
Chapter 7
Axial Capillary Forces (Dynamics)

Jean-Baptiste Valsamis and Pierre Lambert

Abstract Up to now, we have only considered liquid bridges at equilibrium.
Therefore, the forces applied by these menisci on solids they connect are only due to
surface tension effects. If the meniscus is stretched or compressed with an important
velocity or an important acceleration, viscous or inertial effects have to be added to
capillary forces. Viscous effects will be governed by the viscosity of the liquid while
inertial effects will be governed by density. Normally at small scales, density can be
neglected, but attention must be paid in case of high accelerations, such those used in
inertial micromanipulation [9]. From a mechanical point of view, these three terms
form the well known Kelvin-Voigt model. After a brief state of the art, this chapter
explains how to estimate the coefficients of this Kelvin-Voight model and compares
the related results with numerical simulation and experiments.

7.1 Introduction

This chapter focuses on the behaviour of the vertical dynamic force generated by
an axisymmetric liquid bridge. The next section describes the problem and the main
assumptions on the meniscus. Section 7.3 gives the mathematical background of the
Kelvin-Voigt Model. The analytic development of the coefficients k, b and m are given
in Sects. 7.4, 7.5 and 7.6 respectively. Analytic relations are validated on a simple
case in Sects. 7.7 and 7.8. An experimental setup (Sect. 7.9) has been performed to
validate the model. Results are given in Sect. 7.10. A conclusion (Sect. 7.11) ends
the chapter.
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Fig. 7.1 Pinning contact
angle. When a liquid is pinned,
the contact angle can be
higher than the advancing
contact angle. This figure was
published in [11]. Copyright
© 2013 Elsevier Masson SAS.
All rights reserved

7.2 Problem Description and Methodology

In this chapter, we will describe the liquid bridge as a mechanical join between
two solids. The liquid bridge is assumed to be pinned by two circular and paral-
lel interfaces providing an axial symmetry of the geometry around the z axis. The
dimensions are submillimetric, 750µm of radius and gap around 200µm. The plate
presents sharp edge to ensure the liquid to be pinned. This present the advantage
to have a free contact angle. Indeed, the liquid will recede if the contact angle is
below the receding angle θr and will advance if the contact angle is higher than the
advancing angle θa (Fig. 7.1). Since the geometry present an edge, the advance of
the liquid is done along the nearly vertical edge. The same argument can be done on
this second edge. Thus, the liquid will spread out of the plate if the contact angle is
higher than θm . In a certain way, the pinning increases the advancing contact angle.

For small displacements, the dynamic study of these degrees of freedom may be
decoupled into 6 frequential responses. The latter can be described in several ways,
depending on how the system is excited (the input) on one hand and on how the effect
of the excitation is passed on (the output) on the other hand. Typical input/output are
the position of an interface, its velocity, its acceleration and its force. The choice of
position, velocity, acceleration of force is usually driven by the convenience of the
way of experimental measurements. It is not necessary to characterise the transfer
function for every pair of input/output: they can be retrieved through mathematical
relationships (the velocity is the derivative of the position, the force is the product of
the mass and the acceleration...).

We will consider the input as a displacement of the top interface and the output as
the force exerted on the bottom interface. The liquid bridge is replaced by a Kelvin-
Voigt model: a system made up of a spring, a damper dashpot and an equivalent mass
connected in parallel (Fig. 7.3). According to liquid properties, it is expected to have
a stiffness depending on the surface tension γ, a damping coefficient of the viscosity
μ and an equivalent mass of the density ρ.
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Fig. 7.2 Link between ana-
lytic, numeric and experimen-
tal results

The methodology adopted to validate the results consists of two steps (see
Fig. 7.2): (i) a comparison between the analytical approximations of the mechan-
ical parameters derived from the Navier-Stokes problem and numerical simulations,
and (ii) a comparison between experimental and numerical data. That is, the numer-
ical simulations act like a buffer between analytical expressions and experiments.
The first comparison supports the simplifications made with the Navier-Stokes equa-
tion to obtain the analytic expressions of k, b and m. For the second comparison, we
directly used experimental data in numerical simulations: due to experimental errors,
the symmetry around the plane containing the neck (z = 0) was not exactly verified.
The numerical simulations were performed with COMSOL MULTIPHYSICS 3.5a.

This problem has already been partially addressed: the literature review on vertical
dynamics highlights the works of van Veen et al. [12], Cheneler et al. [1] and Pitois
et al. [9].

In [12] van Veen has developed an analytical study of the motion of the flip chip
soldered components. The model is based on the computation of the free surface
energy for axisymmetric geometries delimited by two parallel and circular interfaces.
The free interface is developed as a fourth order polynomial and its derivative is the
origin of the motion equation. A second order equation governs the time evolution
of the height of the bump. Cheneler et al. [1] propose a quite close analysis of liquid
bridge with a totally different goal: they developed a micro-rheometer intended to
determine the viscosity of liquids. However the device is not defined in the paper, the
underlying idea is that the liquid added between two solids generates a dashpot in
series with a calibrated spring/mass system. By measuring the phase shift between
the position of the solids and the force exerted, the friction can be deduced. The
method used is based on an estimation of the stiffness and the friction. This stiffness
is deduced from an analytical approximation of the free interface, that is in this
case a revolution of a part of a sphere (a piece of tore). However, the stiffness was
calculated with a corrective multiplicative term of the capillary force, instead of
the calculus of the derivative. The friction force is estimated from shear stresses
inside the liquid. This friction and the stiffness have been linearized and added in the
Newton equation governing the motion of the component wetted by the meniscus.
Its validation is done thanks an numerical analysis. However, the numerical analysis
does not solve the Navier-Stokes equation inside the meniscus. Finally, the authors do
not support their study with any experimental data. In [9], Pitois et al. have studied
the evolution of the force between two spheres moving aside at a given constant
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velocity. The analytical model involves also estimation of stiffness and friction. The
stiffness is computed from the derivative of the capillary force, itself calculated with
geometrical approximation of the different order of magnitude. The friction force is
based on similar assumption but a corrective term is added. Contrarily to Cheneler,
the liquid bridge is not pinned and the contact surface varies in time. The study is
based on an analytical approach of the problem together with an experimental setup.
As the main result, they highlighted different behaviours of the capillary forces
(negative and positive, according the separating distance z), the influence of the
velocity illustrating the effect of viscosity. Nevertheless, the authors do not expose
some important aspects, such as the way to control the volume (volumes are small
and the viscosity high, making the use of pipette very difficult), the variation of the
contact angles during the separation and, as a corollary, the motion of the triple line,
making the interpretation of their results difficult.

7.3 Mathematical Background of the Kelvin-Voigt Model

The mechanical model of the axial degree of freedom is presented in Fig. 7.3: a
Kelvin-Voigt system made up of a spring (of stiffness k), a damper dashpot (of
damping coefficient b) and an equivalent inertial force (of mass m) connected in
parallel. Such a system can be described by its frequential response and is entirely
defined when the coefficient k, b and m are known.

Typical input/output pairs are the position of an interface, its velocity, its accel-
eration and its force. The system can be completely described by the frequential
response of a single input/output pair. Here, we will characterise the vertical transla-
tion considering as input the displacement of the top interface x(t), and as output
the force exerted on the bottom interface F(t).

The gravitational effects can conversely be ignored because of the small dimension
of the bridge. Furthermore, the gravitational force is completely static, without any
effect on a dynamic study. The expression of the forces is:

f̄k(t) = − fk(t)1̄x = −kx(t)1̄x (7.1)

f̄b(t) = − fb(t)1̄x = −bẋ(t)1̄x (7.2)

f̄m(t) = − fm(t)1̄x = −mẍ(t)1̄x (7.3)

The force exerted by the meniscus on the lower interface is thus:

F̄(t) = F(t)1̄x = − f̄k(t) − f̄b(t) − f̄m(t) (7.4)

In the next section, we will present a semi-analytical development to approximate
the coefficients of the Kelvin-Voigt model describing the liquid bridge. The aim is to
decouple the liquid properties, namely the surface tension γ, the viscosity μ and the
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Fig. 7.3 The Kelvin-Voigt
model. Forces fk(t) and
fb(t) represent the force
of the spring and of the
dashpot, respectively, while
f (t) represents the total
force exerted by liquid bridge
on the system. Origin is
assumed at the free length
position. The direction of
forces are represented for a
stretched spring x(t) > 0,
upwards velocity ẋ(t) > 0
and upwards acceleration
ẍ(t) > 0. This figure was
published in [11]. Copyright
© 2013 Elsevier Masson SAS.
All rights reserved

density ρ, into the stiffness k (Sect. 7.4), the damping b (Sect. 7.5) and the inertial
mass m (Sect. 7.6), respectively.

Briefly, the spring force considers the fluid at rest, the damping force considers
only the viscous force driving the fluid, and the inertial force considers the force due to
fluid acceleration. The Navier-Stokes equation is simplified consequently. The force
applied by the fluid on the bottom interface is then computed, and the corresponding
coefficients are derived. Gravitational effects are ignored, while inertial ones are
contemplated where required.

7.4 Stiffness

7.4.1 Introduction

The force generated by a spring is independent of the speed at which its extremity
moves. Therefore, to calculate the stiffness, it is appropriate to consider the liquid at
rest. The pressure outside the liquid bridge pout is assumed to be zero.

The geometry and the parameters are presented in Fig. 7.4. In addition to the
axial symmetry, the geometry presents a symmetry with respect to the r axis, which
further reduces the parameters in the study. The input parameters are the radius of
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Fig. 7.4 Geometry and para-
meters for the analytic model
of k. This figure was pub-
lished in [11]. Copyright ©
2013 Elsevier Masson SAS.
All rights reserved

the plate R, the gap (or meniscus height) h, and the edge angle θ. By fixing these
three parameters, the meniscus volume is automatically determined.

The meniscus stiffness k can be deduced from the derivative of the spring force
fk as follows:

k = −d fk

dh
= dF

dh
(7.5)

where h is the height of meniscus, fk = −kz and F is the total force exerted by the
meniscus on the bottom pad.

Since the liquid is at rest, the inner pressure is only due to the curvature of the
free interface:

pin = 2Hγ (7.6)

As seen in Chap. 2, the force exerted by the liquid is thus the sum of the Laplace and
the surface tension forces:

F = 2πγR sin θ − 2HγπR2 (7.7)

A positive force F means that the meniscus pull the substrate upwards while a neg-
ative force F means that the meniscus push the meniscus downwards. The stiffness
k is given by:

k = dF

dh
= 2πγR cos θ

dθ

dh
− πγR2 d(2H)

dh
(7.8)

The derivatives are done assuming the volume is constant. With the same conven-
tion,1 the local curvature of an analytical axisymmetric shape r(z) has already been
given in (2.24):

1 The sign of the curvature depends on the direction of the normal vector. The convention hereby
adopted has the normal pointing outside of the liquid, giving a positive curvature for a sphere.

http://dx.doi.org/10.1007/978-3-642-37552-1_2
http://dx.doi.org/10.1007/978-3-642-37552-1_2
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2H(z) = − r ′′(z)
[1 + r ′2(z)] 3

2

+ 1

r(z)
√

1 + r ′2(z)
(7.9)

Unfortunately, there is no analytical solution r(z) and digital solving was requested.

7.4.2 Numeric Approach

The first method is the numerical integration of (7.9). The derivative of the curvature
and the edge angle is computed by the finite difference method, leading to the results
shown in Fig. 7.6.

Figure 7.5 shows the algorithm of the numerical approach. A first solution is
computed with the boundary value problem bvp4c with the initial parameters (the
radius R, the contact angle θ and the gap h). By giving an additional boundary value,
the curvature 2H is handled as an unknown parameter to be determined by the solver.
The volume V is derived from an integration of the shape (solution of bvp4c). The
problem is solved again with new gap (h +Δh) and an arbitrary starting value of the
contact angle (the input value θ was used). For each contact angle, an output volume
is computed. The correct contact angle is the one that keeps the volume constant.
The search of this contact angle is done with fzero, with the contact angle as input
and the volume difference to be zeroed. After reaching the solution, the derivatives
of the curvature and the contact angles can be computed by finite difference.

Fig. 7.5 Algorithm of numeric approach under Matlab, using bvp4c and fzero
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Fig. 7.6 Map of reduced stiffness k̂ = k/γ. This figure was published in [11]. Copyright © 2013
Elsevier Masson SAS. All rights reserved

The complexity of the algorithm is N 2, since the fzero (of complexity N ) loops
on bvp4c of complexity N. The computing time is below the second in most of
cases.

7.4.3 Negative Stiffness

The reader will note that the stiffness coefficient is not always positive on Fig. 7.6.
As illustrated in Fig. 7.7, when the gap increases, the meniscus curvature decreases,



7 Axial Capillary Forces (Dynamics) 145

reducing the inner pressure. The second term of the derivative of the force (7.8) is
always positive. On the contrary, the sign of the contribution of the surface tension
force, expressed in the first term of (7.8), depend on the edge angle. The edge angle
always decreases as the gap increases but the cosine is positive for angle below 90◦.
The contribution of the surface tension force is then negative when θ < 90◦ and can
be bigger than the Laplace force for high gap.

Figure 7.8a represents a part of the map of the reduced force F̂ = F/rγ according
to the edge angle θ and the reduced height ĥ. The bold line is the evolution of the
θ when the gap increases at constant volume. The evolution of the force along this
curve is represented in Fig. 7.8b (plain line). As the gap increases, the force reaches
a maximum and begins to decrease. The derivative (i.e., the stiffness) is therefore
negative (dashed line).

Consequently, for certain configurations the meniscus can be considered as an
anti-spring. Anti-springs are unstable because the force tends to deviate from the
equilibrium state. However, if the anti-spring is mechanically constrained—as in the
case of a meniscus—it is not unstable: the gap is fixed externally, whatever the force.

The effect of the negative stiffness on Bode plots is depicted in Fig. 7.9 for a low
inertial and high inertial system (plain lines). In addition, the dashed lines recall the
plots of Fig. 6.2 (positive stiffness).

For a low inertial system, the gains (Fig. 7.9a) are identical. The phase (Fig. 7.9c)
starts at 180◦, reaches 90◦ during the b-state and finishes at 180◦ in the m-state.

For a high inertial system, k-state and m-state interact because the b-state vanishes.
Since the phase of the k and m-states are 180◦, their effects are additive and the
gain (Fig. 7.9b) does not show any minimum at the resonant frequency. The phase
(Fig. 7.9d) is constant at 180◦ except near the resonant frequency.

(a) (b)

Fig. 7.7 Evolution of edge angle and inner pressure as the gap increases at constant volume. This
figure was published in [11]. Copyright © 2013 Elsevier Masson SAS. All rights reserved

http://dx.doi.org/10.1007/978-3-642-37552-1_6
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Fig. 7.8 Illustration of origin of negative stiffness. a Map of the reduced force F̂ = F/rγ according
to the edge angle θ and the reduced height ĥ = h/r . The dashed line is a constant volume line. b
Evolution of the reduced force and reduced stiffness along the constant volume line, in the direction
of increasing gap. This figure was published in [11]. Copyright © 2013 Elsevier Masson SAS. All
rights reserved

7.4.4 Geometrical Assumptions

Compared to the digital integration presented in Sect. 7.4.2, a second method is
to assume the meniscus geometry, i.e. parabolic or circular shapes, which pro-
vides analytic relations. Yet, they do not have a constant curvature on the whole
interface since they are not solution of (7.9). The curvature and its derivative are
taken at the neck of the meniscus (z = 0). These relations are summarised in
Table 7.1.

The relative errors on the parabolic and circular model are shown on Fig. 7.10a
and b (computed with (7.8) and equations from Table 7.1), and prove that the circular
approximation is more accurate. Special care must be used in the evaluation of the
relative error near the region where the stiffness is zero: by definition, any small
difference of value produces an error tending to infinity. The error tends to zero
when the shape approaches a cylinder. The circular model gives an error below 30 %
for form factor ĥ < 0.1.
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Fig. 7.9 Bode plots of the Kelvin-Voigt model within the stiffness is negative (plain lines) or
positive (dashed lines), for two configurations: m̂ < 1 (left) and m̂ > 1 (right). The vertical line is
the resonant frequency and the dashed lines are the cut-off frequencies delimiting the three states. a
Gain of transfer function with k = −1 N/m, b = 510−1 Ns/m and m = 10−3 kg b Gain of transfer
function with k = −1 N/m, b = 510−3 Ns/m and m = 10−3 kg. c Phase of transfer function with
k = −1 N/m, b = 5 10−1 N s/m and m = 10−3 kg. d Phase of transfer function with k = −1 N/m,
b = 5 10−3 N s/m and m = 10−3 kg

Table 7.1 Analytical expressions from the parabolic model and the circular model

Parabolic model θ → π
2

dθ

dh
= − sin θ

30R2 sin2 θ − 20Rh sin θ cos θ + 3h2 cos2 θ

10Rh2 sin θ − 2h3 cos θ
→ − 3R

h2

d2H

dh
= 2 cot θ

(
1

h2 + 2

(4R − h cot θ)2

)
+ 2h

sin2 θ

(
1

h2 − 2

(4R − h cot θ)2

)
dθ

dh
→ 3

4Rh
− 6R

4h3

Circular model

dθ

dh
= − 4R2 cos4 θ + 4Rh sin θ cos3 θ + 3h2 cos2 θ − h2 cos4 θ

3h3 sin θ cos θ + 4Rh2 cos2 θ + ( π
2 − θ

) (
2h3 cos2 θ − 3h3 − 2Rh2 sin 2θ

)

−
− ( π

2 − θ
) (

3h2 sin θ + 4Rh cos θ
)

3h3 sin θ cos θ + 4Rh2 cos2 θ + ( π
2 − θ

) (
2h3 cos2 θ − 3h3 − 2Rh2 sin 2θ

) → − 3R

h2

d2H

dh
= 2 cos θ

h2 + 2 sin θ

h

dθ

dh
+ 1 − sin θ

(2R cos θ − h(1 − sin θ))2

(
2 cos θ − 2h

dθ

dh

)
→ 3

4Rh
− 6R

4h3

This table was published in [11]. Copyright © 2013 Elsevier Masson SAS. All rights reserved
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Fig. 7.10 a Relative error on the reduced stiffness computed from parabolic model (k̂ pm − k̂)/k̂.
b Relative error on the reduced stiffness computed from circular model (k̂cm − k̂)/k̂. Relative error
of analytical models according to the edge angle θ and the reduced height ĥ = h/r , in logarithmic
scale. This figure was published in [11]. Copyright © 2013 Elsevier Masson SAS. All rights reserved

7.5 Damping Coefficient

Physically, the damping coefficient is related to any friction effect. In our case, it
highlights the effect of the viscosity of the fluid, as given in (7.40). We will assume
the surface tension having an negligible impact of the viscous forces: as explained
in Sect. 7.3 the spring force is defined by the position of the system, the damping
force by its velocity and the inertial effect by its acceleration. For a periodic excitation
h = H cos(ωt), the maximal displacement is H , the maximal velocity is Hω and the
maximal acceleration is Hω2. There is necessarily a pulse ω > ωc− (see Chap. 6) for
which the pressure inside the meniscus is driven only by viscous effects, vanishing
the static effect of the surface tension. In addition, if ω < ωc+ the acceleration term
can also be neglected, so that the Navier-Stokes equation contains only pressure and
viscous terms. The 2D axisymmetric continuity and momentum equations read (full
description of these equations are given in Appendix A):

1

r

∂(rur )

∂r
+ ∂uz

∂z
= 0 (7.10)

−∂ p

∂r
+ μ

(
∂2ur

∂r2 + ∂2ur

∂z2 + 1

r

∂ur

∂r
− ur

r2

)
= 0 (7.11)

−∂ p

∂z
+ μ

(
∂2uz

∂r2 + ∂2uz

∂z2 + 1

r

∂uz

∂r

)
= 0 (7.12)

The considered geometry is a cylinder whose parameters are depicted in Fig. 7.11.
The contact angle fixed to 90◦. Although a velocity field appears in the meniscus,

http://dx.doi.org/10.1007/978-3-642-37552-1_6
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Fig. 7.11 Geometry and
parameters for the analytic
model of b and m

the amplitude is small and we will consider the deformation of the meniscus small
enough to be ignored: the geometry is constant.

The force applied by the liquid on the bottom plate is defined by the sum of all
the constrains on the plate:

F 1̄z =
[ ∫

Γ

(−pI + τ ) · dS̄

]
· 1̄z (7.13)

=
[ ∫

Γ

(
−p + 2μ

∂uz

∂z

)
dS

]
1̄z (7.14)

In the complete review of Engmann et al. [5], the authors propose some assump-
tions on the velocity profile of a film of liquid squeezed by two parallel plates at
constant velocity. The vertical velocity field (i.e. the z component) is assumed to be
independent on r :

ū = ur (t, r, z)1̄r + uz(t, z)1̄z (7.15)

Applying the continuity Eq. (7.10) (in the following, the ′ will refer to the derivative
with respect to z):

ur = − r

2
u′

z(t, z) (7.16)

Using (7.11) and (7.12):

−∂ p

∂r
− μ

r

2
u′′′

z (t, z) = 0 (7.17)

−∂ p

∂z
+ μu′′

z (t, z) = 0 (7.18)

The last equation gives:
∂2 p

∂r∂z
= 0 (7.19)
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so that (7.11) becomes finally:

u′′′′
z (t, z) = 0

⇒ uz(t, z) = a(t)z3 + b(t)z2 + c(t)z + d(t) (7.20)

We need 4 boundary conditions to determine a, b, c and d. They are provided by the
velocity on upper and lower plates:

uz(t,−h

2
) = 0 (7.21)

uz(t,
h

2
) = ḣ(t) (7.22)

ur (t, r,−h

2
) = 0 ⇒ u′

z(t,−
h

2
) = 0 (7.23)

ur (t, r,
h

2
) = 0 ⇒ u′

z(t,
h

2
) = 0 (7.24)

where ḣ(t) is the top plate velocity. The full velocity profile is finally given by:

ū(t, r, z) = ḣ(t)r

(
3

z2

h3 − 3

4h

)
1̄r + ḣ(t)

(
−2

z3

h3 + 3

2

z

h
+ 1

2

)
1̄z (7.25)

To compute the force, pressure and velocity derivatives are required. The deriva-
tives with respect to r and z are:

∂ū

∂r
= ḣ(t)

(
3

z2

h3 − 3

4h

)
1̄r (7.26)

∂ū

∂z
= 6ḣ(t)

r z

h3 1̄r + ḣ(t)

(
−6

z2

h3 + 3

2h

)
1̄z (7.27)

The pressure is obtained by integrating (7.17):

p(r, t, z) = 3μḣ(t)
r2

h3 + f (t, z)

With (7.18), f ′(t, z) is known. Consequently:

p(r, t, z) = 3μḣ(t)
r2

h3 − 6μḣ(t)
z2

h3 + C(t) (7.28)

The last constant C(t) (constant with respect to r and z) is found thanks to the stress
equilibrium at the free interface:

− p + (τ · 1̄r ) · 1̄r = −p0 = 0 (7.29)
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This expression is generally not satisfied. Indeed we assumed a particular vertical
velocity profile that does not necessarily match with the condition at the interface
[5]. However, several hypotheses can be found on the flow to define the constant C :

1. The total stress at the boundary is averaged and is equal to the outer pressure,
giving C1.

2. The total pressure at the boundary is averaged and is equal to the outer pressure,
giving C2.

3. The pressure is balanced at a particular point, that is the bottom triple line (R,− h
2 )

in this case, giving C3.

The first condition leads to:

∫

Γ

−p dS +
∫

Γ

(τ · 1̄r ) · 1̄r dS = 0 (7.30)

⇔ C1(t) = μḣ(t)
(
−3

R2

h3 − 1

2h

)
(7.31)

With the second assumption, the constant C2(t) is:

C2(t) = μḣ(t)
(
−3

R2

h3 + 1

2h

)
(7.32)

For the third case, the viscous term is null at the triple line (at the top and the bottom
plates as well). The balance of the pressure at the triple line is:

p(t, R,±h

2
) = 0

⇔ C3(t) = μḣ(t)
(
−3

R2

h3 + 3

2h

)
(7.33)

If the ratio R/h >> 1, then C1(t) ≈ C2(t) ≈ C3(t) and the three assumptions
give identical pressure field. Indeed, the height is small with respect to the radius,
and the variation of the pressure due to the interface condition becomes negligible
compared to the pressure induced by the friction forces inside the volume. According
the boundary condition, at the bottom interface, the pressure is:

p1(t, r,−h

2
) = −3

μḣ(t)

h3 (R2 − r2) − 2
μḣ(t)

h
(7.34)

p2(t, r,−h

2
) = −3

μḣ(t)

h3 (R2 − r2) − μḣ(t)

h
(7.35)

p3(t, r,−h

2
) = −3

μḣ(t)

h3 (R2 − r2) (7.36)
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The viscous stresses are null on the interface, the force is the integration of the
pressure on the bottom pad:

Fn(t) = 3π

2

μḣ(t)R4

h3 + Bnπ
μḣ(t)R2

h
(7.37)

where n is the case number corresponding to the nt h boundary condition and the
constant Bn is defined by:

Bn =

⎧
⎪⎨

⎪⎩

2 for the zero averaged stress, case (1)

1 for the zero averaged pressure, case (2)

0 for the zero pointwise pressure, case (3)

(7.38)

The force applied by the liquid is a viscous force. In the Kelvin-Voigt developed
applied to this configuration, the force due to the damper is fb(t) = bḣ(t). The
damping coefficient is consequently:

bn = 3π

2

μR4

h3 + Bnπ
μR2

h
(7.39)

Here again, when R/h >> 1, the last term of (7.39) can be ignored and b1 ≈ b2 ≈
b3 ≈ b whatever the boundary conditions:

b ≈ 3π

2

μR4

h3 (7.40)

7.6 Inertial Effect

For the last coefficient of the Kelvin-Voigt model, m, we will assume the fluid to
be governed by its density only. Following the argument developed in the previous
section, there is a sufficiently high frequency (ω > ωc+) beyond which only inertial
term (containing ω2) will drive the pressure inside the meniscus. The 2D axisymmet-
ric Navier-Stokes equation will contain only the inertial term and the pressure term.
However, the convective term contains (ū · ∇̄)ū ∝ H2ω2/h while the acceleration
term contains ˙̄u ∝ Hω2. For a very small amplitude H , the convective term vanishes.

The geometry is identical to the one used to describe the damping coefficient
(Fig. 7.11). The 2D axisymmetric continuity and momentum equations read:

1

r

∂(rur )

∂r
+ ∂uz

∂z
= 0 (7.10)
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ρ
∂ur

∂t
= −∂ p

∂r
(7.41)

ρ
∂uz

∂t
= −∂ p

∂z
(7.42)

When inertia is important, a laminar flow is characterised by a boundary layer on
the wall.2 The thickness of the layer tends to zero when the velocity increases, so we
will neglect the boundary layer. The reader will note that the thinner the layer is, the
stronger the viscous forces are. Fortunately, those viscous forces are tangent to the
surface and are not considered in calculus of the force normal to the surface.

Similarly to Sect. 7.5, the vertical velocity field uz is still assumed to be indepen-
dent on r (7.15), the mass conservation Eq. (7.10) leads to:

ū = − r

2
u′

z(t, z)1̄r + uz(t, z)1̄z (7.43)

Using (7.41) and (7.42):

∂ p

∂r
− ρ

r

2
u̇′

z(t, z) = 0 (7.44)

∂ p

∂z
+ ρu̇z(t, z) = 0 (7.45)

The last equation gives:
∂2 p

∂r∂z
= 0 (7.46)

so that (7.41) becomes finally:

u̇′′
z (t, z) = 0

⇒ u̇z(t, z) = a(t)z + b(t) (7.47)

We need two boundary conditions, given by the velocity on upper and lower plates.
The acceleration of the top plate is fixed by ḧ(t):

u̇z

(
t,−h

2

)
= 0 (7.48)

u̇z

(
t,

h

2

)
= ḧ(t) (7.49)

The acceleration profile ˙̄u then writes:

2 In a pipe submitted to a constant inlet pressure, the parabolic profile of velocity is the profile
minimising the friction inside the flow. When the viscosity is low, the friction is too small compared
to inertia, leading to a quasi-uniform profile with boundary layers. The thickness of these layers
decreases with the Reynold number.
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˙̄u(t, r, z) = − r

2h
ḧ(t)1̄r + z

h
ḧ(t)1̄z (7.50)

The radial acceleration is constant on cylinder of radius r (surface normal to 1̄r ) and
the axial acceleration is constant on plane normal to 1̄z . The pressure is obtained by
integrating (7.44):

p(t, r, z) = ρḧ(t)
r2

4h
+ f (t, z) (7.51)

With (7.45), the f ′(t, z) is known. Consequently:

p(t, r, z) = ρḧ(t)

(
r2

4h
− z2

2h

)
+ C(t) (7.52)

The last constant C(t) (constant with respect to r and z) is found thanks to the stress
equilibrium at the free interface:

− p = −pout = 0 (7.53)

As for the damping coefficient, this condition is generally not satisfied (we assumed a
particular vertical velocity profile that does not necessarily match with the condition
at the interface [5]). The hypotheses to define the constant C are:

1. The total pressure at the boundary is averaged and is equal to the outer pressure,
giving a constant C1.

2. The pressure is balanced at a particular point, that is the bottom triple line
(R,− h

2 ) in this case, giving a constant C2.

Constant C1 is:

∫

Γ

−p dS = 0

⇔ C1(t) = −ρḧ(t)

(
R2

4h
− h

24

)
(7.54)

And C2 is:

p

(
t, R,−h

2

)
= 0

⇔ C2(t) = −ρḧ(t)

(
R2

4h
− h

4

)
(7.55)

The force at the bottom is computed by considering only the pressure in (7.14). With
constants C1(t) and C2(t), this reads:
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F1(t) = πR2hρḧ(t)

(
R2

8h2 − 1

6

)

F2(t) = πR2hρḧ(t)

(
R2

8h2 + 1

8

)

If the equivalent mass is subject to the acceleration ḧ, from 7.3 and 7.4 we have:

m1 = πR2hρ

(
R2

8h2 − 1

6

)
(7.56)

m2 = πR2hρ

(
R2

8h2 + 1

8

)
(7.57)

When R/h >> 1 the stress balance assumptions give converging results towards
an equivalent mass m equal to:

m ≈ m1 ≈ m2 ≈ ρπR4

8h
(7.58)

7.7 Case Study and Numeric Validation of the Simplified
Kelvin-Voigt Model

The analytical approximations established in Sects. 7.4–7.6 result from the approx-
imated computation of the Navier-Stokes equations. These equations have been
reduced considering only the relevant terms in k, b or m-state, assuming some sim-
plifications:

• The k-state characterises the stiffness of the meniscus. The liquid is at rest (velocity
is zero), the pressure in the fluid is due to the free interface.

• The b-state characterises the friction of the meniscus. The velocity profile assumes
the z component to be independent of r . The pressure in the fluid is due to the
viscous term.

• The m-state characterises the inertia of the meniscus. The velocity profile assumes
the z component to be independent of r . The pressure in the fluid is due to the
accelerating term (just the second time-derivative term).

Practically, k, b and m can be found with Fig. 7.6, Eqs. (7.40) and (7.58), and
henceforth the asymptotic gains defined in (6.8)–(6.18). At a specific pulse ω, the
working state is defined by the largest gain Gk , Gb or Gm .

To go further these analytical approximations—and also to validate them digi-
tally —, the computation of Navier-Stokes equations should be solved completely
by numeric computation method like the finite elements method. We have applied
this methodology to the case study of a cylindrical liquid bridge whose physical

http://dx.doi.org/10.1007/978-3-642-37552-1_6
http://dx.doi.org/10.1007/978-3-642-37552-1_6
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Fig. 7.12 Evaluation of pressure during k-state at t = 0 s and t = 0.25 s (after half a period), at
low viscosity (μ = 1 mPa s) and low frequency f = 1 Hz. Other parameters are h = 0.15 mm,
R = 0.75 mm, θ = 90◦ and γ = 20 mN/m. Note The mesh represented is coarser than the mesh
used during the numerical computation .a Initial pressure (t = 0 s). b Pressure at maximal velocity
(t = 0.25 s)
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Fig. 7.13 Evaluation of velocity and pressure fields during b-state at t = 12.5 ms when the velocity
of the top pad reaches a maximum (occurring at a phase shift of π/4), at high viscosity (μ = 1 Pa s)
and medium frequency f = 100 Hz. Other parameters are h = 0.15 mm, R = 0.75 mm, θ = 90◦
and γ = 20 mN/m. Note The mesh represented is not the one used for computation. a Radial
velocity. b Analytical radial velocity. c Vertical velocity. d Analytical vertical velocity. e Pressure
field. f Analytical pressure field.

properties ρ, μ and γ have been chosen to set the liquid bridge successively in k, b
and m-states.

The comparison between the approximated method and the finite elements solving
is provided in the following figures, each of them illustrating one of the three states:
k−state in Fig. 7.12, b−state in Fig. 7.13 and m−state in Fig. 7.14.

• k−state: Fig. 7.12 shows the pressure field in the liquid bridge at initial time t = 0 s
(Fig. 7.12a) and at maximal velocity t = 0.25 s (Fig. 7.12b). Particularly, at r = 0
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Fig. 7.14 Evaluation of velocity and pressure fields during m-state. Evaluation of velocity and
pressure fields during m-state at t = 0.15 ms when the acceleration of the top pad reaches a
maximum (occurring at a phase shift of π), at low viscosity (μ = 1 mPa s) and high frequency
f = 10 KHz. Other parameters are h = 0.15 mm, R = 0.75 mm, θ = 90◦ and γ = 20 mN/m.
Note The mesh represented is not the one used for computation. a Radial velocity. b Analytical radial
velocity. c Vertical velocity. d Analytical vertical velocity. e Pressure field. f Analytical pressure
field.

and z = 0 the pressure can be digitally measured3 at respectively pt=0 s = 27.40 Pa
and pt=0.25 s = 54.23 Pa . The pressure difference 26.83 Pa = 54.23 Pa−27.40 Pa
during this time range can be related to the Laplace pressure variation in the
meniscus due to the displacement of the top plate. Referring to Table 7.1 to compute
the curvature 2H and the contact angle derivative dθ

dh (for both circular or parabolic
models ) with θ = 90◦, Δh = 1 µm, γ = 20 mN/m), the pressure variation inside
the meniscus is given by :

p(0.25 s) − p(0 s) = 1 µmγ

(
3

4Rh
− 6R

h3

)

= 26.53 Pa

which is a rather good estimate of the digital result provided here above. Similarly,
the contact angle variation Δθ has also been estimated digitally at 5.86◦ (from the
normal of the interface at the lower corner). According to Table 7.1, the contact
angle variation is equal to:

3 The reader may note that the gravity force was included during the numerical simulations, which
explains the linear variation of the pressure along the vertical axis (due to hydrostatic effect).
However it does not affect the results since gravity term is constant and we are interested in the
variation of the pressure (and that of the force) during the displacement δh of the top plate).
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Δθ = −3
R

h2 1µm

= 5.73◦

• b−state: Fig. 7.13 provides a comparison between digital and analytical results for
the radial velocity field (Figs. 7.13a and b), for the vertical velocity field (Figs. 7.13c
and d) and for the pressure field (Figs. 7.13e and f). These comparisons show good
agreement for the radial velocity and pressure fields, indicating a good estimate
by the analytical models. Concerning the vertical velocity field, it can be seen
that the analytical approximation is quite fair on the major part of the domain. At
the interface however, the estimation is poor. We could expect this result because
when we have developed the damping coefficient, the interface stress equation
was not verified. However this disagreement has low impact on the pressure field
responsible of the force exerted by the liquid bridge.

• m−state: Fig. 7.14 provides a comparison between digital and analytical results for
the radial velocity field (Figs. 7.14a&b), the vertical velocity field (Figs. 7.14c&d)
and the pressure field (Figs. 7.14e&f). The radial velocity respects the no-slip
condition (appearing clearly at the bottom interface but less at the top interface
because of the interpolation technique for colour rendering) and increases to a value
independent of z. This illustrates the viscous boundary layers. As for the b-state,
the approximations are poor near the interface because the analytical assumptions
do not balance perfectly the stresses at the free interface balance. Finally, the free
interface present some oscillation at high frequencies, but the effect of Laplace
pressure is weak with respect to inertial effect.

7.8 Gain Curves

The previous section showed that the approximations are relevant when a particular
state occurs. To validate the approximations with respect to frequency, we compared
graphically the gain curves computed with (6.8–6.18) and the analytical coefficient
with the gain curves obtained from numerical simulations (see Figs. 7.15 and 7.16).

log Gk(ω) = log k (7.59)

log Gb(ω) = log ω + log b (7.60)

log Gm(ω) = 2 log ω + log m (7.61)

The set of parameters used in these comparisons is summarised in Table 7.2.
The numerical experimental space (made up of all the combinations of the para-

meters) cover a wide range of Reynold numbers and capillary numbers:

http://dx.doi.org/10.1007/978-3-642-37552-1_6
http://dx.doi.org/10.1007/978-3-642-37552-1_6
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Fig. 7.16 Comparison of gain curves between numerical simulations and analytical approximations
(part 2)
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Table 7.2 Parameters of the
digital simulations. This
figure was published in [11].
Copyright © 2013 Elsevier
Masson SAS. All rights
reserved

Parameter Symbol Value

Radius R 0.75 mm
Gap h 0.15 mm, 0.25 mm
Contact angle θ 45◦, 90◦ 135◦
Viscosity μ 0.001–1 Pa s
Surface tension γ 20 mN/m
Frequency f 1 Hz to 10 KHz

Re = ρ f h2

μ
4 10−5 → 400 (7.62)

Ca = μ f h

γ
10−5 → 100 (7.63)

These values are shown in Fig. 7.17 for each experiment (because Reynolds and
capillary numbers do not depend on the contact angle, only θ = 90◦ have been
represented). The states vary according to the frequency. The m-state appears when
the Reynolds number increases, when the frequency is bigger than fc+ or fm . When
the capillary number increases, the b-state appears.
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Fig. 7.17 Plot of Reynold and Capillary numbers defined in (7.62) and (7.63) for results showed
in Figs. 7.15 and 7.16 when frequency increases (only for θ = 90◦, see Table 7.2 for parameters).
For a low inertial system, the states change at frequencies fc− , fc+ , for a high inertial system, the
states change at fm
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In addition, we plot the cutting frequencies fc− (downward triangle) between
states k and b, fc+ (upward triangle) between states b and m, and the resonating
frequency (hexagram):

fc− =
√

b2 + 4km − b

4πm
(7.64)

fc+ =
√

b2 + 4km + b

4πm
(7.65)

fr =
√

km − b2

2πm
≈ 1

2π

√
k

m
(7.66)

At these resonance frequencies, the approximations are the less correct because two
different oscillating states contribute equivalently to the gain. The assumption made
for the different states are not compatible. For example at fc+ , the coefficient b
supposes the velocity profile to be driven only by viscous effect and the coefficient
m assume only inertial effect.

An interesting results may be highlighted between states b and m. If we neglect
the stiffness k in (7.65), fc+ becomes:

fc+ = b

2πm
(7.67)

Using the approximations (7.40) and (7.58), this reads:

fc+ = 1

2π

3πμR4

2h3

8h

ρπR4 = 6μ

πρh2 (7.68)

The Reynolds number (7.62) at fc+ is:

Re( fc+) = 6

π
(7.69)

This means that the b-state exists only for Reynolds number Re < 6
π , if the system

has a low inertia. This results has a physical origin: the Reynolds number is a ratio
between inertial effects and viscous effects while the frequency fc+ delimits a viscous
state from an inertial state. They are somehow referring to the same phenomena.

7.9 Experimental Setup

This section presents the experimental setup designed to measure the transfer function
of liquid bridges (Sect. 7.9.1), the experimental protocole (Sect. 7.9.2) and a brief
description on the applied image processing (Sect. 7.9.3).
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7.9.1 Experimental Bench

The particularity of the bench is the submillimetric size of the system. Size is below
mm and force is below mN. The liquid bridges are confined between two circular
solids constituting two parallel planes. As indicated in Fig. 7.18a, the bench is made
of an actuator driven by an harmonic signal (to move the top of the liquid bridge),
an imaging system to characterise the liquid meniscus, a force sensor on bottom of
the liquid bridge and two circular pads able to confine the liquid bridge by pinning
the triple lines.

The displacement was imposed thanks to a piezo-electric actuator [8, 9]. A com-
mercial Femto- Tools force sensor was used (Fig. 7.18b). The principle of this
sensor is a change of capacitance. This technique has two advantages: the sensor is
very dynamic due to the absence of mechanical part and the stiffness is high (the
value is not given by the constructor). The tip and the capacitor is mounted on a cir-
cuit board that integrates chips converting the change of capacitance into an output
voltage. Each sensor is provided with its own unique characteristic (the sensitivity
may vary from 9 to 1.1 mV/µN). A major inconvenience is the reduced range of
measurable force. These sensors are quite cheap (190e) but the tips are extremely
fragile. The maximum load of this sensor is 2 mN, with a resolution equal to 0.4 µN
at 30 Hz and 2 µN at 1 KHz. Its stiffness is large enough to neglect the sensor defor-
mation with respect to the gap amplitude imposed on the liquid bridge. The resonance
frequency is about 6400 Hz, which is much more larger than with the first design. It
will however limit our bandwidth.

This sensor was embedded in a design, whose principle is shown in Fig. 7.19:
(1) the non contact displacement sensor LK-G10 points towards the top surface of a
mechanical connector, linking the actuator imposing the harmonic displacement (2)
to the top pad glued on the bottom of the connector. This harmonic displacement is
measured by the signal u of the displacement sensor. The displacement of the top
pad is therefore known with a constant offset u+constant. The bottom pad (3) is
fixed to the tip of the force sensor (4). Since the force sensor is assumed to be stiff

(a) (b)

Fig. 7.18 a Principle of the experimental test bed; b Force sensor FT-S270. This figure was pub-
lished in [11]. Copyright © 2013 Elsevier Masson SAS. All rights reserved
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Fig. 7.19 Measurement principle

(a) (b)

Fig. 7.20 Pictures of the test bed: (1) is the displacement sensor LK-G10, (2) is the piezo actuator
imposing the harmonic displacement to the top pad, (3) is the bottom pad, (4) is the FT-S270 sensor
and (5) is a lateral camera with optical axis perpendicular to the liquid bridge symmetry axis (vertical
on these pictures). This figure was published in [11]. Copyright © 2013 Elsevier Masson SAS. All
rights reserved

enough, the position of the bottom pad is assumed to be a reference. Note well that
the gap between both pads is actually not known with a precision better than 25 µm
the error was ±8 pixels, and 900 pixels represent 1.5mm. Figure 7.20 shows pictures
of the manufactured test bench.

7.9.2 Experimental Protocol

Thanks to the data acquisition system, measurements were almost fully automated.
For each experiment, the following steps were adopted:
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1. The circular plates were cleaned with acetone and ethanol;
2. A small amount of liquid (around 1µL) was dropped on the lower plate;
3. The upper plate was lowered until the contact with the liquid bridge;
4. The lower plate was accurately positioned and aligned thanks to the two cameras;
5. The gap was fixed. If the volume needed to be adjusted, the process restarted

from step 2;
6. Two pictures were taken in order to compute the volume;
7. Dynamic parameters (frequency range, delays, amplitude of actuator) were defi-

ned;
8. A systematic acquisition program in Labview4 was used:

a. An output was generated to the piezoelectric driver;
b. According to the oil viscosity and the frequency, a delay was inserted to

avoid any effect of transient response;
c. Data were acquired and recorded in a text file;

9. Two pictures were taken to control the state of the meniscus.

The protocol was restarted from step 8 to successively acquire multiple experiments
on the same system, from step 7 to get the effect of the amplitude of the actuator,
from step 5 to change the gap and from step 1 to change the liquid.

7.9.3 Image Processing Towards Geometrical Parameters
Acquisition

The pictures of the liquid bridges have been taken before and after each experimental
sequence, with two cameras with intersecting optical axes, as shown in Fig. 7.21.
In these images, the air-liquid interface here contains all necessary information to
completely describe the geometry of the liquid bridge: their analysis provided the
contact angle, the gap and the meniscus curvature.

7.10 Results

7.10.1 Experiments List

Experiments have been led with different liquids whose properties are summarized
in Table 7.3.

An experiments list is also provided in Table 7.4, summarizing the geometrical
data.

4 http://www.ni.com/labview/

http://www.ni.com/labview/
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Top pad

Liquid

Bottom pad

Top pad

Liquid

Bottom pad

(a)

(b) (c)

Fig. 7.21 Example of control pictures taken before and after each experiments. All rights reserved.
a Sketch of the pinned liquid bridge. b Picture taken with the camera 1. c Picture taken with camera
2. This figure was published in [11]. Copyright © 2013 Elsevier Masson SAS.

Table 7.3 Main physical properties of liquid used.The value are given for a temperature of 25 ◦C .

Ref Liquid Density Dynamic viscosity Surface tension
Kg/m3 Pas N/m

Oil1 R47V500 970 0.485 21.1 10−3

Oil2 R47V5000 973 4.865 21.1 10−3

Oil6 DC200FLUID100 960 0.096 20.9 10−3

Oil7 DC200FLUID1000 971 0.971 21.2 10−3

Oil8 DC200FLUID60000 976 58.56 21.5 10−3

This figure was published in [11]. Copyright © 2013 Elsevier Masson SAS. All rights reserved

7.10.2 Gain and Phase Shift Curves

On each graph shown in Figs. 7.22 and 7.23, the experimental curve and numeri-
cal simulations have been superimposed. Four simulations were realised with each
geometrical information, as well as a simulation with the average value of the para-
meters measured. The results are conclusive: indeed, all experimental data points are
in between the numerical curves.

However, the variation of the geometric parameters gathered from image analysis
produces an important dispersion of the stiffness. The dispersion may be explained
for several reasons. First, the positioning error (mainly the tilt in both horizontal
directions) gives slightly different profile of the liquid bridge for both cameras.
Second, there is a small hysteresis inherent to the piezo actuator. Therefore, the gap
and the edge angles may change accordingly. Finally, there is a small amount of
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Table 7.4 Experimental results from both cameras

Experiment Picture Bottom radius Top radius Bottom angle Top angle Gap Volume
(mm) (mm) (◦) (◦) (mm) (mm3)

1 1 0.717 0.696 15.9 23.6 0.284 0.354
1 2 0.735 0.721 15.3 20.1 0.298 0.386
1 3 0.713 0.703 18.6 22.6 0.262 0.335
1 4 0.738 0.732 13.9 16.2 0.281 0.374
1 Mean 0.726 0.713 15.9 20.6 0.282 0.362

2 1 0.747 0.747 43.2 43.2 0.218 0.345
2 2 0.77 0.746 36 46.7 0.242 0.391
2 3 0.736 0.722 18.6 24.7 0.231 0.325
2 4 0.747 0.729 20.2 28.1 0.235 0.342
2 Mean 0.75 0.736 29.5 35.7 0.231 0.351

3 1 0.756 0.746 28.8 32 0.323 0.473
3 2 0.745 0.748 34.7 33.6 0.317 0.463
3 3 0.755 0.738 21.8 27.3 0.319 0.449
3 4 0.767 0.755 21.4 25.2 0.322 0.468
3 Mean 0.756 0.747 26.7 29.5 0.32 0.463

4 1 0.749 0.751 45.8 45.2 0.284 0.446
4 2 0.755 0.752 46 47.4 0.28 0.449
4 3 0.755 0.746 24.5 27.9 0.28 0.412
4 4 0.758 0.735 22.4 31.1 0.273 0.400
4 Mean 0.754 0.746 34.7 37.9 0.279 0.427

5 1 0.75 0.751 50.7 50.1 0.255 0.412
5 2 0.76 0.752 46.5 50 0.246 0.404
5 3 0.751 0.75 41.6 42 0.251 0.396
5 4 0.766 0.751 36.8 43.3 0.243 0.393
5 Mean 0.757 0.751 43.9 46.3 0.249 0.401

7 1 0.743 0.747 27.4 24.9 0.158 0.243
7 2 0.752 0.748 24.2 27.1 0.16 0.255
7 3 0.744 0.744 40.8 40.8 0.155 0.250
7 4 0.758 0.752 43 47.2 0.163 0.271
7 Mean 0.749 0.747 33.9 35 0.159 0.255

8 1 0.747 0.741 41 42 0.554 0.743
8 2 0.754 0.751 40.1 40.6 0.562 0.764
8 3 0.747 0.747 40 40 0.569 0.756
8 4 0.754 0.746 39.1 40.5 0.575 0.768
8 Mean 0.75 0.746 40.1 40.8 0.565 0.758

9 1 0.748 0.744 65.5 66.3 0.479 0.758
9 2 0.765 0.754 65.5 67.8 0.485 0.800
9 3 0.745 0.744 52.1 52.3 0.482 0.714
9 4 0.752 0.754 50.7 50.3 0.485 0.727
9 Mean 0.752 0.749 58.5 59.2 0.483 0.75

10 1 0.743 0.75 25.4 22.4 0.26 0.381

(Continued)
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Table 7.4 (Continued)

Experiment Picture Bottom radius Top radius Bottom angle Top angle Gap Volume
(mm) (mm) (◦) (◦) (mm) (mm3)

10 2 0.766 0.76 22.9 25.3 0.27 0.412
10 3 0.748 0.745 29.8 30.8 0.266 0.396
10 4 0.748 0.754 31.6 29.5 0.269 0.406
10 Mean 0.751 0.752 27.4 27 0.266 0.399

11 1 0.734 0.751 30.5 24.6 0.293 0.422
11 2 0.746 0.747 27.2 27.1 0.297 0.430
11 3 0.739 0.752 32.9 28.1 0.295 0.432
11 4 0.755 0.75 27 28.5 0.3 0.443
11 Mean 0.743 0.75 29.4 27.1 0.296 0.432

12 1 0.753 0.757 11 9.83 0.334 0.435
12 2 0.746 0.759 16 12.4 0.343 0.451
12 3 0.746 0.761 15.9 11.7 0.335 0.445
12 4 0.744 0.764 17.7 12.2 0.345 0.458
12 Mean 0.747 0.76 15.2 11.5 0.339 0.447

Pictures 1 and 2 have been recorded before the experiment and picture 3 and 4 have been recorded
after. This figure was published in [11]. Copyright © 2013 Elsevier Masson SAS. All rights reserved

liquid that is lost during the experiments, due to flooding outside the pad (in case the
pinning was not perfect) or to evaporation.

These geometric errors are less visible on the b-state. Indeed, the equivalent
damping depends on the volume that is relatively less sensitive to a variation of
the free interface. We may see on experiments 11 and 12 that for high frequency,
the curve goes under the linear asymptote. This is due to the sensor saturation.
Consequently, the inertial state could not be observed experimentally because the
level of force was too high.

The spring and anti-spring cases can be observed with the phase curves:

• Experiments 2, 4, 5, 7, 9 are spring cases because the phase starts at 0◦.
• Experiments 1, 3, 8 are anti-springs because the phase starts at 180◦.
• Experiments 10, 11, 12 are purely viscous because the phase starts around 90◦. The

k-state is observable at frequency lower than 0.1 Hz. Nevertheless, we can guess
that experiments 10 is a spring case (the phase is below 90◦) and experiments 12
is an anti-spring case (phase is higher than 90◦).

7.11 Conclusions

In this chapter we characterised the behaviour of an axisymmetric liquid bridge under
small vertical oscillations. The meniscus was modelled using a Kelvin-Voigt model,
consisting of a spring, a damper and a mass in parallel. We proposed an abacus for
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Fig. 7.22 Gain and phase curves for experiments 1–7. The circle represents experimental data,
the square the individual parameters and the triangle the mean value of the geometric parameters.
Experimental parameters are given in Table 7.4. This figure was published in [11]. Copyright ©
2013 Elsevier Masson SAS. All rights reserved

the stiffness, and analytical expressions for the stiffness, the damping and the inertial
coefficients.

The validation was provided through numerical simulations and experimental
data. The numerical simulations acted as a buffer for results validation: they were
first compared with analytical approximations (with a mirror symmetry with respect
to the plane containing the neck of the meniscus), and then with experiments.

We showed that it is possible to characterise the meniscus by geometrical and
physical parameters of liquids, and without downscaling the system to microscopic
dimension. The proposed analytical laws were based on simplifications of the 2D
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Fig. 7.23 Gain and phase curves for experiments 8–12. The circle represents experimental data,
the square the individual parameters and the triangle the mean value of the geometric parameters.
Experimental parameters are given in Table 7.4

axisymmetric Navier-Stokes equation. They can be used to quickly estimate the
order of magnitude of the different parameters k, b, m. The first one involves the
knowledge of the free liquid surface while the latter are based on the liquid volume.
Consequently, the parameter k is more difficult to evaluate: although it is a good
approximation, the experimental values of the edge angle and of the free surface
curvature may be rather difficult to estimate.

The results showed excellent agreement between analytical and numerical mod-
els, validating the assumptions on the state of the fluid (static flow for spring state,
viscous flow for the damping state and inertial flow for the inertial state).
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The results showed good agreement between experimental data and numerical
simulation, although measurements were difficult to achieve. The present experi-
mental bench did not allow us to inspect the inertial state experimentally since the
needed input frequencies are very high and forces generated are too large for the
sensor hereby adopted.

The interest of this model lies in the fact that important information can be derived
from these coefficients: the step response, the impulse response or any frequential
response. For small displacement the differential Eq. (7.4) associated to the system
can be easily solved and often gives an analytical solution. For specific input F(t)
a numeric integration can be quickly computed. The reader will remind that the
coefficients change according to the gap of the meniscus. For large displacement of
an interface, the coefficients vary. However, the variation of the coefficients can be
included in the numeric integration.

Acknowledgments This work partially presented in [11] is funded by a grant of the F.R.I.A.—
Fonds pour la Formation à la Recherche dans l’Industrie et l’Agriculture.

Appendix on Finite Element Method

In this appendix, we explain how we implement the free surface problem with
COMSOL MULTIPHYSICS 3.5a. The software proposes built-in models for a large
set of applications with predefined equations including Navier-Stokes and moving
mesh. Moreover, the software allows to customise these equations to implement
complex constraints, like surface tension in our case. Equations (Navier-Stokes and
moving mesh) were formulated using the vectorised weak formulation [6].

Note that a general appendix on vectorial operators in provided in Appendix B at
the end of this book.

Model

The geometry used for numeric simulations is depicted in Fig. 7.24. The following
boundary conditions apply: the no-slip condition is imposed on the bottom boundary;
a sinusoidal normal inflow moving with the mesh on the top boundary; the symmetry
condition on the axis of symmetry boundary; the normal stress and the moving mesh
on the free boundary. This is summarised in Table 7.5. The motion of the top boundary
is downward and oscillate sinusoidally: zt (t) = h+A(cos(2π f t)−1). The amplitude
A has been set to 0.5 µm, small enough to stay in linear state.

The force generated by the liquid bridge on the substrate is divided into the surface
tension force and the viscous force [3]:
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Fig. 7.24 Domain for the
numerical model

F̄ =
⎡

⎣2πRγ sin θ +
∫∫

Γ

(
−p + 2μ

∂v

∂z

)
dS

⎤

⎦ 1̄z (7.70)

In the following, we will refer by pressure force the second term, and by the
viscous force the third one.

Mathematical Background

The weak formulation of the partial differential equations system is required to
implement the free surface condition as a boundary condition in a fluid flow problem.
Basically, the pressure is given by the curvature 2H (Table 7.6):

Δp = 2H = ∇̄ · 1̄n (7.71)

Table 7.5 Boundary conditions for the numerical model. Appl.

Boundary Appl. Equation

Axial All r = 0
A
B All ∂ ·

∂r = 0
NS ur = 0
MM d ˙̄x · 1̄n = 0

Bottom NS ū = 0
MM d ˙̄x = 0

Top NS ū = −2π f A cos 2π f t 1̄z

MM d ˙̄x = uz 1̄z

Free NS −p + τ = 2Hγ1̄n

MM d ˙̄x = (ū · 1̄n)1̄n

Stands for Application Mode, NS for Navier-Stokes Application Mode and MM for Moving Mesh
Application Mode as in Comsol terminology
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Table 7.6 Simulation
parameters used for the
comparison of finite element
model with analytical
expressions and experimental
data

Property Value

Mesh
Type Triangular

Domain 1.3 10−5m

Boundary 2 0.5 10−5m

Boundary 3 0.5 10−5m

Boundary 4 0.4 10−5m

Vertex 3 0.1 10−5m

Vertex 4 0.1 10−6m

Growth rate 1.3

Tolerances

Relative 0.2%

Absolute 0.05%

Time stepping 1/100 f

Motion

Number of cycles 3

Output points 25/cycle

Unfortunately, Comsol is not able to compute the derivative of 1̄n . In this section,
we will present the mathematical development of the conventional ū-p formulation
and the stress-divergence form combined. The reader will refer to [4, 6] for further
reading. This conventional ū-p formulation exists in different forms, which is a scalar
and a vector form. In literature, these forms are very common but the implementation
of surface tension effect is rather rare. The implementation of surface tension in scalar
form of our ū-p formulation has already been discussed in [13]. The vector form
is drawn up here. The vector notation will be used to remain independent of any
coordinate system.

The main idea is that if an equation is verified, we can multiply this equation by
a test-function and integrate it over the whole domain. Then, we reduce the order of
derivative by applying successive integral theorems. The test-function are managed
by Comsol. The reader will find further information in [6]. The starting point is the
Navier-Stokes and continuity equations:

ρ

(
∂ū

∂t
+ (

ū · ∇̄)
ū

)
= ρḡ − ∇̄ p + ∇̄ · τ (7.72)

∇̄ · ū = 0 (7.73)

These equations are multiplied at both sides by test functions and integrated on the
domain Ω . The test functions are v̄ and q:



174 J.-B. Valsamis and P. Lambert

∫∫

Ω

∫ [
ρ

(
∂ū

∂t
+ (

ū · ∇̄)
ū

)
· v̄

]
dV =

∫∫

Ω

∫ [
−∇̄ p · v̄ + v̄ ·

(∇̄τ
) + ρv̄ · ḡ

]
dV

(7.74)
∫∫

Ω

∫
q∇̄ · ū dV = 0 (7.75)

We will start with the Navier-Stokes equation. The purpose is to reduce the order of
the derivatives in the integral. Using some divergence identities:

v̄ · ∇̄ p = ∇̄ · (pv̄) − p∇̄ · v̄ (7.76)

v̄ ·
(∇̄ · τ

) = ∇̄ · (τ · v̄) − τ : ∇̄ v̄ (7.77)

Reordering by isolating divergence terms, the integral now reads:

∫∫

Ω

∫ [
ρ

(
∂ū

∂t
+ (

ū · ∇̄)
ū − ḡ

)
· v̄ − p∇̄ · v̄ + τ : ∇̄ v̄

]
dV (7.78)

=
∫∫

Ω

∫ [
−∇̄ · (pv̄) + ∇̄ · (τ · v̄)

]
dV (7.79)

Gauss’ theorem is applied to the right-hand side term to give, with the commutative
matrix product:

∫∫

Ω

∫ [−∇̄ · (pv̄) + ∇̄ · (τ · v̄)
]

dV =
∫

∂

∫

Ω

[−(pv̄) + (τ · v̄)
]

· dS̄

=
∫

∂

∫

Ω

[−(p1̄n) + (τ · 1̄n)
]

· v̄ dS

=
∫

∂

∫

Ω

[
(−pI + τ ) · 1̄n

]
· v̄ dS (7.80)

Hence, the weak form of the Navier-Stokes equation is finally:

∫∫

Ω

∫ [
ρ

(
∂ū

∂t
+ (

ū · ∇̄)
ū − ḡ

)
· v̄ − p∇̄ · v̄ + τ : ∇̄ v̄

]
dV

=
∫

∂

∫

Ω

[
(−pI + τ ) · 1̄n

]
· v̄ dS
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The latter term should be divided into as much integrals as boundaries. In the next
section, we explicit this latter term according the boundary conditions. The continuity
Eq. 7.75 remains as it is.

Implementing Boundary Conditions

On the boundaries, the Dirichlet conditions applied on a variable must be also applied
on the test function associated (ū with v̄ and p with q). The boundaries are expressed
in the integral I computed on the boundary concerned (7.81). This integral can be
rewritten in a decomposition of normal and tangent components:

I =
∫

∂

∫

Ω

[−p + (τ · 1̄n) · 1̄n
]
(v̄ · 1̄n) dS +

∫

∂

∫

Ω

[
(τ · 1̄n) · 1̄t

]
(v̄ · 1̄t ) dS (7.81)

= In + It (7.82)

• Inlet/outlet velocity This configuration include the no slip case, according to the
value of v̄∗. When both components are fixed, I is removed and we have:

I = 0 ⇒
{

ū = v̄Ω + ū∗
v̄ = v̄Ω + ū∗ (7.83)

The reason is that by defining ū, stresses are automatically define. If we give also
a value to the stress, the problem is over-constrained. To clearly understand, let’s
suppose that the stresses required to produce a particular velocity profile v̄Ω + ū∗
at the boundary is f̄ ∗. We could use:

I =
∫

∂

∫

Ω

f̄ ∗ · v̄ dS (7.84)

v̄ = v̄Ω + ū∗ (7.85)

giving the solution ū = v̄Ω + ū∗. A similar formulation is used when using
Lagrange multipliers, see [2].

• Viscous slipping We have mixed conditions, on the normal velocity on one hand,
and on the tangent component of the normal stress (τ · 1̄n) · 1̄t . The same argument
as previous boundary condition stands for the normal component of the normal
stress. We have thus:

It =
∫

∂

∫

Ω

−μ
ū − v̄Ω

β
· 1̄t (v̄ · 1̄t ) dS (7.86)

In = 0 ⇒
{

ū · 1̄n = v̄Ω · 1̄n

v̄ · 1̄n = v̄Ω · 1̄n
(7.87)
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This configuration include the total slipping case, by considering β → ∞ (and
It = 0).

• Inlet/outlet pressure The viscous stress is zero and the pressure is constrained.
The equations are:

In =
∫

∂

∫

Ω

−pv̄ · 1̄n dS (7.88)

It = 0 (7.89)

p = p∗ (7.90)

q = p∗ (7.91)

• Surface force The integrals read:

In =
∫

∂

∫

Ω

f ∗
n v̄ · 1̄n dS (7.92)

It =
∫

∂

∫

Ω

f ∗
t v̄ · 1̄t dS (7.93)

• Surface tension interface This is a particular case that needs some development
because of the curvature, as mentioned previously. Actually, this boundary is the
reason that requires the setting of the weak equations. Without loss of generality,
we will consider that outer pressure is zero. Since the surface tension is constant,
the tangential stresses are zero and therefore, we may write:

I =
∫

∂

∫

Ω

2Hγ1̄n · v̄ dS (7.94)

We will use the surface divergence theorem saying that:

∫∫

Γ

∇̄s · ū dS =
∫

∂Γ

ū · 1̄m dl +
∫∫

Γ

2Hū · 1̄n dS (7.95)

The surface integral is

I =
∫

∂

∫

Ω

γ∇̄s · v̄ dS −
∫

∂2Ω

γv̄ · 1̄m dl (7.96)

where ∇̄s is the surface divergence operator and 1̄m is the binormal vector, such
as 1̄t × 1̄n = 1̄m , in Fig. 7.25. This vector 1̄m gives the slope of the surface
on the triple line. Therefore it contains the contact angle information. The surface
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Fig. 7.25 Tangent, normal
and binormal vectors. They are
orthonormed and 1̄t ×1̄n = 1̄m

divergent operator may be computed after removing the derivative along the normal
direction [13, 14]. Hence

∇̄s · ū = (
I − 1̄n ⊗ 1̄n

) : (∇̄ū
)

(7.97)
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