

1
1
1
1

1
1
1
0

1
1
1
0

1
1
1
0

Choice of 
crossover
point

Selection of 
second parent

Fig. 4 Tree diagram model of the creation of offspring via selection-crossover for the population
f1100; 1100; 0011; 1110g
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Fig. 5 More compact, but equivalent, version of the model in Fig. 4

Naturally, it is not a coincidence. The original tree diagram in Fig. 3 is valid
for both populations provided we interpret the selection of first and second parent
events as the selection of first and second parental types not of particular individuals
and we interpret the p.x/’s as probabilities of selecting a particular type.
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What is a type? The notion of type is best explained with an example. The
population {A, B, B, C, A, A, B} contains seven individuals but only three distinct
types: A, B and C. So, the selection probability for a type is defined as

p.type x/ D
X

s of type x in pop

p.s/ D #(s of type x) � p.s/;

which for fitness proportionate selection becomes

p.x/ D # individuals of type x in population� f .x/

sum of fitnesses of all individuals in population
:

With these changes of interpretation, the model of crossover in Fig. 3 works
for all populations having any number of copies of 1100, 0011 and 1110, e.g.,
{1100, 1100, 1100, 0011, 0011, 1110, 1110, 1110}. Similarly we could coarse grain
selection-mutation models.

A question that immediately comes to mind is: Would the model work for also
the population f0011; 1110g which contains zero copies of the string 1100? The
answer is yes. There are extra outcomes in the tree in Fig. 3 which for the population
f0011; 1110g have a zero probability of occurring, but the model is still formally
correct.

In other words, the probability of selection of types automatically adjusts for the
number of copies (including 0) of a type. Thus, we could generalise the selection
part of the model to any population if we added all possible string types of a
given length as outcomes of the selection process. Naturally, only a small subset
of outcomes would have non-zero probability for any given population.

If we also generalise crossover to strings of a generic length `, we would get
a general model of the selecto-recombination operator which is both independent
from the particular population at hand and from the length of the representation. This
is shown in Fig. 6. The same approach would produce a general selecto-mutation
model.

Note that the models in Figs. 2 and 6 can be collapsed down to a tree with a
single level if we consider the selection-mutation and selection-crossover processes
as a single (composite) event, respectively. Naturally, as shown in Fig. 7, we need to
use an appropriate set of probabilities to label the edges that lead to the outcomes
(offspring), namely the quantities ˛.x/ for all possible values of x.

Let us reconsider at this point the question of how we compute the creation
probabilities ˛. The tree we have just defined has 2` nodes at the first level, 2` � 2`

at the second and .` � 1/ � 2` � 2` at the third level. So, for any realistic value
of ` it is immense. Interestingly, however, it can have “only” 2` distinct outcomes
(offspring). Since 2` � .`� 1/� 2` � 2`, we should expect to have to multiply and
add an exponential number of probabilities to compute ˛.x/ for each outcome.

Obviously, we cannot do this by hand. So, we introduce a function to help us
do it: �.y; z; n; x/ D 1 if crossing over y and z at position n produces x, and 0
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Fig. 6 General population- and length-independent model of the process of creating offspring via
selection and recombination
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α(00...00)
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.

11...11
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Fig. 7 The tree representation for a general selection-crossover process and a general selection-
mutation process, represented as a single (composite) event

otherwise. With this, we can now write the creation probability via selection and
crossover for a generic type x, in a general form:

˛.x/ D
X
y2˝

X
z2˝

`�1X
nD1

�.y; z; n; x/

�
p.y/p.z/

` � 1

�
(1)

where ˝ is the space of all possible strings of length `.2

2Naturally, we would like to have an explicit form for �.y; z; n; x/. It exists, but for now we will
not look at it.
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Note that Fig. 7 represents also a general model for the selection-mutation
process, although now we have ˛.x/ DP

y2˝ p.y/p.y ! x/ where p.y ! x/ is
the probability of mutation transforming an individual of type y to an individual of
type x (which we have already computed).

3.3 Modelling One Generation

Now that we have models of the process of creating one offspring, we are in a
position to start constructing models of the iterated application of the offspring-
creation process, in view of modelling a generation.

What happens when an offspring is created in one particular generation? We
have already seen that, irrespective of the genetic operators used, offspring creation
is similar to drawing beads from a bag. Generally, the process is modelled in
Fig. 7 for a generic operator or set of operators (where ˛.x/ is the probability of
creating individual x with the chosen operators). Naturally, the creation process
will have many more than the three possible outcomes of the bead-draw process,
but the principles at work are exactly the same. Then, what happens if we iterate the
creation process, e.g., to create a full new generation? In a generational EA, within
a generation the ˛’s, i.e., the offspring creation probabilities, are constant. So, for
a generation we have a probability tree diagram very much like the one for iterated
bead draws as illustrated in Fig. 8 for a population of three individuals.

Naturally, in general, the general model in Fig. 7 would need to be used at each
level of the tree diagram representing one generation. In either case, this time the
outcomes of the process are populations. For example, for the model in Fig. 8 there
are 27 outcomes:

1111
1111
1111

1111
1111
0000

1111
1111
1010

1111
0000
1111

1111
0000
0000

1111
0000
1010

1111
1010
1111

1111
1010
0000

1111
1010
1010

...
0000
0000
0000

Again, like for multiple bead draws, the multiplication rule applies: when we
want to compute the probability of an outcome, we simply need to multiply
the probabilities along the edges of the path that goes from the root of the tree
to the outcome of interest. So, for example, the probability of the next generation
being the eighth outcome (in boldface) is ˛.1111/� ˛.1010/� ˛.0000/.

At this stage we note the possibility of a further coarse graining: coarse graining
on positional symmetries. In other words, do we generally care about the differences
between populations, such as the second and the fourth above, which have exactly
the same strings but in a different order?

We might, if some genetic operator depends on position, e.g., if selection only
allowed mating of neighbouring individuals. However, typically genetic operators
are position independent, so we don’t care about positional differences. Because
these populations are effectively equivalent, we don’t really need to distinguish them
using the original set of d.o.f.. We only care about how many individuals of any
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| ←− generation (popsize M = 3) −→ |

Fig. 8 Simplified tree diagram model of a generation for a population of three individuals

given type are present in the population. E.g., two of type 1111 and one of type 0000.
So, we can define new (coarse grained) e.d.o.f.: using the number nx of individuals
of a given type x (for all x) as a representation. So, a population with two individuals
of type 1111 and one of type 0000 can be represented as n1111 D 2, n0000 D 0 and
n1010 D 1.

More generally, for ` D 4 and a population of size M , our e.d.o.f. are

0000 n0000
0001 n0001
0010 n0010
0011 n0011

0100 n0100
0101 n0101
0110 n0110
0111 n0111

1000 n1000
1001 n1001
1010 n1010
1011 n1011

1100 n1100
1101 n1101
1110 n1110
1111 n1111

with the constraint
P

x nx D M .
Having now coarse-grained on positional symmetries, have we actually saved

anything in terms of complexity? Simple counting arguments can show that with

strings of length ` there are
�

MC2`�1
2`�1

�
possible populations of M individuals. This

is in general much smaller than the 2M�` populations we would have to consider if
we did not coarse grain. So, the saving is huge.

Of course, as for the beads, if xi is the i -th possible offspring, the probability that
in the next generation one gets n1 individuals of type x1, n2 of type x2, etc., is just
given by the multinomial distribution
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Fig. 9 Tree model of the process of creating a generation as a single (composite) event. (Here, for
simplicity, we assume that only strings 1111, 0000 and 1010 can be generated. So, there are only
ten possible outcomes)

Pr.n1; n2; � � � / D
 

M

n1; n2; � � �

!
˛.x1/n1˛.x2/n2 � � �

Effectively this equation is a representation for the dynamics of the system in terms
of the new e.d.o.f. nx . With it, we can get (probabilistic) information about the
next generation. For example, we know all the moments of the distribution of next-
generation populations. For instance, the expected number of copies of any xi in the
next generation is simply M˛.xi /.

As we did before with the ˛’s, knowledge of Pr.n1; n2; � � � / allows us to model
a generation, which is the result of a series of offspring-creation events, as one
(composite) generation-creation event, the outcomes of which are populations.
A sample (simplified) tree diagram for the population f1111; 0000; 1010g is shown
in Fig. 9.

3.4 Modelling Runs

Having now “tamed” the complexity of the generation-creation process using the
Pr.n1; n2; � � � / and tree diagrams such as Fig. 9, we are now in a position to model
entire runs.

It is clear that tree diagrams can be used also to model multiple generations and,
thus, runs as illustrated in simplified form in Fig. 10, where we assumed that we
start runs from a given (known) population. In the figure, different edges in the tree
leading to the same population are labelled by different probabilities. The reason for
this is that the action of the genetic operators (e.g., selection) depends on who is in
the population, so the ˛’s and consequently the probabilities Pr.n1; n2; � � � / depend
on it. So, in general we should expect Pr.3; 0; 0/ ¤ Pr 0.3; 0; 0/ and similarly for
most other labels.3

3As a result, we cannot use the multinomial distribution to predict the future over multiple
generations.
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Fig. 10 Tree model of the process of running an EA for multiple generations

Of course, outcomes are now trajectories in population space. For example, if we
ran an algorithm for three generations, an outcome could be

trajectoryD( Initial population ⇒
1111 1
0000 2
1010 0

⇒
1111 2
0000 1
1010 0

⇒
1111 3
0000 0
1010 0

)
Applying the multiplication rule to this sample trajectory we obtain

Pr.trajectory/ D Pr.1; 2; 0/ � Pr 0.2; 1; 0/ � Pr 00.3; 0; 0/

where

Pr.1; 2; 0/ D Pr( getting
1111 2
0000 1
1010 0

from the initial population ),

Pr 0.2; 1; 0/ D Pr( getting
1111 2
0000 1
1010 0

from population
1111 1
0000 2
1010 0

),

Pr 00.3; 0; 0/ D Pr( getting
1111 3
0000 0
1010 0

from population
1111 2
0000 1
1010 0

),

are conditional probabilities. In other words, the probability on the edge from a
population P to population P 0 is the probability of P 0 being the next generation
when we use the creation probabilities ˛ computed for population P . We write this
probability as Pr.P 0 jP/.

Now, let us imagine we numbered all possible populations: P1, P2, and so on.
The probabilities of the edges between all possible pairs of populations could be
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...P
1 P
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π1 π2

Initial Population

Potential End-of-run Populations

Fig. 11 Tree model of the process of performing a run of an EA as a single (composite) event

represented as a matrix Q D
�

Pr.Pi jPj /
�

, which is effectively the transition

matrix for a Markov chain whose states are all possible populations: P1, P2, and
so forth. So, the probability of the population following a particular trajectory during
a run is the product of a set of elements of Q.

However, in many cases one is not particularly interested in the trajectory
followed by a run, but, more simply, in the population obtained at the end of that
run. In this case, there is a further opportunity for coarse graining: we could consider
populations as outcomes of runs of the EA and ignore all other aspects of the
dynamics that led to such end-of-run populations. For the properties of Markov
chains, we can easily compute the probability of each such outcome. Indeed,
the probability distribution, �t , of the EA being in any state (having a particular
population) at a future generation t is simply

� D Qt�0

where �0 is the initial probability distribution over states, which for a known initial
population is simply a vector with one unitary component (representing the initial
population) and zeros everywhere else.4 So, if we know the initial population, again,
we can treat the complex chain of events taking place in a run as one (composite)
event which we can model with a tree diagram with only one level. This tree is
represented in Fig. 11 where �1, �2, etc. are first, second, etc. component of the
vector � , respectively.

Naturally, many EAs start from a random population, not a known population.
It should, however, be clear by now, that the process of randomising the initial
generation before starting a run simply adds an extra level to the tree-diagram model
of runs in Fig. 10. This does not change at all the resulting model of runs as single
composite events shown in Fig. 11. All that changes is the initial distribution over
populations, �0. So, the case of initial random populations, too, is covered by our
analysis.

4This is Michael Vose’s model for a genetic algorithm [2].
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4 Coarse Graining and the Emergence of Schemata

So far we have already used coarse-graining a number of times: we coarse-grained
over types when performing selection, we coarse-grained over positions in the
population and, finally, we coarse-grained over population dynamics focusing only
on end-of-run populations.

In theory, with Q one can compute everything that can be computed about the
future of a run. For example, we could compute the probability of solving a problem
in say 50 generations. In practice, however, Q is just too big for one to be able to
create and use it. We can only study its properties mathematically. So, while the
theory presented above is an exact theory, it is a theory that is hard to use to make
predictions and to understand why an EA behaves the way it does. The problem is
that the model and its e.d.o.f. are still too microscopic to show us the regularities of
an algorithm. We need something else.

4.1 In Search of New Effective Degrees of Freedom

Earlier we expressed the creation probability via selection and crossover as in
Eq. (1). It is now time to learn more about �.y; z; n; x/.

Let us fix the type of interest as x D 11 (` D 2). From the selection-crossover
event diagram5 we find that �.y; z; n; x/ � 0 except for

�.10; 01; 1; 11/D �.10; 11; 1; 11/D �.11; 01; 1; 11/D �.11; 11; 1; 11/D 1:

So, ˛.11/ D p.10/p.01/ C p.10/p.11/ C p.11/p.01/ C p.11/p.11/, which
includes only 4 terms out of the possible 16. ˛.11/ can thus can be written as

˛.11/ D .p.10/C p.11//� .p.01/C p.11//:

Is this factorisation a coincidence, or is the equation trying to tell us that A D
p.10/C p.11/ and B D p.01/C p.11/ would lead to a more natural description
of the creation process as ˛.11/ D A � B? To answer these questions we will need
to find (and work with) an explicit form of �.

The function � is 1 only if there is a match between the offspring’s bits and
the first parent bits before the crossover point and there is a match between the
offspring’s bits and the second parent bits after the crossover point. We can write
this conjunction of multiple requirements as

�.y; z; n; x/ D
Y
i�n

ı.xi D yi /
Y
i>n

ı.xi D zi /

5For ` D 2 there is only one valid crossover point (n D 1).
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where xi , yi and zi are the bits in x, y and z, respectively, and ı.expression/ D 1 if
expression is true, and 0 otherwise.

Substituting this description of � into Eq. (1) yields

˛.x/ D
X
y2˝

X
z2˝

`�1X
nD1

 Y
i�n

ı.xi D yi /
Y
i>n

ı.xi D zi /

!�
p.y/p.z/

` � 1

�
:

We can then reorder the calculation in an interesting way:

˛.x/ D
`�1X
nD1

1

` � 1

0
@X

y2˝

p.y/
Y
i�n

ı.xi D yi /

1
A �

 X
z2˝

p.z/
Y
i>n

ı.xi D zi /

!

That is, like ˛.11/ D A � B , also ˛.x/ can be expressed in a simpler form:

˛.x/ D
`�1X
nD1

1

` � 1
An � Bn;

for An DP
y2˝ p.y/

Q
i�n ı.xi D yi / and Bn DP

z2˝ p.z/
Q

i>n ı.xi D zi /. It is
then natural to ask: What are the factors An and Bn? Why do things look so much
simpler if we calculate ˛ in this way?

4.2 Coarse Graining from Types to Sets

The action of the ı’s in An and Bn is to zero some terms in the corresponding
summations over ˝ , i.e., they limit the range of the summations. That is

An D
X

y2Ln.x/

p.y/ and Bn D
X

z2Rn.x/

p.z/;

for an appropriate choice of the two sets Ln.x/ and Rn.x/, namely Ln.x/ D fy 2
˝ W y1 D x1; � � � ; yn D xng and Rn.x/ D fz 2 ˝ W znC1 D xnC1; � � � ; z` D x`g.
This suggests that there is a further level of coarse-graining that we can do to tame
the complexity of evolution: moving from types to sets of types.

We can easily extend the definition of p.x/ from types to sets as follows:

p.A/ D Prfselecting a individual of a type belonging to set Ag:

Because all events in A are mutually exclusive p.A/ D P
x2A p.x/. Thus, we can

express An D p.Ln.x//, Bn D p.Rn.x//, and

˛.x/ D
`�1X
nD1

1

` � 1
p.Ln.x// � p.Rn.x//:
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Fig. 12 Tree model of the selection-crossover process coarse-grained using sets of types

Let us analyse this result. We see that the probability of creating an offspring of
type x is now decomposed as a sum of products of three probabilities: the probability
of choosing a particular crossover point 1

`�1
, the probability of selecting a first

parent belonging to the set Ln.x/ and the probability of selecting a second parent
belonging to the set Rn.x/. Note that these two sets depend on both x and the choice
of crossover point n. This suggests that the most coarse-grained tree diagram we can
construct to represent these events is one that starts with the choice of a crossover
point at the first level of the tree. Then it focuses on different kinds of selection
events depending on the chosen crossover point, thereby forming a hybrid hierarchy
of the same kind considered at the end of Sect. 2. The different kinds of selection
are the selection of types belonging to the sets Ln.x/ for the second level of the tree
and the sets Rn.x/ for the third level of the tree. Naturally at every level we must
consider not only just the positive outcome (the selected type is in the set) but also
its corresponding negative one (the type is not in the set).

The resulting tree diagram is shown in Fig. 12. Note how much smaller and
simpler than the original in Fig. 6 this is. There are only O.`/ nodes in it as
opposed to the original O.2`/. Clearly, Ln.x/ and Rn.x/ are really good e.d.o.f.
for describing the creation of instances of x. But what are these sets?

4.3 Schemata as Effective Degrees of Freedom

Holland [3] introduced the notion of schema as a tool for analysing EAs. A schema
is a set of individuals represented with a particular pattern: a string of symbols from
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the alphabet f0; 1;�g. The semantics of the symbols is this: (a) all individuals in
the schema must have the specified pattern of 0s and 1s within them, and (b) the
� symbols mean we “don’t care” to check the corresponding bit in the individuals.
For example, the schema 11�� represents all strings of length 4 which start with 11,
i.e., 11�� D f1100; 1101; 1110; 1111g.

With this notion in hand, it is now easy to see that for a fixed x and n, the two
sets Ln.x/ and Rn.x/ are particular schemata, namely Ln.x/ D x1 � � �xn� � � � � and
Rn.x/ D � � � � �xnC1 � � �x`. Hence

˛.x/ D
`�1X
nD1

1

` � 1
p.x1 � � �xn� � � � �/p.� � � � �xnC1 � � �x`/:

In other words, schemata are the right type of coarse-graining to represent the
operation of creating an individual of a particular type through selection and
crossover. Note, however, that there is a slight asymmetry in this equation: we
have used schemata as effective d.o.f. for the right-hand side, but types as e.d.o.f. for
the left-hand side. Could we coarse grain creation events even further by extending
the interpretation of the domain of ˛ from types to sets of types? If A is a schema,
i.e., A D s1s2 � � � s` with sn 2 f0; 1;�g, and we define ˛.A/ D P

x2A ˛.x/, it is
possible to prove [4] that this coarse graining leads to an equation of exactly the
same form as that for ˛.x/, namely:

˛.s1s2 � � � s`/ D
`�1X
nD1

1

` � 1
p.s1 � � � sn� � � � �/p.� � � � �snC1 � � � s`/:

This reveals the hierarchical nature of creation events across multiple genera-
tions. For example, the probability of creating individuals of type 111 at generation
t is determined by the selection probabilities of individuals of the sets 1��, �11,
11� and ��1 at that generation. These selection probabilities depend not only on the
fitness function but also on the number of individuals within each set at generation t .
These were created in the previous generation, t � 1. Their distribution is entirely
determined by the probability of creating individuals in each sets at generation t�1.
For example, the number of individuals in �11 depends on ˛.�11/ at generation
t � 1. In turn ˛.�11/ is controlled by the individuals in sets �1� and ��1 at
generation t � 1. Their number is stochastic, but, of course, depends on ˛.�1�/
and ˛.��1/ at generation t � 2.6

6Note that ˛.s1s2 � � � s`/ becomes particularly simple when all si D � except one. In that case it is
easy to verify that ˛.s1s2 � � � s`/ D p.s1s2 � � � s`/.
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5 Conclusions

Here we have shown that what makes even the simplest forms of evolution
so complicated to analyse mathematically is the explosive number of possible
outcomes of each operation or sequence of operations. We have also shown that
coarse graining has helped us formulate more intuitive models of the dynamics of
EAs, thereby taming their complexity, at least to some degree.

Naturally, many people have attempted to model EAs for many years. So, differ-
ent models and different types of coarse grainings have been used. For example, the
models presented here have been extended to variable-length strings, to non-binary
alphabets, to more general forms of crossover and mutation, to tree-like structures,
to diploidy/polyploidy and multiple chromosomes, to more recently discovered
genetic operations (inversion, transposition, gene duplication, gene deletion, etc.),
etc. [5–8]. Also, there are systems where the natural e.d.o.f. are Fourier (Walsh)
modes and systems that can be characterised by interpreting the crossover operation
as a low-pass filter. It is also possible to apply the Renormalisation Group [9] to
model EAs. Also, search in continuous spaces can be modelled using the finite
element method (coarse-graining the states of the system).

There are, however, also a number of still unresolved issues including, for
instance, deriving convergence proofs using coarse-grained variables, deriving
problem-difficulty indicators based on such variables, relating no-free-lunch theory
to coarse-grained models, and many others.

While coarse graining the d.o.f. and dynamics of evolution is difficult, most
of what has been achieved for EAs is relevant for biological evolution, too. For
example, the key notion of schema and the hierarchical nature of creation via
crossover has been almost completely neglected in population genetics. Much might
be learnt about natural evolution by applying such notion.
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Knowledge into the Random Boolean Network
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Abstract Kauffman’s random Boolean networks are abstract, high level models
for dynamical behavior of gene regulatory networks. They simulate the time-
evolution of genetic regulation within living organisms under strict conditions. The
original model, though very attractive by its simplicity, suffered from fundamental
shortcomings unveiled by the recent advances in genetics and biology. Using these
new discoveries, the model can be improved to reflect current knowledge. Artificial
topologies, such as scale-free or hierarchical, are now believed to be closer to that
of gene regulatory networks. We have studied actual biological organisms and used
parts of their genetic regulatory networks in our models. We also have addressed
the improbable full synchronicity of the event taking place on Boolean networks
and proposed a more biologically plausible cascading scheme. Finally, we tackled
the actual Boolean functions of the model, i.e. the specifics of how genes activate
according to the activity of upstream genes, and presented a new update function
that takes into account the actual promoting and repressing effects of one gene on
another. Improved models demonstrate the expected, biologically sound, behavior
of previous GRN model, yet with superior resistance to perturbations. We believe
they are one step closer to the biological reality.
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1 Genes

Life’s information is encoded in genes [1,2]. In modern biology, a gene is defined as
the basic unit component encoding the heredity in living organisms. Genes contain
the genetic information to build and maintain the cells of an organism. A gene
is made of a sequence of nucleic acid (usually Deoxyribonucleic acid or DNA).
Nucleic acids are macromolecules formed by the basic nucleotides: adenine (A),
cytosine (C), guanine (G), and thymine (T). This sequence of DNA is composed of
both coding parts, i.e. the actual information on what the gene does, and non-coding
parts that determine whether the gene is active, i.e. expressed or not. This second
part is also called the regulating part. Finally, there is a certain amount of extra DNA
that is neither coding nor regulating.

To clarify, a chromosome is an organized form of DNA encoding several genes,
along with regulating information and other non-coding sequences of nucleotides.
Figure 1 gives an idea as to which elements of the genetic material is a building
block of the next.

In living organisms’ cells, when a gene is active or activated, both the coding
and the non-coding sequences of the gene are copied during a process called
transcription. The copy resulting from transcription is ribonucleic acids (RNA);
more precisely messenger ribonucleic acid (mRNA). RNA is very similar to DNA,
but differs in a few important structural details: in the cell, RNA is usually single-
stranded, while DNA is usually double-stranded; RNA nucleotides also differ
slightly with respect to nucleotides of DNA. In eukaryotic cells mRNA is then
transported outside the nucleus, which is the central control of the cell containing
the genetic information. In both prokaryotic cells (i.e., cells without a nucleus) and
eukaryotic cells, mRNA directs enzymes during the production of proteins.

The molecules resulting from gene expression, whether RNA or protein, are
known as gene products and are responsible for the development and functioning
of all living things. They are also a central element of the regulation of downstream
genes later during the life of the cell (see Fig. 2). The physical development and
phenotype of organisms can be thought of as a product of genes interacting with
each other and with the environment [3]. Some proteins serve only to activate other
genes, and these are the transcription factors. By binding to the promoter region at
the start of other genes transcription factors activate a gene. On the other hand, some
transcription factors are inhibitory.

2 Genetic Regulatory Networks

In recent years, high throughput sequencing techniques, such as microarrays, have
allowed biologists not only to sequence the entire genome of living organisms
but also to shed some light on the interactions between these genes and how
they regulate each other. Nevertheless, the regulation aspect between genes can
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Fig. 2 Gene regulation: how they regulate each other and themselves

oftentimes only be inferred by gene co-expression data, but not directly witnessed.
In a few words, co-expression and co-regulation data compare the expression level
of genes at consecutive time intervals, and these time-series are analyzed to find
emerging patterns in expressions of genes, which in turn reveals possible regulatory
interactions amongst genes.

Gene regulatory networks are formed by genes, messenger RNA (mRNA), and
proteins. The interactions between these elements include transcription, translation,
and transcriptional regulation [4]. Usually, vertices represent genes and directed
edges are the regulating influence (promotion or inhibition) of a gene on another via
a protein or an mRNA sequence, as described above. These networks have particular
structural topologies that help maintain the stability of the system, while allowing it
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a b

Fig. 3 Genetic Regulatory Networks. A representation of (a) the transcriptional regulatory
network in ES cells and (b) the yeast cell-cycle regulatory network. Arrows point from transcription
factor to the target gene. Plus signs “C” (respectively, minus signs “�”) represent activating
(respectively, repressing) links

to evolve. Figure 3 below shows two genetic regulatory sub-networks of biological
organisms: yeast and mouse stem cell.

The dynamic processes taking place in regulatory networks are extremely
complex and we are just beginning understanding them in detail. However, it is
possible, and useful, to abstract many details of the particular kinetic equations in
the cell and focus on the system-level properties of the whole network dynamics.
This complex systems biology approach, although usually not strictly applicable to
any given particular case, may still provide interesting general insight.

3 Modeling Genetic Regulatory Networks

Models, as mentioned earlier, are simplified representations of the reality submitted
to constraints and conditions. In the case of genetic regulatory networks there are
essentially four types of models [5]. Boolean networks that we will describe in detail
in the next section, and three more:

• differential equations systems used to describe the reaction kinetics of the
constituent parts. These models usually involve an in-depth understanding of
the temporal variation of the concentration of the network’s substances. The
functions are ultimately derived from basic principles of chemical or enzymatic
kinetics [6];

• continuous networks are an extension of the Boolean model described below,
only this time the genes expression level is assumed to be a continuous function
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of time. It has been argued that using a continuous representation captures several
properties of gene regulatory networks not present in the Boolean model [7];

• stochastic gene networks are GRNs models reflecting recent experimental
results [8, 9] hinting that gene expressions are stochastic processes. Some
formalisms of this phenomenon have been proposed [10], and several works
on single genes and small synthetic networks have been conducted [11–13].

The structural topology of the GRNs, and consequently of models thereof, is
still open to discussion, but one property has been agreed by all parties that GRNs
are sparse networks and that the mean number of upstream-regulator per gene is
less than two [14]. In the early random Boolean network model [15], the network
topology was random. Later, more complex network topology with different input
and output degree distributions were proposed [16] (see next section).

Another subject of discord in the community is the timing of events in the
models, more specifically, the fact that most models assume that the regulation,
activation, and expression of the genes is taking place instantaneously and that these
phenomena take the same time for all genes. Although the order of magnitude is
comparable amongst, biologists feel this approximation might be a real weakness of
the models. Alternate models were proposed where these reactions were delayed
reactions in order to account for the time it takes for the entire process to be
complete [17].

4 Random Boolean Networks

Introduced by Kauffman in the late 1960s, Random Boolean Networks (RBNs)
are early models of genetic regulatory networks [15]. RBNs have been studied in
detail by analysis and by computer simulations of statistical ensembles of networks
and they have been shown capable of surprising dynamical behavior. An excellent
review on the topic can be found in [18].

In Kauffman’s RBNs (known today as Classical RBNs) with N nodes, a node
represents a non-discriminate gene and is modeled as an Boolean on/off device,
meaning that a gene can only either be expressed if it is on (1), and it is not expressed
otherwise (0). Each gene receives exactly K randomly chosen inputs from other
genes (see Fig. 4).

From a simplistic viewpoint, the combined effect of proteins produced by genes
g1 to gK attaching to an mRNA binding site, thus either promoting or repressing
the activity of the target gene g, can be seen as a direct effect of a function
f .g1; : : : ; gK; g; t/ ! gtC1. In this case, we allow g to be one of the arguments
of the gene update function f , thus permitting self-regulation. If we assume all
genes are Boolean nodes, we can define the activity of any gene at time t C 1 as
the result of a Boolean function of each of the gene’s entries at time t . The bias, or
probability p for a node to be expressed at the next time-step is the only variable
parameter of the Boolean function.
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g0

g1

gK

g

Fig. 4 Gene interaction in
RBN: the activation state of
genes g1; g2; : : : ; gK have an
influence on gene g

Each gene’s Boolean function is chosen arbitrarily and can be seen as a randomly
generated lookup table with 2KC1 entries. The model evolves through time by
discrete time-steps and changes to the genes state of activations are instantaneous.
Every gene updates its state at every time-step.

The state of a gene gi at any given time t is gi .t/ 2 f0; 1g. For an RBN with N

genes, the state or configuration C.t/ of the entire RBN at time t is defined by the
binary string C.t/ D .s0.t/; s1.t/; : : : ; sN�1.t//. A finite size RBN with N genes
has a total of 2N possible configurations called the state/phase space. As states are
binary strings, they can be identified by a unique integer i represented by the binary
string: i DPN

jD0 sj 2j .
The time-evolution of RBN is fully deterministic. Once the Boolean functions

have been attributed to the genes, an initial configuration/state is set to the RBN at
time t D 0. In this initial state, each gene is given a random expression value, either
on or off . At each time-step, each gene potentially updates its own state according to
its Boolean function and the RBN find itself in a potentially different state C.t/!
C.tC1/. Independently of its initial condition, an RBN will travel through a number
of states before relaxing into a subset of configurations called an attractor and cycle
through the states of the attractor. The number of states forming an attractor is called
the attractor’s cycle length l . The length of an attractor varies in: 1 � l � 2N .
The state-space of an RBN can contain more, but no less, than one attractor. The
ensemble of configurations leading to an attractor is called the basin of this attractor.

A basin of attraction is made of three types of configurations: garden-of-Eden,
transitory, and attractor states. Garden-of-Eden states cannot be reached by the
dynamics of the systems itself, it can only be set as an initial configuration.
Transitory states are traversed only once. Finally, attractor states are part of the
cycle the system goes through once it has relaxed to stability.

Figure 5 shows the possible time-evolution of an example of RBN of size N D 4

and K D 3. This system has therefore 24 D 16 possible configurations. In this
example, we do not specify the Boolean functions, but instead show how the RBN
transitions from any possible state. Garden-of-Eden states are represented in dark
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Fig. 5 State-space of an RBN. An example with N D 4, and all 24 D 16 states of the state-space
belong to the same attractor of length three

gray, transitory states are light gray and double lines identify the attractor states.
In this particular example, the entire state-space belongs to the same basin of
attraction leading to the unique attractor of this specific system. One can assume
that if the Boolean function were different, the entire state-space transitions would
be completely different as well.

RBN systems evolve dynamically over time in either the ordered regime or
ordered phase or the chaotic regime/phase. The regime in which the RBN has
been set can be identified according to the proportion of nodes that are actively
participating in an attractor by flipping their states “often.” In other words, assume
that we can define two categories for the nodes of a system in an attractor: frozen
and twinkling [19]. Frozen nodes are those whose state remains unchanged for a
long time, say fifty time-steps. On the contrary, twinkling ones change their state
frequently. In the ordered regime, the proportion of frozen nodes grows linearly
with the network’s size N , and a vast majority of the nodes are frozen. In the chaotic
regime a majority remain twinkling. Finally at the critical regime, or so-called edge-
of-chaos, the number of twinkling and frozen nodes is comparable. Another critical
feature distinguishing the ordered form the chaotic regime is that in the first one, the
length of the attractors scales as a linear or superlinear [18] function with the size
of the network, whereas in the chaotic regime, it grows exponentially.

In Kauffman’s original RBN systems, the edge between order and chaos is
achieved when K D 2 and the bias p D 0:5. Kauffman speculates that living
organisms operate at this critical regime, at the edge between the ordered and the
chaotic phase. This condition helps organisms to achieve a trade-off between the
stability of order and the robustness of chaos.
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5 Extension of Random Boolean Networks

With the considerable advances in molecular biology that we have witnessed within
recent years, some aspects of the original RBN have been questioned. For each of
these aspects, one or more new models, or adaptations of the RBN model, have been
proposed. Without discussing the Boolean state of expression, for which continuous
models have been mentioned at the beginning of this chapter, in the following
subsections, we mention a few.

5.1 The Topological Structure

As more and more details are unveiled about GRNs, the certitude is that their
structure is not that of a random graph. Recent findings hint to a network topology
with asymmetrical input and output degree distributions. Indeed, Aldana proposes
an RBN model with scale-free topologies, that is, with a power-law output degree
distribution and a Poisson or normal input degree distribution [16, 20]. This new
model shows singular robustness that can directly be attributed to the topological
properties of the underlying network [21].

In this work we focus on the structural and dynamical aspects of Boolean
models for GRNs. Indeed, we propose the use of generalized Boolean networks,
a broadening of the random Boolean model, where the topology does not have to
be based on a random graph. Instead, we apply the concepts coined by Aldana and
generate networks of the scale-free type as substrate for our Boolean models. These
scale-free Boolean networks (SFBNs) have a long-tailed power-law output degree
distribution and a Poisson-like input degree distribution, close to that of random
graphs. These topologies are believed to be much closer to biological reality, where
a handful of genes (i.e., hubs) produce proteins that regulate a large number of genes,
and most of the genes only have an extremely limited regulating effect (i.e., leaves).
Nevertheless, in order for a network to be scale-free, its degree distribution ought
to cover several orders of magnitude, and Aldana’s original ones were limited to a
maximum of 19 genes. In our case, we build SFBNs with a maximum of 200 genes.
Although still rather small, networks of this size approach power law behavior in
RBNs but it is already very demanding in computational resources. Therefore, we
had to resort to statistical sampling. In [22], we have studied the possibility of using
sub-networks of GRNs of biological organisms. We faced several challenges when
selecting candidate GRNs. The portions we needed had to be as self-standing as
possible, with minimal external output, and the confidence in the gene interaction
and their kind had to be acceptable. We finally opted for two portions of GRN, one
of the yeast cell-cycle and one of the mouse embryonic stem cells (see Fig. 3). The
straightforward use of these networks is to replace the nodes by Boolean models
of gene expression values, and use them as Boolean model. Although using real-
life biological GRN structures overcomes in a new way the topological flaw of the
original RBN model, it raises a new problem. Until now, the critical regime was
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achieved by tuning the gene expression probability p in the Boolean function, the
network average degree, or the power-law exponent. These latter parameters are now
fixed, and as consequence we have to tune the parameter p in order to guarantee the
correct critical behavior. Thus, we can rephrase the problem into an optimization
one, by changing p and minimizing a distance (that we call criticality distance)
between the dynamical regime of our system (measured empirically by means of the
so-called Derrida plot [30]) and the critical behavior itself. This procedure allowed
us to tune the p value so that our systems operate indeed in the critical regime.

5.2 The Synchronicity

When considering biological phenomena, the synchronicity of the events taking
place in organisms is a questionable assumption. Nevertheless, it was an under-
standable simplification of Kauffman’s original model. More recently, asynchronous
models have been proposed and display dynamical behaviors that are in agreement
with previous results, yet more biologically interesting [23, 24].

As a second improvement we have fitted the model with is a more biologically
plausible timing of events. Indeed, as argued in the previous chapter, the full
synchronicity is clearly a biological improbability. Thanks to microarray experiment
data, biologists believe that the activation of a gene induces a change of activation
status in a subset of genes, and so on. Therefore, the regulating effect of genes
could tend to impact regions of the genetic regulatory network, instead of the whole
system simultaneously. This can be seen as a cascading effect, and therefore we
introduce a novel update timing we call Activated Cascade Update (ACU). This
update scheme is explained in detail in [25], and mimics the phenomenon witnessed
in real-life. The dynamical behavior and robustness of Boolean networks with both
random and scale-free topologies using ACU are compared to those of synchronous
classical RBNs and SFBNs. We run extensive simulations and thoroughly study all
different scenarios. Results detailed in the article support the relevance of our new,
more biologically relevant model.

5.3 The Instantaneity

In real-life, gene activation time is in the order of seconds or minutes, protein decay
time is between minutes and hours, and those time are dependent on the gene or
protein in question. Approximating those times to instantaneous happenings is a
gross oversight of biological reality. On the other hand, in order for time delays
to actually be an asset to the model, a deeper understanding of the biochemical
properties of genes, proteins, and mRNA is crucial, and we only now begin to
have access to these data. Several models account for the time it takes biochemical
reactions to occur, notably by taking an arbitrary chosen number of time-steps to
refresh a gene’s expression state [17].
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5.4 The Random Boolean Update Function

Although the exact combined effect of the proteins and/or mRNA is still unclear,
and thus the actual Boolean update function is unknown, it is safe to assume that
these functions are not random. We already have mentioned stochastic networks as
an alternative. Another interesting scheme was suggested that takes into account the
actual promoting or repressing effect of genes known today, and combining them in
an additive way [26].

We worked on closing another gap of Kauffman’s original model by proposing
an alternative Boolean function that is closer to current biological knowledge. From
the literature and our collaboration with biologists, we were able to leverage the
extra information in the studied GRNs presented above. Indeed, the yeast and stem
cell partial GRNs we used not only provided us with the existence of gene on
gene influence, but also their kind: promoting or repressing. We propose a Boolean
function that adds the combined effect of the genes and uses a threshold T value
for gene activation or deactivation, the Activator Driven Additive (ADA) function
detailed in [22]. In every case we were able to determine a T value that makes our
systems critical. Results analyzed in the article are very encouraging, both in terms
of the kind of attractors found, that agree with our expectations according to the
regime, and in terms of robustness, which has not suffered from the biological input
to the model.

Finally, we use a third GRN sub-networks, this one from plant biology, where
the actual function of each gene model in the network has been established. This
new case study clearly shows it operates in the critical regime. We use this more
complete case study to validate our ADA model. The results are excellent, and prove
that in this particular case, ADA functions are much closer to real-life than random
Boolean function with an overlap of approximately 92 %.

The three genetic regulatory networks we use in this article are parts, or sub-
networks, of biological organisms. These sub-networks are composed of genes that
have been identified as playing a key role in a specific process within the entire
organism: pluripotency in the case of mouse embryonic stem cells, cell-cycle in
yeast, and finally plant guard cell abscisic acid (ABA) signaling. The systems
studied suffer some obvious limitations, mainly that none of the networks is actually
completely self-sufficient, thus some degree of interaction with the rest of the
organism has been omitted. We believe the methodologies can be generalized to
bigger/different systems. We are however aware that the results are limited to the
studied organisms, under the strict conditions specified in this work, and do not
reflect the complexity of “real-life” in every aspects.

6 Biologically Inspired Faults

Living organisms are robust to a great variety of genetic changes, and since RBNs
are simple models of the dynamics of biological interactions, it is interesting and
legitimate to ask questions about their fault tolerance aspects.
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Kauffman defines one type of perturbation to RBNs as “gene damage” [19], that
is the transient reversal of a single gene in the network. These temporary changes
in the expression of a gene are extremely common in the normal development of
an organism. The effect of a single hormone can transiently modify the activity
of a gene, resulting in a growing cascade of alterations in the expression of genes
influencing each other. This is believed to be at the origin of the cell differentiation
process and guides the development.

The effect of a damaged gene can be measured by the size of the avalanche
resulting from that single gene changing its behavior from active to inactive or vice
versa. The size of an avalanche is defined as the number of genes that have changed
their own behavior at least once after the perturbation happened. Naturally, this
change of behavior is compared to an unperturbed version of the system that would
be running in parallel. The size of the avalanche is directly related to the regime
in which the RBN is; in the ordered regime, the cascades tend to be significantly
smaller than in the chaotic regime. In real cells, where the regime is believed to lie
on the edge of chaos, the cascades tend to be small too. Moreover, the distribution
of the avalanche sizes in the ordered regime follows a power law curve [19], with
many small and few large avalanches. In the chaotic regime, in addition to the power
law distribution, 30–50 % of all avalanches are huge. The distribution of avalanches
size of RBNs in the ordered regime roughly fits the expectations of biologists, where
most of the genes, if perturbed, are only capable of initiating a very small avalanche,
if any. Fewer genes could cause bigger cascades, and only a handful can unleash
massive ones.

Another measurement of the effect of transient gene reversal is to compare the
change in the configuration of the RBN between two consecutive time-steps on
an unperturbed system and on one where a single gene has been perturbed. The
difference between two consecutive states st and stC1 of the system is measured in
terms of Hamming distance, that is the number of genes that have changed their
expression between st and stC1, normalized over the network size.

Naturally, one can imagine more sophisticated failure schemes on models of
genetic regulatory networks such as RBNs. These failures are usually inspired by
scientific experiments conducted on biological organisms. For example, the gene
knockout experiment measures the expression level of all genes, in cells which
a knockout gene and in normal cells, using cDNA microarray data. Serra and
coauthors [27, 28] used this type of failure on RBNs to predict the size of real
avalanches on microarray data. They showed that a very simple model with few
inputs and random topologies can approximate the distribution of perturbation in
gene expression levels with respect to microarray data. Moreover, they present a
theoretical study showing that this simple model is actually valid in a particular
type of network topologies.

Another notable perturbation inspired by real biological regulatory networks
applied to RBNs is the gene duplication phenomenon suggested by Aldana
and coauthors [29]. They study the robustness of genetic regulatory networks
using RBNs and explore their behavior when exposed to nature-inspired genetic
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perturbations: gene duplications. They show that an intrinsic property of such
networks is to tend to preserve and multiply previous phenotypes, encoded in the
attractor state-space of the network.

7 Discussion, Conclusions, and Future Work

Although a long way from a fully functional model of GRNs, we are moving
closer to one by aggregating modern findings obtained with recent high throughput
techniques. These refinements to the original RBN model by Kauffman and the
subsequent ones by Aldana help us understand some key details of the complex
interactions that are taking place between the different components and the role that
the topological structure plays in the dynamics. In this chapter, we have made some
progress towards an understanding of what structural and dynamical properties
make GRNs highly stable and adaptable to mutation, yet resistant to perturbation.

This work suggests one structural property, namely the scale-free output distri-
bution, and a dynamical one, the semi-synchronous updating, to try to improve the
standard RBN model and to account in an abstract way for recent findings in system-
level biology. We have used computer simulations to reflect the impact of these
changes on original RBN models. Results are encouraging, as our SFBNs model
shows comparable or better performance than the original one with more attractors
and smaller avalanches. This leads us to believe that the models are pointing in
the right direction. Nevertheless, from the results of this analysis, we also see
that neither model is the absolute optimum in this problem. Indeed, if we focus
on the attractors’ characteristics, the prominent effect is that of the update, with
ACU combined with original RBNs achieving the best results in finding the most
attractors with a biologically relevant cycle length. On the other hand, when
considering maximizing the fault tolerance, we witness the highest resilience with
SFBNs under synchronous update, that achieve the highest rate of re-converging to
the same attractor as observed originally. This demonstrates that no combination is
optimal on all problems and that compromise is necessary if we are looking to build
a model that will perform well in a realistic situation.

In the future, we intend to expand the range of analysis conducted on perturbed
systems, in the hope of shedding some light on GRNs. Also, we would like to
explore different degree distribution types and combinations, including the use of
some actual GRNs as high-throughput molecular genetics methods make real-life
data available like never before.

Taking into account recent years’ advances in the field of cellular biology, we
have proposed to identify under what conditions Kauffman’s hypothesis that living
organism cells operate in a region bordering order and chaos holds. This property
confers to organisms both the stability to resist transcriptional errors and external
disruptions, and, at the same time, the flexibility necessary to evolution. We studied
two particular cases of genetic regulatory networks found in literature in terms
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of complex dynamical systems derived from the original RBN model. Therefore,
we compared the behavior of these systems under the original update function
and a novel additive function that we believe is closer to the actual role of living
organisms.

The proposed functions, here called Activator Driven Additive (ADA), corre-
spond to a subset of all possible Boolean functions of the original Random Boolean
Network model. Moreover, using this set of update rules, the synchronous timing
of the events coincides with the semi-synchronous topology driven update scheme
we recently investigated. This update sequence is neither fully synchronous nor
asynchronous, but rather takes into account the order in which genes affect each
other.

In order to investigate the dynamical behaviors of this new model, we visualized
the phase transition between order and chaos into the critical regime using Derrida
plots. We also proposed a new measure, the criticality distance, that allows to
numerically discriminate between different regimes by capturing the visual-only
method implemented by Derrida plots.

Simulation results on two real-life genetic regulatory networks, the yeast cell-
cycle and the mouse embryonic stem cell, show that there exist parameter settings
in both update functions that allow the systems to operate in the critical region,
and that these values are comparable in the two case studies. Both Derrida plots
and criticality distances agree on the numerical values of the parameter for which
the transition into the critical regime takes place. To better understand real-life
regulatory networks, it is not enough to qualify their regime. The state-space of
the two real-life GRNs is portrayed using RBN-specific statistical measurements,
confirming that the two systems operate at the edge of chaos. Moreover, in the
critical regime, we show that ADA systems exhibit superior tolerance to transient
perturbations than classical RBNs.

In order to validate ADA update functions, we used another biochemical
regulation network operating near the critical regime (as confirmed by Derrida
plot). For each node of this network, in addition to their connections, the authors
defined the Boolean function that decides the state of each component at the next
time-step. This new information can help us to assess the validity of the ADA update
function. These results show that in this particular case, ADA is significantly closer
to the real-life function than a random function. This also comforts us that, at least
in some cases, the ADA function ought to be closer to the real-life update function
of a regulatory network system.

A first improvement to the model could consist of the use of different threshold
values for each node. Further investigations of the model should include in particular
the use of weighted influences of the activator or repressor effects of a gene on
another. This could be implemented by giving to each link of the network model a
specific weight. The resulting nodes’ ADA update functions could drive the model
toward more realistic patterns of gene regulation dynamics. Finally, this new model
should be validated on larger gene regulatory networks.
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Attractors Perturbations in Biological
Modelling: Avalanches and Cellular
Differentiation

Marco Villani and Roberto Serra

Abstract We describe here and discuss in detail the model of random Boolean
networks (RBNs). Although these models have been widely studied, they still
present some unexpected mathematical features, and we discuss in particular
their stability properties, introducing and commenting a new measure (attractor
sensitivity) that seems particularly relevant for their application to the dynamics
of gene regulatory networks. We also review some results that show that RBNs
can properly account for data on perturbations induced by gene knock-out in real
organisms. Moreover, we show that this comparison between model and data also
sheds light on the important hypothesis that living beings tend to live in, or close to,
critical states. Last but not least, we show that adding noise to RBNs can lead to a
nice model of cell differentiation.

1 Introduction

Random Boolean networks (RBNs for short) were introduced four decades ago as
models of gene regulatory networks [1, 2] and they became one of the major models
of complex systems due to their interesting dynamical behavior [3–8]. The interest
later faded, but in recent years it has been renewed by important theoretical advances
[9–12] and also, as far as the application to genetics is concerned, by the availability
of genome-wide expression data which can be properly described by RBNs [13–
16] and by the possibility to describe complex phenomena, like cell differentiation
[17–19], and whole organisms or tissues [20–23].

There have been a few attempts to use them as the basis of artificial learning
systems, which met limited success and were soon abandoned [24]. However,
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recently the availability of sophisticated meta-heuristics has allowed to develop
RBNs able to perform nontrivial tasks, like reaching certain dynamical states in
a predefined number of steps and performing the majority classification task [25].

The reasons of this blooming of studies and applications reside on the dynamics
of this kind of object that despite its apparently simple structure (a) can support
several different asymptotic states and (b) exhibits different dynamical regimes. The
combination of these characteristics allows the study of numerous—and not only
biological—systems and processes.

Initially in this chapter we deepen the theme of dynamical regimes measurements
of RBNs: this first part stresses once more the importance of the attractors as the
most significant dynamical features of these systems. The following paragraphs
then will present the consequence of the perturbations of these systems’ asymptotic
states: very interestingly, these studies will lead us to study interesting phenomena
as gene knock-out events (Sect. 4.1), interactions with the environment (Sect. 4.2),
and cellular differentiation (Sect. 4.3).

2 Random Boolean Networks

A classical RBN is a dynamical system composed of N genes, or nodes, which can
take the value either 0 (inactive) or 1 (active). Let xi(t)2 f0,1g be the activation value
of node i at time t, and let X(t)D [x1(t), x2(t), : : : xN(t)] be the vector of activation
values of all the genes. Real genes influence each other through their corresponding
products and through the interaction of these products with other chemicals, by
promoting or inhibiting the activation of target genes. In the corresponding model
network these relationships are lumped in directed links (directed from node A to
node B, if the product of gene A influences the activation of gene B) and Boolean
functions (which model the response of each node to the values of its input nodes),
chosen at random for every node, by assigning to each set of input values the
outcome one with probability � (a parameter commonly known also as “bias”). In a
classical RBN each node has the same number of incoming connections kin, and its
kin input nodes are chosen at random with uniform probability among the remaining
N � 1 nodes. Within the quenched strategy, both the topology and the Boolean
function associated with each node do not change in time. The network dynamics is
discrete and synchronous, so fixed points and cycles are the only possible asymptotic
states in finite networks; typically a single RBN owns more than one attractors.

The model shows two main dynamical regimes: a common observation is that the
average number of attractors and the average cycle length grow as a power law with
the number of nodes N (in the ordered region) or could diverge exponentially (in
the disordered region), mainly depending upon the value of the parameter kin and
the bias �; the dynamically disordered region shows also a significant sensitivity to
different initial conditions, the opposite the ordered one. RBNs temporal evolution
undergoes a second order phase transition between order and disorder, governed
by the following relation between kin and �: kin_cD [2�c(1��c)]�1, where the
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subscript c denotes the critical values [26]. Systems along this critical line show
equilibrium between robustness and adaptiveness [27]; for this reason, they are
supposed to be reasonable models of the living systems organization. Recent results
support the hypothesis that biological genetic regulatory networks operate close to
the critical region (the so-called edge of chaos) [13, 16, 28].

More careful analysis of some known real biological control circuits has shown
that:

1. Boolean functions with a low probability of activation (i.e., a relatively high
number of outputs which are 0) are more frequent than the others [29]

2. In most cases the functions are limited to those which are:

(a) Canalizing, where at least one input has at least one state which suffices to
determine the state of the regulated element [30]

(b) Based on weighted sums of the values of other nodes [29]

It is possible therefore to individuate several groups of RBN ensembles, each one
having different dynamical characteristics. In general, each group is characterized
by a topology T, a predefined set of allowed transition functions F that are
randomly chosen with a given probability distribution p; in such a way we can
therefore consider a family (a statistical ensemble) M of networks with the
same topological features, including the same number of nodes N. In this chapter
(generalizations are straightforward) we will assume that each node has the same
number of incoming links kin, and the origin of these links is chosen at random
with uniform probability among the remaining N � 1 nodes, prohibiting multiple
connections. As previously mentioned, by varying F , p or T is possible to pass
from disordered to ordered dynamical regimes, the critical ones corresponding to
the onset of the percolation on the system of the fraction of non-oscillating nodes.
Different families have therefore different dynamical regimes. Despite its generality,
this description (the usual one) is driven by the RBN’s structural properties and does
not explicitly take into account the system dynamics, introducing in such a way
mistakes and misinterpretations.

3 The Measure of RBN Dynamical Regimes

3.1 Static and Dynamic Estimates

The main static methods to measure the RBN dynamical regimes indeed implicitly
presume ergodicity, that is, all inputs can arise with the same probability during
evolution, and time average over the states visited by the network yields the same
result as average over the whole phase space.

A very interesting measure is the “average sensitivity” of the RBN’s Boolean
functions, proposed by Shmulevich and Kauffman [10] (see more details in the
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following), and used to explain the particular dynamical behavior caused by the
presence of canalizing functions.

The alternative to the static measures is that of explicitly exploring the dynamical
behavior of the system: in particular, an interesting and well-known method exploits
the spreading of perturbations through the network. This measure involves two
parallel runs of the same system, having the initial states different for only a small
fraction of the units. This difference is usually measured by means of the so-called
Hamming distance h(t), defined as the number of units that have different activations
on the two runs at the same time step. If after a transient the two runs are likely
to converge to the same state (the measure is performed on many different initial
condition realizations), i.e. h(t)! 0, then the dynamics of the system is robust with
respect to small perturbations (a signature of the ordered regime). If on the contrary
the difference is likely to never converge, then the dynamics is sensitive to small
perturbations and the corresponding regime is disordered. In other words, a system
is ordered when the Hamming distance is continuously decreasing from one step to
the next one, or mathematically:

� D lim
h.t/!0

dh .tC 1/

dh.t/
< 1 (1)

whereas is critical or disordered if the limit (the � parameter being called “Derrida
parameter”) is equal or greater than 1 [5].

Following this idea, a common practice to measure the dynamical regime of
an RBN is that of randomly generate a great number of pairs of initial conditions
differing each other for one or more units, perform one step, measure the Hamming
distance of the two resulting states, take the averages for each perturbation size, and
compute the limit of the slope of the tangent of the curve as the perturbation size
tends to zero. This is the so-called Derrida procedure [26].

However, the ordinary functioning of most interesting systems happens on
their asymptotic states (the attractors): measures taken on randomly chosen states
therefore do not necessarily allow a correct estimate of the effective system
dynamical behavior. In other words, the ergodicity assumption does not hold for
the dynamics of arbitrary RBNs [31, 32].

3.2 The Attractor Sensitivity

A simple way to avoid this difficulty is that of applying the classical Derrida
procedure (the result being indicated in the following by the acronym DA) only on
the states belonging to the attractors [33]. We can therefore define the sensitivity on
attractor i (SAi) as the result of the Derrida procedure performed only on the states
belonging to the attractor i, and the sensitivity on attractors (SA) as the average
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Fig. 1 The attractor sensitivities of 40 networks, grouped in four sets having different number of
nodes. The sensitivities of each net (visible as vertical columns of marks) can have very different
values, that in turn could be very different from the corresponding DA values

of the SAi, each SAi being weighted on the dimension of its attraction basin.1 In
order to appreciate the differences among DA, SA, and SAi, we can perform these
measures on different statistical ensembles (families).

First, we can use the usual ensemble, by taking into account families composed
by networks with random topology, kinD 2 and all the Boolean functions allowed:
we analyze four sets having different N (four families), ten networks each, plotting
all the SAi belonging to the attractors of each net vs. their classical DA measure.
As you can observe in Fig. 1, the attractors of each net (visible as vertical columns
of marks) can have very different SAi, that in turn could be very different from
the corresponding DA values: these dissimilarities are evident in several networks
of each family, despite their different number of nodes.2 However, one can see
from Fig. 2 that the SA (i.e., the weighted average of the attractors’ sensitivities)
correlates with the DA so that, neglecting transients, the system behaves as an
ergodic one (time averages being close to ensemble averages). Indeed, there is a
clear—although a little bit noisy—proportionality between SA and DA (Fig. 2), and
even more remarkably in each set the averages of DA and of SA are practically
equal3 (Table 1b).

Let us now consider two families of RBNs, indicated in the following with M1

and M2, with kinD 2, in which only a subset of canalizing Boolean functions is
allowed. The interest for these particular families is inspired by a study on random
threshold networks (RTNs), networks in which each node receives the weighted sum

1An attractor basin is the set of states whose evolution lead to the attractor, its size (or dimension)
being the cardinality of the set.
2For example, one of the nets with ND 200 has DAD 1.033 and 24 attractors with SAi that span
from 0.64 to 1.20, with a final SA equal to 0.967.
3In this case all the averages are equal to 1, the ensemble being the first historical example of
critical systems (DAD 1).
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Fig. 2 The SA values of the same nets of Fig. 1. SA correlates with DA so that there is a clear—
although noisy—proportionality between SA and DA

of its input (the weights being ˙1 in the present case); if the sum exceeds a given
threshold, the node acquires the values of “1,” and “0” otherwise.

It is possible to map these dynamical rules on RBN framework, obtaining a set
F of rules for each threshold. In this work we wish to highlight the dynamical
behaviors of the RTNs having homogeneous thresholds hDC0.5 and hD�0.5
(identical for each node in the network), or likewise of the corresponding RBN
families M1 and M2: incidentally, the two sets of Boolean functions identified in
this way are complementary to each other—see Table 1 for the details.

It is interesting to notice that the two families of networks so defined show
different dynamical behaviors. This may appear somewhat surprising, given that
the Boolean functions are complementary in the two cases: while one would
naively expect that two networks with complementary Boolean functions behave
in the same way, this is not the case. The simulations indeed show that the
dynamics is different, and that complementary functions don’t necessarily lead to
complementary evolution. In this case the differences are considerable: the average
number of the attractors of RTNs with kinD 2 and hD 0.5 (M1) is significantly
higher than the average number of networks with same connectivity and hD�0.5
(M2); one also finds considerable differences in length of cycles and number of
frozen nodes [33]. The two families of RBN show therefore very different behaviors
despite the fact that both have the same DA, which for networks of 70 nodes is
found to be 0.74. Hence, the Derrida parameter isn’t able to correctly describe the
dynamics in these particular cases, where there is a remarkable difference between
DA and SA. The attractor sensitivity indeed (in network with ND 70) turns out
to be 0.90 for the M1 family and 0.65 for the M2 family. This difference detects
and makes sense of the different behaviors of the two situations and is a general
characteristic of these families, as we will see in next paragraphs.

An even extreme case, where DA and SA radically diverge, concerns a situation
where the system performs a global computation, based on units that can process
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Table 1 (a) The averages of DA and of SA of the four sets of Figs. 1 and 2, and (b) the Boolean
functions allowed in the M 1 and M 2 families

(a)

N DA SA

50 1.00˙ 0.09 1.0˙ 0.1
100 0.99˙ 0.06 1.00˙ 0.05
150 1.00˙ 0.05 1.01˙ 0.05
200 1.00˙ 0.05 1.01˙ 0.05

(b)

M 1 M 2

A B OR !A&B A&!B FALSE NOR !AorB Aor!B TRUE

1 1 1 0 0 0 0 1 1 1
1 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1
Derrida parameter 0.74 0.74

information only at local level. The RBN in this case has to solve the so-called
density classification problem, which requires that a discrete dynamical system
recognizes whether an initial binary string contains more 0s or more 1s. The problem
is that of designing simple rules, governing the dynamics of each node, in such a way
the system is driven to a uniform state, consisting of all 1s if the initial configuration
contains more 1s and all 0s otherwise [34]. It can be shown that the simple majority
rule applied on random topologies outperforms all human or artificially evolved
rules running on ordered lattice [35, 36], a performance difference that increases
by increasing the number of nodes [35]. The majority rule states that the value of a
node at time tC 1 is 0 (resp. 1) if the majority of its neighbors has value 0 (resp. 1)
at time t.

In this context we studied a family of RBN, evolved to solve this task (see [25]
for the details) with kinD 3 and ND 71 (an odd number of nodes avoiding the cases
with equal quantity of 0s and 1s) [34]. According to the Derrida parameter this
family is chaotic (with a DAD 1.50), but the attractor sensitivity leads to a very
different conclusion: indeed, this measure results lower than 0.001, indicating that
the system is deeply in the ordered region. And indeed the system is very ordered,
having few very short attractors (typically, only two fixed points) with regular basins
of attraction (nearby initial conditions evolve toward the same attractor).

Figure 3 shows the distributions of DP and AS in 200 realizations, revealing the
impressive difference existing in this case between these parameters.

Interestingly, the probability of unit i to spread an incoming perturbation in its
neighbors can be related to the influence of their variables on its function Fi; by
means of this relation, it is possible to relate static and dynamical measures. Indeed
by definition the influence of a jth input variable of a function Fi, Ij(Fi), is the
probability that the function Fi changes its value when the value of the jth variable
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Fig. 3 Histogram of distribution of classical Derrida values and of attractor sensitivity. Two
hundred networks, ND 71

is changed (a concept linked to Boolean derivatives and Lyapunov exponents of
RBNs [37, 38] and to the activity [10]). Strictly connected with the influences of
the variables of function Fi is the sensitivity sfi(x) of the Boolean function itself,
which measures how sensitive the output of the function Fi is to changes in their
inputs: the sensitivity sfi(x) indeed is defined as the number of Hamming neighbors
of x on which the Fi function values are different than on x (two vectors are
Hamming neighbors if they differ in only one component) [10]. Finally, the average
sensitivity of the function Fi, I(Fi) is the expectation value of sfi(x) with respect to
the distribution of x. Under the hypothesis of uniform input distribution, the average
sensitivity of function Fi, I(Fi), is equal to the sum of the influences of all its input
variables (a number that spans from 0 to kin), whereas the average sensitivity of an
ensemble of Boolean functions is the average of the sensitivities of all its functions.
This last average coincides with the Derrida parameter [31].

The dynamics enter into the computation when we calculate the sum of the
influences of the input variables of a function Fi: it is an easy computation under
the ergodicity assumptions (and in this case the result is the classical DA), but it
requires more attention if this hypothesis doesn’t apply.

We can, for example, estimate the SA for M1 and M2 families from time series
(without the need of expensive additional perturbations). We have to compute the
occurrence probability for each input configuration (the dynamical part, where are
involved the time series), which on average depends on the fraction of “1” within
the system (its occurrence probability b) (Table 2), and weight in such a way
the influence of the input variables of each function; finally, it is enough to sum
the influences of the input variables and make the global average of the system
(weighted by the presence of the functions within the system) (Table 3).

Sometimes it is possible to analytically estimate the value of b and therefore
the value of � by using the so-called annealed approximation, a sort of mean field
approximation that holds for annealed networks [26] having an infinite number of
nodes but that nevertheless can give reasonable guesses [32]; please note, however,
that this sort of approach in any case cannot take into account the effects of the finite
number of nodes that sometimes are present, as it is possible to note for the family
M1 on last rows of Table 4.
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Table 2 The table shows the probability of occurrence of each input configuration vs. the “1”
occurrence probability b, and reports a “1” if a change on the first input has as consequence a
change in the corresponding function output

Input Family M1 Family M2

Aa B P(A, B) OR A&!B !A&B F NOR !AorB Aor!B T

0 0 (1� b)2 1 1 0 0 1 1 0 0
0 1 b(1� b) 0 0 1 0 0 0 1 0
1 0 b(1� b) 1 1 0 0 1 1 0 0
1 1 b2 0 0 1 0 0 0 1 0

A Ba OR A&!B !A&B F NOR !AorB Aor!B T

0 0 (1� b)2 1 0 1 0 1 1 1 0
0 1 b(1� b) 1 0 1 0 1 0 1 0
1 0 b(1� b) 0 1 0 0 0 1 0 0
1 1 b2 0 1 0 0 0 1 0 0
aFlipped input

Table 3 The table shows the influence of the input variables, computed by taking into account the
effective occurrence probability of the possible input configurations, and the resultant function
sensitivity; eventually, the critical parameter � is estimated (in each family the four Boolean
functions have the same occurrence probability by construction)

Family M1 (bD 0.08) Family M2 (bD 0.67)

OR A&!B !A&B F NOR !AorB Aor!B T

Influence of A 0.92 0.08 0.92 0 0.33 0.22 0.67 0
Influence of B 0.92 0.92 0.08 0 0.33 0.78 0.33 0
Function sensitivity 1.84 1.00 1.00 0 0.66 1.00 1.00 0
� parameter 0.96 0.67

Table 4 For each family the table shows the theoretical estimate of the critical parameter �

(computed by means of the procedure explained in the text) and the corresponding experimental
value (estimated by effectively performing the Derrida procedure on random initial conditions and
only on the attractor states, respectively, for DA and SA measures)

Family M1 Family M2

Measure N b Theoretical Experimental b Theoretical Experimental

DA 70 0.50 0.75 0.74 0.50 0.75 0.74
SA 70 0.08 0.96 0.90 0.67 0.66 0.64
SA 700 0.05 0.97 0.95 0.66 0.67 0.67
SA 1 0.00 1.00 – 0.67 0.67 –

4 Perturbations on Attractors

RBNs can behave differently in differently portions of the state space: therefore, the
more correct approach to measure the dynamical regime of the system involves
the more common system’s conduct, that is, the system’s asymptotic states (its
attractors). As we have seen on the previous paragraphs each attractor can behave
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differently: so, if we desire to analyze the system responses to perturbations, we
need to act on the attractors states. The next paragraphs will discuss the effects of
three kinds of perturbations made on attractors: permanent (in which one or more
nodes have the activity fixed to “1” or to “0,” irrespective of its Boolean function),
semipermanent (in which one or more nodes have the activity fixed for a long time,
and then its habitual behavior is resumed), and temporary (in which one or more
nodes have the activity fixed to “1” or to “0” for only one time step). Interestingly,
each kind of perturbation corresponds to a real biological situation.

4.1 Gene Knock-Out Experiments

A permanent perturbation event corresponds to a gene (or to a set of genes) which
continuously produces—or stops the production of—its protein: this situation could
have several consequences on the activities of the genes that have this protein among
their drivers, and that can in turn propagate this unusual behavior. In molecular
biology literature there are several examples of these events, and during the last
years these processes are increasingly better documented by means of the use of the
cDNA microarray technology.

A useful and public set of cDNA microarray measurements of gene expression
profiles is analyzed in [39]: it regards 227 single knock-out experiments on
Saccharomyces cerevisiae, where one compares the expression levels of all the
genes, in cells with a knocked-out gene, with those in normal (“wild-type”) cells.
In this way, all the experimental data can be cast in matrix form Eij, iD 1 : : :

6,325 (the number of genes of Saccharomyces), jD 1 : : : 227 (the number of
experiments); Eij is the ratio of the expression of gene i in experiment j to the
expression of gene i in the wild-type cell. Microarray data are noisy; therefore, to
make precise statements about the number of genes perturbed in a given experiment,
we can define a threshold, such that the difference is regarded as “meaningful” if
the ratio is greater than the threshold � or smaller than 1/� and neglected otherwise.
There is arbitrariness in defining this threshold, associated with the transformation
of a continuous set of values into a Boolean one, but several experiences indicate
that a value close to seven is satisfactory [13].

Let Y be the Boolean matrix which can be obtained by E by posing yijD 1 if
Eij > � , or Eij < 1/� ; yijD 0 otherwise (yijD 1 therefore means that the modification
of the expression level of gene i in experiment j is accepted as “meaningful”).
In order to describe the global features of these experiments, we introduced the
notion of avalanche, the size of the perturbation induced by a particular experiment
(in experiment j, VjD†i yij), and of gene susceptibility, the number of times a
particular gene is involved on an avalanche (for gene i, SuiD†j yij) [14]. In such a
way we obtain an avalanche distribution where 45 % of the avalanches have size 1
and the biggest one involves 190 genes, whereas very few genes are involved more
than four times [14].
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Fig. 4 Comparison between (a) avalanche size of S. cerevisiae (with thresholdD 7) and median
avalanche size of ten synthetic networks and (b) between gene susceptibility of S. cerevisiae (with
thresholdD 7) and median gene susceptibility of ten synthetic networks. In order to suppress noise,
both plots show one-cumulative distribution of the variables

We can reproduce in silico the knock-out process: at a certain time point (for
the reason before shown, we use a state of one attractor), the state of one of the
nodes of an RBN with 6,325 nodes is permanently clamped to the value 0. The
evolution of the unperturbed network is compared to that of the perturbed one; a
gene is said to be affected (or perturbed) if its value differs in the two networks
in at least one time step. The avalanche corresponding to a given knock-out is
the set of perturbed genes (including the one which has been knocked-out): in
such a way the size of an avalanche in the model cannot be smaller than 1, nor
larger than the number N of nodes. By repeating this schema for several times
we proved through simulations [14] (and later also theoretically, finding that for
Erdos–Renyi topologies the probability of having an avalanche of size equal to n
is pnDBn�n� 1e� n� [13]) that RBNs with � slightly smaller than 1 can correctly
reproduce the experimental data (Fig. 4).

4.2 Information Exchange with the Environment

Cells continuously exchange matter, energy, and information with the environment
(the other cells being a particular case of “environment,” taking into account,
for example, colonies or multicellular beings). In particular, the most frequent
way to communicate with the environment is that of allowing chemicals to cross
the cellular membrane (a) directly, passively or thanks to the active actions of
specialized proteins or (b) indirectly, the encounter of the signaling molecule with
the membrane enacting an internal chemical reaction cascade whose final target are
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Fig. 5 Consequences of semipermanent perturbation on RBN’s attractors. First row: nets with ten
nodes; second row: nets with 100 nodes. See text for explanations

the genes of the cell. In such a way, for example, cells are able to detect the presence
of particular substances and activate the corresponding metabolic pathways able to
metabolize them. When these substances disappear, cells are able to come back to
the previous pathways [40]. A simple way to simulate these processes by means
of RBN is that of fixing to “1” or to “0” one or more genes (the targets of the
signals coming from outside), till the chemicals are present on the environment, and
allowing the usual genes behavior when the chemicals disappear. In other words,
we can use semipermanent perturbations: let us therefore consider the effects of
semipermanent perturbations on the attractors of the RBN system.

Note that this kind of perturbation actually changes the original RBN (indeed it
can be observed that the perturbed node is now ruled by a different Boolean function,
i.e. true or false): so the attractors of the perturbed network can be different from
those of the original one (apart from the obvious difference concerning the state of
the perturbed node itself).

In order to observe these aspects we analyzed two groups of networks having
ND 10 and ND 100 nodes, each composed by 100 networks. To find the RBN’s
attractors we exhaustively checked all the possible initial conditions for the nets
with ND 10 and performed a random sampling for the nets with ND 100. For the
nets with ND 10 we perturbed all the nodes by starting in all the phases, whereas
for the nets with ND 100 we perturbed the 20 % of the total possibilities; the main
results are shown in Fig. 5.

The graphs in the first row are referring to nets with ND 10 nodes, whereas
graphs in the second row are referring to nets with ND 100 nodes. The first column
shows the susceptibility, defined as the fraction of experiments where the RBN,
initially on the attractor A, when a permanent perturbation is applied, goes to an
attractor A’ not equivalent to A (we define equivalent two attractors that are equal
in all the nodes, with the exception of the perturbed one). The second column
shows that, from all the cases where A’ is not equivalent to A, the largest part
of A’ attractors are not equivalent to any attractor of the original RBN (they are
totally new attractors). The third column refers only to the “new attractors” A’, and
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describe what happens when the perturbation is removed and the system is allowed
to relax toward the attractors of the original not perturbed net. The graph shows how
many times the final attractors B coincide with the original attractors A, and how
many times B differs from A (B¤A). Note that in a limited number of cases (with
ND 100) it was not possible to individuate the attractors because of computational
vincula.

The main considerations we can derive from these simulations are:

1. The susceptibility (as before defined) seems to be almost independent of the net
size

2. The bias toward already known A’ attractors decreases with the net size
3. The perturbed nets can exhibit attractors different from those of the original nets
4. The permanent perturbations have significant consequences also after the pertur-

bation has been removed, when in more than 20 % of the cases the final attractors
B are different from the original ones A

4.3 Cell Differentiation

It is possible to perturb attractors by means of a temporary disturbance, in which for
only one time step one gene doesn’t correctly react to its input (or the same for more
than one genes): if this perturbation acts only once we obtain one step of the Derrida
procedure, but if the perturbation repeatedly appears, we obtain a noisy RBN [47], a
system that corresponds to the real situations better than simply deterministic RBNs
(cells in effect are very noisy systems [41–46]).

The introduction of noise has as its main consequence the fact that the asymptotic
behavior of a noisy RBN is not the single attractor, but is the set of attractors
where the system subjected to noise can pass through the so-called ergodic set [47].
Unfortunately, noisy RBNs have typically only a single ergodic set, losing in such a
way one of their most interesting characteristic, that is, that of supporting several
different asymptotic behaviors with only one regulatory structure. In Kauffman
[1–3] original interpretation, this fact means that RBN cannot represent a model
for cells belonging to multicellular organisms. Our group proposed in a series of
articles [17–19] a way to avoid this difficulty: unexpectedly, this solution allowed
us to describe cellular differentiation, i.e. the process whereby stem cells, which can
develop into different types, become more and more specialized.

The proposal is based on the observation that the transition probabilities among
attractors are not all equal (Fig. 6): if we neglect the transitions having probability
too low to occur during a cell lifetime, we recover the propriety of having different
asymptotic behaviors. The so identified sets are called threshold ergodic sets (briefly
TES� , � being the threshold above which the transitions are neglected). These sets
are robust under noise and “close,” that is, the system once entered on a TES� cannot
leave its state space corresponding area.
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Fig. 6 Attractor transition graph in an RBN. Circles represent attractors; arrows represent
transitions among attractors induced by single spin flips. The numbers on each arrow are the
probability that, by flipping at random the state of a node in an attractor, that transition takes place.
(a) The complete attractor transition graph; (b) the same graph, where links below the threshold
�D0.02 are removed

Fig. 7 TESs and differentiation. As the threshold is increased the single TES0 breaks into smaller
disjoint TESs, corresponding to more differentiated cells, until eventually final cell types are
reached. Examples of stochastic transitions are shown by dotted lines. By acting on particular
genes at each noise reduction event, it is possible to select the particular pathway that links the
TES� A, B and C. Please note that the (semi) permanent perturbations that allow this selection
slightly change the attractors’ patterns

Moreover, if we assume that cells can modify their internal level of noise
(a real situation, see for example, [45]), we can deduce that cells could regulate
its differentiation state by means of noise regulation.

By following this idea, stem cells are noisy systems, wandering through a very
ample portion of the state space (the TES0, the set of attractors forming a strong
connected component that in RBN usually collects a significant fraction of the
possible attractors [18, 19]): by lowering the internal noise level (in the model, by
increasing �), each cell of a population remains blocked in the TES� that contains
the particular attractor where the cell is at the moment of noise reduction. In such a
way we obtain the so-called stochastic differentiation, in which for each lineage
the proportions among the resulting different cellular types are constant (Fig. 7)
[18, 19].
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Interestingly, we found that in approximately one third of critical RBNs a
(semi)permanent fixing of particular genes during the noise reduction event can
drive these transitions and force cells toward particular final destinations (particular
TES� ): in other words, the (repeated) combinations of noise reduction and cells
communication processes can individuate a particular differentiation pathway,
giving birth to the so-called deterministic differentiation (see Fig. 7 for an example)
[18, 19]. We called the nodes able to drive the transitions “switch nodes.”

Differentiation is almost always irreversible, but there are limited exceptions
under the action of appropriate signals [48, 49]: also in the model (but only in a small
fraction of the cases, as in real systems) we can obtain similar effects, by removing
the initial semipermanent perturbation or by fixing the activity of a different switch
gene [18, 19]. In very special cases after an action on a switch gene it was possible
to come back to a pluripotent state (a TES�2 with more attractors with respect to
the starting TES�1 , despite �1 < �2, and similar to the TES� from which TES�1

derived [18, 19], simulating in such a way a famous experiment of Yamanaka on
induced pluripotency [50, 51]) or to directly jump from one differentiated cell type
into another (simulating in such a way experiments as [52]).

With the same theoretical framework it is therefore possible to describe the most
relevant features of the cell differentiation: (1) different degrees of differentiation;
(2) stochastic differentiation; (3) deterministic differentiation in well-defined lin-
eages; (4) limited reversibility; (5) induced pluripotency; and (6) induced change of
cell type. Please note that in doing this we used only critical RBNs: ordered RBNs
have too stable attractors (and therefore negligible transitions among attractors)
whereas in disordered RBNs noise induces continuous transitions inhibiting in such
a way any coherent behavior.

5 Conclusions

In this chapter we introduced the theme of RBN dynamical regimes, and we
stressed the importance of the attractors as the most significant dynamical features
of these systems. By means of theory and examples we noted that RBNs can
support attractors having different dynamical properties: this fact has important
consequences when we want to couple simulations and biological experiments.

An important theme strongly linked with the previous considerations is that of
the dynamics of perturbations on the system: by inducing perturbations on attractors
we were able to study important phenomena as gene knock-out, interactions with
environment and cell differentiation.

Thanks to this theoretical approach and to the comparison between simulations
and experimental results we have been able to give important clues about the
dynamical regimes of living biological cells, and to interpret their information
exchange with the environment. Moreover, the hypothesis about cell differentiation
implies that stem cells should have high level of internal noise, a forecast that could
be verified by using modern technologies ,for example, cDNA microarray.
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The RBN framework therefore is revealing once again a fortunate and formidable
source of scientific interpretation and creativity.
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Automatic Design of Boolean Networks
for Modelling Cell Differentiation

Stefano Benedettini, Andrea Roli, Roberto Serra, and Marco Villani

Abstract A mathematical model based on Random Boolean Networks (RBNs) has
been recently proposed to describe the main features of cell differentiation. The
model captures in a unique framework all the main phenomena involved in cell
differentiation and can be subject to experimental testing. A prominent role in the
model is played by cellular noise, which somehow controls the cell ontogenetic
process from the stem, totipotent state to the mature, completely differentiated one.
Noise is high in stem cells and decreases while the cell undergoes the differentiation
process. A limitation of the current mathematical model is that RBNs, as an
ensemble, are not endowed with the property of showing a smooth relation between
noise level and the differentiation stages of cells. In this work, we show that it is
possible to generate an ensemble of Boolean networks (BNs) that can satisfy such
a requirement, while keeping the other main relevant statistical features of classical
RBNs. This ensemble is designed by means of an optimisation process, in which a
stochastic local search (SLS) optimises an objective function which accounts for the
requirements the network ensemble has to fulfil.

1 Introduction

Cell differentiation is the process whereby stem cells, which can develop into
different types, become more and more specialised. A mathematical model of cell
differentiation has been recently proposed by Serra et al. [1, 2]. The model is an
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abstract one (i.e., it does not refer to a specific organism or cell type) and aims
at reproducing the most relevant features of cell differentiation, which are the
following:

1. there exist different degrees of differentiation that span from totipotent stem cells
to fully differentiated cells;

2. there are both deterministic differentiation, where signals trigger the progress
of multipotent cells into more differentiated types, in well-defined lineages,
and stochastic differentiation, where populations of identical multipotent cells
stochastically generate different cell types;

3. limited reversibility: differentiation is almost always irreversible, but there are
limited exceptions under the action of appropriate signals;

4. induced pluripotency: fully differentiated cells can come back to a pluripotent
state by modifying the expression of some genes;

5. induced change of cell type: modification of the expression of few genes can
directly convert one differentiated cell type into another.

The differentiation model is based on a noisy version of a well-known model
of gene networks, that is, the Random Boolean Network (RBN) model. In spite
of the assumption of discreteness, RBNs have been proven to describe important
experimental facts concerning gene expression [3–5]. The dynamics of “classical”
RBNs is discrete and synchronous, so fixed points and cycles are the only possible
asymptotic states in finite networks; typically, a single RBN owns more than one
attractor. Attractors of RBNs are unstable with respect to noise even at low levels,
e.g., transient flips of randomly chosen nodes. In fact, even if the flips last for a
single time step, one often observes transitions from one attractor to another one.
Ribeiro and Kauffman [6] observed that it is possible to identify in the attractors’
landscape subsets of attractors, which they called Ergodic Sets (ESs), which entrap
the system in the long time limit, so the system continues to jump between attractors
which belong to the set. Unfortunately, it turns out that most noisy RBNs have just
one such set: this observation rules out the possibility to associate them with cell
types. The model proposed by Serra et al. overcomes this problem by observing
that flips are a kind of fairly intense noise, as they amount to silencing an expressed
gene or to express a gene which would otherwise be inactive: this event may happen
with a very low probability in the cell lifetime. It is possible therefore to introduce
a threshold � , and neglect all the transitions whose occurrence probability is lower
than � . In such a way, the notion of ES has to be modified in that of Threshold
Ergodic Set (TES� ), a set of attractors linked only by jumps having a probability
higher than � , that entrap the system in the long time limit. A TES� is therefore a
subset of attractors which are �-reachable1 from each other, directly or indirectly,
and from which no transition can allow escaping. The threshold is related to the
level of noise in the cell, and scales with its reciprocal (the frequency of flips) [1].
Hence, cell types are associated with TESs, which represent coherent stable ways

1Reachable by means of transition whose probability exceeds the threshold � .
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of functioning of the same genome even in the presence of noise. According to this
framework, RBNs can host more than one TES, avoiding in such a way the problem
that hampered the straightforward association of cell types with ES. At high noise
level the system can jump among all the attractors, modelling stem cells while, as
the threshold is increased (i.e., noise is reduced), the cell becomes entrapped in a
smaller TES, that represents a multipotent cell. At very high threshold values all
the attractors are also TES, a condition likely to describe final cell types. Indeed,
there are experimental indications in favour of the key hypothesis that noise in stem
cells is higher than in more differentiated ones. In this model, cell differentiation
is an emerging property originating from the interactions of many genes: its main
features therefore should be shared by a variety of different organisms.

This single model is able to capture all the phenomena encompassed by cell
differentiation and its application to real cell differentiation processes is open
to validations.2 Nevertheless, the model could be ameliorated in some important
aspects. In fact, while for RBNs it is true that the number of TESs increases with
the threshold � , the largest amount of this increase takes place for a very narrow
range of values, necessitating in such a way a very sophisticated control to precisely
tune the correct threshold for the required differentiation level. This paper presents
a way of overcoming this weakness by providing a method for designing Boolean
networks (BNs) such that the range of threshold values over which the number of
TESs varies is as large as possible.

This contribution is structured as follows. Section 2 details the limitation of the
current model and introduces the revision needed to accomplish the proper relation
between number of TES and threshold. In Sect. 3, we illustrate the method we used
for obtaining such BNs. Section 4 describes the experiments we made and present
a statistical analysis of the results. Finally, Sect. 5 summarises the main outcome of
this contribution and outlines future work.

2 Improved Model

The mathematical model previously illustrated can capture all the relevant phe-
nomena of cell differentiation. Precise quantitative analyses can be undertaken
depending on the availability of experimental data, which unfortunately are scarce
and incomplete at the present time. However, the relevance of the model can be
assessed in the context of the so-called ensemble approach [7], which aims at finding
classes of genetic regulatory network models that match statistical features of living
cells. In the case of cell differentiation, the model proposed by Serra et al. succeeds
in describing the way in which a lineage tree is hierarchically organised and can
also explain the other phenomena involved in the differentiation process from the
ensemble approach standpoint. Nevertheless, as already emphasised, it requires

2There are some positive but not yet definitive experimental data.
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a precise control in a very narrow threshold range, resulting in this aspect not
completely satisfactory with respect to biological feasibility. In fact, in the ensemble
of noisy RBNs considered in the model, the number of TESs varies approximately
as a Heaviside step function of � : one or very few TESs can be found for � � �0

and the maximum number of TESs (equal to the number of attractors) is achieved
with � just above �0.3 This behaviour is prone to errors in identifying the correct
differentiation level within the lineage tree, and therefore biologically not plausible.
Therefore, we would like to find an ensemble of BNs such that the main properties
characterising RBNs are preserved and the number of TESs scales smoothly with
the threshold � . This goal can be achieved by applying a recently proposed method,
which consists in converting the BN design problem into an optimisation one and
solve it through stochastic local search (SLS) [8]. This automatic design method has
been proven to successfully solve BN design problems [9–11] and will be detailed,
for the case at hand, in the following section.

3 Methods

The problem of designing a BN or a set of BNs meeting given dynamical require-
ments can be stated as an optimisation problem. In particular, one has to define the
decision variables and the objective function.4 In principle, the optimisation problem
can be solved by any search method; however, SLS has been shown to be very
effective in tackling these kinds of problems and is thus our preferential choice.
For this specific case, we assume that the topology of the network is set initially
according to a random model [12] and kept fixed during search. The decision
variables of the problem manipulate the Boolean functions of the BN nodes: for BNs
with N nodes, each with K inputs, we introduce 2KN Boolean decision variables,
which define the transition functions of network nodes. Therefore, the local search
can explore the space of all possible assignments of Boolean functions to the nodes,
trying to minimise an objective function which estimates the distance between a
current BN instance and the requirements posted.

The local search algorithm employed here is an Iterated Local Search (ILS), a
well-known SLS framework successfully applied to many hard combinatorial opti-
misation problems. An outline of the high-level algorithm is given in Algorithm 1.
In a nutshell, ILS applies a local search to an initial solution until it finds a local
optimum (Line 3); then, it perturbs the solution (Line 5) and it restarts the local
search (Line 6). A user-supplied acceptance criterion selects between the current
best solution, also called incumbent solution, and the one found by the local search

3Of course, the property is typical of the ensemble and isolated exceptions could be found. The
value �0 depends on the specific instance considered.
4We assume that constraints are either implicitly satisfied or that they are relaxed and included in
the objective function.
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Algorithm 1 Iterated local search high-level framework
1: INPUT: A LOCAL SEARCH

2: s generateInitialSolution()
3: s�  localSearch(s)
4: while termination conditions not met do
5: s0  perturbation(sbest )
6: s0

ls  localSearch(s0 )
7: s�  acceptanceCriterion(s� ; s0

ls )
8: end while
9: return s�

(Line 7). This design makes it possible to combine the efficiency of local search
with the capability of escaping from the basins of attraction of local optima. An
overview on the theory and applications of ILS can be found in [8, 13].

Like many metaheuristic frameworks, we must implement problem-specific
choices in order to apply ILS to the problem at hand. Following the successful
design described in [10], we committed to the following choices to instantiate the
ILS framework.

Acceptance criterion: we accept a new solution if it is better than the incumbent
one (extreme intensification).

Perturbation: for each node function, we perform a single random flip in the truth
table. This choice makes ILS not too close to random restart, while keeping the
perturbation computationally fast and easy to implement. As a drawback, we will
see that local search moves can undo the effects of such a perturbation, albeit
unlikely.

A clarification on the perturbation step is needed. In the limit case where the
perturbation performed in Line 5 is independent of the incumbent solution sbest—
for instance, s0 could be randomly generated—ILS would degenerate into a random
restart. Our experiments involve networks with input connectivity K D f2; 3g,
therefore the truth tables have either four or eight elements. With such low figures,
many more flips in the perturbation step would reduce the correlation between the
incumbent solution sbest and the perturbed solution s0 too much, thereby making our
algorithm a “quasi-random” restart.

The last component to be defined is the embedded local search procedure. We
opted for Stochastic Descent (SD), a simple local search in which a neighbour of
the current solution is randomly picked and accepted if it is at least as good as the
current one. The neighbourhood is implicitly defined by the modifications, or moves,
that the current solution may undertake. In our implementation, a move consists in
randomly choosing a node, then flipping a bit—chosen at random—in the truth table
of its function.

As a final algorithmic remark, we can say that, in a sense, our combination of
ILS with SD can be regarded as an iterated version of an adaptive walk in which
restart is not random but performed in such a way that diversification is increased
gradually.
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3.1 Objective Function

The aim of our local search is to find BNs endowed with the two following
properties:

1. the number of TESs should grow smoothly with the threshold � ;
2. attractors should be stable, i.e., the probability of transition a ! a, where a is

an attractor, should be high. This property ensures that we can put into relation
the attractors of the BN with the cell types of completely differentiated cells.
Some attractors may be sensitive to small perturbations, but the majority should
be stable [14].

The objective function closely reflects the requirements mentioned above. In
particular, we opted for a linear relation between the number of TESs and the
threshold � , which is the simplest, yet effective choice. The computation of
the objective function requires first the calculation of the transition graph, i.e.,
a directed graph whose vertices V Dfvi g are attractors and edges (indicated
as eij) represent transitions between attractors. Edges are weighted with transition
probabilities (weights are denoted as wij). The transition graph G .V; E/ is calculated
by the algorithm specified in [2]. The objective function consists of the following
two terms:

Attractor stability: the first contribution to the objective function is given by a
term S calculated as the fraction of vertices in G with a self-loop with weight
greater than or equal to 0:8. We chose this value in order to aim at stable enough
attractors.

S D 1

jV j
X
vi2V

Œwii 	 0:8� : (1)

where ŒP � is the Iverson Bracket and equals to 1 if predicate P is true, 0
otherwise.

Number of TESs as a linear function of � : the second term E (E stands for error
as we see in Eq. (2)) is calculated as follows: let us select a sequence � of n

equally spaced values from interval Œ0; 0:5Œ, i.e., � D 0; 1
2n

; 2
2n

; : : : ; n�1
2n

. Let us
also define the sequence si ; 0 � i � n, as the number of TES�i (TESs with
threshold �i ) in G . This term is defined as:

E D
nX

iD0

ˇ̌̌
ˇ si

sn

� i

n

ˇ̌̌
ˇ : (2)

Objective function: the objective function to be minimised is

.2 � S/E (3)

Let us motivate our choices. The term S directly reflects the requirement
on attractor stability. We should make clear that the resulting networks do not
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necessarily have transition graphs with self-loops of weight 0:8, but they are forced
to have most of the attractors with this property. Contribute E addresses the first
requirement; basically, we ask for a sequence si that is as smooth as possible, i.e.,
we want si to gradually grow to its maximum value sn, the linear growth we are
using in this paper being the simplest option among an ampler set of possibilities.
In Eq. (2) we divide si by sn so that E is not dependent on the number of TESs.
Finally, the two contributes are composed so that S takes the role of a penalty: the
smaller S , the larger the term by which error E is weighted.

The choice of 0:5 as the maximum threshold value of sequence �, although
partly arbitrary, is directly related to the first requirement on the stability of network
attractors. By definition of transition graph, the sum of the weights of the outgoing
edges for each vertex amounts to one. By the first requirement, we seek networks
whose transition graphs have self-loops with high weight: this effectively limits the
range of weights of the remaining edges.5 By this argument, we understand that
it is useless to calculate TESs by setting too high a threshold because, ideally, the
number of TES� s should be maximal for � D 0:2 and then it should stay constant
for threshold values greater than 0:2. Of course, as remarked above, we cannot
guarantee that all transition graphs have self-loops with weight 0:8 or greater, so
we calculate TESs also for threshold values greater than 0:2.

We conclude this section with some remarks on our design choices. The choice
of the specific objective function is being guided by the requirement of obtaining a
smooth grow of the number of TESs as threshold � increases. Since experimental
data concerning the functional relation between number of TESs and � are not
available, we opted for a simple linear model. Hence the function used in Eq. (2).
However, this function can be changed according to specific hypotheses, so as
to have a better fit with given experimental data. Moreover, the choices of some
parameters, for example, the values 0.8 (the self-loop desired weight) or 0.5
(the interval length spanned by sequence �), are partly arbitrary; evaluating the
robustness of our results with respect to variations in these parameters lies beyond
the purpose of the present work and will be the aim of further investigations.

Finally, an algorithmic detail. From a graph theoretical point of view, the number
of TESs can be calculated as follows: first we remove from G all edges with weight
less than � , then we compute the condensation of G [15] and count the vertices with
null out-degree.

4 Results

Typical RBNs are characterised by constant input connectivity K and Boolean
functions chosen at random with on average 2Kp true entries in the truth table,
where p 2 Œ0; 1� is called bias. Depending on the values of K and p the dynamics

5Ideally, the sum of transitions going out of a vertex, except for self-loops, should not be greater
than 0:2.
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of RBNs is ordered or disordered (also called chaotic, with a slight abuse of terms).
In the first case, the majority of nodes in the attractors is frozen; any moderate-size
perturbation is rapidly dampened and the network returns to its original attractor.
Conversely, in disordered dynamics, attractor cycles are very long and the system is
extremely sensitive to small perturbations: slightly different initial states lead to
exponentially diverging trajectories in the state space. RBNs temporal evolution
undergoes a second order phase transition between order and chaos, governed by
the following relation that defines a curve in the bidimensional space of parameters
K and p:

Kc D 1

2pc.1 � pc/
(4)

where the subscript c denotes the critical values [16]. The curve defined by Eq. (4)
separates the ordered from the disordered regime [17]. RBNs whose parameters are
chosen along the critical line are the ones that best match living cell features [5,18].

We tested our algorithm on two test sets, both composed of critical RBNs with
N D 100 nodes and constant in-degree. The first test set consists of 30 critical RBNs
with in-degree K D 2 (whence p D 0:5); the second test set contains 30 critical
RBNs with in-degree K D 3 (whence p 
 0:788). Networks in these two ensem-
bles constitute the initial solutions of our local search and will be collectively
referred to as initial ensemble. Similarly, the set of BNs obtained after running our
local search constitutes our optimised ensemble.

In order to compute our objective function we had to compute the transition
graph. We initialise the algorithm with attractors found after a sample of 1,000 initial
conditions (more attractors may of course be found during algorithm execution
and are recursively considered in the algorithm). We considered only trajectories
with at most 1,500 steps: if an attractor is not found in this number of steps, the
sample is discarded. As for ILS, we set a runtime limit of 3 h per experiment. All
experiments were executed on a desktop PC equipped with a Intel Core 2 Quad
2.83 GHz with 8 GB RAM and running Ubuntu Server 10.04; the implementation
of the SLS algorithm presented in this paper was written in C++ and was compiled
with GCC 4.4.3 with the -O3 optimisation option turned on.

4.1 Analysis of Network Properties

In order to analyse a BN we sampled its state space in 100,000 random initial
conditions, since an exhaustive test would be prohibitive. For each network, we
recorded the number of attractors, their relative basin sizes and their periods. In
addition, we computed the transition graph and the sequence of the number of TESs
(actually, the sequence si as defined in Sect. 3.1).

The first remarkable result is that the number of TESs of the networks designed
through our local search smoothly increases with the threshold. A typical case is
depicted in Fig. 1, where we can observe that the number of TESs increases within
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Fig. 1 Number of TES as a function of the threshold in a random BN (a) and an automatic
designed one (b). (a) is the typical plot that characterises RBNs and displays their undesirable
features, with respect to the cellular differentiation model, as explained at the end of Sect. 1.
(a) A random BN. (b) Automatically designed BN

Fig. 2 Attractor transition graph for an automatically designed BN

a wide threshold range. The transition graph corresponding to this automatically
designed network is drawn in Fig. 2. This property is common to almost all the
networks generated by the search procedure and can be considered as an invariant
of the ensemble.6

6Since the search process is stochastic, we can consider our design method as a biased sampling in
the space of BNs.
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a b

c d

Fig. 3 Attractor stability and transitions for initial and optimised BNs in all test sets. (a) and (b)
depict the distribution of attractor stability across all networks in either test set; the distribution
is constructed by merging all data samples gathered. Data depicted in (c) and (d) characterise the
distribution of edge weights in the transition graph as explained in the text. (a) Attractor stability
(K D 2). (b) Attractor stability (K D 3). (c) Transitions (K D 2). (d) Transitions (K D 3)

a b

Fig. 4 Distributions of the number of attractors (a and b) on initial and optimised networks.
(a) Number of attractors (K D 2). (b) Number of attractors (K D 3)

Statistics on attractors stability, weights in the transition graph, number of
attractors, their relative basin sizes and their periods are summarised by boxplots
in Figs. 3, 4 and 5. Boxplots graphically summarise the main statistics of a
distribution [19]. The values represented are:

– The median (second quartile of the distribution)—line inside the box.
– The lower quartile (first quartile, Q1)—lowermost side of the box.
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a

c d

b

Fig. 5 (a)–(d) summarise the distribution of median attractor period (a and b) and median
normalised basin size (c and d), respectively. (a) Attractor periods (K D 2). (b) Attractor periods
(K D 3). (c) Attractor basins (K D 2). (d) Attractor basins (K D 3)

– The upper quartile (third quartile, Q3)—uppermost side of the box.
– Uppermost and lowermost whiskers are drawn at 1:5� .Q3�Q1/, from the first

and third quartile, respectively.
– Outliers (i.e., values lying far from first and third quartile more than 1:5� .Q3�

Q1/)—open dots.

Each figure depicts the main statistics of a measure on the initial ensemble (left
boxplot) and the optimised ensemble (right boxplot) for all test sets.

Figure 3 shows two measures that try to characterise weights of the transition
graph and thereby statistically demonstrate the effectiveness of our method in
designing BNs with the characteristics stated in Sect. 3.1. The networks’ transition
graphs can be represented by a weight matrix W D .wij/; 0 � wij � 1, where wij

represents the probability of the network to go from attractor i to the basin of
attractor j after a random flip; wij D 0, Àeij. Self-loops weights wii indicate how
insensitive to random flips the attractor i is; in general, we want this probability to
be high.

Figure 3a, b describes the distribution of attractor stability in the initial and
optimised ensembles. Since we have one stability figure for each attractor for each
network, in order to clearly report summaries of our results, we decided to merge
together the data for all networks in each ensemble. Figure 3c, d characterises,
instead, the distribution of the weights of edges eij; i ¤ j , i.e., we disregard self-
loop. For each BN, we collect in a set P all non-zero elements of W outside the
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main diagonal; afterwards, we compute the difference max P �min P . Figure 3c, d
shows the distribution of such differences for the initial and the optimised networks.
It can be observed that attractor stability (Fig. 3a, b) is lower but close to the initial
ensemble (requirement (1) in Sect. 3.1); at the same time, edge weights wij; i ¤ j ,
are more spread out, according to our objective (requirement (2) in Sect. 3.1). We
also remark that, for the reasons explained in Sect. 3.1, the quantity min P is rather
small, so we actually have max P �min P 
 max P .

Figure 4 depicts the distribution of the number of attractors. As a result of the
search process, the number of attractors does not vary in a statistically significant
way, although it seems to grow a bit.

Figure 5 shows basin sizes and attractor periods. Since a network can have more
than one attractor, a single BN is characterised by a set of attractor periods and basin
sizes. To adequately summarise these two statistics, boxplots in Fig. 5 depict the
distribution of the median basin size and attractor period calculated on each BN. We
observe that attractors’ period does not statistically vary, but the distribution of basin
sizes is remarkably different; specifically, the search process tends to shrink basin
sizes. Intuitively, we can say that attractors with small basin sizes are likely to be
less robust than attractors with larger basin sizes simply because the basins of the
latter contain more states. Therefore, one would expect that networks with smaller
basins (a feature typical of optimised networks) are also characterised by unstable
attractors. However, Fig. 3a, b clearly shows that attractor stability is essentially
unchanged. From these data we can conclude that the search process reorganises
the basins of the attractors in such a way as to satisfy our stated requirements: the
basins are therefore “rebalanced” so as to have generally stable attractors. It appears
that, in order to achieve this goal, our local search had to reduce the size of some
of the larger basins. This is the motivation why the median stability in Fig. 3a, b
slightly decreases (about a 0.2 decrease for networks with K D 2 and a decrement
less than 0.1 for networks with K D 3).

5 Conclusion and Future Work

In this paper we have proposed an improvement of a mathematical model for cell
differentiation that makes use of RBNs. An ensemble of BNs that match the dynam-
ical requirements deriving from biological plausibility has been designed by means
of an optimisation process that uses SLS. The BNs generated are characterised by
a more realistic relation between the number of TESs and the threshold, conserving
the other relevant properties of the RBN ensemble. In particular, results show that
in the ensemble generated by the optimisation process the number of TESs grows
smoothly with the threshold and attractors are robust.

Future work will address the extension of the model by introducing in the
optimisation process further features of cell differentiation, such as properties
concerning deterministic and stochastic differentiation. Furthermore, besides the
ensemble approach, we are planning to validate the model against experimental data
collected for specific organisms.
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Towards the Engineering of Chemical
Communication Between Semi-Synthetic
and Natural Cells

Pasquale Stano, Giordano Rampioni, Luisa Damiano, Francesca D’Angelo,
Paolo Carrara, Livia Leoni, and Pier Luigi Luisi

Abstract The recent advancements in semi-synthetic minimal cell (SSMC) tech-
nology pave the way for several interesting scenarios that span from basic scientific
advancements to applications in biotechnology. In this short chapter we discuss the
relevance of establishing chemical communication between synthetic and natural
cells as an important conceptual issue and then discuss it as a new bio/chemical-
information and communication technology. To this aim, the state of the art of
SSMCs technology is shortly reviewed, and a possible experimental approach based
on bacteria quorum sensing mechanisms is proposed and discussed.

1 Chemical Communication as a Bio/Chemical-Information
and Communication Technology

Among the most fascinating novelties introduced by contemporary science, there
is the application of biological paradigm to the development of new technologies.
One of the latter is the bio/chemical information and communication technology
(bio/chem-ICT), which aims at extending the well-known field of ICT, classi-
cally based on the transmission of electrical or electromagnetic signals, to the
bio/chemical world of molecules.

Recently, Suda and collaborators have highlighted the role of molecular com-
munication in ICT. In their recent review [1]—which is a good starting point for
the discussion we would like to undertake in this book chapter—these authors
describe the chemical signaling underlying biological communication and provide
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Fig. 1 (a) Chemical
communication between
natural and synthetic cells;
(b) the Turing-like test for
chemical cells (chells), see
the text; (c) semi-synthetic
minimal cell technology

a rational description of this molecular communication in engineering terms. They
suggest that man-made molecular systems, if endowed with proper interfaces, could
communicate with living biological systems, moreover they discuss the potential
impact of developing a new bio/chem-ICT paradigm on the medical field (drug
targeting/drug delivery).

Bio/chem-ICT is still in its infancy, but we can already outline here one of
the most important goals: the creation of synthetic (artificial) cells that are able
to communicate—via molecular mechanisms—with natural cells (Fig. 1a). In this
scenario, synthetic cells—constructed by assembling separated components (by the
so-called bottom-up approach)—will be used as a kind of intelligent wet-soft robots
capable of communicating with natural cells. The synthetic cells might activate
responses in agreement with the “meaning” they associate to the interactions with
natural cells (the connection of these arguments with the “bio-semiotic” concepts is
a related fascinating facet). As already highlighted by Suda and collaborators, this
goal would represent a way for interfacing synthetic (and possibly programmable)
systems to natural ones.

With these premises, the main questions are: is it possible, according to the
current technology, to imagine a research program aimed at developing a chemical
communication between synthetic and natural cells? What would be its impact in
basic science and ICTs?

In this chapter, we will try to answer these questions by firstly illustrating the
current state of the art in the construction of synthetic cells, and at this aim we
will discuss the most successful approach, called semi-synthetic [2]. Then we will
examine some possible experimental approaches that derive from combining the
semi-synthetic minimal cell (SSMC) technology with the mechanisms of bacterial
communications, and in particular those involved in quorum sensing (QS).

Before turning into technical discussion, however, let us summarize a few
remarks on the conceptual interests toward the communication between synthetic
and natural cells. Note also that another version of this chapter has been recently
published [3].
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2 Life and Communication

2.1 The Autopoietic Perspective

The theory of autopoiesis (self-production), developed in the 1970s by Maturana
and Varela [4], deals with the most classical question of biology: what is life?
The authors developed their theory on the basis of two hypotheses, according
to which: (a) the distinctive property of living systems is its autopoiesis, that
is, the capability of these systems of producing and maintaining their material
identity through an endogenous processes of synthesis and destruction of their own
components; (b) autopoiesis is a global property of living systems, which does not
rely on their physicochemical components taken separately, but on the way these
components are organized within the systems. On this ground, Maturana and Varela
addressed the issue of defining life as the problem of determining what kind of
organization supports the biological behavior of self-production. They provided a
rigorous solution at the level of the minimal cell. This solution consists in the notion
of “autopoietic organization,” which aims at characterizing the “fundamental”
biological organization.

[The autopoietic organization is] ( : : : ) a network of processes of production (transformation
and destruction) of components that produces the components which: (i) through their inter-
actions and transformations continuously regenerate and realize the network of processes
(relations) that produced them; and (ii) constitute ( : : : ) a concrete unity in the space in
which they (the components) exist by specifying the topological domain of its realization
as such a network [5].

This concept is at the basis of the synthetic biology’s interest for autopoiesis, as it
provides three theoretical tools to ground the production of minimal synthetic living
systems able of communicating with natural living systems. Very schematically,
these tools can be described as follows.

First tool: an operational definition of life characterizing a mechanism able to
generate minimal living systems. The notion of autopoietic organization proposes a
“synthetic” or “constructive” definition of living systems, as it characterizes them
not by listing a set of properties, but by specifying a mechanism able to generate
these systems and their dynamics of self-production.

Second tool: a theoretical description of the interaction between autopoietic
systems and their environment. According to Maturana and Varela, the systems
produced by the mechanism of autopoiesis are not trivial objects, which pas-
sively undergo environmental pressures. On the contrary, autopoietic systems can
perceive exogenous variations as local alterations of their internal processes of self-
production and can react to them through an activity of self-regulation, that is a
series of active changes in their elementary processes that compensate external
perturbations [6]. Maturana and Varela interpreted this interactive behavior as
the basic “cognitive” behavior, as, thorough it, the autopoietic systems generate
internal operational meanings for the perceived external variations. These meanings
are expressed in terms of dynamical schemes of self-regulation, which externally
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appears as actions oriented to conservation (e.g., absorbing a molecule of sugar,
overcoming an obstacle : : : ). This idea is at the basis of the autopoietic theory
of the interaction between living systems and their environment, expressed by
the notion of “structural coupling.” According to the latter, the autopoietic unit
and its environment are two systems permanently involved in a dynamics of
reciprocal perturbations and endogenous compensations, in which the autopoietic
system continuously generates and associates exogenous variations with operational
meanings of self-regulation that allows it to perpetuate its process of self-production
in an ever-changing environment.

Third tool: a theory of communication between living systems. On the basis
of the notions of autopoietic organization and structural coupling, Maturana and
Varela [6] proposed a theory of communication between autopoietic systems,
which characterizes it as a dynamics of reciprocal perturbations and compensa-
tions in which each system generates and associates the exogenous perturbations
produced by the other systems with internal operational meaning expressed in
terms of endogenous patterns of self-regulation. This implies the possibility for the
autopoietic systems of reciprocally influencing and, in this sense, coordinating their
respective cognitive activities. They can face environmental variations together,
thorough inter-dependent behaviors of self-production, self-regulation, meaning
generation and production of external actions.

2.2 The Imitation Game: A Turing-Test Like Approach

Cronin et al. [7] proposed a sort of Turing test for chemical cells (chells), as an
analogy with the well-known Turing test for assaying artificial intelligence. The
goal was to devise a conceptual test that could help in the field of artificial cellularity.
The authors aimed to the recognition of life by means of a “cellular imitation game”
setup (Fig. 1b). The imitation becomes perfect when a natural cell as interrogator
cannot distinguish one of its own kinds from a synthetic cell. In their view, the
authors clearly points to the issue of synthetic cell/natural cell recognition and
communication, even if not directly referring to molecular communication.

More recently, Davis and coworker [8] also published an experimental report
on the first attempt to establish a synthetic communication between “chemical
cells” (chells) and natural living cells. This report, to the best of our knowledge,
is the only one on this very new topic. The precursors of the “formose” reaction
were encapsulated within liposomes. The product of these reactions is linear and
branched carbohydrates that resemble some naturally occurring sugars. One class of
products of the intra-liposomal formose reaction escaped from liposomes through
a channel (’-hemolysin), and spontaneously reacted with the borate ions present
in the external medium. The resulting furanosyl boronates are structurally very
similar to a specific class of bacterial signal molecules known as autoinducer-2 (AI-
2), widespread among bacteria for cell–cell communication. Authors demonstrated
that the furanosyl boronates produced by the chells were effective in triggering light
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emission in Vibrio harveyi, a phenotype that in this organism is naturally controlled
by AI-2 signaling. This work demonstrated the feasibility of generating a synthetic
entity able to send a signal to a natural receiver, a breakthrough in the field of
bio/chem-ITC.

3 The Concept and the Technology of SSMCs

3.1 The Concept of Minimal Cells: From Origin of Life
to Synthetic Biology

Although already present in the literature on origin of life [9, 10], the modern
concept of minimal cells was developed in the laboratory of Pier Luigi Luisi at
the ETH Zurich, in the 1990s. Intrigued by the autopoietic theory, Luisi [11] tried to
construct in the laboratory the first autopoietic minimal cells by using firstly reverse
micelles, then normal micelles, and finally vesicles. All these microcompartments
consist in self-assembling structures generally formed by surfactants or lipids. By
chemical producing boundary-forming molecules, it was possible to observe the
autopoietic growth of these microcompartments. A convenient way for establishing
a more complex and recursive autopoietic growth is known as the “semi-synthetic”
approach. It consists in the encapsulation of the minimal number of compounds,
namely DNA, enzymes, ribosomes, and all required macromolecules, inside lipid
vesicles. The corresponding structures are known as “semi-synthetic” minimal
cells because natural compounds are used for their construction. This differs from
the totally “synthetic” approach where not-natural (synthetic) compounds can be
employed, at least in principle [12]. The goal of the semi-synthetic approach is
setting up a minimal genetic/metabolic dynamics inside such compartments. In this
short chapter there is no space to discuss the most intriguing aspects of the minimal
cell construction: when a minimal cell can be defined as “alive”? And what does
“alive” mean? The interested reader can find a deeper discussion of these aspects in
a recent review [2]. These issues are especially important when minimal cells are
intended as model of primitive cells.

Recently, after the advent of synthetic biology, there has been a new flourishing
interest toward minimal cell research [13]. This is due to the fact that minimal cells,
thanks to their minimal complexity, can be built in the laboratory to perform useful
functions, without necessarily being related to the origin of life research. In this
view, minimal cells are not only a tool for understanding the origin of cells, but can
be important tools for diverse applications (as the bio/chem-ICT ones). The last 10
years have been characterized by an intense research activity aimed at understanding
and controlling the construction of SSMCs from separated parts. Most of the work
has been focused on the production of functional proteins inside liposomes, but also
other goals have been achieved. The production of proteins is of special relevance
because it allows the generation of new functions inside liposomes (i.e., synthesis
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of enzymes that catalyze useful reactions). Not many research groups are currently
involved in these studies, but the community is indeed growing (for a review on the
latest achievements, see [14]). In the next paragraphs, we will shortly review what is
the current knowledge on SSMC construction from the viewpoint of two important
aspects: liposome technology and cell-free technology (Fig. 1c).

3.2 Liposome Technology: From Classical Methods
to the “Droplet Transfer” Strategy and Beyond (First
Vesicles from Microfluidic Devices)

SSMCs are based on liposomes. Liposome technology is a rather well-developed
technology that progressed mainly for producing drug-containing liposomes, for
drug-delivery applications. There are plenty of methods for liposome preparation,
but only few of them have been used in the field of SSMCs studies. In particular,
because SSMCs are often intended as models for primitive minimal cells, the prepa-
ration method should also be—if possible—compatible with allegedly prebiotic
conditions.

Two methods have found a widespread application in SSMC studies. The
first one consists in hydrating a previously deposited lipid film with a mixture
of solutes of interest. Following the swelling of lipid bilayers, a population of
liposomes is formed, heterogeneous size and morphology (e.g., unilamellar, or
multilamellar, or multi-vesicular vesicles), witnessing that lipid vesicles form
according to individual kinetic paths. As expected, also the entrapment of solutes
in this heterogeneous population of vesicles is rather heterogeneous and not very
efficient. A typical way for improving the solute encapsulation and homogenize
the liposome suspension consists in repetitive freezing and thawing cycles, possibly
followed by the classical extrusion procedure (a typical example is found in [15]).
The problem of solute entrapment becomes critical when one considers the low
probability of co-entrapping several compounds in the same lipid vesicle. We have
recently investigated this aspect during the studies on the construction of SSMCs
with minimal physical size [16], and the effect of “spontaneous crowding” has been
reported [17]. Another well-known method for liposome preparation that partially
overcome the issue of poor solute entrapment consists in hydrating the ghosts of
previously formed liposomes in form of freeze-dried cake [18]. This method also
produces a population of vesicles with a broad distribution, and it has been studied
in great detail by flow cytometry [19].

Despite the above-mentioned “spontaneous crowding” effect [17], that actually
involves about 1 % of vesicle preparation, it is clear that the film hydration
and freeze-dried cake hydration method lack the control of solute internalization.
They are perfectly suitable when SSMCs are studied as a case of self-organizing
microcompartment, but are less valid when a technology for producing SSMCs
needs to be developed (as for the case of bio/chem-ICT). A new method rapidly
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emerged in the past few years as the method of choice when a complex mixture of
molecules needs to be encapsulated inside liposomes. This method was introduced
by Weitz and coworkers in 2003 [20], and it is currently studied and developed in
almost all laboratories working in this field. The method consists in transferring a
water-in-oil lipid-stabilized droplet, easily filled with the solute of interest, through
a lipid-containing interface. In this way it is possible to produce giant lipid vesicles
(GVs) in a reproducible way with good yield (e.g., 5–10,000 GVs/	L).

The recent advances in microfluidic technology might contribute in the near
future to the SSMCs technology. It is worth noting, in fact, that in the last 4 years
some interesting reports have shown the possibility of producing GVs directly in
microfluidic devices. A short review on these methods is available in [14]—see also
[21]. If this technology will become robust and available for most laboratories, it
is foreseeable that the next generation of SSMCs could derive from microfluidic
controlled assembly—which produces GVs with high reproducibility—rather than
from the spontaneous, heterogeneous (yet interesting) self-assembly that has char-
acterized the research done till now.

3.3 Cell-Free Systems as a Typical Synthetic Biology Toolbox

The second ingredient for constructing SSMCs in the laboratory is a cell-free
system. This is essential because the semi-synthetic approach foresees the assembly
of a cell from separated components and cannot therefore relies on compo-
nents existing in pre-formed cells, as it happens in many other synthetic biology
approaches. The choice of the cell-free system to be entrapped inside liposomes
clearly depends on the function to reconstitute. For example, there have been
studies on RNA synthesis from DNA- or RNA-template, on DNA amplification
via polymerase chain reaction, and, mostly, on the coupled transcription/translation
reaction (from DNA to RNA to protein). The interested reader can find technical
and more detailed information on these systems in the recent review [14].

Here it is important to remark that after its introduction in 2001 [22], the
so-called protein synthesis using recombinant elements (PURE) system is con-
sidered the “standard” cell-free system for constructing SSMCs in the laboratory.
It fits perfectly with the requirement of full-characterized parts/devices/systems in
synthetic biology. The PURE system includes 36 purified enzymes, ribosomes, and
a tRNAs mixture—as well as low molecular weight compounds—for a total of
about 80 macromolecules. It represents the minimal reconstituted system capable
of synthesizing a functional protein, and it is therefore suitable for SSMCs studies.
The PURE system has replaced the use of cell extracts, with unknown composition.
As already highlighted, the production of proteins inside liposomes is a key
intermediate step toward the construction of more complex SSMCs.

The analysis of the literature shows that it is possible to synthesize, inside
liposomes, water-soluble proteins and enzymes like green fluorescent protein, T7
RNA polymerase, ’-hemolysin, Q“-replicase, “-galactosidase, and “-glucuronidase



98 P. Stano et al.

(see [14] for details). In general terms, therefore, it can be said that the synthesis of a
water-soluble protein in its folded conformation in SSMCs should not be considered
a problem (in absence of important post-translation modifications). Different is
the case of membrane associated or integral membrane proteins, where the only
available report [23] focused on two acyltransferases shows how the chemical
composition of the SSMC membrane strongly affects the synthesis, the structure
and the functionality of this kind of proteins.

Interestingly, it has also been reported that ’-hemolysin, when produced inside
liposomes, spontaneously forms pores (i.e., channels) in the membrane. Due to
its specific size, these pores allow small molecules (<3 kDa) to freely enter/exit
the liposome, whereas enzymes, RNAs and DNA remain entrapped inside the
compartment [24]. This implies that SSMCs can release/uptake small molecules
to/from the environment. It should also be remarked that some molecules can freely
diffuse across lipid membranes without the need of a pore.

4 A Research Program on Synthetic Cell/Natural Cell
Communication

Based on the current state of the art of SSMCs technology, can we imagine a
realistic scenario where a chemical communication can be established between
SSMCs and natural cells? The previously reported work of Davis and coworker
[8] demonstrates that this is an achievable goal. However, to go beyond the simple
case of the Davis’ chells and use SSMCs, several aspects must be considered. In
order to understand how communicating SSMCs must be designed, it is useful to
make a short survey on the way natural cells communicate. At this aim we believe
that bacterial communication should be taken as a paradigmatic example and model
to start this enterprise.

4.1 Bacterial Communication and Quorum Sensing

Bacteria live preferably as communities. The discovery of bacterial communica-
tion via chemical signaling has been one of the most exciting breakthroughs in
microbiology. Thanks to chemical communication, bacteria understand the structure
of their population and often respond with cooperative behavior, reaching—as a
community—goals that are impossible for each single individual [25, 26].

The most representative example of bacterial communication is quorum sensing
(QS), a cell–cell signaling system that allows a coordinate reprogramming of gene
expression in response to cell density. QS takes its name from the fact that a
response is achieved when a signal compound reaches a certain concentration
threshold (corresponding to a certain bacterial cell density, the “quorum”) [27].
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Bacteria use a very large variety of biochemicals to communicate. This means that
bacterial communities, often consisting of different species, communicate thanks to
the specificity of the signal production and signal reception pathways.

Among the most well-known types of QS mechanisms, it is known that
gram-negative and gram-positive bacteria usually rely on acylated homoserine
lactones (AHLs) and small peptides, respectively, as signal molecules. A third
class of QS signals, produced by both gram-negative and gram-positive bacteria, is
known as autoinducer-2 (AI-2). Can we exploit the simplest of these communication
mechanisms to construct SSMCs capable of communicating with bacteria and
produce a QS-like response?

4.2 Towards the Communication Between Synthetic
and Natural Cells

It is clear that—in order to communicate with natural cells—SSMCs must imple-
ment the molecular devices for encoding, sending, receiving, and decoding a
chemical signal.

It stems directly from the analysis of how bacteria communicate that the
molecular communication consists in five distinct operational steps: namely, (1)
encoding a message as a molecule, (2) send/export the molecule, (3) a propaga-
tion/transportation step, (4) receive/import the molecule, (5) decoding the message.
Different physical or (bio)chemical devices can be associated with each step,
depending on the kind of communication implemented by living cells. According
to the synthetic biology terminology, we might call the biochemical machineries
required to accomplish these steps as “devices.” Note, however, that not all the
operational steps described above need to be associated with a dedicated device. For
instance, signal molecule import can occur by passive diffusion into the receiving
cell, and only for some signal molecules a dedicated membrane receptor is required.
In a similar way, some signal molecules freely diffuse outside the membrane of the
producing bacteria, while others require an export apparatus.

In order to design and construct a minimal set of devices for SSMCs/natural cell
communication (and, in a perspective, for the communication between SSMCs),
it is useful to shortly review the main communication machineries involved in
bacterial QS. Figure 2a, b summarizes in a very schematic way these mechanisms,
considering the above-mentioned steps (from 1 to 5).

A first and relatively simple case is the communication based on AHLs. These
molecules are produced from appropriate precursors (“Ps” in the Fig. 2a), which are
S-adenosyl methionine and an acyl-carrier protein. These precursors are processed
by a LuxI- or LuxM-type synthases to give the signal molecule (AHL). Thanks to
their chemical structure, AHLs (especially those having short acyl chains) can freely
diffuse across the membrane of the producing cell (the sender) and propagate in the
medium, reaching another cell (the receiver). AHLs can freely permeate into the
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Fig. 2 Schematic representation of the communication mechanisms based on acylated homoserine
lactones (AHLs) (a), and peptides or AI-2 (b); see details in the text. Possible experimental
approaches (not yet realized) for the construction of semi-synthetic minimal cells that send (c)
or receive (d) chemical signals from living cells (in this case, bacteria). See explanation in the text.
In panels (c, d), the SSMCs are represented in gray

cytoplasm of the receiving cell and bind to an intracellular receptor (a LuxR-type
protein). The AHLs/receptor complex binds to the promoter region of target genes,
activating their expression [28].

Figure 2b illustrates the mechanisms for peptides- and AI-2-based communica-
tion. Nonfunctional pro-peptides are synthesized via ribosomal synthesis. In order
to leave the sender cell, pro-peptides need a membrane-associated export protein,
which also processes the pro-peptides to short functional linear or cyclic signal
peptides. After the propagation, the signal peptides reach the surface of the receiver
cell, where they bind to trans-membrane receptors. In many cases, the binding of
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the signal induces auto-phosphorylation of the cytosolic portion of the receptor and
consequent transfer of the phosphate group to a cytosolic transcriptional regulator,
that in this activate form triggers a transcriptional response [28]. A similar mecha-
nism holds also for AI-2-based communication. In this case the signal molecule is
produced by the spontaneous cyclization of 4,5-dihydroxy-2,3-pentadione, which
is synthesized from S-ribosyl-L-homocysteine by a LuxS-type enzyme. AI-2 is
detected by the receiver cell via a trans-membrane receptor and the information
transduced to the cytoplasm through a phosphorylation cascade, similarly to the
peptides-based communication mechanism described above [28].

It is evident that the design of molecular communication between natural
and synthetic cells should be designed, as first approach, in the simplest way.
In particular, by comparing the mechanisms represented in Fig. 2, it is evident that
the communication devices needed for AHLs-based systems are much simpler than
the others (based on peptides and AI-2). Indeed, AHLs are produced by a single
enzyme, they can freely diffuse outside the sending cell, are stable in the aqueous
environment, can freely diffuse inside the receiver, and their decoding device is quite
simple (intracellular receptor/regulator).

It is possible to conceive uni- or bi-directional communicating systems between
SSMCs and natural cells. For example, “sending” SSMCs, or “receiving” SSMCs
can be constructed, by inserting the appropriate molecular device for producing a
signal molecule, or for its decoding, respectively. Bi-directional communications
can also be implemented by endowing the SSMCs of both sending and receiving
devices.

Figure 2c shows the blueprint for constructing SSMCs sending a chemical signal
in form of a short-chain AHL. In this case the key function to be developed is the
synthesis of AHL. This could be possible by co-entrapping inside a lipid vesicle,
together with a transcription/translation machinery (i.e., the PURE system, or cell
extracts), a gene encoding for a synthase of the LuxI or LuxM family. The direct
precursor(s) of the signal molecule (S-adenosin-methionine and an appropriate
acyl-CoA—instead of an acyl-carrier protein) could also be encapsulated inside
liposomes together with all other compounds. These precursors are expected to be
processed by the in situ produced synthase to give an AHL. Being freely diffusible,
this signal molecule would reach the receiver cells, which are bacteria. These
bacteria should be engineered in order to produce a reporter protein (e.g., GFP) only
when the exogenous signal AHL, produced by the SSMCs, binds to their internal
receptors.

Figure 2d shows the opposite case: SSMCs that decode a signal sent by bacteria.
At this aim, short-chain AHLs are again good candidates as signal molecules. Here,
together with a transcription/translation machinery, it should be introduced inside
lipid vesicles the DNA encoding for a LuxR-type signal receptor and a reporter
gene expressed under the control of this receptor (for instance, a gfp gene). The
AHL produced by the bacteria are expected to freely cross the lipid membrane of
SSMC and bind to the receptor. Once “activated” by AHL binding, the receptor
would activate the expression of the reporter gene (gfp). In order to function in this



102 P. Stano et al.

way, however, the presence of bacterial RNA polymerase is mandatory (note that
the PURE system and most cell extracts contain the viral T7 RNA polymerase).

Bi-directional systems can also be engineered, in principle, by complementing
the sending device with the receiving one (not shown), but it is clear that this should
be considered a goal that comes after being capable of constructing and controlling
each individual uni-directional systems. Possible interferences (cross-talks) between
these devices should also be considered and solved.

In order to extend our possible approach based on AHL to other molecules, like
the peptides and the furanones, two main obstacles must be overcome. The first
one is the limited permeability of these compounds through the lipid membrane of
SSMCs. We have seen that in living cells the secretion of these molecules requires
a specific membrane-associated protein. The synthesis of membrane enzymes or
transporters inside liposomes has been demonstrated only for two acyltransferases
[23] and cannot be considered an easy task. This is due to the complex mechanism
of correct membrane insertion and folding of a membrane protein—a process often
helped in vivo by other specialized proteins. On the other hand, it is possible to
modify the membrane integrity (and therefore enhance the solute permeability)
in several ways. One of the most interesting one consists in the reconstruction of
membrane pores. For example, it has been shown that ’-hemolysin spontaneously
form pores (cutoff: 3 kDa) when it is added to liposomes, or synthesized from
within [24]. Thanks to the ’-hemolysin, small molecules can move across the
liposome membrane following their concentration gradient. Clearly, this “shortcut”
for exporting a molecule of interest does not solve the issue of post-synthetic
processing (needed when peptides are used as signal molecules).

The second obstacle is even more sophisticated and complex to solve, the
decoding of peptide/AI-2 signals requiring trans-membrane molecular devices able
to transduce the binding of the signal molecule to the receptor into a phosphorylation
cascade process. These have not been reconstituted yet in liposomes and certainly
represent a challenge for future research.

5 Conclusions and Perspectives

The development of chemical communication between synthetic and natural cells
represents one of the next goals of SSMCs research, clearly oriented toward the
application of SSMCs in synthetic biology and bio/chem-ICT. As emphasized by
Suda and coworkers [1], a technology that can be interfaced with biological systems
allows the establishment of a direct communication with cells—in their chemical
language—and therefore paves the way to several perspectives for advanced
applications, for example biomedical ones.

In this respect, it is interesting to cite here the vision provided by Leduc et al.
[29], who proposed the concept of “pseudo-cell factories” or “nanofactories.” These
are liposome-based systems (actually a kind of SSMCs) designed for medical
applications, namely for being administered to the human body with the aim of
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targeting toward a specific tissue (by means of surface-bound antibodies, like in
“immunoliposomes”). Arrived on their target site, nanofactories would be able
to sense their microenvironment (input) and consequently to trigger an internal
genetic/metabolic network that might produce a drug or any other chemical with
biological effect (output). In other words, Leduc et al. implicitly gave to their
nanofactories the capacity of communicating with natural cells. This is indeed the
essence of the bio/chem-ICT vision we presented in this chapter. In more general
terms, and in a future perspective, SSMCs, thanks to their modular construction,
might host programmable regulatory genetic networks in order to respond to
different signals. Remarkably, this is also a form of computing.
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Abstract Building artificial agents able to autonomously learn new skills and
to easily adapt in different and complex environments is an important goal for
robotics and machine learning. We propose that providing reinforcement learning
artificial agents with a learning signal that resembles the characteristic of the phasic
activations of dopaminergic neurons would be an advancement in the development
of more autonomous and versatile systems. In particular, we suggest that the
particular composition of such a signal, determined by both extrinsic and intrinsic
reinforcements, would be suitable to improve the implementation of cumulative
learning in artificial agents. To validate our hypothesis we performed experiments
with a simulated robotic system that has to learn different skills to obtain extrinsic
rewards. We compare different versions of the system varying the composition of the
learning signal and we show that the only system able to reach high performance in
the task is the one that implements the learning signal suggested by our hypothesis.
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1 Introduction

Building artificial agents able to autonomously form ample repertoires of actions
and to easily adapt in different and complex environments is an important goal for
robotics and machine learning. One of the features that allows agents to achieve
autonomous development and high versatility [1] is cumulative learning, i.e. the
ability to use previously acquired skills to learn new ones and to combine sequences
of actions to interact in different and more complex ways with the environment.
Implementing cumulative learning in artificial agents presents many difficulties: two
of the main and more general problems [2] are (a) the generation of the learning
signal that can drive cumulative learning and (b) the type of architecture that can
support such a process. In this work we focused on problem (a), trying to suggest a
novel way to solve it.

In the computational literature one of the solutions to the problem of cumulative
learning has been to replace task-specific learning signals with new non-task-
specific learning signals inspired by what psychologists have been calling intrinsic
motivations (IMs) [3–5]. IMs were introduced in the 1950s in animal psychology
to explain experimental data (e.g. [6, 7]), incompatible with the classic motiva-
tional theory (e.g. [8]), showing that stimuli not related to (extrinsic) primary
drives present a reinforcing value capable of conditioning instrumental responses
[9–11]. Some authors focused on learning signals determined by the acquisition of
knowledge by the system (e.g. [12–15], while other authors used learning signals
based on what the system is doing, and in particular on the acquisition of new
competences (e.g. [16, 17]). Although with different solutions, the intrinsically
motivated approach influenced many works (for a review, see [18]) focused on the
development of more versatile and autonomous systems able to acquire repertoires
of skills, possibly in a cumulative fashion [19].

Our idea (first presented in a preliminary version in [20]) is that if we want to
solve the problem of which learning signal can be suitable for the implementation
of cumulative learning, a good solution is to look at biological organisms: the
characteristics that we are trying to implement in artificial systems are typical of
biological agents, that are able to cumulatively (and autonomously) learn new skills
and to combine them together to optimise their survival chances. What we suggest
is to look at those data that can explain how these features are developed in biology,
focusing on those signals that can support cumulative learning.

The neuromodulator dopamine (DA) has long been recognized to play a funda-
mental role in motivational control and reinforcement learning processes [21–23].
In particular, phasic DA activations have been related not only to the presentation
of unpredicted rewards [24–27] but also to other phasic, non-reward-related,
unexpected stimuli [28–31]. These data led to the formulation of two main
hypotheses on the functional role of the DA signal. One hypothesis [32, 33] looks
at the similarities of DA activations with the temporal-difference (TD) error of
computational reinforcement learning [34], and suggests that phasic DA represents
a reward prediction error signal with the role of guiding the maximisation of future
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rewards through the selection of the appropriate actions. The second hypothesis
[35, 36] focuses on the activations for unexpected events and states that phasic DA
is a sensory prediction error signal with the function of guiding the discovery and
acquisition of novel actions.

As we pointed out in another work [37], we consider these two hypotheses
both partially true, but at the same time not capable of taking into account all the
empirical evidence on phasic DA activations. What we proposed in that work is
that phasic DA represents a reinforcement prediction error signal analogous to the
computational TD-error, but for a learning system that receives two different kinds
of reinforcements: (1) temporary reinforcements provided by unexpected events and
(2) permanent reinforcements provided by biological rewards. In our hypothesis, the
DA signal has the function of driving both the formation of a repertoire of actions
and the maximisation of biological rewards through the deployment of the acquired
skills. Moreover, we suggest that phasic DA activations determined by unexpected
events may constitute part of the neural substrate of IM: unpredicted events are
intrinsic reinforcers that drive the same reinforcement learning processes as extrinsic
reinforcers.

In this work we propose that providing artificial agents with a learning signal that
resembles the characteristic of the phasic DA signal, determined by both extrinsic
and intrinsic reinforcements, would be an advancement in the development of more
autonomous and versatile systems. Moving from biology to artificial agents, we
can identify extrinsic reinforcements with those determined by the achievement of
the tasks decided by the researchers, whereas intrinsic reinforcements are identified
with those determined by a category of more general events, such as the unexpected
activations of the sensors of the robot, determined by its interactions with the
environment. Similarly to what happens in biological systems [38], we believe
that intrinsic reinforcements can play a key role in determining a proper signal for
the implementation of the cumulative learning of skills and for the acquisition of
complex behaviours that would not be learnt simply with extrinsic reinforcements.

To test our hypothesis, we built a simulated robotic system that has to
autonomously acquire a series of skills in order to maximise its rewards (Sect. 2). We
compare the performance of the system with different compositions of the learning
signal and we show (Sect. 3) that the system implementing our hypothesis is the only
one that is able to learn the task. We then draw the conclusions (Sect. 4) by analysing
the results of the experiments and discussing the implications of our hypothesis.

2 Set-Up

2.1 The Task and the Simulated Robot

The system is a simulated kinematic robot composed of a fixed head with a “mouth”,
a moving eye, and a two-degree-of-freedom kinematic arm with a hand that can
“grasp” objects. The task consists in learning to eat food (i.e., bring a red object
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Fig. 1 Set-up of the experiment: the system composed by a two-dimensional arm and a moving
eye (dotted square with a fovea at the centre). The food and a fixed distractor are positioned on a
table in front of the robot. The task consists in eating the food by bringing it to the mouth. See text
for details

to the mouth) randomly placed on a rectangular table (with dimensions of 4 and 7
units, respectively) set in front of the robot (Fig. 1). In the middle of the table we
add a visual “distractor” of a different colour (blue) that can only be foveated while,
for simplicity, it cannot be touched or grasped: interacting with this second object
does not increase the chance for the system to achieve the final goal.

In real environments the organisms are surrounded by many different objects
with which they can interact in many different ways. However, not every interaction
has the same importance: some actions could turn out to be the basis for more
complex ones, while others may even result useless. Since we want to improve the
versatility of artificial agents, we want to test our hypothesis in an environment that
presents, although much simplified, some of the characteristics of the real world.
For this reason we put a “distractor” that has no relations with the task in order to
provide a set-up where not all the possible interactions with the environment are
related to the main task of the experiment.

Since we are focusing on cumulative learning, there is a dependency between the
skills that the robot can learn: the arm receives as input what the eye sees, so that
learning to systematically look at the food is a prerequisite for learning to reach for
it; at the same time, reaching for the food is necessary for grasping and bringing it
to the mouth.

The sensory system of the robot is composed of: (a) an artificial retina (a square
of 14 units per size; note that this implies that at the beginning of each trial the
whole table is always within the eye image) sensible to the two different colours
of the objects, encoding the position of the hand, of the food (a circle with 0.3
units diameter) and of the distractor (diameter 0.4) with respect to the centre of the



Cumulative Learning Through Intrinsic Reinforcements 111

Fig. 2 The controller formed by two components (arm and eye controllers), the two predictors
of the fovea sensor (for simplicity, in this schema they are presented as a single structure), the
predictor of the touch sensor, and the reinforcement system. ˛ and ˇ are the angles of the two arm
joints; x00 and y00 are the hand positions with respect to the fovea on the x and y axes; 
˛ and 
ˇ

are the variations of angles as determined by the arms actor; Grs is the grasping output; Va is the
evaluation of the critic of the arm; xr0, yr0 and xb0, yb0 are the positions of food and distractor with
respect to the fovea on the x and y axes; 
x and 
y are the displacements of the eye determined
by the actor of the eye; Ve is the evaluation of the critic of the eye; F-RPred and F-BPred are the
predictions of the fovea-predictors; T-Pred is the prediction of the touch-predictor; fr and fb are
the activations of the fovea sensor for the two colours; t is the activation of the touch sensor; Rfr,
Rfb and Rt are the reinforcements related to sensors activations; Ret is the reinforcement provided
by eating the food; R is the total reinforcement. See text for details. Figure modified from [37],
copyright (2013), with permission from Elsevier

visual field; (b) a “fovea”, encoding whether the food or the distractor is perceived
in the centre of the visual field; (c) the proprioception of the arm (composed of two
segments of 4 units), encoding the angles of the two arm joints; (d) a touch sensor
encoding whether the hand is in contact with the food (i.e., if the hand and the object
are overlapping: for simplicity collisions are not simulated). The eye moves along
the x and y axes with a maximum step of 8 units. The two joints of the arm move
within the interval [0, 180] degrees, with a maximum step of 25ı.

2.2 Architecture and Experimental Conditions

As we are proposing to look at biological organisms to improve the implementation
of cumulative learning in artificial agents, we tried to build the architecture of
the system (Fig. 2) following some constraints deriving from the known biology
underlying reinforcement learning in real animals. The controller of the system
reflects the modular organization of the basal-ganglia-thalamo-cortical loops [39],
where the acquisition of new motor skills and the selection of motor commands take
place [40]. We implemented the system as an actor-critic reinforcement learning
architecture based on TD-learning because there is evidence [41] that the dorsal
regions of the basal ganglia reflect the characteristics of this structure and because
this solution has also some appealing theoretical properties from the machine learn-
ing point of view [34,42]. Moreover, the reinforcement learning signal is unique for
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both the sub-controllers because the phasic DA signal is likely to be the same for
all sensory-motor subsystems [43]: this simplifies the computation of the learning
signal and allows to reinforce some actions also if they determine the activations of
sensors not directly connected to the effectors that generated those effects.

As described in Sect. 1, the reinforcement signal is determined by both the
extrinsic rewards provided by eating the food and by the intrinsic reinforcements
provided by the unpredicted activations of the fovea and the touch sensors. To
implement the intrinsic reinforcements, the system includes also three predictors,
two for the fovea sensor (one for each colour of the objects) and one for the touch
sensor. Each predictor is trained to predict the activation of the corresponding sensor
and inhibits the part of the intrinsic reinforcement that depends on the unexpected
activation of that sensor. Hence, the total reinforcement (R) driving TD-learning is:

R D Re CRff CRfd CRt

where Re is the extrinsic reinforcement provided by bringing the food to the mouth
(with a value of 15), while Rff , Rfd and Rt are the intrinsic reinforcements provided
by the unpredicted activations of the fovea sensor caused by the food (Rff ) or by the
“distractor” (Rfd) and the unpredicted activations of the touch sensor (Rt ) caused
by the food. In particular, for a generic sensor S , the reinforcement RS provided by
the activation of S is:

RS D maxŒ0IAS � PS �

where AS is the binary activation {0; 1} of sensor S and PS is the prediction
generated by the predictor of sensor S . In this way we use only the positive
reinforcements generated when the activation of AS is not fully predicted by PS .

To test our hypothesis, we compare the described condition (called intrinsic
condition), with two different conditions, where we vary the composition of the
learning signal. In the extrinsic condition the reinforcement is given only by the
extrinsic reinforcements provided by eating the food (Re). This condition is useful
to test if extrinsic reinforcements by themselves are able to drive the cumulative
learning of skills. In the sub-tasks condition, the additional reinforcements provided
by the activations of the sensors (Rff , Rfd and Rt ) are also “permanent”, in the sense
that they are not modulated by the activity of the predictors and hence do not change
throughout training. With this condition we want to test if the temporary nature of
intrinsic reinforcements is necessary to facilitate learning.

2.3 Input Coding

All the inputs are encoded with population coding [44] through Gaussian radial
basis functions (RBF) [45]:

ai D e
�Pd

�
cd �cid

2�2
d

�2
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where ai is the activation of unit i , cd is the input value on dimension d , cid is
the preferred value of unit i with respect to dimension d , and �2

d is the width of
the Gaussian along dimension d (widths are parametrised so that when the input
is equidistant, along a given dimension, to two contiguous neurons, their activation
is 0.5).

The dimensions of the input to the two “retinas” of the eye controller are the
position of the respective object (in x and y) with respect to the centre of the visual
field and the activation of the touch sensor. We add the status of the touch sensor
because for computational limits the eye is not able to follow the food when it is
moved by the hand: providing this information we can separate the two situations
(object not grasped from object grasped) and prevent the controller of the eye from
losing the ability of looking at the objects. The preferred object positions of input
units are uniformly distributed on a 7�7 grid with ranges Œ�7I 7�, which, multiplied
by the binary activation of the touch sensor, form a total 7 � 7 � 2 grid. In total, the
eye has an input formed by two 7 � 7 � 2 grids, one for each of the two objects.

The dimensions of the input to the arm controller are the angles of the two joints
(˛ and ˇ), the position of the hand (x and y) with respect to the fovea, and the
activation of the touch sensor. The preferred joint angles of input units are uniformly
distributed on two dimensions (7 � 7) ranging in [0; 180] whereas the preferred
positions of the hand with respect to the fovea are uniformly distributed on other
two dimensions (7�7) with ranges Œ�7I 7�. Hence, considering the binary activation
of the touch sensor, the input is formed by a total 7 � 7 � 7 � 7 � 2 grid.

The input units of the eye controller are fully connected to two output units with
sigmoidal activation:

oj D ˚.

MX
i

ai wj i C bj / ˚.x/ D 1

1C e�x

where M is the total number of input units, wj i is the weight of the connection
linking input unit i to output unit j and bj is the bias of output unit j . Each
actual motor command on

j is generated by adding some noise to the activation of
the relative output unit:

on
j D oj C n

where n is a random value uniformly drawn in [�0.02; 0.02]. The resulting
commands (in [0; 1]) are remapped in [�8, 8] and control the displacement of the
eye along the two dimensions.

The arm controller has three output units. Two have sigmoidal activation, as those
of the eye, with noise uniformly distributed in [�0.2; 0.2]. Each resulting motor
command, remapped in [�25; 25] degrees, determines the change of one joint angle.
The third output unit has binary activation {0; 1} and controls the grasping action
(the activation is determined by the sigmoidal activation of the output unit plus
a random noise uniformly drawn in [�0.2; 0.2], with a threshold set to 0.5). The
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activation of the grasping output is slightly punished with a negative reinforcement
of 0.0001 to avoid that the system performs grasping also when it is not on the target.

The evaluation of the critic of each sub-controller k (Vk) is a linear combination
of the weighted sum of the respective input units.

The input units of the predictors of fovea activation are formed by two 35� 35

grids, each one encoding the position of the respective object with respect to the
fovea along one axis and the programmed displacement of the eye along the same
axis. Similarly, the input of the predictor of the touch sensor is formed by two
35 � 35 grids, each one encoding the position of the hand with respect to the food
along one axis and the programmed displacement of the hand along the same axis.
Preferred inputs are uniformly distributed in the range [�7; 7] for objects positions
and [�25; 25] for displacements. The output of each predictor is a single sigmoidal
unit receiving connections from all the units of the predictor.

2.4 Learning

Learning depends on the TD reinforcement learning algorithm [34] that was
introduced to solve the temporal credit assignment problem, i.e. the problem of
learning which of many actions contributed to the achievement of reward: the TD
learning solves the problem with the use of predictions and in particular with the
use of the TD-error as the learning signal reinforcing all those actions that lead the
system closer to rewards. The TD-error ık of each sub-controller k is computed as:

ık D .Rt C �kV t
k / � V t�1

k

where Rt is the reinforcement at time step t , V t
k is the evaluation of the critic of

controller k at time step t , and �k is the discount factor, set to 0.9 for both the eye
and the arm controllers.

The weight wki of input unit i of critic k is updated in the standard way:


wki D c
kıkai

where c
k is the learning rate, set to 0.02 for both the eye and the arm controllers.

The weights of actor k are updated as follows:


wkji D a
kık.on

kj � okj/.okj.1 � okj//aki

where a
k is the learning rate (set to 0.2 for both the eye and the arm controller), and

okj.1 � okj/ is the derivative of the sigmoid function.
Predictors are trained through a TD-learning algorithm (for a generalization of

TD-learning to general predictions, see [46]). We decided to use TD-learning neural
networks to implement the predictors because it is difficult to built predictors able
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to perfectly anticipate the activations of the sensors: a TD neural network solves
the problem because it starts to anticipate the activations earlier than a one-step
predictor.

For each predictor p, the TD-error ıp is calculated as follows:

ıp D .At
p C �pOt

p/�Ot�1
p

where At
p is the activation of the sensor related to predictor p at time step t , Ot

p

is the output of predictor p at time step t , and �p is the discount factor, set to 0.7
for each predictor. Finally, the weights of the predictors are updated as those of
the critics of the two sub-controllers, with a learning rate set to 0.00008 for each
predictor.

3 Results

We tested each condition on the experimental task for 500,000 trials, each trial
terminating when food was eaten or when it “fell off” the table (i.e., if the food is
positioned outside the table and not “grasped”), or after a time out of 40 steps. At the
end of every trial the food, the eye centre and the hand were repositioned randomly
without overlaps, with the first two always inside the table. Every 500 trials we
performed 50 test trials (where learning was switched off). For each condition we
ran ten replications of the experiment and here we present the average results of
those replications.

Figure 3 shows the performance in the task of the three experimental conditions.
In the extrinsic condition the robot is not able to learn to eat reliably. Adding
permanent reinforcements for every possible interaction with the environment, as
in the sub-tasks condition, does not improve the performance of the system in the
final task. Differently, in the intrinsic condition, where the activations of the sensors
are reinforcing only when unpredicted, the system is able to reach high performance
in the eating task (about 85 %).

It is quite easy to understand why in the extrinsic condition the system is not
able to achieve the final goal: the only reinforcement provided by the final reward is
too distant and infrequent to drive the learning of the sub-tasks needed for bringing
the food into the mouth. Although the TD algorythm is built to solve the credit
assignment problem, it is difficult to trace back few rewards provided by a complex
sequence of different actions.

It is more interesting to analyse the results of the other two conditions where
further reinforcements are given in addition to the final one. To understand the
reason of these results we have to look at the behaviour of the eye. In the sub-
tasks condition (Fig. 4), the robot starts to look at the distractor, which is simpler
to find within the table. Because of the permanent reinforcements provided by
the activation of the fovea sensor the system is stuck on this activity, but looking
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Fig. 3 Performance (percentage of test trials in which the robot eats the food) in the three
experimental conditions. Figure reprinted from [37], copyright (2013), with permission from
Elsevier
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Fig. 4 Behaviour of the eye and of the arm in the sub-tasks condition. Average percentage of test
trials in which the eye foveates the food (L-Food) and the distractor (L-Distr) and in which the hand
touches the food (Touch); average reinforcements per step generated by the unpredicted activations
of the sensors (R-Food, R-Distr and R-Touch). Figure modified from [37], copyright (2013), with
permission from Elsevier

at the distractor is not related to the other skills so the agent is not able to develop the
capacity to look at the food, which is a prerequisite for the other abilities (reaching
and grasping the food) and for the achievement of the final goal.

On the contrary, in the intrinsic condition (Fig. 5) the robot is able to learn the
correct sequence of actions. Also in this case the system starts with looking at the
fixed target, but after the predictor of the fovea sensor for the blue colour starts to
predict the perception of the distractor, that sensory event is no more reinforcing.
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Fig. 5 Behaviour of the eye and of the arm in the intrinsic condition. Same data as in Fig. 4. Figure
modified from [37], copyright (2013), with permission from Elsevier

As a result, the robot can discover that also foveating the food can be reinforcing
and so starts acquiring this second ability, that is the prerequisite for the arm to learn
to touch and eventually grasp the food and then to bring it to the mouth.

In the intrinsic condition the activations of the sensors determined by the
interactions with the objects are reinforcing only when they are unexpected. If we
look at Fig. 5, we can see that the reinforcements provided by the fovea and the touch
sensors are not continuous as in the sub-tasks condition: they rapidly grow when the
related ability is encountered and repeated, and they fade away when the motor skills
are learned and their consequences become predictable. Although those skills do not
directly generate more reinforcements, they are still performed when they constitute
the prerequisites for successive actions that can provide new reinforcements and for
the maximization of extrinsic rewards.

Note (Fig. 5) that as the robot learns to eat the food, the number of times it looks
at the distractor increases again. Due to architectural limits, the eye is not able to
track the food while the hand is moving it (the eye controller is not informed about
the movements of the arm). As a result, the eye resorts to the behaviour that it has
previously learnt, i.e. foveating the distractor. Moreover, the performance of the arm
in touching the food is higher than the one of the eye in looking at it: when skills
are learnt it is sufficient that the eye looks close to food to allow the arm to reach it.

We wondered if the results of the experiments are dependent on the values that
we assigned to the different reinforcements: to verify this possibility, we tested the
three conditions varying the value assigned to eating the food. The results (Fig. 6)
show that changing the value of the extrinsic reward in the learning signal does
not modify the comparison between the different conditions: lowering or rising the
reward for eating the food maintains the intrinsic condition as the best performer.
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4 Discussion

This paper validates our hypothesis that implementing artificial agents with a
learning signal that resembles the phasic activations of DA neurons of biological
organisms can support cumulative learning. We tested a simulated robotic agent
in a simulated environment where not all the possible interactions with the world
are useful for the achievement of the final goal. We varied the composition of the
learning signal and we verified that only the one implementing our hypothesis was
able to guide the simulated robot in the achievement of the task.

Extrinsic reinforcements by themselves are not sufficient to drive the acquisition
of complex sequences of actions. Simply adding a further reinforcement for every
interaction with the environment will lead the agents to get stuck in useless
activities. Differently, a learning signal based both on the temporary reinforcements
provided by unexpected events and by the permanent reinforcements of extrinsic
rewards is able to guide the discovery of novel actions and the deployment of the
acquired skills for the achievement of goals.

The nature of IMs fits particularly well with the complexity of real environments
and cumulative learning. Intrinsic reinforcements are present only when they
are needed: when the system discovers a new possible way to interact with the
environment, the consequences of its actions provide high reinforcement; once the
system has learnt to systematically generate an effect (after some repetitions of
the same actions), that effect can be predicted and for this reason it is no more
reinforcing; the system then is not stuck on the repetition of the same actions and
can move to different activities. In this way intrinsic reinforcements are able to guide
agents in the discovery of novel interactions with the environment, increasing their
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repertoire of skills. Moreover, such a learning signal can be useful to develop more
autonomous agents: IMs are able to push systems to learn every possible interaction
with the environment just because of the novelty of those interactions, also if those
new skills are not immediately related to the fitness of the system [38, 47]. These
skills can then be deployed in the appropriate situations exploiting the reinforcing
value of extrinsic reinforcements.

Looking at the implementation of our hypothesis, the system still has some
limits. Schmidhuber [12] underlined how using the prediction error as an intrinsic
reinforcement can generate problems if the environment is unpredictable or the
system has limited learning capabilities: in such cases, the reinforcement would
never decrease and the system would get stuck, trying to reproduce outcomes with
unpredictable consequences. To avoid this problem, he proposed the progress in
predictions error as a better intrinsic reinforcement. However, we believe that this
hypothesis does not reflect the biology underlying IMs and we built our system
using the simple prediction error to implement intrinsic reinforcements.

Another limit is connected to the second problem related to the implementation
of cumulative learning (that we decided not to tackle in this work), the architectural
problem: building a complex repertoire of actions needs an architecture that is
able to discover and retain different abilities. In fact, another problem related to
cumulative learning is catastrophic forgetting, the phenomenon by which neural
networks forget past experiences when exposed to new ones. A good solution to this
problem is to develop hierarchical architectures (e.g. [48,49]. See [16] for a review)
that are able to store new skills without impairing the old ones. We designed our
system in order to bypass some of the problems related to catastrophic forgetting,
but we will certainly need to move towards hierarchical structures in order to
fully support cumulative learning processes. Moreover, we believe that within the
framework of hierarchical organization of actions, we can provide a reinforcement
signal that, without losing the inspiration provided by biological organisms, can
cope with the problem raised by Schmidhuber: intrinsic reinforcements can be
determined by the learning progress in skills acquisition [50]. If nothing can be
learnt, there will be no learning progress and the system will move away looking for
new skills to acquire.
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Development of Categorisation Abilities
in Evolving Embodied Agents: A Study
of Internal Representations with External Social
Inputs

Francesco Pugliese

Abstract This paper investigates the behaviour of embodied and situated agents,
which perform tasks requiring categorisation skills. These agents are simulated
robots selected by an artificial adaptation process. Their task is to categorise objects
with different shapes. To achieve this goal, the robots can use sensory information
from the environment and external “linguistic” inputs. The results show that the
agents are able to solve the categorisation task by conveniently integrating the
experienced sensory-motor states and linguistic inputs. The aim of this work is to
demonstrate that autonomous agents are able to develop some high-level cognitive
abilities. Interestingly, the behavioural pattern seems to be in agreement with the
theoretical hypothesis “social” information (external inputs) facilitates individual
capacity to categorise, by producing good internal representations.

1 Introduction

Categorisation is the ability to discriminate different environmental situations (and
different states of interaction between the agent and the environment) by producing
different behaviours [1]. The way the categorisation process may occur depends
on the interaction between the agent control system, its body and the environment
where it is situated. The categorisation may emerge by actively exploiting sensory-
motor experience and by recording it in some internal states of the agent control
system [2].

Generally, the categorisation process is performed individually by the agents
but, in some cases, it may be obtained in a social context through some form of
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communication that can improve the categorisation process itself, by providing the
agent with further information.

Two kinds of categorisation can be distinguished:

(a) Active categorisation, which is the ability of an agent to categorise using actions
that affect its own sensory state. For example, a robot with a camera equipped
with zoom, mounted on a moving head, is able to “manipulate” what it can see
simply by moving its head;

(b) Passive categorisation, the opposite of active categorisation, when a robot is
stationary or has few degrees of freedom, in a way that it cannot move in
directions enabling it to reach an optimum perception. An example of passive
categorisation is a robot with a fixed camera, which must solve the task of
recognising the shape of some geometric figures. In this case, the robot is not
able to alter the image perceived by the optical sensors of the camera.

Another possible classification of the categorisation ability is based on the
emergence mechanisms:

(a) Behavioural categorisation, that is the ability to produce different behaviours
in order to discriminate different environmental situations. Usually these
behaviours are the result of a sequence of interactions between the agent control
system (with its body) and the environment. For example, in an environment
with some edible and non-edible food, an agent should be able to reach the
edible, but stay away from the non-edible food;

(b) Categorical perception, that is the agent’s ability to produce different
behaviours as a consequence of different environmental conditions, by using its
internal states’ “memory”. In this type of categorisation, the control system of
the agent maps groups of sensory stimuli, belonging to a same category, into
the same internal states.

The behavioural categorisation can arise from a careful and parsimonious
exploitation of local environmental properties during the interaction between the
agent’s body and the environment, for this reason it may occur with purely reactive
agents. Reactive behaviour is defined as the behaviour resulting from a direct
association between the sensory input of the robot and its actuators, namely without
making use of representations or internal states. Some researchers have designed
an experimental set-up to study the behavioural categorisation, where a robot is
placed in a circular room, whose perimeter is marked by separating it into 40
cells [1]. The purpose of the robot is to reach the left half of the environment,
starting from any point on the circumference, and remaining on it. The control
system consists of a neural network with 20 sensory neurons, which encode the
number of the environmental cell where the robot is placed at a given time-step. The
neural network has no hidden neurons, that makes it a perceptron. Using a genetic
algorithm to evolve the robot, by a fitness function which computes the number
of life cycles in which the robot remains in the left part of the environment, the
robot can always find a solution that exploits only the sensory-motor coordination.
In fact, the robot reacts consistently to the same sensory pattern, as the evolutionary
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process selectively define some “behavioural attractors”. In this case the attractors
are represented by pairs of adjacent cells belonging to the left semi-circle. The robot
continuously wanders clockwise and counterclockwise, rapidly reacting to these
attractors. Finally, the robot’s gets stationary on the left side of the environment,
at some point.

Categorical perception is required when the autonomous agent needs internal
states for mapping a sequence of stimuli received to the relevant category: for this
reason, categorical perception requires the ability to discover the categories and the
relation among the different categories, as well as the behaviours that should be
exhibited when the event, related to a category, occurs. The opportunity to develop
skills in perceptual categorisation has been investigated in a series of experiments
simulating two e-puck robots. E-pucks are placed in a square environment, bounded
by walls. Two target areas are located inside the square and each one has a different
colour. The robot’s aim is to stay in the same target area [3]. The control system of
the robot consists of a neural network with 14 sensory neurons, which encode the
state of activation of eight infrared sensors, one ground sensor (which is activated
when the robot is on the top of a target area), four directional communication
sensors and an input–output communication connection. Moreover, there are two
hidden neurons and two output neurons controlling each engine, and one output
neuron controlling the emitter of the communication signal. During the evolutionary
process, the robots’ reward is to stand in the same target. At the end of the
evolutionary process, robots can solve the task by developing some strategies based
on a rudimentary form of communication. During the first generation, the robots
develop some remarkable exploratory skills consisting of attempts to avoid the walls
of the environment. Then, each robot develops more purely social skills such as
emitting signals that affect the trajectory of other robot. For example, if both robots
stay in the same target area, they begin to produce a different sequence of signals
merging both the information from the infrared sensors and from communications,
with the ultimate effect of causing the two robots to stay in the same target area. So,
communicative behaviours allow the two robots to “feel” when they are outside the
target area, and to approach and remain relatively close.

A special case of categorical perception is the active categorical perception
which may arise when internal states are not sufficient to discover the regularities
necessary to discriminate between different categories of stimuli, because maybe
regularities are hidden or absent. In fact, in these situations, the sensory stimuli
experienced by an agent are co-determined by actions accomplished by the agent
itself. Active categorical perception has been recently analysed in an experiment
where a simulated anthropomorphic robotic arm, equipped with tactile sensors,
was required to perceptually categorise spherical and ellipsoidal objects [4]. The
anthropomorphic robotic arm was equipped with proprioceptive and tactile sensors
distributed on the external part of the arm. The whole arm mainly consisted of three
elements: the arm, the forearm, and the wrist. The arm’s controller consisted of a
continuous-time recurrent nonlinear network (CTRNN) with 22 sensory neurons,
8 internal neurons, and 18 motor neurons. The neural controller was trained by an
evolutionary process in which the free parameters of dynamical neural networks
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were varied randomly and in which variations were retained or discarded on the
basis of their effects on the overall ability of the robots to carry out their task.
Results indicate that robots were capable of developing an ability to effectively
categorise the shape of the objects despite the close similarities between the two
types of objects, the difficulty of effectively controlling the arm, and the need to
reduce the effects produced by gravity, inertia, collisions, etc. More specifically, the
best individuals were able to correctly categorise the objects located in different
positions and orientations, as well as to generalise their skill to objects positions
and orientations never experienced during evolution.

2 Materials and Methods

The purpose of this study is to evolve an embodied and situated agent in order to
solve the non-trivial problem of how to discriminate objects of different shape and
size. The agent is provided with a simple sensory-motor system and the capability
of integrating information, over the time. In particular, the aim of the experiment is
to understand how external “linguistic” inputs (labels) can facilitate categorisation
abilities.

2.1 Experimental Set-up n.1

A simulated robot lives in an environment whose floor displays one geometric
figure. Position and size of the figure are selected randomly. Conventionally, only
two kinds of figures can be displayed on the environment (even though, theoretically,
there might be more than two); in particular, these shapes are an equilateral
triangle and a square. The environment is essentially a square arena of 80� 80 cm,
surrounded by walls. In order to make the categorisation process more complex
with respect to the classical problems described in literature, noise has been added
to the sensors’ inputs. Noise is randomly spread on the whole arena floor, with a
probability of 30 %. The noise granularity is set to have a ratio of 4:1, which means
that each noise pixel is composed of four screen pixels.

Every robot has a circular body with a radius of 11 cm and is equipped with two
motors controlling the movements of two wheels. Moreover, robots are provided
with eight infrared sensors placed all around the body perimeter. The infrared
sensors are able to detect the presence of obstacles up to a distance of 15 cm. On
the lower surface of the robot’s chassis (body) there are eight ground sensors, which
can detect the colours of the floor. The ground sensors return a value (normalised
between 0 and 1) depending on the detected colour tone: if one of the ground sensors
is on the internal area of the geometric figure (dark grey), then the sensor will
return a value close to 1; otherwise, if a ground sensor is external to the figure
(i.e. the white arena floor), then it will return 0. Finally, the robot is equipped
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Fig. 1 Architecture of the robot neural controller

with two more sensors (radio receivers) able to receive “linguistic inputs” from
outside of the environment (a hypothetical trainer or another robot). The robot
returns a categorisation pattern (by a specific output), corresponding to the category
recognised by the robot for that object.

The robot control system consists of a neural network with recurrent hidden
neurons. The neural network is made of 24 neurons, which are organised into three
different layers: input, output and hidden. The input layer contains 19 neurons
encoding the activation state of the corresponding input sensors; there are eight
neurons receiving the signal from the infrared sensors, eight neurons receiving the
signal from the ground sensors, one neuron receiving the recurrent activation of the
categorisation output and two neurons receiving the external linguistic input. The
inner layer consists of two hidden neurons, which are connected with each other
by two recurrent connections. They are encoded by the “leaky” mode. The output
layer consists of two neurons, which, respectively, control the speed of two motors,
and one neuron controlling the categorisation output. The categorisation output is
binary-encoded: if the neuron returns a value less than 0.5 (and greater than 0.0) it
means the “square” category, otherwise, if it returns a value greater than 0.5 (and
less than 1.0) it represents a “triangle”. The neural network topology (see Fig. 1) is
fully connected: there are full direct connections between the input and the hidden
layer and between the hidden and the output layer.

The free parameters of the robot neural controller, i.e., the synaptic weights of
the connections, the biases, and the time constants, are encoded in the individual
genotypes of the genetic algorithm. Connection weights are encoded into eight
bit strings, and normalised into the [�5.0, C5.0] interval. Instead, time constants
are normalised into the range [�1.0, 1.0]. The initial population consists of 100
random genotypes (individuals), which represent synaptic weights, biases and time
constants of the 100 corresponding neural networks. At the start of each generation,
every genotype is converted into the numeric description of the corresponding
neural network. Then, the numeric string associated with a neural network is
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Fig. 2 Architecture of the fovea neural controller

loaded into the robot control system, which performs actions (using the current
genotype) corresponding to the robot’s entire life (2,000 cycles). The 20 best
genotypes (with respect to the fitness) are allowed to reproduce themselves by
generating an offspring of five individuals (20� 5D 100 individuals populating the
next generation) with a mutation probability of 2 % (2 % of the bits are randomly
replaced by a new value). The whole evolutionary process needs 300 generations.

During each generation, every individual is evaluated for 20 trials lasting 2,000
cycles, with each cycle lasting 100 ms. At the begin of each epoch (trial) the robot
wanders from a random position and orientation around the environment, but it
always starts from outside the target area. The experiment was replicated ten times
by using different initial populations.

The fitness function of the genetic algorithm is computed by addingC1.0 to the
fitness score if the robot is located on the target area and its categorisation output is
consistent with the figure shape; and �1.0, if the robot is placed on the target area
and its categorisation output is not consistent with the figure shape; in all the other
cases, the fitness does not change.

2.2 Experimental Set-up n.2

In order to verify the results of the first experimental set-up (comparing it with
another experimental paradigm), a second set-up has been designed, being inspired
by some previous experiments [5, 6]. The set-up n.2 is n.1-like, except that the
second uses an evolutionary active vision system, consisting of a simulated “fovea”
(a square visual area) instead of the robot. The fovea is able to move only
horizontally or vertically with respect to the environment and cannot shift more
than three pixels per cycle.

The fovea control system consists of a neural network with recurrent hidden
neurons. The neural network (see Fig. 2) is made of 27 neurons. The input layer
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contains 21 neurons encoding the activation state of the corresponding input sensors;
there are 16 image neurons, two external inputs, two receiving the fovea position,
and one the I/O node. The internal layer consists of three leaky recurrent hidden
neurons. Finally, the output layer consists of two neurons, defining the fovea
movements, and one neuron for the categorisation output.

3 Results

3.1 Results of Experimental Set-up n.1

By evolving experiment n.1 over 20 replications, it can be observed that the
robot seems to solve the categorisation task correctly, by exploiting the external
linguistic input. Initially, the categorisation output (returned by the robot) has not a
constant trend, but it keeps being variable over time. The output takes on the right
configuration only when the robot is placed on the top of the figure and receives the
correct social external input (from the 1,000th cycle on). At the end of the evolution,
the emerging strategy to solve the task is the same in all the test replications.
Originally, the evolved robot exhibits a purely exploratory behaviour, by jumping
from one wall to another and drawing curvilinear trajectories in the environment.
This first strategy allows the robot to improve the chances of identifying the target
area position, since the food zone is more likely to be located in the middle of the
environment.

When the target area is detected, the robot exhibits a “line-following” behaviour,
since it moves along the picture perimeter, in order to discover some peculiar
features of the geometric shape (see Fig. 3). Then, when the robot appears to be
located on a feature of the picture, such as an angle, it takes advantage of the “active
perceptual categorisation” in order to classify the angles and thus identify the object
shape.

Essentially, when the robot reaches the corner, it performs a “measurement”
of the angle by integrating the information from its ground sensors with the
representations evolved in its internal states. Depending on the category that the
robot identifies, it produces a categorisation output that is closer to the value 0.0
for a square, while it is closer to 1.0 for a triangle. When the external inputs arrive
(from the 1,000th cycle on), the correct categorisation is achieved. This fact shows
that, from the 1,000th time-step on, the robot mainly makes use of external inputs
in order to determine the true category.

The experimental set-up n.1 has been evolved again in conditions of total absence
of external labels. It has been observed that in this conditions, the fitness values are
lower than the values of the experiment evolved with external inputs.

In order to underline the effect of the external inputs on the individual’s
categorisation ability, a performance measure is computed by testing the robots in
three different conditions: (a) robot evolved with external inputs and tested with
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Fig. 3 The robot follows the figure perimeter looking for discrimination parts such as angles

Fig. 4 Performance curves, sorted by number of categorisations, in the three conditions

external inputs; (b) robot evolved with external inputs and tested without external
inputs; (c) robot evolved without external inputs and tested without external inputs.

Performance curves have been produced, by summing the total number of
correct categorisations throughout the robot’s lifetime. The performance measure
is computed over 100 trials for each of the three conditions, sorting and plotting the
values as depicted in Fig. 4. A statistical test (heteroscedastic Student’s t-test, two-
tailed) is performed on the distribution of 2,000 performance measures, for each
condition (see Fig. 5). The t-test p-value is smaller than 1 % in all the pairs of
comparisons.

The performance curves and statistics are in excellent agreement with the fitness
results, i.e. the robots evolved with external inputs achieve better performances with
respect to the robots evolved in total absence of external labels. Moreover, the
performance curves and the statistics provide new information: the robot evolved
with labels, and tested without such external inputs, can categorise better than
the robot evolved without external inputs (Fig. 4). The robot seems to be able to
“internalise” the social information (labels) available during evolution. Then the
robot exploits the previous social information to take an advantage, in the test
phase. Hidden nodes could play a key role in this process of internalising the social
information. To prove this, the previous experiment is replicated after removing
the hidden neurons. The performance curves of the new experiment (see Fig. 6)
show that the robot evolved with external inputs and tested without them no longer
achieves better performance in respect to the robot evolved without external inputs.
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Fig. 5 Average number of categorisations calculated in 20 seeds� 100 epochs, for each condition.
Student’s t-test two-tailed heteroscedastic p-values are reported

Fig. 6 Performance curves, sorted by number of categorisations, in the three conditions, without
hidden neurons

This proves, without any doubt, the importance of internal hidden units for the
formation of internal representations.

The hidden neurons also play an essential role in the process of integration
process of sensory and social information.

In order to better illustrate how the hidden neurons affect the internal represen-
tations, a plot of the two hidden neurons’ activations has been reported in Fig. 7.
Sampled data (for each replication) consist of 20,000 values (2,000 activation values
relating to the 2,000 life cycles� 10) belonging to the interval [0.0, 1.0].

Activation data have been captured in the three conditions: (a) individual evolved
and tested with external inputs, (b) individual evolved without external inputs and
tested without external inputs, (c) individual evolved with external inputs and tested
without external inputs (set to 0). The x-axis shows the values of the first hidden
node, H1, while the y-axis shows the values of the second hidden node, i.e., H2.
Looking at the charts it is possible to notice that data in (a) and (c) are grouped
in two distinct clusters representing two different internal states associated with
two different categories. These are the internal representations. In condition (b),
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Fig. 7 Plot of the activation of the two internal neurons in the three conditions

the differentiation among the internal representations is less clear. In conclusion,
the plots of the internal neurons activities confirm the assumptions: the external
labels enable the neural network to create well-defined internal representations of
the categories, which can be exploited later, even when these labels are no longer
available.
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Fig. 8 Different strategies of pattern recognition of the mobile retina

Fig. 9 Performance curves, sorted by number of categorisations, in the three conditions, of the
active vision system

3.2 Results of Experimental Set-up n.2

The paradigm of the experimental set-up n.2 allows us to obtain the same results
as in the experimental set-up n.1. However, the strategies used by the fovea for
categorising are more sophisticated than in the set-up n.1. The mobile fovea, starting
from a random position on the visual area (environment), initially exhibits a purely
exploratory behaviour, since it is able to perceive only a limited portion of the
displayed image. In general, the search strategy within the picture is to move along
a spiral path from the initial position, thus the fovea can maximise the probability
of detecting the position of the geometric shape. Whenever the fovea is positioned
on the geometric figure, it can use two different strategies to categorise the object:
(a) measuring the inclination of the geometric shape side (see Fig. 8a), which, for
the square, is parallel to the horizontal or vertical axes of the visual field, while for
the triangle, it is inclined by an angle of 60ı; (b) measuring the angle at the corners
of the geometric shape (see Fig. 8b), which for the square are right angles, while in
the case of the triangle are acute angles (<90ı) (see Fig. 9).
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4 Conclusions

This work shows how a robot, evolved by genetic algorithms, is able to solve
tasks that require complex cognitive skills such as the categorisation. The robot
has been able to develop some emerging skills, such as the ability to exploit the
information from the environment, for recognising objects of different shapes and
sizes. Moreover, by using social information, the robot exhibits a “social” behaviour,
learning to categorise the objects belonging to the environment and surrounding
it, even though the social information is no longer available. This fact proves an
important theoretical result: the social information, which is communicated by
external inputs (another individual or a trainer), allows an agent to solve the task
of understanding the surrounding environment more easily. This is true, since the
external information enables the robot to create internal representations much better
than when the external inputs are not available during the evolution phase.

Once these good internal representations are formed, during the evolution
process, they enable the evolved agent to achieve an advantage in the categorisation
task, even when, during the testing phase, the agent is deprived of the external
information.

Acknowledgments I gratefully thank Stefano Nolfi, Davide Marocco, and Marco Mirolli for their
helpful support.
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Regulatory Traits: Cultural Influences
on Cultural Evolution

Alberto Acerbi, Stefano Ghirlanda, and Magnus Enquist

Abstract We use the term regulatory traits to indicate traits that both regulate
cultural transmission (e.g., from whom to learn) and are themselves culturally
transmitted. In the first part of this contribution we study the dynamics of some
of these traits through simple mathematical models. In particular, we consider the
cultural evolution of traits that determine the propensity to copy others, the ability
to influence others, the number of individuals from whom one may copy, and the
number of individuals one tries to influence. We then show how to extend these
simple models to address more complex human cultural phenomena, such as in-
group biases, the emergence of open or conservative societies, and of cyclical,
fashion-like, increases and decreases of popularity of cultural traits. We finally
discuss how the ubiquity of regulatory traits in cultural evolution impacts on the
analogy between genetic and cultural evolution and therefore on the possibility of
using models inspired by evolutionary biology to study human cultural dynamics.
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1 Introduction

We use the term regulatory traits to indicate cultural traits that both regulate cultural
transmission (e.g., from whom and when to learn) and are themselves subject of
cultural transmission. In modern western societies, for example, parents actively
transmit the idea that children should learn from schoolteachers, or teenagers
attempt to persuade their peers not to listen to adults. Depending on our experiences,
we can learn to be conformist or anti-conformist, which, in turn, can modify the
outcome of future social interactions. Many other examples are possible.

Regulatory traits constitute, in our view, an important difference between cultural
and genetic evolution. Tools from evolutionary biology have been extensively used
to develop cultural evolutionary theory [1, 2], based on the assumption that the
process of cultural change shares some fundamental properties with the process of
genetic change: namely, variation, inheritance, and competition [3, 4]. While most
researchers agree that culture has these properties, many have questioned whether
they are sufficient to consider genetic and cultural evolution as essentially similar
[5–7]. Some differences are obvious: for example, whereas genetic transmission is
necessarily from parents to offspring, cultural transmission can, in principle, occur
between any two individuals [8]. Thus models of genetic evolution certainly need
to be modified to apply them to cultural evolution. The main question, however, is
whether cultural and genetic evolution are different enough that it is misleading to
study them using essentially the same models.

Population genetics models generally assume that the rules of transmission
are stable. Consequently the routine assumption of cultural evolution models
inspired by evolutionary biology is also that the rules of transmission are stable,
or change slowly under genetic influence [1, 9]. However, this is not necessarily
true: regulatory traits seem ubiquitous in cultural evolution—and not in genetic
evolution (see Sect. 4). Here we explore the consequences of this difference on
cultural dynamics.

We first use simple, yet very general, mathematical models to show that
regulatory traits may have a profound impact on cultural evolution. Then we show,
using a mix of mathematical models and computer simulations (see also [10–12]),
how to extend these models to investigate real-world cultural phenomena such as
in-group biases, conservatism, and fashion dynamics.

2 Models

Our basic assumption is that, in social interactions, individuals tend to copy
each other’s cultural traits. This tendency, however, is modulated by the traits
themselves. For example, someone with the idea that people are trustworthy is
expected to copy others more often than someone who mistrust people. In our
models, we either calculate the expected effect of an interaction between two
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randomly chosen individuals, or the expected change, per time step, in the number
or proportion of individuals carrying a particular trait. The key insight exploited
in such calculations is that a regulatory trait also regulates its own transmission.
Using the same example above, acquiring the idea that people are trustworthy
will increase copying and thereby foster opportunities for modifying the same
idea. Our calculations show clearly the dynamical forces generated by regulatory
traits and enable us to predict the end-state of the population when only one trait
is considered. When many regulatory traits influence cultural evolution, in-depth
analysis of the dynamical equations and computer simulations are generally required
and the resulting dynamics can be highly nontrivial, as we will show in Sect. 3.

2.1 Openness

We define openness, p, as the probability that an individual changes in a social
interaction (1 � p is thus a measure of conservatism). Let pi be the openness of
individual i , pi 2 Œ0; 1�, and let us consider a social interaction between individuals
i and j such that i is less open j , pi < pj . Let EŒ
pi � be the expected change in
i ’s openness caused by the interaction. Because individuals tend to copy each other,
the interaction is expected to increase pi and decrease pj :

EŒ
pi � > 0 EŒ
pj � < 0 (1)

Since i is less open, she will on average change less than j , by hypothesis:

jEŒ
pi �j < jEŒ
pj �j (2)

It follows that the average openness of the two interacting individuals, 1
2
.pi C pj /,

is expected to decrease as a consequence of the interaction:

E

�



1

2
.pi C pj /

	
D 1

2
EŒ
pi �C 1

2
EŒ
pj � < 0 (3)

where the conclusion that the change is negative follows directly from Eqs. (1)
and (2). Thus social interactions tend to decrease population openness, until all
variation in openness is eliminated. This results in very conservative populations,
in which the outcome of social transmission is, paradoxically, to eliminate almost
all social transmission [11, 13, 14]. An intuitive justification for this result is that
conservative individuals, for the very reason they are conservative, change more
rarely than open individuals. Transitions from open to conservative thus occur
more often than transitions from conservative to open. We will see in Sect. 3 that
the drive toward conservatism can be overcome when the interactions of multiple
cultural traits are considered, although it remains a powerful influence on cultural
dynamics [10].
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2.2 Persuasiveness

We define persuasiveness, q, as the probability that an individual causes another to
change in a social interaction. We can show that cultural transmission favors high
persuasiveness with the same reasoning leading to the conclusion that it favors low
openness. In a social interaction between individuals i and j such that i is more per-
suasive than j , qi > qj , we expect, on average, that qi decreases and qj increases:

EŒ
qi � < 0 EŒ
qj � > 0 (4)

Since i is more persuasive, j is expected to change more:

jEŒ
qi �j < jEŒ
qj �j (5)

It follows that the average persuasiveness is expected to increase:

E

�
1

2
.qi C qj /

	
D 1

2

�
EŒ
qi �C EŒ
qj �

�
> 0 (6)

This dynamics has been studied in detail in previous work [11, 13, 14] and will be
discussed further in Sect. 3.

2.3 Social Networks: Whom to Listen to

Social networks are widely recognized as important determinants of cultural
dynamics, but it is equally important to study how cultural dynamics determines
social networks (see, e.g., [15]). An individual’s social network influences the
transmission of other cultural traits, and thus cultural traits that modify individual’s
social networks are regulatory traits according to our definition. By analogy with the
reasoning we made for openness, we expect cultural evolution to favor individuals
who accept only a few others as cultural models. The reason is that such individuals
have a smaller chance of changing than individuals who are willing to copy from
many. We thus expect transitions from large to small social networks to occur more
often than transitions in the reverse direction.

Let us assume that individual i is susceptible of acquiring cultural traits only
from ni cultural models, chosen at random or according to some rule. If i copies
one of her models, we assume for mathematical simplicity that she replaces her
set of models with the model’s set.1 We ask how the average of ni over the

1We have verified in computer simulations that this assumption is not crucial for our general
argument, as long as i ’s set of models becomes more similar to that of her model as a result of
the interaction.
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whole population changes during cultural evolution. In an interaction between two
individuals i and j the probability that i adopts j ’s set of models is the probability
that j is in i ’s set of models, i.e., ni =n, where n is the population size. If i adopts
j ’s models, ni becomes equal to nj , hence the expected change in ni is

EŒ
ni � D a
ni

n
.nj � ni / (7)

where a is the probability of learning from a cultural model in an interaction.
Similarly, the expected change in nj is:

EŒ
nj � D a
nj

n
.ni � nj / (8)

The average expected change is thus

E

�
1

2
.
ni C
nj /

	
D 1

2
EŒ
ni �C 1

2
EŒ
nj � D � a

2n

�
nj � ni

�2
< 0 (9)

where we have used Eqs. (7) and (8) and noted that the term nj � ni appears with
opposite signs in the two equations. Hence the result of the interaction is to reduce
the average number of cultural models, favoring small social networks.

2.4 Social Networks: Whom to Talk to

The results above show that cultural evolution tends to limit individuals’ oppor-
tunities to be influenced by others. Conversely, it tends to increase individuals’
opportunities to influence others. In addition to favoring high individual persua-
siveness (Sect. 2.2), cultural evolution is also expected to favor individuals who try
to influence a large number of others. The reasoning is analogous to the one in the
previous section.

Let us assume that individual i tries to convince of her own ideas only mi

other individuals, which we may call i ’s “target set.” If i is copied by one of
these individuals, the latter adopts i ’s target set as her own. In an interaction between
individuals i and j the probability that i adopts j ’s target set is the probability that
i is in j ’s target set, i.e., mj =n, and the expected change in mi is

EŒ
mi� D mj

n
.mj �mi/ (10)

Similarly, the expected change in mj is:

EŒ
mj � D mi

n
.mi �mj / (11)
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The average expected change is thus

E

�
1

2
.
mi C
mj /

	
D 1

2n

�
mj �mi

�2
> 0 (12)

which is obtained similarly to Eq. (9). This result shows that cultural evolution tends
to produce individuals (or, generalizing, organizations such as religions or political
parties) who, everything else being equal, try to influence as many others as possible,
rather than limiting the set of potential cultural targets.

3 The Far-Reaching Consequences of Regulatory Traits

The models above show that cultural evolution can be profoundly shaped by the
additive effects of repeated social interactions and that very simple assumptions can
generate surprising results. We show below that, although we have so far considered
rather idealized models, our results may shed light on actual cultural phenomena.

3.1 In-Group Bias

We saw in Sect. 2.3 that we expect cultural evolution to reduce the number of
individuals’ cultural models (irrespective of whether such reduction improves, say,
the individuals’ well-being or genetic fitness). This result directly bears on actual
social networks once we take into account that, in reality, the set of one’s cultural
models is not an arbitrary list of individuals, but is itself based on various cues such
as social class, ethnicity, and gender.

Consider, for example, a population subdivided into a number of recognizable
groups, and in which two rules for determining whom to copy exist: “copy
everyone,” and “copy only individuals from my own group.” We expect the second
rule to spread because it results in a smaller set of cultural models. Indeed, let bi

be the number of individuals with in-group bias in group i , gi the size of group i ,
and a the probability of learning from a cultural model. The expected number of
individuals in group i that acquire the in-group bias in each time step is

a.gi � bi /
X

i

bi

where the last two factors are the probability that an unbiased individual in group
i (of which there are gi � bi ) meets a biased individual from any group (of which
there are

P
i bi ). The expected number of group i individuals who lose the in-group

bias is

abi .gi � bi /
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because the bias can be lost only copying an unbiased individual from one’s own
group, as individuals with the bias do not copy those from other groups. The
expected change in the number of biased individuals in group i is the difference
of the two expressions above:

EŒ
bi � D a.gi � bi/
X

i

bi � abi .gi � bi / D a.gi � bi/
X
j¤i

bj (13)

which is always positive as long as bi < gi (not everyone in group i is biased)
and there is at least one biased individual outside of group i . Thus the number of
biased individuals is expected to increase until everyone is biased. While many
mechanisms have been suggested to contribute to in-group bias [16] and other
model-based biases [17, 18], it seems plausible that regulatory traits play a role in
the origin of maintenance of such biases.

3.2 Openness and Conservatism

People, in real life, do not indiscriminately reject cultural information, and human
populations do not become completely conservative, as predicted by the model
described in Sect. 2.1. To investigate the circumstances under which a population
can remain open to cultural influences, despite a tendency of cultural evolution to
favor conservatism, we studied a more realistic model in which many cultural traits
coevolve [10].

We modeled individuals as having both multiple cultural traits and preferences,
i.e. positive or negative attitudes towards those traits. Preferences are themselves
cultural traits that can be copied in social interactions. We assumed that the
probability that an individual copies a potential cultural model is an increasing
function of the individual’s preference for the model’s traits. Thus the probability
to copy is highest when a model possesses many traits for which the observer
has high preference. Low preferences make an individual conservative and should
thus be favored by cultural evolution. Another force, however, promotes openness
rather than conservatism. In fact, individuals who are too conservative fail to acquire
cultural traits from others, and therefore cannot be copied since they don’t display
anything that observers can evaluate. Such an incentive to acquire traits is a form
of the general incentive to persuade others described in Sect. 2.2. Our simulations
elucidated the interplay between these forces, showing that an open population can
be maintained when there are many cultural traits and/or when the efficiency of
cultural transmission is low (the latter regulates how many traits and preferences
can be acquired in a single social interaction). Figure 1a, as an example of the latter
effect, shows how average openness varies in time in two populations in which ten
cultural traits are present, but that differ in padopt, i.e. the efficiency of transmission
(for the effect related to the increase of the number of cultural traits, see [10]).
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Fig. 1 (a) Average value of P (openness, X axis) through time (Y axis) in a population in which
ten cultural traits are present, for an intermediate rate of transmission (black line: padopt D 0:25)
and for a higher rate of transmission (gray line: padopt D 0:5). (b) An example of “fashion cycle.”
The solid line shows the frequency of the trait in the population through time, and the dashed
line the average value of the preference associated with the trait. The graphs are redrawn from
simulations detailed in [10] and [12], respectively

The increase of the number of cultural traits and the decrease of the efficiency
of transmission have indeed an analogous effect on individual development: they
both increase the number of interactions that an individual needs in order to acquire
a substantial part of her culture. Successful cultural models are individuals who
have many traits (so that they can influence others) and low preferences (so that
they change rarely and thus repeatedly expose others to a stable set of traits).
This combination can only be achieved by balancing openness and conservatism,
remaining open during the first part of one’s life, in order to learn as much culture
as possible, and then become conservative to promote the spread of such culture
[10, 12]. If the number of cultural traits is large and/or the efficiency of cultural
transmission is low, an individual needs to spend a good part of her life acquiring
culture, and thus must remain open for a relatively long time. Such relatively open
individuals will be better cultural models than conservative individuals who have
not acquired much culture. Their traits will thus spread in the population, including
the relatively high preferences that make them open. Thus a population in which
individuals need a good part of their life to acquire enough culture to be good
models is predicted to remain relatively open. This picture fits well with empirical
data showing that individuals become more conservative with age [19], but that
individuals with higher education—in our model individuals with many cultural
traits—remain open to new information into adulthood and old age [20].
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3.3 Fashion Cycles

In a later study [12], we used the trait-preference model to study the fate of
cultural innovations. Rather than limiting culture to a fixed set of traits, we allowed
individuals to occasionally introduce new cultural traits. Individual preferences for
new traits were randomly set at the moment of trait introduction. Thus it may
happen, by chance, that a currently influential individual (someone possessing many
traits others prefer) has a high preference for a new trait. Such a high preference
can then spread as the individual is copied often by others, which in turn drives the
spread of the new trait because, when the preference is common, individuals with the
trait are better cultural models than individuals without the trait. As the trait becomes
common, however the situation changes. Individuals with a low preference for a
common trait gain an advantage in transmitting their traits, because they are more
conservative than others, as explained in Sect. 2.1. This causes the low preference
to spread, which in turn leads the population to abandon the trait, as possessing it is
now a disadvantage. Figure 1b shows the complete cycle just described.

This dynamics offers a plausible and parsimonious explanation of fashions and
fads, according to which rises and fall in trait popularity are a universal emergent
property of cultural evolution, hinging on regulatory traits dynamics. Well-known
examples of fashions and fads include clothing styles [21] and the popularity of pop
records [22]. Further data indicate that fashion phenomena are present in all times
and cultures. Symbolic features of Polynesian canoes such as paintings on paddles,
for example, change more rapidly than functional features such as the shape of the
hull [23], and analysis of decorative motifs in Neolithic pottery is consistent with the
idea that individuals, or households, copied each other’s motifs through time [24].

Our model explains two quantitative features of empirical data (compare Figs. 2
and 3). The first (Fig. 2a) is the power-law, or log-normal, distribution of frequency
of cultural traits [25], meaning that only very few cultural traits become very
common while the vast majority remains rare. This effect has been observed in
several cultural domains, including, among others, first names, scientific citations,
books translations, popularity of dog breeds (see [22, 25]). The second (Fig. 2b) is
the finding that cultural traits that increase rapidly in popularity are also abandoned
quickly, while slow increases in popularity correlate with slow decreases (shown for
first names in the USA and France [26], and for dog breeds in the USA [12]).

The model accounts for these findings better than two common alternative views
of fashion. The first is generally called neutral model of cultural evolution and
simply assumes that individuals copy each other randomly [25]. This model has
convincingly been shown to reproduce the long-tailed distributions of frequency of
cultural traits, but fails in reproducing the correlation between the rates of increase
and the rates of decrease of popularity. If individuals copy each other randomly,
in fact, increases and decreases of popularity of a trait depend exclusively on the
frequency of the trait at each time step, while the correlation requires some sort of
“memory” (in our model provided by the coevolution of preferences and traits).
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Fig. 2 Empirical findings on fashion cycles. (a) Distribution of frequency of cultural traits.
(b) Rates of increase and rates of decrease of popularity of cultural traits. For both panels, closed
circles are first names in USA 1880–2006, and open circles are dog breeds registered with the
American Kennel Club, 1926–2005 (courtesy of Herzog)
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Fig. 3 Simulations results on fashion cycles. (a) Distribution of frequency of cultural traits.
(b) Rates of increase and rates of decrease of popularity of cultural traits. Simulated time steps
have been converted to years assuming an average lifetime of 70 years. The graphs are redrawn
from simulations detailed in [12]

The second common view considers fashion cycles a direct result of social
stratification [27]. According to this view, a cycle starts when individuals of
low social status copy individuals of perceived high status. When a trait become
common, however, high-status individuals abandon it to differentiate themselves



Regulatory Traits: Cultural Influences on Cultural Evolution 145

from low-status individuals, and, as a consequence, low-status individuals abandon
it too. This status model, contrarily to the neutral model, generates correlations
between rates of increase and rates of decrease of popularity, but not long-tailed
frequency distributions. Indeed, as soon as a cultural trait become common, high-
status individuals abandon it, triggering abandonment from low-status individuals.
While the status model may describe brief fads, it seems unable to account for
cultural traits that exhibit long-lasting popularity, for example English names such
as Mary and John.

4 Discussion

In this chapter we extended our previous works to present a general argument
about the importance of regulatory traits in cultural evolution. Our results show
that regulatory traits may have a potent, and perhaps surprising, impact on cultural
dynamics. Cultural evolution, in other words, can generate its own rules [13]
in absence of extra-cultural driving forces, such as natural selection or memory
mechanisms. This does not mean that these factors are unimportant, but studying
pure cultural forces with mathematical and simulation models may help us to isolate
and elucidate the effects of such forces.

A more general question is how the existence of regulatory traits impacts on the
analogy between cultural and genetic evolution and, specifically, on the possibility
to model cultural dynamics using models inspired by evolutionary biology. Note
that “regulatory genes” are not analogous to cultural regulatory traits. Regulatory
genes activate or inhibit other genes [28]; they do not alter how genetic material is
transmitted. A genuine example of genetic regulatory trait, in the sense we use the
term, is genes that determine the mode of reproduction (sexual vs. asexual), which
are found in some species [29, 30].

Genetic regulatory traits, however, appear rare in genetic evolution, as witnessed
by the remarkable success of population genetic models that employ immutable
rules of genetic transmission [31–33]. By contrast, regulatory traits seem to be
widespread in cultural evolution. Why is it so? Information transfer (or modes of
transmission [7]) is highly constrained in genetic evolution. Although more flexible
modalities of gene transfer exist [34, 35], genes typically propagate to offspring
from just two (sexual reproduction of chromosomal DNA) or one parent (asexual
reproduction or sexual reproduction of mitochondrial DNA). Cultural information
instead can be transmitted in many different ways and, potentially, from any
individual to any other individual, which creates the opportunity to regulate the
flow of information in a more fine-grained and context-dependent way. Claidière
and André [7] recently proposed that the instability of modes of transmission in
culture is one of the major differences between cultural and genetic evolution. Our
results suggest, indeed, that cultural forces can favor different kinds of information
flow. We believe that the concept of regulatory traits can be important to identify
and understand when and how this may happen.
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Models of cultural evolution inspired by evolutionary biology have been crit-
icized for their excessive simplicity, which has sometimes lead to a rejection of
modeling altogether, especially within anthropology [36]. This is certainly not
our conclusion. The possibility of applying models already developed in other
disciplines to the study of culture is certainly positive. Modeling efforts, however,
should progress toward a richer characterization of cultural dynamics. We hope to
have shown that a complete theory of cultural evolution cannot ignore that cultural
transmission can be more flexible than genetic transmission.
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Building Up Serious Games with an Artificial
Life Approach: Two Case Studies

Onofrio Gigliotta, Orazio Miglino, Massimiliano Schembri,
and Andrea Di Ferdinando

Abstract Artificial Life (AL) studies how to reproduce life-like phenomena explor-
ing the life as could be in artificial systems (software, hardware, or hybrid).
This challenging scientific perspective has produced a number of programming
techniques often applied to solve concrete problems (Data Analysis, Process
Optimization, Social Simulations, etc.). Computer Gaming is a field where AL
techniques are applied. There are many successfully Alife products for pure
entertainment (e.g., Tamagotchi and Creatures) and for educational objectives (e.g.,
Avida-Ed). However, we notice that all AL-Based games share a general flavor:
they refer in someway to biological scenarios. In other terms, they represent
often a sort of popularization of AL experiments designed for non-scientists. In
this paper we argue that AL programming techniques (or more basically bio-
inspired computational algorithms) could be used to develop generic games (e.g.,
sports, adventures, business games, etc.) without any relation with a biological
perspective. We describe BreedBot and Learn2Lead, two Serious Games that we
think could be paradigmatic examples about how to use AL techniques in different
ways and fields that could be very different from their biological roots. BreedBot
and its sequels (BestBot and BrianFarm) have been developed to disseminate the
core-concepts of Autonomous Robotics and Learn2Lead has been developed to
teach Psychological Theories of Teamwork in Small and Medium Enterprises. In
BreedBot, AL techniques are used to develop the player–game interaction and they
are explicitly visible by the user (he/she has to train/evolve a population of artificial
agents). At the opposite side, Lear2lead has an old style appearance but it hides
an AL engine. In this case AL techniques are used to model the game mechanics
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(e.g., artificial team dynamics and avatars’ behavior). Both games are also able to
be played online (www.nac.unina.it/bestbot2 and www.unina.l2l.it).

1 Introduction

The term Artificial Life (AL) was originally coined by Cristopher Langton with the
aim to shed light on life as it could be possible in a vast number of settings and
ways [1]. Without describing what is or is not Life (see [2] for this issue), that is
beyond the scope of this paper, we can state that the milestone that made feasible
the shift from biological to artificial life was the possibility to replicate, in modern
computers, life-like phenomena through dynamical systems made up of interacting
agents (the bigger the system, the better the result). One of the first attempts was
the Conway’s Game of Life, a simple game in which every cell of a lattice could
switch from alive to dead following some basic rules (it is easy to trace the roots
of this work back to von Neumann and his cellular automata), but only in the last
two decades this field has flourished in a rich and interesting manner, covering many
disciplines spanning from biology to social sciences. So far, within AL, a lot of tools
have been fruitfully used: cellular automata, neural networks, agents simulation and
the like, aiming to study quite different scientific phenomena that share a common
trait in being the emergent outcome of dynamical interactions among simple agents
at a lower scale [3]. Useful examples are those coming from social insects life:
hoards of ants are able to find food in effective way by interacting with each other
through stigmergy, bees can communicate the presence of food with a fancy dance,
and fireflies can synchronize their firing rate using a simple visual feedback [4].
With tons of fascinating examples in nature, very soon AL scientific toolkit was
borrowed to understand the life as it is along with the life as it could be [5–8]. AL
has had an impressive impact on scientific investigations and has inspired several
applications in different fields (robotics, data analysis, process optimization, etc.).
Computer Gaming is a field where AL techniques are applied. There are several
successfully Alife products for pure entertainment (e.g., Tamagotchi and Creatures)
and for educational objectives (e.g., Avida-Ed). However, we notice that all AL-
Based games share a general framework of application: usually they refer directly
to biological topics. In other terms, they represent a sort of popularization of AL
experiments designed for non-scientists. For example, a Tamagotchi player has
to take care of an artificial pet or playing with Creatures we can determine the
emergence of life in a digital universe. In this paper we argue that AL programming
techniques (or more basically bio-inspired computational algorithms) could be use-
ful to build up games for a wide range of genres (sports, adventure, business, etc.). In
other words, the AL programming techniques could be used as engines to generate
games not strictly involved in conveying biological related contents. We will provide
concrete examples of this perspective describing two Edutainment games developed
by our Lab. Usually Educational Games are produced by little developers team
and they can be deployed as case-studies to test and validate innovative production

www.nac.unina.it/bestbot2
www.unina.l2l.it
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techniques. In particular, Edutainment is a neologism that puts together education
and entertainment. In other words it is a field in which education and learning are
linked with ludic and playful experiences [9]. Although historically not new, the
idea has grown thanks to modern computers (provided with appealing graphics
and sound quality) and Internet. Recently, a new strain of games called Serious
Games (SG), stemmed from edutainment systems, has gained consensus among
educators. At first glance, the term serious game seems an oxymoron, while a deeper
examination renders a clear picture of a powerful learning tool. A useful definition
of the term game has been provided by Michael and Chen [10]

: : :games are voluntary activity, obviously separate from real life, creating an imaginary
world that may or may not have any relation to real life and that absorbs the player’s full
attention.

The adjective serious refers to the fact that this activity must rely on a set of rules
closely related to a particular phenomenon (e.g., a driving simulator). Generally,
serious games are meant to be digital. They make use of modern digital technology
to convey educational contents to a specific target audience. In particular, they have
been used in many areas. There are military, political, religious, artistic, healthcare,
and government serious games [11]. The rationale behind the introduction of digital
games in education is manifold. First of all, serious games can be seen as complex
laboratories in which users can experience situations that can be too costly or too
risky to replicate in the real world (e.g., flying with a Boeing). Serious games can
be easily deployed, an Internet connection and a computer or a mobile phone in
many cases are quite sufficient. The United States government with the serious
game America’s Army has helped recruitment of new soldiers saving 75 % of the
cost comparing to a normal recruitment program [11]. Nowadays digital experience
is particularly prominent and widespread, hence Serious Games provide contents
in a very familiar and usable way. Finally, serious games try to provide educational
contents in a playful environment that can be highly motivating in a learning context.
AL techniques are particularly effective to simulate and reproduce very complex
systems, ranging from biological (neural cells) to social ones. A complex system
here is meant as a system whose behavior emerges from the interactions of many
elements which could be either simple cells, like neurons, or human beings. SG can
exploit the power of AL at least in two ways. In the first one, games use an AL
explicit interaction mechanism. In this case, the user interacts (plays) with a game
using traditional AL methods (e.g., by evolving a population, training an organism,
setting up an ecological system, etc.). In the second one AL is used as bio-inspired
tool to model complex system that is placed in “game engine.” In this case, the
user interacts with the game using traditional method. In this paper we present two
serious games based upon an artificial life core in two different ways. The first
serious game, Breedbot (along with its sequels Bestbot and Brainfarm) has been
used to teach Autonomous Robotics and it uses an interaction mechanism developed
with an AL approach. The other Serious Game, Learn2Lead, has been designed to
teach psychological theories of group dynamics. It appears as a traditional game
but it hides an AL engine. Both games are also able to be played online (www.nac.
unina.it/bestbot2 and www.unina.l2l.it).

www.nac.unina.it/bestbot2
www.nac.unina.it/bestbot2
www.unina.l2l.it
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2 AL Used to Build Up Autonomous Artificial Organisms
Through an Evolutionary Guided Design: The Case
of Breedbot, Bestbot, and Brainfarm

Breedbot, Bestbot, and Brainfarm are integrated software/hardware platforms.
By using these software every user, without any particular computer skill, can
train/breed, within customizable virtual worlds, artificial organisms that can be
downloaded onto the real counterparts: real robots made up of Lego components.
The rationale behind those edutainment systems relies on the possibility to give
users a rich interactive system able to link virtual and real environments through
intelligent hardware. Nowadays robotic hardware are very affordable, the market
is full of robot toys and also our houses start to host little and effective cleaning
robots, hence having house-wandering intelligent machines in the future will be
very common. From an edutainment perspective, using robots in education implies
the possibility to exploit users’ manipulation skills to favor a better and a deeper
learning process. In the next sections we describe with more details the three
edutainment systems.

2.1 Breedbot

Breedbot has been developed as an edutainment hardware/software system aiming
to introduce users into the world of autonomous robotics [12,13]. The software side
of Breedbot allows users to breed a population of nine wheeled robots. Every robot
is provided with three infrared sensors, to detect nearby obstacles, and two motors
that control wheels’ speed. The three infrared sensors are placed on the right, on
the center, and on the left of the robot’s body in order to maximize its visual field.
A differential drive system allows robots to steer in any directions (see Fig. 1 Right).

Each robot is controlled by a simple feedforward neural network depicted in
Fig. 1 Left. The input layer consists of three infrared sensors and two motor context
units that are simply two relay units of the previous motor activation (all inputs are
normalized between [0,1]). The five input neurons finally project to the output layer
made up of two motor neurons that control the right and left motor of the robot.
Motor activation is computed according to the standard logistic equation (Eq. 1).

Oj D 1

1C e�Aj
(1)

where Oj and Aj are, respectively, the output and the net input of the jth motor
neuron. Robot’s speed, finally, is updated according to the activation of the motor
neurons ranged between [�14,14] mm/s. The neural network parameters are in turn
encoded in a genetic string that will undergo an evolutionary process guided by
either the users (artificial selection) or the machine (automatic selection). The real
robot is made up of Lego Mindstorms components and custom infrared sensors
(Fig. 1 Right). The software side communicates with the robot by an infrared link.
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Fig. 1 Left: Schema of the robot used in Breedbot provided with a neural controller that links the
input layer (three infrared sensors and two motor context units) to two motor neurons. Right: Real
robot made up of Lego components

Breedbot simulates, in a fully customizable digital environment, a population
of nine robots. At the beginning of each simulation, the computer screen shows
the initial generation of robots, generated with random genetic strings, in action.
Users can observe the behavior of the agents and decide whether to use artificial
or automatic selection. In the first case users, whenever they want, can select up
to three robots as parents to generate a whole new population. According to the
evolutionary process, offspring are generated by cloning and mutating parents’
genotypes [14, 15]. These steps (selection, cloning, and mutation) can be reiterated
until users (breeders) find a satisfying solution. In the second case, the software
selects each generation three robots by their ability to explore the surrounding
environment. In both cases and at any time, users can download their neural
controller onto the real robot, through an infrared protocol, in order to evaluate how
it performs in real environments reacting to real obstacles.

2.2 Bestbot

Bestbot1 is an online game stemmed from Breedbot. Nowadays social games are
gaining consensus as well as thousands of players, so it was natural thinking about
a simple porting of Breedbot. The AL engine is the same of Breedbot but Bestbot
introduces a new graphical interface (3D physics engine powered by Unity) a new
gameplay, two robots instead of nine, a more complex neural controller, and an
improved sensory systems (three infrared sensors plus a camera). Users can train,

1http://eutopia.unina.it/bestbot.
http://eutopia.unina.it/bestbot2.

http://eutopia.unina.it/bestbot
http://eutopia.unina.it/bestbot2
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Fig. 2 Left: Bestbot arena with two robots. Right: Online ranking

Fig. 3 Top: Robot supported in Brainfarm. Center: Custom neural networks. Bottom: Arenas

through a genetic algorithm, their robots to reach as soon as possible a colored
target placed into a rectangular arena (Fig. 2 Left). Trained robots then can challenge
other users’ robots in an online contest. A final ranking, finally, shows robots’
performance quality (Fig. 2 Right).

2.3 Brainfarm

Brainfarm represents a direct upgrade of Breedbot. This new software, as the name
suggests, presents new features related to the possibility to design the architecture
of the robots’ brain (Fig. 3 Center). Users can use a simple feedforward network
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or more complex architectures to control robots’ behavior. Brainfarm, in fact, is a
serious game designed to introduce students in what has been defined the century of
the brain. Moreover, Brainfarm allows user to choose more robots than ever in order
to get more fun and more hints about how brain and body work tightly coupled to
solve survival problems [16]. Robots can be trained genetically or with an online
learning algorithm such as Hebbian and the like. As in Breedbot and Bestbot, the
robot’s virtual controller can be evolved in a fully customizable environment (Fig. 3
Bottom) and downloaded onto several robots from Lego Next to Khepera, E-puck,
and custom robots (Fig. 3 Top).

3 AL Used as a Hidden Game Engine: Learn2Lead

Learn to Lead (L2L) is a digital laboratory (2D web-based game) where an
user (the leader) learns psychological leadership theories by governing a team of
artificial agents (the followers). The game is based on the Full-Range Leadership
Theory (FRL), a well-known scientific theory about leadership dynamics in small
groups [17]. The game mechanics is developed by using AL techniques (agents-
based modeling and artificial neural networks), in this software the AL engine is
hidden to the users. In fact, it is only an effective technique to implement the FRL
tenets, whereas in Breedbot and its sequels, the AL engine is an important part
of the interactive process. The first version of L2L (Fig. 4) has been used in several
European vocational courses about Leadership and Human Resources Management.

To become a good leader one has to study a lot of psychology, to attend very
costly MBA courses or maybe to observe as much as possible human behaviors.
This latter solution at first glance may seem very time- and resource demanding
but implemented in the right way can be the best solution in leaders education. In
fact, modeling human behavior in a proper agents simulator can offer learners the
possibility to check how agents’ behavior change varying a set of psychological
variables. Although Learn2Lead could not substitute a long and professional
training, as an implementation of a psychological theory in an agents simulator can
be used as a powerful supporting tool in teaching how to successfully manage a
group of followers [18].

Each follower has to accomplish a task, allocated by the leader, in different
kinds of environments. The maximum workload is determined by two variables:
ability and motivation. The player/leader can vary those variables through a series
of possible actions (for example, by sending the follower to a training course, or
by stressing them). Leaders get a score on the basis of the motivational and skill
development of the followers. In the gameplay leaders are human players, whereas
followers are artificial agents controlled by a connectionist network. The idea
underlying this general framework is that in some given conditions, the leader agent
(i.e., the player) has to take some decision about one or more followers. The game
design described thus far requires a method for simulating the behavior of followers.
The player must feel that his actions do have reliable and realistic consequences on
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Fig. 4 An L2L environment

Fig. 5 L2L agent model. According to the FRL theory each agent behavior is guided by a set of
external variables such as leader’s behavior, workload, etc. and a set of internal variables related
to personality, motivation, ability, and stress. This model in L2L has been implemented exploiting
the mathematical power of neural nets

the behavior and development of their followers. In order to model the follower
dynamics we used a bio-inspired computational approach: the teamwork was
constituted by a set of artificial agents and each agent was controlled by a neural
network implementing FRL theory (Fig. 5). In other words we used a combination
of two techniques: agent-based modeling and artificial networks so as to combine
social and cognitive factors [19]. Agent-based simulations are extensively used in
many branches of natural and social sciences to study complex phenomena that
are not safely reducible to a set of mathematical equations [20]. These phenomena
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typically emerge from the interaction among individual entities. Examples are
organisms living in an ecosystem or human beings acting in a society [21].

To build an agent-based simulation of the FRL theory we started modeling
followers as artificial agents. Artificial Agents are essentially input–output systems
with an internal state that changes over time depending on the external input and
some internal variables. As shown in Fig. 5, every follower has some internal vari-
ables that affect the final contribution in getting through the jobs assigned. The most
relevant to the FRL theory is the motivation. The motivation level is affected by three
subcomponents: intrinsic, reward, and fear. The intrinsic component models the
dynamics of intrinsic motivation and it is related to the transformational leadership
style while the reward and fear components model extrinsic motivation and are
related to the transactional leadership style. What differs among the three is the
time dynamics, specifically their decay rate. For example, the intrinsic component
has a slower decay rate than the reward and fear, but can be activated only by
appropriate leader behaviors (typically pertaining to transformational style). The
stress variable is linked to some external inputs like social interaction, workload, and
deadlines. It affects the contribution and is an important aspect to keep under control
during the game. Stress also has a modulator effect on the leader motivation-oriented
behaviors. Personality and ability try to capture what the FRL theory says about
individual consideration. Ability level is linked to follower performance. Personality
is conceived as a modulator for the leader behavior so that the same leader action
may have a different impact on followers with different personality. On the contrary,
the leader that aim at raising the motivation of the team as high as possible needs to
perform some individualized consideration.

4 Conclusions

In this paper we showed two ways to build serious game systems exploiting the
power of AL techniques. In particular, we applied agent modeling, neural networks,
genetic algorithms, and robotics. It is important to stress out the different meaning
of the use of AL techniques in the two cases (Breedbot, Bestbot and Brainfarm
vs L2L). In the first one, AL techniques such as neural networks and genetic
algorithms are utilized as overt tools to guide artificial organisms design, so as to
enable users to learn fundamental principles of autonomous robotics. The neural
network, here, is just an artificial brain (resembling the functioning of living brains),
and its structure is directly accessible and customizable by users as well as the
genetic algorithm parameters that lead to the evolutionary process. Whereas in the
second case, AL techniques are the mathematical bio-inspired implementation of a
psychological theory (FRL): hence only a powerful way to implement a scientific
theory. Our two cases show how AL techniques can boost serious game systems
toward a new level of usability in the context of a bio-inspired evolutionary design
process (evolutionary autonomous robotics) and in the field of management training.
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The importance of such tools relies on the possibility they offer to train a target
audience, in complex topics such as evolutionary robotics and group dynamics, with
ease using multiple media in a playful context.
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The Effects of Multivalency and Kinetics
in Nanoscale Search by Molecular Spiders

Oleg Semenov, Darko Stefanovic, and Milan N. Stojanovic

Abstract Molecular spiders are nanoscale walkers made with catalytic DNA legs
attached to a rigid body. They move over a surface of DNA substrates, cleaving
them and leaving behind product DNA strands, which they are able to revisit.
The cleavage and detachment from substrates together take more time than the
detachment from products. This difference in residence time between substrates
and products, in conjunction with the plurality of the legs, makes a spider move
differently from an ordinary random walker. The number of legs, and their lengths,
can be varied, and this defines how a spider moves on the surface, i.e., its gait. Here
we define an abstract model of molecular spiders in two dimensions. Then, using
Kinetic Monte Carlo simulation, we study how efficiently the spiders with various
gaits are able to find specific targets on a finite two-dimensional lattice. Multi-legged
spiders with certain gaits find their targets faster than regular random walkers. The
search performance of spiders depends both on their gait and on the kinetic rate r ,
which describes the relative substrate/product “stickiness.” Spiders with gaits that
allow more freedom of leg movement find their targets faster than spiders with more
restrictive gaits. For each gait, there is an optimal value of r that minimizes the time
to find all target sites. Spiders influence each other’s motion through stigmergy, and
this also affects the search performance.
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1 Introduction

We are developing synthetic nanoscale walkers, called molecular spiders [1, 2],
which are able to move across a surface, propelled by the multivalent chemical
interactions of their multiple legs with the surface (Sect. 2). Molecular spiders may
find use in biomedical applications, such as searching for clinically relevant targets
on the surface of a cell. Here we present simulation-based results on the efficiency
of concurrent search for multiple targets by multiple molecular spiders. Spiders
and their targets are simulated on a finite two-dimensional grid of chemical sites
(Sect. 3), which models the DNA origami surface [3,4] on which we will eventually
carry out laboratory experiments.

Molecular spiders’ legs are made of catalytic single-stranded DNA. These
molecules are not known in nature, though they easily might have evolved in nature.
Being both catalytic and information-carrying, they are candidate components for a
synthetic biochemical artificial life. When we study them in simulation, we are not
only taking inspiration from natural life, as in the field of artificial life, but we are
also prototyping how the natural world can be refashioned and engineered, which
one might call real artificial life.

The salient kinetic parameter governing the walking behavior of a molecular spi-
der is the ratio r between the residence time of a spider’s leg on a previously visited
site (spent product) and the residence time on a new site (fresh substrate) [5–8];
r is at most 1 because substrates are generally “stickier” than products. As r is
decreased, the motion exhibits an increasingly strong superdiffusive transient [7].

The conclusion of our searching behavior simulations (Sect. 4) is that the
efficiency of search again strongly depends on r and the configuration of the spiders,
but it is also influenced by the spiders’ indirect (stigmergic) interactions through the
modification of the surface. Among the studied spider configurations we found that
those spiders whose legs have more freedom of movement find their targets faster
than spiders with more restrictive rules of leg movement. Also, for the studied finite
surface, we found that the efficiency of search does not vary monotonically with r ;
indeed, in each of the several configurations of multi-legged spiders we simulated,
there was a distinct optimal r value. This behavior is a consequence of the interplay
between the effects of the spiders’ having multiple legs and the kinetic bias (Sect. 5).

2 Molecular Spiders

Cells in nature accomplish many of their complex tasks using self-assembled
filament tracks and (linear) molecular motors that walk directionally along the
filaments [9–14]. These natural protein motors solve the problem of efficient
molecular cargo transport across the cell. Recent advances in single-molecule
chemistry have led to synthetic molecular motors [15, 16], including molecular
assemblies that walk over surfaces, typically following fabricated or self-assembled
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Time

Unbound leg Bound leg

Product

Substrate

Fig. 1 A molecular spider moves over a surface covered with fixed chemical substrate sites as its
legs bind to and unbind from the sites

tracks [2,17–24]. Such systems can be viewed from the nanotechnology perspective
as cargo-transport elements for future systems, such as drug delivery systems that
can walk over a cell surface and sense and analyze disease markers expressed on it.
From a basic-science perspective, they can be useful as model systems for the study
of alternative cell chemistries and origins-of-life scenarios, given that they are much
simpler than the protein motors found in nature today. Among these are molecular
spiders, DNA-based autonomous synthetic molecular motors [1, 2].

A molecular spider consists of an inert body to which are attached flexible
enzymatic legs (Fig. 1, left). We have reported spiders with up to six legs, using
a streptavidin or streptavidin dimer scaffold for the body [1]. Each leg is a
deoxyribozyme—an enzymatic sequence of single-stranded DNA that can bind to
and cleave a complementary strand of a DNA substrate. The hip joint between
the body and a leg is a flexible biotin linkage. When a molecular spider is placed
on a surface coated with the single-stranded DNA substrate, its legs bind to the
substrate. A bound leg can either detach from the substrate without modifying it,
or it can catalyze the cleavage of the substrate, creating two product strands. The
cleavage occurs at a designed ribonucleobase position within the otherwise DNA
substrate. (The 8–17 enzyme we use for the legs was originally selected to cleave
RNA [25].) Upon cleavage the two product strands eventually dissociate from the
enzyme leg. The “lower” product remains bound to the surface. Because the lower
product is complementary to the lower part of the spider’s leg, there is a residual
binding of the leg to the product; this binding is typically much weaker than the
leg-substrate binding and thus much shorter-lived. The “upper” product remains in
solution, so there can be some product rebinding. In laboratory experiments this
effect is minimized with a flow setup; in our model, we neglect it.

Surface-plasmon-resonance experiments [1] show that a spider moves in a highly
processive manner, cleaving thousands of substrates before eventually detaching
from the surface (Fig. 2). We conclude that it moves in the direction of fresh
substrates, leaving behind a trail of products (Fig. 1). But experimental observation
of the motion has been limited by the small scale of a spider; although atomic-
force microscopy and single-molecule fluorescence studies have been used to great
effect [2], it has not yet been possible to establish the spider’s movement and gait
with certainty, nor to track the substrate cleavage site-by-site in real time. It has
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Fig. 2 Sensorgram for a no-flow SPR experiment: at high dilutions (1:3800) a four-legged spider
cleaves 100 % of the substrate offered and shows an initial linear increase in the amount of released
product (trend line drawn through the first 2,500 cleavage events). Redrawn from [1]

therefore been necessary to approach the problem using detailed modeling studies,
through mathematical analysis and computer-based simulations [5–8, 26–28].

Molecular spiders, viewed as random walkers, have been modeled at different
levels of abstraction, and with various parameter settings. Their asymptotic behavior
is diffusive, just as with ordinary random walkers. However, and more important
for the connection with laboratory experiments, superdiffusive behavior is observed
in the transient, and it lasts for significant amounts of time, over which a spider
covers significant distances. We showed [7] that in the presence of a residence-time
bias between substrates and products this behavior can be explained by the spider’s
switching between two states—being on the boundary of the fresh substrates and
being in the sea of already cleaved products. A spider on the boundary extracts
chemical energy from the landscape, moves preferentially towards fresh substrates,
and thus carries the boundary along. A spider that has stepped back into the products
wanders aimlessly, i.e., diffuses.

Depending on the level of detail captured by the model, many kinetic parameters
can be used to characterize the motion [8]. The basic parameter, however, already
present in the most abstract model [5], is the chemical kinetic ratio r mentioned
above. Because all our models are at heart continuous-time Markov processes, r is
defined as the ratio between the transition rate out of a leg-on-substrate state and
that out of a leg-on-product state. In this paper, we only use this abstract model, and
so r is the only kinetic parameter.1

Once we have characterized how well the spiders are able to walk, the question
becomes what tasks spiders can usefully do, such as carrying cargo molecules,
following predesigned tracks, or searching for targets in unstructured landscapes.
The latter is the topic of the present study. We describe models of future experiments
wherein several identical molecular spiders will search for multiple specific target
sites located on a finite surface made using the DNA origami technique. We are
interested in the time it takes for all the spiders to find their targets.

1Elsewhere we study additional kinetic details using more elaborate and more computationally
expensive models [8]. These models do permit useful characterization of mechanical motor
properties, but they do not alter the basic walking behavior.
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3 Abstract Model of Molecular Spider Motion and Search

Our model is a natural extension of the Antal–Krapivsky model [5, 6], modified to
account for the movement of multiple spiders in two dimensions.

3.1 Motion

In our model, a spider walks on a two-dimensional rectangular lattice representing
the chemical sites (initially substrates). There is complete exclusion: when one of
the spider’s k legs detaches from a site, it moves to an unoccupied site in a certain
neighborhood of its current location; sites occupied by another leg (whether of
the same spider or of a different one) are excluded. The concrete definition of a
neighborhood is different for different instances of the model, representing different
spider gaits. Figure 3 illustrates the neighborhoods n we use in our model instances:
a black circle is the current leg site and the surrounding white circles are sites
accessible within one step. Because any leg can rebind immediately to the site which
it just left, the current site is also considered to be a part of the neighborhood.

Another constraint on the leg movement is the maximum distance S between any
two legs of a spider. The distance S can be measured differently in different models.
In the following, we use two distance metrics, the Manhattan (L1) distance Sm and
the Chebyshev (L1; maximum) distance Sz.

Together, the parameters n, S , and k define the gait of a spider. Within the
constraints of the gait, a spider’s motion is governed by the chemical kinetics of its
legs, which we model as a continuous-time Markov process. Each leg independently
interacts with the chemical site it is on; at the high level of abstraction of this model,
the interaction is completely described by a single transition rate. A leg detaches at
rate one from a product, and at rate r from a substrate, where r � 1. When a leg
leaves a substrate, that substrate is transformed into a product. At the high level of
abstraction of the model, the reattachment of the leg is instantaneous. There is no
directional bias in the model: if in the current state there are several moves that do
not violate any restrictions, the leg that is moving chooses any one of them with
equal probability.

3.2 Search

In our search model, the lattice is of a finite fixed size, 22 by 32; the numbers may
seem arbitrary, but they reasonably describe the DNA-origami tiles used in past
molecular spider experiments [2]. We use three searching spiders, initially in one
corner of the lattice. The search targets are the three special trap sites, in the three
opposite corners. We assume that a leg that attaches to a trap remains forever bound
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n= m1 n= m2 n= m3

a b c

Fig. 3 Neighborhoods studied. By exploring a variety of neighborhood sizes and shapes in this
abstract model, we hope to guide the choice of parameters for physical spiders in future laboratory
experiments, primarily the leg length (which can be adjusted using spacers)

to it.2 Furthermore, when a spider’s leg is thus trapped, all its legs cease moving.
All remaining sites initially are ordinary cleavable substrates. Because there are as
many targets as there are spiders, eventually each spider reaches a target. When all
target sites have been found all motion stops (in this crude abstraction).

The chemical kinetics parameter r and the spiders’ gait parameters n, S , and k

are the variable parameters of the model, and they will influence how fast the spiders
move and search for targets. In the following section we begin our exploration of
this parameter space.

3.3 Interaction

In the model, spiders influence each other’s motion in two ways. First, through
the exclusion principle: if the legs of one spider occupy some set of sites, then
another spider’s legs are prevented from occupying any of those sites. Second,
through stigmergy, or communication via modification of the environment: when
one spider makes several moves, it leaves behind a trail of products; another spider
can subsequently encounter those products on its way and they will affect its future
moves.

In 1D when one of a spider’s legs is attached to a substrate while its remaining
legs are attached to products, in other words when the spider is located on a
boundary between substrates and products, it will move with a bias towards
substrates [6]. A similar bias will occur in 2D, and thus when a spider encounters
products (its own trace or other spiders’ traces), it will more likely move towards
fresh substrates. The boundary in 2D can have much more different shapes than in
1D, and sometimes this might lead to a bias in a wrong direction. For example, just

2In the laboratory, an uncleavable, pure-DNA substrate has been used [2] for the purpose. In
envisaged applications, the targets presented on the cell surface will not necessarily be DNA
strands. To bind to non-DNA targets, in addition to the legs a spider may carry an “arm,” an aptamer
molecule that specifically binds to the target.



The Effects of Multivalency and Kinetics in Nanoscale Search by Molecular Spiders 167

several substrates sites can mislead a spider into a big sea of products. However, we
expect such scenarios to be rare and in most cases the bias to be in a direction of truly
unexplored areas of the surface. There is thus a repulsive stigmergic interaction: we
expect spiders preferentially to avoid the traces of other spiders.

In consequence, in a target search application we expect the spiders to prefer-
entially search for targets in new, unvisited locations. To evaluate the importance
of exclusion and stigmergy for the search task we compare the performance of the
model with two alternative modifications. In the first modification we make spiders
move on separate and initially identical surfaces, i.e., each spider has its own surface
and they cannot see one another. However, they still share the same trap sites, so
if one spider finds a particular trap site, that site will appear as occupied for all
other spiders. This modification to the original model removes both exclusion and
stigmergy from the model and allows us to evaluate how fast these independent
spiders can find all traps. In the second modification, all spiders move on the same
surface, but each surface site contains three different chemical components, keyed to
the three spiders. When a leg of a particular spider a leaves some site x it affects only
the component xa of site x corresponding to a: if xa was a substrate it is converted
into a product. Thus, in this modification, a spider can see only its own traces and
has no access to other spiders’ traces. While a site x is occupied by spider a, the
other two spiders are barred from it. Thus, this modification of the model eliminates
stigmergic communication between spiders but preserves the exclusion principle,
allowing us to evaluate the importance of stigmergy alone.

3.4 Model and Simulation

Combining the states of all the spiders and the surface gives a continuous-time
Markov process for our model. We use the Kinetic Monte Carlo method [29] to
simulate multiple trajectories of this Markov process. The simulation stops when
all spiders are trapped, i.e., the search is complete, and then the simulated time
is recorded. This time is an observation of a first-passage-time random variable.
The results below will show the mean first passage time estimated from our
traces.

4 Simulation Results

We carried out simulations using the following seven spider gaits: (a) k D 2, Sz D 1,
n D m1; (b) k D 2, Sm D 2, n D m3; (c) k D 2, Sm D 3, n D m2; (d)
k D 3, Sm D 2, n D m3; (e) k D 3, Sm D 3, n D m2; (f) k D 4, Sm D 2,
n D m3; (g) k D 4, Sm D 3, n D m2; and a simple random walker, which can be
viewed as a spider with parameters (h) k D 1, Sm D 1, n D m1. These gaits were
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Fig. 4 The initial state of the system and the spider gait for each simulated configuration.
Configurations (a)–(g) are multi-legged spiders and configuration (h) is the control one-legged
spider. (a) k D 2, Sz D 1, n D m1 (b) k D 2, Sm D 2, n D m3 (c) k D 2, Sm D 3, n D m2 (f)
k D 4, Sm D 2, n D m3 (g) k D 4, Sm D 3, n D m2 (h) k D 1, Sm D 1, n D m1

chosen to correspond to different physically realistic molecular spiders, but it must
be admitted that the space of plausible possible gaits is much larger, and we must
defer its exploration to a future study. Figure 4 describes the chosen gaits, along with
the initial spider positions and the target site positions, shown graphically. Initial
positions for the gaits with equal number of legs k are equivalent, and thus Fig. 4
groups the gaits by k.

Solid black, striped, and dotted circles represent the initial leg positions of the
first, second, and third spiders, respectively; solid gray circles represent ordinary
substrates; stars represent the three target traps. The targets are non-specific, that is,
any spider can be trapped by any target.

Simulation results are shown comprehensively in Fig. 5, and also individually
for each gait in Fig. 6 to reveal additional detail. Figure 6 also contains results for
non-communicating spiders with and without exclusion.
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(a) k = 2, Sz = 1, n= m1

(f) k = 4, Sm = 2, n= m3

(g) k = 4, Sm = 3, n= m2

(e) k = 3, Sm = 3, n= m2

(d) k = 3, Sm = 2, n= m3

(c) k = 2, Sm = 3, n= m2

(b) k = 2, Sm = 2, n= m3

(h) k = 1, Sm = 1, n= m1

Fig. 5 Search time as a function of the kinetic parameter r for the eight configurations simulated.
(a)–(g) are multi-legged spiders; (h) is a one-legged spider

4.1 The Effect of the Gait

In Fig. 5 curves corresponding to the studied gaits have different shapes and
are vertically separated. Thus, the gaits of the spiders greatly influence their
performance, and spiders with particular gaits can be faster than regular random
walkers. For the simulated surface, spiders with gaits that allow more freedom
for the legs to move (i.e., when a leg is moving to a new site it has more sites to
choose from) achieve better performance. Two- and three-legged spiders with gaits
(b), (c), (d), and (e) are the fastest among those simulated; they have either the
larger neighborhood n D m3 or the longest possible distance between legs Sm D 3,
which makes these gaits the least restrictive. Spiders with gait (a) k D 2, Sz D 1,
n D m1 are the slowest, despite having the same number of legs k D 2 as the
best performing spiders, with gait (c): gait (a) is much more restrictive, and with its
parameters Sz D 1 and n D m1 it gives a small candidate set of new positions for
the legs. Gaits (f) k D 4, Sm D 2, n D m3 and (g) k D 4, Sm D 3, n D m2 are
also slower than gaits (b) through (e): they have the same parameters Sm and n, but
the addition of an extra leg reduces the choice of sites for a moving leg (because the
new position must be within a certain distance from each of the legs that remains
attached), which leads to slower performance.
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Fig. 6 Enlarged plots from Fig. 5, in which the existence of an optimum r value for the multi-
legged spiders can be discerned better. Also shown in each plot is a comparison with the two
model modifications, non-communicating spiders with and without exclusion. (h) k D 1, Sm D 1,
n D m1 (a) k D 2, Sz D 1, n D m1 (b) k D 2, Sm D 2, n D m3 (c) k D 2, Sm D 3, n D m2 (d)
k D 3, Sm D 2, n D m3 (e) k D 3, Sm D 3, n D m2 (f) k D 4, Sm D 2, n D m3 (g) k D 4,
Sm D 3, n D m2
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4.2 The Effect of the Kinetics

We now examine the influence of the kinetics (i.e., the difference between the sub-
strates and the products displayed on the surface, which is amenable to adjustment in
the laboratory) on the search performance of the spiders. We used 40 different values
of the chemical kinetics parameter r in the range from 0:025 (heavy substrate-
product bias) to 1:0 (no bias) in increments of 0:025. Results are shown in the eight
panels of Fig. 6. The kinetic parameter r significantly affects the performance of
the spiders. One-legged spiders always have better performance when r is bigger—
this observation is similar to the results of the study of one-legged spiders in one
dimension [6]. Thus, the presence of memory on the surface in the form of substrates
and products does not improve the performance of a monovalent random walker. For
multi-legged spiders each gait has an optimal r value that minimizes the search time;
this behavior is similar to two-legged spiders in one dimension [7].

In previous work [7] we found that when r < 1, spider ensembles go through
three different regimes of motion—initially, spiders move slowly; then they start
moving faster and achieve better performance than regular diffusion; and, finally,
in the time limit they slow down and move as regular diffusion. For lower r

values the initial slow period is longer than for higher r values, but then later the
superdiffusive period is longer and faster for smaller r values. For travel over shorter
distances the length of the initial period is more important than for longer distances
and thus smaller r values can result in higher first passage times. For travel over
longer distances the superdiffusive period is important and smaller r values give
better results. Thus for every particular distance there is an optimum value r that
minimizes the mean first passage time. Figure 7 shows the mean first passage time
for a single two-legged spider in one dimension. For example, for the distance of
50 sites the spider with r D 0:1 is faster than the other (sampled) r values; but for
the distance of 20 sites the r D 0:5 spider is faster. Also, although spiders with
r D 0:01 and r D 0:005 are the slowest for distances of 50 sites and less, they
eventually overtake all other simulated spiders at greater distances. Thus, similarly
to these results for two-legged spiders in one dimension [7], we speculate that for
bigger search lattices the optimum r values will decrease.

4.3 The Effect of Spider Interactions (Exclusion and
Stigmergy)

Figure 6 shows that for all gaits except (h) (random walk) spiders with stigmergy
perform better than non-communicating spiders when r is around its optimum value.
As expected, for values of r closer to 1:0, the role of stigmergic communication is
less significant, because the difference between visited and unvisited sites is small,
and thus the traces of spiders influence their behavior only weakly. For the values
of r between the optimum and 1:0, the difference between communicating and
non-communicating spiders depends on the spiders’ gaits. For the best performing
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Fig. 7 Mean first passage time of a single two-legged spider moving over an infinite one-
dimensional track initially covered with substrates

gaits (b) and (c), the advantage of stigmergic communication grows as r decreases
from 1:0 to its optimum value. For the gait (h) (random walk) the advantage of
communication also grows as r decreases, while the search time of both communi-
cating and non-communicating spiders grows. This happens because the presence
of substrates only serves to slow the random spiders down, and non-communicating
random spiders initially have more substrates in total (for non-communicating
spiders there is initially a field of substrates per spider, while communicating spiders
share just one field). Thus, non-communicating spiders use more time to clear
the substrates off their surfaces. For the gaits (d)–(g), as r decreases from 1:0

to its optimum value, the difference in search time between communicating and
non-communicating spiders remains very small. For those gaits the advantage of
stigmergic communication begins to emerge only when r is close to its optimum
value.

Comparison of non-communicating spiders with and without exclusion shows
that the influence of exclusion on search time is less significant than the influence
of communication. The effect of exclusion also depends on the number of legs. For
gaits with one and two legs, the difference in search time between spiders with and
without exclusion is very small. For bigger spiders, with three and four legs, this
difference grows, and spiders with exclusion are a little faster than spiders without
exclusion. In fact, for spiders with three and four legs and a range of r values
between the optimum and 1:0, spiders with exclusion and without communication
perform the best, by a small margin. As with regular random walkers this happens
because non-communicating spiders effectively have more substrates initially, but
in contrast to regular random walkers the substrates make them faster, and this
improves the search performance. But even for those gaits, communicating spiders
with exclusion overtake non-communicating spiders as r approaches its optimum
value.
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5 Discussion

The simulations were performed for a relatively small lattice and the gaits that are
currently the fastest may not turn out to be so for bigger lattices. Also, it appears
that r values have more influence on search time for some gaits than for others:
gaits (f) k D 4, Sm D 2, n D m3 and (g) k D 4, Sm D 3, n D m2 get the most
improvement in performance when r decreases from one to its optimal value, and
gaits (b) k D 2, Sm D 2, n D m3 and (c) k D 2, Sm D 3, n D m2 get the least
improvement. To understand this dependence, in future work we shall study gaits
more systematically, i.e., have a scenario to vary the parameters k, S , and n.

Search performance can also be affected by the initial conditions we are using,
and different initial condition may result in different optimal gaits and different
optimal r values. To account for these effects, in future work we shall vary the
placement of the targets and the spider starting positions, as well as the number of
targets and spiders.

A number of assumptions had to be made to reduce the complex interactions of
physical molecular spiders on DNA origami tiles, which have not yet been fully
experimentally characterized and understood, to a tractable mathematical model
amenable to efficient computer simulation. The highly abstract model presented
here may sacrifice too much physical realism; at the opposite end of the abstraction
spectrum are molecular dynamics approaches, but those are infeasible at the space
and time scales of interest. Laboratory experiments can reveal the ground truth, but
are too expensive for a full exploration of the parameter space. Instead, we plan to
use mesoscale models [8] to refine these initial results.

Our system can be viewed as a hierarchical multi-agent system: the system
consists of multiple spiders, and each spider consists of multiple legs. The legs and
the spiders interact through exclusion, and also stigmergically as they modify the
surface; and the legs of one spider interact through kinematic constraints. But we are
not free to design this multi-agent system as we please to achieve some system-level
behavior; instead, we are severely restricted in the design of the agents: they are just
molecules of a particular kind, not intelligent agents. Thus, recalling the principle
of complexity theory that simple local rules, iterated, may give rise to complex
global behaviors, we are asking whether this also happens in a very primitive
setting. We do not expect to be able to mimic the complexity of behaviors of even a
single ant, which after all is billions times more structurally complex. However, we
hope that our results will aid in the development of nanoscale molecular walkers.
In future, we plan to continue the study of searching behaviors and to initiate a study
of additional biochemically plausible modes of spider–spider interaction.
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Towards the Use of Genetic Programming
for the Prediction of Survival in Cancer

Marco Giacobini, Paolo Provero, Leonardo Vanneschi, and Giancarlo Mauri

Abstract Risk stratification of cancer patients, that is the prediction of the outcome
of the pathology on an individual basis, is a key ingredient in making therapeutic
decisions. In recent years, the use of gene expression profiling in combination
with the clinical and histological criteria traditionally used in such a prediction
has been successfully introduced. Sets of genes whose expression values in a
tumor can be used to predict the outcome of the pathology (gene expression
signatures) were introduced and tested by many research groups. A well-known
such signature is the 70-genes signature, on which we recently tested several
machine learning techniques in order to maximize its predictive power. Genetic
Programming (GP) was shown to perform significantly better than other techniques
including Support Vector Machines, Multilayer Perceptrons, and Random Forests in
classifying patients. Genetic Programming has the further advantage, with respect to
other methods, of performing an automatic feature selection. Importantly, by using a
weighted average between false positives and false negatives in the definition of the
fitness, we showed that GP can outperform all the other methods in minimizing false
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negatives (one of the main goals in clinical applications) without compromising
the overall minimization of incorrectly classified instances. The solutions returned
by GP are appealing also from a clinical point of view, being simple, easy to
understand, and built out of a rather limited subset of the available features.

1 Introduction

The side effects of cancer systemic therapies are extremely debilitating for patients,
so that it is extremely important to be able to match type and dosage of the therapy
to each individual patient based on his/her risk of relapse. Accurate methods of risk
stratification, i.e. the prediction of the outcome of the disease, could spare many
patients such side effects.

Patient classification is mostly based on clinical and histological parameters. The
advent of gene expression profiling techniques has led, in the last decade, to a large
body of research on the use of transcriptomics to better understand the molecular
bases of cancer, on the one hand, and to improve patient classification, on the other.

A gene signature is defined as a set of genes whose expression profiles can
be used to discriminate between biological states (see [1]): in the case of cancer,
they have been used to distinguish cancerous from non-cancerous conditions and to
classify cancer patients based on their risk of relapse.

A much larger body of research has been devoted to the problem of iden-
tifying gene signatures in various types of cancer rather than to the question
of which algorithms can be used to maximize their predictive power. Machine
learning methods [2] have been applied to the analysis of gene expression pro-
filing datasets, including k-nearest neighbors [3], hierarchical clustering [4], self-
organizing maps [5], Support Vector Machines [6, 7], or Bayesian networks [8].
In the last few years also Evolutionary Algorithms [9] found application to gene
expression analysis, both for feature selection and for classification. In particular,
Genetic Algorithms [10] were used to build selectors in which each allele of the
representation corresponds to one gene and its state denotes whether the gene is
selected or not [11]. Genetic Programming (GP), on the other hand, was shown to
work well for recognizing structures in large datasets [12]. GP was applied to gene
expression data to generate programs able to reliably predict the health/malignancy
states of tissues, or to discriminate between different tissues. GP automatically
selects a small number of feature genes during its evolution [13], so that the
evolution of classifiers from the initial population integrates gene selection within
classifier construction. For example, GP was applied by [14] to cancer gene
expression to select relevant feature genes to include in molecular classifiers of
tumor samples. Furthermore, GP has been successfully used to discover rule-based,
easy-to-interpret classifiers from medical [15] and gene expression data [16].

We have recently compared the effectiveness of various machine learning
approaches for risk stratification in cancer [17]. Such a comparison was based on
the well-established “70-genes signature,” a list of genes identified by [18] based
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on correlation with survival on a large cohort of patients. This set of genes provides
the basis for the breast cancer molecular prognostic test “MammaPrint”™ and is
described in Sect. 2. In [17] both the outcome of the disease (survival status at a
given endpoint) and of the gene expression profiles were preprocessed so as to
transform them into binary variables, since this is the type of variables on which
GP works in the simplest and most natural way by combining them using logical
operators. Indeed many GP benchmarks such as the even parity or the multiplexer
problems [19] are built in this way. Moreover, the solutions found by such GP
algorithms are in general quite easy to interpret from a biological viewpoint.

In order to minimize possible biases we used default implementations and
parameters of all machine learning methods, and the results we obtained in [17]
showed that GP clearly outperforms all other techniques. All methods other than GP,
on the other hand, showed comparable performance, which indicated GP as the most
promising method. When we compared the best solution found by GP to the original
scoring method proposed in [18, 20] we obtained a rather small difference, below
statistical significance. As expected, due to its construction, the scoring method was
superior to all machine learning algorithms in minimizing false negatives, which is a
very important task in clinical applications: indeed, a false negative in the prediction
algorithm could cause in principle the withdrawal of therapy from a patient who
would actually benefit from it, an error that is naturally considered worse than the
opposite one.

Nevertheless, GP showed some interesting aspects. For instance, it generated
solutions based on a small number of genes as a result of a strong automatic
feature selection. This added value of the GP approach, together with the promising
performances shown by GP, motivated us to further pursue this line of research along
the lines described in the present work.

First, we abandoned the binarization of the expression data performed in [17]
to avoid the inherent loss of information: we used instead the original floating
point valued expression profiles of the 70-genes dataset. Moreover, we introduced
a parameterization of the fitness function so that false negatives can be penalized
differently from false positives, making the classifier tunable in terms of sensitivity
and specificity.

2 The 70-Genes Signature Dataset

We used the cancer gene expression profiling data of [20] (“NKI dataset”), which
includes gene expression and survival data for 295 young breast carcinoma patients
who did not undergo systemic treatment. We limited the analysis to the genes
included in the “70-genes signature” [18]. The targets were the survival data
transformed into an outcome in binary form, namely the survival status of the patient
at the fixed endpoint time tend D 10:3 years, chosen so as to balance the number of
deceased and surviving patients: exactly half of the 148 patients for which the status
at tend is known had deceased.



180 M. Giacobini et al.

Our dataset is represented by a matrix H D ŒH.i;j /� with 148 rows (instances)
and 71 columns (features). Each line i represents the gene expression profile of a
patient given by a vector ŒH.i;1/ H.i;2/ : : : H.i;70/� of 70 floating point numbers, plus
one variable expressing representing the target (0 D alive after tend years, 1 D dead
of breast cancer before tend years), placed at position H.i;71/.

Our purpose was then to generate a binary classification model F such that

F.H.i;1/; H.i;2/; : : : ; H.i;70// D H.i;71/

for each line i in the dataset. For each machine learning method we performed 50
independent runs. In each run, the dataset was randomly split into a training set
(70 % of the patients) and a test set (30 %).

3 Genetic Programming

We used tree-based genetic programming (GP) [19, 21], in which solutions are
generated from a set of terminal symbols T and a set of functionals (internal
nodes) F . The set of terminals T included 70 floating point variables (i.e., one
for each feature of our dataset). GP individuals were generated using the set of
functions F D fplus;minus;mul;div;squaredsing, where plus, minus,
and mul are the usual sum, subtraction, and multiplication, while div is the
protected division [19] and squaredsin is the square of the sine trigonometric
function.

GP individuals thus return a floating point value that is then turned into a binary
classifier using a threshold value, which we defined as the average between the
maximum and minimum values in the whole training set.

Initially, we adopted as fitness function the total number of incorrectly classified
instances, thus turning the problem into a minimization one (lower values are better).
Successively we modified the fitness function by introducing the possibility of
weighing differently false positives and false negatives. In other words, the new
fitness function was: ˛ FN C ˇ FP, where ˛ and ˇ are two floating point values
included in the range Œ0; 1�, such that ˛Cˇ D 1. The tuning of ˛ and ˇ can be used
to privilege sensitivity over specificity or vice versa.

Data from our dataset were fed to the GP without filtering nor preprocessing,
to avoid interfering with GP’s ability to automatically perform an implicit feature
selection. The mechanism by which GP automatically selects features is simple [13,
22–24]: the search space explored by GP includes not only expressions using all the
70 variables but also expressions using only subsets of them. If expressions which
use a smaller number of features have a better fitness, they survive into the new
population, since fitness is the only principle used by GP to select solutions.

The parameters used by our implementation of GP and by the other machine
learning methods are reported in Table 1. There is no special justification for the
choice of those parameter values, if not the fact that they are standard for the



GP for Cancer Survival Prediction 181

Table 1 Parameters used in the experiments

GP Parameters

Population size 500 individuals
Population initialization Ramped half and half [19]
Selection method Tournament (tournament sizeD 10)
Crossover rate 0.9
Mutation rate 0.1
Maximum number of generations 5
Algorithm Generational tree-based GP with no elitism

SVM Parameters

Complexity parameter 0:1

Size of the kernel cache 107

Epsilon value for the round-off error 10�12

Exponent for the polynomial kernel 1:0

Tolerance parameter 0:001

Multilayer Perceptron Parameters

Learning algorithm Back-propagation
Learning rate 0:03

Activation function for all the neurons in the net Sigmoid
Momentum 0.2 progressively decreasing until 0.0001
Hidden layers (Number of attributesC number of classes)/2
Number of epochs of training 500

Voted Perceptron Parameters

Exponent for the polynomial kernel 1.0
Maximum number of alterations to the perceptron 10,000

Radial Basis Function Network Parameters

Minimum standard deviation for the clusters 0.1
Number of clusters for K-means 2
Ridge value for the logistic 1:8� 10�8

computational tool we used, i.e. GPLab: a public domain GP system implemented
in MatLab (for the GPLab software and documentation, see [25]). We purposely
avoided all attempts at parameter optimization to prevent the introduction of biases
that could undermine the credibility of the comparison between different methods.

4 Support Vector Machines

Support Vector Machines (SVM) are a set of related supervised learning methods
used for classification and regression. They were originally introduced in [26]
with the aim of devising a computationally efficient way of identifying separating
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hyperplanes in a high-dimensional feature space. In particular, the method seeks
separating hyperplanes that maximize the margin between sets of data. This should
ensure a good generalization ability of the method, under the hypothesis that training
and test data are drawn from the same distribution. To calculate the margin between
data belonging to two different classes, two parallel hyperplanes are constructed,
one on each side of the separating hyperplane, which are “pushed up against”
the two datasets. Intuitively, a good separation is achieved by the hyperplane that
has the largest distance to the neighboring data points of both classes since, in
general, the larger the margin, the lower the generalization error of the classifier.
The parameters of the maximum-margin hyperplane are derived by solving large
quadratic programming (QP) optimization problems. There exist several specialized
algorithms for quickly solving the problems that arise from SVMs, mostly reliant
on heuristics for breaking the problem down into smaller, more manageable chunks.
In this work we used the implementation of John Platt’s [27] sequential minimal
optimization (SMO) algorithm for training the support vector classifier. SMO
works by breaking the large QP problem into a series of smaller two-dimensional
sub-problems that may be solved analytically, eliminating the need for numerical
optimization algorithms such as conjugate gradient methods. The implementation
we used is the one contained in the Weka public domain software [28].

The main parameter values used in this work are reported in Table 1. All these
parameter values correspond to the standard values set by the Weka software [28] as
defined, for instance, in [27]. We are aware that, in several application domains,
SVM have been shown to outperform competing techniques by using nonlinear
kernels, which implicitly map the instances to very high (even infinite)-dimensional
spaces. Unfortunately, the implementation of SVM in Weka sets as default the
polynomial kernel with degree 1. This means that we evaluate the accuracy of
linear SVM (SVM in the original feature space). Possible improvements, using more
sophisticated kernel functions, will be included in our future work. By now we use
this version of the SVM with the only goal of having an immediate experimental
comparison with GP. Analogous considerations also hold for the other machine
learning methods used, discussed below.

5 Multilayer Perceptrons

The multilayer Perceptron is a feed-forward artificial neural network model [29]. It
modifies the standard Linear Perceptron by using three or more layers of neurons
(nodes) with nonlinear activation functions, and is more powerful than the simple
perceptron in that it can correctly classify data that are not linearly separable, i.e.,
separable by a hyperplane. It consists of an input and an output layer with one or
more hidden layers of nonlinearly activated nodes. Each node in one layer connects
with a certain weight to every other node in the following layer. The implementation
we have adopted is the one included in the Weka software distribution [28]. We
used the backpropagation learning algorithm [29] and the values used for all the
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parameters are reported in Table 1. As for the previously discussed machine learning
methods, also in the case of Multilayer Perceptron it is important to point out
that we used a parameter setting as standard as possible, without doing any fine
parameter tuning for this particular application. Our goal is, in fact, to compare
different computational methods under standard conditions with GP and not to solve
in the best possible way the specific problem. In particular, all the values reported
in Table 1 correspond to the default ones adopted by the Weka software.

6 Voted Perceptron

The Voted Perceptron [30] is an artificial neural network which combines the
Rosenblatt’s Perceptron algorithm [29] with Helmbold and Warmuth’s [31] leave-
one-out method. Like Vapnik’s maximal-margin classifier [26], this method takes
advantage of data that are linearly separable with large margins. Compared to
Vapnik’s algorithm, however, it is simpler to implement, and usually more efficient
in terms of computation time. It can also be efficiently used in very high-dimensional
spaces using kernel functions. In particular, compared to the standard Rosenblatt’s
Perceptron algorithm, the Voted Perceptron stores more information during training.
This information consists in the list of all prediction vectors that were generated after
each and every mistake. This allows us to maintain an updated list of Perceptrons,
labeled by the number of mistakes made during the training phase. At the end
of the training phase, we are then able to perform the prediction by running all
the obtained Perceptrons on the test data, and weighting their result using this
label. Authors of [30] state that this elaborate information, consisting in more than
one predictor and its relative importance or weight, allows one to generate better
predictions on the test data compared to the simple Rosenblatt’s Perceptron. In
particular, for each prediction vector, the number of iterations it “survives”ï£¡ until
the next mistake is made is counted (this count is often referred to as the “weight”ï£¡
of the prediction vector). To perform a classification, the binary prediction of each
of the prediction vectors is computed and all these classifications are combined
by a weighted majority vote. The weights used are the survival times described
above. This makes intuitive sense as “good” prediction vectors tend to survive for
a long time and thus may have better prediction ability, receiving larger weight in
the majority vote. As for the other methods, the Weka standard implementation has
been used, using the Weka default parameters reported in Table 1.

7 Radial Basis Function Network

A radial basis function network (RBFN) is an artificial neural network that uses
a radial basis functions as activation. RBFNs are embedded in a two-layer neural
network, where each hidden unit implements a radial activated function. The output
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Table 2 Comparing the number of incorrectly classified instances on the test sets by each machine
learning method

GP MP RBFN SVM VP

Best 12 10 14 11 10
Average (SEM) 16.56 (0.37) 15.70 (0.49) 17.82 (0.28) 14.72 (0.35) 14.74 (0.31)

For each of the 50 runs performed with each method a different training/test partition of the dataset
was used (see text for details). The first line indicates the method: Genetic Programming (GP),
Multilayer Perceptron (MP), Radial Basis Function Network (RBFN), Support Vector Machines
(SVM), and Voted Perceptron (VP). The second line shows the best value of the incorrectly
classified instances obtained on the test set over the 50 runs, and the third line reports the mean
(SEM) performance of each group of runs on their test sets

units implement a weighted sum of hidden unit outputs. The input into an RBFN is
nonlinear while the output is linear. Their excellent approximation capabilities have
been studied in [32, 33]. Due to their nonlinear approximation properties, RBFNs
are able to model complex mappings, which generally Perceptron neural networks
can only model by means of multiple intermediary layers [34]. In order to use
an RBFN one needs to specify the hidden-unit activation function, the number of
processing units, a criterion for modeling a given task, and a training algorithm for
finding the parameters of the network. In this paper we have used the standard Weka
implementation that consists in a normalized Gaussian radial function network. It
uses the k-means clustering algorithm to provide the basis functions and learns a
logistic regression (discrete class problems) on top of that. Symmetric multivariate
Gaussians are fit to the data from each cluster. All the other parameters are specified
in Table 1.

8 Experimental Results

The purpose of our experimental work focus was twofold. Firstly, we wanted to
avoid the loss of information due to the forced binarization of the gene expression
data performed in [17], we decided to use the original floating point valued
expression data. The results of the comparison of machine learning techniques on
this floating point dataset are discussed in Sect. 8.1. Secondly, we introduced a
tunable fitness function in the GP runs: by assigning greater weight to false positives
(negatives) in the definition of the fitness we aimed at tuning the algorithm towards
better specificity (sensitivity): these results are presented in Sect. 8.2. In the final
Sect. 8.3 we discuss the best solutions found by GP.

8.1 Comparing Different Algorithms

The results of the 50 runs performed for each method on the data described in Sect. 2
are summarized in Table 2. The first two lines indicate the different methods and the
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Table 3 Comparing the number of false negatives on the test sets by each machine learning
method

GP MP RBFN SVM VP

Best 3 5 2 6 3
Average (SEM) 10.66 (0.48) 11.56 (0.49) 10.34 (0.43) 10.34 (0.36) 9.18 (0.36)

For each of the 50 runs performed with each method a different training/test partition of the dataset
was used (see text for details). The first line indicates the method: Genetic Programming (GP),
Multilayer Perceptron (MP), Radial Basis Function Network (RBFN), Support Vector Machines
(SVM), and Voted Perceptron (VP). The second line shows the best value of the incorrectly
classified instances obtained on the test set over the 50 runs, and the third line reports the mean
(SEM) performance of each group of runs on their test sets

best (i.e., lowest) values of the incorrectly classified instances obtained on the test
set over the 50 runs, respectively. In the third line we report the mean performances
of each group of 50 runs on their test sets, along with the corresponding standard
error of mean (SEM from now on).

To assess differences in performance we performed an ANOVA test that indicated
that differences are significant (P-value 8:41 � 10�9). As a post-test procedure we
used Tukey’s Honestly Significant Difference test to determine pairwise significant
differences, which showed a difference between RBFN and all other methods, as
well as showing that GP was outperformed by both VP and SVM. Finally, no
statistically significant difference was detected between VP and SVM, and between
MP and VP, SVM, and GP.

When implementing methods for risk stratification in cancer, it is especially
imperative to minimize the number of false negative predictions (i.e., patients
wrongly classified as low-risk). Table 3 summarizes the false negative predictions
returned by each machine learning method on the 50 runs. As above, the first two
lines indicate the different methods and the best (i.e., lowest) values of the false
negatives obtained on the test set over the 50 runs while the third line reports the
mean performances (together with the corresponding SEM) of each group of 50
runs on their test sets.

When considering only false negatives, the only difference evidenced by ANOVA
(P-value of 4:16� 10�4) together with Tukey’s Honestly Significant Difference test
was the better performance of VP with respect to all the other methods.

8.2 Towards GP with Greater Sensitivity or Specificity

We thus concluded that, contrary to what observed with the binarized expression
dataset in [17], when fed floating point-valued expression data, GP did not outper-
form the other machine learning techniques. On the other hand, it is well known
that the fitness function driving the evolutionary dynamics in a GP framework can
be modified in order to drive the emergence of solutions with desirable features. The
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Table 4 Comparing the number of incorrectly classified instances on the test sets by each GP
variant

GP1;9 GP3;7 GP5;5 GP7;3 GP9;1

Best 17 14 12 11 11
Average (SEM) 24.28 (0.45) 20.58 (0.48) 16.56 (0.37) 15.20 (0.26) 16.02 (0.39)

For each of the 50 runs performed with each variant a different training/test partition of the dataset
was used (see text for details). The first line indicates the GP variant. The second line shows the
best value of the incorrectly classified instances obtained on the test set over the 50 runs, and the
third line reports the mean (SEM) performance of each group of runs on their test sets

fitness function used in the previous section gives the same weight to all incorrectly
classified instances. However, as discussed above, minimizing the number of false
negative predictions is recognized as one of the most important goals for a classifier
intended for clinical use. In fact, the original scoring method originally introduced
in [18, 20] was designed with the goal of minimizing the number of false negatives.
It is therefore not surprising that in this respect the scoring method is far superior to
all machine learning methods.

Therefore, we modified the GP fitness function in such a way that false negatives
(positives) are penalized more than errors of the other type, thus allowing the
algorithm to be tuned towards better sensitivity (specificity). In particular, solutions
with greater sensitivity can emerge if larger weights are assigned to false negatives
compared to false positives. The new fitness function can be written as a weighted
average of the form:

Fitness D ˛ � FalseNegativeC ˇ � FalsePositive

where ˛ and ˇ are two floating point values with ˛; ˇ 2 Œ0; 1� and ˛ C ˇ D 1. The
choice ˛ D ˇ D 0:5 corresponds to the GP fitness discussed in the previous section
(referred to as GP5;5 in the following). We then evolved four more GP classes,
namely

• GP1;9 where ˛ D 0:1 and ˇ D 0:9;
• GP3;7 where ˛ D 0:3 and ˇ D 0:7;
• GP7;3 where ˛ D 0:7 and ˇ D 0:3;
• GP9;1 where ˛ D 0:9 and ˇ D 0:1.

In Table 4 we report the results of the 50 runs returned by each GP variant. As in
the tables above, the first two lines indicate the different methods and the best (i.e.,
lowest) values of the incorrectly classified instances obtained on the test set over the
50 runs, respectively, while the third line reports the mean performances (together
with the corresponding SEM) of each group of 50 runs on their test sets.

We performed a statistical analysis of these results among them and with the
machine learning method that showed the best performance on minimizing the total
number of incorrectly classified instances, namely the Support Vector Machines, as
discussed in Sect. 8.1. ANOVA test showed a significant (P-value of 8:74�2:26�58)
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Table 5 Comparing the number of false negatives on the test sets by each GP variant

GP1;9 GP3;7 GP5;5 GP7;3 GP9;1

Best 12 5 3 2 0
Average (SEM) 21.72 (0.55) 16.60 (0.73) 10.66 (0.48) 6.64 (0.37) 5.0 (0.37)

For each of the 50 runs performed with each variant a different training/test partition of the dataset
was used (see text for details). The first line indicates the GP variant. The second line shows the
best value of the incorrectly classified instances obtained on the test set over the 50 runs, and the
third line reports the mean (SEM) performance of each group of runs on their test sets

overall difference. Tukey’s Honestly Significant Difference test highlighted the
outperformance of SVM, GP9;1, GP7;3, and GP5;5 (that do not show any statistical
difference among them) with respect to GP3;7, and of GP3;7 with respect to GP1;9.

While the GP variants did not result in better performances on all incorrectly
classified instances, this is not true when considering specifically false negatives.
This issue is discussed below, while for reasons of space we do not discuss the
symmetrical problem of false-positive minimization. Table 5 summarizes the results
of the 50 runs returned by each GP variant. As above, the first two lines indicate the
different methods and the best (i.e., lowest) values of the false negatives obtained
on the test set over the 50 runs, respectively; the third line reports the mean
performances (together with the corresponding SEM) of each group of 50 runs on
their test sets.

A statistical analysis of the results shown in Table 5 results in the following
ranking in the performance among the five GP variants and the VP, the best
performing among all other machine learning techniques in minimizing false
negatives (as discussed in Sect. 8.1): GP9;1, GP7;3, GP5;5, GP3;7, GP1;9, with
VP statistically indistinguishable from GP5;5, but GP9;1 outperforming GP7;3 in a
statistically significant way and GP7;3 outperforming VP in a statistically significant
way. Therefore we can conclude that the tunable fitness function is indeed a valuable
tool when minimizing the false negative predictions.

The seventy-gene signature was used by authors of [18, 20] by assigning a
coefficient to each of the genes (features) and computing a score for each patient
as the scalar product of these coefficients and the patient gene expression. To
compare the performance of the various machine learning algorithms, we proceeded
as described in [17]. The mean number of false predictions was 16.7, while the mean
number of false negative predictions was 1.7.

In [17], we compared this method’s performances to those of the other machine
learning techniques on the binarized dataset. Concerning the total number of false
predictions, the scoring method appeared to be superior to all machine learning
algorithm other than GP, and slightly inferior to GP. The difference between the
performances of GP and the scoring method was not statistically significant. On the
other hand, not surprisingly, with respect to false negative predictions, the scoring
method is far superior to all machine learning methods, including GP.

It is intersecting to compare the predictive power of the best-performing GP
classifier presented in this paper to the scoring method: while the scoring method
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Fig. 1 Tree-based representation of the individual found by GP1;9 generating the best value of
incorrectly classified instances

Fig. 2 Tree-based representation of the individual found by GP1;9 with the best value of the false
negatives

still outperforms GP in minimizing the number of false negative predictions,
the opposite is true when considering the total number of incorrectly classified
instances.

8.3 Analysis of the Best Solutions Found by GP

In Fig. 1, we report the individual who generated the minimum number of incor-
rectly classified instances found by GP1;9, represented as a tree. This individual
uses only 6 over the 70 totally available features, and this confirms the ability of GP
to perform an automatic feature selection at the same time as the learning phase.
Furthermore, some of the features, for instance AF257175, recur frequently in this
individual’s expression. We hypothesize that this indicates an interesting correlation
between these features and the target, or at least the fact that these features
are important in determining the target value itself. In the same way, Fig. 2 shows the
individual with the best value of the false negatives found by GP1;9. In this case, the
automatic feature selection performed by GP is even stronger, given that only two
features over the 70 globally available ones are used by this solution. Interestingly,
one of those two features (NM001809) was used also by the solution shown in
Fig. 1. This is a clear indication of the impact of this particular feature in determining
the target. Another interesting characteristic shared by the individuals in Fig. 1 and
in Fig. 2 is the fact that, in both cases, some operators (like squaredsin, plus,
and minus) are used more frequently than the other ones (indeed the multiplication
and division operators do not appear at all in these solutions).
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Table 6 Features used in the solutions found by GP reported in Figs. 1 and 2. The two columns
show accession ID and gene description

Accession ID Gene description

Contig32125RC –
AF257175 Homo sapiens hepatocellular carcinoma-associated antigen 64 (HCA64)

mRNA, complete cds
NM001809 Homo sapiens centromere protein A (CENPA), transcript variant 1, mRNA
Contig38288RC ESTs, weakly similar to quiescin
NM003961 Homo sapiens rhomboid, veinlet-like 1 (Drosophila) (RHBDL1), mRNA
Contig48328RC –
NM016448 Homo sapiens denticleless homolog (Drosophila) (DTL), mRNA

The experiments presented so far, as well as a wide set of further experiments
which returned similar results (not presented here to save space), lead us to
hypothesize a strong impact of the features contained in the two solutions shown
in Figs. 1 and 2 in determining the target value of the used datasets. For this reason,
in Table 6 we list these features, showing the gene accession IDs and an informal
description of the genes.

9 Conclusions and Future Work

Predicting the breast cancer risk is an ambitious and important task, which possibly
constitutes one of the most relevant challenges in the attempt of developing
personalized therapies nowadays. The goal is still far from being accomplished,
and this paper represents only a partial and initial contribution. As a starting point,
we considered the well-known “70-genes signature” and we compared the results
obtained with several machine learning methods. This choice is motivated by the
fact that the “70-genes signature” has been widely studied so far and the genes
contained in it are widely accepted to have an important impact on the target. One
of the first objectives of our study is to further refine this information, trying to
understand, with the help of machine learning schemes, which of these genes are
the most important in target determination and why. For this reason, we believe that
Genetic Programming (GP) can be a very promising technique, given its well-known
ability of performing an automatic feature selection at learning time.

In the first phase of our investigation, we showed that all the machine learning
algorithms we used do have predictive power in classifying breast cancer patients
into risk classes and GP is outperformed by Support Vector Machines and Voted
Perceptron in the minimization of the number of incorrectly classified instances and
by Voted Perceptron in the minimization of false negatives. To minimize the possible
bias, in this first phase we tried to use default implementation and parameter settings
for all methods.

In the second phase, given the different impact of false negatives and false
positives in therapeutic aspects, we tried to enrich GP by changing its fitness
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function into a weighted average between these two error measures. Changing the
fitness function is a possibility that GP offers in a quite natural and straightforward
manner, and that has no equivalent in many other machine learning methods. In this
way, we are able to adapt the GP learning phase to our requirements, biasing the
search towards particular regions of the solutions space. In particular, we performed
some experiments with different values of the weights and we showed that, when
larger weight is given to false negatives, GP obtains results that are comparable to
all the other machine learning methods in minimizing the number of incorrectly
classified instances and it is able to outperform the other machine learning methods
in a statistically significant way in minimizing false negatives.

Another interesting study that we have performed consisted in the analysis of
the data contained in the “70-genes signature” both with the original floating point
valued expressions and with a preliminary binarization. Our results indicated that
GP used on the original floating point valued expression data outperforms GP used
on binarized data (the results obtained on binarized data are presented in [17]).
Interestingly, this is true both in the minimization of the incorrectly classified
instances and in the minimization of the false negatives and these results are always
statistically significant.

Also, we point out that the improvement in performance shown by GP in
minimizing false negatives compared to the original scoring method presented
in [18, 20] was rather small and not statistically significant.

The results presented in this paper pave the way for further investigation on the
use of GP for risk prediction in breast cancer. In particular, we think that GP is a
promising approach and that the presented results can be further improved in the
future because:

• The parameter setting used in this paper was purposely not optimized, and we
can expect substantial improvements in performance from a fine-tuning of the
various GP parameters.

• GP can potentially offer biological insight and generate hypotheses for experi-
mental work (see also [14]). Indeed, an important result of our analysis is that
the trees produced by GP tend to contain a limited number of features, often
repeated several times, and therefore are easily interpretable in biological terms.

• We can change the behavior of GP by modifying the fitness function. In
particular, the algorithm can be tuned towards better sensitivity (specificity),
simply by defining a fitness function in which false negatives (positives) are
penalized more than errors of the other type.

With these premises, we will focus our future work on both improving the per-
formance of GP and interpreting the results from the biological viewpoint. Further-
more, we are currently investigating the impact of the employed tend D 10:3 years
endpoint, in particular on the sensitivity/specificity experiments. Using different
thresholds, in fact, widely changes the dataset and the relationships between features
and target, possibly offering new insights. Last but not least, we plan to extend our
investigations to other datasets on breast cancer as well as to other kinds of diseases.
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A Neuro-Evolutionary Approach
to Electrocardiographic Signal Classification

Antonia Azzini, Mauro Dragoni, and Andrea G.B. Tettamanzi

Abstract This chapter presents an evolutionary Artificial Neural Networks (ANN)
classifier system as a heartbeat classification algorithm designed according to
the rules of the PhysioNet/Computing in Cardiology Challenge 2011 (Moody,
Comput Cardiol Challenge 38:273–276, 2011), whose aim is to develop an efficient
algorithm able to run within a mobile phone that can provide useful feedback when
acquiring a diagnostically useful 12-lead Electrocardiography (ECG) recording. The
method used to solve this problem is a very powerful natural computing analysis
tool, namely evolutionary neural networks, based on the joint evolution of the
topology and the connection weights relying on a novel similarity-based crossover.
The chapter focuses on discerning between usable and unusable electrocardiograms
tele-medically acquired from mobile embedded devices. A preprocessing algorithm
based on the Discrete Fourier Transform has been applied before the evolutionary
approach in order to extract an ECG feature dataset in the frequency domain.
Finally, a series of tests has been carried out in order to evaluate the performance
and the accuracy of the classifier system for such a challenge.
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1 Introduction

In the last decades, cardiovascular diseases (CVD) have represented one of the most
important causes of death in the world [1] and the necessity of a trustworthy heart
state evaluation is increasing. Electrocardiography (ECG) is one of the most useful
and well-known methods for heart state evaluation. Indeed, ECG analysis is still
one of the most common and robust solutions for diagnosing heart diseases, also
because it is one of the simplest noninvasive diagnostic methods for various heart
diseases [2].

In such a research field, one of the most important critical aspects regards the
quality of heart state evaluations since, often, the lack of medically trained experts,
working from the acquisition process to the discernment between usable and
unusable medical information, increases the need of easy and efficient measuring
devices, which can send measured data to a specialist. Furthermore, the volume of
the data that have to be recorded is huge and, very often, the ECG records are non-
stationary signals, and critical information may occur at random in the time scale.
In this situation, the disease symptoms may not be always appreciatable, but would
show up at irregular intervals during the day.

In this sense, the Physionet Challenge [3], on which this chapter focuses, aims at
reducing, if not eliminating, all the fallacies that currently plague usable medical
information provided tele-medically, by obtaining efficient measuring systems
through smart phones.

In this challenge, whose aim is ECG classification, several approaches were
explored; in particular, in order to inform inexperienced user about the quality
of measured ECGs, artificial-intelligence-based (AI-based) systems have been
considered, to reduce the percentage of bad-quality ECGs sent to the specialist and,
thus, contribute to a more effective use of her time.

Moody and colleagues [4] reported that some of the top competitors in this
challenge employed a variety of techniques, using a wide range of features including
entropy, higher order moments, intra-lead information, etc., while the classification
methods also included Decision Trees, Support Vector Machines (SVMs), Fuzzy
Logic, and heuristic rules.

An example of SVM-based approach is reported in [1], where the authors
developed a decision support system based on an algorithm that combines simple
rules in order to discard recordings of obvious low quality and a more sophisticated
classification technique for improving the quality of AI-based systems for mobile
phones, including the fine-tuning of detection sensitivity and specificity. Another
example has also been given in [5], where a rule-based classification method that
mimics the SVM has been implemented, by using a modified version of a real-time
QRS-Complex detection algorithm and a T-Wave detection approach.

According to [4], Artificial Neural Networks (ANNs) have been extensively
employed in computer-aided diagnosis because of their remarkable qualities: capac-
ity of adapting to various problems, training from examples, and generalization
capabilities with reduced noise effects. Also Jiang and colleague confirmed the



A Neuro-Evolutionary Approach to Electrocardiographic Signal Classification 195

usefulness of ANNs as heartbeat classifiers, emphasizing in particular evolvable
ANNs, due to their ability to change the network structure and internal configura-
tions, as well as the parameters, to cope with dynamic operating environments. In
particular, the authors developed an evolutionary approach for structure and weight
optimization of block-based neural network (BbNN) models [6] for a personalized
ECG heartbeat pattern classification.

We approach the heartbeat classification problem by another evolutionary algo-
rithm for joint structure and weights optimization of ANNs [7], which exploits an
improved version of a novel similarity-based crossover operator [8], based on the
conjunction of topology and connection weight optimization.

This chapter is organized as follows: Sect. 2 briefly presents the problem, while
a description of the evolutionary approach considered in this work is reported in
Sect. 4. The results obtained in the experiments carried out are presented in Sect. 5,
along with a discussion of the performances obtained. Finally, Sect. 6 provides some
concluding remarks.

2 Problem Description

As previously reported, the ECG is a bio-electric signal that records the electrical
activity of the heart. It provides helpful information about the functional aspects
of the heart and of the cardiovascular system, and the state of cardiac health is
generally reflected in the shape of ECG waveform, that is a critical information. For
this reason, computer-based analysis and classification and automatic interpretation
of the ECG signals can be very helpful to assure a continuous surveillance of
the patients and to prepare the work of the cardiologist in the analysis of long
recordings.

Moreover, as indicated by the main documentation of Physionet, according to
the World Health Organization, CVD are the number one cause of death worldwide.
Of these deaths, 82 % take place in low- and middle-income countries. Given
their computing power and pervasiveness, the most important question is to verify
whether mobile phones can aid in delivering quality health care, particularly to rural
populations distant from physicians having the expertise needed to diagnose CVD.

Advances in mobile phone technology have resulted in global availability of
portable computing devices capable of performing many of the functions tradi-
tionally requiring desktop or larger computers. In addition to their technological
features, mobile phones have a large cultural impact. They are user-friendly and are
among the most efficient and most widely used means of communication. With the
recent progress of mobile-platforms, and the increasing number of mobile phones,
a solution to the problem under consideration can be the recording of ECGs by
untrained professionals, and the subsequent transmission to a human specialist.

The aim of the PhysioNet/Computing in Cardiology Challenge 2011 [9] is to
develop an efficient algorithm, able to run in near real-time within a mobile phone
that can provide useful feedback to a layperson in the process of acquiring a
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diagnostically useful ECG recording. In addition to the approaches already cited
in Sect. 1, referring to such a challenge, Table 3 reports other solutions already
presented in the literature, capable of quantifying the quality of the ECG looking
at individual or combined leads, which can be implemented on a mobile platform.
As reported later, all such approaches are used to compare their results with those
obtained in this work.

3 Neuro-Evolutionary Classifiers

Generally speaking, a supervised ANN is composed of simple computing units (the
neurons) which are connected to form a network [10–12]. Whether a neuron a

influences another neuron b or not depends on the ANN structure. The extent of such
influence, when there is one, depends on the weight assigned to each connection
among the neurons. It is very difficult to find an optimal network (structure and
weights) for a given problem.

Even though some authors do not consider supervised classification as a good
domain for neuroevolution, preferring alternatives as (SVMs), Bayesian methods,
or analytic optimization methods, neural networks are nevertheless one of the
most popular tools for classification. The recent vast research activities in neural
classification establish that neural networks are an effective alternative to various
conventional classification methods and a large number of successful applications
presented in the recent literature demonstrate that ANN design can be further
improved by synergetically combining it with evolutionary algorithms, being able
to take into account all aspects of ANN design at one time [13].

The review by Zhang [14], which provides a summary of the most important
advances in classification with ANNs, shows clearly that the advantages of neural
networks are manyfold: they are capable of adapting themselves to the data without
any explicit specification of functional or distributional form for the underlying
model; they are universal functional approximators; they represent nonlinear and
flexible solutions for modeling real-world complex relationships; and, finally, they
are able to provide a basis for establishing classification rules and performing
statistical analysis. On the other hand, different neuro-evolutionary approaches
have been successfully applied to a variety of benchmark problems and real-
world classification tasks [15–18]. Our neuro-evolutionary algorithm, too, has
already been tested and applied with success to several real-world problems,
showing how such an approach can be useful in different classification problems,
like automated trading strategy optimization [19, 20], incipient fault diagnosis in
electrical drives [21], automated diagnosis of skin diseases [22], etc. Further insights
on the evolutionary optimization of ANNs can be found in some broad surveys on
the topic [23–25].
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4 The Neuro-Evolutionary Algorithm

The overall algorithm is based on the evolution of a population of individuals,
represented by Multilayer Perceptron neural networks (MLPs), through a joint opti-
mization of their structures and weights, briefly summarized here; a more complete
and detailed description can be found in [7]. In this work the algorithm uses the
Scaled Conjugate Gradient method (SCG) [26] instead of the more traditional error
back-propagation (BP) algorithm, in order to speed up the convergence of such a
conventional training algorithm. Accordingly, it is the genotype which undergoes
the genetic operators and reproduces itself, whereas the phenotype is used only for
calculating the genotype’s fitness. The rationale for this choice is that the alternative
of applying SCG to the genotype as a kind of “intelligent" mutation operator would
boost exploitation while impairing exploration, thus making the algorithm too prone
to being trapped in local optima.

The population is initialized with different number of layers and neurons for
each individual according to two exponential distributions, in order to maintain
diversity among all of them in the new population. Such dimensions are not bounded
in advance, even though the fitness function may penalize large networks. The
number of neurons in each hidden layer is constrained to be greater than or equal
to the number of network outputs, in order to avoid hourglass structures, whose
performance tends to be poor. Indeed, a layer with fewer neurons than the outputs
destroys information which later cannot be recovered.

Thanks to this encoding, individual ANNs are not constrained to a preestablished
topology. Unlike NeuroEvolution of Augmenting Topologies (NEAT) [27], which
starts with minimal network topologies and then applies evolutionary mechanisms
to augment them, our approach randomly initializes the network’s population with
different hidden layer sizes and numbers of neurons for each individual according
to two exponential distributions, in order not to constrain search and to provide a
balanced mix of topologies.

4.1 Evolutionary Process

In the evolutionary process, the genetic operators are applied to each network until
the termination condition is satisfied, i.e., until the maximum number of generations
is reached or no further improvement of the fitness function can be obtained. In
each new generation, a new population of size n has to be created, and the first half
of such a new population corresponds to the best parents that have been selected
by the truncation operator, while the second part of the new population is filled
with offspring of the previously selected parents. A child individual is generated by
applying the crossover operator to two individuals, selected from the best half of the
population (parents), if their local similarity condition is satisfied. Otherwise, the
child corresponds to a randomly chosen copy of either of the two selected parents.
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Elitism allows the best individual to survive unchanged into the next generation.
Then, the algorithm mutates the weights and the topology of the offspring, trains
the resulting networks, calculates the fitness on the test set, and finally saves the
best individual and statistics about the entire evolutionary process. Although the
joint application of truncation, selection, and elitism could seem to exert a strong
selection pressure, which could produce too fast a convergence of the solutions,
all the experiments carried out with the SimBa [8] crossover outperform the other
approaches without showing any premature convergence of the results.

The general framework of the evolutionary process can be described by the
following pseudo-code. Individuals in a population compete and communicate with
each other through genetic operators applied with independent probabilities, until
the termination condition is met.

1. Initialize the population by generating new random individuals.
2. For each genotype, create the corresponding MLP, and calculate its cost and its

fitness values.
3. Save the best individual as the best-so-far individual.
4. While not termination condition do:

(a) Apply the genetic operators to each network.
(b) Decode each new genotype into the corresponding network.
(c) Compute the fitness value for each network.
(d) Save statistics.

The application of the genetic operators to each network is described by the
following pseudo-code:

1. Select bn=2c individuals from the population (of size n) by truncation and create
a new population of size n with copies of the selected individuals.

2. For all individuals in the population:

(a) Randomly choose two individuals as possible parents.
(b) If their local similarity is satisfied

then generate the offspring by applying crossover according to the crossover
probability.

else generate the offspring by randomly choosing either of the two parents.

(c) Mutate the weights and the topology of the offspring according to the mutation
probabilities.

(d) Train the resulting network using the training set.
(e) Calculate the fitness f on the test set.

3. Save the individual with lowest f as the best-so-far individual if the f of the
previously saved best-so-far individual is higher (worse).

4. Save statistics.

For each generation of the population, all the information about the best
individual is saved.



A Neuro-Evolutionary Approach to Electrocardiographic Signal Classification 199

Table 1 Parameters of the algorithm

Symbol Meaning Default value

n Population size 60
p

C

layer Probability of inserting a hidden layer [0.05,0.15,0.30,0.45]
p�

layer Probability of deleting a hidden layer [0.05,0.15,0.30,0.45]
pC

neuron Probability of inserting a neuron in a hidden layer [0.05,0.15,0.30,0.45]
pcross “Desired” probability to apply crossover [0.2,0.4,0.6,0.8,1.0]
ı Crossover similarity cutoff value 0.1
Nin Number of network inputs a

Nout Number of network outputs a

˛ Cost of a neuron 2
ˇ Cost of a synapse 4
� Desired trade-off between network cost and accuracy 0.2
k Constant for scaling cost and MSE in the same range 10�6

a Benchmark dataset dependent

Table 1 lists all the parameters of the algorithm; their values, reported in the third
column, have been experimentally found as those that provide the most satisfactory
results.

4.1.1 Selection

Truncation selection, the selection method implemented in this work, is taken from
the breeder genetic algorithm [28], and differs from natural probabilistic selection
in that evolution only considers the individuals that best adapt to the environment.
Truncation selection is not a novel solution and previous work considered such
a selection in order to prevent the population from remaining too static and
perhaps not evolving at all [29]. It is a very simple technique which produces
satisfactory solutions in conjunction with other strategies, like elitism, which allows
the best individual to survive unchanged into the next generation and solutions to
monotonically get better over time.

4.1.2 Mutation

The main function of this operator is to introduce new genetic material and to
maintain diversity in the population. Generally, the purpose of mutation is to
simulate the effects of transcription errors that can occur with a very low probability,
the mutation rate, when a chromosome is replicated. The evolutionary process
applies two kinds of neural network perturbations: weights mutation and topology
mutation.

Weights mutation perturbs the weights of the neurons before performing any
structural mutation and applying SCG. This kind of mutation uses a Gaussian
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distribution with zero mean and variance given by matrix Var.i/ for each network.
as illustrated in Table 2. This solution is similar to the approach implemented by
evolution strategies [30], algorithms in which the strategy parameters are proposed
for self-adapting the mutation concurrently with the evolutionary search. The main
idea behind these strategies is to allow a control parameter, like mutation variance, to
self-adapt rather than changing its value according to some deterministic algorithm.
Evolution strategies perform very well in numerical domains and are well suited
to (real) function optimization. This kind of mutation offers a simplified method
for self-adapting each single value of the Variance matrix Var.i/

j , whose values are
defined as log-normal perturbations of their parent parameter values.

Topology mutation can apply four types of mutation by considering neuron and
layer addition and elimination. The addition and the elimination of a layer and the
insertion of a neuron are applied with independent probabilities, corresponding,
respectively, to the three algorithm parameters pClayer, p�layer, and pCneuron, while a
neuron is eliminated only when its contribution becomes negligible (less than 5 %)
with respect to the overall behavior of the network [19]. The parameters used in
such a kind of mutation are set at the beginning and maintained unchanged during
the entire evolutionary process.

All the topology mutation operators are aimed at minimizing their impact on
the behavior of the network; in other words, they are designed to be as little
disruptive, and as much neutral, as possible, preserving the parent’s effectiveness
in its offspring better than by adding random nodes or layers.

4.1.3 Fitness Function

Although it is customary in EAs to assume that better individuals have higher fitness,
as previously considered [19, 31], the convention that a lower fitness means a better
ANN is adopted in this work. This maps directly to the objective function of an
error- and cost-minimization problem, which is the natural formulation of most
problems ANNs can solve.

The fitness function is calculated, after the training and the evaluation processes,
by Eq. (1) and is defined as a function of the confusion matrix M obtained by that
individual:

fmulticlass.M / D Noutputs � Trace.M /; (1)

where Noutputs is the number of output neurons and Trace.M / is the sum of the
diagonal elements of the row-wise normalized confusion matrix, which represent
the conditional probabilities of the predicted outputs given the actual ones.
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4.1.4 Crossover

In general, recombination in EAs is most useful before convergence, during the
exploration phase, when it may help locating promising areas of the search space.
This is exactly why the local-similarity-based crossover presented in this work turns
out to be beneficial. Indeed, this operator exploits the concept of similarity among
individuals, which is one of the first ideas developed in the literature for solving
such a problem.

We have given particular attention to two empirical studies [32,33], which focus
on the evolution of the single network unit involved in the crossover operator, the
hidden node. Their aim was to emphasize the equivalence between hidden nodes of
ANNs, in order to identify similarly performing units prior to crossover, avoiding
all the disruptive effects stated above. Following such an idea, we extend our neuro-
genetic approach already presented in the literature [7, 19], which implements a
joint optimization of weights and network structure, by defining a novel crossover
operator. This operator allows recombination of individuals that have different
topologies, but with hidden nodes that are similarly performing in the cutting
point of the hidden layer randomly chosen (indicated in the approach as local
similarity). The evolutionary process does not consider only a part, but complete
MLPs, achieving satisfactory performances and generalization capabilities, as well
as reduced computational costs and network sizes.

The crossover is applied with a probability parameter pcross, defined by the user
together with all the other genetic parameters, and maintained unchanged during the
entire evolutionary process. A significant aspect related to the crossover probability
considered in this work is that it refers to a “desired" probability, a genetic parameter
set at the beginning of the evolutionary process that indicates the probability with
which the crossover should be applied. However, the “actual" crossover probability
during the execution of the algorithm is less than or equal to the desired one, because
the application of the crossover operator is conditional on a sort of “compatibility"
of the individuals involved. We report a summary of the crossover operator, already
discussed in the literature [8, 31].

The SimBa crossover starts by looking for a “local similarity" between two
individuals selected from the population. We refer to “local similarity" as a situation
in which, in both individuals, there are two consecutive layers (i and i C 1) with
the same number of neurons. This is a necessary condition for the application of our
crossover operator because its aim is to overcome the problem related to structure
incompatibility between individuals. The contribution of each neuron of the layers
selected for the crossover is computed, and the neurons of each layer are reordered
according to their contribution (i.e., the output obtained by evaluating the neural
network, up to that neuron, over the training dataset), which strongly depends on its
input connections. We also choose a cutoff threshold ı that will be used for swapping
the neurons.

Then, each neuron of the layer selected in the first individual is associated
with the most “similar" neuron (the neuron with the most similar output) in the



202 A. Azzini et al.

other individual’s layer, and the neurons of the layer of the second individual are
re-ranked by considering the associations with the neurons of the first one. All
the neuron associations linked with an output difference higher than the cutoff
value ı are discarded. Such a cutoff value ı can be seen as the “local-similarity"
threshold. In this work it has been experimentally defined, in the beginning, equal
to 0:1 and is maintained unchanged during the entire evolutionary process. Only
the neurons above such a similarity threshold are eligible for being swapped, while
the others will remain unchanged. Finally, a cut-point is randomly selected and the
neurons above the cut-point are swapped by generating the offspring of the selected
individuals.

5 Experiments and Results

The data used for the PhysioNet/CINC 2011 Challenge consist of 2,000 twelve-lead
ECGs (I, II, III, aVR, aVF, aVL, V1, V2, V3, V4, V5, and V6), each 10 s long, with
a standard diagnostic bandwidth defined in the range (0.05–100 Hz). The twelve
leads are simultaneously recorded for a minimum of 10 s; each lead is sampled at
500 Hz with 16-bit resolution.

The proposed approach has been evaluated by using the dataset provided by the
challenge organizers. This dataset, described above in Sect. 2, is public and has been
distributed in two different parts:

• Set A: this dataset has to be used to train the approach. It is composed of 998
instances provided with reference quality assessments;

• Set B: this dataset has to be used for testing the approach. It is composed
of 500 instances and the reference quality assessments are not distributed to
the participants. The reports generated by the approach must be sent to the
submission system in order to receive results valid for the challenge.

We split Set A into two parts: a training set consisting of 75 % of the instances
contained in Set A, and a validation set, used to stop the training algorithm,
consisting of the remaining 25 %, while Set B is used as test set for the final
evaluation of the approach.

Each instance of the dataset represents an ECG signal composed of 12 series (one
for each lead) of 5,000 values representing the number of recordings performed for
each lead. These data have been preprocessed in order to extract the features that
we used to create the datasets input to the algorithm. We have applied the FFT
to each lead in order to transform each lead into the frequency domain. After the
transformation, we summed the 5,000 values by groups of 500 in order to obtain ten
features for each lead. Finally, the input attributes of all datasets have been rescaled,
before being fed as inputs to the population of ANNs, according to a Gaussian
distribution with zero mean and standard deviation equal to 1.

The experiments have been carried out by setting the parameters of the algorithm
to the values obtained in a first round of experiments aimed at identifying the best
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Table 2 Default parameters of the algorithm

Symbol Meaning Default value

n Population size 60
p

C

layer Probability of inserting a hidden layer 0.05
p�

layer Probability of deleting a hidden layer 0.05
pC

neuron Probability of inserting a neuron in a hidden layer 0.05
pcross “Desired" probability of applying crossover 0.7
ı Crossover similarity cutoff value 0.9
Nin Number of network inputs 120
Nout Number of network outputs 1
˛ Cost of a neuron 2
ˇ Cost of a synapsis 4
� Desired trade-off between network cost and accuracy 0.2
k Constant for scaling cost and MSE in the same range 10�6

parameter setting. These parameter values are reported in Table 2. We performed
40 runs, with 40 generations and 60 individuals for each run, while the number of
epochs used to train the neural network implemented in each individual has been set
to 250.

The challenge has been articulated in two different events: a closed event and
an open one. While in the closed event it is possible to develop the classification
algorithm in any language, in the open event it is mandatory to develop the algorithm
in Java. For this reason, considering that the proposed approach has been developed
in Java too, we compared the results we obtained to those obtained by the other
systems that participated in the challenge in the open event. It is important to
highlight that we did not aim at obtaining the best performance, but at showing that,
even if our system is trained with a training set that embeds very little information,
the performance obtained by our approach does not lag too much behind the results
obtained by the best state-of-the-art systems.

Table 3 shows the results obtained by the other participants compared with the
results obtained by the proposed approach. Besides comparing our approach with
the other approaches presented at the challenge, we have also compared it with the
other following neuro-genetic approaches:

• Simple ANN with Conjugated Gradient: the classifiers are encoded with a pop-
ulation of ANNs, trained with the Conjugated Gradient method over 1,000,000
epochs. Also in this case, the networks are then evaluated over the validation and
the test sets, respectively, through the computation of the mean square error.

• NEAT approach [27]: an evolutionary approach applied to neural network
design that: (1) uses a crossover on different topologies, (2) protects structural
innovation by using speciation, and (3) applies an incremental growth from
minimal network structures.

• Evolved ANN without crossover: the population of ANNs are evolved through
the joint optimization of architecture and connection weights reported in this
chapter, but in this case no crossover is implemented. The number of epochs is
set to 250.
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Table 3 Results of the open
event challenge

Participant Score

Xiaopeng Zhao [34] 0.914
Proposed Approach (Best) 0.902
Benjamin Moody [35] 0.896
Proposed Approach (Average) 0.892
Lars Johannesen [36] 0.880
Philip Langley [37] 0.868
NEAT (Average) 0.856
Evolved ANN without crossover (Average) 0.845
Dieter Hayn [38] 0.834
Vclav Chudcek [39] 0.833
Simple ANN with Conjugated Gradient (Average) 0.818

Table 4 Results of the tenfold cross validation

Training set Validation set Test set Avg accuracy Std deviation

F1. . . F7 F8, F9 F10 0.8984 0.0035
F2. . . F8 F9, F10 F1 0.8988 0.0067
F3. . . F9 F10, F1 F2 0.9002 0.0075
F4. . . F10 F1, F2 F3 0.9022 0.0107
F5. . . F10, F1 F2, F3 F4 0.9040 0.0071
F6. . . F10, F1, F2 F3, F4 F5 0.9002 0.0029
F7. . . F10, F1. . . F3 F4, F5 F6 0.9002 0.0018
F8. . . F10, F1. . . F4 F5, F6 F7 0.8976 0.0054
F9, F10, F1. . . F5 F6, F7 F8 0.9032 0.0090
F10, F1. . . F6 F7, F8 F9 0.8986 0.0047

We report both the best and the average performance obtained by the proposed
approach. It is possible to observe that if we consider the best performance, we
obtained the second best accuracy; while the average accuracy, computed over the
40 runs, obtained the fourth performance. The robustness of the approach is also
proved by observing the low value of the standard deviation that, in the performed
experiments, was 0.011. In italics, we show the performance obtained by the other
approaches that we have used for classifying the data in order to compare them with
the approach proposed in this paper. The results demonstrated that the proposed
approach outperforms the other ones. Indeed, the NEAT approach obtained only the
seventh accuracy, while the other two approaches obtained, respectively, the eighth
and the eleventh performance.

Besides the evaluation on the test set, we performed a tenfold cross validation
on the training set. We split the training set into tenfolds Fi and we performed ten
different sets of ten runs in order to observe which is the behavior of the algorithm
when training, validation, and test data change. Table 4 shows the results of the
tenfold cross validation. By observing the results we can observe the robustness
of the algorithm. In fact, the accuracies obtained by changing the folds used for
training, validation, and test are very close; moreover, the standard deviation of the
results is very low.
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6 Conclusions

In this chapter, we have proposed an ECG classification scheme which implements
a neuro-evolutionary approach, based on the joint evolution of the topology and the
connection weights together with a novel similarity-based crossover, to aid classi-
fication of ECG recordings. The signals were first transformed into the frequency
domain by using a Fast Fourier Transform algorithm and then normalized through
a gaussian distribution with 0 mean and standard deviation equal to 1. The present
system was validated on real ECG records taken from the PhysioNet/Computing in
Cardiology Challenge 2011.

A series of tests has been carried out in order to evaluate the capability of the
neuro-evolutionary approach to discern between usable and unusable electrocardio-
grams tele-medically acquired from mobile embedded devices. The results show an
overall satisfactory accuracy and performances in comparison with other approaches
carried out in this challenge and presented in the literature.

It is important to stress the fact that the proposed method was able to achieve
top-ranking classification accuracy despite the use of a quite standard preprocessing
step and a very small number of input features. No attempt was made to fine-tune
the signal pre-processing and the feature selection steps, when it is well known that
these two steps are often critical for the success of a signal classification methods.
For this reason, we believe that the proposed neuro-evolutionary approach has a
tremendous improvement potential.

Future work will involve the adoption of more sophisticated preprocessing
techniques, by working, for example, on a multi-scale basis, where each scale
represents a particular feature of the signal under study. Other ideas could regard
the study and the implementation of feature selection algorithms in order to provide
an optimized selection of the signals given as inputs to the neural networks.
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Self-Organisation and Evolution
for Trust-Adaptive Grid Computing Agents

Yvonne Bernard, Lukas Klejnowski, David Bluhm, Jörg Hähner, and
Christian Müller-Schloer

Abstract The Organic Computing (OC) initiative aims at introducing new,
self-organising algorithms in order to cope better with the complexity of today’s
systems. One approach to self-organisation is the introduction of agents which are
able to continuously adapt their behaviour to changing environmental conditions and
thus collectively create an efficient and robust system. In this paper, we introduce
an evolutionary approach to an agent which acts autonomously and optimises its
behaviour at run-time. The behaviour of the Evolutionary Agent is defined by ten
chromosomes. When two agents interact, the inferior agent copies a part of the genes
of the more successful agent. Therefore, the most successful gene combination will
spread throughout the network. Application scenario for our evaluation is the
Trusted Desktop Grid, a distributed system where computing resources are shared
by autonomously acting agents.

1 Introduction

Organic Computing (OC) offers a variety of algorithms and mechanisms to manage
large-scale, complex systems. Trust as a basic concept can be used to reduce the
information uncertainty in such systems and foster the cooperation between their
subsystems while securing the robustness of the system regarding misbehaving
entities. Our aim is to create provisions which help develop such trustworthy
systems, even in safety- or mission-critical environments. One means to achieve this
is to control negative emergent behaviour. The exhibition of emergent behaviour
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is one of the main characteristics of OC systems. However, such behaviour is at
times detrimental to a system, and so has to be limited by analysing, verifying
and restraining the interactions between agents during design-time or at run-time
and fostering cooperative behaviour. A new research focus in this OC context is
Social OC [1], which transfers concepts and knowledge gained from social systems
and institutional economics into system architectures. A project within this new
research area is the OC-Trust project which aims at improving both the cooperation
among subsystems and the robustness regarding malicious behaviour using trust-
based algorithms. Ensuring the trustworthiness of subsystems will enable system
designers to realise the openness of complex, highly dynamic systems, i.e. the
dynamic inclusion of formerly unknown agents.

One approach to the management of complex, dynamic systems is the usage
of Adaptive Agents [2]. These agents are able to fit their behaviour to the current
situation they observe based on predefined thresholds. These thresholds are tailored
to the situation, e.g. if there is a high workload, an agent needs to ask more (and
occasionally even less trustworthy) agents for cooperation. For each situation the
system designer defines a suited threshold, based on his knowledge of the system at
design-time. However, we want these agents to learn and optimise at run-time the
threshold best suited in a given situation. Thus, optimising agent behaviour at run-
time is crucial for a successful adaptation to changing environmental conditions as
requested in the open, dynamic systems we regard. One possibility for optimisation
is an evolutionary approach where during agent interaction, a new population arises,
continuing life with the dominant genes of the successful agents from the last
generation. This completely distributed way of learning and optimisation seems to
be worthwhile considering for the agents in our application scenario. Therefore,
in this paper, we introduce and evaluate a new class of agents called Evolutionary
Agents which optimise the decision making in both worker and submitter role at
run-time by imitation of the fitter agents in combination with mutation. We will
investigate which strategies evolve as an emergent phenomenon of interaction of
Evolutionary Agents.

This chapter is organised as follows: First, in Sect. 2 the application scenario
Trusted Desktop Grid, which has been used for the evaluation in this paper, will be
introduced and a short overview on related work is given. In Sect. 3, the design and
implementation of our Evolutionary Agent will be given. We will evaluate how the
Evolutionary Agents behave, both in a homogeneous system and in a heterogeneous
system with Adaptive and Egoistic Agents, in Sect. 4. In the last section, we will
conclude the paper and give an outlook on our future work.

2 Application Scenario: Trusted Desktop Grid

The application scenario for our research is a desktop grid and volunteer computing
system (DGVCS, [3]) with agents acting on behalf of the users. The system is
designed as a distributed system without central control. Clients have the capabilities
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to be both submitters and workers, which is described below in more detail.
The clients are assumed to be heterogeneous in terms of administrative domains,
machine resources, usage patterns, volatility, etc. Such a grid is suitable for
scenarios where most clients run applications that produce grid jobs and thus are
in high demand of computing resources.

In the Trusted Desktop Grid, agents become submitters whenever a user applica-
tion on their machine produces a grid job. These jobs are split into single work units
(WUs) which are distributed among available worker clients. The workers process
them and return the results to the submitters which validate the results. However,
these systems are exposed to threats by clients that plan to exploit or damage the
system. A worker can, for example, return an incorrect result or not return a result
at all. Workers can also refuse to accept a WU. In the area of volunteer desktop grid
systems, such cheating behaviour is a serious issue [4]. Here, trust mechanisms can
help the agents to estimate the future behaviour of other agents. By extending each
client with an agent component and modelling the relations between the agents with
a trust mechanism, we expect to counter these threats and thus increase the efficiency
of such a system. If, for instance, an agent chooses only those workers that it already
had good experiences with, the expected outcome is better. In this paper, the desktop
system introduced above has been evaluated in a multi-agent simulation. Agents in
this system can act as submitter (i.e. decide which worker to give WUs to) and
worker (decide whose WUs to accept) at the same time. However, agents following
static rules according to a fixed trust model cannot succeed in a highly dynamic
system. Volatile peers, changing trust relations, different workloads and user goals
all require the agents to adapt in order to be successful. Moreover, we want the
agents to autonomously decide between a more egoistic and a more altruistic
behaviour and learn which behaviour is successful in a situation. Additionally,
we want our algorithms and mechanisms to provide functionality with a minimal
amount of overhead. In the Evolutionary Agent approach introduced in this paper,
we show and evaluate how learning and run-time optimisation using an evolutionary
approach can be used in our application scenario.

2.1 Related Work

The idea of using evolutionary approaches for Grid Computing has, for instance,
been introduced in [5]. The paper shows the development of genes in a simulated
evolutionary peer-to-peer overlay scheme. In [6], a peer-to-peer management
approach based on natural selection and the survival of the fittest is introduced.
In contrast to this, the behaviour of our Evolutionary Agent approach is not only
evolutionary but also based on trust. An overview of trust and reputation concepts
can be found in [7]. Our agents are given trust and reputation values determined
by former interactions. Thus, trust is used as a constitutional part of the agent
cooperation relations as discussed in Sect. 2.
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Approaches using trust and adaptation algorithms for matchmaking in Grid
systems can, for instance, be found in [8] and [9]. The H-Trust system [8] introduces
a Desktop Grid system using the Hirsch-Trust index, which has originally been
introduced to rank the impact of research papers, to decide on cooperation partners.
Organic Grid [9] is based on the autonomous organisation of mobile agents,
introducing a tree-based overlay structure for matchmaking decisions.

Our Evolutionary Agent approach is based on the idea of using evolution to
model trust relations in Multi-Agent Systems (MAS) as described in [10]. The
authors of [10] have introduced a chromosome structure which is able to model
trust-based behaviour of agents. With this model, trust creation, destruction and
rebuilding can be realised and analysed using a graphical representation of the
agents’ genes. We have modified this model by creating a new chromosome
structure tailored to the Grid agents in our application scenario Trusted Desktop
Grid. Thus, we added the relevant observables in the Trustd Desktop Grid, workload,
reputation and fitness as perception genes in the chromosome structure of the agent.

3 Evolutionary Agent

The Evolutionary Agent is an approach to run-time optimisation of trust-based
interaction. Based on [10], we aimed at creating an Evolutionary Agent model,
which enables cooperation and trust-building. This model has been adapted for our
application scenario Trusted Desktop Grid in order to make it the basis of the worker
and submitter decisions.

In this section, we will introduce the design of this agent type in general as well
as how this design is used to make the agent decisions in the application scenario
Trusted Desktop Grid in both worker and submitter role.

The Evolutionary Agent consists of a chromosome structure, which contains
ten genes. The bit values of the genes represent the alleles of the agent. The
combinations of these genes influence the behaviour and decisions of the agent.
The genes contain instructions that are interpreted as characteristics of the agents.
Each agent follows its own strategy that is induced by the sequence of bits in its
chromosome.

Table 1 describes the chromosome and the genes it contains, which encode the
behaviour of the agent. The chromosome consists of ten genes: Gene 1 is used to
define the general character of the agent. Genes 2–5 define how the agent comes to
trust decisions whereas gene 10 marks the actual trust decision. Genes 6–9 define
which characteristics of other agents are taken into account for decision making.

Each gene can have the value 1 or 0. Thus, there exist 210 different types of
Evolutionary Agents. Gene 1 defines the character of the agent. It decides whether
the agent is an egoist (E) .G1 D 0/ or a cooperator (C) .G1 D 1/ and tries to do its
job as well as possible. This means that an egoist will accept work units, if it trusts
its partner, but will abort them with a high probability before they are finished. A
cooperator will accept work units if the number of work units in its queue is not too
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Table 1 Chromosome structure of the Evolutionary Agent

Genes Alleles Rules

1 0 E (Egoist: aborts Work Units (WUs) with high probability).
1 C (Cooperator: tries to process WUs as well as possible).

2 0 Don’t involve your own intentions .G1/ into building trust.
1 Involve your own intentions .G1/ into building trust, given .G6/.

3 0 Ignore the partner’s reputation.
1 Pay attention to the partner’s reputation, given .G7/.

4 0 Ignore the fitness of the partner.
1 Pay attention to the fitness of the partner, given .G8/.

5 0 Ignore the workload of the partner.
1 Pay attention to the workload of the partner, given .G9/.

6 0 Assume that others are the opposite of your gene .G1/.
1 Assume that others are the same as your gene .G1/.

7 0 Distrust those who have a relatively high reputation. Trust those who
have a relatively low reputation.

1 Trust those who have a relatively high reputation. Distrust those who
have a relatively low reputation.

8 0 Distrust those who have a relatively high fitness. Trust those who have
a relatively low fitness.

1 Trust those who have a relatively high fitness. Distrust those who have
a relatively low fitness.

9 0 Distrust those who have a relatively high workload. Trust those who
have a relatively low workload.

1 Trust those who have a relatively high workload. Distrust those who
have a relatively low workload.

10 0 Distrust everybody (reject all WUs).
1 Trust everybody (try to process all WUs).

high and it trusts its partner. Then it will try to process the work units and avoid
aborting them. The genes 2 to 5 influence the decisions of the agent if it will trust its
partner. Those genes determine the signals which the agent has to pay attention to:

• Its own intentions (Gene 2)
• Reputation of the partner (Gene 3)
• Fitness of the partner (Gene 4)
• Workload of the partner (Gene 5)

The genes 6 to 9 determine how to interpret those signals. If the value of the
signalling gene (2–5) is 0, then the corresponding gene (6–9) is ignored.

The following example (cf. Fig. 1) will illustrate the signals and the correspond-
ing behaviour of an agent Ai which decides how to interact with an agent Aj : We
assume that the values of gene 2 and gene 4 are 1 and the values of gene 3 and gene
5 are 0. Gene 2 has the value 1, so its own intentions (Gene 1) will be included in
the process of building trust. This depends on the value of gene 6. If gene 6 D 0

the agent assumes that the partner is the opposite of the agent’s gene 1. If gene 6
has the value 1, the agent assumes that the partner’s gene 1 has the same value as
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Fig. 1 The chromosome structure of Evolutionary Agent Ai decides how to treat agent Aj

the agent’s gene 1. The assumption that the partner is a cooperator will increase
trust while the assumption that the partner is an egoist will decrease trust. Since
gene 4 D 1, the agent pays attention to the partner’s fitness. If gene 8 D 0, the
agent will trust those which have a lower fitness than itself and distrust those with a
higher fitness. If gene 8 D 1, the behaviour is inverted. The number of signals that
recommend trust is normalised with the total number of signals that the agent pays
attention to, so that it results in a value between 0 and 1. This value represents the
probability that the agent will trust a partner. If an agent will pay attention to none
of the four signals, then gene 10 decides if the agent will trust the partner. Based on
total trust .G10 D 1/ or total distrust .G10 D 0/, the agent will accept all work units
or reject all work units, respectively.

3.1 Gene Initialisation

The genes of each agent are set randomly at creation. For each gene there exists
a parameter which has a value between 0 and 1. This parameter determines
the probability that the corresponding gene is set to 1 when an Evolutionary
Agent is created. Regarding the population of all Evolutionary Agents the value
of the parameter corresponds to the expected number of agents which have the
corresponding gene equal to 1. The standard value is 0.5, so that each gene of half
of the Evolutionary Agents takes the value 1.

3.2 Evolution and Spreading of the Genes

To ensure the evolution of the genes and the corresponding trust strategies, a gene
exchange between the agents can occur when they come into contact. In this process,



Self-Organisation and Evolution for Trust-Adaptive Grid Computing Agents 215

the genetic instructions will be transferred with a fixed probability from the agents
with a higher fitness (cf. Sect. 4.1) to those who have a lower fitness. If two agents
interact, the partner with the lower fitness replaces a random part of his chromosome
structure with a part of the fitter partner’s chromosome. In this procedure, each bit
in a chromosome can be replaced independently of the others. Whether a bit of the
agent with a lower fitness is replaced by the fitter agent’s bit is determined by the
recombination probability. In this case the recombination probability was 50 %.

Furthermore, to increase heterogeneity, mutation occurs during the gene replace-
ment. Thus, during the transfer of the genes from the fitter agent to the weaker
agent random copying errors (mutations) can arise. The probability that a copying
error during a gene replacement occurs is 1 %. This value allows for sufficient
heterogeneity without affecting the stability of evolution. Thus, Evolutionary Agents
are able to leave local optima in their fitness landscape and have a higher probability
to reach the global optimum.

3.3 Worker: Acceptance of Work Units

To decide whether a work unit is accepted or not the chromosome structure is
analysed. If the agent pays attention to more than one signal of the partner, each
bit is equally taken into account. Partners which send out mixed cooperation signals
will be trusted with a corresponding probability. Let’s assume that three of the signal
genes are used, where two show trust in the partner and the third distrust. Then the
agent will trust the partner and accept the work unit with a probability of 2

3
. In this

paper, the signal genes are weighted equally.

3.4 Submitter: Distribution of Work Units

In our Grid agent model, a ranking of the suited worker agents is created to
distribute the work units [2]. In this paper, this is done by calculating a score of
reputation, fitness and workload whereby genes 3, 4 and 5 determine which of these
characteristics are included and gene 7, 8 and 9 determine whether the total score
will be increased or decreased. After creating the ranking, its own work unit is
offered, in order of ranking, to the other agents until one of them accepts or the
submitter has to process the work unit itself.

4 Experimental Results

In the experiments presented in this paper, we investigated how the Evolutionary
Agents behave with other types of agents and with each other. Section 4.1 introduces
the system model and the parameters used in this evaluation. In experiment 1
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(Sect. 4.2), we analysed how Evolutionary Agents behave in a heterogeneous system
of both Evolutionary and Adaptive Agents. Adaptive Agents have been the most
successful agent type in former experiments [2]. Experiment 2 (Sect. 4.3) has
been conducted in order to evaluate the behaviour in a homogeneous system of
Evolutionary Agents. The figures presented in this section show typical results of ten
runs conducted for each experiment. In experiment 3 (Sect. 4.4), we investigated the
behaviour of Evolutionary Agents interactin with Egoistic Agents. Egoistic Agents
introduce disturbance to the system because they try to exploit the other agents.
Egoistic Agents try to distribute their WUs to other agents and thus minimise their
own work by aborting the WUs they have accepted from other agents with high
probability. This is a misbehaviour we would like the agents to recognise in a
distributed fashion and adapt to at run-time.

4.1 System Model

In the experiments, we observed 100 agents over a period of 100,000 ticks (time
units). Each gene of a chromosome of an Evolutionary Agent is initialised with one
with a probability of 50 %. Additionally, each gene has a recombination probability
of 50 %. The first experiment consisted of a population of 100 agents of which
50 were Evolutionary Agents and 50 Adaptive Agents. In the second experiment,
we generated a homogeneous population of 100 Evolutionary Agents. In the third
experiment, a population of 50 Evolutionary Agents and 50 Egoistic Agents was
investigated. These three experiments have been chosen in order to cover both
heterogeneous and homogeneous system configurations. The probability that an
Evolutionary Agent with gene1 D 0 aborts a work unit was set to 75 % in all
experiments.

In all experiments, we measured the aggregated trust value Ti;j of agent Ai in
agent Aj as a function of the form

Ti;j D f .repj ; expi;j /;�1 � Ti;j � 1: (1)

where repj is the reputation of the agent in the system and expi;j is an aggregation
of the personal experiences Ai has had with Aj in the past. The function contains a
weight: the fewer the agents’ personal experiences, the higher the reputation weight.
Nonetheless, the reputation is always taken into account to a certain degree in order
to recognise changes in agent behaviour with more than just knowledge from own
experience.

In all experiments, we measured the fitness of the agents. Our fitness function
consists of the benefit the agent has from participating in the system as well as the
effort he spent in order to reach this benefit:

fitness D ˛ � benefitC .1 � ˛/ � .1 � effort/ (2)
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Fig. 2 Results of experiment 1: Average fitness of Evolutionary Agents and Adaptive Agents

The fitness function is evaluated as soon as an agent has finished a job whose WUs
have been distributed among the grid workers. The weight between benefit and effort
is a factor ˛ between 0 and 1 defined by the system designer. In these experiments,
˛ was 0.8, which means that the benefit is valued much higher than the effort term.
The agent fitness is between 0 and 1.

The benefit is the time an agent has saved by distributing the job in the Grid
rather than computing it on its own. In order to reach this benefit, the agents need
an effort in terms of gaining reputation by calculating WUs for other agents.

4.2 Experiment 1: Evolutionary Agents vs. Adaptive Agents

Figure 2 shows the average fitness of the Evolutionary Agents and the Adaptive
Agents. The average fitness of the Evolutionary Agents is much higher than the
fitness of the Adaptive Agents. The average reputation of the Adaptive Agents
shown in Fig. 3 is higher than the one of the Evolutionary Agents, but still
the Evolutionary Agents have a good reputation greater than 0.5. Thus, a good
reputation can help to reach a higher fitness, but a high reputation does not
necessarily imply a high fitness. Already after tick 30,000 a dominant chromosome
structure has evolved: Gene 1, 4, 5, 6, 7, 8 and 9 have the value 1 and gene 2, 3
and 10 the value 0. Figure 4 shows that the workload of the Evolutionary Agents
decreases and the workload of the Adaptive Agents increases which means that
the Evolutionary Agents successfully distribute the work units to the Adaptive
Agents. In other words, the Evolutionary Agents are able to exploit the Adaptive
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Fig. 3 Results of experiment 1: Average reputation of Evolutionary Agents and Adaptive Agents
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Fig. 4 Results of experiment 1: Average workload of Evolutionary Agents and Adaptive Agents

Agents. This behaviour can also be observed in systems with other agent types.
Evolutionary Agents are successful regardless of what the other agents in the system
might be because their behaviour continuously adapts to the system configuration.
The agents with the highest fitness are copied, thus, the most successful strategy
for a given situation evolves and spreads over time. Therefore, in unknown system
configurations, an evolutionary approach is worthwhile. This holds as long as there
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Fig. 5 Results of experiment 2: Average fitness of Evolutionary Agents

exist enough agents using this strategy. Our further experiments have shown that the
enforcement of successful chromosomes needs about 25 % of the system population
being Evolutionary Agents in order to be fast enough to successfully adapt to the
environment.

4.3 Experiment 2: Homogeneous System of Evolutionary
Agents

It can be seen from Fig. 7 that value 1 for gene 1 wins from almost immediately after
the start of the simulation. This shows that being cooperative is a more successful
strategy than being egoistic. In Fig. 5, it is particularly noticeable that at tick 20,000
the fitness strongly drops and rises again at tick 30,000. This matches with the fact
that during the same period the value 0 of gene 4 in Fig. 8 has established and so
the largest part of the agents will not pay attention to the fitness of the partner in
accepting work units. In Fig. 6 it is noticeable that due to the increased workload in
this period and due to the lack of trust the agents cannot distribute their work units
any more and thus they have to process them on their own.

As soon as the value 1 for gene 4 prevails, the fitness increases and the
workload decreases again, because new trust is created between the agents. Thus,
it is important to which of the chromosome signals the Evolutionary Agents pay
attention: paying attention to the others’ fitness is crucial to one agent’s success.
After gene 4 won through, the chromosome structure stabilises and it is obvious that
in this experiment it is not important for the Evolutionary Agents to pay attention
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Fig. 6 Results of experiment 2: Average workload of Evolutionary Agents
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Fig. 7 Results of experiment 2: Amount of gene 1 of Evolutionary Agents

to their own intentions based on gene 1 and to the reputation of the partners.
Furthermore, it can be seen in Fig. 8 that the amount of agents with a gene 8 develops
to a high value. This means that agents trust agents with a fitness higher than their
own, which also leads to a stable population of agents with a high fitness.

Thus, agents pay attention to other agents’ fitness (percentage of gene 4 near 1)
and imitate agents with a high fitness (percentage of gene 8 near 1).
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Fig. 8 Results of experiment 2: Amount of gene 4 and gene 8 of Evolutionary Agents

4.4 Experiment 3: Evolutionary Agents vs. Egoistic Agents

In Fig. 9, the average fitness of the Evolutionary Agents and the Egoistic Agents is
plotted. Comparing the two fitness curves, it can be seen that the fitness of Egoistic
Agents does not exceed a value of 0.1. The fitness of the Evolutionary Agents
increases at the beginning and reaches a value of 0.5, but at tick 23,000 the fitness
starts to decrease. After a stabilisation in the lower range .< 0:2/, at tick 65,000 the
fitness starts to increase again. So the fitness curve of the Evolutionary Agents can
be separated into three sections. The first section goes from tick 0 to tick 30,000.
In this section the Evolutionary Agent has a high fitness. The second section is the
interval from tick 30,000 to tick 80,000 in which the Evolutionary Agents have a
low fitness. But in the third section from 80,000 to 100,000 the fitness is high again.
The decreasing fitness in the second interval is due to the fact that the strategy of
the Evolutionary Agents changed at tick 30,000. This can be seen in Fig. 10 in the
distribution of gene 5. At tick 30,000 the Evolutionary Agents stop to pay attention
to the workload. Therefore, they start to accept WUs from Egoistic Agents, which
have a very low workload during the whole simulation. This causes the drop of the
fitness of the Evolutionary Agents because they process the WUs of the Egoistic
Agents but do not get their distributed WUs processed in return. Later, the strategy
changes back and the Evolutionary Agents are able to detect the Egoistic Agents
because of their low workload.

Overall, Evolutionary Agents are also quite successful in homogeneous systems,
although the amplitude of the fitness is large as there are changes in genes while
trying to adapt the chromosome structure to the self-referential fitness landscape in
a continuously changing environment (cf. [11] (Chap. 2)).
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5 Conclusion and Future Work

In this paper, the Evolutionary Agent as an approach to a self-optimising trust-
adaptive agent has been introduced. The results of experiment 1 clearly show
that, in a heterogeneous system, Evolutionary Agents can achieve a higher fitness
than Adaptive Agents, with a good reputation and low workload. In other words,
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Evolutionary Agents learn to exploit Adaptive Agents without any malicious
behaviour coded in their genes. Experiment 2 shows that Evolutionary Agents are
also able to interact in homogeneous systems as well. In experiment 3, we have seen
that Evolutionary Agents are also successful in a system with disturbances (Egoistic
Agents). They are able to detect the misbehaving Egoistic Agents, although the
fitness is not always stable. Surprisingly, Evolutionary Agents do not learn trust-
based strategies, but ignore the trust values they have access to. This can be
explained because the observation of trust is relevant only if it leads to advantageous
behaviour modification which is not necessarily the case in the current experimental
setting of our simulation. Therefore, we plan a trust-reactive behaviour extension
for the generally well-suited Evolutionary Agent approach to run-time optimisation
for Grid Computing agents. In the future of our project, we also aim at investigating
further learning techniques like Learning Classifier Systems, Neural Networks or
Bayesian Networks in order to convey the optimisation more directly rather than
relying on random mutation effects in order to make sure to find an optimal solution
over time. Furthermore, we will also investigate the system level of our Trusted
Desktop Grid. The agents are able to form the so-called Trusted Communities [2],
i.e. agent organisations based on trust mechanisms. They are able to enhance the
efficiency and robustness at both individual and system level.
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Honest vs Cheating Bots in PATROL-Based
Real-Time Strategy MMOGs

Stefano Sebastio, Michele Amoretti, Jose Raul Murga, Marco Picone,
and Stefano Cagnoni

Abstract Massively multiplayer online games (MMOGs) are being increasingly
successful, since they allow players to explore huge virtual worlds and to interact in
many different ways, either cooperating or competing. To support the implementa-
tion of ultra-scalable real-time strategy MMOGs, we are developing a middleware,
called PATROL, that is based on a structured peer-to-peer overlay scheme. Among
other features, PATROL provides AI-based modules to detect cheating attempts, that
the decentralized communication infrastructure may favor. In this work we illustrate
how we implemented honest and cheating autonomous players (bots). In particular,
we show how honest bots can detect cheating bots in real-time, using strategies
based on neural networks.

1 Introduction

Most research on multiplayer online games (MMOGs) focuses on scalability and
high speed, but other issues such as the chance of cheating have an equally
large practical impact on game success. There are significant technical barriers to
achieving all these properties at the same time, and few existing games do so. Our
open source middleware for the development of real-time strategy (RTS) MMOGs,
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called PATROL (http://code.google.com/p/patrol/), integrates several modules, each
of which is highly specialized in one aspect of the game.

In our previous work [1] we focused on the module that enables peer-to-
peer connectivity and communication, and on the module for detecting cheating
behaviors. The former allows one to implement ultra-scalable RTS MMOGs,
where each player’s software installation is a node of a fully distributed structured
overlay network scheme, which guarantees efficient data sharing as well as fair
and balanced workload distribution among participants. The latter, based on Multi
Layer Perceptron (MLP) neural networks, allows each node to detect other players’
cheating behaviors.

In this work we present the Rule Engine, the PATROL module that allows one
to enforce both general and specific rules into the nodes and matches game events
with existing rules. The Rule Engine allowed us to implement autonomous playing
agents, called bots, that are able to play against one another, in an RTS game where
participants place and move units and structures (generally speaking, resources) to
secure areas of the virtual world and/or destroy the assets of their opponents. We
show how honest bots are able to detect cheating ones in real-time, thanks to the
cheating detection module.

The chapter is organized as follows. In Sect. 2 we summarize some recent
research work in the context of peer-to-peer RTS MMOGs. In Sect. 3 we describe
the PATROL architecture, with details on the rule engine and on the cheating
detection strategy. In Sect. 4 we present the example of the RTS MMOG we
have implemented, based on the proposed architecture, where autonomous bots
play against one another. In Sect. 5 we illustrate experimental results, focusing on
the performance of the module for intelligent cheating detection, presenting and
discussing experimental results. Finally, in Sect. 6, we conclude the chapter by
describing plans for further extension of our work.

2 Related Work

An MMOG needs a messaging infrastructure for game actions and player com-
munication. To this purpose, possible paradigms are Client-Server (CS), Peer-
to-Peer (P2P), Client-Multi-Server (CMS), or Peer-to-Peer with Central Arbiter
(PP-CA) [2]. Each solution has pros and cons, with respect to robustness, efficiency,
scalability, and security. In particular, when the architecture of the game is decen-
tralized (e.g., P2P), with a large number of players, then facing malicious behaviors
is particularly challenging.

In [2], the authors propose a Mirrored-Arbiter (MA) architecture that combines
the features of CMS and PP-CA. This architecture not only provides all the benefits
of PP-CA but also solves the main problems in PP-CA by using interest management
techniques and multicast. Clients are divided into groups, each group being handled
by an arbiter that maintains a global state of the game region and takes care of the
consistency issue. When the arbiter receives an update from a client which conflicts

http://code.google.com/p/patrol/
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with its game region state, it ignores the update and sends the correct region state
to all clients in the group. The authors implemented a multiplayer game called
“TankWar” to validate the design of the proposed MA architecture. In our opinion,
such a scheme is complex in the decision of the arbiters and their group assignments,
and does not guarantee high scalability and security. Indeed, an arbiter may be a
cheating node itself, which compromises the game for a large number of nodes.

In [3], the authors present a Peer-to-Peer (P2P) MMOG design framework,
Mediator, based on a super-peer network with multiple super-peer (Mediator)
roles. In this framework, the functionalities of a traditional game server are
distributed, capitalizing on the potential of P2P networks, and enabling the MMOG
to scale better with respect to both communication and computation. Mediator
integrates four elements: a reward scheme, distributed resource discovery, load
management, and super-peer selection. The reward scheme differentiates a peer’s
contribution from its reputation and pursues symmetrical reciprocity as well as
discouraging misdemeanors. The authors suggest to adopt the EigenTrust reputation
management algorithm [4] and the DCRC anti-free-riding algorithm [5] as possible
implementations for the reward scheme. Unfortunately, such schemes are complex
and bandwidth-consuming.

The main component on which our work is focused is the game engine. In our
opinion, games are made of nouns (i.e., elements of the game, and variables related
to them), verbs (the actions that players and player stand-ins can enact), and rules
(limiting the scope of the nouns and creating relationships and interactions between
them; limiting also which verbs can be enacted, when and in which context). Current
programming paradigms do not provide an appropriate language for expressing
these structures. Object-Oriented Programming (OOP) is very good at representing
different types of objects (“nouns”) and the relationships they may have between
each other, with minimal duplicated code or wasted work. Unfortunately, OOP
dictates that each class must encapsulate methods, i.e., actions that are strictly
related to the class itself. Thus, OOP is not suitable for expressing verbs and rules
as entities separated from nouns. In general, imperative languages (that are mostly
used in game programming) are not good for clearly expressing verbs and rules.
Instead, declarative languages, like Prolog, are much more suitable.

Currently, one of the best known rule engines is Drools Expert [6] that uses the
rule-based approach to implement an Expert System and is more correctly classified
as a Production Rule System. A Production Rule System is Turing complete, with
a focus on knowledge representation to express propositional and first order logic
in a concise, non-ambiguous and declarative manner. The core of a Production Rule
System is an Inference Engine that is able to scale to a large number of rules and
facts. The Inference Engine matches facts and data against Production Rules—also
called Productions or just Rules—to infer conclusions which result in actions. A
Production Rule is a two-part structure that uses First Order Logic for reasoning
over knowledge representation. There are a number of algorithms used for Pattern
Matching by Inference Engines including Linear, Rete, Treat. Drools implements
and extends the Rete algorithm and is a sound product, but it is quite large and cannot
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be installed on portable devices. For this reason, we decided to adopt tuProlog [7],
as discussed in the next section.

3 PATROL Middleware

In order to increase security, the game infrastructure should properly manage the
interaction events among nodes. In RTS games, the most frequent events are those
for: (1) moving resources, (2) receiving updates about the virtual world, and (3)
submitting the attacks. Our PATROL middleware manages these events through
protocols that are appropriate for maintaining an adequate level of efficiency and
security.

PATROL provides the following modules (illustrated in Fig. 1):

• GUI/GamePeer Connector
• Overlay Manager
• Rule Engine
• Cheating Detector

Since the Overlay Manager and the Cheating Detector have already been
described in detail in previous work [1], here we just recall them shortly and we
devote more space to the Rule Engine. The GUI/GamePeer Connector decouples
the (game-specific) GUI from the GamePeer, which integrates the three previously
listed general-purpose modules. For lack of space, we omit its description, but
we emphasize that GUI decoupling also allows one to implement games for
mobile devices, where only the visualization may be running locally, while most
computation processes can be executed remotely. Such an approach is used, for
example, by the GaiKai cloud gaming platform (http://www.gaikai.com).

3.1 Overlay Manager

PATROL’s Overlay Manager adopts the Chord P2P overlay scheme [8] to support
fair and robust information sharing among available players. Chord is a highly
structured P2P architecture where all peers are assigned the same role and amount
of work. It is based on the Distributed Hash Table (DHT) approach for an efficient
allocation and recovery of resources. The overlay network in PATROL also supports
a distributed algorithm for cheating detection, based on feedbacks among peers and
AI tools such as neural networks. This approach allows the peers to dynamically
recognize malicious behaviors, without the need of specific and centralized control
components.

Chord [8] is probably the best known peer-to-peer protocol based on the
Structured Model (SM), which uses DHTs as infrastructures for building large scale
applications. Data are divided into blocks, each identified by a unique key (a hash

http://www.gaikai.com


Honest vs Cheating Bots in PATROL-Based Real-Time Strategy MMOGs 229

Fig. 1 A PATROL-based gaming node: PATROL modules are those with dashed border

Fig. 2 The finger table entries for node N1 and the path taken by a query from N1, searching for
key K12 using the scalable lookup algorithm

of the block’s name) and described by a value (typically a pointer to the block’s
owner). Each peer is assigned a random ID in the same space of data block keys
and is responsible for storing (key,value) pairs for a limited subset of the entire key
space.

According to Chord’s lookup algorithm, each node n maintains a routing table,
called the finger table, with up to m entries. The i th entry in the table at node n

contains the identity of the first node s whose identifier follows n by at least 2i�1;
i.e., s D successor.nC2i�1/, where 1 � i � m and all the arithmetic is module 2m.
We call node s the i th finger of node n, and denote it by n: fingerŒi �. A finger table
entry includes both the Chord identifier and the IP address (and port number) of
the relevant node. Figure 2 illustrates the scalable lookup algorithm based on finger
tables. In general, if node n searches for a key whose ID falls between n and the
successor of n, node n finds the key in the successor of n; otherwise, n searches its
finger table for the node n0 whose ID most immediately precedes the desired key,
and then the basic algorithm is executed starting from n0. It is demonstrated that the
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number of nodes that must be contacted to find a successor in an N -node network
is O.log N / [8] in the majority of cases.

PATROL distributes the responsibility to maintain knowledge about resources
(i.e., items, war units, and structures) uniformly among the peers, using the DHT to
share information about whom is responsible for what (each peer is responsible for
a subset of the key space). In a game, each existing resource has a position in the
virtual world. Such a position is hashed, and the resulting key is assigned to the peer
whose key subset includes the resource key. It is very unlikely that two resources
that are close in the virtual world have keys that are also close in the key space
(and vice versa). Moreover, Chord provides data replication, in order to improve
robustness against unexpected node departures.

As a consequence, the control over a region of the game space is distributed
among several peers, thus limiting the damages that a hacked peer can do. Moreover,
our approach is much more robust than existing decentralized solutions, because the
departure of a node does not affect the games too much, thanks to the proactive data
replication dictated by the Chord protocol.

3.2 Rule Engine

In general, a rule engine is a software system that, depending on the context, decides
which rules to apply, and computes the result of their application, that may be a
new knowledge item, or an action to perform. Usually, a rule engine includes the
following components:

• a rule base, containing production rules whose structure is WHEN hconditionsi
THEN hactionsi;

• a knowledge base, also known as work area, that contains known facts;
• an inference engine, for processing rules.

Rules operate on facts of the knowledge base, that is dynamic as it can change
over time, with new facts being added, and old facts being removed. Conditions
of production rules are evaluated against facts. If a condition is true, the resulting
action is the insertion of a new fact in the knowledge base, and possibly an action
on the environment (e.g., an action within the game).

PATROL’s Rule Engine (from now on, RE) can be used for implementing several
RTS MMOGs: it is sufficient to set the appropriate rule base and knowledge base.
Rules and facts must be written in Prolog, chosen because of its intuitiveness. RE’s
inference engine is based on tuProlog, a Java-based lightweight Prolog reasoner
for Internet applications and infrastructures [7]. tuProlog provides a straightforward
API to embed Prolog programs within Java code, or to read existing Prolog
expressions from a file or from a database. Once one or more Prolog theories (i.e.,
ensembles of rule base and initial knowledge base) have been acquired, it is possible
to use them to evaluate facts and derive new facts.
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The RE can be used to decide which actions are allowed to the player, depending
on his/her state and on the state of the game. Moreover, the RE can be used to
implement bots, i.e., autonomous playing agents that allow, for example, to test
game strategies before entering a game against other real players. A bot must be
able to make decisions in all typical RTS situations, such as: resource accumulation,
resource purchasing or building, resource improvement, displacement of mobile
resources, attack against an enemy’s resources, defense from an enemy’s attack,
goal checking.

The RE includes a PrologEngine class that provides methods for setting and
managing a theory, and for solving queries. Such a class can be specialized (by
means of inheritance) into different classes, each referring to an aspect of the game.
Such specialized classes can be reused with different theories, and within different
RTS MMOGs.

3.2.1 Game Events

The system uses a bootstrap server to support peers in joining the network (which
includes authentication, as well as Chord initialization) and configuring themselves
for entering a game. In this way the bootstrap server has control over the accounts
of the players and consequently provides a basic level of security.

Information about the virtual world may not be granted indiscriminately to any
peer. Each peer has its own resources, which are placed in different positions of
the virtual world, and has the right to receive information that refers to areas that
are within the field of view of such resources, according to the rules of the game.
Periodically, each peer needs to update its view on the virtual world. To do so, it
sends specific requests to peers that are responsible for the positions that are visible.
Before responding to such a request, peer Nj , that we suppose to be responsible for
position .x; y; z/, checks its cache for updated information, and sends a request to
verify the credentials for another peer Nk . If everything is ok, it finally sends the
response message.

To perform any action that involves a change of game state, players must submit a
request to the responsible of the location that is affected by the action. For example,
suppose that a peer Nk selects a resource to be moved in the virtual world; to perform
the action “move resource to position .x; y; z/” the peer must submit the request
to the node responsible for the key resulting from the hash of that position, i.e.,
h.x; y; z/. The responsible for the key is discovered by means of the lookup strategy
defined by the Chord protocol, discussed above and illustrated in Fig. 3. The peer j

that must become the new responsible for the moved resource of peer Nk searches
for the manager of the resource’s current position (declared by peer Nk). Such a peer
is discovered by means of the hash of the current position. Thus the old manager
checks in its cache whether it has the information on peer Nk and whether this infor-
mation corresponds to what was declared to Nj . If the check is successful, peer Nj

can decide, according to the game rules and considering the time elapsed between



232 S.Sebastio et al.

Fig. 3 Submission of an action request to the responsible of the location that is affected by the
action. N1 knows N11, which in turns knows N12, i.e., the peer that must serve as the responsible
for location .x; y; z/

the changes of game state following the transition between the two positions, if it
can accept the move and execute it, becoming the new responsible for the resource.
If the position declared by Nk is not true, the request for resource displacement
submitted by peer Nk is ignored and the state of the game remains the same.

While troops can be moved asynchronously by each player, attacks can be
either asynchronous or synchronous (i.e., with a turn-based approach). In case of
synchronous attacks, knowing the decisions of other players before submitting his
own move may be a considerable advantage for a player. But, of course, this would
be unfair.

To avoid cheating, PATROL uses request hashing, a mechanism that is widely
adopted in other P2P architectures and derives from distributed security systems.
Players who submit their decisions have to send a hash of the message describing
the attack concatenated with a nonce, which is a use-once random value, chosen by
the first player that submits a decision. The nonce is used to prevent a cheater from
storing in a table all matches between hash values and attack decisions, revealing
the decisions of honest players. The last player that submits its decision may send
it manifestly. At this point, all players that have previously sent the hash must send
their nonce and attack decision manifestly. Thus, other players can re-calculate the
hash and verify that it corresponds to what was previously declared. The properties
of hash functions guarantee that it is almost impossible for two different attacks to
have the same hash, and therefore for a player to submit a different attack, with
respect to the hashed one.
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3.3 Cheating Detector

PATROL provides a good level of security for the overall state of the game.
However, the DHT does not prevent the game from offering cheaters (provided with
hacked clients) the possibility to alter the information for which they are responsible.
In an RTS game, a modified client that saves a history of recent attacks and their
outcomes may estimate the current level of resources available to other players and
take advantage over them.

Using artificial intelligence techniques, a PATROL-based peer can detect anoma-
lies in the behavior of other peers, compared to typical behavioral profiles, by means
of temporal analysis of interaction events. Moreover, using the power of direct
communication typical of P2P approaches, a peer may ask other peers their opinion
about a given peer in order to improve the evaluation process.

Peer x calculates the probability Pxfyg that peer y is cheating. Then x sends a
request to peers that have interacted with y, in order to match their probabilities and
understand whether y is considered to be a cheater: Pi fyg 8i ¤ x; y. If the global
probability exceeds a certain threshold, there is the option to contact other peers and
the bootstrap server to promote a collective motion against the cheating player in
order to ban him from future games. If all peers agree with the “ban proposal,”
peer y is gracefully disconnected from the Chord ring. Every player builds its
own “opinion” about other players, from its own interactions. By combining these
opinions, before emitting a ban proposal, the probability that the collective decision
is erroneous is low.

The Cheating Detector module (Fig. 1) analyzes all action events coming from an
opponent. The opinions of the other players are requested only at the end of the local
evaluation process, if the peer estimates the probability of cheating to be high. Of
course, the peer must be careful since other peers may provide false reports related
to their interactions with a given peer.

There are different strategies for a peer to learn from a sequence of events:
sequence recognition, sequence playback, and temporal association. Among others,
we focused on MLPs, implemented by means of the Weka library [9]. We analyzed
their features in detail in our previous work [1].

Input values come from a registered sequence of time/value pairs representing
the resources used by an opponent player during the last three interactions with
the player that is recording logs. In our opinion, including three interactions is a
reasonable choice. A longer trace would not permit the detection of a misleading
behavior in an acceptable time. So, the input to the net consists of three timestamps
and the three corresponding resource values (defense resources are marked with a
minus sign). The timestamp is referred to the begin of the game session. In output
we have a 0 if the sequence of actions corresponds to a honest player, otherwise—if
the sequence corresponds to a cheater—we have a value close to 1, the larger the
more a player is cheating.

MLPs are the traditional multi layer neural networks trained by the backpropa-
gation algorithm. Weights are updated using the online algorithm, i.e., re-arranging
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the weights after each epoch, i.e., a learning iteration during which all examples
are processed by the network. Neural networks have been used in similar contexts,
e.g., for the detection of cheating players in first-person shooters [10], but also with
slightly different objectives, like the detection of bots that play in place of human
participants [11, 12].

4 Game Bots

We have extended the PrologEngine class of the RE into specialized classes, to
implement an RTS MMOG with space setting. In such an RTS MMOG, players
have to find and conquer all the planets that are in the game space.

Players are provided with a mine resource that allows them to make money
for buying two types of resources: defense and attack. The resources for attack
(starships) are used to explore the virtual world, to the purpose of finding the planets
and to tackle the starships of other players. Every resource has an associated velocity
and field of view. The resources for defense are used to protect the planets owned
from incoming attacks of other players’ starships.

Thus, we have implemented the following modules (corresponding to Java
classes): ExtractionEngine for managing the extraction of mineral resources of
a planet, BuyResourceEngine for purchasing resources, MovementEngine for
moving mobile resources (like starships), VisibilityEngine for deciding if a resource
(e.g., a planet, or an enemy’s starship) is visible to the player, GameEvolutio-
nEngine for deciding the next operation depending on the current state (own state,
and game state), GameEngine for checking if intermediate or final goals have
been met.

For testing purposes, we have implemented game bots, i.e., virtual players
that automatically handle game tasks—extracting mineral resources, purchasing
resources, moving mobile resources, etc. A game bot is a weak AI agent which,
for each instance of the program, may play against other bots and/or human
players at the same time, either over the Internet, on a LAN or in a local session
[13]. Advanced bots feature machine learning capabilities for dynamic learning
of opponents’ patterns and of previously unknown maps. Using bots to control
characters that are supposed to be controlled by human players is incidentally
against the rules of all of the current main Massively Multiplayer Online Role-
Playing Games (MMORPGs), such as Ultima Online (http://www.uo.com) and
World of Warcraft (http://eu.battle.net/wow/). However, the virtual worlds of all
MMOGs are characterized by a number of non player characters (NPC) with
different objectives, either collaborative or competitive with regard to players. For
this reason, they can be considered as artificial life systems.

Based on the previously listed engines, game bots pass through three different
phases:

http://www.uo.com
http://eu.battle.net/wow/
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Fig. 4 Time distribution of bots’ actions, considering all the games that have been played to collect
a significant number of actions

1. resource accumulation
2. space exploration
3. planet conquest

These phases are repeated in an infinite loop. The time periods each bot spends
in such phases are random variables.

We have defined two different types of bot profiles: honest and cheater. The latter
reproduces the behavior of a hacked client. It owns a mine which is five times as
productive as the others and more initial money. Moreover, it has a halved cycle
decision period (i.e., it can take more decisions at the same time).

In Fig. 4, we report the distribution of honest and cheating bots’ actions during
the recorded games. On the horizontal axis we have the time at which the action
is performed, considering 0 as the start time of the game, while on the vertical
axis there is the value associated with the used resource. Here we can note that
cheater bots, thanks to the speed hack, prefer to first explore the space and to perform
their actions later than the honest bots. Moreover, the value associated with their
resources is higher since the more money is available, the more they can spend for
buying higher-valued resources.

5 Experimental Evaluation

We have collected 2,800 player profiles, each consisting of a sequence of three
actions performed by the player. The choice of three moves as profile duration
appears as a good trade-off between quickness and accuracy of evaluation of the
opponent’s behavior. The overall dataset has been split into a training set of 1,300
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Fig. 5 The best RMSE values obtained with the MLP neural networks requested to provide a
“cheating indicator” 2 Œ0; 1�

profiles, a validation set of 100 profiles and a test set of 1,400 profiles. For all these
sets, 50 % are profiles related to honest players, and 50 % are profiles related to
cheating players.

We have defined different configurations for the MLP neural networks, and we
have compared these by evaluating their Root Mean Square Error (RMSE). All the
MLP neural networks we have considered have three layers, with x; y; z neurons
each. In particular, we have used the following configurations: 6; 6; 1; 6; 5; 1; 6; 4; 1;
6; 3; 1; 6; 2; 1; 6; 1; 1. Such networks have been compared by measuring their RMSE
with respect to the validation set. Those that have shown the best performances
have been selected and tested using the test set. For all six configurations we have
considered different values for the seed, the momentum, the learning rate, and the
epoch number. In detail, we have used five seeds over which we have computed the
average, �2 and � of the RMSE. We have also computed the 95 % confidence inter-
val using Student’s T-test. The momentum and the learning rate have been varied
with step equals to 0:1 in the range Œ0; 1�, and for the epoch number we considered
the following values: f5;000I 10;000I 20;000I 30;000I 40;000I 50;000I 60;000g.

We trained 6 (different number of hidden nodes) �10 (learning rates) �11

(momentum) �7 (epochs) �5 (seeds) networks. i.e., we have trained 23;100 neural
networks, �2 (since we have used both the continuous and the binary versions).

Figures 5 and 6 compare the RMSE values of the best MLP neural networks
we have found during the experiments, considering the validation set and the test
set. Figure 5 refers to experiments where the networks are requested to provide a
“cheating indicator” 2 Œ0; 1�. Instead, the results in Fig. 6 are related to experiments
where the output of the network is boolean (honest or cheating).

In the bot’s configuration file it is possible to modify different parameters that are
related to a cheating behavior, e.g., the period of money extraction from the mine,
the amount of money generated by the mine, the money and the resources available
at the beginning of the game, etc. Thus, if we consider that a honest player has, for
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Fig. 6 The best RMSE values obtained with the MLP neural networks, where the output is a
boolean (honest or cheating)

instance, an initial value for resources of 20 and a cheater of 100, it is possible to
assign a cheating factor of 0:8. This is the value that a perfect evaluation of a neural
network reaches in the continuous version, unlike the binary versions.

We can observe that the best performing MPL networks are those with smaller
RMSE values and standard deviations on the test set, i.e.,:

• MLP 6; 6; 1.0:1I 0:0I 30;000/� 42: 0:35188˙ 0:006782

• MLP 6; 3; 1.0:2I 0:0I 50;00/� 21: 0:35176˙ 0:005714

where MPL x; y; z.lrImI e/ � f means MLP with three layers of x; y; z neurons,
respectively, learning rate lr, momentum m, epoch number e and f weights.

In general, MLPs have yielded good performance on the test set, in terms of error
percentage: detected cheating actions are between the 83 % and 85 % of the total
number of actions during a game. The RMSE is computed by taking into account
the difference between the real output and the predicted one. Moreover, we use the
network as a binary classifier such that, when the output is over 0:5, we consider the
opponent to be a cheater (since the output is in the range of Œ0; 1�). Thus, the error
rate recorded for cheating identification is about 15 %.

6 Conclusions

In this work we illustrated the most recent improvements of our PATROL framework
for creating peer-to-peer online RTS games, characterized by a high degree of
robustness, efficiency, and effectiveness against cheating behaviors. In particular,
we focused on the Rule Engine, which allows us to enforce the rules of a game, and
also to develop autonomous virtual players (bots). We have shown how cheating
bots can be detected by means of a PATROL module that uses neural networks.
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Tests have been encouraging, since cheating detection had a success rate of 85 %.
It is possible to envisage the use of other means of temporal analysis based on neural
networks (such as Real Time Recurrent Learning and Context Units like Elman and
Jordan nets) and on other techniques. It would also be possible to investigate the
effects of adding a component capable of evaluating the trust of peers based on the
past history of players.
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Evolution



Distribution Search on Evolutionary
Many-Objective Optimization: Selection
Mappings and Recombination Rate

Hernán Aguirre, Akira Oyama, and Kiyoshi Tanaka

Abstract This work studies distribution search in the context of evolutionary many-
objective optimization where, in addition to good convergence towards the optimal
Pareto front, it is required to find a set of trade-off solutions spread according
to a given distribution. We particularly focus on the effectiveness of Adaptive
�-Ranking, which reclassifies sets of non-dominated solutions using iteratively a
randomized sampling procedure that applies �-dominance with a mapping function
f.x/ 7!� f

0

.x/ to bias selection towards the distribution of solutions implicit in the
mapping. We analyze the effectiveness of Adaptive �-Ranking with three linear
mapping functions for �-dominance and study the importance of recombination
to properly guide the algorithm towards the distribution we aim to find. As test
problems, we use functions of the DTLZ family with M D 6 objectives, varying
the number of variables N from 10 to 50.

1 Introduction

Recently, there has been growing interest on applying multi-objective evolutionary
algorithms (MOEAs) to solve many-objective optimization problems [1], where
the number of objective functions to optimize simultaneously is more than three.
Historically, most applications of MOEAs have dealt with two and three objective
problems leading to the development of several evolutionary approaches that work
successfully in these low-dimensional objective spaces. However, it is well known
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that conventional MOEAs [2, 3] scale up poorly with the number of objectives of
the problem. The poor performance of conventional MOEAs is attributed to an
increased complexity inherent to high-dimensional spaces, the use of operators of
selection and variation that fail to take into account the characteristics of many-
objective landscapes [4–6], and the use of population sizes inappropriate to support
the evolutionary search on high-dimensional spaces [7].

The goal of MOEAs is to find trade-off solutions with good properties of
convergence to the Pareto front, well spread, and well distributed along the front.
A good distribution of solutions is usually assumed to be uniform. However, other
distributions are often desired, either because of preferences or because they are
required to extract relevant knowledge about the problem in order to provide useful
guidelines to designers during the implementation of preferred solutions.

We focus on distribution search in the context of many-objective optimization
where, in addition to good convergence towards the optimal Pareto front, we are
required to find a set of trade-off solutions spread according to the distribution
we aim to achieve. Methods based on relaxed forms of Pareto dominance, such
as �-dominance [8], can be used to search for a desired distribution of solutions.
In this work, we adopt Adaptive �-Ranking [9], a procedure that reclassifies sets of
non-dominated solutions using iteratively a randomized sampling procedure that
applies �-dominance with a mapping function f.x/ 7!� f

0

.x/ to bias selection
towards the distribution implicit in the mapping. We analyze the effectiveness
of Adaptive �-Ranking with three linear mapping functions for �-dominance and
study the importance of recombination to properly guide the algorithm towards
the distribution we seek to find. These mappings try to produce three different
distributions in which solutions are spaced by the same distance, spaced by a
distance that increases linearly from the center towards the extremes of the objective
space, and solutions spaced by a distance that decreases linearly from the center
towards the extremes. As test problems, we use functions of the DTLZ family [10]
with M D 6 objectives, varying the number of variables N from 10 to 50. We show
that in many-objective problems, in addition to setting a proper mapping function,
recombination plays a significant role to induce the distribution we aim to achieve.

2 Pareto Dominance and –-Dominance

Let us consider, without loss of generality, a maximization multi-objective problem
with M objectives:

maximize f.x/ D .f1.x/; f2.x/; : : : ; fM .x// (1)

where x 2 S is a solution vector in the feasible solution space S , and
f1.�/; f2.�/; : : : ; fM .�/ the M objectives to be maximized.

Pareto dominance is widely used to rank solutions in multi-objective optimiza-
tion. It can be defined as follows.
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Fig. 1 A point f.x/ in objective space, its corresponding mapped point f
0

.x/, their dominance
regions and the area between f

0

.x/ and f.x/

Pareto Dominance. A solution x is said to Pareto-dominate another solution y,
denoted by f.x/ � f.y/, if the two following conditions are satisfied:

8i 2 f1; : : : ; M g fi .x/ 	 fi .y/ ^
9i 2 f1; : : : ; M g fi .x/ > fi .y/:

(2)

In addition, relaxed forms of Pareto dominance are used to maintain an archive
of non-dominated solutions and also within the selection operator to rank solutions
during evolution. One way to implement a relaxed form of dominance is �-
dominance [8]. In �-dominance, the objective vector f.x/ of a solution x is first
mapped to another point f

0

.x/ in the objective space and dominance is calculated
using the mapped point. It can be defined as follows

–-Dominance. A solution x is said to �-dominate another solution y, denoted by
f.x/ �� f.y/, if the following conditions are satisfied:

f.x/ 7!� f
0

.x/

8i 2 f1; : : : ; M g f
0

i .x/ 	 fi .y/ ^
9i 2 f1; : : : ; M g f

0

i .x/ > fi .y/;

(3)

where f.x/ 7!� f
0

.x/ is a mapping function that depends on a parameter �.
Figure 1 illustrates a point f(x) and its mapped point f

0

(x) in the objective space
by a mapping function f.x/ 7!� f

0

.x/, their dominance regions and the area between
f(x) and f

0

(x). Note that a larger area between f(x) and f
0

(x) would correspond to a
larger expansion of f

0

(x)’s dominance region. Various kinds of mapping functions
have been used for �-dominance, such as multiplicative, additive, and logarithmic.
In the next section we describe three additive mapping functions used in our study.

3 Mapping Functions

In this work we investigate distribution search using three additive mapping
functions for �-dominance in the context of many-objective optimization. The
mappings are designed to induce distributions of solutions evenly spaced by �,
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Fig. 2 Areas between f(x) and its mapped point f
0

(x) for several points by Additive, Expansion,
and Contraction using the same � in the three mapping functions. (a) Additive, (b) Linear
Expansion, and (c) Linear Contraction

spaced by a distance that increases linearly from the center towards the extremes
of objective space, and spaced by a distance that decreases linearly from the center
towards the extremes. These mappings are called Additive, Linear Expansion from
the Center, and Linear Contraction from the Center, respectively. Figure 2 illustrates
the areas between f(x) and f

0

(x) for several points in objective space by these
mappings. Their definitions are as follows.

Additive. Additive maps f.x/ to f
0

.x/ by adding the same value � to all coordinates
fi , independently of the position of f.x/ in objective space. The expression for
Additive mapping is as follows

f
0

i .x/ D fi .x/C �; i D 1; : : : ; m (4)

Linear Expansion from Center. Linear Expansion maps f.x/ to f
0

.x/ by adding
the same value � to all coordinates fi and an additional ıi value that increases
linearly with the distance of fi to a central point. The expression for Linear
Expansion from Center is as follows

f
0

i .x/ D fi .x/C � C ıi ; i D 1; : : : ; m (5)

where ıi is calculated by

ıi D �
jfi .x/ � Nfi j

1
2
jf max

i � f min
i j : (6)

Here, � > 0:0 is a parameter that controls the slope of the linear increase, f max
i

and f min
i are the maximum and minimum values of objective fi , calculated over all

solutions in the population, and Nfi is the central point calculated by

Nfi D 1

2
.f max

i C f min
i /: (7)
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Linear Contraction from Center. Linear Contraction, similar to Linear Expan-
sion, also adds the same � to all coordinates fi and a variable ıi to map f.x/ to f

0

.x/

using Eq. (5). However, here ıi is calculated so that its value decreases linearly from
the central point. In case fi .x/ > Nfi , ıi is computed as

ıi D �
jfi .x/ � f max

i j
1
2
jf max

i � f min
i j : (8)

Otherwise, ıi is given by

ıi D �
jfi.x/� f min

i j
1
2
jf max

i � f min
i j : (9)

4 Adaptive –-Ranking (A–R)

Adaptive �-Ranking (A�R) [9] reclassifies sets of non-dominated solutions using
iteratively a randomized sampling procedure that applies �-dominance [8] with
mapping function f.x/ 7!� f

0

.x/ to favor the distribution of solutions implicit in the
mapping. In our previous work, we have used A�R with a multiplicative mapping
function for �-dominance. In this work we implement A�R within the NSGA-II
framework [11] and use three different additive mapping functions, as mentioned
above.

A�R in the framework of NSGA-II assigns a new primary ranking of solutions
by reclassifying the fronts Fi (i D 1; : : : ; NF ) found by non-domination sorting
into fronts F � D fF �

j g (j D 1; 2; : : : ; N �
F ), where N �

F 	 NF . The main steps are
as follows:

Step 1 Assign the first front for reclassification, A D F1. Set front counters
i D 1 and j D 1.

Step 2 Call �-sampling with mapping function f.x/ 7!� f
0

.x/ and parameter � >

0:0 to get a sample S from A and their �-dominated solutions D � .
Step 3 Consider the sampled solutions as the reclassified front, F �

j D S .
Step 4 If there are still fronts to reclassify, i C 1 < NF , join the �-dominated

solutions with solutions of the next front and assign them for reclassification,
A D D � [FiC1. Otherwise, A D D � .

Step 5 Update counters i D i C 1, j D j C 1. If A is not empty, go to Step 2.

The sampling procedure referred to in Step 2 applies �-dominance with mapping
function f.x/ 7!� f

0

.x/ and parameter � > 0:0 to virtually extend the dominance
area of the sampled solution in order not to include closely located solutions in
the sample. Thus, solutions in the sample are expected to be spread according
to the mapping function. In other words, A�R tries to search the distribution of
solutions specified implicitly by the mapping function. The �-sampling procedure is
as follows:
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Step 1 Select extreme solutions from A (without replacement) and assign them
to the sample set S .

Step 2 Select randomly one solution from A (without replacement) and assign it
to S .

Step 3 Remove from A solutions �-dominated by the randomly selected solution
and assign them to D �.

Step 4 If A is not empty, go to Step 2.

The number of rank-1 solutions jF �
1 j after reclassification depends on the

value to which � (	 0) is set. Larger values of � imply that sampled solutions
�-dominate larger areas, increasing the likelihood of having more �-dominated
solutions excluded from the sample that form F �

1 . A�R adapts � at each generation
so that jF �

1 j is close to the size of the parent population jPj with the following
rule. If jF �

1 j > jPj it increases the step of adaptation 
 min .
 � 2; 
max/ and
�  � C
. Otherwise, if jF �

1 j < jPj it decreases 
 max .
 � 0:5; 
min/ and
�  max .� �
; 0:0/. In this work we set initial values �0 D 0:0 and 
0 D 0:005.
Also, 
max D 0:05 and 
min D 0:0001.

5 Simulation Results and Discussion

5.1 Test Problems and Experimental Setup

We study the performance and behavior of NSGA-II and A�R on the DTLZ test
functions family [10]. These functions are scalable in the number of objectives and
variables and thus allow for a many-objective study. In this work we present results
for DTLZ2 with M D 6 objectives varying the total number of variables N from
10 to 50. DTLZ2 has a non-convex Pareto-optimal surface in the first quadrant of
the M -dimensional unit hypersphere. For Linear Expansion and Contraction in A�R
we vary the parameter � from 0:10 to 0:30, which determines the slope of the linear
expansion or contraction, respectively. We run the algorithms 30 times and present
average results, unless stated otherwise. We use a different random seed in each
run, but all algorithms use the same seeds. The number of generations is set to
500 generations, and population size to 300 (P D Q D 300). The algorithms
use the Simulated Binary Crossover (SBX) [12] and polynomial mutation, setting
their distribution exponents to c D 15 and m D 20, respectively. Crossover rate
is pc D 1:0, crossover rate per variable pcv D f0:5; 0:1g, and mutation rate per
variable is pm D 1=N .

5.2 Effects on Convergence

In this section we analyze convergence by conventional NSGA-II and A�R with
different mappings. Figure 3 shows the average Generational Distance (GD) [13]
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Fig. 3 Generational Distance by NSGA-II, Additive Epsilon, Linear Expansion, and Linear
Contraction. DTLZ2, M D 6, N D f10; 30; 50g, pcv D 0:5. (a) Expansion N D 10, (b)
Contraction N D 10, (c) Expansion N D 30, (d) Contraction N D 30, (e) Expansion N D 50,
and (f) Contraction N D 50
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over the generations setting the algorithms with pcv D 0:5, a widely used value
for crossover rate per variable. Results are shown for the DTLZ2 function with
N D f10; 30; 50g variables. In each plot results by NSGA-II and A�R with Additive
mapping (labeled in the plots as Add) are included for reference, together with
results by A�R with Expansion or A�R with Contraction using slope values of
� D 0:10, � D 0:20 and � D 0:30 (labeled in the plots as S10, S20, and S30,
respectively). From this figure, note that GD by NSGA-II increases since the first
generation, for any number of variables N , and remains higher than the GD of the
random initial population. In other words, NSGA-II is diverging from the true Pareto
front rather than converging towards it. On the contrary, GD by A�R algorithms
reduces with the number of generations and becomes significantly smaller compared
to GD of the initial population. That is, sampling using �-dominance helps the
algorithm to converge towards the true Pareto front. These results are in accordance
with previous reports on �-dominance-based algorithms by several researches.

The bad performance of NSGA-II can be explained in terms of selection as
follows. In many-objective problems most solutions are non-dominated since early
generations. Thus, NSGA-II’s selection relies mostly on the diversity estimation
operator, which induces the population to spread rather than to converge. This
misleads the algorithm towards dominance-resistant solutions in the extreme regions
of the Pareto front, where the fitness of solutions takes values close to 0:0 in some
objectives and very large values in other objectives.

Looking at the three variants of A�R, it can be seen that overall GD by Additive
mapping is better than by the two other variants. However, note that the best value of
the achieved GD gets worse as we increase the number of variables. This is mainly
because it is more challenging to optimize a larger number of variables and also
because when we increase the number of variables evolution starts from an initial
population that is farther away from the true Pareto front, as evidenced by the larger
values of GD at generation t D 0. Comparing Expansion and Additive mappings,
we can see that GD’s transition over the generations looks similar for N D 10

variables, but GD by Expansion becomes worse than by Additive for N D 30 and
N D 50 variables. Notice that GD by Expansion assumes worse values as the slope
� increases. In addition, note that for N D 50, after an initial stage in which GD

improves (smaller values) we can see that GD starts to get worse (larger values).
Comparing Contraction and Additive mappings, we can see that GD by Contraction
with larger slope � is worse than GD by Additive for small N . However, for N D 50

we can see that GD by Contraction becomes better than by Additive and also that
larger values of the slope � lead to better values of GD.

5.3 Convergence Reducing Recombination Rate per Variable

Recent work on combinatorial problems has shown that diversity in variable space
of non-dominated solutions gets significantly larger with the number of objectives
and recombination may become too disruptive, affecting its effectiveness to find
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better solutions [6]. In this section we analyze the effects on convergence of a
less explorative recombination by reducing the crossover rate per variable from
pcv D 0:5 to pcv D 0:1. Our intention is to verify whether our findings on
combinatorial problems hold on continuous problems and analyze the relationship
between the effectiveness of the recombination operator and the distribution of
solutions that selection tries to induce. Figure 4 shows the average GD by all
algorithms with pcv D 0:1. In this figure, note the convergence trend by NSGA-II
for N D 30 and N D 50 variables, which is not observed for pcv D 0:5. This
is an indication that recombination with pcv D 0:1 is more effective than with
pcv D 0:5. This also implies that ineffective recombination is also responsible
for the divergence of the algorithm towards dominance-resistant solutions, and not
only selection as suggested in the previous section. Looking at the A�R algorithms,
we can see that they can achieve better values of GD with pcv D 0:1 than with
pcv D 0:5. Note also that the improvement of GD becomes more significant on
problems with larger number of variables. The trends of GD by Expansion and
Contraction mappings using pcv D 0:1 are similar to those observed for pcv D 0:5

for problems with up to 30 variables. However, in the case of N D 50 variables, note
that Expansion achieves better GD than Additive and Contraction achieves worse
GD than Additive. It is interesting to note that exactly the opposite trend is observed
for pcv D 0:5 as shown in Fig. 3e,f. The overall better GD obtained by reducing
recombination rate per variable from pcv D 0:5 to pcv D 0:1 suggests that the
effectiveness of recombination is an issue that needs to be carefully considered in
continuous problems.

5.4 Obtained Solutions and Their Distribution

In previous sections we analyzed the effects of A�R algorithms and rate of
recombination per variable on the convergence of the algorithms. In this section
we focus our analysis on the distributions of the obtained solutions.

Figure 5 shows scatter plots of the Pareto optimal solutions found by Additive
mapping for one run of the algorithm. Results are shown in the range Œ0:0; 2:0� for
the planes formed by f1, f3, and f6 at generations 50 and 500 using pcv D 0:5

and pcv D 0:1. On the other hand, Figs. 6 and 7 show hexagon binning plots of
solutions in the f1 � f3 plane at generation 500. A hexagon binning is a form of
bivariate histogram. A grid of hexagons is formed in the plane f1 � f3 and the
number of solutions falling in each hexagon are counted. The hexagons with count
> 0 are plotted varying the radius of the hexagon in proportion to the counts. Results
are shown in the range Œ0:0; 1:25� for the three variants Additive, Contraction, and
Expansion mappings using pcv D 0:5 in Fig. 6 and pcv D 0:1 in Fig. 7. In
Fig. 5, note the different distributions of solutions obtained by using pcv D 0:5

and pcv D 0:1. At generation 50, we can observe that many solutions have become
dominance-resistant, i.e. f1 and (or) f3 approach 0:0, when pcv D 0:5. On the
other hand, many more solutions are observed in the central regions of objective
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Contraction. M D 6, N D f10; 30; 50g, pcv D 0:1. (a) Expansion N D 10, (b) Contraction
N D 10, (c) Expansion N D 30, (d) Contraction N D 30, (e) Expansion N D 50, and (f)
Contraction N D 50



Distribution Search on Evolutionary Many-Objective Optimization 251

f1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0

f3

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

f6

f1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0

f3

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

f6

f1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0

f3

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

f6

f1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0

f3

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

f6

a b

c d

Fig. 5 Non-dominated solutions by Additive mapping, range Œ0:0; 2:0�. DTLZ2, M D 6, N D
50. (a) Generation 50, pcvD0.5, (b) generation 500, pcvD0.5, (c) generation 50, pcvD0.1, and (d)
generation 500, pcvD0.1

space when pcv D 0:1. At generation 500, most solutions have converged close to
the optimum hypersphere of radius 1. However, solutions obtained by pcv D 0:1

are more evenly distributed than solutions obtained by pcv D 0:5. This is better
illustrated by hexagon binning in Figs. 6a and 7a. For example, note that in the case
of pcv D 0:5 there are 47 solutions, out of a maximum of 300, located close to
f1 D f3 D 0:0, whereas there are 34 in the case of pcv D 0:1. The distribution
of solutions by Additive mapping with pcv D 0:1 reflects more precisely the kind
of distribution we want to achieve with the additive mapping described in Sect. 3.
Our analysis of GD shows that an appropriate recombination rate is important to
improve convergence. The analysis of the distribution of solutions suggests that
selection alone, without considering a proper recombination, cannot induce the
distribution we aim for.

Looking at the hexagon binning plots by Expansion and Contraction mappings,
the relevance of recombination to achieve the desired distribution of solutions
becomes clearer. Note in Fig. 7b that in the case of pcv D 0:1 solutions tend
to cluster around f1 D 0:5, f3 D 0:5, and f1 D f3 D 0:5, which is what
should be expected for the Expansion mapping. However, that is not the case when
pcv D 0:5, where a large number of solutions are clustered at f1 D f3 D 0:0,
as shown in Fig. 6b. Similarly, note in Fig. 7c that in the case of pcv D 0:1
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there is a large number of solutions concentrated around f1 D f3 D 0:0 and
along the axis, as expected for the Contraction mapping. On the other hand, in
the case of pcv D 0:5 the distribution of solutions in the objective space looks
more uniform, which is counterintuitive for the Contraction mapping, as shown in
Fig. 6c. In fact, it is interesting to note that the distribution by Contraction mapping
with pcv D 0:5 shown in Fig. 6c looks more uniform that the one by Additive
mapping with pcv D 0:5 shown in Fig. 6a. Looking at Fig. 3f we can also see that
Contraction mapping with pcv D 0:5 achieves better GD than Additive mapping
with pcv D 0:5. If GD were our only criterion to evaluate the algorithms, it would
seem that Contraction mapping works better than Additive mapping. However, the
distribution generated by Contraction is not what should be expected from such a
mapping. In the future we should analyze in more detail the reasons why Contraction
mapping generates a more uniform distribution than Additive mapping when a large
crossover rate is used.

6 Analysis on Combined Pareto Optimal Set

The mappings used for �-dominance aim at generating different distributions of
solutions. However, a particular distribution is meaningful if the solutions found
have good convergence properties. In the following, we combine solutions found
by all algorithms to analyze distribution and convergence of solutions that remain
non-dominated relative to solutions found by the other algorithms. To achieve
this, we extract the set PPOS of Pareto optimal solutions from the non-dominated
solutions obtained independently by the four algorithms NSGA-II, Adaptive, Linear
Expansion, and Linear Contraction. Each solution in PPOS is tagged with the
algorithm that found it.

Figure 8a,c,e show the average fraction of solutions found by the algorithms that
remain non-dominated in PPOS for N D f10; 30; 50g, pcv D 0:1, and � D 0:30.
Similarly, Fig. 8b,d,f show the average GD over the generations of the entire PPOS
and the subsets of solutions in PPOS classified by their tag. First, note that at
t D 0 the fraction of solutions in PPOS by all algorithms is 1:0. This is because all
algorithms start with the same random initial population and thus at t D 0 render the
same set of non-dominated solutions. Looking at results obtained for t > 0, it can
be seen that the fraction of non-dominated solutions in PPOS remains close to 1:0

by Additive, Linear Expansion, and Linear Contraction regardless of the number of
variables of the problem. That is, only few solutions found by these algorithms turn
out to be dominated when PPOS is formed. On the other hand, note that the fraction
of solutions in PPOS by NSGA-II falls rapidly to a value below 0:2 and remains
low throughout the generations, especially for N D 10. Increasing the number
of variables to N D 30 and N D 50, it can be seen that the fraction increases
and reaches values between 0:3 and 0:4 at generation t D 500. A similar trend is
observed varying � , as shown in Fig. 9. The large fraction of solutions in PPOS by
Additive, Linear Expansion, and Linear Contraction indicates that solutions found
by these mappings are located in different areas of objective space as expected.
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Fig. 8 Generational Distance and Fraction of Solutions in PPOS by NSGA-II, Additive, Linear
Expansion, and Linear Contraction varying N D f10; 30; 50g. DTLZ2, M D 6, pcv D 0:1,
� D 0:30. (a) Fraction, N D 10, (b) GD, N D 10, (c) fraction, N D 30, (d) GD, N D 30, (e)
fraction, N D 50, and (f) GD, N D 50



256 H. Aguirre et al.

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

F
ra

ct
io

n 
of

 S
ol

ut
io

ns
 in

 P
P

O
S

Nsgaii 
Add    

Linexp 
Lincon 

0 100 200 300 400 500

0.
01

0.
05

0.
50

5.
00

Generation

G
D

Nsgaii 
Add    

Linexp 
Lincon 

Ppos   

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

F
ra

ct
io

n 
of

 S
ol

ut
io

ns
 in

 P
P

O
S

Nsgaii 
Add    

Linexp 
Lincon 

0 100 200 300 400 500

0.
01

0.
05

0.
50

5.
00

Generation

G
D

Nsgaii 
Add    

Linexp 
Lincon 

Ppos   

a b

c d

Fig. 9 Generational Distance and Fraction of Solutions in PPOS by NSGA-II, Additive, Linear
Expansion, and Linear Contraction varying � D f0:20; 0:30g. DTLZ2, M D 6, N D f50g,
pcv D 0:1. (a) Fraction, N D 50, � D 0:10, (b) GD, N D 50, � D 0:10, (c) fraction, N D 50,
� D 0:10, and (d) GD, N D 50, � D 0:10

Looking at the GD of solutions in PPOS, it can be seen that the subset of
solutions corresponding to Additive renders the smallest GD for N D 10 and
N D 30. However, the subset of solutions corresponding to Linear Expansion
renders the smallest GD for N D 50. The subset of solutions in PPOS by Linear
Contraction is the third best in terms of GD and the subset of solution in PPOS
by NSGA-II is the worst. It should be noticed that all solutions in PPOS are
non-dominated. However, some solutions with high GD are obtained by Linear
Contraction and especially by NSGA-II. This suggests that some of these solutions,
although non-dominated, are dominance resistant with very small values in some
objective functions but with not so good values on the other objective functions.

Figure 10 shows fitness vectors in the plane f1 � f3 of the solutions in
PPOS found by the algorithms in one of their runs. Non-dominated solutions
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Fig. 10 Scatter Plots of Solutions in PPOS by NSGA-II, Additive Epsilon, Linear Expansion, and
Linear Contraction. DTLZ2, M D 6, N D f50g, pcv D 0:1, � D f0:10; 0:20; 0:30g. (a.1, b.1,
c.1) NSGA-II, (a.2, b.2, c.2) Additive, (a.3) Exp. � D 0:10, (b.3) Exp. � D 0:20, (c.3) Exp.
� D 0:30, and (a.4) Cont. � D 0:10, (b.4) Cont. � D 0:20, (c.4) Cont. � D 0:30
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found by Linear Extension and Linear Contraction set to � D f0:10; 0:20; 0:30g
are combined with results by NSGA-II and Additive to form one PPOS per � .
Figure 10a.1–a.4, b.1–b.4, and c.1–c.4 show solutions in PPOS for � D 0:10,
� D 0:20, and � D 0:30, respectively. From these figures note that the distributions
by Additive look the most uniforms, as expected. Also, the distributions by Linear
Expansion gradually cluster around f1 D 0:5, f3 D 0:5, f1 D f3 D 0:5 by
increasing � , whereas the distributions by Linear Contraction gradually cluster
around the axis. Looking at results by NSGA-II, it is worth noting that the empty
spaces observed in its distributions match with the regions where solutions by
Additive, Linear Expansion, or Linear Contraction cluster.

7 Conclusions

In this work we have studied distribution search in the context of many-objective
optimization focusing on the effectiveness of Adaptive �-Ranking. We have ana-
lyzed three additive mapping functions for the �-sampling procedure of Adaptive
�-Ranking in order to bias the search towards different distributions of solutions.
We also analyzed the relationship between the effectiveness of the recombination
operator and the distribution of solutions that selection tries to induce. We have
verified that in many-objective continuous problems a less explorative recombina-
tion can increase substantially the convergence of solutions. Also, we verified that
selection alone without considering a proper recombination rate cannot induce the
distribution we seek to achieve. In the future, we would like to extend our analysis
to larger populations and to other problems. Also, we would like to look deeper into
the relationship between recombination and selection for distribution search.
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Concurrent Implementation Techniques Using
Differential Evolution for Multi-Core CPUs:
A Comparative Study Using Statistical Tests

Kiyoharu Tagawa

Abstract In order to utilize multi-core CPUs effectively, a concurrent version of
a recently developed evolutionary algorithm, i.e., Differential Evolution (DE), is
described. The concurrent version of DE is called Concurrent DE (CDE). CDE is
designed based on a programming model known as “MapReduce” and implemented
in Java. Two implementations of CDE, namely CDE/D and CDE/S, are proposed
and compared from the viewpoint of both quality of solutions and execution time.
Through the numerical experiments and the statistical tests conducted on two kinds
of popular multi-core CPUs, it is shown that CDE/S uses multi-core CPUs more
effectively than CDE/D. However, the quality of solutions obtained by CDE/S tends
to fluctuate with the number of threads and the kind of benchmark problems.

1 Introduction

Differential Evolution (DE) proposed originally by Storn and Price [1] is arguably
one of the most powerful stochastic real-parameter optimization algorithms in
current use. DE is regarded as a kind of Evolutionary Algorithm (EA). However,
comparing it with conventional EAs such as Genetic Algorithm (GA), Evolution
Strategy (ES), and Particle Swarm Optimization (PSO), it has been reported that DE
exhibits an overall excellent performance for a wide range of benchmark problems
[2]. Furthermore, because of its simple but powerful searching capability, DE has
been used in several scientific and engineering applications [2, 3].

Because EAs maintain a lot of individuals, or tentative solutions, manipulated
competitively in the population, primary EAs have a parallel and distributed nature
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intrinsically. Therefore, many parallelization techniques have been contrived for
various EAs [4, 5]. These parallelization techniques of EAs can be extended easily
to DE. Actually, parallel implementations of DE variants have been proposed for
some platforms such as networked computers and computer clusters [6–9].

Recently, multi-core CPUs, which have more than one processor (core), have
been introduced widely into commodity computers. Therefore, in order to utilize
the additional cores to execute costly application programs, researchers’ attention
has been focused on their parallel and concurrent implementations [10]. Some
tools are available today to parallelize application programs. Parallel compilers
transform sequential programs into parallel ones automatically. However, due to
complexity of automatically transforming sequential algorithms into parallel ones,
the amount of parallelism reached using parallel compilers is low. In general,
parallel programming obtains a higher performance than automatic parallelization.
OpenMP (Open Multiprocessing; http://openmp.org/) is an Application Program-
ming Interface (API) that supports parallel programming in C/CCC and Fortran
on shared memory multi-platforms such as multi-core CPUs. Besides, the Java
language provides high-level components and mechanisms to build concurrent
application programs efficiently [11].

In addition to multi-core CPUs, Graphics Processing Units (GPUs) designed
originally to accelerate graphics applications with several hundreds of simplified
cores have also been used to run parallelized application programs. OpenCL
(Open Computing Language; http://www.khronous.org/opencl/) is a low-level API
for writing programs that execute across heterogeneous platforms consisting of
multi-core CPUs and GPUs. A survey of parallel programming with OpenMP and
OpenCL is provided in [12].

Multi-core CPUs and GPUs also offer a new paradigm of implementation to EAs.
There have been several attempts to accelerate DE programs consisting of hundreds
of threads executable in parallel by using GPUs [13, 14]. Certainly, GPUs are far
faster than multi-core CPUs. However, GPU-based applications are limited by the
architecture and memory model of GPU. GPU-based applications also require to
build specific programs for the GPU, called “kernels,” besides the main programs
for the host CPU. Data transfers between CPU and GPU can easily become a
bottleneck. On the other hand, CPU-based applications are not limited by the
architecture of CPU such as the number of cores and much easier to implement
than GPU-based ones [12]. Even though the number of available cores is not so
large, the concurrent program executed on a multi-core CPU is the simplest and
easiest way to implement a parallelized DE. Therefore, authors have proposed a
concurrent version of DE called Concurrent DE (CDE) for multi-core CPUs [15].
Strictly speaking, the proposed CDE is a parallelized version of a novel DE based
on the “steady-state model.”

The procedure by which EAs update the individuals in the population is called
“generation alternation model.” Many EAs usually employ either of two types of
generation alternation models [16]. The first one is called “generational model,”

http://openmp.org/
http://www.khronous.org/opencl/
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while the second one is called “steady-state model.” The original DE is based
on the generational model [1]. According to the generational model, DE holds
two populations, namely a primary one and a secondary one. After generating
all individuals of the secondary population from those of the primary population,
the primary one is replaced altogether by the secondary one. On the other hand,
a new DE based on the steady-state model has been reported and studied lately
[17–19]. The new DE is sometimes called Sequential DE (SDE) [17]. According
to the steady-state model, SDE holds only one population. Then individuals in the
population are updated one by one. Comparing it with the generational model, the
steady-state model is usually suitable for parallelizing EAs [20]. That is because
EAs based on the steady-state model need not synchronize the manipulations of all
individuals for replacing the primary population by the secondary population at one
time.

In order to realize the above CDE, two implementation techniques of CDE,
namely CDE/D and CDE/S, are presented. CDE/D allocates the manipulations of
individuals to the corresponding threads dynamically, while CDE/S allocates them
to all threads statically. Both CDE/S and CDE/D are developed in Java. The multi-
threading and the mutual exclusion provided by the Java language are indispensable
for the two implementations of CDE. The performances of CDE/D and CDE/S
are compared with respect to both the execution time and the quality of solutions
using two kinds of popular multi-core CPUs: Intel(R) Core(TM) i7 and AMD
Phenom(TM) II X6. Through the numerical experiments and the statistical tests
conducted on six benchmark problems, it is shown that CDE/S uses multi-core
CPUs more effectively than CDE/D. However, the quality of solutions obtained by
CDE/S tends to fluctuate with the number of threads and the benchmark problems.

The remainder of this chapter is organized as follows. Section 2 formulates
the real-parameter optimization and describes the algorithms of DE and SDE.
Section 3 presents CDE with its two implementation techniques, namely CDE/D
and CDE/S. Section 4 compares CDE/D and CDE/S through numerical experiments
and statistical tests conducted on benchmark problems. Finally, Sect. 5 summarizes
the chapter.

2 Differential Evolution

2.1 Representation

The real-parameter optimization problem is usually formulated as shown in (1).
The global optimal solution of the optimization problem is a D-dimensional real-
parameter vector x D .x1; � � � ; xj ; � � � xD/ 2 <D that minimizes the objective
function value f .x/ 2 <. Furthermore, the value of each decision variable xj 2 <
is limited to the range between the lower xj and the upper xj bounds as
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"
minimize f .x/ D f .x1; � � � ; xj ; � � � ; xD/;

subject to xj � xj � xj ; j D 1; � � � ; D:
(1)

DE searches for a global optimal solution of the optimization problem in (1).
Like other EAs, DE holds NP tentative solutions of the optimization problem called
individuals in the population P. The i -th individual xi 2 P is represented as

xi D .x1;i ; � � � ; xj;i ; � � � ; xD;i /; (2)

where xj;i 2 < and xj � xj;i � xj , j D 1; � � � ; D; i D 1; � � � ; NP .

2.2 DE Strategy

In order to generate a candidate for a new individual of the population P, DE
uses a unique reproduction strategy. The strategy of DE is defined by a series of
three genetic operators, namely reproduction selection, differential mutation, and
crossover. Even though various strategies have been proposed for DE [2, 17], a
basic strategy named “DE/rand/1/exp” is described and used in this chapter. That
is because our previous studies about SDE have shown that the basic strategy of DE
is excellent and has relatively good compatibility with SDE too [19].

In the reproduction selection, each individual xi 2 P is assigned to the “target
vector” in turn. Besides the target vector xi 2 P, three other distinct individuals, say
xi1, xi2 and xi3 2 P .i1 ¤ i2 ¤ i3/, are selected randomly from P.

By using the above three individuals, the differential mutation generates a new
real-parameter vector called “mutated vector” v D .v1; � � � ; vD/ 2 <D as

v D xi1 C F .xi2 � xi3/; (3)

where the scale factor F 2 < (0 < F � 1) is a control parameter.
The exponential crossover between the mutated vector v and the target vector xi

generates a candidate for a new individual u D .u1; � � � ; uj ; � � � ; uD/ called “trial
vector.” Each component uj of the trial vector u is inherited from either the mutated
vector v or the target vector xi . The pseudo-code in (4) describes the procedure of
the exponential crossover combined with the differential mutation shown in (3). The
subscript jr 2 Œ1; D� in (4) is selected randomly, which ensures that u differs from
xi 2 P for at least one component ujr . Furthermore, randŒ0; 1� in (4) denotes a
random number generator that returns a uniformly distributed random number in
the range Œ0; 1�. As well as the scale factor F in (3), the crossover rate CR 2 Œ0; 1�

is a control parameter specified by the user in advance.
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2
66666666666664

j D jr I
do f

uj D xj;i1 C F .xj;i2 � xj;i3/I
j D j % D C 1I

g while.randŒ0; 1� < CR ^ j ¤ jr /

while.j ¤ jr / f
uj D xj;i I
j D j % D C 1I

g

(4)

If a component uj of the trial vector u is out of the range Œxj ; xj � as the result
of the operation shown in (4), it is rescaled as

uj D
(

xj;i1 C randŒ0; 1� .xj � xj;i1/ if.uj < xj /;

xj;i1 C randŒ0; 1� .xj � xj;i1/ if.uj > xj /:
(5)

2.3 DE Algorithm

The original DE proposed by Storn and Price [1] is based on the generational model.
Therefore, DE uses two populations, the primary one P and the secondary one
Q. The individuals zi 2 Q (i D 1; � � � ; NP ) are generated from xi 2 P. After
that, P is replaced by Q at one time. The DE algorithm works as follows:

1: Randomly generate NP individuals xi 2 P .i D 1; � � � ; NP /.
2: For each individual xi 2 P, evaluate the objective function value f .xi /.
3: Set the generation as g D 0.
4: For each of the target vectors xi 2 P, execute from Step 4.1 to Step 4.4.

4.1: Randomly select xi1, xi2 and xi3 2 P .i1 ¤ i2 ¤ i3/.
4.2: Generate the trial vector u from (4) and (5).
4.3: Evaluate the objective function value f .u/.
4.4: If f .u/ � f .xi / holds then let zi D u and f .zi / D f .u/, otherwise let

zi D xi and f .zi / D f .xi /.

5: Replace P by Q such that xi D zi and f .xi / D f .zi / (i D 1; � � � ; NP ).
6: If g < GM holds then update the generation as g D gC 1 and return to Step 4.
7: Output the best xb 2 P with the minimum f .xb/ and terminate.

where the maximum number of generation GM is also a control parameter.
In Step 5 of the above DE, the primary population P is replaced by the secondary

population Q at one time. Therefore, even if every zi 2 Q (i D 1; � � � ; NP ) is
generated in parallel, the procedure of the parallelized DE has to be synchronized in
Step 5.
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2.4 SDE Algorithm

SDE is an alternative DE based on the steady-state model. Therefore, SDE cleverly
uses only one population P. As we can see in Step 4.4 of SDE, an excellent trial
vector u is added in the population P instantly and used to generate new individuals
descended from the trial vector. The SDE algorithm works as follows:

1: Randomly generate NP individuals xi 2 P .i D 1; � � � ; NP /.
2: For each individual xi 2 P, evaluate the objective function value f .xi /.
3: Set the generation as g D 0.
4: For each of the target vectors xi 2 P, execute from Step 4.1 to Step 4.4.

4.1: Randomly select xi1, xi2 and xi3 2 P .i1 ¤ i2 ¤ i3/.
4.2: Generate the trial vector u from (4) and (5).
4.3: Evaluate the objective function value f .u/.
4.4: If f .u/ � f .xi / holds, then let xi D u and f .xi / D f .u/.

5: If g < GM holds, then update the generation as g D g C 1 and return to Step 4.
6: Output the best xb 2 P with the minimum f .xb/ and terminate.

3 Concurrent Differential Evolution

3.1 Concurrent Implementation

A system is said to be concurrent if it can support two or more actions in progress at
the same time. A system is said to be parallel if it can support two or more actions
executing simultaneously. The key difference between these definitions is the phrase
“in progress” [10]. A concurrent program consists of multiple processes, or threads,
executable in parallel. If a multi-core CPU has NT (NT 	 1) cores, a maximum
number of NT threads can be run in parallel. How and when one of the threads is
assigned to a core is dictated by the scheduler of the Operating System (OS).

Each thread has its own private working memory and no thread can access other
threads’ working memories. Besides, there is a common memory, which is shared
between all threads. In order for multiple threads to use the common memory,
mutual exclusion is needed, which will be discussed in Sect. 3.5. For accessing
the common memory, we assume Concurrent Read and Exclusive Write (CREW)
[10] in which multiple threads may read the same memory location at the same
time but only one thread may write to a given memory location at any time. Of
course, multiple threads can’t read and write the same memory location at the same
time.
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3.2 CDE Main Routine

As stated above, CDE is a concurrent version of SDE. CDE consists of a main
routine and NT subroutines named Worker(n) .n D 1; � � � ; NT /. The main
routine and each of the subroutines are realized as one thread, respectively. The
population P is stored in the common memory, which is shared between all
Worker(n) threads. Except the detail of Worker(n), the main routine of CDE
is provided as

1: Randomly generate NP individuals xi 2 P .i D 1; � � � ; NP /.
2: Evoke Worker(n) .n D 1; � � � ; NT / in parallel.
3: Wait until every Worker(n) .n D 1; � � � ; NT / is completed.
4: Output the best xb 2 P with the minimum f .xb/ and terminate.

CDE is based on a programming model known as “MapReduce” [21], which
has been employed widely to design various concurrent and parallel applications
lately. The programming model consists of two phase, “Map-phase” and “Reduce-
phase.” In the main routine of CDE, Step 2 corresponds to “Map-phase,” while
Step 4 corresponds to “Reduce-phase.” All Worker(n) threads are evoked and
executed concurrently in Step 2. Each Worker(n) generates the trial vector u from
several individuals xi 2 P and evaluates its objective function value f .u/ by using
its private working memory. The results of all Worker(n) threads are consolidated
in Step 4. For assigning the target vector xi 2 P (i D 1; � � � ; NP ) to Worker(n)
(n D 1; � � � ; NT ), we propose two techniques, the dynamic allocation of tasks and
the static allocation of tasks, which are described in the following subsections.

3.3 Dynamic Task Allocation

CDE with the dynamic allocation of tasks is named CDE/D. CDE/D allocates the
target vector xi 2 P to Worker(n) over time as CDE/D progresses.GetIndex()
denotes an exclusive function that returns a unique index at a time in ascending order
such as t D 1; 2; � � � . By using GetIndex(), Worker(n) gets an index of the
assigned target vector dynamically. Because each xi 2 P is possibly updated by
every Worker(n), Worker(n) has to overwrite xi 2 P and f .xi / in Step 3.5
under the exclusion control. The procedure of Worker(n) is provided as

1: Get an index as t D GetIndex().
2: While t � NP holds, evaluate the objective function value f .xt / and get the next

index such as t D GetIndex().
3: While t � .GM C 1/ NP holds, execute from Step 3.1 to Step 3.6.

3.1: Designate an individual xi (i D t%NP C 1) to the target vector.
3.2: Randomly select xi1, xi2 and xi3 2 P .i1 ¤ i2 ¤ i3/.
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3.3: Generate the trial vector u from (4) and (5).
3.4: Evaluate the objective function value f .u/.
3.5: If f .u/ � f .xi / holds, then let xi D u and f .xi / D f .u/.
3.6: Get the next index such as t D GetIndex().

3.4 Static Task Allocation

CDE with the static allocation of tasks is named CDE/S. First of all, the population
P is divided into NT sub-populations Pn (n D 1; � � � ; NT ) called “chunks” as

P D P1 [ � � � [ Pn [ � � � [ PNT ; (6)

where an individual xi 2 P (i%NT D n) is assigned to PnC1.
CDE/S allocates each chunk Pn to Worker(n) statically. Worker(n) can read

any individual xi 2 P, but it may overwrite only the individuals xi 2 Pn. In other
words, the task for updating the individuals in one chunk Pn is permitted only to
Worker(n). Therefore, the mutual exclusion among threads overwriting xi 2 Pn

is not necessary for CDE/S. The procedure of Worker(n) is provided as

1: For each individual xi 2 Pn, evaluate the objective function value f .xi /.
2: Set the generation as g D 0.
3: For each of the target vectors xi 2 Pn, execute from Step 3.1 to Step 3.4.

3.1: Randomly select xi1, xi2 and xi3 2 P .i1 ¤ i2 ¤ i3/.
3.2: Generate the trial vector u from (4) and (5).
3.3: Evaluate the objective function value f .u/.
3.4: If f .u/ � f .xi / holds, then let xi D u and f .xi / D f .u/.

4: If g < GM holds, then update the generation as g D g C 1 and return to Step 3.

3.5 Implementation of CDE in Java

The SDE, CDE/D, and CDE/S algorithms are coded in Java, a very popular language
supporting multi-threading and mutual exclusion between threads. In CDE, most
threads are just reading the individuals in the population. Overwriting the target
vector xi 2 P seldom occurs. It is not necessary to exclusively lock access to xi 2
P while reading because multiple read operations can be done in parallel unless
there is an ongoing write operation. Read–write lock provided by Java enforces
a multiple-reader and single-writer locking discipline: more than one reader can
access the shared resource concurrently so long as none of them wants to modify it,
but writers must acquire the lock exclusively [11].
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By using the read–write lock, CWER assumed in Sect. 3.1 can be realized easily.
In the implementation of CDE/D, the population P is equipped with two pairs of
read and write locks. The first pair is used to access all individuals xi 2 P, while the
second pair is used to access all objective function values f .xi / (xi 2 P). That is
because every Worker(n) of CDE/D is permitted to read and write the objective
function values f .xi / (xi 2 P). On the other hand, in the implementation of CDE/S,
each chunk Pn (n D 1; � � � ; NT ) is equipped with a pair of read and write locks.
Then the pair of read and write locks is used to access the individuals xi 2 Pn.
Because a unique thread of CDE/S, i.e., Worker(n), is permitted to read and write
the objective function values f .xi / (xi 2 Pn), no lock is necessary to access f .xi /.

4 Experimentation

4.1 Benchmark Problems

The following six test functions are used as the objective function f .x/ shown
in (1). All benchmark problems are D-dimensional real functions with D D 50.
The function values of the optimal solutions x? 2 <D are known to be fp.x?/ D 0

(p D 1; � � � ; 6).

• Sphere function (unimodal function):

f1.x/ D
DX

jD1

x2
j ;

� 100 � xj � 100; j D 1; � � � ; D:

• Salomon function (multimodal function):

f2.x/ D � cos

0
@2 �

vuut DX
jD1

x2
j

1
AC 0:1

vuut DX
jD1

x2
j C 1;

� 100 � xj � 100; j D 1; � � � ; D:

• Rosenbrock function (multimodal function):

f3.x/ D
D�1X
jD1

.100 .x2
j � xjC1/

2 C .1 � xj /2/;

� 2:048 � xj � 2:048; j D 1; � � � ; D
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Table 1 Specifications for Personal Computers (PCs)

PC CPU OS Clock Memory

PC1 Intel(R) Core(TM) i7 WindowsXP 3.34 GHz 2.99 GB
PC2 AMD Phenom(TM) II X6 Windows7 3.20 GHz 3.25 GB

• Rastrigin function (multimodal function):

f4.x/ D
DX

jD1

.x2
j � 10 cos.2 � xj /C 10/;

� 5:12 � xj � 5:12; j D 1; � � � ; D:

• Ackley function (multimodal function):

f5.x/ D � 20 exp

0
@�0:2

vuut 1

D

DX
j D1

x2
j

1
A � exp

0
@ 1

D

DX
j D1

cos.2 � xj /

1
AC 20C e:

� 32:768 � xj � 32:768; j D 1; � � � ; D:

• Griewank function (multimodal function):

f6.x/ D 1

4000

DX
jD1

x2
j �

DY
jD1

cos

�
xjp

j

�
C 1;

� 600 � xj � 600; j D 1; � � � ; D:

4.2 Experimental Setup

The Java programs of SDE, CDE/D, and CDE/S were executed on two Personal
Computers (PCs) equipped with different multi-core CPUs. Table 1 shows the
specifications for the two PCs which are denoted by PC1 and PC2. The multi-
core CPU in PC1 has four cores each of which manipulates two threads at
the same time, while the multi-core CPU in PC2 has six cores each of which
manipulates one thread. The control parameters of all algorithms were chosen as
F D 0:5, CR D 0:9, and GM D 1;000. The population size NP was set to either
100 or 500. Then the three algorithms were applied to the six benchmark problems
50 times, respectively.
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Table 2 Execution time of SDE on PC1

NP f1 f2 f3 f4 f5 f6

100 129:06 130:94 138:76 402:50 355:32 394:38

(7:59) (8:32) (8:14) (9:81) (10:27) (8:15)

500 634:38 659:36 682:18 2021:86 1788:12 1974:06

(12:69) (13:80) (12:40) (11:37) (13:83) (13:34)

Table 3 Execution time of SDE on PC2

NP f1 f2 f3 f4 f5 f6

100 173:64 186:72 181:74 604:80 445:24 459:90

(5:14) (4:32) (8:31) (6:81) (8:42) (8:42)

500 898:44 916:20 913:42 3056:72 2293:78 2346:92

(11:79) (33:13) (7:58) (26:45) (24:62) (36:41)

4.3 CDE Execution Time

Table 2 shows the average execution time of SDE on PC1, where the standard
deviation of the execution times also appears in parentheses. Similarly, Table 3
shows the execution time of SDE on PC2. The efficiency of CDE is evaluated by
using the speedup Sm.NT / defined in (7), where Tm is the execution time of SDE
and Tm.NT / is the execution time of CDE using NT (NT 	 1) Worker(n) threads.
Because SDE and CDE are stochastic algorithms, Tm and Tm.NT / are averaged over
m D 50 runs.

Sm.NT / D Tm

Tm.NT /
(7)

Figure 1 compares the speedup curves achieved, respectively, by CDE/D (broken
line) and CDE/S (solid line) on PC1. Figure 2 also compares the speedup curves
achieved by CDE/D and CDE/S on PC2 in the same way. Because the maximum
number of threads executable in parallel is different, the characteristics of the
speedup curves differ between two PCs. For example, in case of PC1, the speedup
curves of CDE/S are saturated at NT D 8 threads. On the other hand, in case of PC2,
the speedup curves of CDE/S are saturated at NT D 6 threads. However, the speedup
achieved by CDE/S is higher than the speedup achieved by CDE/D in every case.
Therefore, from Figs. 1 and 2, it can be confirmed that CDE/S utilizes multi-core
CPUs more efficiently than CDE/D on both PCs. That is because CDE/D spends a
relevant overhead for the exclusion control between write operations to xi 2 P.

Incidentally, from Figs. 1 and 2, the characteristics of the speedup curves
achieved by CDE (CDE/D and CDE/S) depend on the kind of benchmark problems
rather than on population size. More specifically, we can observe that the higher
speedup has been achieved by CDE in case of the more expensive objective
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Fig. 1 Speedup curves achieved by CDE/D (broken line) and CDE/S (solid line) on PC1. (a)
Sphere function: f1 (NP D 100). (b) Sphere function: f1 (NP D 500). (c) Salomon function: f2

(NP D 100). (d) Salomon function: f2 (NP D 500). (e) Rosenbrock function: f3 (NP D 100).
(f) Rosenbrock function: f3 (NP D 500). (g) Rastrigin function: f4 (NP D 100). (h) Rastrigin
function: f4 (NP D 500). (i) Ackley function: f5 (NP D 100). (j) Ackley function: f5 (NP D
500). (k) Griewank function: f6 (NP D 100). (l) Griewank function: f6 (NP D 500)
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Fig. 2 Speedup curves achieved by CDE/D (broken line) and CDE/S (solid line) on PC2. (a)
Sphere function: f1 (NP D 100). (b) Sphere function: f1 (NP D 500). (c) Salomon function: f2

(NP D 100). (d) Salomon function: f2 (NP D 500). (e) Rosenbrock function: f3 (NP D 100).
(f) Rosenbrock function: f3 (NP D 500). (g) Rastrigin function: f4 (NP D 100). (h) Rastrigin
function: f4 (NP D 500). (i) Ackley function: f5 (NP D 100). (j) Ackley function: f5 (NP D
500). (k) Griewank function: f6 (NP D 100). (l) Griewank function: f6 (NP D 500)
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Table 4 Objective function value of the best solution obtained by SDE on PC1

NP f1 f2 f3 f4 f5 f6

100 3:28E�4 1:660 44:492 99:963 4:24E�3 1:24E�3

(5:90E�5) (0:108) (0:523) (6:297) (5:45E�4) (1:96E�3)

500 5:04E�4 1:677 44:320 93:686 5:35E�3 9:94E�4

(4:97E�5) (0:060) (0:337) (5:651) (3:65E�4) (2:63E�4)

Table 5 Objective function value of the best solution obtained by SDE on PC2

NP f1 f2 f3 f4 f5 f6

100 3:28E�4 1:660 44:492 99:963 4:24E�3 1:24E�3

(5:90E�5) (0:108) (0:523) (6:297) (5:45E�4) (1:96E�3)

500 5:04E�4 1:677 44:320 93:686 5:35E�3 9:94E�4

(4:97E�5) (0:060) (0:337) (5:651) (3:65E�4) (2:63E�4)

functions, namely f4, f5, and f6, which are computed using a lot of trigonometric
functions.

4.4 Quality of Solutions Obtained by CDE

Table 4 shows the average objective function values of the best solutions obtained
by SDE on PC1, where the standard deviation of the objective function values also
appears in parentheses. Similarly, Table 5 shows the objective function values found
by SDE on PC2. Table 6 shows the average objective function values of the best
solutions obtained by CDE (CDE/D and CDE/S) with NP D 100 and 500 on
PC1, where the standard deviation of the objective function values also appears in
parentheses. Similarly, Table 7 shows the objective function values found by CDE
on PC2. From Tables 6 and 7, the objective function values found by CDE, i.e., the
quality of solutions, seem to change slightly with the number of threads in each of
benchmark problems. Furthermore, the quality of solutions seems to be different
in CDE/D and CDE/S. Therefore, we analyze the quality of solutions statistically
by Wilcoxon test [22]. The null hypothesis is that there is no significant difference
between two objective function values found, respectively, by SDE and CDE.

Table 8 compares CDE (CDE/D or CDE/S) with SDE on PC1 by using Wilcoxon
test about the objective function values of the best solutions, in which+ (*) denotes
CDE is significantly better (worse) than SDE with risk ˛ D 0:01; # (") denotes
CDE is better (worse) than SDE with risk ˛ D 0:05; and “–” means that there
is no significant difference between CDE and SDE in the objective function value.
Similarly, Table 9 compares CDE (CDE/D or CDE/S) with SDE on PC2 by using
Wilcoxon test about the objective function values of the best solutions.
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Table 6 Objective function value of the best solution obtained by CDE on PC1

NT 1 2 4 6 8 10 12

(a) CDE/D with NP D 100

f1 3:28E�4 3:39E�4 3:51E�4 3:63E�4 3:56E�4 3:53E�4 3:89E�4

(5:90E�5) (8:35E�5) (7:08E�5) (7:20E�5) (7:47E�5) (7:22E�5) (8:29E�5)

f2 1:660 1:660 1:672 1:678 1:665 1:667 1:679

(0:108) (0:083) (0:100) (0:104) (0:108) (0:08) (0:122)

f3 44:492 44:571 44:486 44:582 44:508 44:526 44:574

(0:523) (0:472) (0:540) (0:585) (0:568) (0:624) (0:679)

f4 99:963 98:128 99:423 99:089 101:059 101:010 100:808

(6:297) (8:422) (5:836) (6:647) (7:554) (6:765) (7:211)

f5 4:24E�3 4:22E�3 4:30E�3 4:39E�3 4:33E�3 4:44E�3 4:54E�3

(5:45E�4) (4:98E�4) (4:56E�4) (5:25E�4) (5:30E�4) (4:97E�4) (4:63E�4)

f6 1:24E�3 1:03E�3 1:08E�3 1:14E�3 8:38E�4 1:16E�3 1:02E�3

(1:96E�3) (1:30E�3) (1:89E�3) (1:16E�3) (6:14E�4) (1:25E�3) (1:26E�3)

(b) CDE/S with NP D 100

f1 3:28E�4 3:10E�4 2:93E�4 6:16E�4 3:03E�4 3:02E�4 3:62E�4

(5:90E�5) (6:74E�5) (5:86E�5) (1:55E�4) (7:10E�5) (5:40E�5) (7:59E�5)

f2 1:660 1:657 1:657 1:639 1:601 1:653 1:603

(0:108) (0:083) (0:094) (0:099) (0:101) (0:102) (0:100)

f3 44:492 44:472 44:453 45:051 44:489 44:544 44:561

(0:523) (0:565) (0:605) (0:580) (0:571) (0:553) (0:540)

f4 99:963 100:449 99:992 98:014 99:941 98:645 98:578

(6:297) (6:406) (6:400) (7:730) (6:484) (8:234) (8:394)

f5 4:24E�3 4:35E�3 4:17E�3 6:31E�3 4:21E�3 4:12E�3 4:89E�3

(5:45E�4) (3:96E�4) (5:08E�4) (8:46E�4) (5:00E�4) (4:97E�4) (8:13E�4)

f6 1:24E�3 1:23E�3 9:01E�4 1:76E�3 7:13E�4 7:87E�4 1:71E�3

(1:96E�3) (2:00E�3) (6:74E�4) (1:48E�3) (3:80E�4) (6:05E�4) (2:13E�3)

(c) CDE/D with NP D 500

f1 5:04E�4 5:17E�4 5:15E�4 5:13E�4 5:06E�4 5:32E�4 4:99E�4

(4:97E�5) (6:55E�5) (7:29E�5) (5:67E�5) (5:72E�5) (6:40E�5) (4:93E�5)

f2 1:677 1:667 1:671 1:677 1:672 1:668 1:644

(0:060) (0:070) (0:079) (0:072) (0:063) (0:074) (0:075)

f3 44:320 44:272 44:180 44:313 44:349 44:226 44:278

(0:337) (0:356) (0:396) (0:315) (0:261) (0:318) (0:401)

f4 93:686 93:357 93:765 94:748 92:623 92:829 94:493

(5:651) (4:243) (5:547) (5:783) (6:124) (5:259) (5:424)

f5 5:35E�3 5:41E�3 5:42E�3 5:32E�3 5:45E�3 5:49E�3 5:45E�3

(3:65E�4) (3:40E�4) (3:67E�4) (3:45E�4) (3:83E�4) (3:09E�4) (3:17E�4)

f6 9:94E�4 1:09E�3 1:11E�3 1:07E�3 1:14E�3 1:04E�3 1:04E�3

(2:63E�4) (3:72E�4) (2:65E�4) (3:33E�4) (4:05E�4) (3:42E�4) (2:78E�4)
(continued)
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Table 6 (continued)

NT 1 2 4 6 8 10 12

(d) CDE/S with NP D 500

f1 4:96E�4 5:04E�4 4:38E�4 1:11E�3 4:46E�4 4:20E�4 4:29E�4

(8:28E�5) (4:64E�5) (6:52E�5) (1:70E�4) (5:69E�5) (6:26E�5) (6:29E�5)

f2 1:677 1:666 1:644 1:620 1:652 1:638 1:642

(0:060) (0:069) (0:074) (0:067) (0:071) (0:060) (0:068)

f3 44:320 44:214 44:182 45:035 44:192 44:299 44:168

(0:337) (0:307) (0:325) (0:346) (0:311) (0:379) (0:350)

f4 93:686 92:221 92:367 90:986 90:654 94:420 94:505

(5:651) (6:757) (4:943) (5:412) (7:439) (5:077) (4:994)

f5 5:35E�3 5:33E�3 5:00E�3 8:50E�3 5:11E�3 4:95E�3 4:92E�3

(3:65E�4) (3:47E�4) (3:87E�4) (6:44E�4) (2:85E�4) (3:52E�4) (3:97E�4)

f6 9:94E�4 1:00E�3 1:01E�3 2:13E�3 1:01E�3 9:22E�4 9:23E�4

(2:63E�4) (2:27E�4) (3:67E�4) (6:74E�4) (2:93E�4) (3:26E�4) (3:71E�4)

From the results of Wilcoxon test shown in Tables 8 and 9, the null hypothesis
is rejected with the risk less than ˛ D 0:01 in some cases. In other words, it can
be confirmed that the objective function values found by CDE changes significantly
with the number of threads in some benchmark problems. Even though the objective
function values found by CDE are smaller than those values found by SDE in several
cases, we privilege the robustness of solutions in this chapter. Compared to CDE/D,
CDE/S is further different from SDE in the quality of solutions. In particular, the
quality of solutions obtained by CDE/S becomes unstable on both PCs when the
population size and the number of threads are large. Consequently, we can conclude
that CDE/D is relatively superior to CDE/S in the quality of solutions.

5 Concluding Remarks

In order to utilize multi-core CPUs effectively, a concurrent version of DE called
CDE was described. Strictly speaking, CDE is a concurrent version of SDE, that
is a new DE based on the steady-state model. Then two implementation techniques
of CDE, namely CDE/D and CDE/S, which differ in the allocation of tasks were
compared with respect to both execution time and quality of solutions. CDE/D and
CDE/S were implemented in Java and executed on two popular multi-core CPUs.
Incidentally, the concurrent program of CDE run on a multi-core CPU could allocate
tasks to threads directly but could not assign these threads to cores by itself. Instead
of CDE, the scheduler of OS assigned those threads to cores. Therefore, CDE could
run on various multi-core CPUs relying on different architectures.

In the numerical experiments conducted on six benchmark problems CDE/S was
always faster than CDE/D. Furthermore, even though CDE/S was always faster than
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Table 7 Objective function value of the best solution obtained by CDE on PC2

NT 1 2 4 6 8 10 12

(a) CDE/D with NP D 100

f1 3:28E�4 3:48E�4 3:28E�4 3:38E�4 3:49E�y4 3:62E�4 3:60E�4

(5:90E�y5) (5:20E�5) (6:04E�y5) (6:50E�5) (8:46E�5) (6:19E�y5) (8:71E�5)

f2 1:660 1:663 1:649 1:675 1:694 1:692 1:665

(0:108) (0:087) (0:095) (0:088) (0:116) (0:097) (0:094)

f3 44:492 44:459 44:511 44:545 44:599 44:574 44:699

(0:523) (0:476) (0:622) (0:574) (0:574) (0:511) (0:499)

f4 99:963 99:926 100:198 100:112 102:090 101:626 100:633

(6:297) (6:910) (8:006) (8:168) (5:522) (6:436) (6:566)

f5 4:24E�3 4:28E�3 4:27E�3 4:37E�3 4:38E�y3 4:39E�3 4:61E�3

(5:45E�y4) (5:10E�4) (5:46E�y4) (5:42E�4) (4:86E�4) (5:31E�4) (5:00E�4)

f6 1:24E�3 1:02E�3 1:19E�3 1:00E�3 1:43E�3 9:27E�4 1:18E�3

(1:96E�3) (1:35E�3) (1:31E�3) (1:07E�3) (2:19E�3) (7:74E�4) (1:31E�3)

(b) CDE/S with NP D 100

f1 3:28E�4 3:09E�4 2:92E�4 2:97E�4 3:27E�y4 3:59E�4 6:51E�y4

(5:90E�5) (6:45E�5) (6:19E�y5) (6:81E�5) (8:27E�5) (8:87E�5) (2:13E�4)

f2 1:660 1:656 1:664 1:644 1:630 1:627 1:636

(0:108) (0:104) (0:083) (0:079) (0:104) (0:095) (0:129)

f3 44:492 44:515 44:444 44:552 44:491 44:596 44:892

(0:523) (0:563) (0:611) (0:594) (0:620) (0:607) (0:604)

f4 99:963 100:221 100:088 99:561 101:903 99:761 100:053

(6:297) (7:424) (6:129) (7:097) (7:338) (6:631) (6:470)

f5 4:24E�3 4:22E�y3 4:21E�3 4:23E�3 4:22E�3 4:87E�3 6:56E�y3

(5:45E�4) (4:68E�4) (4:62E�y4) (4:59E�4) (5:14E�4) (1:12E�3) (1:52E�3)

f6 1:24E�3 1:09E�3 1:22E�3 8:40E�y4 8:18E�4 1:26E�3 2:94E�3

(1:96E�3) (8:90E�4) (1:55E�3) (8:33E�4) (9:03E�4) (1:36E�3) (4:31E�3)

(c) CDE/D with NP D 500

f1 5:04E�4 5:15E�4 5:19E�4 5:07E�4 5:19E�4 5:08E�4 5:07E�4

(4:97E�y5) (5:75E�5) (6:14E�5) (6:65E�5) (4:30E�5) (6:74E�y5) (6:02E�5)

f2 1:677 1:671 1:649 1:648 1:669 1:659 1:675

(0:060) (0:060) (0:092) (0:085) (0:069) (0:093) (0:072)

f3 44:320 44:384 44:154 44:279 44:258 44:282 44:227

(0:337) (0:269) (0:399) (0:325) (0:343) (0:362) (0:300)

f4 93:686 91:505 94:256 92:879 93:983 92:570 92:670

(5:651) (6:612) (4:683) (6:357) (5:037) (6:939) (5:793)

f5 5:35E�3 5:40E�3 5:36E�y3 5:32E�3 5:33E�3 5:45E�3 5:40E�3

(3:65E�4) (3:50E�4) (3:03E�4) (3:23E�4) (3:40E�4) (3:10E�4) (3:27E�4)

f6 9:94E�4 1:03E�3 1:03E�3 1:23E�3 1:09E�3 1:06E�3 1:07E�3

(2:63E�4) (2:41E�4) (2:84E�4) (5:52E�4) (4:82E�4) (2:67E�y4) (2:96E�4)
(continued)
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Table 7 (continued)

NT 1 2 4 6 8 10 12

(d) CDE/S with NP D 500

f1 5:04E�4 4:83E�4 4:69E�4 4:32E�4 4:20E�y4 4:38E�4 5:00E�y4

(4:97E�5) (5:78E�5) (7:26E�y5) (5:92E�5) (6:28E�5) (6:47E�5) (9:34E�5)

f2 1:677 1:668 1:651 1:641 1:641 1:619 1:620

(0:060) (0:064) (0:082) (0:084) (0:080) (0:084) (0:064)

f3 44:320 44:226 44:151 44:147 44:250 44:253 44:445

(0:337) (0:355) (0:359) (0:408) (0:345) (0:365) (0:349)

f4 93:686 93:730 92:233 93:374 94:151 93:156 91:825

(5:651) (4:793) (6:178) (6:018) (5:522) (5:473) (6:138)

f5 5:35E�3 5:37E�y3 5:15E�3 5:00E�3 4:81E�y3 4:94E�3 5:19E�3

(3:65E�y4) (3:40E�4) (3:97E�y4) (3:80E�4) (3:32E�4) (3:34E�4) (3:95E�4)

f6 9:94E�y4 1:02E�3 9:88E�4 8:96E�y4 8:59E�4 8:99E�4 1:32E�3

(2:63E�4) (3:74E�4) (2:99E�4) (2:22E�4) (3:17E�4) (2:66E�y4) (6:11E�4)

Table 8 Wilcoxon test between SDE and CDE on PC1

NP 100 500

NT 1 2 4 6 8 10 12 1 2 4 6 8 10 12

(a) CDE/D

f1 — — — " — — * — —- — — — " —

f2 — —- — — — — — — —- — — — — +
f3 — —- — — — — — — —- # — — — —

f4 — —- — — — — — — —- — — — — —

f5 — —- — — — " * — —- — — — " —

f6 — —- — — — " — — —- — " — — —

(b) CDE/S

f1 — — + * # # " — — + * + + +
f2 — — — — " — + — # + + # + +
f3 — — — * — — — — — — * — — #
f4 — — — — — — — — — — # # — —

f5 — — — * — — * — — + * + + +
f6 — — — * — — * — — — * — — #

SDE too, CDE/D was slower than SDE in several benchmark problems. Therefore,
it could be concluded that CDE/S utilizes multi-core CPUs more effectively. On the
other hand, the quality of solutions obtained by CDE/S is likely to change with
the number of threads and the kind of benchmark problems. Actually, by using
the statistical test, i.e., Wilcoxon test, it was confirmed that CDE/S was inferior
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Table 9 Wilcoxon test between SDE and CDE on PC2

NP 100 500

NT 1 2 4 6 8 10 12 1 2 4 6 8 10 12

(a) CDE/D

f1 — — — — — * — — — — — — — —

f2 — — — — — — — — — — # — — —

f3 — — — — — — — — — # — — — —

f4 — — — — — — — — — — — — — —

f5 — — — — — — * — — — — — — —

f6 — — — — — — " — — — * — — —

(b) CDE/S

f1 — — + # — — * — — # + + + —

f2 — — — — — — — — — — # # + +
f3 — — — — — — * — — # # — — —

f4 — — — — — — — — — — — — — —

f5 — — — — — * * — — + + + + #
f6 — — — — — * * — — — — + # *

to CDE/D in the quality of solutions. Consequently, the current CDE/S leaves much
to be desired.

Another implementation technique of CDE that enhances the performance of DE
as regards both the execution time and the quality of solutions is a future challenge.
Besides, CDE needs to be extended for structured population models [23].
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