Chapter 9
Feature Interactions

After reading the chapter, you should be able to

e understand the role of feature interactions in feature-oriented product lines,
including intended and inadvertent interactions,

identify reasons for feature interactions and the feature-interaction problem,
characterize the nature of 2-way and higher-order interactions,

outline techniques to detect feature interactions,

select suitable solutions to implement coordination code for known feature inter-
actions, and

e weigh their mutual strengths and weaknesses.

After a broad discussion of a diverse selection of techniques for implementing fea-
tures in Part II, we now have a closer look at how features interact when combined
with other features. The key idea of feature orientation is to make features explicit
in design and code, either by annotating code belonging to a certain feature or by
separating and modularizing feature code. But a feature is not an island. Features
interact in various ways, both in positive and intended ways, as well as in critical
and inadvertent ways. Features are often expected to interact: to exchange infor-
mation, refine the behavior of other features, reuse the functionality of other fea-
tures, and accomplish a task in cooperation. However, inadvertent interactions can
cause unexpected erroneous behaviors and result in undesired and critical system
states. Specifying and managing intended feature interactions as well as detecting
and resolving unintended feature interactions is one of the key challenges of feature-
oriented product-line development.

In this chapter, we take a closer look at interactions between features and how they
manifest in program code and behavior, rather than at the features themselves and
their implementations. We illustrate different kinds of feature interactions, discuss
strategies to detect them, raise awareness of an instance of the feature-interaction
problem, called optional-feature problem, and compare techniques to implement
known feature interactions in a controlled manner.

S. Apel et al., Feature-Oriented Software Product Lines, 213
DOI: 10.1007/978-3-642-37521-7_9, © Springer-Verlag Berlin Heidelberg 2013

214 9 Feature Interactions

9.1 The Feature-Interaction Problem

A feature that works perfectly well in a given system may exhibit inadvertent behavior
when combined with other features. The problem is that, when features are devel-
oped independently, it is difficult to predict their mutual interactions when combined.
Typically, the behavior of the generated product that contains multiple indepen-
dently developed features is not easily deducible from understanding the features in
isolation—we have to identify and understand their interactions.

Definition 9.1 A feature interaction between two or more features is an
emergent behavior that cannot be easily deduced from the behaviors associated
with the individual features involved.

An inadvertent feature interaction occurs when a feature influences the
behavior of another feature in an unexpected way (for example, regarding the
expected control flow, program or data state, or visible behavior).

The feature-interaction problem is to detect, manage, and resolve (inadver-
tent) feature interactions among features. (]

When features are combined, their interactions need to be coordinated, for exam-
ple, by ordering their execution, synchronizing data access, defining precedence rules
for action handling, and including missing behavior.

For illustration, we provide a list of examples of feature interactions and the
corresponding problems:

Example 9.1 Call forwarding and call waiting. A canonical example of a feature
interaction occurs in telecommunication networks, in which the two features Call-
Forwarding and CallWaiting interact (Calder et al. 2003). CallForwarding forwards calls
made to a busy line to another host. CallWaiting notifies the called party on a busy
line of another incoming call and allows the user to switch between both calls. Both
features work fine in isolation, but it is unspecified what happens with an incoming
call on a busy line if both features are activated. Either feature could take precedence
over the other or, even worse, both may attempt to act at the same time.

The interaction between CallForwarding and CallWaiting is undesired and can lead to
race conditions and unexpected and inconsistent behavior. The interaction can be
hard to predict, because it occurs only in specific conditions (a second call on a busy
line). If the interaction is known, we can take measures to control it by giving explicit
precedence to one feature (possibly even configurable by the user) or by making both
features mutually exclusive (only one can be selected at a time). (]

Example 9.2 Fire and flood control. In a building-automation system, as outlined
by Kang et al. (2002), feature FireControl activates sprinklers when sensors detect
a fire, and feature FloodControl cuts off water supply when water is detected on the
floor. Individually, both features operate as desired, but they interact in inadvertent

9.1 The Feature-Interaction Problem 215

and critical ways: When fire is detected, feature FireControl activates sprinklers; sub-
sequently, feature FloodControl detects standing water, and turns off the water main;
as a consequence, the building burns down.

Clearly, the interaction between FireControl and FloodControl is undesired, and inad-
vertent in the sense that it is hard to predict when planning and implementing the
involved features independently. Only when the interaction is known, we can take
corresponding steps to manage or resolve it, in this case, for example, by giving
explicit priority to feature FireControl over feature FloodControl, controled by some
coordination code. (]

Example 9.3 Read-only data structures and indexes. As a further example, suppose
we incrementally develop a simple data-management solution by starting with a sim-
ple read-only data structure and by extending it with two optional features Write and
Index. Feature Write adds functionality to add, change, and remove data. Indepen-
dently, feature Index is developed on top of the read-only data structure to speed-up
data retrieval (say, by storing an index as a separate hash map, which is created at
load time). Without the other, both features work well on top of the basic data struc-
ture; but when combined, changes in the data due to feature Write are not reflected
in the index maintained by feature Index. As a consequence, the index can become
inconsistent with the data structure such that queries return incorrect results.

Clearly, some coordinating behavior is missing when combining two features. Fea-
ture Write does not know about the index that needs to be updated, and feature Index is
not aware that the data structure can be modified. When we understand their interac-
tion, we can implement additional coordination code, such that the index is updated
properly when the data are modified. (]

Example 9.4 Database transactions and statistics. Similar to the previous exam-
ple, the features Transactions and Statistics interact in a database system. Transactions
ensures ACID properties (atomicity, consistency, isolation, durability) in the case of
concurrent access to persistent data, and defines the granularity of recovery actions.
Statistics collects information for tuning and optimizing data management (for exam-
ple, number of tables).

Transactions and Statistics interact. On the one hand, Statistics collects information
on transaction operations (for example, the number of transactions per second is
measured and stored for self-tuning). On the other hand, feature Transactions provides
transactional access to statistics data: we want to access data collected by feature
Statistics under the umbrella of transactional control.

If we develop both features independently, Statistics would not know about trans-
actions and could not collect statistics on them. Conversely, Transactions would not
know about statistics and could not control access to statistics data. Only when we
know about this interaction, we can implement corresponding coordination code to
make them work correctly together. ([

These examples show the breadth of possible feature interactions. Some feature
interactions are undesired and inadvertent in the sense that they are hard to pre-
dict when planning and implementing features in isolation (see Example 9.2). Other

216 9 Feature Interactions

Fig. 9.1 Visualization of
three features, three 2-way
interactions and one 3-way
interactions

NS

feature interactions are desired and planned in advance (see Example9.4). In any
case, features need to be coordinated (more or less explicitly), and that may require
additional coordination code, which we discuss in Sect. 9.3 in more depth. That also
means, feature interactions may harm feature modularity (see Sect.3.2.4, p. 57),
because, besides the fact that each feature has its own code, there is additional code
that does not belong to a single feature, but to a combination. We discuss this issue
further in Sect.9.4.

9.1.1 Higher-Order Interactions

All examples so far illustrate interactions between pairs of features. However, there
can also be interactions between more than two features, which are called higher-order
interactions or n-way interactions. The interaction between FireControl and FloodCon-
trol is a 2-way interaction or first-order interaction. An interaction that occurs when
three features are selected, but not for feature selections of pairs of these features, is
called a 3-way interaction or second-order interaction. In Fig.9.1, we illustrate the
possible interactions between the three features A, B, and C by overlapping circles.
Three features can give rise to three 2-way interactions and one 3-way interactions
(intersections between circles).

Definition 9.2 If n features interact, but none of their strict subsets, this is
called an n-way interaction. O

Example 9.5 Higher-order interactions are difficult to illustrate in small examples.
They emerge from the complex interplay of multiple features. Here, we have created
a small but dense code example of a Stack to illustrate a specific case in which
three features interact. In this example, variability is encoded using preprocessor
directives (see Sect.5.3, p. 110). The code that coordinates the features of Stack is
implemented in the form of nested preprocessor directives (that is, its absence does
not cause misbehavior like in the fire-and-flood-control example).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_5

9.1 The Feature-Interaction Problem 217

1 class Stack { 23 #ifdef UNDO

2 24 boolean undo() {

3 boolean push(Object o) { 25 #ifdef LOCKING

4 #ifdef LOCKING 26 Lock lock = lock();

5 Lock lock = lock(); 27 if(lock == null) {

6 if(lock == null) { 28 #ifdef LOGGING

7 #ifdef LOGGING 29 log("undo-lock failed");
8 log("lock failed for: "+o0); 30 #endif

9 #endif 31 return false;

10 return false; 32 }

11 } 33 #endif

12 #endif 34 restoreValue();

13 #ifdef UNDO 35 /%, .0x/

14 rememberValue(); 36 #ifdef LOGGING

15 #endif 37 log("undone.");

16 elementData[size++] = o; 38 #endif

17 Jx. . %/ 39 }

18 } 40

19 41 void rememberValue() { /*...*/ }
20 #ifdef LOGGING 42 void restoreValue() { /*...%/ }
21 void log(String msg) { /*...%/ } 43 #endif

22 #endif 44 ¥

Fig. 9.2 Implementing a stack data structure with preprocessor directives; coordination code is
implemented by nesting preprocessor directives

In Fig.9.2, we show the code of the features Locking, Logging and Undo. There is
code that belongs to the individual features, and code that belongs to combinations
of features (intersections in Fig. 9.1), which is recognizable from nested #ifdef direc-
tives (the code is only included if multiple features are selected). Note particularly
Line 29, which is only included if and only if all three features are selected. If this
line caused a failure (for example, threw a null-pointer exception), the failure would
occur only in products with all three features, but not in products that select only
strict subsets of these features. (]

Empirical evidence, for example by Kolberg et al. (2000), Kuhn et al. (2004), and
Reisner et al. (2010), indicates that (a) higher-order interactions occur in practice, but
also that (b) higher-order interactions are rare compared to interactions between pairs
of features; most failures are related to individual features or interactions between two
features (such as Examples 9.1-9.4). This empirical evidence suggests to concentrate
effort on detecting 2-way feature interactions by analyzing mostly pairs of features,
an approach also frequently taken in product-line testing 10.3.2.

9.2 Detecting Feature Interactions

Especially when features are developed independently, detecting and identifying
feature interactions is a challenging task, and is still one of the big open problems
of product-line development. There are many different strategies, mostly pioneered
in the domain of telecommunication systems since the 1990s (Calder et al. 2003;
Nhlabatsi et al. 2008), but there is no single strategy that can be claimed as general,
scalable, and production-ready, yet.

http://dx.doi.org/10.1007/978-3-642-37521-7_10

218 9 Feature Interactions

A key problem of detecting feature interactions is that inadvertent feature
interactions may lurk behind any feature combination. In a product line with n fea-
tures, there are (2) = w pairs of features that may potentially interact, and
there are (i) possibilities for k-way interactions. In short, the exponential number
of potential interactions limits any systematic and complete search. Even investigat-
ing only 2-way interactions (which are empirically much more likely to occur than
higher-order interactions) may be overwhelming for industrial-sized product lines.

Within this book, we will not go into details regarding feature-interaction detec-
tion, but refer to the corresponding research literature; good starting points are the
surveys by Calder et al. (2003) and Nhlabatsi et al. (2008). A typical strategy to
detect feature interactions is to make requirements and assumptions regarding fea-
tures explicit and check them as part of systematic requirements analysis in the
domain-analysis phase (see Sect.2.2, p. 19):

e At the requirements level, a typical strategy is to systematically search for shared
resources. Two features that share resources may potentially interact over this
resource. For example, the features FireControl and FloodControl from Example 9.2
both affect the resource water supply. A typical strategy is to model all resources
relevant for each feature and subsequently investigate manually all pairs of features
that share a resource.

e The strategy applied to resources can be used also for events (and preconditions
of operations). Two features that react to the same event (or that have overlapping
preconditions) are potential candidates for feature interactions. For example, the
features CallForwarding and CallWaiting from Example 9.1 both react to the same
event (that is, an incoming call on a busy line). Again, modeling events allows us
to manually investigate all pairs of features reacting to the same event.

e Inconsistent requirements and conflicting goals of features revealed during domain
engineering can also be an indicator of potential interactions. For example, features
Acceleration to increase the speed of a car and AdaptiveCruiseControl to automati-
cally adjust the distance to other cars by decreasing speed have conflicting goals.
Again, requirements and goals need to be made explicit, for example, by modeling
them.

e Making assumptions (or invariants) of features explicit can help detecting when an
assumption is violated by other features. For example, feature Index in Example 9.3
assumes that the data structure is immutable, an assumption violated by feature
Write.

In addition to manual investigation of requirements documents during domain
analysis, formal methods can be applied to feature-interaction detection. For example,
if preconditions or goals are formally stated, automatic reasoners can detect overlaps,
inconsistencies, and critical program states. Similarly, if the behavior of the system
can be modeled and assumptions or invariants can be specified formally, model
checkers and other reasoners can detect violations.

Example 9.6 Consider the example of an e-mail client that has two optional fea-
tures for encryption and automatic forwarding (Hall 2005). Both features have been

http://dx.doi.org/10.1007/978-3-642-37521-7_2

9.2 Detecting Feature Interactions 219

developed and tested based on the basic e-mail client, independently of the respective
other feature. As it happens, both features interact in an inadvertent way: The inter-
action occurs if one host sends an encrypted e-mail to a second host that forwards
the e-mail automatically to a third host. If the second host does not have the public
key of the third host, it forwards the e-mail in plain text (the forwarding feature has
been developed independently and thus does not take encryption into account).
Apel et al. (2013) have shown that this situation contradicts the specification that
encrypted e-mails must never be sent in plain text over the network (Hall 2005),
and that product-line model-checking technology can be used to detect this situation
automatically.]

For a comprehensive overview of formal approaches for feature-interaction
detection, see the recent surveys by Calder et al. (2003) and Nhlabatsi et al.
(2008). Formal methods have been successfully applied on core models of product
lines (Heymans 2012), but to scale them to be able to analyze source code instead of
requirements models or manually abstracted models remains an open problem.

Finally, excessive product-line testing can be employed, if suitable test cases are
available or if the assumptions of features are specified as run-time assertions. We
return to product-line analysis in Chap. 10, including combinatorial testing for feature
interactions.

For the remainder of this chapter, we assume that we already know which features
interact. We focus on how to implement features with a known interaction by means
of coordination code.

9.3 The Optional-Feature Problem

As we have seen so far, interactions between features often require additional coor-
dination code. This code has to be implemented somewhere, and it has to take action
only if the corresponding features are present in a given product. The combination
of the fact that features can be optional and the need of code to coordinate features
give rise to the optional-feature problem.

Definition 9.3 The optional-feature problem is the mismatch between
intended variability (as specified in the feature model) and the actual variabil-
ity provided by the implementation, due to coordination code. It occurs when
two (or more) optional features interact, and the presence of coordination code
reduces the intended variability of the product line. (]

Suppose, in our database example, feature Statistics counts the number of transac-
tions per second. If the user configures a database without feature Trans-
actions, the implementation of Statistics breaks (as code concerning transaction
management is missing). That is, the implemented variability (Statistics requires

http://dx.doi.org/10.1007/978-3-642-37521-7_10

220 9 Feature Interactions

1 layer DFS; 15 layer Weighted;

2 16

3 refines class Graph { 17 refines class Edge {

4 void search(Strategy s) { ... } 18 double weight;

5} 19 void setWeight(double w) { ... }
20 }

6 layer Cycle;

7 21 layer ShortestPath;

8 refines class Graph { 22

9 void hasCycles() { 23 refines class Graph {

10 ce 24 List shortestPath(Vertex a, Vertex

11 search(...); b) {

12 . 25 Edge el, e2;

13 } 26 .

14 } 27 if (el.weight > e2.weight) ...
28 .
29 }
30 }

Fig. 9.3 Excerpts of the implementations of the features Weighted and ShortestPath of the graph
implementation in Jak/ AHEAD

Transactions) does not align with the intended variability (both features shall be
independently selectable).

The optional-feature problem is a specific, but common implementation-level
instance of the feature-interaction problem. From a developer’s perspective it deserves
special attention, because, although often simple to detect, it occurs frequently. When
talking about feature interactions so far, we discussed problems regarding incorrect
behavior due to missing coordination code. In contrast, the optional-feature problem
is concerned with incorrect implementations of variability that reduce intended vari-
ability or that have other negative effects such as nonmodular code, as we discuss in
the remaining chapter.

Let us illustrate the optional-feature problem further with an example from our
graph library.

Example 9.7 The optional-feature problem in the graph example. Suppose a ver-
sion of our graph example in which the features Weighted and ShortestPath are both
optional and independent. The feature model also specifies that feature Cycle con-
ceptually depends on feature DFS.

Now, let us consider implementations of these features. In Fig.9.3, we show
excerpts of implementations using feature-oriented programming using Jak/ AHEAD,
which are based on the graph implementation of Sect.6.1. Notice how the imple-
mentation of feature Cycle refers to method search from feature DFS, and how the
implementation of feature ShortestPath refers to field weight from feature Weighted.
Due to these references, there are implementation dependencies from feature Cycle
to feature DFS and from feature ShortestPath to feature Weighted.

The implementation dependency between features Cycle and DFS is acceptable
and possibly even not avoidable, because the dependency is fundamental in the
domain. The feature model already documents this intended dependency.

http://dx.doi.org/10.1007/978-3-642-37521-7_6

9.3 The Optional-Feature Problem 221

1 layer BasicGraph; 11 layer ShortestPath;
2 12
3 class Edge { 13 refines class Graph {
4 double weight = 1; 14 List shortestPath(Vertex a, Vertex b)
5} {
15 Edge el, e2;
16 e
6 layer Weighted; 17 if (el.weight > e2.weight) ...
7 18 e
8 refines class Edge { 19 }
9 void setWeight(double w) { ... } 20 }

(=}

}

Fig. 9.4 Alternative implementation of Weighted and ShortestPath in Jak/ AHEAD, without any
implementation dependency between them

But, the optional-feature problem occurs between the features ShortestPath and
Weighted (in this implementation). Although desired, we cannot generate a product
for a feature selection with feature ShortestPath, but without feature Weighted: The
generated code would contain a dangling reference to field weight. Conceptually,
however, such a product should be possible to generate, because both features are
optional and independent in the feature model and desired by stakeholders (finding
the path with the fewest edges). Hence, we have an implementation dependency
that reduces the variability of the product line beyond the domain expert’s intention,
only because of the coordination code that let the features Weighted and ShortestPath
properly interact (Line 27).

Since implementation dependencies are specific to one implementation but not
essential in the domain, we can usually provide an alternative implementation without
that dependency. We sketch a naive, alternative implementation in Fig. 9.4, in which
we can freely combine the features ShortestPath and Weighted: We move the field
weight with a default value to the base code, so that feature ShortestPath works inde-
pendently of feature Weight, without any dedicated coordination code that impairs
variability (however, now the base code contains a field that is unused in products
without feature Weighted). We discuss different implementation strategies to solve
the optional-feature problem in Sect.9.4. (]

As illustrated in the example, the optional-feature problem arises from a mis-
match between variability specified in the feature model and variability provided
by a specific implementation. The problem occurs when coordination code is hard-
wired inside a feature. The optional-feature problem often manifests in the form of
type errors (for example, a dangling reference to a feature that is absent), which
can be detected when actually compiling a derived product (see also Chap. 10 for
mechanisms how to detect type errors in all products of a product line).

The optional-feature problem and the feature-interaction problem are highly
related, but the goals and challenges are different. In the feature-interaction prob-
lem, the challenge is identifying missing behavior (and coming up with correspond-
ing coordination code), whereas, in the optional-feature problem, the challenge is
implementing the coordination code such that it does not impair variability.

http://dx.doi.org/10.1007/978-3-642-37521-7_10

222 9 Feature Interactions

9.4 Implementing Feature Interactions

After we have identified that two features interact, we need to find a strategy to
deal with the interaction, preferably a strategy that does not introduce the optional-
feature problem. As one possibility, we can change the feature model to prevent the
interaction (or, alternatively, enforce it in all products). For example, we could declare
interacting features as mutually exclusive. However, usually the goal is to generate
all products properly as intended by domain experts, that is, generate products with
both features combined and with each feature in isolation.

Essentially, all resolutions of feature interactions (and the optional-feature prob-
lem) can be abstracted to and described by the following pattern: There are two
implementations of the individual features, and, to use them together, some coor-
dination code is required to patch up both features (typically, by adding additional
code, but potentially also by overriding behavior or removing code). This pattern
applies to all examples throughout this chapter.

e Call forwarding and call waiting (Example 9.1). When both features are selected,
additional code should coordinate them. Coordination code can give priority to
one feature, invoke them in sequence, or provide a configuration dialog for users
to configure the desired behavior.

e Fire and flood control (Example 9.2). When both features are selected, additional
coordination code is required to specify that feature FireControl overrules feature
FloodControl.

e Read-only data structures and indexes (Example 9.3). In the data-structure exam-
ple, the need for coordination code is especially obvious. When we select both
features Write and Index, we need additional code to update the index on write
operations.

e Database transactions and statistics (Example 9.4). Similar to the previous exam-
ple, we need coordination code to implement the missing behavior of collecting
statistics about transactions and for synchronizing the access to statistics data.

o Weighted graphs and shortest path (Example9.7). Finally, feature ShortestPath
can be implemented independently of feature Weighted and vice versa; but, to use
them together, we need to include coordination code, such that the shortest-path
algorithm uses the correct weights.

For illustration, we use a graphical notation of two interacting features, shown
in Fig.9.5. Each feature is represented by a circle and the overlap between them
represents the code that coordinates their interaction. With this graphical notation,
we can also illustrate the desired products, as shown in Fig. 9.6: Either we want both
features with their interaction properly coordinated, or we want each feature in isola-
tion, without any coordination code. In Fig. 9.1, we already illustrated an equivalent
picture for higher-order interactions. Now the question is how to implement feature
code and coordination code properly inside a product-line implementation. We will
use the graphical notation to illustrate and discuss six implementation strategies.

9.4 Implementing Feature Interactions 223

Statistics Transactions
(buffer hit ratio, (locks, commit,
table size, rollback,...)

cardinality,...)

coordination code
(transactions per second)

Fig. 9.5 The features Transactions and Statistics in concert

@D

database with statistics database with statistics database with transactions
and transactions without transactions without statistics

Fig. 9.6 Desired products using the features Transactions and Statistics

9.4.1 Implementation Strategies: Overview and Goals

What makes a good strategy to implement coordination code for feature interactions
and to solve the optional-feature problem? There are at least four goals that we want
to achieve.

1. Variability. The implementation strategy should allow the programmer to generate
all products for all feature selections specified as valid in the feature model. That
is, we do not want to reduce variability merely due to implementation issues, as
described by the optional-feature problem (see Sect.9.3).

2. Implementation effort. The implementation strategy should not require over-
whelming implementation effort, because such implementation strategy would
not be attractive to use in practice.

3. Binary size and performance. The implementation strategy should not increase
binary size or decrease performance of products compared to an individual
implementation of each product.

224 9 Feature Interactions

4. Code quality. Finally, the implementation strategy should not reduce code quality,
which would make the product line harder to maintain. As discussed in Part II,
there are many trade-offs, but the implementation strategy for interactions should
fit to the interaction strategy chosen for features in the first place.

In the following, we discuss six implementation strategies. None of the strategies
fulfills all goals; they have different trade-offs, as we will discuss. The discussed
strategies are:

e Change feature model. Instead of a proper implementation, we exclude problematic
feature combinations from the feature model.

e Multiple implementations. To account for configurations with and without coor-
dination code, we implement the features separately for each combination.

e Moving code. Coordination code is moved to one of the interacting features or to
a shared required feature.

e Conditional compilation. Using a preprocessor, the coordination code annotated
and only complied if both features are present.

e Optional weaving. Coordination code is implemented as implicitly optional, using
mechanisms inspired by aspect weaving.

e Distinct module for coordination code. A distinct module separates coordination
code from feature code; the module is automatically included when both features
are included.

We discuss these strategies separately, before we compare them in the end.

9.4.2 Change Feature Model

The simplest solution to resolve a known, undesired feature interaction is to for-
bid the problematic feature selection. Instead of solving the problem by adding
proper coordination code or reimplementing features, we restrict the feature model
to exclude problematic feature selections with an additional constraint. Similarly,
we can declare an implementation dependency as domain dependency in the feature
model. For example, we could mark the features FireControl and FloodControl from
Example 9.2 as mutually exclusive, and we could enforce that feature ShortestPath
cannot be selected without feature Weighted in Example 9.7.

This solution, of course, restricts variability (or at least acknowledges the reduced
variability) compared to what should be valid products in the domain. On the positive
side, this solution does not require to change the implementation and, thus, does not
affect performance or code quality. Depending on the importance of the excluded
products, the reduced variability can be acceptable or can have a serious impact on
the strategic value of the product line.

When adopting this solution, we recommend documenting clearly which con-
straints in the feature model are driven by implementation dependencies. Such
documentation helps to separate conceptual considerations in the domain from
implementation issues.

9.4 Implementing Feature Interactions 225

r
module products
boundary J

Fig. 9.7 Ignore feature interactions and restrict variability

InFig.9.7, we illustrate the solution graphically. We have two features that already
contain coordination code, but the coordination code is encoded such that it causes an
implementation dependency (as in Example 9.7 about the shortest-path algorithm).
Here, we add the implementation dependency to the feature model, again disallowing
the corresponding products. In a similar case (not shown graphically), we have two
feature implementations but the necessary coordination code is missing (as in Exam-
ple 9.2 about fire and flood control). We simply declare both features as mutually
exclusive in the feature model, thus prohibiting products with both features.

9.4.3 Multiple Implementations

A simple strategy to handle interactions is to provide multiple implementations of
a feature, one with and one without coordination code. For example, we can have
two implementations of feature FloodControl from Example 9.2, one that always turns
off water when flooding is detected and one that turns off water only after checking
with feature FireControl. Similarly, we could provide an implementation of feature
ShortestPath of Example 9.7 for weighted graphs and a second implementation for
unweighted graphs. During product derivation, we would then include the suitable
implementation, depending on which other features are selected.

Unfortunately, this strategy neglects code reuse, the prime benefit of product-
line development, and encourages code replication instead. We need to implement a
feature multiple times, one for each feature combination. Furthermore, the approach
does not scale if a feature interacts with multiple other features. We need up to 2™
implementations of a feature that interacts with n other features.

226 9 Feature Interactions

module
boundary

products

-
(
)~

§ < <

Fig. 9.8 Multiple implementations to make features optional

In Fig.9.8, we visualize the multiple-implementations strategy. We provide two
implementations of the dark-gray feature (say, feature ShortestPath), one with and one
without code for coordination with other features. We can generate products for all
feature combinations at the price of code replication and additional implementation
effort.

9.4.4 Moving Code

In many cases, it is possible to implement the coordination code in one of the two
features or in a third feature to which both features refer. For example, feature Flood-
Control from Example 9.2 could always include code for checking overriding condi-
tions, independent of whether feature FireControl is selected. In the graph example in
Fig.9.4, we have already shown another instance of this solution: We have moved the
field weight into the implementation of the base feature. The solution works, because
we move the coordination code where it does not cause dependencies.

This solution has two drawbacks. The first drawback is a conceptual one: We
violate the principle of separation of concerns (see Sect.3.2.3, p. 55), because we
move code to implementation units where it does not belong to. For example, feature
FloodControl must now be aware of other overriding features as the fire sensor. Also,
in our solution for feature ShortestPath in Fig.9.4, we moved field weight that
conceptually belongs to feature Weighted into the base code. With this implementation
strategy, we give up the clear traceability from features to their implementation,
as postulated in Sect.3.2.2. The point is that coordination code does not belong

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

9.4 Implementing Feature Interactions 227

module products
boundary

v

D
((v
S

v

Fig. 9.9 Move code between features

to a single feature, but to combinations of features, so it is between modules that
implement individual features.

Second, more technically, we include unnecessary code in some products. In the
flood-control example, we would always include and execute code to check for a
potential fire sensor, even in products without feature FireControl. In our solution
for feature ShortestPath, all edges in all products now contain a field weight (which
requires additional memory per object), even when neither feature ShortestPath nor
feature Weighted is selected. Including unnecessary code potentially increases binary
size, increases memory consumption, and decreases performance.

InFig.9.9, we visualize the implementation strategy. The coordination code is part
of the implementation of one feature (or of some external feature that both features
depend on; not shown here). The coordination code is implemented such that it does
not cause a dependency; it remains as dead code in one feature, if the other feature
is not selected. As a result, at least one product contains unnecessary code.

9.4.5 Conditional Compilation

If we use an annotative implementation strategy (see annotation versus composition
3.1.3, p. 50) for the product line, such as parameters (see Sect.4.1) or preprocessors
(see Sect.5.3, p. 110), implementing glue code that is only executed if both features
are selected is straightforward.

We simply place the coordination code that binds both features in nested if state-
ments, nested #ifdef directives, or the like. Particularly compile-time approaches
(see binding times in Sect.3.1.1, p. 48), such as conditional compilation with

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_3

228 9 Feature Interactions

layer Weighted; 7 layer ShortestPath;
8
refines class Edge { 9 refines class Graph {
double weight; 10 List shortestPath(Vertex a, Vertex b)
void setWeight(double w) { ... } {
} 11 Edge el, e2;

[S S U SR

13 #ifdef WEIGHTED
14 if (el.weight > e2.weight) ...
15 #endif

o }...
18 }

Fig. 9.10 Preprocessor-based implementation of Weighted and ShortestPath that implements coor-
dination code as a conditional block

preprocessors, have the advantage that coordination code is only compiled and
included when both features are selected. In Fig.9.1 (p. 216), we have already
illustrated interactions, including higher-order interactions, in terms of nested #ifdef
directives.

Even when we use a primarily composition-based implementation strategy (such
as components, frameworks, feature-oriented programming, and aspect-oriented pro-
gramming, see Chaps. 4 and 6), we can use #ifdef directives inside composition units
to conditionally remove unnecessary coordination code before compilation. We illus-
trate a possible solution for our shortest-path example (Example9.7) in Fig.9.10,
where we eliminate unnecessary code from the composition unit at compile-time
with a preprocessor.

This solution can implement all products without code replication and without
compiling unnecessary code causing performance penalties. However, as already
discussed in the context of parameters in preprocessors in Sects.4.1 and 5.3, code
quality is usually regarded as poor due to scattering and tangling of feature code and
due to neglecting separation of concerns.

The preprocessors solution to known feature interactions is visualized in Fig.9.11.
It does not support an explicit separation of feature implementations. Consequently,
in our graphics we have no module borders.

9.4.6 Optional Weaving

Instead of annotating optional coordination code inside the implementation explicitly
with #ifdef directives or similar techniques, several researchers have explored more
implicit mechanisms (Kistner 2007; Leich et al. 2005; Lohmann et al. 2011). These
mechanisms are aimed at composition-based approaches (see annotation versus com-
positionin Sect. 3.1.3, p. 50). The mechanisms, which we summarize under the name
optional weaving, are inspired by the quantification mechanism in aspect-oriented
programming (see Sect. 6.2, p. 141).

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_6

9.4 Implementing Feature Interactions 229

products
#ifdef TXN @ ;
lock();
#ifdef STAT
lockCount++;
#endif ’7
#endif

Fig. 9.11 Use of preprocessor annotations for implementing a feature interaction

In aspect-oriented programming, a developer declaratively specifies which code
fragments to extend by means of a pointcut. The additional code is woven to all join
points matched by the pointcut (possibly one, multiple, or even none).! Similarly,
optional weaving declares where to add coordination code, but silently fails if the
target is not present. As in the conditional-compilation strategy, coordination code is
located in one of the features, but only included for compilation when both features
are selected.

In Fig.9.12, we illustrate the idea of optional weaving with a small code exam-
ple for the fire-and-flood-control example. If the system does not contain methods
startFireAlarm and endFireAlarm (when FireControl is not selected), the corresponding
glue code in the advice body is simply never woven into the system.

Optional weaving is controversial and has not been fully explored yet. First,
the weaving concepts of Aspect] are technically too restrictive for application of
optional weaving at larger scale: Pointcuts cannot refer to class names that are pos-
sibly not present in the system, and optional weaving is not available for inter-type
declarations. However, adopting the optional-weaving idea to other languages seems
possible; AspectC is more flexible in this regard than Aspect] (Lohmann et al. 2011).
Second, optional weaving depends on the silent failure to weave code when the tar-
get is not present. However, silent failure eliminates the chance to check or enforce
weaving. For example, if a developer renames method startFireAlarm to beginFire-
Alarm without updating the pointcut, the coordination code is no longer woven into
the system, but this failure is indistinguishable from correctly not weaving the coor-
dination code if feature FireControl is not selected. Critics of optional weaving fear

1 Aspect] issues a warning for a pointcut that does not match any join point shadow, but does not
enforce any specific number of matches.

230 9 Feature Interactions

aspect FloodControl {
boolean isActive = true;

after(): execution(* *.floodingDetected()) {
if (isActive)

}

isActive = false;

1
2
3
4
5
6
7
8
9 before(): execution(* *.startFireAlarm()) {
10
11
12 after(): execution(* x.endFireAlarm()) {

13 isActive = true;

14 }

15 }

Fig. 9.12 Example for optional weaving

that the mechanism is too implicit and will result in a large amount of optional code
for which it remains unclear when exactly it is applied. However, optional weaving
is a comparably recent solution, for which further research is needed.

9.4.7 Distinct Module for Coordination Code

In previous implementation strategies, we have discussed where to move coordination
code. An alternative for composition-based implementations is to create yet another
module for code that coordinates features. As illustrated in Fig.9.14, we separate
coordination code and compose it with the implementation of both features if and
only if both features are selected. This strategy also scales for higher-order interactions
with more additional modules for coordination code as illustrated in Fig.9.1.

In the literature, the additional modules for glue code are well known, but have
many different names. They are called lifters (by Prehofer (1997), because they lift
the implementation of one feature to the implementation of another feature), tiles (by
Kiihne (1999), because they connect features from different dimensions shown as a
matrix), derivatives (by Liu et al. (2006), because they are derived from two features),
connectors (terminology in Eclipse, because they connect two other plug-ins), and
so forth.

In our fire-and-flood-control example (Example9.2), we could implement both
features in separate modules and add the coordination code (which overrides one
feature with the other) as a separate module. The separate module is automatically
included when both features are selected. For our shortest-path example (Exam-
ple 9.7), we have exemplified one possible solution in Fig. 9.13: The implementation
of feature ShortestPath calls a method isLonger with a default implementation that is
overridden by coordination code in a separate module (ShortestPath_Weighted).

The key to this implementation strategy is that the additional module for the coor-
dination code is automatically included during generation in the product derivation
process, if and only if all participating features are selected. Some automation should

9.4 Implementing Feature Interactions 231

1 layer ShortestPath; 14 layer Weighted;
2 15
3 refines class Graph { 16 refines class Edge {
4 List shortestPath(Vertex a, Vertex b) 17 double weight;
{ 18 void setWeight(double w) { ... }
5 Edge el, e2; 19 }
6 e
7 if (isLonger(el, e2)) ...
8 20 layer ShortestPath_Weighted;
9 } 21
10 boolean isLonger(Edge el, Edge e2) { 22 refines class Graph {
11 return false; 23 boolean islonger(Edge el, Edge e2) {
12 } 24 return el.weight > e2.weight;
13 } 25 }

26 }

Fig. 9.13 Alternative implementation of Weighted and ShortestPath with an additional module for
the glue code between them

module products
boundary

-
g
)~

C < <

Fig. 9.14 Distinct modules implement coordination code

make sure that we cannot forget the coordination code. In the simplest case, we can
create a new feature for the coordination code in the feature model and use con-
straints to enforce consistent selection (for example, ShortestPath_Weighted <
(ShortestPath A Weighted)). More sophisticated support in the generation step
can help to hide the additional modules. Liu et al. (2006) and Batory et al. (2011) dis-
cuss a conceptual and theoretical framework that includes also a concept for naming
and automatic selection.

In some cases it can be debatable whether the added module should be hidden
and automatically selected, or whether it should be exposed as an extra feature.
In our statistics-and-transactions example, we could argue that collecting statistics
about transactions is another optional feature, but we could also argue that it belongs
conceptually to the features transactions and statistics and should be selected auto-

232 9 Feature Interactions

matically. In most cases, though, the extra module clearly does not constitute a
domain abstraction that should be modeled as feature, but mere coordination code
that should be included automatically. For example, the coordination code of the fire-
and-flood-control example and the write-and-index example should not be offered as
optional feature; not including the coordination code when both features are included
would be considered as interaction bug in these scenarios.

An interesting insight about this strategy is that it can also work in open-world
scenarios (see software ecosystems in Sect.4.3.5, p. 86) where features are provided
by independent developers without central authority. For example, in Eclipse, when
two plug-ins interact (or should interact), we can add the corresponding coordination
code as another plug-in, which is typically called connector in this domain. However,
a yet unsolved problem in open-world scenarios is to detect the interaction and make
sure that a corresponding connector is provided, because there is no central product
derivation mechanism that could automatically include the required coordination
code.

The use of distinct modules for coordination code is a way of handling interac-
tions, but there are also drawbacks. The number of derivatives may explode in cases
where many interactions exist. This may lead to a high number of additional but
potentially very small modules that can be overwhelming for developers and hard to
understand in isolation. In the future, this increased complexity may be more man-
ageable by tools supporting the automatic refactoring of existing coordination code
into distinct modules (see Chap.8), and their tool-driven maintenance throughout
the whole lifetime of a software product line (see Chap.7)—but more research is
needed.

9.4.8 Comparison of Solutions

After we have discussed the implementation strategies in isolation, we can now take
a look at the complete picture and discuss how the strategies perform with regard
to our four goals of variability, implementation effort, binary size and performance,
and code quality.

e Regarding variability, all implementation strategies, except mere changes to the
feature model, support the full variability.

e The implementation effort differs significantly. Creating multiple implementa-
tions per feature requires significant overhead, and also creating distinct modules
for coordination code requires significantly rewriting existing code and creating
additional modules.

e Potential overhead regarding binary size, memory consumption, and performance
is a problem when moving the code. For optional weaving, we do not yet have
sufficient experience.

e Code quality can be discussed controversially. However, code replication of the
multiple-implementation strategy is obviously a problem. Also, suboptimal sepa-

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_8
http://dx.doi.org/10.1007/978-3-642-37521-7_7

9.4 Implementing Feature Interactions 233

Table 9.1 Comparison of implementation approaches for the feature interaction problem

Implementation strategy Variability Implementation Binary size Code quality
effort and performance

Change the feature model v v v

Multiple implementations v v

Moving code v v v

Conditional compilation v v v

Optional weaving v v v? ?

Distinct modules for glue code v v v

ration of concerns and scattering and tangling of code associated with conditional
compilation is typically regarded as poor quality. Also, the implicit mechanisms
of optional weaving potentially threaten code quality.

We summarize the discussion in Table9.1.

As the table shows, there is no clear generally preferable strategy. Merely the
multiple-implementation strategy seems never to be a good idea. From the remaining
strategies, we need to select depending on the context and on which goal is currently
most important to developers. Changing the feature model is the easiest solution, but
decreases variability. Moving code is also simple, but potentially produces overhead.
The main criticism of conditional compilation is its effect on code quality. Creating
distinct modules for coordination code seems elegant, but can require significant
additional effort from developers. Optional weaving is a new research approach for
which not much experience is available. In practice, developers typically will mix
and match the approaches according to their needs.

9.5 Experience

From the previous discussion, it seems that developers have to decide for the lesser
evil when selecting an implementation strategy for feature interactions. All strategies
have different trade-offs and none is without drawbacks. To gain experience, we
conducted two case studies on the database systems Berkeley DB (both the Java
edition and C edition) and FAME-DBMS (C++ implementation). In all cases, we
observed and analyzed product-line development, counted instances of the optional-
feature problem, and discussed and explored different implementation strategies.
The results were published in Késtner et al. (2009), but here we repeat the key results
to provide some context for the different strategies.

The case studies followed different implementation strategies. In the case of
Berkeley DB, we decomposed an existing system into a product line. We started
with legacy code that already contained many features, without making them
explicit or configurable. Interactions between features were already hard-coded

234 9 Feature Interactions

(all features were hard-coded as part of the mandatory base code, so was the coor-
dination code between them). We subsequently extracted features and made them
optional, a process in which we found coordination code and needed to decide how
to implement it. In the case of FAME-DBMS, we developed the product line from
scratch. However, since the domain of database systems is well known, we could
easily anticipate and plan interactions between features. In both case studies, we
focused on the optional-feature problem, that is, how to implement known feature
interactions without restricting the intended variability.

9.5.1 Decomposition of Berkeley DB

Oracle’s Berkeley DB? is an open-source database engine implemented in approxi-
mately 70,000 lines of code, that can be embedded into applications as a library. In two
independent endeavors, we decomposed both the Java and the C version of Berkeley
DB into features (described in more detail by Kistner et al. (2007) and Rosenmiiller
et al. (2008)). We pursued a composition-based implementation strategy with the
goal of separating each feature in a distinct module, using aspect-oriented program-
ming with Aspect] in the Java version (see Sect.6.2, p. 141) and feature-oriented
programming with FeatureC++ in the C version (see Sect.6.1, p. 130).

In the Java version, we identified 38 features. Almost all features are optional
and there are only 16 domain dependencies; in theory, we should be able to derive
3.6billion different products. However, implementation dependencies occurred much
more often than domain dependencies. With manual and automated source-code
analysis, we found 53 implementation dependencies corresponding to 2-way inter-
actions that were not covered by domain dependencies. We did not find higher-
order interactions. We show an excerpt of features and corresponding dependencies
between their implementation modules in Fig.9.15 (implementation dependencies
marked with ‘x’; there are no domain dependencies between the shown features).
Overall, in Berkeley DB, the optional-feature problem occurred between 53 pairs of
features, which are independent in the domain, but not in their implementation.

Changing the feature model to simply document all implementation dependen-
cies is not acceptable, because this would restrict the ability to generate tailored
products drastically. In pure numbers the reduction from 3.6 billion to 0.3 million
possible products may appear acceptable, considering that still many products can
be generated. Nevertheless, when having a closer look, we found that especially
in the core of Berkeley DB, there are many implementation dependencies. Impor-
tant features regarding statistics, transactions, memory management, and database
operations shown in Fig. 9.15 must be included in virtually every valid feature selec-
tion. The remaining variability of 0.3 million products is largely due to several small
independent debugging, caching, and IO features. Considering all implementation
dependencies, essentially all intended variability is lost.

2 http://www.oracle.com/database/berkeley-db

http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://www.oracle.com/database/berkeley-db

9.5 Experience 235

11. Atomic Transactions
12. FSync

13. Latch

20. Statistics

27. IN Compressor

29. DeleteDbOperation
30. TruncateDbOperation
31. Evictor

33. Memory Budget X

Fig. 9.15 Implementation dependencies (‘x’) in Berkeley DB (excerpt)

In the C version, which has a very different architecture and was independently
decomposed into a different set of features, we identified 24 features (see Rosenmiiller
etal. (2008) for details). But, the overall picture is similar: With only 8 domain depen-
dencies almost 1 million products are conceptually possible, but only 784 products
can be generated considering all 78 implementation dependencies between feature
pairs that we found. Again, important features were de facto mandatory in every
feature selection.

These numbers give a first insight into the impact of the optional-feature problem.
We found more instances of feature interactions than there are features (as explained
in Sect.9.2, there can be a quadratic number of interactions between pairs of fea-
tures, and even an exponential number considering also higher-order interactions). In
Berkeley DB, the strategy to merely change the feature model reduces variability to
a level that makes the product line almost useless.

Exploring Implementation Srategies

After the analysis revealed that changing the feature model is not a general option, we
explored different solutions to eliminate implementation dependencies. Focusing on
aclean composition-based implementation, and following the principle of separation
of concerns, we started with creating distinct modules for coordination code.

In the Java version, we first created nine distinct modules to encapsulate coor-
dination code of all nine interactions of the feature Statistics. These nine modules
alone required over 200 additional pieces of advice or inter-type declarations with
Aspect]. Of 1867 lines of code of the statistics feature, we rewrote 76 % as modules
(which would also be the amount of code we needed to move into different features
for the moving-code strategy). This shows that most of the functionality of feature
Statistics is in its interactions with other features. In the C version, we created 19
distinct modules for coordination. In both versions, we experienced the necessary
rewrites as rather tedious. We needed between 15 min and 2 h for each new module,
depending on the amount of code. Due to the high effort, we refrained from creating
distinct modules for all implementation dependencies.

Next, we experimented with conditional compilation. In the C version, we used
#ifdef statements inside FeatureC++ modules, as illustrated in Sect. 9.4.5. In the Java

http://dx.doi.org/10.1007/978-3-642-37521-7_9

236 9 Feature Interactions

version, we used a preprocessor-like environment CIDE to eliminate all implemen-
tation dependencies (see virtual separation of concerns in Sect.7.4 p. 184). Using
conditional compilation was significantly faster than implementing distinct modules,
because no changes to the code were necessary except for introducing annotations.
However, we deviated from our original goal of a clean composition-based imple-
mentation. As aresult, feature code is scattered and tangled, with up to 300 annotated
code fragments in 30 classes per feature.

In Berkeley DB, both creating distinct modules for coordination code and condi-
tional compilation were acceptable despite their drawbacks. While we prefer a clean
separation of concerns, we felt that the required effort was overwhelming. In this
project, a mixture of additional modules and conditional compilation felt as a good
compromise to us.

9.5.2 Design and Implementation of FAME-DBMS

The question remains of whether the high number of implementation dependencies is
caused by the design of Berkeley DB and our subsequent refactoring, or whether they
are inherent in the domain. In the latter case, they should also appear in a database
product line that was designed from scratch.

FAME-DBMS is a prototype of a database product line implemented with Fea-
tureC++ (see feature-oriented programming in Sect. 6.1 p. 130). FAME-DBMS was
designed specifically for small embedded systems. Its goal was to show that product-
line technologies are appropriate to tailor data management for special tasks in even
small embedded systems (for example, BTNode with Nut/OS, 8 MHz, and 128 kB of
memory). FAME-DBMS is minimalistic and provides only essential data manage-
ment functionality to store and retrieve data using an API. Advanced functionality
such as transactions, set operations on data, or query processing was not part of the
prototype. The initial development that we describe here was performed in a project
by a group of four graduate students at the University of Magdeburg, after our expe-
rience with Berkeley DB.

Design

FAME-DBMS was designed after careful domain analysis and analysis of scenarios
and existing embedded database engines. The initial feature model of FAME-DBMS
as presented in the kick-off meeting of the project, is depicted in Fig. 9.16 (only layout
and feature names were adapted for consistency). It contains 14 concrete features
(grayed features were not linked to code). To customize FAME-DBMS, we can
choose between different operating systems, between a persistent and an in-memory
database, and between different memory-allocation mechanisms and paging strate-
gies. Furthermore, index support using a BT -tree is optional, so is debug logging,
and finally it is possible to select from three optional operations get, put, and delete.

http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_6

9.5 Experience 237

FAME-DBMS

Storage

[t
e T
[onnored] [grme | [oo | [st | [o | [St | [oame][0][v]

Fig. 9.16 Initial feature model of FAME-DBMS

Fig. 9.17 Domain dependen-
cies (‘0’) and implementation
dependencies (‘x’) in FAME-
DBMS

. Nut/OS
Win
. InMemory
. Persistent
Static
Dynamic
LRU

. LFU

9. Unindexed
10. B* -tree
11. Put

12. Get

13. Delete
14. Debug

90| S| O L[| L] 9] =

The intended variability, captured by the feature model, describes 320 valid feature
selections.

Soon after the initial design, the students realized that many of the features would
require code to coordinate interactions. In Fig.9.17, we show the domain dependen-
cies (‘0’) and the implementation dependencies (‘x’) that were expected in addition.
The latter give rise to the optional-feature problem. For example, the debug logging
feature has an implementation dependency with every other feature (it extends them
with additional debugging code), but should be independent according to the feature
model. Also the features Get, Put, Delete, Nut/OS, and Win interact with many other
features. This analysis already shows that it is necessary to find suitable strategies for
the implementation of coordination code. Again, merely changing the feature model
was not an option, because this would almost entirely eliminate variability.

238 9 Feature Interactions

Implementation

We left the implementation up to the students. We recommended the solution with
extra modules for coordination code, but did not enforce it. In the remainder of this
section, we describe the final implementation at the end of the project and discuss
choices and possible alternatives.

First, as expected, the students chose implementation strategies to implement
coordination code without restricting variability. There were only two exceptions, in
which they changed the feature model: They merged features Put and Delete, so they
cannot be selected independently, and they marked feature Get as mandatory. With
this choice, they reduced the number of interactions they needed to implement from
36 to 22. At the same time, they reduced the number of possible products from 320
to 80. The intension behind changing the feature model was the following: Although
there are use cases for a database that can write but not delete data, or even for
a write-only database (see Szewczyk et al. (2004)), these feature selections are so
rarely demanded that the students considered the reduced variability acceptable.

Second, the 11 interactions of feature DebuglLogging with other features have
been implemented using conditional compilation. This scattered the debugging code
across all implementation modules. Alternatively, some debugging code could have
been moved into the base implementation causing a small run-time penalty, or 11
additional modules could have been created. The students decided to use conditional
compilation despite the scattered code, because it required least effort.

Third, the implementation of feature B -tree always contains code to add and
delete entries, even in read-only configurations. This is an instance of the moving-
code implementation strategy. In read-only configurations with feature BT -tree, the
additional code is included but never called. The students choose this strategy,
because it was simpler than creating distinct modules. An ex-post evaluation revealed
that the unnecessary code increased binary size by 4-9kB (5-13 %; depending on
the remaining feature selection).

Fourth, the remaining 10 interactions were implemented using distinct modules,
following our original recommendation. The students considered the additional effort
as the lesser evil compared to a further reduction of variability, a further scattering
of code with preprocessor annotations, or a further unnecessary increase in binary
size. The multiple-implementations strategy was not considered at any time.

The implementation of FAME-DBMS used a combination of various strategies,
but still increased the code size of some products, reduced variability, and required
effort for creating 10 additional modules. Even in such small product line, the
optional-feature problem pervades the entire implementation.

All our case studies are from the database domain and we believe that other
developers may have chosen different trade-offs. The frequent occurrence of the
optional-feature problem may be due to the domain or the used fine granularity,
but we believe that observations will be possible in other product lines. In each case,
developers have to make their own choices with regard to implementing coordination
code, but we hope that sharing our experience helps with these trade-offs.

9.6 Further Reading 239

9.6 Further Reading

When the feature-interaction problem became a crisis in the telecommunications
industry in the late 1980s (Bowen et al. 1989), researchers began to develop for-
malisms to enable automatic detection of feature interactions (Blom et al. 1994;
Bruns et al. 1998; Felty and Namjoshi 2003; Lin and Lin 1994; Pomakis and Atlee
1996), architectures that avoid classes of interactions (Hay and Atlee 2000; Jackson
and Zave 1998; Utas 1998; van der Linden 1994; Zave 2010), and techniques for
resolving interactions at run-time (Griffeth and Velthuijsen 1994; Tsang and Magill
1998).

While the pioneering work on the feature-interaction problem in telecommunica-
tion systems was foundational and successful (see the surveys by Calder et al. (2003)
and Nhlabatsi et al. (2008)), it is limited, as it is based on assumptions that hold for
telecommunication systems, but not for other domains, for example, the enforcement
of architectural styles or the need of explicit specifications of feature interactions.

Recently, researchers began to propose solutions (mostly based on verification
techniques) to the feature-interaction problem that take the specific properties of
software product lines into account, especially, the possibly exponential number of
products (Apel et al. 2013; Classen et al. 2012; Lauenroth et al. 2009; Thiim et al.
2012).

The testing community has introduced the concept of interaction faults, which
denotes implementation defects that are only triggered when multiple parameters are
set to specific values. Garvin and Cohen (2011) provide a good definition of feature-
interaction faults, which includes the possibility that a defect occurs only when a
feature is deselected in combination with another feature. Several researchers have
empirically investigated how defects and code paths in practical software systems are
related to feature interactions (Kolberg et al. 2000; Kuhn et al. 2004; Reisner et al.
2010). The general insight is that the majority of bugs and code paths are triggered
by individual features or n-way interactions with low values for n. This confirms
a tendency in the testing community to search primary for 2-way interactions, in
software product lines and any other software systems.

Our discussion of the optional feature problem and the trade-offs of different
implementation strategies, as well as our experience report, is based on prior
work (Kistner et al. 2009). Most implementation strategies are quite obvious and
not discussed in-depth in the literature. However, the strategy of using additional
modules was discussed implicitly and explicitly in many contexts (Kiihne 1999; Liu
et al. 2006; Lopez-Herrejon et al. 2005; Prehofer 1997). Also, optional weaving has
been discussed repeatedly in recent years (Adler 2010; Késtner 2007; Leich et al.
2005; Lohmann et al. 2011).

240 9 Feature Interactions

Exercises

9.1. Collect a list of interactions that may appear between (a) common features of a
mobile phone and (b) features identified in Exercise 2.4 (p. 43).

9.2. Hall (2005) has collected a list of possible interactions between basic features of
an e-mail delivery system, of which we show two below. Discuss possible strategies
how these two interactions could have been detected.

(a) Bob sends a signed message to Alice, who has no signing key provisioned. Yet
Alice forwards the message to a third party. The message will arrive there signed,
not by the sender (Alice), but by the originator (Bob). Thus, the signature will not
verify, even if the third party has a verifying key for Bob, since the verification
is defined to determine whether the message was signed by the sender of the
message.

(b) Bob sets up forwarding to Alice. Alice has an auto-response feature enabled.
A third party sends a message to Bob, which is forwarded to Alice. The auto-
response is sent back to Bob and then forwarded to Alice. Thus, messages arriving
at Alice via Bob are not effectively auto-responded.

9.3. Are all feature interactions undesired? Discuss this issue by means of the fol-
lowing feature interaction in a phone system:> Alice is forwarding calls to Bob, and
Bob is forwarding calls to Carol. If Alice is called, should the call be forwarded to
Carol?
9.4. Extend the graph library with an additional feature that introduces a feature
interaction. Discuss the implementation strategies from Sect. 9.4; argue which imple-
mentation strategy is most suitable to resolve the optional-feature problem in this
case.
9.5. Did any implementation of the chat system (Exercise 4.1 and following) give rise
to feature interactions or the optional-feature problem? If yes, how did you handle
the interaction?

Below is a list of extensions for the chat system. For each extension:

(a) Explain which interaction is triggered by the extension. What is the required
coordination code in this case (if any)?

(b) Modify the chat system of Exercise4.5, 6.2, or 6.4 accordingly.

(c) Observe whether the extension triggers an instance of the optional-feature prob-
lem. Illustrate the optional-feature problem in terms of intended and actual vari-
ability.

(d) Explore and compare all implementation strategies discussed in Sect.9.4. Argue
which implementation strategy is most suitable for this extension.

The extensions for this exercise are:

1. Document in the history of the server whenever a user tries to authenticate with
an incorrect password (features History and Authentication).

3 Adopted from: http://www2.research.att.com/~pamela/faqg.html.

http://www2.research.att.com/~pamela/faq.html

Exercises 241

2. Ensure that authentication messages are encrypted and that the spam filter always

works on decrypted messages (features Encryption, Authentication, and SpamFilter

from Exercise4.5, p. 96)

Ensure that a message is never encrypted twice (encryption features).

4. The dialog showing the history should display the color of the message (features
History and Color).

5. Even when the user is busy, messages with red color are still delivered (features
Color and BusyStatus from Exercise 6.4, p. 173).

W

9.6. Consider a product line with 20 optional features of which 10 participate in
2-way interactions (each feature participates only in one interaction).

(a) How many modules are necessary to implement all coordination code using the
distinct-modules strategy?

(b) If we change the feature model to forbid interacting feature to be selected inde-
pendently, how many valid products can be generated?

	9 Feature Interactions
	9.1 The Feature-Interaction Problem
	9.1.1 Higher-Order Interactions

	9.2 Detecting Feature Interactions
	9.3 The Optional-Feature Problem
	9.4 Implementing Feature Interactions
	9.4.1 Implementation Strategies: Overview and Goals
	9.4.2 Change Feature Model
	9.4.3 Multiple Implementations
	9.4.4 Moving Code
	9.4.5 Conditional Compilation
	9.4.6 Optional Weaving
	9.4.7 Distinct Module for Coordination Code
	9.4.8 Comparison of Solutions

	9.5 Experience
	9.5.1 Decomposition of Berkeley DB
	9.5.2 Design and Implementation of FAME-DBMS

	9.6 Further Reading

