
Chapter 4
Classic, Language-Based Variability
Mechanisms

After reading the chapter, you should be able to

• implement features with run-time parameters, white-box frameworks, black-box
frameworks, and components,

• discuss trade-offs between these implementation techniques,
• select a suitable implementation technique for a given product line,
• choose suitable design patterns to implement variability,
• explain limitations of inheritance and possible solutions, and
• decide what size is appropriate for a component in a product line.

There are many ways to implement variable code; some have been used long before
the advent of software product lines. Even a simple if statement offers a choice
between different execution paths. To prevent cluttering of code with if statements,
to enhance feature traceability, to provide extensibility without the need to change the
original source code, and to provide compile-time (or load-time) variability, devel-
opers have identified many common programming patterns to support variability.

In this chapter, we discuss four implementation techniques in detail: parameters
(Sect. 4.1), design patterns (Sect. 4.2), frameworks (Sect. 4.3), and components and
services (Sect. 4.4). All of them can be encoded in mainstream programming lan-
guages. In Chap. 5, we discuss approaches based on configuration-management tools
(version control systems, build systems, and preprocessors) that operate on top of
source code (see Sect. 3.1.2, p. 49) to achieve and manage variability.

The language mechanisms and tools discussed in this and the next chapter are
well-known and commonly used in practice. Most industrial software product lines
are implemented with one or more of them. As we will see, each has distinguishing
properties and gives rise to trade-offs, which we discuss in terms of the classifications
(binding times, granularity, and so forth) introduced in Chap. 3.
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4.1 Parameters

A simple way to implement variability is to use conditional statements (such as if and
switch) to alter the control flow of a program at run time. In our context, conditional
statements are typically controlled by configuration parameters passed to a method
or a module, or set as global variables in a system. Different parameter assignments
lead to different program executions.

There are many ways to set configuration parameters. Often, command-line para-
meters (such as in “ssh -v”) or configuration files (such as system.ini or httpd.conf)
are read at startup and stored in global variables. Also, users can change parameters
in preference dialogs, sometimes with immediate effects, other times requiring a
restart. Furthermore, values of variables can also be hard-wired in source code, so
changing them requires recompilation.

Of course, configuration parameters do not have to be stored in global variables. It
is quite common to pass configuration parameters as method arguments. Sometimes,
configuration parameters are propagated from method to method, or from class to
class, across the entire source code. Global variables are convenient to access, avoid-
ing the need for additional method parameters, but they also discourage a modular
solution, in which each module or method describes the configuration parameters it
expects as part of its interface.

In a feature-oriented setting, we expect one Boolean parameter per feature. In
a disciplined implementation, the relationship between features and parameters is
expressed and enforced by naming conventions and thus easy to trace (see Sect. 3.2.2,
p. 54).

Example 4.1 In Fig. 4.1, we show our graph example with two configurable features,
Weighted and Colored, implemented as global configuration parameters. Class Conf
stores two parameters (public static is the Java way of specifying a global variable),
possibly initialized during startup from command-line parameters or configuration
files. These parameters are evaluated inside if statements in the classes Graph, Node,
and Edge to trigger feature-specific behavior on demand. �

4.1.1 Discussion

Implementing variability with parameters is straightforward. For this reason, it is
widely used in practice. Variation is evaluated at run time when conditional statements
are executed (see load-time and run-time binding in Sect. 3.1.1, p. 48). The parameter
approach shares the usual benefits and drawbacks of run-time binding:

• All functionality is included in all deployed products, even if it is statically known
that a feature will never be selected. This has potentially negative implications
for resource consumption, performance, and security: First, deactivated function-
ality is still delivered. Second, performing run-time checks requires additional

http://dx.doi.org/10.1007/978-3-642-37521-7_3
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Fig. 4.1 Graph library: Variability implemented with parameters

computing overhead. In our example of Fig. 4.1, even though we know that we
never use feature Colored, the application still contains class Color, evaluates an
additional if statement whenever a method print is called, and requires memory for
an additional field of every node and edge object. Third, we cannot even prevent
others from instantiating objects or invoking methods of deactivated feature code,
other than throwing run-time errors (see method add in Lines 19–28 of Fig. 4.1).
Finally, shipping unused code opens unnecessary potential targets for attacks, such
as buffer-overflow attacks.

• It is possible to alter a feature selection without stopping the program. However,
run-time changes are nontrivial in general, as a feature’s code may depend on
certain initialization steps or assume certain invariants. For example, in Fig. 4.1,
we might run into a null-pointer exception, if we enabled Weight at run time,
because the field weight of previously created edges was uninitialized. In such
cases, it might be easier to require a restart of the program, when configuration
parameters change.

• An advantage of passing configuration parameters as method arguments (in con-
trast to using global variables or using compile-time variability) is that different
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parts of the control flow can be configured differently. For example, we could use
colored graphs and uncolored graphs in the same program.

It is possible to specialize a program statically when some configuration parame-
ters are known at compile time. Many compilers include optimizations that remove
dead code. For example, if we know at compile time that a parameter is always
deactivated (for instance, because it is defined as a constant in the source code), the
compiler can remove corresponding conditional statements and their bodies. How-
ever, deciding when to remove entire methods or classes is less obvious and rarely
implemented in contemporary compilers. Compilers also differ in the amount of
analysis they perform to recognize dead code when configuration parameters are
passed across method boundaries, are modified, or are assigned to other variables.
Beyond simple dead-code optimizations, more sophisticated optimizations using par-
tial evaluation can be applied to statically eliminate variability (Jones et al. 1993),
but these are far from mainstream or easy to use yet. All in all, despite limited possi-
bilities, the parameter approach is not well-suited for compile-time binding. We will
see a specialized form of if statements for compile-time binding later in the context
of preprocessors, in Sect. 5.3.

Dependencies between features must be checked when the parameters are config-
ured at startup, or whenever parameters are changed at run time. In our experience,
feature dependencies are rarely checked in a systematic way when using parameters.
The parameter approach cannot statically guarantee invariants on feature selections
(meaning that without considerable effort, it may be possible to activate features at
run time that are not compatible with each other).

Adding conditional statements to the source code is a form of annotation (see
annotation versus composition in Sect. 3.1.3, p. 50). Annotations with conditional
statements are available at a fine granularity (see granularity in Sect. 3.2.5, p. 59).
With if statements, we can change the program behavior at statement level, and many
languages even provide conditionals at the expression level (such as, “a?b:c” in
Java). Most languages do not provide conditionals at the level of methods or classes,
because they are not necessary to influence the behavior of the program (they become
relevant only for compile-time variability, which is not the goal of the parameter
approach). Extensions are usually performed invasively, but therefore also do not
require specific preplanning (see preplanning in Sect. 3.2.1, p. 53). Configuration
parameters can be encoded in essentially all programming languages; however, they
are usually not applicable to noncode artifacts, such as, design documents, grammars,
and documentation (see uniformity in Sect. 3.2.6, p. 60).

Configuration parameters often lead to implementations that have a poor code
quality. On the one hand, global parameters are tempting but reduce modularity (they
violate separation of concerns and potentially breach information-hiding interfaces).
On the other hand, propagating method arguments requires boilerplate code and
may lead to methods with many parameters (considered as code smell by Fowler
(1999, pp. 78f)). A typical recommendation is to pass a single configuration object
that encapsulates multiple configuration options, known as parameter objects (see,
Fowler 1999, pp. 295ff).

http://dx.doi.org/10.1007/978-3-642-37521-7_5
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Finally, with the parameter approach, variability-related code crosscuts the
remaining implementation (see crosscutting concerns in Sect. 3.2.3, p. 55). Feature
code is scattered across multiple files and modules, in variables, in method arguments,
in if statements, and so forth. Furthermore, feature code is tangled with the base code
and code of other features. Due to the crosscutting nature, it is difficult to encapsu-
late a feature’s code behind an interface and to place all feature code in one cohesive
structure (see information hiding in Sect. 3.2.4, p. 57). Due to the scattering and lack
of cohesion, it can be nontrivial to trace a feature to all code fragments implement-
ing it (see feature traceability in Sect. 3.2.2, p. 54): Unless specific conventions are
used, one has to follow the control flow, possible assignments to other variables, and
possible operations on the configuration parameters. The parameter approach can
lead to undisciplined ad-hoc implementations that are difficult to analyze, maintain,
and debug.

Summary parameters
Strong points:

• Easy to use, well-known.
• Flexible and fine grained (see Sect. 3.2.5, p. 59).
• First-class programming-language support (see Sect. 3.2.6, p. 60).
• Different configurations within the same program possible.

Weak points:

• All code is deployed, no compile-time configuration (see Sect. 3.1.1, p. 48).
• Often used in ad-hoc or undisciplined fashion.
• Boilerplate code or nonmodular solutions.
• Scattering and tangling of configuration knowledge (see Sect. 3.2.3, p. 55).
• Separation of feature code and information hiding possible, but left to the

discipline of developers (see Sects. 3.2.3 and 3.2.4, p. 55 and 57).
• Extensions typically require invasive changes, but little preplanning though

(see Sect. 3.2.1, p. 53).
• No support for noncode artifacts (see Sect. 3.2.6, p. 60).
• Nontrivial tracing between features and code (see Sect. 3.2.2, p. 54), and

thus difficult to analyze statically (see Sect. 10.2.3, p. 257).

4.2 Design Patterns

A problem of the parameter approach is that variability is scattered and hard-wired
in the source code, often in an undisciplined fashion. Consequently, many patterns
have evolved on how variability can be separated and decoupled, among them many
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well-known design patterns for object-oriented programming, such as observer,
template method, strategy, decorator (Gamma et al. 1995).

Definition 4.1. Design patterns are descriptions of collaborating objects and
classes that are customized to solve a general design problem in a particular
context.

(Gamma et al. 1995) �

Because design patterns are already a part of many curricula, they are increasingly
common in practice, and there are many excellent descriptions (most prominently,
Gamma et al. 1995), we describe only four design patterns briefly that are well-suited
for variability implementations.

4.2.1 Observer Pattern

The observer pattern (also known as publish/subscribe pattern) describes a common
way to implement distributed event handling, in which a subject notifies all registered
observers of changes to its state. The observer pattern decouples subject and observers
and adds flexibility to add or remove observers later. For example, a data store
(the subject) could notify user-interface elements such as tables, charts, and alerts
(the observers) whenever its data changes, independent of how many user-interface
elements currently display the data.

The observer pattern consists of three roles: (a) An observer interface, which
contains one or more methods that are invoked by the subject upon state changes
or other events. (b) Concrete observers, implementing the observer interface and
reacting to changes by the subject. (c) A subject, to which observers can register
themselves. A subject dispatches events to all registered observers. In Fig. 4.2, we
illustrate the architecture and a small schematic implementation.

A subject broadcasts events to all registered observers. Instead of hardwiring the
notification mechanism, developers can flexibly add and remove observers at run-
time. The subject does not need to know all observers; in fact, the subject only knows
the observer interface and has a (dynamically-changing) list of observers.

In product-line development, the observer pattern makes it easy to add and remove
features, provided that a feature can be implemented as an observer. Each feature
implements the observer interface and registers itself with the subject for relevant
events, such as opening a file, sending a mail, committing a transaction, or print-
ing the nodes of a graph. Variability is achieved by registering or not registering
observers. Code of different features can be separated into distinct observer classes
(see separation of concerns in Sect. 3.2.3, p. 55). This way, additional features can
be added without changing the implementation of a subject (the part that is common
to all products of the product line).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
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Fig. 4.2 Observer pattern

The observer pattern requires preplanning (see Sect. 3.2.1, p. 53). A developer
needs to decide upfront where variation will be needed later and to prepare the code,
by providing a registration facility and exposing relevant information through the
observer interface. Extensions can only be added without invasive modifications of
the base code, when the observer pattern was prepared in the base code. Further-
more, additional indirections (for example, calling notifyObservers) cause (a small)
architectural run-time overhead, even if no observers are added.

In Fig. 4.3, we adapt the observer pattern to decouple feature code inside the
print methods of our graph example. The base implementation of the graph acts
as subject, and edges issue notifications when they are printed. These notifications
are consumed by the observers WeightPrintObserver and ColorPrintObserver, which
implement the parts of the features Weighted and Colored, respectively. Note that the
observer mechanism is general; we could use it to implement also other features than
printing at the same extension point without changing the base code.

4.2.2 Template-Method Pattern

The template-method pattern defines a skeleton of an algorithm in an abstract class,
but leaves certain steps of the algorithm to be specified by a subclass. Different
subclasses can provide different implementations of these steps by overriding one
or multiple methods, and can thus influence program behavior. The pattern exploits
subtype polymorphism and late binding in object-oriented programming to execute
always the most specific implementation of each method. The template-method pat-
tern is the core mechanism for implementing white-box frameworks, discussed later
in Sect. 4.3.1.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
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Fig. 4.3 Graph library: Variability in method print implemented following the observer pattern

Implementations of this pattern are straightforward in Java: We implement the
algorithm skeleton as one or more methods in an abstract class. For invoking behavior
that is subclass-specific, we call corresponding abstract methods. Alternatively, we
could provide default behavior in virtual but concrete methods that may be overridden
by a subclass. Subsequently, a subclass extends the abstract class and provides custom
behavior. Different subclasses can provide different specific behaviors, but all share
the overall implementation skeleton of the algorithm.

In product-line development, we can exploit this pattern and implement behavior
of alternative features by means of different subclasses. Especially, if the algorithm
differs only in minor details in each feature, we can share the common parts of the
algorithm in a common abstract class. In Fig. 4.4, we illustrate how to implement
weighted and unweighted graphs in an excerpt of our graph example. Note that,
beyond just overriding existing methods, a subclass can also introduce additional
behavior, as with the additional method add in class WeightedGraph.

The template-method pattern is best suited for alternative features (that is, when
only one feature out of a set of features can be selected at a time, see Sect. 2.3, p. 26).
Also individual optional features can be implemented, when a default implementation
is provided for each template method. However, the template-method pattern is not

http://dx.doi.org/10.1007/978-3-642-37521-7_2
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Fig. 4.4 Graph library: Variability between weighted and unweighted graphs with the template-
method pattern

suited for combining multiple features, due to limitations of inheritance (see the
discussion in Fig. 4.9, p. 78).

Similar to the other patterns, the template-method pattern separates feature code
from base code (see separation of concerns in Sect. 3.2.3, p. 55). Feature code is
placed in distinct classes and induces a moderate run-time overhead, due to addi-
tional invocations of virtual methods. Some authors classify variation through the
template-method pattern as a distinct implementation strategy ‘inheritance’ or ‘sub-
type polymorphism’ (Anastasopoules and Gacek 2001; Muthig and Patzke 2002).

4.2.3 Strategy Pattern

The strategy pattern aims at variability in algorithms, similar to the template-
method pattern. The strategy pattern is different in that it uses delegation instead
of inheritance. Instead of writing an abstract method to be overridden by clients, a

http://dx.doi.org/10.1007/978-3-642-37521-7_3
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Fig. 4.5 Strategy pattern

developer specifies a strategy interface that is implemented by clients. The strategy
pattern encodes a callback mechanism and is the core mechanism for implementing
black-box frameworks, as discussed in Sect. 4.3.2.

The strategy pattern consists of three roles, as illustrated in Fig. 4.5: The context
that implements the main algorithm (comparable to the abstract class in the template-
method pattern, or the subject in the observer pattern); a strategy interface that
describes the functionality that can be provided by clients (similar to the observer
interface); and concrete implementations of the strategy. A strategy is passed to the
context in some form, for example, as a constructor parameter, with a setter method,
or as method argument; the context may call the strategy’s methods.

Using the strategy pattern, a client can select which implementation of the strategy
should be used during the execution. In this way, it is easy to add subsequently new
implementations.

In product-line development, the strategy pattern is well-suited to implement
alternative features, provided that features correspond to different implementations
of methods. The pattern replaces ad-hoc conditional statements in the source code
with polymorphic calls to the strategy interface. The language dispatches the method
call to the concrete strategy implementation. Implementing features as a strategy
encourages programmers to encapsulate features with interfaces in a disciplined
form (see information hiding in Sect. 3.2.4, p. 57). Developers can precisely specify
the interface for alternative implementations and future variations. In Fig. 4.6, we
show the weighted-versus-unweighted decision from the template-method example,
implemented using the strategy pattern.

Although the strategy pattern is best suited for alternative features, developers
can also encode optional features. To that end, developers provide default or dummy
implementations of strategies for deselected features or accept null as strategy para-
meter. Finally, combining multiple features is possible, if prepared accordingly: we
could accept multiple strategies and execute them all (and potentially pass the result
of one strategy as input for the next); we show an example later with filter plug-ins
in Sect. 4.3.3.).

http://dx.doi.org/10.1007/978-3-642-37521-7_3


4.2 Design Patterns 75

Fig. 4.6 Graph library: Weighted and unweighted graph variability with the strategy pattern

The strategy pattern encourages encapsulation and decoupling of features, and
even enables distributed development and separate compilation. We discuss benefits
and drawbacks of variability with the strategy pattern in more detail in the context
of frameworks, in Sect. 4.3.5.

4.2.4 Decorator Pattern

The decorator pattern (also known as the wrapper pattern) describes a delegation-
based mechanism to flexibly extend objects with additional behavior. Decorators
enable objects of a (prepared) class to be extended with additional behavior at run
time. Multiple extensions can be combined. The delegation-based decorator pattern
can elegantly solve some composition problems that are problematic with inheritance.
It can be seen as a dynamic and restricted form of mixin composition (see also Fig. 4.9
and Sect. 6.1.3).

http://dx.doi.org/10.1007/978-3-642-37521-7_6
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Fig. 4.7 Decorator pattern

According to the terminology of the decorator pattern, the extensible class is
called a component. The decorator pattern consists of four roles, as illustrated in
Fig. 4.7: The component interface that describes the (extensible) behavior of the
component, a concrete implementation of the component, optionally, an abstract
decorator class, and one or more concrete decorator implementations. The concrete
component implementations and all decorators implement the component interface.
The decorators receive a component as a constructor argument and forward all calls
to that component, except for the intended changes to the behavior. For example, a
decorator can intercept selected method invocations, whereas it forwards all remain-
ing invocations to the decorated component. Decorators are added to a component
object o by wrapping around it (for example, o = new DecoratorA(o);).

The strength of decorators is that additional behavior can be added incrementally
at run time to existing classes. Furthermore, a series of decorators can wrap the
same class, integrating the wrapper and class functionality. To the outside world,
the class always provides the same interface, decorated or not. Probably the best
known application of the decorator pattern in the Java world is streams in Java’s
standard library. Input streams all share a common interface, but there are multiple
concrete implementations, such as ByteArrayInputStream and FileInputStream. The
concrete implementations can be extended with several optional decorators, such
as BufferedInputStream, CipherInputStream, and AudioInputStream. A developer can
flexibly select core implementation and decorators, even at run-time. For example,
in the following code fragment each decorator adds additional functionality to the
methods of FileInputStream:

InputStream str = new BufferedInputStream(
new CipherInputStream(

new FileInputStream(file)));



4.2 Design Patterns 77

Fig. 4.8 Graph library: Decorators for the features Weighted and Colored

In product-line development, the decorator pattern is well-suited to implement
optional features and feature groups of which multiple features can be selected. In
Fig. 4.8, we illustrate decorators by implementing extensions of the features Weighted
and Colored to class Edge (similar to the observer-pattern example, in Fig. 4.3). Note
that we hard-code the installation of decorators in method addEdge depending on
configuration parameters. Of course, we could use also the strategy pattern or other
mechanisms to customize which decorators to install. We could even add decorators
to existing objects in a running system.

4.2.5 Discussion

Design patterns offer general solutions to reoccurring design problems. Implement-
ing variability is a reoccurring problem, and several patterns provide guidance, as
we have shown. Design patterns provide building blocks that are often adopted, used
combined, or used in a larger context, for example, as part of frameworks, which we
discuss in Sect. 4.3.

The advantages and drawbacks of design patterns are similar to those of the para-
meter solution, discussed in Sect. 4.1.1; here, we focus on the differences. In general,
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design patterns provide good-practice guidelines for disciplined implementations of
variability. They are well-known and facilitate communication between developers.
In contrast to native ad-hoc implementations with parameters, they encourage decou-
pling and encapsulation of features (see separation of concerns and information hid-
ing in Sects. 3.2.3 and 3.2.4, p. 55 and 57) and support a clear tracing of features
to observers, subclasses, strategies, decorators and others (see feature traceability
in Sect. 3.2.2, p. 54). Design patterns enable noninvasive future extensions without
changing the base implementation, at the cost of some preplanning effort (see pre-
planning effort in Sect. 3.2.1, p. 53). Since the patterns describe only designs—not
concrete code snippets—they can be encoded in different programming languages,
but not in noncode languages (uniformity in Sect. 3.2.6, p. 60). However, most imple-
mentations of design patterns add boilerplate code and architectural overhead, which
may influence binary size and performance negatively.

All design patterns discussed here enable variability at run-time (see binding
times in Sect. 3.1.1, p. 48). For some languages, there are also encodings of these
patterns that allow compile-time specialization (such as inlining and static bind-
ing) for cases when the configuration choice is already known at compile-time. For
example, Czarnecki and Eisenecker (2000, Chap. 7) discuss how to encode design
patterns efficiently with generic-programming techniques in C++.

Summary design patterns. Similar to parameters (see Sect. 4.1.1, p. 66), but
with the following distinctions.

Strong points:

• Well established, ease communication between developers.
• Guidelines for disciplined design.
• Separate feature code from base code (see Sect. 3.2.3, p. 55), possibly with

clear interfaces (see Sect. 3.2.4, p. 57).
• Noninvasive extensions without modifying the base code, given a preplan-

ning effort (see Sect. 3.2.1, p. 53).

Weak points:

• Boilerplate code and architectural overhead.
• Preplanning of extension points necessary (see Sect. 3.2.1, p. 53).

4.3 Frameworks

A framework is an incomplete set of collaborating classes that can be extended and
tailored for a specific use case. It represents a reusable base implementation for a
related set of problems, and thus perfectly fits the needs of product-line development.
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A framework provides explicit points for extensions, called hot spots, at which devel-
opers can extend the framework. Often, extensions are called plug-ins. In the same
manner as the template-method design pattern (see Sect. 4.2.2, p. 71) and the strategy
design pattern (see Sect. 4.2.3, p. 73), a framework is responsible for the main con-
trol flow and asks its extensions for custom behavior, on demand; a principle called
inversion of control (Johnson and Foote 1988).

Nowadays, frameworks with plug-ins are popular in end-user software, including
web browsers, graphics-editing software, media players, and integrated development
environments (IDEs). For example, the Eclipse IDE is a framework (actually a set
of many frameworks) that can be tailored with thousands of plug-ins (Gamma and
Beck 2003). In Eclipse and all other frameworks, the basic application is extensi-
ble with specific plug-ins. Furthermore, plug-ins are often developed and compiled
independently by third-party developers.

In feature-oriented product-line development, ideally, we develop one plug-in per
feature and configure the application by assembling and activating plug-ins corre-
sponding to the feature selection—a composition process (see annotation versus
composition in Sect. 3.1.3, p. 50).

Definition 4.2. A framework is a set of classes that embodies an abstract
design for solutions to a family of related problems, and supports reuse at a
larger granularity than classes. A framework is open for extension at explicit
hot spots.

(Johnson and Foote 1988) �

Although historically frameworks predate design patterns, technically, they can
be best explained with the design patterns introduced in the previous section.
Researchers distinguish between two kinds of frameworks: white-box and black-
box (Johnson and Foote 1988). The latter are well-known for using plug-ins.

4.3.1 White-Box Frameworks

White-box frameworks consist of a set of concrete and abstract classes. To customize
their behavior, developers extend white-box frameworks by overriding and adding
methods through subclassing. A white-box framework can be best thought of as a
class containing one or more template-methods (see Sect. 4.2.2, p. 71) that developers
implement or overwrite in a subclass (actually, it consists of multiple classes).

The “white-box” in white-box framework comes from the fact that developers
need to understand the framework’s internals. Developers need to identify template
methods and can additionally override all other accessible methods. Extensions in
white-box frameworks can usually directly access the state of superclasses. All non-

http://dx.doi.org/10.1007/978-3-642-37521-7_3
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private fields and methods can be regarded as hot spots of the framework. Extensions
in white-box frameworks are usually compiled together with the framework code.

On the one hand, the ability to override existing behavior provides additional
flexibility to implement unforeseen extensions. On the other, white-box frameworks
require detailed understanding of internals and do not clearly encapsulate extensions
from the framework; thus, they are criticized for neglecting modularity.

Typical examples of white-box frameworks are libraries of graphical user inter-
faces, such as Swing or MFC, and extensible compilers, such as abc or Polyglot. We
provide a concrete code example, after discussing black-box frameworks.

When using white-box frameworks for product-line variability, we can only add
one subclass at a time to a given class, but not mix and match multiple exten-
sions (as explained for the template-method design pattern in Sect. 4.2.2). Hence,
as the template-method design pattern, white-box frameworks are best suited for
implementing alternative features.

4.3.2 Black-Box Frameworks

Black-box frameworks separate framework code and extensions through interfaces.
An extension of a black-box framework can be separately compiled and deployed and
is typically called a plug-in. In feature-oriented product-line development, ideally,
each feature is implemented by a separate plug-in.

Definition 4.3. A plug-in extends hot spots of a black-box framework with
custom behavior. A plug-in can be separately compiled and deployed. �

Whereas white-box frameworks can be understood in terms of the template-
method pattern, black-box frameworks follow the strategy and observer patterns (see
Sect. 4.2, p. 69). The framework exposes explicit hot spots, at which plug-ins can
register observers and strategies. That is, instead of subclassing, black-box frame-
works register objects and callback functions. As discussed for the corresponding
design patterns, it is possible to provide hot spots that can be extended with multiple
plug-ins.

Black-box frameworks are called “black-box” because, ideally, developers need
to understand merely their interfaces, but not the internal implementation of the
framework. In contrast to a white-box framework, the interface (set of hot spots) of a
black-box framework is explicit. Extensions can access only state of the framework
that exposed in the interface. Developers can add extensions only to hot spots foreseen
(or preplanned) by the framework developer. Although restricting extensions to an
interface may limit flexibility, it enables a strict decoupling of framework code and
extension code. Furthermore, it can make the framework easier to understand and
use, because only a comparably small amount of interface code must be understood.
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Fig. 4.10 Three similar applications (calculator, ping, and file loader) that can be implemented on
top of a common framework

The decoupling of extensions encourages separate development and indepen-
dent deployment of plug-ins, as known from many application-software frameworks,
including web-browsers or development environments. As long as the plug-in inter-
faces remain unchanged, framework and plug-ins can evolve independently.

4.3.3 An Implementation Example for Frameworks

We illustrate the implementation of white-box and black-box frameworks in Java by
means of a small example. In Fig. 4.10, we show screenshots of three applications that
perform different tasks (calculator, ping, and file loader), but have a similar (trivial)
user interface. Their implementations share a relatively large amount of source code
for initializing the user interface (fields, buttons, and layout), for starting and stopping
the application, and so forth. From the code of the calculator application in Fig. 4.11,
only the underlined code fragments differ between the applications, the rest is shared.
We demonstrate how to implement the common behavior in a framework and extend
it with specific plug-ins, for example, to get the three applications.

A white-box framework is shown in Fig. 4.12: We replace variable code frag-
ments by abstract methods (or overridable methods with default implementations),
following the template-method pattern (see Sect. 4.2.2, p. 71). For each extension,
we create a subclass and implement the abstract methods to specify custom behavior.
The extensions can directly access protected and public methods of the framework,
such as getInput in Line 44.

A black-box framework of the same design is listed in Fig. 4.13. Here, we decouple
framework and extensions (plug-ins) with an interface Plugin. The extension does not
subclass the framework, but implements only the interface. Note the similarity to the
strategy pattern (see Sect. 4.2.3, p. 73): The interface Plugin represents a strategy
interface called from the context in class App, whereas class CalcPlugin is a concrete
strategy.
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Fig. 4.11 Example code of the calculator application. Specifics for the calculator are highlighted

Fig. 4.12 White-box framework for single-button applications and two extensions of the framework
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Fig. 4.13 Black-box framework for single-button applications and a plug-in

Recall, in a black-box framework, the extension cannot access internals of the
framework. To allow extensions accessing information from the framework, we need
to provide a callback mechanism. In our example, the framework registers itself to the
extension (Line 17), such that the extension can access methods from the framework
(Line 53). We even decouple the callback with an additional interface InputProvider
to protect what information the framework exposes. Such a callback is not always
needed and must not necessarily be implemented with an additional interface as in
our example.

To provide a hot spot that can be extended with multiple plug-ins, we store a list
of plug-ins instead of a single plug-in (similar to the observer pattern, see Sect. 4.2.1,
p. 70). Further, instead of providing a single plug-in interface for all variability,
we provide multiple specialized plug-in interfaces. We illustrate both extensions
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Fig. 4.14 Framework that supports multiple plug-ins of different kinds

in Fig. 4.14: Encoders and filters have different plug-in interfaces and the frame-
work accepts a list of both plug-ins; all plug-ins work together to encode and filter
messages.

Observe the inversion of control that is typical for frameworks. The framework
controls the execution and only calls the extension when it requires information.

4.3.4 Loading Plug-Ins

A final question is how to load extensions, especially, plug-ins in black-box
frameworks. In white-box frameworks, we simply pass the desired subclass or invoke
its main method. In our black-box framework example, we passed the desired plug-
in as constructor parameters to the framework from a separate starter class (class
CalcStarter in Fig. 4.13). In practice, separate plug-in loaders are common.

In Fig. 4.15, we illustrate a simple plug-in loader for our black-box framework.
The loader expects a command-line parameter naming the plug-in class. The loader
then uses Java’s reflection mechanism to dynamically load the class and instantiate
the framework with it.

Beyond this simple example, a plug-in loader typically searches for plug-ins in
a certain directory or loads plug-ins listed in a configuration file. Subsequently, the
plug-in loader sets up the framework with the corresponding loaded plug-ins. The
loader decouples framework and plug-ins even further, as the plug-in loader identifies
and loads plug-ins during startup. No further code must be written to activate a plug-
in, in the simplest case it is just copied to a specific directory.

Plug-in loaders may additionally check that the plug-in implements required inter-
faces and check dependencies or ordering constraints between plug-ins. Thus, invalid
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Fig. 4.15 Simple plug-in loader using the Java reflection API

plug-in combinations can be rejected at load-time. End-user applications also often
provide sophisticated mechanisms to install, update, deactivate, or configure plug-ins,
often with graphical front-ends.

4.3.5 Discussion

Frameworks, especially, black-box frameworks, are a suitable way to implement
variability in product lines. Using typical plug-in loaders, individual products are
created by composing plug-ins at load-time, but in principle run-time changes are
possible (see binding times and annotation versus composition in Sects. 3.1.1 and
3.1.3, p. 48 and 50). Much like design patterns, frameworks are general in that they
can be implemented in most programming languages, but not in noncode languages
(XML, documentation, and so forth; see uniformity in Sect. 3.2.6, p. 60).

When features are implemented as plug-ins, we can trace them directly (see trace-
ability in Sect. 3.2.2, p. 54). With plug-ins in black-box frameworks, we can encode
alternative as well as optional features in a disciplined way. We can even combine
multiple optional features, as illustrated in Fig. 4.14. Developing one plug-in per fea-
ture allows us to flexibly select other features and load the corresponding plug-ins.
The entire process from a feature selection to a tailored program can be automated.
Plug-ins for deselected features do not need to be deployed, so we can potentially
reduce binary size. Also white-box frameworks can be used to implement alterna-
tive features or a single optional feature, but combining multiple optional features is
problematic due to the limitations of subclassing, as discussed in Fig. 4.9 (p. 78).

In contrast to the parameter approach (Sect. 4.1) and an ad-hoc use of design
patterns (Sect. 4.2), black-box frameworks facilitate modularity by following well-
defined conventions (see separation of concerns in Sect. 3.2.3, p. 55). Plug-ins are
encapsulated from the framework implementation through clear interfaces. Ideally,
an interface is designed not only for a specific extension in mind, but for a whole set
of potential extensions. Framework and plug-ins can be changed independently as
long as they still adhere to the common interface. In the best case, all code related

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
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http://dx.doi.org/10.1007/978-3-642-37521-7_3
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to a feature is encapsulated in a single plug-in, and it is possible to understand and
maintain the feature by looking only at this plug-in’s code (see information hiding
in Sect. 3.2.4, p. 55).

Modularity allows developers to provide third-party plug-ins that can be com-
piled and deployed independently. This is especially important for software ecosys-
tem (Bosch 2009), in which a community of specialized companies or independent
developers provides additional features. Such a development model works both for
open-source projects and closed-source projects. Well-known examples of are web
browsers and development environments, such as Eclipse and Visual Studio, both con-
sisting of multiple (mostly black-box) frameworks. For example, users of Eclipse can
select from many independently developed open source and commercial plug-ins.

However, frameworks are not without difficulties. Creating and maintaining
frameworks is a challenging task. The framework designer must anticipate (or pre-
plan) where hot spots are needed and design corresponding template methods or plug-
in interfaces. They must design for change, which requires an upfront investment
(see preplanning effort in Sect. 3.2.1, p. 53). If a framework designer chooses not to
expose information that extensions need, these extensions are difficult or impossible
to build (without invasive refactoring the framework). Designing a framework is
often handed to senior developers, because it requires substantial experience and a
deep understanding of the domain.

Once hot spots and interfaces have been fixed, they are hard to evolve: Although
developers can add new hot spots to the framework, it is not possible to change the
plug-in interface without invasively changing all existing plug-ins (some of which
might be provided by third parties and not available with source code or not even
known). The inflexibility to change a framework may slow down future evolution
of the product line. Hence, frameworks are better suited for proactive adoption of
product lines than for reactive or extractive adoption (see Sect. 2.4, p. 39).

Plug-ins may be reused in many different instantiations of a framework, but, in
contrast to components (which we discuss next), they are not intended to be reused
across different frameworks. It is highly unlikely that plug-ins for one framework (or
product line) can be plug-ins for other frameworks (or product line). The reason is
simple: every framework encodes structures, architectural conventions, and imple-
mentation details that are specific to it, and that are unlikely to be shared verbatim
by any other framework.

Furthermore, frameworks induce both development and run-time overhead. Devel-
opers need to write additional code to decouple extensions from the framework, such
as interface Plugin in Fig. 4.13. Even if a hot spot is not extended, additional code
for the extension point is required. Hence, frameworks often require more source
code, result in a larger binary size, and perform slower due to additional indirec-
tions. Often the overhead is acceptable, but not always: In high-performance and
embedded scenarios, unnecessary overhead can not be tolerated. Furthermore, when a
framework exhibits too many hot spots for potential extensions that are never used (a
problem named speculative generality by Fowler (1999); a common overreaction to
experiencing a too narrow framework), artificial overhead can become problematic.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
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Fine-grained and crosscutting features (see granularity and crosscutting in
Sects. 3.2.5 and 3.2.3, p. 59 and 55) are hard to implement with frameworks. Fine-
grained extensions require hot spots for minimal extensions and crosscutting features
require many hot spots; both lead to disproportionally complex designs. Whereas, in
our calculator example, an extension modified only four code locations, features such
as the transaction subsystem in a database system affect many parts of the frame-
work. For fine-grained and crosscutting features, the framework must expose many
details of the framework. This is hard to do: interfaces become bloated making new
plug-ins harder to understand and build. Then there is the problem of speculative
generality mentioned earlier. When there are simply too many hot spots, the benefits
of modularity diminish and other variability techniques must be considered.

Overall, frameworks are better suited for coarse extensions that extend few well-
defined points in the control flow (see granularity in Sect. 3.2.5, p. 59). There is no
technical limitation, but the overhead for implementing fine-grained and crosscutting
features can become overwhelming. Features such as transaction management in a
database system (crosscutting the entire implementation and changing the behavior
in many locations in nontrivial ways) are rarely separated into plug-ins.

Summary frameworks. Like the parameter approach, frameworks are
language-based (see Sect. 3.1.2, p. 49). However, frameworks differ from para-
meters in that they are primarily composition-based, not annotation-based (see
Sect. 3.1.3, p. 50), and in that variability is usually decided at load-time, not
run-time (see Sect. 3.1.1, p. 48).
Strong points:

• Well-suited for implementing variability.
• Automated product derivation by plug-in loading.
• Static tailoring, deploying only selected features (see Sect. 3.1.1, p. 48).
• Modularity by separating features, hiding feature internals, and enabling

feature traceability (especially in black-box frameworks; see Sects. 3.2.2–
3.2.4, p. 54–57).

• Suitable for open-world development (black-box frameworks only).
• Disciplined implementation, well-known.

Weak points:

• High upfront design effort (see Sect. 3.2.1, p. 53).
• Difficult evolution.
• Potential development, run-time, and size overhead.
• No reuse outside the framework.
• Unsuited for fine-grained and crosscutting features (see Sects. 3.2.5 and

3.2.3, p. 59 and 55).
• No support for noncode artifacts (see Sect. 3.2.6, p. 59).
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4.4 Components and Services

As a last classic language-based implementation approach, we discuss components
and services (including the notion of web service). Although component-based
implementations are common in product-line practice, they lack the automation
potential of feature orientation that we aim at. However, as we will see, components
can be integrated to some degree with other implementation approaches. Hence, we
introduce components briefly and discuss their benefits and limitations.

Definition 4.4. A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by
third parties.

(Szyperski 1997) �

The key idea of a component is to form a modular, reusable unit. A component
provides its functionality through an interface, whereas its internal implementation
is encapsulated (also for components, there is a white-box versus black-box discus-
sion (Szyperski 1997, Chap. 4); here, we assume black-box components). To reuse
components, they are composed with other components in different combinations
(see annotation versus composition in Sect. 3.1.3, p. 50). A class can be seen as a small
component that can be reused in many applications; a library of graph algorithms is
an example of a larger component, consisting of many classes.

Already more than three decades ago, Parnas (1979) proposed to implement prod-
uct lines (back then called program families) by encapsulating changing parts and
hiding their internals (see information hiding in Sect. 3.2.4, p. 57), so that those parts
could be exchanged and removed easily. Domain analysis is essential to design for
change and to identify and separate those parts that differ between products of a
product line.

Proponents motivate the use of components for another reason: building markets.
The idea is that developers can implement and deploy components independently,
and compose components from different sources. As a consequence, developers can
decide whether to implement their own components or whether to buy and reuse
third-party components. Component markets open a new perspective: Developers
can focus on their expertise and develop, perfect, and sell an individual component.
Others can buy the component and use it in their software, instead of reimplement-
ing the functionality or buying an entire software product that contains the desired
functionality, but that is otherwise not tailored to their needs. Components facili-
tate a best-of-breed approach, in which developers can decide, for each subsystem,
whether to buy the best (or cheapest) component from the market or to implement
the functionality individually (Szyperski 1997).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
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Fig. 4.16 Simple example of component managing colors

Of course, the fallacy here is that components are plug-compatible only if they
and their interfaces are designed to existing standards. In fact, reusing components
from markets is often problematic, because their architectural assumptions mis-
match (Garlan et al. 1995). Unless planned together, components are likely incom-
patible and require significant engineering effort to compose. Domain engineering
improves this picture, as we will discuss shortly.

Services, as discussed in the context of service-oriented architecture (Erl 2005),
are a special form of software components. A service encapsulates functionality
behind an interface, just like a component. Similarly, proponents envision a mar-
ket of services. Services typically emphasize standardization, interoperability, and
distribution. Especially in the popular form of web services, a service is reachable
over a standardized Internet protocol and may run on remote servers; that is, it is
not necessary to install and integrate a service locally. Even the lookup of a ser-
vice can occur at run-time, through the use of service registries. In addition, com-
munication between services is standardized, so services written in different lan-
guages can exchange messages. To connect services, called service orchestration,
several specialized tools and (graphical) languages exist, which simplify the compo-
sition process. For our discussion of product-line development, we make no further
distinction between components and services.

Example 4.2 In Fig. 4.16, we exemplify a small component from our graph library.
Assume that storing and printing colors is nontrivial and might be reused in another
project outside the product line. We could extract color management into a reusable
component (or package). The component’s interface exposes a class ColorModule
with several public methods and a Java interface Color, whereas other implementa-
tion details are hidden. We use Java’s scoping and package mechanism to enforce
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encapsulation. That is, to ensure that other components may not access private imple-
mentation details, we use package visibility. Classes ColorImpl, ColorPrinter, and Col-
orMapping are not public and visible only inside the package, so other components
in other packages can only interact with public classes and methods.

A component is independent of a specific application or product line. Develop-
ers can reuse it when implementing the color feature for the graph library, but also
for other applications. Note that developers need to write custom code to connect
the implementation with the component, for example, extra code to call the com-
ponent’s methods. To reuse the component, only the public interface is of interest;
implementation details are not accessible. In Java, we can deploy the component
separately as class or jar files.1 �

4.4.1 Sizing Components

Deciding when to build a reusable component and what to include in that component
is a difficult design decision. There is a well-known trade-off between reuse and
use (Biggerstaff 1994; Szyperski 1997): A large component that provides plenty
functionality is easy to integrate and use, but there might be only few applications in
which the component fits. In contrast, one might be tempted to build small reusable
components that can be combined flexibly (in an extreme case, put every method
into a distinct component), but, then, the overhead of using the component becomes
discouraging. The smaller the component, the more programming is left to the user
that has to connect the components with the base code and with each other; in extreme
cases, components are so small that little remains to reuse and to hide behind their
interfaces. Szyperski (1997, Chap. 4) rephrases this as the maxim “maximizing reuse
minimizes use.”

Example 4.3 Consider the common scenario that a developer searches the web for
a piece of software. Suppose you find two choices: One that is small (less than
1000 lines of code) with only a fraction of the functionality that you want; and one
that is huge (100 000 lines of code) with many extra functionalities that are highly
intertwined with the desired functionality. Which one should be selected? Just on
intimidation alone, many developers would select the small application as there is a
higher potential to understand what it does, while the rest could still be added man-
ually. In contrast, the big one likely makes incompatible architectural assumptions.
It would require considerable integration effort and pose considerable risks. That is,
most developers would likely reuse less and implement more themselves. �

1 In our example, we use the facade design pattern to provide a concise interface and the singleton
design pattern to ensure that only one instance of the component exists at at time (Gamma et al.
(1995) discuss these patterns in more detail). A developer would invoke a method somewhat like
this: ColorModule.getInstance().createColor(...).
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In the tension between reuse and use, developers need to strive for a balance of
a component that is large enough to provide useful functionality but small enough
to be reused in many contexts. Unfortunately, without knowing when and how a
component will be reused, even experienced developers may only guess suitable
component size. Unsuitable component size has often been claimed a reason for the
limited success of market places for components and services.

In product-line development, domain analysis solves this dilemma and guides us
in how to size a component to balance reuse and use. As described in Sect. 2.2, during
domain analysis, a domain expert investigates potential products within the domain
and decides which products are in the scope of the product line. With this information,
we can decide upfront which functionality will be reused within the product line;
thus, we can size components accordingly and coordinate their architectural assump-
tions. That is, in product-line development, developers solve the sizing problem by
preplanning reuse systematically. For example, when we know that certain function-
ality is always used together, we can combine it in the same component and make
it easier to use; in contrast, when we know that functionality is only used in few
products, it should be separated into its own component. In short, domain analysis
helps us to decide how to divide code into components.

4.4.2 Composing Components

Developing product lines by constructing and composing reusable components was
a common strategy, especially, in the early era of product-line engineering (Bass
et al. 1998; Krueger 2006). With domain analysis, developers decided which func-
tionality should be reused across multiple products of the product line and designed
components accordingly. In application engineering, developers then composed the
corresponding components. In principle, one could create one component per feature
or map features to components in some other form.

In contrast to plug-ins in frameworks, components are generally not designed
to be composed automatically. Component-based software engineering pursues a
different mind set, in which building units of functionality is the goal; being plug-
compatible with other components is typically not a priority. A common goal of the
design-for-change strategy is to (potentially) exchange a component by another one
with the same interface, but again automation is not the focus.

Given this, to derive a product for a given feature selection during application
engineering (see Sect. 2.2, p. 19), a developer selects suitable components and then
manually writes glue code to connect components for every product individually.
Module interconnection languages (DeRemer and Kron 1976) and service orches-
tration (Erl 2005) aim at providing high-level scripting approaches to gluing together
components. Although definitely a manual process, implementing product lines with
components still offers a huge benefit over constructing each product from scratch.
When considering the economical motivation of product lines in Fig. 1.4 (p. 9) from
the first chapter, manual effort during application engineering increases costs per
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product (and hence the slope), but does not change the overall expected benefit of
product lines.

Building product lines with components is suitable if feature selection is per-
formed by developers (not customers) and the number of products is low. For
example, Phillips builds software for consumer electronics from reusable compo-
nents (van Ommering 2002). In this case, product-line developers can construct
new products from reusable parts. If required, they can also perform customiza-
tions beyond what was preplanned as product-line feature (and without propagating
the customization back to the feature model). Especially, when publishing only a
few distinct preconfigured products or when implementing tailor-made solutions for
few customers, the manual effort in application engineering may be negligible or
acceptable.

The goal of feature-oriented product-line development is to entirely automate
product derivation after selecting features in application engineering (see push-button
approach in Sect. 2.2.4, p. 26). In a component-based approach, there is no gener-
ator that would automatically build a product for a given feature selection; manual
developer intervention is required. We argue that automated product derivation is
essential for effective, large-scale product-line development. Krueger (2006) even
claims “application engineering considered harmful” to emphasize the importance
of automation.

4.4.3 Components Versus Plug-Ins

Components and plug-ins share many similarities. They both pursue a modular
implementation (ideally a module per feature) and hide implementation details
behind an interface (see traceability and information hiding in Sects. 3.2.2 and 3.2.4,
p. 54 and 57) and require similar preplanning effort (see Sect. 3.2.1, p. 53).

Their main difference lies in the automation potential and in reuse beyond a
product line: A plug-in is always tailored for a specific framework, and, as such, has
very specific requirements on its context. In contrast, components can be intended
to be reused even outside a product line. At the same time, the tight integration of
plug-ins into a framework allows loading plug-ins automatically without additional
per-product development. Deriving a product for a feature selection in a framework
requires only assembling the corresponding plug-ins, not writing additional glue
code, as necessary for components.

Of course, components can be used within frameworks. We can write glue code
that adapts a general-purpose component to the plug-in interface of a framework
(see also the adapter and bridge design patterns as described by Gamma et al.
(1995)). This way, we can reuse components within a framework and automate their
integration based on a feature selection, while we can still reuse the component in
different contexts outside the framework.
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Components can be encoded in many languages. Ideally, the language should
provide some encapsulation mechanism that can hide internals of the component
behind an interface, and that enforces the interface mechanically. However, also
weaker notions of encapsulation are possible that translate also to noncode arti-
facts. For example, we can simply separate grammars, design documents, or models
into separate artifacts and let developers combine them manually during product
derivation.

Apart from automation and uniformity, as components and plug-ins use similar
modularity mechanisms, they share similar benefits and limitations. They modularize
features and allow compile-time product derivation, deploying only selected func-
tionality (see binding times in Sect. 3.1.1, p. 48). At the same time, both components
interfaces and plug-in interfaces are difficult to evolve once they are fixed and other
(potentially third-party) implementations rely on them. Both may add overhead due to
additional indirections and boilerplate code. Most importantly, components have the
same limitations regarding fine-grained and crosscutting extensions (see granularity
and crosscutting in Sects. 3.2.5 and 3.2.3, p. 59 and 55). For example, integrating
a crosscutting transaction subsystem provided as component into a database will
require much glue code.

Summary components and services
Strong points:

• Well-known and established implementation technique.
• Static tailoring, deploying selected features only (see Sect. 3.1.1, p. 48).
• Separation of concerns, information hiding, and feature traceability (see

Sects. 3.2.2–3.2.4, p. 54–57).
• Reuse within and beyond the product line.
• Reuse of third-party implementations.
• Reuse in distributed environments, even with features maintained and run

by third parties (especially services).
• Uniformly applicable to many languages (see Sect. 3.2.6, p. 60).

Weak points:

• No automated product derivation, glue code is necessary
• Difficult evolution.
• Potential development, run-time, and size overhead.
• Preplanning necessary to size components (see Sect. 3.2.1, p. 53).
• Unsuited for fine-grained and crosscutting features (see separation of con-

cerns in Sect. 3.2.5, p. 59).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
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4.5 Further Reading

The classical language-based implementation approaches discussed in this chapter
are frequently used to implement product lines, but rarely discussed explicitly as
such in literature.

Especially for the parameter approach, there is little literature. Modularity and
the related concepts of encapsulation and coupling are discussed generally by Meyer
(1997, Chaps. 3 and 4). Regarding the problem of methods with too many parameters,
Fowler (1999) discusses a corresponding code smell and a solution with a refactoring
toward parameter objects. More recently, Reisner et al. (2010) and Rabkin and Katz
(2011) began exploring the use of configuration options in programs (not necessarily
product lines). Reisner et al. (2010) found that in three analyzed programs many
configuration options are orthogonal and rarely interact. Rabkin and Katz (2011)
found that configuration options are often not consistently documented, which we
interpret as an encouragement to use product-line technology to plan variability in a
more systematic way.

The book of Gamma et al. (1995) is still the best reference on design patterns
and explains patterns in much detail. Some product-line literature (for example,
Muthig and Patzke 2002; Anastaspoules and Gacek 2001) distinguishes variability
implementations further into techniques based on delegation, inheritance, parametric
polymorphism, and so forth. Many of them and their best practices can be explained
in terms of design patterns as well. Czarnecki and Eisenecker (2000, Chap. 7) discuss
low-overhead design-pattern implementations for static configuration with C++.

Frameworks have a long tradition. The seminal paper “Designing Reusable
Classes” (Johnson and Foote 1988) provides an excellent introduction and discusses
trade-offs between white-box and black-box frameworks. An impressive example
of framework design in practice is the Eclipse development environment. Several
books (and web articles) describe Eclipse’s architecture and how they make use of
design patterns; even though not the newest book on Eclipse, we recommend the
introduction by Gamma and Beck (2003).

Finally, Szyperski (1997) provides a detailed introduction into the concept of com-
ponents, including a discussion of building markets, technology choices, and how
to size components. Erl (2005) provides a broad introduction into the philosophy
behind service-oriented architectures. High-level languages for composing compo-
nents can be traced back to the idea of programming-in-the-large by DeRemer and
Kron (1976) and have been evolved since with many module interconnection lan-
guages, and more recently service-orchestration approaches (Erl 2005). Czarnecki
and Eisenecker (2000) discuss in detail how domain engineering helps to preplan
and size components for reuse. If not planned accordingly, reuse can be very hard
though: Garlan et al. (1995) discuss architectural mismatch, the reason why com-
posing components that have not been designed together is so difficult.
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Exercises

4.1. Implement a basic chat system consisting of a server and multiple clients (in
the domain discussed in Exercise 2.4, page 43). The clients show messages received
from the server and allow users to post messages to the server. The server broadcasts
all received messages to all connected clients.

Subsequently, extend this implementation with the following features:

(a) Colors: Messages may have a text and background color. The color can be
specified in the client when writing a message.

(b) Authentication: To connect to the server, the client must provide a username and
password.

(c) Encryption: Messages are encrypted. Provide at least two optional encryption
mechanisms.

(d) History: Server and clients keep a log of all received messages. The client can
show the last 10 entries of the log in a dialog.

Hint: Reuse existing source code where possible.
4.2. Implement all features of the chat system (Exercise 4.1) using the parameter
approach, such that all features can be configured at load-time with command-line
parameters, with a configuration file, or even with a graphical dialog in the chat
client’s user front-end. Critically discuss code quality and implementation effort of
the resulting system.
4.3. Discuss the potential of design patterns for implementing the chat system (Exer-
cise 4.1 and 4.2). Change the implementation where appropriate. Discuss the influ-
ence of this change on the quality criteria introduced in Chap. 3.
4.4. Find an open-source project that can be configured using configuration files or
command-line parameters (for example, command-line utilities, web servers, data-
base engines). Study the end-user documentation to find three (Boolean) configu-
ration options that could be considered as features and investigate how those are
implemented.

(a) What is the binding time of the configuration option?
(b) Is the configuration option implemented cohesively or is it scattered throughout

the source code?
(c) Are global variables used or are parameters propagated? Are design patterns

used in the implementation? Discuss traceability, separation of concerns, and
information hiding with regard to the implementation of the configuration option.

(d) Discuss whether design patterns could be used to improve the implementation
and prepare it for future extensions.

4.5. Implement the chat system (Exercise 4.1) as a framework that can be extended
with plug-ins. Provide a plug-in for each feature. Ensure that framework and features
can be compiled separately. Provide a simple plug-in loader (see Sect. 4.3.4) so that
the configuration can be changed without any modifications to source code. Critically
reflect on code quality and implementation effort of the resulting system; consider
also the quality criteria from Chap. 3.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
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4.6. Extend the implementation of Exercise 4.5 with an additional feature Spam Filter
that rejects all messages that contain words from a blacklist. Review your implemen-
tation: Are new extension points necessary? Is it necessary to change the framework
or other plug-ins? Can the new plug-in be understood in isolation? Would the same
hold for feature Command-Line Interface (instead of a graphical user interface) or a
feature File Transfer?
4.7. Find a software product that is extensible with plug-ins (for example Miranda-
IM,2 Netbeans,3 or Mozilla Firefox4). Study the developer documentation or source
code to find possible extension points.

(a) Is the framework implemented as black-box framework, or white-box frame-
work, or as some combination of those? Are design patterns used for extensibility?

(b) Can plug-ins be compiled separately? What mechanism is used to load plug-ins?
What is the binding time?

(c) Name three features that can be added noninvasively as plug-ins using existing
extension points.

(d) Name three features that cannot be added with existing extension points but
would require invasive changes to the framework.

4.8. Decompose the chat application from Exercise 4.1 into reusable components.
Build three different chat products out of these components.
4.9. Discuss possible components that could be reused within and beyond a product
line of (a) graph algorithms, (b) chat applications, and (c) the scenarios from Exer-
cise 2.5 (page 43). Discuss suitable size of the components and the potential costs of
using them.
4.10. Reconsider the scenarios of Exercise 2.9 (page 44). Which implementation
approach would you recommend to the developers and why?
4.11. Compare all discussed implementation approaches in terms of (a) modular-
ity, (b) suitability of distributed development with multiple developers and multiple
companies, (c) possibility of buying and integrating parts or features developed by
third parties, (c) overhead on run-time performance, (d) overhead on binary size, (e)
development effort and required skill, and (f) maintainability.

Use your implementations of the chat example (Exercises 4.2, 4.3, 4.5, and 4.8)
to support your analysis.

2 http://www.miranda-im.org/
3 http://netbeans.org/
4 http://www.mozilla.org/

http://www.miranda-im.org/
http://netbeans.org/
http://www.mozilla.org/
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