
Feature-Oriented
Software
Product Lines

Sven Apel · Don Batory
Christian Kästner · Gunter Saake

Concepts and Implementation

Feature-Oriented Software Product Lines

Sven Apel • Don Batory •

Christian Kästner • Gunter Saake

Feature-Oriented
Software
Product Lines

Concepts and Implementation

123

Sven Apel
University of Passau
Passau
Germany

Don Batory
The University of Texas
Austin, TX
USA

Christian Kästner
Carnegie Mellon University
Pittsburgh, PA
USA

Gunter Saake
Otto von Guericke University
Magdeburg
Germany

ISBN 978-3-642-37520-0 ISBN 978-3-642-37521-7 (eBook)
DOI 10.1007/978-3-642-37521-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013935777

ACM Computing Classification (1998): D.2, K.6

� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Features are a fundamental notion in modern software engineering. Defined once
by Pamela Zave as ‘‘incremental units of functionality’’, they are central to how
software is developed now. Much of today’s software is developed using scenario-
driven approaches. In essence, scenarios, also known as use cases or user stories,
are specifications of features.

Feature-oriented software development shines in the context of software
product lines. Virtually any successful software faces the need to cater different
feature combinations to different customer segments. Product line engineering
accelerates product development by leveraging the commonalities among the
product line members, while managing the differences, also known as variabilities,
among them. Features play a key role in modeling commonalities and variabilities
and in managing the development of product lines. Major organizations, including
General Motors and Danfoss, use feature-oriented approaches to successfully
develop complex software-intensive product lines.

The message of this book is that much of the tremendous power of features is
yet to be unlocked by making features explicit throughout the entire systems and
software lifecycle. The explicit treatment of features in requirements, architecture,
implementation, and verification and validation can greatly improve the man-
agement of software. Features are abstractions that can be made understandable to
all stakeholders, both technical and nontechnical, enabling effective communica-
tion among the stakeholders and planning, implementation, and evolution of
complex software product lines. Many of the ideas and tools presented in this book
are applicable not only to traditional software product lines, but also to a wide
range of variability-intensive systems, including highly-configurable applications,
computing platforms, and software ecosystems.

The book provides a systematic introduction to feature-oriented software
product lines, and leads the reader to more advanced topics in its second half. The
authors distill the concepts and principles underlying the field with remarkable
clarity, providing a much-needed foundation for the field. They also illustrate these

v

concepts and principles using concrete examples, showcasing languages, tools, and
systems from both industrial practice and latest research. The advanced part of the
book covers recent research results, many of which the authors have helped to
advance. The reader can also enhance his or her learning experience by completing
the provided exercises. The book will make an excellent upper-year undergraduate
or introductory graduate text; but also practitioners will find it invaluable to
enhance their software engineering toolbox with the powerful concepts and
techniques of feature-oriented software product lines.

There is no better team than these four authors to write about feature-oriented
software product lines. The authors have made fundamental scientific and engi-
neering contributions to the field. Don has pioneered feature-oriented composition
of software with his work on GENESIS, an extensible database management
system, in late 1980s, and generalized the concepts and principles underlying it in
early 1990s. He has continued on this path, advancing the theory and designing
languages and tools, but also inspiring generations of researchers to join the effort.
I started working in the field after attending Don’s tutorial on ‘‘Software Systems
Generators, Architecture, and Reuse’’ at the International Conference of Software
Reuse in 1996. Shortly after, I shared my excitement for Don’s ideas on software
generation with Ulrich Eisenecker, which led to our work on automating com-
ponent assembly based on feature models and, eventually, the book on Generative
Programming in 2000. The subsequent decade has seen tremendous progress. New
generations of young researchers have worked on techniques for feature-oriented
modularization, variability-aware analyses, and empirical studies of systems with
variability. Sven and Christian, enjoying the creative and fertile environment of
Gunter’s research group in Magdeburg and inspired by Don’s work, have played
leading roles in this progress. Their research results on feature-oriented software
product lines have reached wide audiences at major software engineering con-
ferences, such as the International Conference on Software Engineering and the
Conference on Foundations of Software Engineering. Today, the four authors are
central figures in the growing, vibrant community, known as Feature-Oriented
Software Development (FOSD).

The notion of features has already profoundly affected how software is engi-
neered, and this is just the beginning. Features can substantially improve the
communication among all stakeholders and will likely lead to new, more effective
ways to modularize and develop software. Despite the tremendous progress so far,
much potential and many more discoveries lie ahead. Future work topics include
finding most effective ways to exploit features in software modularization, creating
techniques for re-engineering legacy towards feature orientation and evolving
feature-oriented software, and also supporting features more pervasively in tools
and infrastructures, such as in configuration management. Years to come will bring
new, unexplored topics, which none of us can possibly foresee.

vi Foreword

It is a great joy to see the new generations of brilliant young researchers joining
the thriving FOSD community. I invite you to join this exciting ride, too. This
book is your ticket!

Waterloo, April 2013 Krzysztof Czarnecki

Foreword vii

Preface

The idea for this book arose from a series of lectures on modern programming
paradigms, feature-oriented programming, and software product lines that are
continuously held at the Universities of Magdeburg, Marburg, Passau, Texas at
Austin, and others. Our collaboration reaches back to 2006, when Sven and
Christian visited Don’s group in Austin. Don’s lecture on feature-oriented pro-
gramming was inspiration for the lecture series set up in 2007 at the Universities of
Magdeburg and Passau, which is the basis for this book. In a joint effort, we
developed and continuously refined the teaching material for the lectures since
then, until the present day.

Our interest in this topic was always the developer’s perspective of discussing
implementation techniques that are suitable for constructing variable software.
We would have preferred to use a textbook for our lectures from the shelf, but
existing product-line textbooks said precious little on implementation techniques.
Eventually, in 2011, the material was stable, such that the natural next step was to
write a proper text on this topic, meant not only for our students, but for all students
of computer science and related fields as well as researchers and practitioners
interested in software product lines.

Writing a textbook is an enormous endeavor, and this book would not have
been possible without the help of our colleagues, students, friends, and families. In
particular, we thank Martin Kuhlemann, Jörg Liebig, Norbert Siegmund, and
Thomas Thüm, who used and improved the teaching material that was the basis for
this book. Furthermore, we thank David Broneske for his support in producing
proper graphics for this book, Jörg Liebig, Sandro Schulze, Norbert Siegmund, and
Thomas Thüm for feedback on selected chapters and the exercises proposed in the
book, as well as pure-systems, Janet Siegmund, and Thomas Thüm for providing
screenshots of the tools pure::variants, FeatureCommander, and FeatureIDE.

Besides feedback and support from colleagues, we acknowledge the financial
support of the German Research Foundation and the National Science Foundation
for a number of research projects related to the topics covered in this book
(the NSF Science of Design projects: CCF-0438786 and CCF-0724979, the ERC

ix

grant #203099, and the DFG projects: FAME-DBMS—Sa 465/32, Feature
Foundation—AP 206/2, SafeSPL—AP 206/4, and Pythia—AP 206/5).

Finally, but not the least, we are grateful to our families and friends whose
support was a necessary basis for the success of this endeavor.

Passau, February 2013 Sven Apel
Austin Don Batory
Pittsburgh Christian Kästner
Magdeburg Gunter Saake

x Preface

Contents

Part I Software Product Lines

1 Software Product Lines . 3
1.1 From Individualism to Standardization and Back Again 3
1.2 Specialized and Standardized Software 6
1.3 Software Product Lines . 7
1.4 Promises of Software Product Lines 9
1.5 Success Stories. 10
1.6 A Feature-Oriented Approach . 11
1.7 Running Examples . 11
1.8 Intended Audience of the Book . 13
1.9 How to Read this Book. 14
1.10 Further Reading . 15

2 A Development Process for Feature-Oriented Product Lines 17
2.1 Features and Products . 17
2.2 A Process for Product-Line Development 19

2.2.1 Domain Analysis . 22
2.2.2 Requirements Analysis . 24
2.2.3 Domain Implementation . 25
2.2.4 Product Derivation . 26

2.3 Feature Modeling . 26
2.3.1 Feature Models . 27
2.3.2 Feature Diagrams . 28
2.3.3 Formalization in Propositional Logic 31
2.3.4 The Feature Model for the Graph Library 32
2.3.5 Variations and Extensions of Feature Models. 34
2.3.6 Feature Modeling in Practice 36
2.3.7 Tooling . 39

xi

http://dx.doi.org/10.1007/978-3-642-37521-7_1
http://dx.doi.org/10.1007/978-3-642-37521-7_1
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec1
10.1007/978-3-642-37521-7_1#Sec2
10.1007/978-3-642-37521-7_1#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_1#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec15
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec15
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec18
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec18

2.4 Adoption Paths of the Product-Line Approach 39
2.4.1 Proactive Approach. 40
2.4.2 Extractive Approach . 40
2.4.3 Reactive Approach . 41

2.5 Further Reading . 42
Exercises . 42

Part II Variability Implementation

3 Basic Concepts, Classification and Quality Criteria 47
3.1 Dimensions of Variability Implementation. 48

3.1.1 Binding Time. 48
3.1.2 Technology: Language-Based Versus Tool-Based. . . . 49
3.1.3 Representation: Annotation Versus Composition 50

3.2 Quality Criteria . 52
3.2.1 Preplanning Effort . 52
3.2.2 Feature Traceability . 54
3.2.3 Separation of Concerns . 55
3.2.4 Information Hiding . 56
3.2.5 Granularity . 59
3.2.6 Uniformity. 59

3.3 Structure of Subsequent Chapters . 60
3.4 Further Reading . 61
Exercises . 62

4 Classic, Language-Based Variability Mechanisms 65
4.1 Parameters . 66

4.1.1 Discussion . 66
4.2 Design Patterns . 69

4.2.1 Observer Pattern. 70
4.2.2 Template-Method Pattern . 71
4.2.3 Strategy Pattern . 73
4.2.4 Decorator Pattern . 75
4.2.5 Discussion . 77

4.3 Frameworks . 79
4.3.1 White-Box Frameworks. 80
4.3.2 Black-Box Frameworks . 81
4.3.3 An Implementation Example for Frameworks 82
4.3.4 Loading Plug-Ins . 85
4.3.5 Discussion . 86

4.4 Components and Services . 89
4.4.1 Sizing Components . 91
4.4.2 Composing Components . 92

xii Contents

http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec21
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec21
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec22
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec22
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec23
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec23
http://dx.doi.org/10.1007/978-3-642-37521-7_2#Sec24
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_3#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec15
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec15
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec16
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec16
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec17
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec17

4.4.3 Components Versus Plug-Ins 93
4.5 Further Reading . 95
Exercises . 96

5 Classic, Tool-Driven Variability Mechanisms 99
5.1 Version-Control Systems . 99

5.1.1 Terminology . 100
5.1.2 Building Product Lines with Version-Control

Systems. 101
5.1.3 Discussion . 103

5.2 Build Systems . 105
5.2.1 Variability in Build Scripts 105
5.2.2 Custom Build Scripts . 106
5.2.3 Case Study: Build-System Variability in Linux 107
5.2.4 Discussion . 108

5.3 Preprocessors . 110
5.3.1 The C Preprocessor cpp . 110
5.3.2 Implementing Variability with Preprocessors 111
5.3.3 Further Preprocessors . 113
5.3.4 Disciplined Annotations . 116
5.3.5 Preprocessors in Practice . 118
5.3.6 Discussion . 120

5.4 Further Reading . 124
Exercises . 125

6 Advanced, Language-Based Variability Mechanisms 129
6.1 Feature-Oriented Programming. 130

6.1.1 Collaboration-Based Design. 130
6.1.2 Feature Modules. 132
6.1.3 The Jak Language . 133
6.1.4 Models of Feature-Oriented Programming 135
6.1.5 Discussion . 138

6.2 Aspect-Oriented Programming . 141
6.2.1 Aspects: Separating Crosscutting Concerns 142
6.2.2 The AspectJ Language . 145
6.2.3 Aspects for Product Lines . 147
6.2.4 Discussion . 149

6.3 Aspects and Feature Modules in Concert. 152
6.3.1 Homogeneous and Heterogeneous Crosscutting

Concerns . 153
6.3.2 Static and Dynamic Crosscutting Concerns 157
6.3.3 Summary of Comparison . 161
6.3.4 Combining Aspects and Feature Modules 161

Contents xiii

http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec18
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec18
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_4#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec15
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec15
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec16
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec16
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_5#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec16
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec16
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec20

6.3.5 A Study on Advanced Crosscutting Mechanisms 163
6.3.6 Discussion . 164

6.4 Tooling . 166
6.5 Practical Relevance. 167
6.6 Further Approaches. 168

6.6.1 Delta-Oriented Programming 168
6.6.2 Refactoring Feature Modules 169
6.6.3 Context-Oriented Programming 170

6.7 Further Reading . 171
Exercises . 172

7 Advanced, Tool-Driven Variability Mechanisms 175
7.1 Exploiting Feature Tracing . 175

7.1.1 Consistency Checking . 177
7.1.2 Visualizing Tracing Information 178

7.2 Views on Code. 180
7.3 Integrated Product Derivation. 182
7.4 Discussion: Virtual Separation of Concerns 184
7.5 Tooling . 186
7.6 Further Reading . 186
Exercises . 187

Part III Advanced Topics

8 Refactoring of Software Product Lines . 193
8.1 Refactoring in General . 194
8.2 Refactoring in Software Product Lines 197

8.2.1 Variability Smells in Software Product Lines. 197
8.2.2 Defining Product-Line Refactorings 200
8.2.3 Examples of Product-Line Refactorings. 201

8.3 Refactoring as Path Toward a Product Line 203
8.3.1 Example: Extraction of Feature Colored

of the Graph Library. 203
8.3.2 Case Study: Refactoring of Berkeley DB

with AspectJ . 207
8.4 Further Reading . 210
Exercises . 212

9 Feature Interactions . 213
9.1 The Feature-Interaction Problem. 214

9.1.1 Higher Order Interactions . 216
9.2 Detecting Feature Interactions . 217
9.3 The Optional-Feature Problem . 219
9.4 Implementing Feature Interactions . 222

xiv Contents

http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec21
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec21
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec22
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec22
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec23
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec23
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec24
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec24
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec25
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec25
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec26
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec26
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec27
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec27
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec28
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec28
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec29
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec29
http://dx.doi.org/10.1007/978-3-642-37521-7_6#Sec30
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_7#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_8
http://dx.doi.org/10.1007/978-3-642-37521-7_8
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_8#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_9
http://dx.doi.org/10.1007/978-3-642-37521-7_9
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec1
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec5

9.4.1 Implementation Strategies: Overview and Goals. 223
9.4.2 Change Feature Model . 224
9.4.3 Multiple Implementations . 225
9.4.4 Moving Code . 226
9.4.5 Conditional Compilation . 227
9.4.6 Optional Weaving. 228
9.4.7 Distinct Module for Coordination Code. 230
9.4.8 Comparison of Solutions . 232

9.5 Experience. 233
9.5.1 Decomposition of Berkeley DB 234
9.5.2 Design and Implementation of FAME-DBMS 236

9.6 Further Reading . 239
Exercises . 240

10 Analysis of Software Product Lines . 243
10.1 Analysis of Feature Models . 244

10.1.1 Valid Feature Selection . 245
10.1.2 Consistent Feature Models. 247
10.1.3 Testing Facts about Feature Models 248
10.1.4 Dead Features and Mandatory Features 249
10.1.5 Constraint Propagation . 250
10.1.6 Number of Valid Feature Selections 251
10.1.7 Comparing Feature Models 252
10.1.8 Other Feature-Model Analyses 254

10.2 Analysis of Feature-to-Code Mappings 254
10.2.1 Dead Code. 255
10.2.2 Abstract Features . 257
10.2.3 Determining Presence Conditions 257

10.3 Analysis of Domain Implementations 260
10.3.1 Design Space . 262
10.3.2 Sampling Strategies . 263
10.3.3 Family-Based Type Checking

of Preprocessor-Based Implementations. 264
10.3.4 Family-Based Type Checking

for Feature-Oriented Programming 269
10.3.5 Family-Based Analysis with Variability Encoding . . . 271
10.3.6 Feature-Based Analysis Strategies 272
10.3.7 Beyond Type Checking . 273

10.4 Case Studies and Experience . 275
10.5 Tooling . 276
10.6 Further Reading . 277
Exercises . 278

Contents xv

http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec15
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec15
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec17
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec17
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_9#Sec21
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec2
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec3
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec4
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec5
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec6
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec7
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec8
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec9
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec10
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec11
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec12
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec13
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec14
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec19
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec20
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec21
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec21
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec22
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec22
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec22
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec26
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec26
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec26
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec27
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec27
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec28
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec28
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec29
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec29
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec30
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec30
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec31
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec31
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec32
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec32
http://dx.doi.org/10.1007/978-3-642-37521-7_10#Sec33

Appendix A: Tool Support. 283

References . 293

Index . 309

xvi Contents

Part I
Software Product Lines

Chapter 1
Software Product Lines

After reading the chapter, you should be able to

• understand the key concepts and the motivation of product-line development,
• characterize product lines in the context of handcrafting and mass production,
• weigh the promises and potential drawbacks of the product-line approach, and
• discuss the specific characteristics of software product lines.

Software product lines aim at empowering software vendors to tailor software prod-
ucts to the requirements of individual customers. In this sense, software product
lines follow a development that emerged in industrial manufacturing over the last
200 years. Starting with handcrafting of individual goods, the advent of mass produc-
tion scaled the production process to large quantities, but neglected individualism, as
all products were the same. With mass customization, individualism returned to the
focus of attention. Manufacturers systematically planned and designed product lines
to cover a whole spectrum of possible products and variations thereof, serving the
individual needs and wishes of many customers. Software product lines take the same
line and reconcile mass production and mass customization in software engineering.

1.1 From Individualism to Standardization and Back Again

Before the advent of mass production in the industrialization age, the manufacturing
process was essentially handcrafting—a labor-intensive and highly individual proc-
ess. Be it machines, furniture, buildings, weapons, or clothing, no two goods were
produced exactly the same. Skilled craftsmen had considerable experience of what
and how to build, but each product was unique in the sense that it was built from
scratch. Handcrafting makes it easy to incorporate individual requirements and to
build a product specifically for the customer’s needs.

As a consequence of industrialization, mass production changed this picture fun-
damentally. It was one of the key driving factors of the socio-techno-economic

S. Apel et al., Feature-Oriented Software Product Lines, 3
DOI: 10.1007/978-3-642-37521-7_1, © Springer-Verlag Berlin Heidelberg 2013

4 1 Software Product Lines

revolution that started in the eighteenth century and whose effects resonate until
the present day. Mass production based on assembly lines required standardized
parts that can be produced individually and that are eventually combined to create
more complex products. Mass production greatly improved productivity, compared
to hand crafting: The focus on standardized products reduced production costs and
improved the quality of products and processes. However, individualism in the sense
that a manufacturer incorporates needs and wishes of individual customers was lost
(or less important).

Today, almost a cliché, Henry Ford’s expression “Any customer can have a car
painted in any color that he wants as long as it is black.” This statement of Ford
and Crowther (1922, p. 72), has its roots in the fact that the color black dried faster.
Though early Ford cars were available in many colors, for the Model T, efficiency of
the newly introduced assembly line won over individualism. Similar effects could be
observed in many other domains, such as mass-produced houses in suburbs instead
of individual blue prints, mass-produced clothing in standardized sizes instead of
tailoring-to-measure, and so forth. In all cases, prices drop, quality rises, but at the
cost of having only few standardized products.

Recognizing that different customers have different needs and wishes, manufac-
turers started in the twentieth century to increase diversity in their product portfolios.
For example, car manufacturers offer many different variations of a car at different
prices, or chemical companies offer laundry detergent with different specialized fra-
grances and additives. Manufacturers still use reusable parts, but combine them in
different ways, prepare specific alternatives for individual parts, or add extra parts. In
short, the idea of a product line was born: A product line is a set of products in a prod-
uct portfolio of a manufacturer that share substantial similarities and that are, ideally,
created from a set of reusable parts. Instead of offering a single, standardized product,
manufacturers aimed at diversification, this way, being able to offer multiple products
tailored to individual market segments, including products for niche markets.

In many domains, mass customization has marked a return to individualism in pro-
duction, beyond a few product variations in the manufacturer’s portfolio. Nowadays,
manufacturers of cars, computers, and many other products allow their customers to
configure products to their needs before production. The production process still has
mass-production characteristics: The products are constructed at large scale, often
in an automated fashion, based on standardized, reusable parts. The goal is to share
as many parts as possible between all products; however, manufacturers support
variations within their production process, and they allow customers to select from
alternatives, for example, different engines, colors, interior features, electronics, and
so forth in the automobile industry. Customers tailor their product by choosing among
a predefined set of configuration options. Often, the configuration space is incredi-
bly huge. Today, most automobile manufacturers hardly ever produce two identically
configured cars in a year. Likewise, many startup companies serve the demand for
individualism and offer tailor-made clothing (shoes, trousers, bags), food (chocolate,
muesli, juices), electronics, tools, medicine, and many others.

1.1 From Individualism to Standardization and Back Again 5

Fig. 1.1 BMW’s car configurator

Example 1.1 Automobile product lines. As said previously, almost every car that
leaves a modern automobile factory is unique—each tailored to the needs and wishes
of a particular customer. But how does the customer communicate his requirements?
Today, one can use Web-based car configurators for this task. In Fig. 1.1, we show
a snapshot of BMW’s car configurator. The customer can make various choices,
including series, body style, color, power, price, efficiency, and many more.

Note that Fig. 1.1 shows only a small excerpt of the choices a customer can make.
Actually, there are hundreds and thousands of possible choices. This rich set of
configuration options gives rise to an astronomical number of possible car variations.
It is the task of a configurator to guide the customer through a configuration, providing
feedback, hide invalid choices, and so forth. It acts like a wizard that, in multiple
steps, offers choices in terms of check and radio boxes; there are even sliders to
choose within a spectrum of possible values.

6 1 Software Product Lines

Fig. 1.2 A sandwich configurator

Of course, once a configuration is set, the corresponding car is not designed and
built from scratch. Rather it is constructed automatically from reusable parts that are
related to the choices made by the customer. Some choices are directly related to
individual mechatronics components (for example, transmission type), others emerge
from the interplay of multiple parts (for example, fuel efficiency). �
Example 1.2 Sandwich shop. An unusual yet valid and illustrative example of a suc-
cessful application of a product-line approach can be found in the fastfood industry.
Some sandwich shops do not sell a few predefined sandwich types, but allow their
customers to choose among a set of options to create their own favorite sandwich. The
space of possible choices is large, including different kinds of bread, main and side
toppings, as well as various sauces and spices, but finite. The producer does not take
arbitrary requests and starts thinking about shopping and preparing ingredients for
each order; instead the producer prepares parts, such as sliced tomatoes, precooked
meats, and sauces, that can be combined. Some companies provide even pen-and-
paper configurators like the one in Fig. 1.2. Much like in the automotive example,
customers cannot choose arbitrarily (for example, they can choose only one kind of
bread), but are guided by a configurator—in the case of the sandwich shop, by descrip-
tions provided on the configuration sheet. The space of possible sandwiches is huge,
possibly offering a suitable and tailored choice to the vast majority of customers. �

1.2 Specialized and Standardized Software

Software development has seen a history not quite unlike that of producing phys-
ical goods. Early software products were handcrafted for specific hardware and
sold, bundled with the hardware, in small numbers. Software was handcrafted by

1.2 Specialized and Standardized Software 7

a few experts. However, software production became increasingly challenging and
expensive with the demand for more and more complex software and the diversifi-
cation of application scenarios.

Software producers attempted a strategy not unlike that of mass production:
standardization. Instead of redeveloping operating systems, compilers, and tools
again and again, the software industry agreed on standard platforms. This eventually
enabled to production of shrink-wrapped software packages that were deployed on
scale and could be installed on millions of Unix work stations or Windows desktops.
Fitting to our analogy, these products are often called standard software. Develop-
ing a separate word-processing, database, or accounting software for every company
would be expensive and error-prone; buying a standardized and established software
solution, such as Microsoft Word, IBM DB2, or SAP R/3, off-the-shelf is often the
more sensible choice.

However, much like mass production provides standardized goods at the cost of
not supporting individualism and rare corner cases, standard off-the-shelf software
aims at a one-size-fits-all solution. The idea is to provide software that satisfies the
needs of most customers, which leads almost automatically to the situation, in which
customers miss desired functionality and are overwhelmed with functionality they
do not need actually (just think of any contemporary office or graphics program). It
is often this generality that makes software complex, slow, and buggy.

While standardization empowered the software industry to substantially scale
software development and to provide affordable software to a broad market, it often
does not address smaller market segments, nor individual needs and wishes of single
customers. Especially, for resource-constrained or energy-constrained environments,
such as embedded systems, smart cards, and sensor networks, bloated one-size-fits-
all solutions are barely suitable, which results in the situation that much software
is still written from scratch, even though it may be similar to existing products. For
example, Oracle bought the existing database system Berkeley DB to enter the market
of data management for embedded system, instead of developing their own solution
based on their existing product and their experience with developing database tools
for decades. Also, specific requirements and niche market segments are typically
not well-addressed by off-the-shelf software; this includes novel algorithms for spe-
cific problems such as image recognition, high-performance computing, company-
and market-specific business models, and so on. Though not required by the masses,
specific solutions can provide competitive advantages for individual companies, cus-
tomers, and institutions.

1.3 Software Product Lines

Already since the late 1960s, and even more in the 1990s, software product lines have
gained momentum in the software industry. Instead of developing software systems
from scratch, they should be constructed from reusable parts. Instead of composing
a software system always in the same way, it should be tailored to requirements of the
customer, where customers can select from a large space of configuration options.

8 1 Software Product Lines

The software product line approach provides a form of mass customization by con-
structing individual solutions based on a portfolio of reusable software components.
It introduces individualism into software production, but still retains the benefits
of mass production in that whole domain and market segments can be served. The
need for individualism arises from different requirements on the software regarding
functionality, target platforms, and nonfunctional properties, such as performance
and energy consumption.

Example 1.3 Operating-systems. Almost every computing system today contains
an operating system, which mediate between hardware and application software.
Modern operating systems have to run on different hardware platforms and serve the
needs of various applications. For example, the Linux kernel runs on a wide variety
of different platforms, including embedded devices, desktop systems, and large-
scale servers, supporting a huge portfolio of different applications scenarios, from
sense-and-control applications, over office software and games, to high-performance
computing and server software.

Clearly, there cannot be a single operating system that efficiently supports all
kinds of different platforms and application scenarios. Instead, modern operating
systems are configurable. In fact, systems like Linux kernel are software product
lines (Sincero et al. 2007). Much like in the automotive domain (Fig. 1.1), users can
select among a large set of options (up to 10 000 features (Tartler et al. 2011)) to
tailor the Linux kernel to their needs. In Fig. 1.3, we show a screenshot of Linux’s
configuration tools, called Kconfig, that can be used for this task. �

Fig. 1.3 Linux’s kernel configuration tool

1.4 Promises of Software Product Lines 9

1.4 Promises of Software Product Lines

In the tension between developing individual software products from scratch and
developing standardized one-size-fits-all products, software product lines promise
distinct benefits , of which we discuss next the most important ones:

Tailor-made. A product-line approach to software production facilitates tailoring
products to individual customers. Instead of providing a standardized product (or a
small set of preconfigured products, such as Community, Professional, and Enterprise
editions), a software vendor can produce a whole set of differently tailored products.
Reduced costs. While providing each customer its desired solution, product-line
vendors do not need to pay the cost of designing and developing each product from
scratch. Instead, they develop reusable parts that can be combined in different ways.
The development cost per product per customer can be reduced to selecting which
parts to combine (potentially add missing ones) and to testing the resulting product.
While the upfront investment required for such an approach is certainly larger than
developing a single software product (we need to design reusable parts and implement
variations that might not be required for the first product), the approach pays off in the
long term, when multiple tailored products are requested. We illustrate the economic
promise of software product lines in Fig. 1.4.1

Improved quality. Industrial mass production has improved quality because stan-
dardized parts can be checked systematically and tested in many products. Standard-
ized software offer similar benefits, compared to software developed individually
from scratch. Software product lines offer a compromise, in that different products

Fig. 1.4 Effort/costs of crafting products individually versus product-line development

1 When comparing production costs of software to industrial goods, be aware of a common pitfall:
The costs for replicating software are near zero (and is still low when considering distribution).
A cost reduction in mass production of standard software does not result from a more efficient
assembly process (which a build script can do for free), but lies mainly in the one-time design and
implementation effort that can serve many customers, which all receive the same product. When
talking about costs in software product lines, we talk about development costs, which are similar
to design and planning costs in industrial manufacturing.

10 1 Software Product Lines

are constructed from standardized parts. Though not every combination is used by
millions of customers, parts can be standardized and checked in isolation to some
degree, and parts are reused and tested in multiple products. Especially, parts that are
used frequently lead to more stable, lean, and reliable products, than handcrafting.
Time to market. While standard software is readily available, handcrafted software
products require significant costs and, sometimes more importantly, time, before
they can be released. If a customer selects only from predefined configuration options
(that map to existing parts), a software vendor can quickly produce the corresponding
software product by assembling the existing, corresponding parts. Even if a customer
requests functionality that has not been prepared, building a new product on top of
existing well-designed, reusable parts is much faster than developing it entirely from
scratch. A well-designed platform that can be extended for new products promises the
possibility to quickly react to market changes, more so than standardized software
or individual development could.

As said previously, product-line development (for software and physical goods)
comes at a price. Preparing reusable parts requires a significant upfront investment
(see Fig. 1.4). Furthermore, developers start designing multiple potential products at
the same time, which raises complexity. Often, offering various configuration options
gives rise to an exponentially large configuration space that no single person can
oversee entirely. Variability management (deciding which parts to prepare) becomes
necessary, and requires additional effort.

1.5 Success Stories

To illustrate the practical relevance of software product lines, we summarize a few
of the success stories:2

Boeing. Boeing develops a product line of operational flight programs, which are
mission-critical, distributed real-time, and embedded applications supporting the
avionics and cockpit functions for the pilot. Carefully designed approaches to handle
commonality and variability are the crucial success factors of this product line.
Bosch. Bosch develops a product line of engine-control software for gasoline sys-
tems. In this domain, developers face extreme variability, permanently growing com-
plexity, and high pressure on cost. Bosch considers the product-line approach as the
key to produce suitable software products and to enter new markets.
Hewlett Packard. Hewlett Packard pursues a product-line approach to develop
printer firmware. It consists of over 2000 features supporting hundreds of print-
ers. Moving to a product-line approach, products could be produced using 1/4 of the
staff, in 1/3 of the time, and with 1/25 the number of bugs of earlier products.
Toshiba. Toshiba produces power generation, transmission, and distribution equip-
ment, supporting customers with capabilities ranging from power plant construction

2 The first three have been assembled and honored in the Product-Line Hall of Fame: http://
splc.net/fame.html.

http://splc.net/fame.html
http://splc.net/fame.html

1.5 Success Stories 11

to management and operation. In this context, Toshiba developed a software prod-
uct line that separates variable and non-variable software components and provides
a fill-in-the-format-type configurator to support individual management of variable
parts and software logic parts across the period from manufacturing to system main-
tenance.
General Motors. General Motors develops the control software for their pow-
ertrains as a software product line. It supports various electronic architectures
(5 engine-control modules, 4 transmission-control modules, and 3 powertrain-control
modules) and physical architectures (diesel engines verses gas engines, clutch-to-
clutch transmissions verses freewheel transmissions). Today, the software product
line is the basis for nearly all new control modules being developed by General
Motors.

1.6 A Feature-Oriented Approach

Software product lines facilitate the industrialization of software development.
Ideally, based on a set of reusable parts, a software manufacturer can generate a
software product based on the requirements of a certain customer. The concept of a
feature is central to achieve this level of automation. Features are used to distinguish
the products of a product line, for example:

• “My text editor provides a spell-checking feature.”
• “Database system A provides multi-user support, Database B does not.”
• “E-mail client A supports IMAP and POP3, client B supports only POP3.”
• “The game we are going to develop shall run on Android and Windows.”
• “Both financial software products support international transactions.”

In some sense, features bridge the gap between the requirements a customer has
and the functionality a product provides. The key idea of feature orientation is to
organize and structure the whole product-line process as well as all software artifacts
involved in terms of features. This way, it is easy to trace the requirements of a
customer to the software artifacts that provide the corresponding functionality. In
technical terms, a feature-oriented approach makes features explicit in requirements,
design, code, testing, and so forth—across the entire life cycle. It is a key goal of
this book to introduce and discuss techniques to implement feature-oriented product
lines based on this premise.

1.7 Running Examples

To tie this book together, we use two running examples that are well-documented in
the product-line literature: data management for embedded systems and variations
of graph data structures.

12 1 Software Product Lines

Table 1.1 Data management in automotive systems

Subsystem Persistence Recovery Consistency Queries Granularity

Navigation system � � SQL Database
Driver’s logbook � � � Cursor Tables
Total distance recorder � � � Fetch Tuple
Number of revolutions recorder � Integer

Example 1.4 Data management for embedded systems. State-of-the-art relational
database systems support a rich set of features such as multi-user operation, high-
level query languages, and powerful query optimization. However, they are much
too complex and heavyweight to be used in embedded systems, such as in sensors
networks or mobile devices. Still, features such as persistence, recovery, and index
structures are needed in embedded systems, too. The inability to size-down fully-
fledged database systems by stripping and replacing unnecessary features led to
separate development lines of data management for embedded systems, henceforth
called embedded data management.

Storing data is at the heart of every product in the domain of embedded data
management, although different products may support different data types and stor-
age structures. Support for transactions and recovery are typical, but may not be
required in all application scenarios. Providing a single implementation for all sce-
narios is infeasible, because of the overhead of unused code on systems with restricted
resources. In Table 1.1, we show different requirements for data management used
in embedded automotive systems.

Embedded data management is a perfect candidate for using a product-line
approach. Leich (2012) provides a comprehensive overview of the state of the art
in this field. In this book, we refer to two research prototypes of product lines for
embedded data management: FameDBMS (Rosenmüller et al. 2008) and the feature-
oriented refactoring of Berkeley DB (Rosenmüller et al. 2009a), which we introduce
in the respective chapters. �

Example 1.5 A product line of a graph library. To illustrate variability implementa-
tion techniques at a technical level, the scenario for embedded data management is
still too complex, and domain concepts would distract from technical issues (How to
implement a B-tree?). Hence, we use a simple product line of graph data structures
for this task. It was introduced by Lopez-Herrejon and Batory (2001) as a standard
problem to discuss and compare product-line techniques and has been used in hun-
dreds of publications since. The core of its implementation fits on less than a page.
In practice, though, this example would mostly like not be target of a product-line
approach because of its simplicity.

At the source-code level, we use the graph library as our main technical example
throughout the book. It constitutes a product line of implementations of graph data
structures and algorithms. The base implementation language is Java. The listing
in Fig. 1.5 gives an impression of how graph data structures with nodes and edges

1.7 Running Examples 13

Fig. 1.5 Graph library: an implementation example

are realized. Although small, there is a considerable number of features to vary:
vertices and edges can be colored, edges directed or undirected, edges can be stored
as separate objects or adjacency lists, and so forth. One can also choose among a
diverse selection of algorithms that work on graphs in different configurations, such
as detecting cycles, searching shortest paths, and computing the minimal spanning
trees.

In addition to the features that have an effect on externally visible functionality,
there is also variability in the internal implementation, for example, how edges are
represented (such as, using explicit objects or implicit links between vertices). For
instance, as an alternative to the implementation in Fig. 1.5, we could store adjacent
nodes inside class Node. �

1.8 Intended Audience of the Book

In the last 15 years, several books have discussed issues of software product lines.
How is this book different?

We provide a special perspective on software product lines: We take a developer’s
viewpoint that focuses on the development, maintenance, and implementation of
product-line variability. We blend out most management issues, such as require-
ments analysis, scoping and portfolio management, and team organization. The con-
cept of a feature pervades the entire life cycle, including design, implementation,
and validation and verification. In short, features are a central concept in all phases
of product-line development. Furthermore, we concentrate on automated product
derivation based on a user’s feature selection.

As a result, this book is unique for the following reasons:

• Features are central to variability. We introduce feature models in Chap. 2 and use
features throughout remaining chapters to guide product-line development.

http://dx.doi.org/10.1007/978-3-642-37521-7_2

14 1 Software Product Lines

• Software product lines with a huge number of products require systematic reuse of
code artifacts across products. We focus on automatic product derivation, where
a specific product, specified by a feature selection, can be generated automatically
from reusable artifacts. These artifacts include both code and other supplementary
documents.

• We are not biased toward a single implementation technique or programming para-
digm. In fact, we broadly survey different implementation mechanisms and discuss
their trade-offs. Besides, novel programming paradigms such as feature-oriented
programming (which still has to find its way into industrial practice), we discuss in
equal depth classic approaches, including preprocessors and frameworks. In fact,
the presentation of implementation techniques is the core of this book (Part II).

• We cover a set of advanced topics that include novel developments, cutting-edge
research, and open issues in the areas of feature interactions as well as product-line
refactoring and analysis.

• Methods and tools for supporting engineers are crucial in modern software devel-
opment. Almost all chapters describe the current state of tool support for the
discussed tasks (programming, code generation, code analysis, and so forth). In
Appendix A, we provide an overview of current systems supporting the engineer-
ing of software product lines.

1.9 How to Read this Book

This book consists of three parts. Part I provides a gentle introduction of feature-
oriented software product lines.

• Chapter 1 motivates the product-line approach and provides an overview of the
book.

• Chapter 2 introduces the product-line development process, consisting of domain
and application engineering.

Part II is the core of this book. It covers a wide variety of implementation tech-
niques for software product lines. A reader interested in a particular implementation
technique may directly jump to the corresponding chapter, after reading Chap. 3.

• Chapter 3 introduces basic concepts, dimensions of classification, and quality
criteria for product-line implementation techniques.

• Chapter 4 reviews classic implementation techniques used in product-line
development, including run-time and compile-time parameters, design patterns,
frameworks, and components.

• Chapter 5 describes a wide array of classic tools used in product-line development,
for example, build systems, preprocessors, and version control systems.

• Chapter 6 discusses advances in programming languages to support product-line
development, especially, with regard to feature modularity.

http://dx.doi.org/10.1007/978-3-642-37521-7_1
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_6

1.9 How to Read this Book 15

• Chapter 7 explains advanced tool support for the development of software product
lines, including the concept of virtual separation of concerns.

Part III is devoted to advanced topics related to feature-oriented product lines.

• Chapter 8 discusses the challenges and promises of refactoring of feature-oriented
product lines.

• Chapter 9 is concerned with the interaction between features, which need to be
coordinated properly.

• Chapter 10 describes techniques and tools for the analysis of feature-oriented prod-
uct lines.

Finally, in Appendix A, we provide a list of product-line tools, along with a
description of how they relate to the topics covered in this book.

1.10 Further Reading

The field of software product lines started its success story in the 1990s, though
the field has its roots in the much earlier works on program families (McIlroy 1969;
Parnas 1979). So far, a number of foundational books about software product lines
have been published, most notably the books by Clements and Northrop (2001) and
Pohl et al. (2005). They cover all facets of product-line engineering, but provide
only limited material on variability implementation techniques. Besides these foun-
dational books, several authors summarize their experience of applying software
product lines to practice, for example, van der Linden et al. (2007) and Kang et al.
(2009).

Another collection of books is concerned with techniques to implement software
product lines, including generative programming (Czarnecki and Eisenecker 2000),
software architecture (Bosch 2000), aspect-oriented, and model-driven engineering
(Rashid et al. 2011). In contrast, we do not focus on a single implementation tech-
nique or programming paradigm, but we introduce and discuss a whole spectrum of
implementation techniques, with mutual strengths and weaknesses.

http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_8
http://dx.doi.org/10.1007/978-3-642-37521-7_9
http://dx.doi.org/10.1007/978-3-642-37521-7_10

Chapter 2
A Development Process for Feature-Oriented
Product Lines

After reading the chapter, you should be able to

• define the relevant terms: product line, feature, feature selection, feature depen-
dency, product, domain,

• understand why a product line targets a specific domain,
• explain the product-line development process consisting of domain engineering

and application engineering (including how the different phases interact),
• distinguish problem space and solution space,
• understand what drives scoping decisions,
• explain the economic lever of product lines and understand the benefit of automa-

tion,
• model features and feature dependencies by means of feature models,
• translate feature diagrams to propositional formulas, and
• discuss trade-offs between different adoption paths.

In this chapter, we introduce basic concepts that arise in the engineering of feature-
oriented software product lines. We narrow down the term feature, introduce an
overall development process, and illustrate how to model and formalize variability
in product lines.

2.1 Features and Products

Features are the concerns of primary interest in product-line engineering. The concept
of a feature is inherently hard to define precisely as it captures, on the one hand,
intentions of the stakeholders of a product line, including end users and, on the other,
design and implementation-level concepts used to structure, vary, and reuse software
artifacts. Consequently, there are many definitions, below ordered from abstract to
technical (Classen et al. 2008):

S. Apel et al., Feature-Oriented Software Product Lines, 17
DOI: 10.1007/978-3-642-37521-7_2, © Springer-Verlag Berlin Heidelberg 2013

18 2 A Development Process for Feature-Oriented Product Lines

1. Kang et al. (1990): “a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems”

2. Kang et al. (1998): “a distinctively identifiable functional abstraction that must
be implemented, tested, delivered, and maintained”

3. Czarnecki and Eisenecker (2000): “a distinguishable characteristic of a concept
(e.g., system, component, and so on) that is relevant to some stakeholder of the
concept”

4. Bosch (2000): “a logical unit of behavior specified by a set of functional and
non-functional requirements”

5. Chen et al. (2005): “a product characteristic from user or customer views, which
essentially consists of a cohesive set of individual requirements”

6. Batory et al. (2004): “a product characteristic that is used in distinguishing
programs within a family of related programs”

7. Classen et al. (2008): “a triplet, f = (R, W, S), where R represents the require-
ments the feature satisfies, W the assumptions the feature takes about its environ-
ment and S its specification”

8. Zave (2003): “an optional or incremental unit of functionality”
9. Batory (2005): “an increment of program functionality”

10. Apel et al. (2010): “a structure that extends and modifies the structure of a
given program in order to satisfy a stakeholder’s requirement, to implement and
encapsulate a design decision, and to offer a configuration option”

The first seven definitions treat features mainly as a means to communicate
between the different stakeholders of a product line (end users, managers, pro-
grammers, and so forth), in order to distinguish software products. The last three
definitions treat features as design decisions and implementation-level concepts that
are part of the software construction phase. These different views on features stem,
of course, from the different use of features in the different phases of product-line
engineering. To capture the essence and commonalities of prior usage, we define
features as follows:

Definition 2.1 A feature is a characteristic or end-user-visible behavior of a
software system. Features are used in product-line engineering to specify and
communicate commonalities and differences of the products between stake-
holders, and to guide structure, reuse, and variation across all phases of the
software life cycle. �

The product portfolio of a product line is defined by its features and their relations.
A specific product is identified by a subset of features, called a feature selection. Not
all feature selections are valid and specify meaningful products. As we saw in the
previous chapter, the features Toasted and Not toasted of a sandwich are mutually
exclusive; so too are the exterior car trims Standard, Luxury, Premium, and Platinum.
A constraint on the feature selection is called a feature dependency. Feature depen-

2.1 Features and Products 19

dencies are modeled explicitly in product lines as part of feature modeling, which
we discuss later.

Definition 2.2 A product of a product line is specified by a valid feature
selection (a subset of the features of the product line). A feature selection is
valid if and only if it fulfills all feature dependencies. �

Features, feature selections, feature constraints, and products arise in all kinds
of product lines, and are not limited to software product lines. In the following
sections, we discuss the role of features in the product-line engineering process. We
introduce feature models as a formalism to describe features and their constraints.
Finally, a translation of feature model to propositional logic opens the door for formal
methods of analyzing product-line variability.

2.2 A Process for Product-Line Development

Most processes of traditional software engineering target the life cycle of a single
software system. Independent of the specifics of the process used, developers collect
requirements for the target system, and design and implement the system, either in
separate, consecutive phases or in agile cycles. For software product lines, we must
change our way of thinking about software development. In contrast to analyzing
and implementing a single system, we have to look at a variety of desired systems
that are similar but not identical.

A key success factor of product-line development is to set a proper focus on a
particular, well-defined and well-scoped domain.

Definition 2.3 A domain is an area of knowledge that:

• is scoped to maximize the satisfaction of the requirements of its stakeholders,
• includes a set of concepts and terminology understood by practitioners in

that area,
• and includes the knowledge of how to build software systems (or parts of

software systems) in that area.

(Adopted from Czarnecki and Eisenecker (2000), p. 34) �

20 2 A Development Process for Feature-Oriented Product Lines

Fig. 2.1 Overview of an engineering process for software product lines

In the past, software product lines have been developed for a wide variety of
domains, including operating systems, database systems, middleware, automotive
software, compilers, healthcare applications, and many more.

The broader the domain of a product line is the larger is the number of possible
stakeholders’ requirements that can be covered in the form of individually tailored
products. However, the broader the domain, the smaller is the set of similarities
among products. For example, the domain of system software is huge, which includes
operating systems, drivers, network software, database systems, and many more.
Although there are similarities that could be exploited in system software, individual
systems have substantial differences, which decrease potential for reuse. Focusing on
the (sub)domain of database systems or even embedded database systems, increases
the reuse potential, while keeping maintenance effort acceptable. The bottom-line is
that a proper scoping of the target domain is essential, as we discuss further in Sect.
2.2.1.

A development process for software product lines has to take these peculiarities
into account. Two issues play a crucial role: the explicit handling of variability and
the systematic reuse of implementation artifacts. For both, an appropriate structuring
of process and software artifacts is imperative.

The specific characteristics of software product lines lead to a separation between
domain engineering and application engineering and between problem space and
solution space. In Fig. 2.1, we illustrate a two-dimensional structure with four clusters
of tasks in product-line development and the mappings between them, which we
explain next.

2.2 A Process for Product-Line Development 21

Domain engineering (top half of Fig. 2.1) is the process of analyzing the domain of
a product line and developing reusable artifacts. Domain engineering does not result
in a specific software product, but prepares artifacts to be used in multiple, if not
all, products of a product line. Domain engineering targets development for reuse. In
contrast, application engineering (bottom half of Fig. 2.1) has the goal of developing
a specific product for the needs of a particular customer (or other stakeholder). It
corresponds to the process of single application development in traditional software
engineering, but reuses artifacts from domain engineering where possible. It targets
development with reuse. Application engineering is repeated for every product of the
product line that is to be derived.

The distinction between the problem space and solution space highlights two
different perspectives. The problem space (left half of Fig. 2.1) takes the perspective
of stakeholders and their problems, requirements, and views of the entire domain
and individual products. Features are, in fact, domain abstractions that characterize
the problem space. In contrast, the solution space (right half of Fig. 2.1) represents the
developer’s and vendor’s perspectives. It is characterized by the terminology of the
developer, which includes names of functions, classes, and program parameters.
The solution space covers the design, implementation, and validation and verification
of features and their combinations in suitable ways to facilitate systematic reuse.

The orthogonal distinctions between domain and application engineering as well
as problem and solution space give rise to four clusters of tasks in product-line
development:

• Domain analysis is a form of requirements engineering for an entire product line.
Here, we need to decide the scope of the domain, that is, decide which prod-
ucts should be covered by the product line and, consequently, which features are
relevant and should be implemented as reusable artifacts. The results of domain
analysis are usually documented in a feature model.

• Requirements analysis investigates the needs of a specific customer as part of appli-
cation engineering. In the simplest case, a customer’s requirements are mapped
to a feature selection, based on the features identified during domain analysis. If
novel requirements are discovered, they can be fed back into domain analysis,
which may result in a modification of the feature model (and the reusable domain
artifacts).

• Domain implementation is the process of developing reusable artifacts that cor-
respond to the features identified in domain analysis. Although there are many
kinds of artifacts relevant in software product lines (including design, test, and
documentation artifacts), we concentrate in the book on implementation artifacts,
in particular, source code. Nevertheless, the basic ideas and techniques apply also
to non-code artifacts. Depending on how variability is implemented (see Part II
of this book), developers might produce very different artifacts in this step, from
run-time parameters and preprocessor directives to plug-ins and components, and
many more.

• Product derivation (or product generation or product configuration or product
assembly) is the production step of application engineering, where reusable

22 2 A Development Process for Feature-Oriented Product Lines

artifacts are combined according to the results of requirement analysis. Depending
on the implementation approach, this process can be more or less automated,
possibly, involving several development and customization tasks.

As said previously, domain engineering is performed once for the entire product
line, whereas application engineering is performed for every individual product. A
goal of product-line development, in general, is to move development effort as much
as possible from application engineering to domain engineering. For example, if
quality assurance (such as code inspections) can be done in domain engineering
instead of investigating individual products, costs can be dramatically reduced. This
way, shared artifacts are investigated only once. The more we evolve application
engineering into a series of generation tasks, the smaller the costs per product become
(cf. Fig. 1.4). A major goal of feature-oriented product lines is to fully automate
product derivation.

In the following sections, we look at the four quadrants of development tasks of
Fig. 2.1 in detail and provide examples from our application scenarios. We focus
primarily on the problem-space tasks, whereas we go into detail about the solution
space in Part II of this book.

2.2.1 Domain Analysis

Domain analysis is a form of requirements analysis for the whole product line. It is
concerned with the problem space. It contains two primary tasks: domain scoping
and domain modeling.

Domain Scoping

Domain scoping is the process of deciding on a product line’s extent or range. Typ-
ically, management decides which of all possible requirements arising in a domain
should be considered. The scope describes desired features or specific products that
should be supported. For example, the focus may be on embedded database systems
for a particular hardware architecture, instead of supporting multiple architectures.
During domain scoping, domain experts collect information about the target domain,
for example, by analyzing handbooks, existing systems, interviews with domain
experts, potential customers, and so on.

As said previously, product lines with a small scope are easier to develop and
maintain, as they target a well-defined domain of very similar products with few
variations and much reuse. The broader the scope and the more features the product
line has, the more possible customers can be satisfied. So, there is a trade-off between
implementation effort and potential use of the product line. The trade-off requires
careful business consideration, including determining prospective revenue, potential
customers, and costs of additional features.

http://dx.doi.org/10.1007/978-3-642-37521-7_1

2.2 A Process for Product-Line Development 23

Scoping decisions are design decisions depending on the goals of the company
developing a software product line. As such, they are typically subjective and based
on previous experience.

Example 2.1 In the domain of embedded data management, a product line should
cover basic data management functionalities targeting different operating systems for
embedded devices. Management identifies transactions, recovery, encryption, basic
queries, and data aggregation as the features that are most frequently requested.
With these features, management estimates that half of all scenarios in embedded
data management can be covered.

By focusing on embedded systems, several features are obviously outside the
scope of the product line: Neither SQL-style query optimization nor remote storage
outside the device (for example, cloud storage) are considered.

However, not all cases are so clear cut. For example, management considers
whether to include security (user and access management) as an optional feature. It
might open the product line for application scenarios in which customers need multi-
user support, but in the considered market segment this might not be many customers.
After conferring with potential customers, management decides to exclude the feature
from the product line’s scope, as the potential revenue does not cover the required
implementation and maintenance costs. �

Domain Modeling

The scope of a product line should be recorded. Domain modeling captures and
documents the commonalities and variabilities of the scoped domain. As a first
approximation, stakeholders could give examples for possible products, as well as
counter examples documenting which products are and which are not in the scope of
the product line. Typically, commonalities and differences between desired products
are identified and documented in terms of features and their mutual dependencies—
the topic of feature models in Sect. 2.3.

Example 2.2 For the domain of embedded data management, we identify Storage,
Transactions, OperatingSystem, Encryption as features to support. Only Storage and
OperatingSystem are mandatory, all other features are optional. An example for
restricting the possible products is that we cannot select more than one supported
operating system at the same time. �

Example 2.3 For the graph library, we consider feature GraphLibrary as the base
feature. Then, we have two features DirectedEdges and UndirectedEdges, which are
mutually exclusive. Furthermore, we could think of features Search, either breadth-
first search (BFS) or depth-first search (DFS), Weighted for weighted edges, and
Algorithms. As algorithms, we consider multiple optional features that are used in
many but not all applications, such as Cycle detection, ShortestPath, minimal spanning
trees (MST), and Transpose. �

24 2 A Development Process for Feature-Oriented Product Lines

2.2.2 Requirements Analysis

Requirements analysis in product-line engineering is similar to requirements analysis
in traditional software engineering. Requirements analysts solicit the customer’s
requirements, typically, using well-known requirement-analysis techniques, such
as interviews and document analysis (Clements and Northrop 2001; Pohl et al.
2005). But, in product-line engineering, we can build on the knowledge gathered
during domain analysis. There, we already identified possible requirements arising
in the domain, so requirements analysts try to map the customer’s requirements to
those identified earlier during domain analysis. Ideally, requirements analysis can
be reduced to the selection of existing features, such that a product can be assem-
bled using reusable implementations artifacts associated with these features. If a
customer’s requirement cannot be mapped to one or more existing features, several
strategies are possible:

• We can decide that the requirement is out of scope of the product line, so we simply
cannot provide a corresponding feature or product.

• We can assemble the next best product without this feature and manually extend the
resulting product with custom extensions. This way, we invest additional imple-
mentation effort during application engineering, which is not integrated back into
the product line.

• Finally, we can decide to change the scope of our product line and include the
additional requirement in the form of a new feature or changes to existing fea-
tures, including domain artifacts. That is, we go back to domain engineering and
implement a new feature or modify exiting ones. Subsequently, we can map the
customer’s requirement to these features, of which also other customers can benefit.

Again, which path to take is a business decision that must be weighed. Additional
development in application engineering to patch up a product is certainly cheaper in
the short run than developing a new feature available for all products (which involves
again domain scoping and modeling steps), but other products of the product line
cannot benefit from that development.

Example 2.4 Suppose we have a database product line with features for SQL-query
processing and transaction support. If, during requirements analysis, we learn that
a customer wants to use the requested product in an SQL-based, multi-user, client-
server environment, we can map these requirements directly to the existing features
for SQL-query processing and transaction support and their respective implementa-
tions. �

Example 2.5 Suppose a user needs a variation of the graph library that supports
Dijkstra’s algorithm to compute shortest paths. We can map this requirement only
partially to the selection of the features for undirected and weighted edges. Dijsktra’s
algorithm needs to be implemented from scratch, and it is up to the product-line
developer or vendor to decide whether it will be provided only to the requesting user,

2.2 A Process for Product-Line Development 25

or if it will by also propagated back to domain engineering, thus becoming available
to other users, as well. �

The identification of desired features cannot always be accomplished in a sin-
gle step. In complex scenarios, when multiple stakeholders are involved, fea-
tures have to be selected in multiple, consecutive steps—a process called staged
configuration (Czarnecki et al. 2005b).

Example 2.6 Suppose we want to construct a specific product for sensor data man-
agement. In a first step, we may decide about the basic technical requirements such as
choosing the operating system. Depending on the kind of data collected by the sen-
sor, we choose, in a second step, the corresponding data types and query primitives
(aggregation of values). Finally, in a third step, some non-functional requirements
concerning performance, response time, footprint, and security will guide us to finish
the configuration, for example, which index data structure to use. �

2.2.3 Domain Implementation

After identifying features, we want to implement them in the form of reusable arti-
facts. Domain (feature) implementation targets the solution space, as we are now
using the developer’s vocabulary to implement solutions to a customer’s require-
ments. The implementation process comprises several considerations beyond just
writing code.

First, we need to select a general implementation strategy, also known as a reuse
framework. For example, we could use a preprocessor to include or exclude variable
code conditionally or build a framework with a number of plug-in that can be com-
bined on demand. We discuss different implementation strategies and their trade-offs
in Part II of this book, therefore, we do not go into detail here.

Second, depending on the implementation strategy, we might need to prepare the
design and code such that we can hook feature implementations. For example, we
design how to structure common parts of the implementation and where to leave
extension points and how to enable or disable extensions for features.

Besides code fragments to be reused, we also consider other kinds of documents
including various models, documentation, and test cases. All these other artifacts are
subject of the domain implementation, too. This is rooted in a principle of uniformity,
as discussed in Chap. 3.

Example 2.7 For a product line for embedded data management, we choose feature-
oriented programming as implementation technique (see Sect. 6.1, p. 130). We imple-
ment a basic database engine using Java and encode each feature using a separate
feature module (which define additions to and modifications of the basic engine).
Much like plug-ins, feature modules can be included or excluded depending on a
users feature selection. �

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_6

26 2 A Development Process for Feature-Oriented Product Lines

2.2.4 Product Derivation

Depending on the choice of the implementation strategy, a product for a given fea-
ture selection (from requirements analysis) can be generated or composed using
the artifacts developed in domain implementation. Most implementation strategies
discussed in this book support a fully automated generation based on a feature selec-
tion and reusable artifacts—that is, a push-button approach. For example, we select
the artifacts that correspond to selected features and call a composition engine to
combine them into an executable, without further manual intervention.

Alternatively, we could assemble each product manually from reusable artifacts.
That is, many parts of the implementation have been prepared during domain imple-
mentation and can be reused, but the combination of the artifacts is a (typically
tedious) manual task, in which developers still have to write glue code to connect
the artifacts and to patch up the gaps for which no reusable artifacts exist.

In both cases (automatic and manual), the resulting product usually has to be vali-
dated (or verified) before being delivered to a customer, potentially by running auto-
mated unit tests derived from artifacts provided during domain engineering. Product
validation and verification is usually the last step in application engineering—more
on this issue in Chap. 10.

Ideally, feature selection is the only manual activity in application engineering.
The quest for automating product derivation is motivated by several promising ben-
efits. Automating product derivation almost entirely eliminates the costs of product
derivation (cf. Fig. 1.4). Also, instead of manually crafting a set of preconfigured
products, automation allows products to be tailored to many individual use cases.
Finally, when evolving a shared artifact (for example, to fix a bug), we can simply
regenerate all products. We have a single code base instead of scattered handwritten
code per product.

Example 2.8 Since our database product line is implemented using feature-oriented
programming, we can automate the assembly process. For a given feature selection,
we locate corresponding artifacts bundled in feature modules and compose them with
fully automated tools. How this can be done is the subject of Part II of this book. �

2.3 Feature Modeling

Modeling variability is a crucial step in product-line development. There are many
different approaches of variability modeling, each with a slightly different focus
and goal. A common approach is to express variability in terms of common and
optional features, a process called appropriately enough feature modeling. We use
feature models and their graphical representation as feature diagrams, because they
are currently the most popular form of variability models. Other examples of vari-
ability models are decision models (Schmid et al. 2011) or orthogonal variability
models (Pohl et al. 2005), Czarnecki et al. (2012) discuss the differences.

http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_1

2.3 Feature Modeling 27

Feature modeling takes place in domain analysis, but its results play a central role
in other phases of product-line development, for example, for requirements analysis
and product derivation—which is the reason why we provide substantial room for
explanations and discussions. In short, a feature model documents a product line’s
variability. It specifies the set of valid products. Besides introducing the graphical
language of feature diagrams, we also connect the graphical representation to a formal
representation that is the basis of engineering tools.

2.3.1 Feature Models

A feature model documents the features of a product line and their relationships.
Let us start with the features. As described in Sect. 2.1, a feature represents

typically a domain abstraction. We refer to a feature by its name. However, a feature
is more than a name; in domain modeling, one has to look at other properties of
features. Here is an (incomplete) list of potential information that domain experts
can collect on features:

• Description of a feature and its corresponding (set of) requirements
• Relationship to other features, especially hierarchy, order, and grouping
• External dependencies, such as required hardware resources
• Interested stakeholders
• Estimated or measured cost of realizing a feature
• Potentially interested customers and estimated revenue
• Configuration knowledge, such as ‘activated by default’
• Configuration questions asked during the requirements analysis step
• Constraints, such as “requires feature X and excludes feature Y”
• All kinds of behavioral specifications, including invariants and pre- and postcon-

ditions
• Known effects on non-functional properties, such as “improves performance and

increases energy consumption”
• Rationale for including a feature in the scope of the product line
• Additional attributes, such as numbers and textual parameters, used for further

customization during product generation
• Potential feature interactions

In this book, we concentrate on configuration knowledge and feature implemen-
tation.

Features are not always freely combinable. Not all features may be compatible, and
some features may require the presence of other features (for example, “A must always
be selected” and “B implies C”). Therefore, a feature model describes relationships
between features and defines which feature selections are valid.

In its simplest form, a feature model comprises a list of features and an enumera-
tion of all valid feature combinations. However, such enumeration quickly becomes

28 2 A Development Process for Feature-Oriented Product Lines

too large to be practical; therefore, other notations to describe relationships have
been proposed.

In principle, very different modeling approaches can describe the relationships
between features. One may follow a linguistic perspective using ontologies, or a direct
logic-based approach specifying the valid feature combinations using propositions.
Other approaches may use known modeling formalisms such as UML and provide
only a special interpretation.

In feature-oriented design and implementation, feature diagrams are a standard
visual representation, whose semantics is specified by a translation into proposi-
tional logic. Feature diagrams define a feature model as a hierarchy of features and
constraints among them.

2.3.2 Feature Diagrams

A feature diagram is a graphical notation to specify a feature model. It is a tree
whose nodes are labeled with feature names. Different notations convey various
parent–child relationships between features and their constraints.

If a feature f is a child of another feature p, f can be selected only when p is also
selected. Typically, a feature diagram includes mutual relations between features.
For example, the parent feature denotes a more general concept and the child a
specialization.

Mandatory and optional features are distinguished by a small circle on the child
node—a filled bullet denotes a mandatory feature, whereas an empty bullet denotes
an optional feature (see Fig. 2.2). The parent node is labeled with p, the child node
with f.

Specific graphical elements define additional constraints, if the child features of a
common parent cannot be selected independently. Figures 2.3 and 2.4 show graphical
notations for disjunctive combinations.

In Fig. 2.3, the edges between a parent feature and a group of child features fi are
connected via an empty arc. This graphical element denotes a choice of exactly one
feature out of a feature group (that is, choose one from {f1 . . . fn}). In propositional
logic, it is a generalization of an exclusive disjunction. Typical examples of exclusive
disjunctions of features are different implementations of the same functionality or

Fig. 2.2 Graphical notation
for optional and manda-
tory features. A filled bullet
denotes a mandatory feature,
and an empty bullet denotes
an optional feature

2.3 Feature Modeling 29

Fig. 2.3 Graphical notation
for a one-out-of many choice.
This choice corresponds to a
generalized xor operator

Fig. 2.4 Graphical notation
for a some-out-of-many
choice. This choice corre-
sponds to the logical or
operator

different technical platforms such as the choice of the supported operating system.
This construct is called alternative or mutually exclusive choice.

Figure 2.4 shows child features connected via a filled arc. This graphical element
denotes an unrestricted choice of one or more features out of a feature group. It is
chosen if, at least, one feature of the collection has to be selected, but there are no
other restrictions. Mathematically, it denotes an inclusive disjunction.

Example 2.9 Selecting one or several supported data types for storage is an example
for an unrestricted choice in the domain of embedded data management. For the
graph library, we may select one or more algorithms (any combination of algorithms
is possible). �

The notational elements of feature diagrams support a natural description of a wide
range of variability schemata, but not all. More general restrictions are needed in the
form of propositional logic constraints. Typical constraints are implications between
features located in different parts of the feature hierarchy, for example, to express that
a certain algorithm requires a special data structure or that a certain function is not
available for a certain operating system. Additional constraints can be simply added
as arrows or in textual form to the diagram. Those additional constraints may span
large parts of the feature diagrams and are therefore called cross-tree constraints.

There is no clear rule of when to use a hierarchical decomposition and when to
use cross-tree constraints. In principle, all feature dependencies could be expressed
as cross-tree constraints over features that are all marked as optional. Typically,
a hierarchical decomposition is used to structure a maximal space of features, whereas
cross-tree constraints are used sparingly for remaining constraints that do not fit into
the chosen hierarchy. As usual in modeling, there is no single ‘best’ answer. We will
see in Sect. 2.3.3 that there can be many equivalent answers.

30 2 A Development Process for Feature-Oriented Product Lines

FAME-DBMS

Storage Index

OS-Abstraction

Buffer Manager

Replacement

Memory Alloc

B+-Tree

NutOS

Win32

List

API

put

remove

update

get

add

remove

update

search

Static

Dynamic

LFU

LRU

Transaction

SQL Engine

Linux

Optimizer

Access

Data Types

Data
Dictionary

Tables

Columns

Aggregation
queries

Relational
queries

Stream-based
Queries

Select
queries

Fig. 2.5 Sample feature diagram for embedded data management

Example 2.10 For our embedded data management example, several partial feature
diagrams are published (Rosenmüller et al. 2008; Rosenmüller et al. 2009b; Saake
et al. 2009; Siegmund et al. 2009b). Figure 2.5 shows an excerpt of a feature diagram
that, in its complete form, covers 65 features (Rosenmüller et al. 2011). Nodes shaded
in gray are folded subtrees. �

Example 2.11 For embedded data management, storing an explicit data dictionary
requires the support of the String data type to store attribute names:

DataDictionary ⇒ String

For the graph library, a typical cross-tree constraint would be that the computation
of minimal spanning trees requires undirected, weighted edges:

MST ⇒ Undirected ∧ Weighted

�

2.3 Feature Modeling 31

For our presentation, we concentrate on Boolean features identified by a name.
In principle, non-Boolean features or attributes of features may also be of interest
in distinguishing products. For example, in a system supporting parallelization, the
number of supported processors may lead to different products. Several dialects of
feature models support non-Boolean features or non-Boolean attributes of features.

2.3.3 Formalization in Propositional Logic

Feature diagrams can be directly mapped to propositional formulas, thereby defining
a formal semantics of feature diagrams. All feature names from the set F of feature
names are interpreted as propositional variables. In the following, p, f and fi
exemplify members of F.

A mandatory feature definition mandatory(p,f) between a parent feature p and
a child feature f (denoted by a filled bullet at the child feature f) corresponds to a
logical equivalence. That is, whenever the parent feature is selected, so too must the
child and vice versa:

mandatory(p,f) ≡ f ⇔ p

An optional feature, denoted by an empty bullet, is written as optional(p,f)
and corresponds to implication. The implication states that the parent p may be
chosen independently from f, but the child f can only be chosen if p is selected:

optional(p,f) ≡ f ⇒ p

The alternative constraint defines a one-out-of-many choice and is denoted by
an empty arc in feature diagrams. The definition alternative(p,{f1,...,fn}) has
as first parameter the parent feature f and as second parameter a non-empty set
{f1,...,fn} of child features. Mapped to propositional logic, this is a disjunction, in
which, at least, one child feature is selected when the parent is chosen. Additionally,
we ensure for each pair of child features that no two child features are selected
together.

alternative(p, {f1, ..., fn}) ≡ ((f1 ∨ . . . ∨ fn) ⇔ p) ∧
∧

i<j

¬(fi ∧ fj)

An unrestricted choice or or, denoted by a filled arc in feature diagrams, defines a
some-out-of-many choice. Again, the definition choice(p,{f1,...fn}) has as second
parameter a non-empty set of child features. Mapped to propositional logic, the
selection of p is equivalent to a disjunction of the child features.

or(p, {f1, ...fn}) ≡ (f1 ∨ . . . ∨ fn) ⇔ p

32 2 A Development Process for Feature-Oriented Product Lines

Additional cross-tree constraints can be expressed as propositional formulas, as
well. In fact, they are often already specified as propositional formulas the cor-
responding graphical notations. Therefore, we can directly reuse them in the logic
representation. All formulas for cross-tree constraints are connected via conjunction,
which restricts the set of possible products.

Our formalization is summarized in Definition 2.4:

Definition 2.4 A feature diagram is a graphical representation of a feature
model as a tree over the feature set F. Each edge in the tree is defined by
exactly one feature constraint, that is, by a declaration of one of the feature
constraint types mandatory, optional, alternative, or or.

root(f) ≡ f (2.1)

mandatory(p,f) ≡ f ⇔ p (2.2)

optional(p,f) ≡ f ⇒ p (2.3)

alternative(p, {f1, ...fn}) ≡ ((f1 ∨ . . . ∨ fn) ⇔ p) ∧∧

i<j

¬(fi ∧ fj) (2.4)

or(p, {f1, ...fn}) ≡ (f1 ∨ . . . ∨ fn) ⇔ p (2.5)

Additionally, a set of cross-tree constraints may be defined. The corresponding
propositional formula of the feature constraints and the cross-tree constraints
are conjoined resulting in one propositional formula that represents the seman-
tics of the whole feature diagram. �

Propositional logic enables us to use automated tools such as SAT solvers to
test interesting properties, such as checking validity of feature models and feature
selections, detecting dead features, and comparing feature models. In Chap. 10, we
explore different use cases of automated analyses of feature models based on the
mapping defined here.

2.3.4 The Feature Model for the Graph Library

We use the product line of graph libraries from Sect. 1.5 to illustrate feature diagrams
and their formalization. Recall, this product line supports variations in a library of
graph data structures and algorithms.

http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_1

2.3 Feature Modeling 33

Fig. 2.6 A possible feature diagram of the graph library

A possible feature diagram for the graph library is shown in Fig. 2.6. The root is
labeled with GraphLibrary to represent a graph product (that is, a graph library). It has
a mandatory child feature EdgeType, because each graph library has to implement
an edge type, which is either Directed or Undirected. Furthermore, three other child
features of the root are optional: Search, Weighted, and Algorithm. Search strategies
may be either breadth-first search (BFS) or depth-first search (DFS). Algorithm offers
a selection of graph algorithms as child features. Since it is optional, either zero, one,
or more algorithms may be present in a graph product. In our example, the algo-
rithm for minimal spanning trees MST has two alternative implementations, Prim and
Kruskal. Some non-local conditions are modeled as explicit Boolean constraints—for
example, minimal spanning trees make only sense for weighted graphs, and shortest
paths can be computed for directed graphs only.

Next, we use the feature diagram to illustrate the mapping to a propositional
formula as introduced in Definition 2.4. The diagram is equivalent to the following
conjunction:

root(GraphLibrary)

∧ mandatory(GraphLibrary,EdgeType)

∧ optional(GraphLibrary,Search)

∧ optional(GraphLibrary,Weighted)

∧ optional(GraphLibrary,Algorithm)

∧ alternative(EdgeType,{Directed,Undirected})

∧ or(Search,{BFS,DFS})

∧ or(Algorithm,{Cycle,ShortestPath,MST,Transpose})

∧ alternative(MST,{Prim,Kruskal})

∧ (MST ⇒ Weighted)

∧ (Cycle ⇒ Directed)

∧ (· · ·)

34 2 A Development Process for Feature-Oriented Product Lines

After expanding the feature constraints, we arrive at the following formula:

GraphLibrary

∧ (EdgeType ⇔ GraphLibrary)

∧ (Search ⇒ EdgeType)

∧ (Weighted ⇒ EdgeType)

∧ (Algorithm ⇒ EdgeType)

∧ (((Directed ∨ Undirected) ⇔ EdgeType) ∧ ¬(Directed ∧ Undirected))

∧ ((BFS ∨ DFS) ⇔ Search)

∧ ((Cycle ∨ ShortestPath ∨ MST ∨ Transpose) ⇔ Algorithm)

∧ (((Prim ∨ Kruskal) ⇔ MST) ∧ ¬(Prim ∧ Kruskal))

∧ (MST ⇒ Weighted)

∧ (Cycle ⇒ Directed)

∧ (· · ·)

Both the diagram and formula are incomplete where ellipses appear.
The graph example does not contain an alternative construct with more than

two child features. To illustrate the transformation to propositional logic for such
situations, we use an additional example. Assume that our product line runs on
different operating systems. This is modeled by a feature OS with three different
alternative child features Linux, Win and Mac. Figure 2.7 shows the corresponding
subtree of the feature diagram. This leads to the feature constraint alternative(OS,
{Linux, Win, Mac}), which translates into the following formula:

(
OS ⇔ (Linux∨Win∨Mac))∧(¬(Linux∧Win)∧¬(Linux∧Mac)∧¬(Win∧Mac))

The number of pairwise exclusions is quadratic in the number of alternative features
(each combination of two alternative features forms a negated clause).

2.3.5 Variations and Extensions of Feature Models

Feature models are widely used in research and practice. However, no standardized
modeling format has been accepted, so far. Standards are on the way—at the time of

Fig. 2.7 Feature diagram for
alternative operating systems

2.3 Feature Modeling 35

writing, there is a draft from the Object Management Group1 and an Eclipse incubator
project2—but they are not yet in a mature form. As a result, different notations and
file formats are omnipresent.

In this book, we use a simple form of feature diagrams. Each pair of nodes partic-
ipates in maximally one of the basic four feature constraint types; so, for example,
it is not possible to add an optional feature as an edge in an alternative group.

In the literature, there are many variations of feature diagrams including:

1. Some cross-tree constraints can be modeled graphically. Arrows can denote impli-
cations or mutual exclusion, as exemplified in Fig. 2.8a.

2. Some notations distinguish abstract from concrete features. Abstract features
are used for structuring and documentation purposes only and are not bound
to implementation artifacts. They structure a diagram but do not reflect actual
variability in the domain (such as features EdgeType and Search in Fig. 2.6). We
exemplify the difference in Fig. 2.8b, in which abstract features are denoted by
gray boxes.

3. Some notations support multiple group types under the same feature. For example,
in Fig. 2.8c, features I, J, and K share the same parent even though they belong
to different groups. In our notation, we can express such combinations only by
introducing additional abstract features.

(a)

(b) (c)

Fig. 2.8 Some variations of feature diagrams: a cross-tree constraints, b transformation toward
abstract inner features, c mixing optionality and group constraints

1 Common Variability Language (CVL), http://www.omgwiki.org/variability.
2 EMF Feature Model, http://www.eclipse.org/modeling/emft/featuremodel/.

http://www.omgwiki.org/variability
http://www.eclipse.org/modeling/emft/featuremodel/

36 2 A Development Process for Feature-Oriented Product Lines

4. Some notations permit the mixing of mandatory and optional features with alter-
native and choice groups, as also illustrated in Fig. 2.8c. Czarnecki and Eisenecker
(2000, Sect. 4.4.1.5) describe a normalization strategy for such models.

5. There are generalizations of or and alternative constructs, where a range or fixed
number of options must be chosen (group cardinalities).

6. In some notations, a feature may be selected multiple times, each with different
configurations of subfeatures (known as feature cloning or feature cardinalities).

7. In some approaches, features can have attributes. An algorithm of our graph
product-line example may have the attribute memory footprint (indicating the
amount of memory that is consumed by the feature) or a cost attribute (indicating
the price of selecting the feature). Feature attributes may be useful in the automatic
optimization of feature selections and product derivation.

Often, it is possible to convert between different formats, typically without loss
of information, but possibly with loss of structure. Such details are beyond the scope
of this book. The simple notation introduced in the previous sections is sufficient for
our needs.

2.3.6 Feature Modeling in Practice

Sadly, research literature on feature models usually provides only small examples,
along the lines of the graph library in Fig. 2.6. Although researchers have attempted
to collect a corpus of example feature models,3 feature models of industrial product
lines are rarely publicly available.

In this section, we try to peek into industrial practice by looking at feature mod-
eling in the Linux kernel, the largest real-world example of a publicly available
software product lines, and by looking at a commercial product-line tool that scales
to product lines with thousands of features. We briefly discuss their relation to the
approach presented in this book.

Kconfig

The Linux kernel can be considered as a software product line. It has over 10,000 fea-
tures, configurable at compile time. In version 2.6.28.6, the feature model for the
x86 architecture has 5,426 features, of which 4,744 are configurable by end users.
Recently, its feature-modeling mechanism, the Kconfig language and tool, has been
studied intensively (She et al. 2010; Berger et al. 2010b; Lotufo et al. 2010).

Instead of feature diagrams, the Linux developers use a self-written textual
domain-specific language, Kconfig, to specify features and their dependencies. Kcon-
fig closely resembles mechanisms of feature modeling, but uses a slightly different

3 A large repository with over 200 feature models is available on the web: http://www.splot-
research.org/.

http://www.splot-research.org/
http://www.splot-research.org/

2.3 Feature Modeling 37

Fig. 2.9 Excerpt for the feature model of the Linux kernel, written in the Kconfig language (adopted
from She et al. 2010)

terminology. In Fig. 2.9, we show a small excerpt of the feature model of the Linux
kernel. It consists of a hierarchy of menus (‘menu’, roughly equivalent to abstract
features, see Sect. 2.3.5) that contain configuration options (‘config’). A configuration
option can have different types, such as Boolean, tristate, integer, and string. Boolean
configuration options are closest to our notion of features. Each configuration option
has a name, a description, a type, and possibly defaults (‘default’), and dependencies
(‘depends on’). Due to its size, the feature model of the Linux kernel is divided into
multiple files (roughly corresponding to the overall architecture of Linux), with a
lexical include mechanism to compose them together.

The Kconfig language comes with a set of tools that process a feature model and
provide an interactive environment where a user can select desired features. During
feature selection, a user explores a hierarchy of menus (entering submenus in menu
config or using a tree structure in xconfig) and selects desired configuration options.
Compared to many academic feature models, the menu structure of the Linux kernel
is not deeply nested, but menus often have a large number of choices; there are
many and complex cross-tree constraints between features, some involving up to
22 features. The tool infrastructure can hide features that are currently not selectable
and can enforce constraints between users during configuration. It provides a rich
environment to show help texts and dependencies. Still, in a user survey, Hubaux
et al. (2012) have found that configuring the Linux kernel remains a challenging
task.

Since the Linux kernel is open source, it has recently been the focus of many
researchers interested in real-world feature models. For a closer look—including
comparisons to other feature models, a discussion of problems, and a study on evo-
lution of variability—see the recent research literature (She et al. 2010; Berger et al.
2010b; Lotufo et al. 2010; Hubaux et al. 2012).

38 2 A Development Process for Feature-Oriented Product Lines

Fig. 2.10 Variability of the graph library modeled with pure::variants

pure::variants

There are a few commercial tool suites for the development of software product lines.
Among them, pure::variants4 has been used in many companies, often with large
real-world feature models (Beuche et al. 2004).

Based on the Eclipse development environment, pure::variants provides facilities
to model features in a hierarchical way. Instead of the textual notation of Kconfig and
the graphical notation of feature diagrams, the primary editor of pure::variants is tree-
based, in which developers add or change features using specific editor commands, as
illustrated in Fig. 2.10. The editors in pure::variants use custom symbols, which can
be mapped to the feature-diagram notation. Arbitrary cross-tree constraints can be
added using additional relations, written in a Prolog dialect. In addition to traditional
feature-modeling concepts, pure::variants provides constructs for soft constraints,
similar to defaults in Kconfig.

Besides features names, pure::variants permits users to define additional descrip-
tions (cf. Sect. 2.3.1) and feature attributes. Values of feature attributes can be pre-
defined, precalculated, or set during configuration. Feature attributes can be used to
restrict valid selections of features by defining constraints on them (cf. Sect. 2.3.5).

4 http://www.pure-systems.com.

http://www.pure-systems.com

2.3 Feature Modeling 39

For example, a constraint could specify “if the number of processors is larger than 3,
select a different sorting algorithm.” Attributes may also be provided during model-
ing, for example to specify the costs of a feature, which can then be shown during
the configuration process.

Although pure::variants is not deployed with examples from industrial software
product lines and published experience reports do not reveal many details, having
a closer look at the tool can be instructive to see what kinds of mechanisms are
needed for a feature-modeling tool in practice. A free community edition of the tool
is available for experimentation. We return to pure::variants and its facilities beyond
feature modeling in Appendix A.

2.3.7 Tooling

There are several tools that can be used to describe feature models. In the simplest
case a simple text processor is sufficient to describe a list of features and their
properties and relationships. More advanced tools that target feature models directly,
can provide additional tool support, such as enforcing a consistent structure, dividing
models into smaller modules and composing them, reasoning about features (see also
Chap. 10), supporting the requirements-analysis process based on the feature model
and much more.

Apart from commercial tools, over the years, many different academic feature-
modeling tools have been created, such as Captain Feature5 or the Feature Modeling
Plug-in6—often in student projects, often now abandoned. One of the more stable
academic tools is FeatureIDE (described in more detail in Appendix A), which
contains a graphical feature-model editor conforming largely to the graphical feature-
diagram notation used in this book.

In open-source systems, textual modeling notations are more common, such as
Kconfig from the Linux kernel described above. The eCos operating system for
embedded devices also comes with a powerful feature-modeling notation CDL and
suitable tools. For more details on these open-source feature modeling tools, we
recommend the survey of Berger et al. (2010b).

The two main commercial product-line tools pure::variants and Gears also sup-
port feature modeling, as described further in Appendix A.

2.4 Adoption Paths of the Product-Line Approach

How should one start the development of a software product line in the first place? In
most cases, a company moving to product-line technology has already some products
of the target domain in its portfolio. In these cases, we think of a transition to

5 http://captainfeature.sf.net/
6 http://gsd.uwaterloo.ca/fmp

http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://captainfeature.sf.net/
http://gsd.uwaterloo.ca/fmp

40 2 A Development Process for Feature-Oriented Product Lines

a product line, rather than of a development from scratch. Following Krueger (2002),
we distinguish three different adoption paths:

1. The proactive approach develops a product line from scratch by carefully using
analysis and design methods.

2. The extractive approach starts with a collection of existing products and incre-
mentally refactors them to form a product line.

3. The reactive approach begins with a small, easy to handle product line (possibly
consisting only of a single product) and is extended incrementally with new
features and implementation artifacts, thus extending the product line’s scope.

Since the adoption path can have a significant effect on the selection of imple-
mentation methods, we will look at all three approaches in detail.

2.4.1 Proactive Approach

The proactive approach is to develop a product line from scratch. In a design process
as outlined in the previous sections, developers model the domain and implement all
relevant features before the first product is generated. Typical tasks in the proactive
approach are:

• domain analysis and scoping as explained before,
• deciding about the product-line implementation approach,
• and implementing the entire product line.

Using the proactive approach, developers can plan the product line’s variability
perfectly for the desired variability. As a result, one can reach a high level of code
quality and maintainability. However, its drawback is a high upfront investment and
corresponding risks before the first product arrives at the market. Moreover, with
existing products, essentially a company has to stop production for a significant
period of time for restructuring or even rewriting the code.

The proactive approach, as a clean-slate approach that follows academic habits, is
often taught in product-line texts, and also the steps outlined in Sect. 2.2 (p. 19) follow
this idealized model. There are several success stories from companies adopting a
product line with a proactive approach, including a full production stop (Clements and
Krueger 2002). However, it is debatable how applicable this process is in general.
Often, some products are already in productive use and a long delay to transit to
product-line technology is not acceptable. The proactive approach is often seen as
idealistic and academic, which, in practice, has to be combined partly with ideas
from the other two adoption strategies.

2.4.2 Extractive Approach

The extractive approach is useful when a company already has a portfolio of related
products that target a common domain, but those projects are not engineered in a

2.4 Adoption Paths of the Product-Line Approach 41

systematic way yet. Often companies start with a clone-and-own approach, where
variations of a system are created by copying the source code and modifying the copy
(or by creating branches in a version control system, see Sect. 5.1, for an example)
to satisfy the specific needs of a customer. The more copies need to be maintained
and evolved separately, the more expensive maintenance tasks become and the more
developers run into maintenance problems, such as inconsistent evolution of different
copies. Typically, at some point, the pressure on developers grows so strong that they
are forced to adopt a more disciplined product-line approach, in which variations and
commonalities are planned and structured intentionally. The aim of the extractive
approach is to make a transition from one or multiple legacy products to a more
structured product line.

Typical tasks of the extractive approach are:

• identification of commonalities and differences of existing products, based on
domain knowledge and stakeholder requirements,

• extraction or implementation of the core functionality in the form of common
reusable domain artifacts,

• and extraction and realization of the variation using appropriate implementation
techniques.

The extractive approach advocates an incremental adoption of product-line
technology. Common parts are extracted, and some cloning is eliminated step by
step. Due to its incremental nature, risks and upfront investment are much lower com-
pared to the proactive approach. During the adoption process, all products remain in
production. However, the quality of the extracted product line relies on the quality of
the tools supporting the extraction. Development does not follow the clear stepwise
academic process of domain analysis followed by domain implementation. Since the
extracted code fragments do not follow preplanned guidelines, but rely on existing
code, the resulting code basis may be hard to maintain. Hence, the extractive adop-
tion path potentially limits the choices of implementation techniques, as discussed
in Part II of this book. As a lightweight, low-risk strategy, however, the extractive
adoption path is typical in practice.

2.4.3 Reactive Approach

The reactive approach is an instance of Boehm’s spiral model (Boehm 1985), an agile
method to adopt a product-line approach. Developers start with a software product
line SPL0 which realizes an initial version of the envisioned software product line. In
incremental steps from SPLi to SPLi+1, the product line progressively grows toward
its ideal, covering the full variation spectrum, as defined during domain analysis
(which can also be incremental).

Typical tasks in the reactive approach are:

• exploration and characterization of the requirements leading to a new product
currently not covered by the product line,

http://dx.doi.org/10.1007/978-3-642-37521-7_5

42 2 A Development Process for Feature-Oriented Product Lines

• describing the delta leading to the improved product,
• and implementing the delta in a suitable way.

Besides being an adoption path, the reactive approach describes also a typical
pattern for maintaining and evolving a product line during its lifetime.

Conceptually, reactive adoption is positioned between the proactive and the extrac-
tive approach. It requires less upfront planning than the proactive approach, but
including a feature may require invasive and expensive changes to the product line,
because it has not been designed with that feature in mind. At the same time, the
reactive approach is typically considered to be more structured than the extractive
approach, because each iteration follows clear planning steps. Overall, the reactive
process aligns well with agile methods of software construction.

2.5 Further Reading

Feature-oriented domain analysis is well-explored in literature. For interested read-
ers, who would like to learn more about domain analysis, we recommend the material
of Kang et al. (1990), Simos (1995), and Czarnecki and Eisenecker (2000).

Examples of dialects and extensions of feature models are common in the product-
line literature, for example, by Griss et al. (1998), Streitferdt et al. (2003), Beuche et
al. (2004), Czarnecki et al. (2005a), Schobbens et al. (2007) and Michel et al. (2011).
A well-explored alternative to feature models are decision models (Schmid et al.
2011). Czarnecki et al. (2012) provide a detailed discussion of commonalities and
differences, and compare both feature models and decision models to tools used in
practice. Furthermore, Pohl et al. (2005) advocate an alternative variability-modeling
notation—orthogonal variability models.

The translation of feature models to propositional formulas has been described in
several publications (Batory 2005; van der Storm 2004; Schobbens et al. 2007). The
reverse direction, that is, reverse engineering of feature models from propositional
formulas, was explored by She et al. (2011). Benavides et al. (2010) discuss the
automated analysis of feature models, which we will explore further in Chap. 10.

The different adoption paths for product lines have been discussed by Krueger
(2002). Clements and Krueger (2002) had a public controversial discussion on the
trade-offs between different adoption approaches.

Exercises

2.1. Define the terms product line, feature, feature selection, feature dependency,
product, scoping, and domain and give an example each.
2.2. What are the possible motivations for adopting the idea of a mass customization
and product lines from industrial manufacturing also for software? What are typical

http://dx.doi.org/10.1007/978-3-642-37521-7_10

Exercises 43

scenarios in which product-line technology was or can be adopted for software? Why
not simply create an application that contains all possibly needed features?
2.3. Find a physical product or software system that can be ordered customized over
the Internet (PCs, cars, cloth, food, and so forth) with at least 8 configuration options.

(a) Describe the configuration space of the product using a feature model. Pay atten-
tion to possible dependencies between features.

(b) Estimate the number of possible configurations.
(c) Discuss the economic benefits and challenges of product lines for the vendor.

What difference does it make when customers can select a specific configura-
tion instead buying the standard configuration or selecting from a small set of
preconfigured products?

2.4. Imagine a company that provides tailor-made chat software for the intranet of
large cooperations (similar to IRC, ICQ, or Skype).

(a) Analyze the domain. Which features are likely to be requested by many cus-
tomers? Which features are likely to be requested only by few customers? Which
features could distinguish your products from the products of your competitors
in this market segment?

(b) What advantages does product-line technology provide in this context? Discuss
also alternative solutions.

(c) Model the domain with a feature diagram. Pay attention to feature dependencies.
(d) Translate the feature diagram into a propositional formula.
(e) Name valid and invalid feature combinations with respect to the feature model.

2.5. Repeat Exercise 2.4 with different domains, for example,

(a) Webmail applications,
(b) embedded firmware for consumer television sets,
(c) operating systems for smartphones,
(d) word processors,
(e) control software for diesel engines,
(f) drivers for graphic chips,
(g) satellite navigation systems,
(h) firmware for printers, and
(i) development environments, such as Eclipse or Visual Studio.

2.6. Translate the feature model from Fig. 2.5 (p. 30) into a propositional formula.
2.7. Why is it useful or even necessary to limit the scope a product line to a spe-
cific domain? Discuss the scope of a potential software product line for multimedia
systems and a potential software product line of drivers for a fingerprint scanner.
What information would you need to make informed scoping decisions?
2.8. Explain the general process of developing a software product line. Explain
the steps with the chat example from Exercise 2.4. What are the differences and
commonalities between typical processes for developing a single application and the
process of developing a software product line?

44 2 A Development Process for Feature-Oriented Product Lines

2.9. Explore pros and cons of the individual adoption paths discussed in Sect. 2.4 for
the following scenarios:

(a) A small startup has developed a prototype of an innovative satellite navigation
system with a revolutionary new routing algorithm. To release the software to a
well-defined set of hardware and software platforms the team decides to pursue
a product-line approach.

(b) Dozens of teams in the IT department of a large consumer electronics manu-
facturer have separately built individual software for different TV receivers for
different markets world wide for many years. However, management becomes
increasingly impatient with slow release cycles and wants to adopt a product-line
approach.

(c) A producer of mobile phones tries to enter the market of low-energy solar-
powered phones with limited functionality. Since the hardware is innovative
and different, most software will have to be rewritten, but also several well-
defined subsystems for voice processing might be reusable. As the market evolves
quickly and unpredictably (it might be necessary to quickly copy a feature when
a competitor innovates one), a few committed developers suggest developing the
operating system as a product line.

Document what additional information you would need to make an informed decision
about a suitable adoption strategy.
2.10. Discuss reasons why feature models are typically represented as trees and not as
lists, graphs, logic expressions, scripts, or prolog programs. When feature models are
represented as trees in feature diagrams, why are cross-tree constraints still needed?
Discuss whether cross-tree constraints should be replaced with additional graphical
notations.
2.11. Give an example of two feature diagrams representing the same set of valid
products. Discuss whether there is a normal form or there should be one.

Part II
Variability Implementation

Chapter 3
Basic Concepts, Classification, and Quality
Criteria

After reading the chapter, you should be able to

• characterize product-line implementation techniques using a suitable vocabulary
(especially, binding times, language-based versus tool-based, and annotation ver-
sus composition), and

• discuss and compare product-line implementation techniques based on proper
quality criteria (especially, preplanning effort, feature traceability, separation of
concerns, information hiding, granularity, and uniformity).

In Part I, we described a process to develop feature-oriented product lines. It involves
domain and application engineering, each comprising several phases, from domain
and requirements analysis to implementation and product derivation. Since the early
days of software product lines, the overall process and the analysis phase have been
at the forefront of interest (problem space with domain and requirements analysis
in Fig. 2.1). Researchers and practitioners were mostly concerned with identifying
and specifying features and their relationships (see Sect. 2.3), exploring paths of
product-line approaches for industrial adoption (see Sect. 2.4), as well as extending
and adapting processes taking product-line methods into account (see Sect. 2.4).
The fact that software product lines have to be implemented systematically and
efficiently in order to attain the ambitious goals of facilitating reuse, variation, and
automated software construction (solution space with domain implementation and
product derivation in Fig. 2.1) was not the center of interest.

In research and practice, a multitude of mechanisms, languages, and tools have
been developed that strive for supporting the development of reusable and variable
software. Mostly, they were not specific to software product lines nor did they take
the specifics of the product-line process into account. Nevertheless, several have
been adopted silently by product-line developers, while others are on their way into
practice. In Chaps. 4 and 5, we introduce and discuss techniques that are already
standard in the practice of product-line engineering and that have been invented
largely without software product lines in mind. In Chaps. 6 and 7, we review recent

S. Apel et al., Feature-Oriented Software Product Lines, 47
DOI: 10.1007/978-3-642-37521-7_3, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_7

48 3 Basic Concepts, Classification, and Quality Criteria

approaches that are in early stages of being transferred into practice, mostly tailored
to the specific requirements of software product lines.

In this chapter, we introduce basic concepts that are central to product-line imple-
mentation techniques and that we use in the remaining chapters. In particular, we
introduce three dimensions for classification in Sect. 3.1 as well as six quality criteria
for comparison of product-line implementation techniques in Sect. 3.2.

3.1 Dimensions of Variability Implementation

To implement software product lines efficiently, the underlying code has to be vari-
able. As variability is a very general concept (Svahnberg et al. 2005), we use the
following definition throughout the book that is tailored to product-line engineering:

Definition 3.1 Variability is the ability to derive different products from a
common set of artifacts. �

The desire for variable software is driven by the typically broad and diverse spec-
trum of requirements of the stakeholders of a product line, manifested in features
they want in a product. Instead of serving the needs of a particular stakeholder by
developing a product from scratch, variable software can be tailored stakeholder
requirements. There is a multitude of techniques developed for this purpose. In the
remaining section, we introduce three dimensions for classifying variability imple-
mentation techniques.

3.1.1 Binding Time

Variability offers choices. When we derive a product, we make decisions; we decide
which features will be included in the product or not. We also say that we bind a
decision. Different implementation techniques allow binding decisions at different
times. In other words, they allow different binding times.

We distinguish between compile-time binding (also called early binding, static
binding, or static variability), load-time binding, and run-time binding (also called
late binding, dynamic binding, and dynamic variability).1 With an implementation
technique that supports compile-time binding, developers make decisions of which
features to include at or before compile time. Code of deselected features is then
not even compiled into the product. Examples include implementing variable code

1 Some researchers distinguish between even more binding times, including preprocessing-time,
link-time, weaving-time binding, and so forth (Rosenmüller 2011). For our discussions, the three-
level distinction into compile time, load time, and run time is sufficient.

3.1 Dimensions of Variability Implementation 49

with preprocessors (Sect. 5.3) and feature-oriented programming (Sect. 6.1). With
an implementation technique that enables load-time binding, developers can defer
feature selection until the program is actually started. That is, during compilation
all variations are still available; they are decided after deployment, for example,
through command-line parameters or configuration files. Some techniques even sup-
port run-time binding, where decisions are deferred to run time and may even change
during program execution (dynamic reconfiguration triggered by external or internal
stimuli). Examples of implementation techniques that support load-time and run-
time variability include simple parameter-based variability (Sect. 4.1) and context-
oriented programming (Sect. 6.6.3). Some implementation mechanisms support mul-
tiple binding times.

Definition 3.2 Compile-time variability is decided before or at compile time.
Load-time variability is decided after compilation when the program is started.
With run-time variability, decisions can be made and changed during program
execution. �

The different binding times each have advantages and disadvantages. Typically,
compile-time binding leaves room for more optimizations. All unnecessary code
can be removed from the product, reducing run-time overhead in terms of binary
footprint, memory consumption, and execution time. However, once the product has
been generated and deployed, it is not variable any more—an issue that has been
explored in depths in autonomic computing (Cheng et al. 2009).

A product with load-time variability is more flexible to reconfigure. Instead of
recompiling a new product after each change, end users can modify parameters and
restart the same binary product. A product in which variability decisions are even
delayed to run time is able to react to internal and external stimuli (in our context,
a feature request) by adapting its behavior. In product-line terminology, this behav-
ioral adaptation at run time can be described as the derivation of virtual products.
However, mechanisms for load-time and run-time binding often incur a memory and
performance overhead, since all variations are compiled into a single binary and con-
sistency conditions must be checked at run time. Including unnecessary functionality
in a shipped product may also be considered as potential security threat. We discuss
potential problems in more detail in the context of parameter-based implementations
in Sect. 4.1.1 (p. 66).

3.1.2 Technology: Language-Based Versus Tool-Based

Another dimension of classifying different product-line implementation techniques
is to distinguish those that are based on mechanisms provided by a programming
language, called language-based approaches, from those that are based on tools that
operate on software artifacts to derive products, called tool-based approaches. A

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_4

50 3 Basic Concepts, Classification, and Quality Criteria

classic language-based approach is to realize variability with run-time parameters
(see Sect. 4.1). A classic tool-based approach is to use a preprocessor that transforms
software artifacts based on a given feature selection (see Sect. 5.3). Unfortunately, one
cannot always draw a sharp line between language-based and tool-based approaches
(for example, some component approaches are language-based and some are tool-
based), but this rough distinction is sufficient to structure our discussion.

Definition 3.3 A language-based approach uses the mechanisms provided by
a host programming language to implement features and to derive products.
A tool-based approach uses one or more external tools to implement or repre-
sent features in code and to control the product-derivation process. �

In a language-based approach, both the implementation of features as well as the
feature and variability management are located in the source code. This makes it
easy for developers and analysis tools to understand and reason about the product
line and its implementation as a whole. However, depending on the implementation
approach, feature boundaries and feature management tend to vanish in the code, for
example, when using run-time parameters to control feature-specific behavior (see
Sect. 4.1).

A tool-based approach favors a clear separation between feature implementation,
on the one hand, and feature and variability management and product derivation, on
the other. While this separation can simplify the code structure, it makes it necessary
for developers and tools to locate, understand, and reason about multiple artifacts in
different places.

3.1.3 Representation: Annotation Versus Composition

A major goal of feature-oriented product line engineering is to derive a product
automatically from variable code, based on a user’s feature selection. Hence, product
derivation involves product generation, statically or dynamically. In this book, we
concentrate on two approaches that are widely used in practice: annotation-based
and composition-based approaches, which differ in the way they represent variability
in the code base and the way they generate products.

In annotation-based approaches, the code of all features is merged in a single code
base, and annotations mark which code belongs to which feature. In some sense,
an annotation is a function that maps a program element to the feature or feature
combination it belongs to. A standard example is implementing variable code using
the C preprocessor (Sect. 5.3). The C code comprises the code of all products, and
preprocessor directives within the C code control which code fragments are included
or excluded upon a feature selection (by setting preprocessor constants). Also the
use of parameters that control and alter the behavior of a program at run time can be

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5

3.1 Dimensions of Variability Implementation 51

viewed as an annotation. In this case, an if statement that executes code depending
on the feature selection plays the role of an annotation.

Definition 3.4 Annotation-based approaches annotate a common code base,
such that code that belongs to a certain feature is marked accordingly. During
product derivation, all code that belongs to deselected features or invalid feature
combinations is removed (at compile time) or ignored (at run time) to form the
final product. �

Annotation-based approaches are widely used in practice because they are easy to
use and already natively supported by many programming environments. Neverthe-
less, preprocessor-based and parameter-based implementations are often criticized
for their potential complexity, lack of modularity, and reduced readability, as we
discuss in Sects. 4.1 and 5.3. However, some disadvantages, such as scattered code
or error potential can be addressed with relatively simple tool support, as shown in
Chap. 7.

Composition-based approaches locate code belonging to a feature or feature com-
bination in a dedicated file, container, or module. A classic example is a framework
that can be extended with plug-ins, ideally one plug-in per feature; different products
can be generated by integrating different plug-ins, as we discuss in Sect. 4.3.3. Beyond
classic composition-based approaches, such as frameworks and components, there is
a large body of research on advanced language abstractions and composition mech-
anisms to implement feature-oriented product lines. In Chap. 6, we discuss a number
of such approaches including feature-oriented and aspect-oriented programming.

Definition 3.5 Composition-based approaches implement features in the
form of composable units, ideally one unit per feature. During product deriva-
tion, all units of all selected features and valid feature combinations are com-
posed to form the final product. �

The key challenge of composition-based approaches is to keep the mapping
between features (problem space) and composition units (solution space) simple
and tractable, ideally one-to-one (see Chap. 2). If each feature has its own imple-
mentation in the form of a composition unit, a generator can simply include the
corresponding unit in the composition when a feature is selected.

In principle, any combination of annotation-based and composition-based
approaches is possible (Kästner et al. 2009a). For example, we could decompose
a system into composable units, where certain components are themselves variable
in the sense that their implementations are annotated. During product derivation,
a generator would select a subset of composition units and remove annotated code
from them that belongs to deselected features.

Another way to view the difference between annotation and composition is
that annotation-based approaches support negative variability (code is removed on

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_2

52 3 Basic Concepts, Classification, and Quality Criteria

(a) Annotation-based approach (b) Composition-based approach

Fig. 3.1 Annotation-based and composition-based approaches to product-line implementation

demand), and composition-based approaches support positive variability (compo-
sition units are added on demand), or that annotation-based approaches separate
concerns virtually and composition-based approaches separate concerns physically
(see Chap. 7 for a more detailed discussion). Finally, we would like to emphasize that
annotation and composition are two special but important instances of the broader set
of possible program-generation and program-transformation mechanisms that can be
used for product-line development. We illustrate the principle differences between
annotation-based and composition-based approaches to product-line implementation
in Fig. 3.1.

3.2 Quality Criteria

A key objective of this book is to convey that different implementation techniques
for product-line development have different characteristics and mutual strengths and
weaknesses. To assess tradeoffs and compare implementation strategies, we intro-
duce and discuss six quality criteria that product-line implementation techniques
should ideally meet: Low preplanning effort, feature traceability, separation of con-
cerns, information hiding, granularity, and uniformity. As we will explain, not all
quality criteria may be met at the same time, as some quality criteria pursue conflict-
ing goals. Hence, different implementation strategies focus on different criteria and
make different tradeoffs.

3.2.1 Preplanning Effort

Independently of the adoption path, product-line engineering always incurs a certain
amount of preplanning (of course, more in the proactive approach than in the reactive
approach, but still). Which features will be requested? Which features are likely to
interact? Where will one feature extend the implementation of another feature?

http://dx.doi.org/10.1007/978-3-642-37521-7_7

3.2 Quality Criteria 53

Fig. 3.2 Designs of two
products of the same domain

code for
system A

code for
system B

Fig. 3.3 Ad hoc decompo-
sition of both products of
Fig. 3.2

The key goal of preplanning is to ease the anticipation of changes and sources
of variability and reuse. Different implementation techniques perform differently in
facilitating or hindering this task. That is, the effort of preplanning an implementation
technique requires is an important quality criterion.

By studying a representative set of software products of a domain, a set of design
and implementation patterns will emerge. For example, consider the pair of shapes
in Fig. 3.2, which represent the design and implementation of two products, A and B,
that belong to the same domain D. Now we partition A and B into parts. Figure 3.3
shows a typical partitioning that we have experienced from students and engineers.
Sometimes there are regular shapes, other times there are rough shapes.

Now, suppose product C is a natural addition to domain D (Fig. 3.4). Given the
decomposition of Fig. 3.3, how easy is it to construct C? That is, can we reuse parts
from other products? The answer is no. There is nothing “natural” about the shapes
identified in Fig. 3.3 that would lend itself to the easy creation of C. With proper
preplanning, there is a solution that allows all systems, A, B, and C, to be reconstructed
in no time from existing parts, as illustrated in Fig. 3.5.

The whole product-line development process (see Sect. 2.2, p. 19) involves a
form of preplanning. Instead of developing individual software systems, product
developers analyze an entire domain and anticipate potential requirements in terms
of features. The information about anticipated variations is a prerequisite for a proper
design of a product line. However, not all features and variations can be anticipated,
especially, in reactive and extractive adoption paths, see Sect. 2.4, p. 39.

Ideally, a product-line implementation technique minimizes the necessary pre-
planning effort and even allows implementing features that were not planned upfront
with low effort. An important observation is that some design and implementa-
tion techniques foster change, such that preplanning is necessary only to a minor
extent, while other approaches require substantial preplanning activities. For exam-
ple, using frameworks (Sect. 4.3), a programmer has to anticipate where a given pro-
gram may be extended by features in the future. Advanced implementation techniques
such as feature-oriented programming (Sect. 6.1) and aspect-oriented programming

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6

54 3 Basic Concepts, Classification, and Quality Criteria

Fig. 3.4 Outline of the code
base of another system in the
same domain

code for
system C

Fig. 3.5 Reusable decompo-
sitions of the products A and B

code for
system Bcode for

system A

code for
system C

(Sect. 6.2) aim at reducing the need and effort for preplanning. For example, an aspect
can extend an existing class by new members without changing the class. An extreme
case, in which any extension can be made without preplanning, is discussed when
introducing the concept of obliviousness in Sect. 6.2.4. Overall, fostering change and
little preplanning effort is an important quality criterion for product-line implemen-
tation techniques.

3.2.2 Feature Traceability

In Fig. 3.1, it is apparent that the whole idea of feature-orientation and feature-based
product derivation depends on establishing and managing the mapping between the
problem and the solution space, in our case, between features and their implementa-
tion artifacts.

Definition 3.6 Feature traceability is the ability to trace a feature from the
problem space (for example, the feature model) to the solution space (that is,
its manifestation in design and code artifacts). �

http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6

3.2 Quality Criteria 55

Tracing features in design and code is a key property of product-line implementa-
tion techniques. Different techniques provide different levels of support for traceabil-
ity. For example, while preprocessor directives are easily recognizable by tools and
programmers (see Sect. 5.3, p. 110), run-time parameters are harder to trace, because
they are difficult to distinguish from other variables and can be reassigned during
execution (see Sect. 4.1, p. 66). In composition-based approaches, feature traceabil-
ity is trivial as long as there is one composition unit per feature (see Chap. 6). If
feature code is not properly separated in terms of dedicated units (for example, one
feature is implemented as part of many components of a system), feature traceability
is impaired.

3.2.3 Separation of Concerns

A fundamental principle in software design is to separate concerns (Parnas 1972;
Dijkstra 1976). As defined in Sect. 2.1, a concern is an area of interest or focus in
a system, and features are the concerns of primary interest in product-line engi-
neering. A common approach to attain traceability (especially, in composition-based
approaches) is to separate features both in design and code, such that the relationship
between features and corresponding design and implementation artifacts are explicit.

When separating features into distinct artifacts, developers can easily find all code
related to that feature for maintenance or evolution tasks. Related pieces of code are
implemented together, which is known as cohesion. Cohesive pieces of code are
typically easier to reason about than widely scattered code fragments.

In the history of programming languages and software engineering, a multitude
of mechanisms to separate concerns have been developed, most notably procedures,
modules, and classes. All of them facilitate one or the other form of hierarchi-
cal structure or block structure. In the 1990s, an insight emerged that a certain
class of concerns, called crosscutting concerns, is inherently difficult to sepa-
rate using these traditional mechanisms based on block or hierarchical structure
(Kiczales et al. 1997).

Definition 3.7 Crosscutting is a structural relationship between the repre-
sentations of two concerns. It is an alternative to hierarchical and block
structure. �

Classic programming languages suffer from a limitation that is referred to as the
tyranny of the dominant decomposition, which is the cause of crosscutting (Tarr et al.
1999): Using hierarchical structures, a program can be decomposed in only one way
(along one dimension) at a time, called the dominant decomposition. All concerns
that do not align with the dominant decomposition end up in scattered and tangled
code. As developers, we have the freedom to choose how to decompose our system
and which concerns to separate. However, we cannot separate all concerns at the same

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_2

56 3 Basic Concepts, Classification, and Quality Criteria

time; there will always be some concerns that do not align with the chosen dominant
decomposition and that will be left scattered. In practice, this means that scattering
and tangling is not necessarily a sign of bad design, but simply unavoidable.

Definition 3.8 Code scattering refers to a concern representation that is scat-
tered across representations of multiple other concerns. �

Code scattering is related to code tangling.

Definition 3.9 Code tangling refers to the intermingled representation of sev-
eral concerns within a module. �

In Fig. 3.6, we illustrate the effect of crosscutting by means of an example. The
figure shows a snapshot of the code base of the Apache Tomcat server (in particular,
the session subsystem). The code that belongs to the session-expiration concern is
highlighted in red. This figure makes it clear that the code of this concern is scattered
across the entire code base and tangled with the code of other concerns, not related
to session expiration.

As features are often (but not necessarily) crosscutting concerns (Czarnecki and
Eisenecker 2000; Apel et al. 2008b; Liebig et al. 2010), the ability to separate even
crosscutting concerns into cohesive implementations is an important quality criterion
of product-line implementation techniques.

3.2.4 Information Hiding

Separation of concerns aims to decompose a system into semantically cohesive parts.
However, separation alone might not be sufficient if, to understand the whole, devel-
opers need to understand all details of all parts.

Information hiding is an essential concept in software engineering. The key idea
is to decompose a system into modules (or components, see also Sect. 4.4), and to
divide each module into an internal and an external part. The internal part is also
known as the module’s secret that is hidden (or encapsulated) from other modules
and typically represents the bulk of the module’s code, whereas the external part
describes a contract to the rest of the system and is known as an interface. Ideally,
with information hiding, each module can be understood in isolation by looking just
at the module’s secret and the interfaces of imported modules,2 but not the secrets

2 There are many different flavors of module systems, in which imports are expressed in different
ways. The details are not relevant here. The interested reader may investigate and compare module
systems for ML (Blume and Appel 1999) and Java (Gosling et al. 2005; Ancona and Zucca 2001)
and Cardelli’s calculus (Cardelli 1997).

http://dx.doi.org/10.1007/978-3-642-37521-7_4

3.2 Quality Criteria 57

/*
 * ==
 *
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 1999 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution, if
 * any, must include the following acknowlegement:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowlegement may appear in the software
itself,
 * if and wherever such third-party acknowlegements normally appear.
 *
 * 4. The names "The Jakarta Project", "Tomcat", and "Apache Software
 * Foundation" must not be used to endorse or promote products
derived
 * from this software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache"
 * nor may "Apache" appear in their names without prior written
 * permission of the Apache Group.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * [Additional notices, if required by prior licensing conditions]
 *
 */

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.StringManager;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Core implementation of an application level session
 *
 * @author James Duncan Davidson [duncan@eng.sun.com]
 * @author Jason Hunter [jch@eng.sun.com]
 * @author James Todd [gonzo@eng.sun.com]
 */

public class ApplicationSession implements HttpSession {

 private StringManager sm =
 StringManager.getManager("org.apache.tomcat.session");
 private Hashtable values = new Hashtable();
 private String id;
 private ServerSession serverSession;
 private Context context;
 private long creationTime = System.currentTimeMillis();;
 private long thisAccessTime = creationTime;
 private long lastAccessed = creationTime;
 private int inactiveInterval = -1;
 private boolean valid = true;

 ApplicationSession(String id, ServerSession serverSession,
 Context context) {
 this.serverSession = serverSession;
 this.context = context;
 this.id = id;

 this.inactiveInterval = context.getSessionTimeOut();

 if (this.inactiveInterval != -1) {
 this.inactiveInterval *= 60;
 }
 }

 ServerSession getServerSession() {
 return serverSession;
 }

 /**
 * Called by context when request comes in so that accesses and
 * inactivities can be dealt with accordingly.
 */

 void accessed() {
 // set last accessed to thisAccessTime as it will be left over
 // from the previous access
 lastAccessed = thisAccessTime;
 thisAccessTime = System.currentTimeMillis();

 validate();
 }

 void validate() {
 // if we have an inactive interval, check to see if we've exceeded it
 if (inactiveInterval != -1) {
 int thisInterval =
 (int)(System.currentTimeMillis() - lastAccessed) / 1000;

 if (thisInterval > inactiveInterval) {
 invalidate();
 }
 }
 }

 // HTTP SESSION IMPLEMENTATION METHODS

 public String getId() {
 if (valid) {
 return id;
 } else {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }
 }

 public long getCreationTime () {
 if (valid) {
 return creationTime;
 } else {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }
 }

 /**
 *
 * @deprecated
 */

 public HttpSessionContext getSessionContext() {
 return new SessionContextImpl();
 }

 public long getLastAccessedTime() {
 if (valid) {
 return lastAccessed;
 } else {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }
 }

public void invalidate() {
 serverSession.removeApplicationSession(context);

 // remove everything in the session

 Enumeration enum = values.keys();
 while (enum.hasMoreElements()) {
 String name = (String)enum.nextElement ();
 removeValue(name);
 }

 valid = false;
 }

 public boolean isNew() {
 if (! valid) {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }

 if (thisAccessTime == creationTime) {
 return true;
 } else {
 return false;
 }
 }

/**
 * @deprecated
 */

 public void putValue(String name, Object value) {
 setAttribute(name, value);
 }

 public void setAttribute(String name, Object value) {
 if (! valid) {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }

 if (name == null) {
 String msg = sm.getString("applicationSession.value.iae");

 throw new IllegalArgumentException(msg);
 }

 removeValue(name); // remove any existing binding

 if (value != null && value instanceof HttpSessionBindingListener) {
 HttpSessionBindingEvent e =
 new HttpSessionBindingEvent(this, name);

 ((HttpSessionBindingListener)value).valueBound(e);
 }

 values.put(name, value);
 }

 /**
 * @deprecated
 */
 public Object getValue(String name) {
 return getAttribute(name);
 }

 public Object getAttribute(String name) {
 if (! valid) {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }

 if (name == null) {
 String msg = sm.getString("applicationSession.value.iae");

 throw new IllegalArgumentException(msg);
 }

 return values.get(name);
 }

 /**
 * @deprecated
 */
 public String[] getValueNames() {
 Enumeration e = getAttributeNames();
 Vector names = new Vector();

 while (e.hasMoreElements()) {
 names.addElement(e.nextElement());
 }

 String[] valueNames = new String[names.size()];

 names.copyInto(valueNames);

 return valueNames;

 }

 public Enumeration getAttributeNames () {
 if (! valid) {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }

 Hashtable valuesClone = (Hashtable)values.clone ();

 return (Enumeration)valuesClone.keys();
 }

 /**
 * @deprecated
 */

 public void removeValue(String name) {
 removeAttribute(name);
 }

 public void removeAttribute(String name) {
 if (! valid) {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }

 if (name == null) {
 String msg = sm.getString("applicationSession.value.iae");

 throw new IllegalArgumentException(msg);
 }

 Object o = values.get(name);

 if (o instanceof HttpSessionBindingListener) {
 HttpSessionBindingEvent e =
 new HttpSessionBindingEvent(this,name);

 ((HttpSessionBindingListener)o).valueUnbound(e);
 }

 values.remove(name);
 }

 public void setMaxInactiveInterval(int interval) {
 if (! valid) {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }

 inactiveInterval = interval;
 }

 public int getMaxInactiveInterval() {
 if (! valid) {
 String msg = sm.getString("applicationSession.session.ise ");

 throw new IllegalStateException(msg);
 }

 return inactiveInterval;
 }
}

//---

ApplicationSession
package org.apache.tomcat.session;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;
import javax.servlet.ServletException;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpSessionBindingEvent;
import javax.servlet.http.HttpSessionBindingListener;
import javax.servlet.http.HttpSessionContext;
import org.apache.tomcat.catalina.*;
import org.apache.tomcat.util.StringManager;

/**
 * Standard implementation of the Session
interface. This object is
 * serializable, so that it can be stored in
persistent storage or transferred
 * to a different JVM for distributable session
support.
 * <p>
 * IMPLEMENTATION NOTE: An instance of this
class represents both the
 * internal (Session) and application level
(HttpSession) view of the session.
 * However, because the class itself is not declared
public, Java logic outside
 * of the <code>org.apache.tomcat.session</code>
package cannot cast an
 * HttpSession view of this instance back to a
Session view.
 *
 * @author Craig R. McClanahan
 * @version $Revision: 1.2 $ $Date: 2000/05/15
17:54:10 $
 */

final class StandardSession
 implements HttpSession, Session {

 // --
------------- Constructors

 /**
 * Construct a new Session associated with the
specified Manager.
 *
 * @param manager The manager with which this
Session is associated
 */
 public StandardSession(Manager manager) {

 super();
 this.manager = manager;

 }

 // --
------- Instance Variables

 /**
 * The collection of user data attributes
associated with this Session.
 */
 private Hashtable attributes = new Hashtable();

 /**
 * The time this session was created, in
milliseconds since midnight,
 * January 1, 1970 GMT.
 */
 private long creationTime = 0L;

 /**
 * The session identifier of this Session.
 */
 private String id = null;

 /**
 * Descriptive information describing this
Session implementation.
 */
 private static final String info =
"StandardSession/1.0";

 /**
 * The last accessed time for this Session.
 */
 private long lastAccessedTime = creationTime;

 /**
 * The Manager with which this Session is
associated.
 */
 private Manager manager = null;

 /**
 * The maximum time interval, in seconds, between
client requests before
 * the servlet container may invalidate this
session. A negative time
 * indicates that the session should never time
out.
 */
 private int maxInactiveInterval = -1;

 /**
 * Flag indicating whether this session is new or
not.
 */
 private boolean isNew = true;

 /**
 * Flag indicating whether this session is valid
or not.
 */
 private boolean isValid = false;

 /**
 * The string manager for this package.
 */
 private StringManager sm =

StringManager.getManager("org.apache.tomcat.session")
;

 /**
 * The HTTP session context associated with this
session.
 */
 private static HttpSessionContext sessionContext
= null;

 /**
 * The current accessed time for this session.
 */
 private long thisAccessedTime = creationTime;

 // --
------- Session Properties

 /**
 * Set the creation time for this session. This
method is called by the
 * Manager when an existing Session instance is
reused.
 *
 * @param time The new creation time
 */
 public void setCreationTime(long time) {

 this.creationTime = time;
 this.lastAccessedTime = time;
 this.thisAccessedTime = time;

 }

 /**
 * Return the session identifier for this
session.
 */
 public String getId() {

 return (this.id);

 }

 /**
 * Set the session identifier for this session.
 *
 * @param id The new session identifier
 */
 public void setId(String id) {

 if ((this.id != null) && (manager != null) &&
 (manager instanceof ManagerBase))
 ((ManagerBase) manager).remove(this);

 this.id = id;

 if ((manager != null) && (manager instanceof
ManagerBase))
 ((ManagerBase) manager).add(this);

 }

 /**
 * Return descriptive information about this
Session implementation and
 * the corresponding version number, in the
format
 *
<code><description>/<version></code>.
 */
 public String getInfo() {

 return (this.info);

 }

 /**
 * Return the last time the client sent a request
associated with this
 * session, as the number of milliseconds since
midnight, January 1, 1970
 * GMT. Actions that your application takes,
such as getting or setting
 * a value associated with the session, do not
affect the access time.
 */
 public long getLastAccessedTime() {

 return (this.lastAccessedTime);

 }

 /**
 * Return the Manager within which this Session
is valid.
 */
 public Manager getManager() {

 return (this.manager);

 }

 /**
 * Set the Manager within which this Session is
valid.
 *
 * @param manager The new Manager
 */
 public void setManager(Manager manager) {

 this.manager = manager;

 }

 /**
 * Return the maximum time interval, in seconds,
between client requests
 * before the servlet container will invalidate
the session. A negative
 * time indicates that the session should never
time out.
 *
 * @exception IllegalStateException if this
method is called on
 * an invalidated session
 */
 public int getMaxInactiveInterval() {

 return (this.maxInactiveInterval);

 }

 /**
 * Set the maximum time interval, in seconds,
between client requests
 * before the servlet container will invalidate
the session. A negative
 * time indicates that the session should never
time out.
 *
 * @param interval The new maximum interval
 */
 public void setMaxInactiveInterval(int interval)
{

 this.maxInactiveInterval = interval;

 }

 /**
 * Return the <code>HttpSession</code> for which this
object
 * is the facade.
 */
 public HttpSession getSession() {

 return ((HttpSession) this);

 }

 // ---
Session Public Methods

 /**
 * Update the accessed time information for this session.
This method
 * should be called by the context when a request comes in
for a particular
 * session, even if the application does not reference it.
 */
 public void access() {

 this.lastAccessedTime = this.thisAccessedTime;
 this.thisAccessedTime = System.currentTimeMillis();
 this.isNew=false;
 }

 /**
 * Perform the internal processing required to invalidate
this session,
 * without triggering an exception if the session has
already expired.
 */
 public void expire() {

 // Remove this session from our manager's active
sessions
 if ((manager != null) && (manager instanceof
ManagerBase))
 ((ManagerBase) manager).remove(this);

 // Unbind any objects associated with this session
 Vector results = new Vector();
 Enumeration attrs = getAttributeNames ();
 while (attrs.hasMoreElements()) {
 String attr = (String) attrs.nextElement();
 results.addElement(attr);
 }
 Enumeration names = results.elements();
 while (names.hasMoreElements()) {
 String name = (String) names.nextElement();
 removeAttribute(name);
 }

 // Mark this session as invalid
 setValid(false);

 }

 /**
 * Release all object references, and initialize instance
variables, in
 * preparation for reuse of this object.
 */
 public void recycle() {

 // Reset the instance variables associated with this
Session
 attributes.clear();
 creationTime = 0L;
 id = null;
 lastAccessedTime = 0L;
 manager = null;
 maxInactiveInterval = -1;
 isNew = true;
 isValid = false;

 // Tell our Manager that this Session has been recycled
 if ((manager != null) && (manager instanceof
ManagerBase))
 ((ManagerBase) manager).recycle(this);

 }

 // -- Session
Package Methods

 /**
 * Return the <code>isValid</code> flag for this session.
 */
 boolean isValid() {

 return (this.isValid);

 }

 /**
 * Set the <code> isNew</code> flag for this session.
 *
 * @param isNew The new value for the <code>isNew</code>
flag
 */
 void setNew(boolean isNew) {

 this.isNew = isNew;

 }

 /**
 * Set the <code>isValid</code> flag for this session.
 *
 * @param isValid The new value for the
<code>isValid</code> flag
 */
 void setValid(boolean isValid) {

 this.isValid = isValid;
 }

 // ---
HttpSession Properties

 /**
 * Return the time when this session was created, in
milliseconds since
 * midnight, January 1, 1970 GMT.
 *
 * @exception IllegalStateException if this method is
called on an
 * invalidated session
 */
 public long getCreationTime () {

 return (this.creationTime);

 }

 /**
 * Return the session context with which this session is
associated.
 *
 * @deprecated As of Version 2.1, this method is deprecated
and has no
 * replacement. It will be removed in a future version of
the
 * Java Servlet API.
 */
 public HttpSessionContext getSessionContext() {

 if (sessionContext == null)
 sessionContext = new StandardSessionContext ();
 return (sessionContext);

 }

 // --
HttpSession Public Methods

 /**
 * Return the object bound with the specified name in this
session, or
 * <code>null</code> if no object is bound with that name.
 *
 * @param name Name of the attribute to be returned
 *
 * @exception IllegalStateException if this method is
called on an
 * invalidated session
 */
 public Object getAttribute(String name) {

 return (attributes.get(name));

 }

 /**
 * Return an <code>Enumeration</code> of
<code>String</code> objects
 * containing the names of the objects bound to this
session.
 *
 * @exception IllegalStateException if this method is
called on an
 * invalidated session
 */
 public Enumeration getAttributeNames () {

 return (attributes.keys ());

 }

 /**
 * Return the object bound with the specified name in this
session, or
 * <code>null</code> if no object is bound with that name.
 *
 * @param name Name of the value to be returned
 *
 * @exception IllegalStateException if this method is
called on an
 * invalidated session
 *
 * @deprecated As of Version 2.2, this method is replaced
by
 * <code>getAttribute()</code>
 */
 public Object getValue(String name) {

 return (getAttribute(name));

 }

 /**
 * Return the set of names of objects bound to this
session. If there
 * are no such objects, a zero-length array is returned.
 *
 * @exception IllegalStateException if this method is
called on an
 * invalidated session
 *
 * @deprecated As of Version 2.2, this method is replaced
by
 * <code>getAttributeNames()</code>
 */
 public String[] getValueNames() {

 Vector results = new Vector();
 Enumeration attrs = getAttributeNames ();
 while (attrs.hasMoreElements()) {
 String attr = (String) attrs.nextElement();
 results.addElement(attr);
 }
 String names[] = new String[results.size()];
 for (int i = 0; i < names.length; i++)
 names[i] = (String) results.elementAt(i);
 return (names);

 }

 /**
 * Invalidates this session and unbinds any objects bound
to it.
 *
 * @exception IllegalStateException if this method is
called on
 * an invalidated session
 */
 public void invalidate() {

 // Cause this session to expire
 expire();

 }

 /**
 * Return <code>true</code> if the client does not yet know
about the
 * session, or if the client chooses not to join the
session. For
 * example, if the server used only cookie-based sessions,
and the client
 * has disabled the use of cookies, then a session would be
new on each
 * request.
 *
 * @exception IllegalStateException if this method is
called on an
 * invalidated session
 */
 public boolean isNew() {

 return (this.isNew);

 }

 /**
 * Bind an object to this session, using the specified name. If an object
 * of the same name is already bound to this session, the object is
 * replaced.
 * <p>
 * After this method executes, and if the object implements
 * <code>HttpSessionBindingListener</code>, the container calls
 * <code>valueBound()</code> on the object.
 *
 * @param name Name to which the object is bound, cannot be null
 * @param value Object to be bound, cannot be null
 *
 * @exception IllegalStateException if this method is called on an
 * invalidated session
 *
 * @deprecated As of Version 2.2, this method is replaced by
 * <code>setAttribute()</code>
 */
 public void putValue(String name, Object value) {

 setAttribute(name, value);

 }

 /**
 * Remove the object bound with the specified name from this session. If
 * the session does not have an object bound with this name, this method
 * does nothing.
 * <p>
 * After this method executes, and if the object implements
 * <code>HttpSessionBindingListener</code>, the container calls
 * <code>valueUnbound()</code> on the object.
 *
 * @param name Name of the object to remove from this session.
 *
 * @exception IllegalStateException if this method is called on an
 * invalidated session
 */
 public void removeAttribute(String name) {

 synchronized (attributes) {
 Object object = attributes.get(name);
 if (object == null)
 return;
 attributes.remove(name);
 // System.out.println("Removing attribute " + name);
 if (object instanceof HttpSessionBindingListener) {
 ((HttpSessionBindingListener) object).valueUnbound
 (new HttpSessionBindingEvent((HttpSession) this, name));
 }
 }

 }

 /**
 * Remove the object bound with the specified name from this session. If
 * the session does not have an object bound with this name, this method
 * does nothing.
 * <p>
 * After this method executes, and if the object implements
 * <code>HttpSessionBindingListener</code>, the container calls
 * <code>valueUnbound()</code> on the object.
 *
 * @param name Name of the object to remove from this session.
 *
 * @exception IllegalStateException if this method is called on an
 * invalidated session
 *
 * @deprecated As of Version 2.2, this method is replaced by
 * <code>removeAttribute()</code>
 */
 public void removeValue(String name) {

 removeAttribute(name);

 }

 /**
 * Bind an object to this session, using the specified name. If an object
 * of the same name is already bound to this session, the object is
 * replaced.
 * <p>
 * After this method executes, and if the object implements
 * <code>HttpSessionBindingListener</code>, the container calls
 * <code>valueBound()</code> on the object.
 *
 * @param name Name to which the object is bound, cannot be null
 * @param value Object to be bound, cannot be null
 *
 * @exception IllegalArgumentException if an attempt is made to add a
 * non-serializable object in an environment marked distributable.
 * @exception IllegalStateException if this method is called on an
 * invalidated session
 */
 public void setAttribute(String name, Object value) {

 if ((manager != null) && manager.getDistributable() &&
 !(value instanceof Serializable))
 throw new IllegalArgumentException
 (sm.getString("standardSession.setAttribute.iae"));

 synchronized (attributes) {
 removeAttribute(name);
 attributes.put(name, value);
 if (value instanceof HttpSessionBindingListener)
 ((HttpSessionBindingListener) value).valueBound
 (new HttpSessionBindingEvent((HttpSession) this, name));
 }

 }

 // -- HttpSession Private Methods

 /**
 * Read a serialized version of this session object from the specified
 * object input stream.
 * <p>
 * IMPLEMENTATION NOTE: The reference to the owning Manager
 * is not restored by this method, and must be set explicitly.
 *
 * @param stream The input stream to read from
 *
 * @exception ClassNotFoundException if an unknown class is specified
 * @exception IOException if an input/output error occurs
 */
 private void readObject(ObjectInputStream stream)
 throws ClassNotFoundException, IOException {

 // Deserialize the scalar instance variables (except Manager)
 creationTime = ((Long) stream.readObject()).longValue();
 id = (String) stream.readObject();
 lastAccessedTime = ((Long) stream.readObject()).longValue();
 maxInactiveInterval = ((Integer) stream.readObject()).intValue();
 isNew = ((Boolean) stream.readObject()).booleanValue ();
 isValid = ((Boolean) stream.readObject()).booleanValue();

 // Deserialize the attribute count and attribute values
 int n = ((Integer) stream.readObject()).intValue();
 for (int i = 0; i < n; i++) {
 String name = (String) stream.readObject();
 Object value = (Object) stream.readObject();
 attributes.put(name, value);
 }

 }

 /**
 * Write a serialized version of this session object to the specified
 * object output stream.
 * <p>
 * IMPLEMENTATION NOTE: The owning Manager will not be stored
 * in the serialized representation of this Session. After calling
 * <code>readObject()</code>, you must set the associated Manager
 * explicitly.
 * <p>
 * IMPLEMENTATION NOTE: Any attribute that is not Serializable
 * will be silently ignored. If you do not want any such attributes,
 * be sure the <code>distributable</code> property of our associated
 * Manager is set to <code>true</code>.
 *
 * @param stream The output stream to write to
 *
 * @exception IOException if an input/output error occurs
 */
 private void writeObject(ObjectOutputStream stream) throws IOException {

 // Write the scalar instance variables (except Manager)
 stream.writeObject(new Long(creationTime));
 stream.writeObject (id);
 stream.writeObject(new Long(lastAccessedTime));
 stream.writeObject(new Integer(maxInactiveInterval));
 stream.writeObject(new Boolean(isNew));
 stream.writeObject(new Boolean(isValid));

 // Accumulate the names of serializable attributes
 Vector results = new Vector();
 Enumeration attrs = getAttributeNames ();
 while (attrs.hasMoreElements()) {
 String attr = (String) attrs.nextElement();
 Object value = attributes.get(attr);
 if (value instanceof Serializable)
 results.addElement(attr);
 }

 // Serialize the attribute count and the attribute values
 stream.writeObject(new Integer(results.size()));
 Enumeration names = results.elements();
 while (names.hasMoreElements()) {
 String name = (String) names.nextElement();
 stream.writeObject(name);
 stream.writeObject(attributes.get(name));
 }

 }

 crosscut invalidate(StandardSession s): s & (int getMaxInactiveInterval() |
 long getCreationTime () |
 Object getAttribute(String) |
 Enumeration getAttributeNames() |
 String[] getValueNames() |
 void invalidate() |
 boolean isNew() |
 void removeAttribute(String) |
 void setAttribute(String, Object));

 static advice(StandardSession s): invalidate(s) {
 before {
 if (!s.isValid ())
 throw new IllegalStateException
 (s.sm.getString("standardSession."
 + thisJoinPoint.methodName
 + ".ise"));
 }
 }

}

// -- Private Class

/**
 * This class is a dummy implementation of the <code>HttpSessionContext</code>
 * interface, to conform to the requirement that such an object be returned
 * when <code>HttpSession.getSessionContext()</code> is called.
 *
 * @author Craig R. McClanahan
 *
 * @deprecated As of Java Servlet API 2.1 with no replacement. The
 * interface will be removed in a future version of this API.
 */

final class StandardSessionContext implements HttpSessionContext {

 private Vector dummy = new Vector();

 /**
 * Return the session identifiers of all sessions defined
 * within this context.
 *
 * @deprecated As of Java Servlet API 2.1 with no replacement.
 * This method must return an empty <code>Enumeration</code>
 * and will be removed in a future version of the API.
 */
 public Enumeration getIds() {

 return (dummy.elements());

 }

 /**
 * Return the <code>HttpSession</code> associated with the
 * specified session identifier.
 *
 * @param id Session identifier for which to look up a session
 *
 * @deprecated As of Java Servlet API 2.1 with no replacement.
 * This method must return null and will be removed in a
 * future version of the API.
 */
 public HttpSession getSession(String id) {

 return (null);

 }

}

StandardSession

ServerSession
package org.apache.tomcat.session;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.StringManager;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Core implementation of a server session
 *
 * @author James Duncan Davidson [duncan@eng.sun.com]
 * @author James Todd [gonzo@eng.sun.com]
 */

public class ServerSession {

 private StringManager sm =
 StringManager.getManager("org.apache.tomcat.session");
 private Hashtable values = new Hashtable();
 private Hashtable appSessions = new Hashtable();
 private String id;
 private long creationTime = System.currentTimeMillis();;
 private long thisAccessTime = creationTime;
 private long lastAccessed = creationTime;
 private int inactiveInterval = -1;

 ServerSession(String id) {
 this.id = id;
 }

 public String getId() {
 return id;
 }

 public long getCreationTime () {
 return creationTime;
 }

 public long getLastAccessedTime() {
 return lastAccessed;
 }

 public ApplicationSession getApplicationSession(Context context,
 boolean create) {
 ApplicationSession appSession =
 (ApplicationSession)appSessions.get(context);

 if (appSession == null && create) {

 // XXX
 // sync to ensure valid?

 appSession = new ApplicationSession(id, this, context);
 appSessions.put(context, appSession);
 }

 // XXX
 // make sure that we haven't gone over the end of our
 // inactive interval -- if so, invalidate and create
 // a new appSession

 return appSession;
 }

 void removeApplicationSession(Context context) {
 appSessions.remove(context);
 }

 /**
 * Called by context when request comes in so that accesses and
 * inactivities can be dealt with accordingly.
 */

 void accessed() {
 // set last accessed to thisAccessTime as it will be left over
 // from the previous access

 lastAccessed = thisAccessTime;
 thisAccessTime = System.currentTimeMillis();

 }

 void validate()

void validate() {
 // if we have an inactive interval, check to see if
 // we've exceeded it

 if (inactiveInterval != -1) {
 int thisInterval =
 (int)(System.currentTimeMillis() - lastAccessed) / 1000;

 if (thisInterval > inactiveInterval) {
 invalidate();

 ServerSessionManager ssm =
 ServerSessionManager.getManager();

 ssm.removeSession(this);
 }
 }
 }

 synchronized void invalidate() {
 Enumeration enum = appSessions.keys();

 while (enum.hasMoreElements()) {
 Object key = enum.nextElement();
 ApplicationSession appSession =
 (ApplicationSession)appSessions.get(key);

 appSession.invalidate();
 }
 }

 public void putValue(String name, Object value) {
 if (name == null) {
 String msg = sm.getString("serverSession.value.iae");

 throw new IllegalArgumentException(msg);
 }

 removeValue(name); // remove any existing binding
 values.put(name, value);
 }

 public Object getValue(String name) {
 if (name == null) {
 String msg = sm.getString("serverSession.value.iae");

 throw new IllegalArgumentException(msg);
 }

 return values.get(name);
 }

 public Enumeration getValueNames () {
 return values.keys ();
 }

 public void removeValue(String name) {
 values.remove(name);
 }

 public void setMaxInactiveInterval(int interval) {
 inactiveInterval = interval;
 }

 public int getMaxInactiveInterval() {
 return inactiveInterval;
 }

 // XXX
 // sync'd for safty -- no other thread should be getting something
 // from this while we are reaping. This isn't the most optimal
 // solution for this, but we'll determine something else later.

 synchronized void reap() {
 Enumeration enum = appSessions.keys();

 while (enum.hasMoreElements()) {
 Object key = enum.nextElement();
 ApplicationSession appSession =
 (ApplicationSession)appSessions.get(key);

 appSession.validate ();
 }
 }
}

SessionInterceptor

package org.apache.tomcat.request;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.http.*;

/**
 * Will process the request and determine the session Id, and set it
 * in the Request.
 * It also marks the session as accessed.
 *
 * This implementation only handles Cookies sessions, please extend or
 * add new interceptors for other methods.
 *
 */
public class SessionInterceptor extends BaseInterceptor implements RequestInterceptor {

 // GS, separates the session id from the jvm route
 static final char SESSIONID_ROUTE_SEP = '.';
 int debug=0;
 ContextManager cm;

 public SessionInterceptor() {
 }

 public void setDebug(int i) {
 System.out.println("Set debug to " + i);
 debug=i;
 }

 public void setContextManager(ContextManager cm) {
 this.cm=cm;
 }

 public int requestMap(Request request) {
 String sessionId = null;

 Cookie cookies[]=request.getCookies(); // assert !=null

 for(int i=0; i<cookies.length; i++) {
 Cookie cookie = cookies[i];

 if (cookie.getName().equals("JSESSIONID")) {
 sessionId = cookie.getValue();
 sessionId=validateSessionId(request, sessionId);
 if (sessionId!=null){
 request.setRequestedSessionIdFromCookie(true);
 }
 }
 }

 String sig=";jsessionid =";
 int foundAt=-1;
 if(debug>0) cm.log(" XXX RURI=" + request.getRequestURI());
 if ((foundAt=request.getRequestURI().indexOf(sig))!=-1){
 sessionId=request.getRequestURI().substring(foundAt+sig.length ());
 // rewrite URL, do I need to do anything more?
 request.setRequestURI(request.getRequestURI().substring(0, foundAt));
 sessionId=validateSessionId(request, sessionId);
 if (sessionId!=null){
 request.setRequestedSessionIdFromURL(true);
 }
 }
 return 0;
 }

 // XXX what is the correct behavior if the session is invalid ?
 // We may still set it and just return session invalid.

 /** Validate and fix the session id. If the session is not valid return null.
 * It will also clean up the session from load-balancing strings.
 * @return sessionId, or null if not valid
 */
 private String validateSessionId(Request request, String sessionId){
 // GS, We piggyback the JVM id on top of the session cookie
 // Separate them ...

 if(debug>0) cm.log(" Orig sessionId " + sessionId);
 if (null != sessionId) {
 int idex = sessionId.lastIndexOf(SESSIONID_ROUTE_SEP);
 if(idex > 0) {
 sessionId = sessionId.substring(0, idex);
 }
 }

 if (sessionId != null && sessionId.length()!=0) {
 // GS, We are in a problem here, we may actually get
 // multiple Session cookies (one for the root
 // context and one for the real context... or old session
 // cookie. We must check for validity in the current context.
 Context ctx=request.getContext();
 SessionManager sM = ctx.getSessionManager();
 if(null != sM.findSession(ctx, sessionId)) {
 sM.accessed(ctx, request, sessionId);
 request.setRequestedSessionId(sessionId);
 if(debug>0) cm.log(" Final session id " + sessionId);
 return sessionId;
 }
 }
 return null;
 }

 public int beforeBody(Request rrequest, Response response) {
 String reqSessionId = response.getSessionId();
 if(debug>0) cm.log("Before Body " + reqSessionId);
 if(reqSessionId==null)
 return 0;

 // GS, set the path attribute to the cookie. This way
 // multiple session cookies can be used, one for each
 // context.
 String sessionPath = rrequest.getContext().getPath();
 if(sessionPath.length() == 0) {
 sessionPath = "/";
 }

 // GS, piggyback the jvm route on the session id.
 if(!sessionPath.equals("/")) {
 String jvmRoute = rrequest.getJvmRoute ();
 if(null != jvmRoute) {
 reqSessionId = reqSessionId + SESSIONID_ROUTE_SEP + jvmRoute;
 }
 }

 Cookie cookie = new Cookie("JSESSIONID",
 reqSessionId);
 cookie.setMaxAge(- 1);
 cookie.setPath(sessionPath);
 cookie.setVersion(1);

 response.addHeader (CookieTools.getCookieHeaderName(cookie),
 CookieTools.getCookieHeaderValue (cookie));
 cookie.setVersion(0);
 response.addHeader (CookieTools.getCookieHeaderName(cookie),
 CookieTools.getCookieHeaderValue (cookie));

 return 0;
 }

 /** Notification of context shutdown
 */
 public void contextShutdown(Context ctx)
 throws TomcatException
 {
 if(ctx.getDebug() > 0) ctx.log("Removing sessions from " + ctx);
 ctx.getSessionManager().removeSessions(ctx);
 }

}

ServerSessionManager

package org.apache.tomcat.session;

import org.apache.tomcat.util.*;
import org.apache.tomcat.core.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.http.*;

/**
 *
 * @author James Duncan Davidson [duncan@eng.sun.com]
 * @author Jason Hunter [jch@eng.sun.com]
 * @author James Todd [gonzo@eng.sun.com]
 */

public class ServerSessionManager implements SessionManager {

 private StringManager sm =
 StringManager.getManager("org.apache.tomcat.session");
 private static ServerSessionManager manager; // = new ServerSessionManager();

 protected int inactiveInterval = -1;

 static {
 manager = new ServerSessionManager();
 }

 public static ServerSessionManager getManager() {
 return manager;
 }

 private Hashtable sessions = new Hashtable();
 private Reaper reaper;

 private ServerSessionManager() {
 reaper = Reaper.getReaper();
 reaper.setServerSessionManager(this);
 reaper.start();
 }

 public void accessed(Context ctx, Request req, String id) {
 ApplicationSession apS=(ApplicationSession)findSession(ctx, id);
 if(apS==null) return;

 ServerSession servS=apS.getServerSession();
 servS.accessed();
 apS.accessed();

 // cache it - no need to compute it again
 req.setSession(apS);
 }

 public HttpSession createSession(Context ctx) {
 String sessionId = SessionIdGenerator.generateId();
 ServerSession session = new ServerSession(sessionId);
 sessions.put(sessionId, session);

 if(-1 != inactiveInterval) {
 session.setMaxInactiveInterval(inactiveInterval);
 }
 return session.getApplicationSession(ctx, true);
 }

 public HttpSession findSession(Context ctx, String id) {
 ServerSession sSession=(ServerSession)sessions.get(id);
 if(sSession==null) return null;

 return sSession.getApplicationSession(ctx, false);
 }

// XXX
 // sync'd for safty -- no other thread should be getting something
 // from this while we are reaping. This isn't the most optimal
 // solution for this, but we'll determine something else later.

 synchronized void reap() {
 Enumeration enum = sessions.keys();

 while (enum.hasMoreElements()) {
 Object key = enum.nextElement();
 ServerSession session = (ServerSession)sessions.get(key);

 session.reap();
 session.validate();
 }
 }

 synchronized void removeSession(ServerSession session) {
 String id = session.getId();

 session.invalidate ();
 sessions.remove(id);
 }

 public void removeSessions(Context context) {
 Enumeration enum = sessions.keys();

 while (enum.hasMoreElements()) {
 Object key = enum.nextElement();
 ServerSession session = (ServerSession)sessions.get(key);
 ApplicationSession appSession =
 session.getApplicationSession(context, false);

 if (appSession != null) {
 appSession.invalidate();
 }
 }
 }

 /**
 * Used by context to configure the session manager's inactivity timeout.
 *
 * The SessionManager may have some default session time out, the
 * Context on the other hand has it's timeout set by the deployment
 * descriptor (web.xml). This method lets the Context conforgure the
 * session manager according to this value.
 *
 * @param minutes The session inactivity timeout in minutes.
 */
 public void setSessionTimeOut(int minutes) {
 if(-1 != minutes) {
 // The manager works with seconds...
 inactiveInterval = (minutes * 60);
 }
 }
}

package org.apache.tomcat.session;

import java.io.IOException;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;
import org.apache.tomcat.catalina.*;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpSession;
import org.apache.tomcat.util.StringManager;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;

/**
 * Standard implementation of the Manager interface that provides
 * no session persistence or distributable capabilities, but does support
 * an optional, configurable, maximum number of active sessions allowed.
 * <p>
 * Lifecycle configuration of this component assumes an XML node
 * in the following format:
 * <code>
 * <Manager className="org.apache.tomcat.session.StandardManager"
 * checkInterval="60" maxActiveSessions="-1"
 * maxInactiveInterval="-1" />
 * </code>
 * where you can adjust the following parameters, with default values
 * in square brackets:
 *
 * checkInterval - The interval (in seconds) between background
 * thread checks for expired sessions. [60]
 * maxActiveSessions - The maximum number of sessions allowed to
 * be active at once, or -1 for no limit. [-1]
 * maxInactiveInterval - The default maximum number of seconds of
 * inactivity before which the servlet container is allowed to time out
 * a session, or -1 for no limit. This value should be overridden from
 * the default session timeout specified in the web application deployment
 * descriptor, if any. [-1]
 *
 *
 * @author Craig R. McClanahan
 * @version $Revision: 1.1.1.1 $ $Date: 2000/05/02 21:28:30 $
 */

public final class StandardManager
 extends ManagerBase
 implements Lifecycle, Runnable {

 // --- Instance Variables

 /**
 * The interval (in seconds) between checks for expired sessions.
 */
 private int checkInterval = 60;

 /**
 * Has this component been configured yet?
 */
 private boolean configured = false;

 /**
 * The descriptive information about this implementation.
 */
 private static final String info = " StandardManager/1.0";

 /**
 * The maximum number of active Sessions allowed, or -1 for no limit.
 */
 protected int maxActiveSessions = -1;

 /**
 * The string manager for this package.
 */
 private StringManager sm =
 StringManager.getManager("org.apache.tomcat.session");

 /**
 * Has this component been started yet?
 */
 private boolean started = false;

 /**
 * The background thread.
 */
 private Thread thread = null;

 /**
 * The background thread completion semaphore.
 */
 private boolean threadDone = false;

 /**
 * Name to register for the background thread.
 */
 private String threadName = "StandardManager";

 // --- Properties

 /**
 * Return the check interval (in seconds) for this Manager.
 */
 public int getCheckInterval () {

 return (this.checkInterval);

 }

 /**
 * Set the check interval (in seconds) for this Manager.
 *
 * @param checkInterval The new check interval
 */
 public void setCheckInterval(int checkInterval) {

 this.checkInterval = checkInterval;

 }

 /**
 * Return descriptive information about this Manager implementation and
 * the corresponding version number, in the format
 * <code><description> ;/<version></code>.
 */
 public String getInfo() {

 return (this.info);

 }

 /**
 * Return the maximum number of active Sessions allowed, or -1 for
 * no limit.
 */
 public int getMaxActiveSessions() {

 return (this.maxActiveSessions);

 }

 /**
 * Set the maximum number of actives Sessions allowed, or -1 for
 * no limit.
 *
 * @param max The new maximum number of sessions
 */
 public void setMaxActiveSessions(int max) {

 this.maxActiveSessions = max;

 }

 // --- Public Methods

 /**
 * Construct and return a new session object, based on the default
 * settings specified by this Manager's properties. The session
 * id will be assigned by this method, and available via the getId()
 * method of the returned session. If a new session cannot be created
 * for any reason, return <code>null</code>.
 *
 * @exception IllegalStateException if a new session cannot be
 * instantiated for any reason
 */
 public Session createSession() {

 if ((maxActiveSessions >= 0) &&
 (sessions.size() >= maxActiveSessions))
 throw new IllegalStateException
 (sm.getString("standardManager.createSession.ise "));

 return (super.createSession());

 }

 // -- Lifecycle Methods

 /**
 * Configure this component, based on the specified configuration
 * parameters. This method should be called immediately after the
 * component instance is created, and before <code>start()</code>
 * is called.
 *
 * @param parameters Configuration parameters for this component
 * (FIXME: What object type should this really be?)
 *
 * @exception IllegalStateException if this component has already been
 * configured and/or started
 * @exception LifecycleException if this component detects a fatal error
 * in the configuration parameters it was given
 */
 public void configure(Node parameters)
 throws LifecycleException {

 // Validate and update our current component state
 if (configured)
 throw new LifecycleException
 (sm.getString("standardManager.alreadyConfigured "));
 configured = true;
 if (parameters == null)
 return;

 // Parse and process our configuration parameters
 if (!("Manager".equals(parameters.getNodeName())))
 return;
 NamedNodeMap attributes = parameters.getAttributes();
 Node node = null;

 node = attributes.getNamedItem("checkInterval");
 if (node != null) {
 try {
 setCheckInterval(Integer.parseInt(node.getNodeValue()));
 } catch (Throwable t) {
 ; // XXX - Throw exception?
 }
 }

 node = attributes.getNamedItem("maxActiveSessions");
 if (node != null) {
 try {
 setMaxActiveSessions(Integer.parseInt(node.getNodeValue()));
 } catch (Throwable t) {
 ; // XXX - Throw exception?
 }
 }

 node = attributes.getNamedItem("maxInactiveInterval");
 if (node != null) {
 try {
 setMaxInactiveInterval(Integer.parseInt(node.getNodeValue()));
 } catch (Throwable t) {
 ; // XXX - Throw exception?
 }
 }

 }

 /**
 * Prepare for the beginning of active use of the public methods of this
 * component. This method should be called after <code>configure()</code>,
 * and before any of the public methods of the component are utilized.
 *
 * @exception IllegalStateException if this component has not yet been
 * configured (if required for this component)
 * @exception IllegalStateException if this component has already been
 * started
 * @exception LifecycleException if this component detects a fatal error
 * that prevents this component from being used
 */
 public void start() throws LifecycleException {

 // Validate and update our current component state
 if (!configured)
 throw new LifecycleException
 (sm.getString("standardManager.notConfigured "));
 if (started)
 throw new LifecycleException
 (sm.getString("standardManager.alreadyStarted"));
 started = true;

 // Start the background reaper thread
 threadStart();

 }

 /**
 * Gracefully terminate the active use of the public methods of this
 * component. This method should be the last one called on a given
 * instance of this component.
 *
 * @exception IllegalStateException if this component has not been started
 * @exception IllegalStateException if this component has already
 * been stopped
 * @exception LifecycleException if this component detects a fatal error
 * that needs to be reported
 */
 public void stop() throws LifecycleException {

 // Validate and update our current component state
 if (!started)
 throw new LifecycleException
 (sm.getString("standardManager.notStarted"));
 started = false;

 // Stop the background reaper thread
 threadStop();

 // Expire all active sessions
 Session sessions[] = findSessions();
 for (int i = 0; i < sessions.length; i++) {
 StandardSession session = (StandardSession) sessions[i];
 if (!session.isValid())
 continue;
 session.expire ();
 }

 }

 // -- Private Methods

 /**
 * Invalidate all sessions that have expired.
 */
 private void processExpires () {

 long timeNow = System.currentTimeMillis();
 Session sessions[] = findSessions();

 for (int i = 0; i < sessions.length; i++) {
 StandardSession session = (StandardSession) sessions[i];
 if (!session.isValid())
 continue;
 int maxInactiveInterval = session.getMaxInactiveInterval();
 if (maxInactiveInterval < 0)
 continue;
 int timeIdle = // Truncate, do not round up
 (int) ((timeNow - session.getLastAccessedTime()) / 1000L);
 if (timeIdle >= maxInactiveInterval)
 session.expire();
 }
 }

 /**
 * Sleep for the duration specified by the <code>checkInterval</code>
 * property.
 */
 private void threadSleep() {

 try {
 Thread.sleep(checkInterval * 1000L);
 } catch (InterruptedException e) {
 ;
 }

 }

 /**
 * Start the background thread that will periodically check for
 * session timeouts.
 */
 private void threadStart() {

 if (thread != null)
 return;

 threadDone = false;
 thread = new Thread(this, threadName);
 thread.setDaemon(true);
 thread.start();

 }

 /**
 * Stop the background thread that is periodically checking for
 * session timeouts.
 */
 private void threadStop() {

 if (thread == null)
 return;

 threadDone = true;
 thread.interrupt();
 try {
 thread.join();
 } catch (InterruptedException e) {
 ;
 }

 thread = null;

 }

 // -- Background Thread

 /**
 * The background thread that checks for session timeouts and shutdown.
 */
 public void run() {

 // Loop until the termination semaphore is set
 while (!threadDone) {
 threadSleep();
 processExpires ();
 }

 }

}

StandardManager StandardSessionManager
package org.apache.tomcat.session;

import java.io.IOException;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpSession;
import org.apache.tomcat.catalina.*;
import org.apache.tomcat.core.Context;
import org.apache.tomcat.core.Request;
import org.apache.tomcat.core.Response;
import org.apache.tomcat.core.SessionManager;
import org.apache.tomcat.util.SessionUtil;

/**
 * Specialized implementation of org.apache.tomcat.core.SessionManager
 * that adapts to the new component-based Manager implementation.
 * <p>
 * XXX - At present, use of <code>StandardManager</code> is hard coded,
 * and lifecycle configuration is not supported.
 * <p>
 * IMPLEMENTATION NOTE: Once we commit to the new
Manager/Session
 * paradigm, I would suggest moving the logic implemented here back into
 * the core level. The Tomcat.Next "Manager" interface acts more like a
 * collection class, and has minimal knowledge of the detailed request
 * processing semantics of handling sessions.
 * <p>
 * XXX - At present, there is no way (via the SessionManager interface)
for
 * a Context to tell the Manager that we create what the default session
 * timeout for this web application (specified in the deployment
descriptor)
 * should be.
 *
 * @author Craig R. McClanahan
 */

public final class StandardSessionManager
 implements SessionManager {

 // ---
Constructors

 /**
 * Create a new SessionManager that adapts to the corresponding
Manager
 * implementation.
 */
 public StandardSessionManager() {

 manager = new StandardManager();
 if (manager instanceof Lifecycle) {
 try {
 ((Lifecycle) manager).configure(null);
 ((Lifecycle) manager).start();
 } catch (LifecycleException e) {
 throw new IllegalStateException("" + e);
 }
 }

 }

 // --- Instance
Variables

 /**
 * The Manager implementation we are actually using.
 */
 private Manager manager = null;

// --- Public
Methods

 /**
 * Mark the specified session's last accessed time. This should be
 * called for each request by a RequestInterceptor.
 *
 * @param session The session to be marked
 */
 public void accessed(Context ctx, Request req, String id) {
 HttpSession session=findSession(ctx, id);
 if(session == null) return;
 if (session instanceof Session)
 ((Session) session).access();

 // cache the HttpSession - avoid another find
 req.setSession(session);
 }

 // XXX should we throw exception or just return null ??
 public HttpSession findSession(Context ctx, String id) {
 try {
 Session session = manager.findSession(id);
 if(session!=null)
 return session.getSession();
 } catch (IOException e) {
 }
 return (null);
 }

 public HttpSession createSession(Context ctx) {
 return manager.createSession().getSession();
 }

 /**
 * Remove all sessions because our associated Context is being shut
down.
 *
 * @param ctx The context that is being shut down
 */
 public void removeSessions(Context ctx) {

 // XXX XXX a manager may be shared by multiple
 // contexts, we just want to remove the sessions of ctx!
 // The manager will still run after that (i.e. keep database
 // connection open
 if (manager instanceof Lifecycle) {
 try {
 ((Lifecycle) manager).stop();
 } catch (LifecycleException e) {
 throw new IllegalStateException("" + e);
 }
 }

 }

 /**
 * Used by context to configure the session manager's inactivity
timeout.
 *
 * The SessionManager may have some default session time out, the
 * Context on the other hand has it's timeout set by the deployment
 * descriptor (web.xml). This method lets the Context conforgure the
 * session manager according to this value.
 *
 * @param minutes The session inactivity timeout in minutes.
 */
 public void setSessionTimeOut(int minutes) {
 if(-1 != minutes) {
 // The manager works with seconds...
 manager.setMaxInactiveInterval(minutes * 60);
 }
 }
}

Fig. 3.6 Code of the session subsystem of the Apache Tomcat server; code responsible for session
expiration is highlighted (Colyer et al. 2005)

of other modules—known also as modular reasoning. This way, we can be sure that
the behavior of a module is not influenced by secrets of other modules.

Definition 3.10 Information hiding is the separation of a module into inter-
nal and external part. The internal part remains hidden from other modules,
whereas the external part, the module’s interface, specifies the contract of how
the module interacts with the rest of the system. Information hiding enables
modular reasoning, which means that developers can reason about a module
without knowing the internals of other modules. �

There are many different ways to specify interfaces and how to hide module
internals. All share that interfaces describe invariants between modules, but there
are different views on how those invariants should be enforced. Interfaces can range
from manually-enforced textual documentation to machine-checkable specifications
of types, protocols, and so forth. Programming-language research constantly pushes
the boundaries of what can be enforced mechanically, but textual specifications and
documentation still remain just as important.

58 3 Basic Concepts, Classification, and Quality Criteria

Information hiding has several important consequences. By reasoning about mod-
ules separately, we can divide work and assign it to independent teams (Parnas 1972).
Developers do not need to inspect the entire code base when trying to understand
an individual module. Developers may also change the internal implementation of a
module freely as long as they preserve the behavior specified in the interface. The
interface specifies the communication between modules and all communication is
explicit in the interface. At a larger scale, we can understand the system in terms of
module interfaces and compose modules by reasoning only about interfaces. Often,
we can even compile and deploy modules separately. The key challenges of informa-
tion hiding are to design small and clear interfaces to make communication explicit
but also to maximize the secrets to hide.

When separating features, we would ideally also hide the internals of their imple-
mentation and make all communication between them explicit in interfaces. This
frees developers from the burden of having to know all features in a system and how
they may affect each other. Different teams can be responsible for different features
and work in isolation on the basis of agreed interfaces. Therefore, information hiding
is a quality criterion we strive for in many product-line implementation mechanisms.
We will see that some implementation approaches (see frameworks and components
in Sects. 4.3 and 4.4, pp. 79 and 89) use classic mechanisms with a long tradition
of information hiding, whereas especially more recent approaches (for example, see
feature-oriented programming and virtual separation of concerns in Sects. 6.1 and
7.4, pp. 130 and 184) separate concerns, but do not always provide suitable interface
mechanisms, yet.

Without information hiding, separating concerns into cohesive artifacts may ease
code navigation and reasoning, compared to scattered and tangled code, but it cannot
give guarantees; in the worst case, developers need to know the entire system, as every
module could potentially influence every other. On the other hand, information hiding
without an educated decision of what to hide—which is typically driven by separation
of concerns and planning for change (Parnas 1972, 1979)—may not separate the
cohesive parts we want to reason about. For true modularity, we aspire to have both,
separation of concerns and information hiding. Achieving true modularity typically
requires significant preplanning though.

Note, in this book, we avoid the term modularity. Modularity is a highly over-
loaded term, on which many people project different ideas. For some, textually
separating concerns into distinct files amounts to modularity. In contrast, for oth-
ers, enforced information hiding with explicit and mechanically checked interfaces
is essential. We use separation of concerns or cohesion when discussing separat-
ing implementations of feature into distinct artifacts and information hiding when
discussing interfaces. We cannot avoid the term module, but we use it in the very
broad sense of some file or container and discuss information hiding explicitly where
appropriate.

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_7

3.2 Quality Criteria 59

3.2.5 Granularity

Features are rarely implemented in isolation from other features. A feature’s utility
arises from its connections with other features in the system. Only their collaboration
gives rise to desired system behavior. To interact, a feature needs to induce changes,
for example, by intercepting an event, registering a callback function, or injecting
statements into an existing function.

Depending on the implementation technique, a feature can change a program at
different levels of granularity. A level of granularity refers here to the hierarchical
structure of an implementation artifact, typically, defined by a containment relation
among the artifacts’ structural elements, given by its syntax. Changes at the top of
the hierarchical structure of an implementation artifact are coarse-grained. Changes
at lower levels are fine-grained.

Example 3.1 A change induced by a feature that involves the addition of a new file
or Java class to a given program is coarse-grained. Adding a new member to a given
Java class is medium-grained, and adding a new statement to a given method body
is fine-grained. �

Experience has shown that feature implementations take place at all levels of gran-
ularity (Kästner et al. 2008a; Liebig et al. 2010). Encoding fine-grained extensions
in product-line implementation techniques that offer only mechanisms for coarse- or
medium-grained extensions can be awkward and work-intensive. Usually, even fine-
grained changes can be made with coarse-grained extensions, but at cost, for example,
the cost of code replication, when replacing entire files with locally modified variants
(we discuss an instance of this in the context of build systems in Sect. 5.2). If fine-
grained extension points are known upfront, such as the need to inject statements
inside a method, developers can often also extract those fine-grained locations to
more coarse-grained structures, for example, by refactoring the statements to their
own method or class.

The rule of thumb is that annotation-based approaches support more fine-grained
changes and interactions than composition-based approaches, because the code of
different features is intermixed anyway in a common code base, and annotations can
be applied at nearly every place in a code base. Composition-base approaches rely
on interfaces that are defined typically at the level of classes and methods.

3.2.6 Uniformity

Many concepts and mechanisms described in this book are independent of a particular
implementation language, but for didactic reasons we use mostly Java as our host
language. However, many product-line implementation techniques generalize too
many languages. For example, the idea of intermixing code of different features in a
single code base and to use annotations to establish a mapping between features and

http://dx.doi.org/10.1007/978-3-642-37521-7_5

60 3 Basic Concepts, Classification, and Quality Criteria

code (see preprocessors in Sect. 5.3, p. 110) is applicable to Java as well as C, C#, and
any other textual language. Also, more sophisticated implementation mechanisms
such as inheritance, component composition, or aspect weaving are not specific to
certain languages (see Chaps. 4 and 6).

Also, in the context of software product lines, researchers began to view and
develop their implementation approaches in a language-independent manner and
began to develop language-independent tools and theories (Batory et al. 2004; Apel
et al. 2009). Batory first formulated the principle of uniformity (Batory et al. 2004).

Definition 3.11 Principle of Uniformity: Features are implemented by a
diverse selection of software artifacts and any kind of software artifact can
be subject of subsequent changes and extensions. Conceptually, all artifacts
(annotated or composed) should be encoded and synthesized in a similar
manner. �

The principle of uniformity is not motivated by the fact that individual implemen-
tation mechanisms such as inheritance can be implemented for various languages,
but by the observation that today’s software systems, including software product
lines, consist of many different kinds of software artifacts. Artifacts include code
written in different languages as well as noncode artifacts, such as requirements,
documentation, architecture descriptions, design and performance models, configu-
ration files, and many more. Instead of inventing ad hoc approaches again and again
for specific languages, which simply does not scale, it is desirable to have a general
approach to be instantiated for all kinds of artifacts because there is only concept to
remember. It is even possible, based on such a general approach, to develop largely
language-independent tools for feature implementation and product derivation (see
Sect. 6.1, p. 130).

The bottom line is that the principle of uniformity denotes an important quality
criterion for product-line implementation techniques. Ideally, an implementation
technique should be applicable, in principle and in practice, to a wide variety of
different code and noncode artifacts.

3.3 Structure of Subsequent Chapters

In the next four chapters, we introduce, discuss, and compare different strategies to
implement feature-oriented software product lines. In Table 3.1, we classify them
according to the dimensions we introduced in Sect. 3.1. Some approaches have mul-
tiple instances with different properties, such that the classifications are not disjoint.
For example, some component systems support both static composition and dynamic
composition; others are both language-based and tool-based.

In addition, to the dimensions of Table 3.1, we distinguish between classic and
advanced approaches: classic approaches that are used widely in practice and

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6

3.3 Structure of Subsequent Chapters 61

Table 3.1 Classification of implementation approaches discussed in this book

Binding time Technology Representation
Compile Load time Language- Tool- Annotation Composition
time (and later) based based

Parameters � � �
Design patterns (�)1 � � �
Frameworks (�)1 � � �
Components � � � � �
Version control � � �
Build systems � � (�)3 �
Preprocessors � � �
Feature-oriented

programming
� (�)2 � �

Aspect-oriented
programming

� (�)2 � �

Virtual
separation
of concerns

� � �

1 Both design patterns and frameworks support compile-time and run-time variability, but, in the
case of compile-time variability, they induce still a run-time overhead. 2 Both feature-oriented and
aspect-oriented programming support dynamic feature binding, but corresponding tools are rather
experimental. 3 One can annotate an entire file to assign it to a particular feature

advanced approaches that are explored mostly in academia and that introduce novel
tool-based or language-based implementation mechanisms. The chapter structure is
guided by this distinction between classic and advanced mechanisms and the dis-
tinction into language-based and tool-based approaches. We choose this structure,
because all strategies that we cover can be equally-balanced into language-based and
tool-based—two philosophies largely independently explored, with mutual strengths
and weaknesses. The other dimensions of classification are not explicit in the chapter
structure of this book, but they still guide our discussions.

3.4 Further Reading

The concepts and classification introduced in this chapter are based on a wide variety
of books and research papers. We provide selected pointers to further relevant original
sources and text books. Czarnecki and Eisenecker discuss many of the concepts
presented here more or less explicitly in their text (Czarnecki and Eisenecker 2000).
Separation of concerns and especially crosscutting are discussed extensively in the
literature on aspect-oriented programming (Filman et al. 2005; Laddad 2003). The
distinction between annotation-based and composition-based approaches has been
first proposed by Kästner and Apel (2008a; 2009a). The same authors discussed the
role of granularity in product-line implementation (Kästner et al. 2008a). There are

62 3 Basic Concepts, Classification, and Quality Criteria

many different notions and interpretations of modularity, separation of concerns, and
information hiding. The key ideas to hide information based on what is most likely
to change and to build interfaces around the stable parts were explored in depth
by Parnas (1972, 1976, 1979). We wrote down a detailed version of our current
understanding of different notions of modularity, which provides a more in-depth
discussion and a starting point for further exploration of that field (Kästner et al.
2011). The principle of uniformity was formulated by Batory et al. (2004). Svahnberg
et al. present a taxonomy of variability-realization techniques, which is alternative
to our classification (Svahnberg et al. 2005). Further classifications and surveys are
available elsewhere (Anastasopoules and Gacek 2001; Muthig and Patzke 2002;
Mezini and Ostermann 2004; Lopez-Herrejon et al. 2005).

Exercises

3.1. Discuss the strengths and weaknesses of product-line implementation approaches
regarding:

(a) binding times (compile-time, load-time, and run-time variability),
(b) technology (language-based versus tool-based mechanisms), and
(c) variability representations (annotation versus composition).

3.2. Discuss which binding times are suitable (or ideal, or necessary) for the following
features:

(a) Multiple alternative localization features (languages, metric versus imperial
units, and so forth) for the graphical user interface of a satellite navigation system.

(b) Two alternative sorting features in a database system: a very fast and a power-
efficient sorting algorithm.

(c) Two alternative features in an operating system: single-processor support and
multi-processor support.

(d) Two alternative features edge representations in a library of graph algorithms:
directed and undirected.

(e) Multiple optional features for supported file formats in printer firmware.

Which additional context knowledge would change your answer?
3.3. Is it possible to combine composition-based and annotation-based techniques in
one approach? Would it be useful? Name possible scenarios.
3.4. What is the role of granularity in product-line implementation? How is it related
to the classification of Table 3.1? Does granularity interact with the dimensions of
variability implementations or other quality criteria?
3.5. Select a small existing application, for example LlamaChat.3 Investigate what
extensions (potential features) you could add without making any changes to the
existing source code. Which extensions could you additionally provide with only

3 http://sourceforge.net/projects/llamachat/

http://sourceforge.net/projects/llamachat/

Exercises 63

small changes to existing source code (changing a line or two). What extensions
would require more invasive changes?
3.6. Provide examples of preplanning activities.
3.7. How is feature traceability achieved—if at all—by implementation approaches
as classified in Table 3.1? Is separation of concerns a prerequisite for feature
traceability?
3.8. In the application selected for Exercise 3.5, select a configurable feature from
the documentation (for example, message encryption in a chat server or the ability
for users to create their own channels). Locate all corresponding source code in
the implementation. How did you trace the feature to its implementation? Does the
implementation contain any mechanisms that supported you in tracing the feature?
What granularity has the extension that implements the feature?
3.9. What is the role of separation of concerns and information hiding in product-line
development? Are they necessary? What do we gain from them?
3.10. Is the feature you selected in Exercise 3.8 separated in any form? Can you
identify information hiding? What information is hidden and how?
3.11. What is the practical relevance of the principle of uniformity?
3.12. What code and noncode languages are involved in the implementation of the
application chosen for Exercise 3.5? Does variability affect multiple languages?
Should it? If so, name implementation artifacts in which variability would be
necessary.
3.13. Investigate how variability is implemented in the following projects and classify
the implementation strategy with regard to the concepts discussed in this chapter:

(a) the Linux kernel (for example, drivers),
(b) the Eclipse development environment (for example, plug-ins for new languages),
(c) the Apache webserver (for example, authentication or error document), and
(d) the application selected for Exercise 3.5.

Discuss why do you think that the developers have chosen the respective techniques.
Would there be alternatives?
3.14. Revisit the three scenarios from Exercise 2.9. Discuss for each scenario which
quality criteria is the most important and the least important. Explain why you would
(or would not) judge importance differently for the three scenarios?

Chapter 4
Classic, Language-Based Variability
Mechanisms

After reading the chapter, you should be able to

• implement features with run-time parameters, white-box frameworks, black-box
frameworks, and components,

• discuss trade-offs between these implementation techniques,
• select a suitable implementation technique for a given product line,
• choose suitable design patterns to implement variability,
• explain limitations of inheritance and possible solutions, and
• decide what size is appropriate for a component in a product line.

There are many ways to implement variable code; some have been used long before
the advent of software product lines. Even a simple if statement offers a choice
between different execution paths. To prevent cluttering of code with if statements,
to enhance feature traceability, to provide extensibility without the need to change the
original source code, and to provide compile-time (or load-time) variability, devel-
opers have identified many common programming patterns to support variability.

In this chapter, we discuss four implementation techniques in detail: parameters
(Sect. 4.1), design patterns (Sect. 4.2), frameworks (Sect. 4.3), and components and
services (Sect. 4.4). All of them can be encoded in mainstream programming lan-
guages. In Chap. 5, we discuss approaches based on configuration-management tools
(version control systems, build systems, and preprocessors) that operate on top of
source code (see Sect. 3.1.2, p. 49) to achieve and manage variability.

The language mechanisms and tools discussed in this and the next chapter are
well-known and commonly used in practice. Most industrial software product lines
are implemented with one or more of them. As we will see, each has distinguishing
properties and gives rise to trade-offs, which we discuss in terms of the classifications
(binding times, granularity, and so forth) introduced in Chap. 3.

S. Apel et al., Feature-Oriented Software Product Lines, 65
DOI: 10.1007/978-3-642-37521-7_4, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

66 4 Classic, Language-Based Variability Mechanisms

4.1 Parameters

A simple way to implement variability is to use conditional statements (such as if and
switch) to alter the control flow of a program at run time. In our context, conditional
statements are typically controlled by configuration parameters passed to a method
or a module, or set as global variables in a system. Different parameter assignments
lead to different program executions.

There are many ways to set configuration parameters. Often, command-line para-
meters (such as in “ssh -v”) or configuration files (such as system.ini or httpd.conf)
are read at startup and stored in global variables. Also, users can change parameters
in preference dialogs, sometimes with immediate effects, other times requiring a
restart. Furthermore, values of variables can also be hard-wired in source code, so
changing them requires recompilation.

Of course, configuration parameters do not have to be stored in global variables. It
is quite common to pass configuration parameters as method arguments. Sometimes,
configuration parameters are propagated from method to method, or from class to
class, across the entire source code. Global variables are convenient to access, avoid-
ing the need for additional method parameters, but they also discourage a modular
solution, in which each module or method describes the configuration parameters it
expects as part of its interface.

In a feature-oriented setting, we expect one Boolean parameter per feature. In
a disciplined implementation, the relationship between features and parameters is
expressed and enforced by naming conventions and thus easy to trace (see Sect. 3.2.2,
p. 54).

Example 4.1 In Fig. 4.1, we show our graph example with two configurable features,
Weighted and Colored, implemented as global configuration parameters. Class Conf
stores two parameters (public static is the Java way of specifying a global variable),
possibly initialized during startup from command-line parameters or configuration
files. These parameters are evaluated inside if statements in the classes Graph, Node,
and Edge to trigger feature-specific behavior on demand. �

4.1.1 Discussion

Implementing variability with parameters is straightforward. For this reason, it is
widely used in practice. Variation is evaluated at run time when conditional statements
are executed (see load-time and run-time binding in Sect. 3.1.1, p. 48). The parameter
approach shares the usual benefits and drawbacks of run-time binding:

• All functionality is included in all deployed products, even if it is statically known
that a feature will never be selected. This has potentially negative implications
for resource consumption, performance, and security: First, deactivated function-
ality is still delivered. Second, performing run-time checks requires additional

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

4.1 Parameters 67

Fig. 4.1 Graph library: Variability implemented with parameters

computing overhead. In our example of Fig. 4.1, even though we know that we
never use feature Colored, the application still contains class Color, evaluates an
additional if statement whenever a method print is called, and requires memory for
an additional field of every node and edge object. Third, we cannot even prevent
others from instantiating objects or invoking methods of deactivated feature code,
other than throwing run-time errors (see method add in Lines 19–28 of Fig. 4.1).
Finally, shipping unused code opens unnecessary potential targets for attacks, such
as buffer-overflow attacks.

• It is possible to alter a feature selection without stopping the program. However,
run-time changes are nontrivial in general, as a feature’s code may depend on
certain initialization steps or assume certain invariants. For example, in Fig. 4.1,
we might run into a null-pointer exception, if we enabled Weight at run time,
because the field weight of previously created edges was uninitialized. In such
cases, it might be easier to require a restart of the program, when configuration
parameters change.

• An advantage of passing configuration parameters as method arguments (in con-
trast to using global variables or using compile-time variability) is that different

68 4 Classic, Language-Based Variability Mechanisms

parts of the control flow can be configured differently. For example, we could use
colored graphs and uncolored graphs in the same program.

It is possible to specialize a program statically when some configuration parame-
ters are known at compile time. Many compilers include optimizations that remove
dead code. For example, if we know at compile time that a parameter is always
deactivated (for instance, because it is defined as a constant in the source code), the
compiler can remove corresponding conditional statements and their bodies. How-
ever, deciding when to remove entire methods or classes is less obvious and rarely
implemented in contemporary compilers. Compilers also differ in the amount of
analysis they perform to recognize dead code when configuration parameters are
passed across method boundaries, are modified, or are assigned to other variables.
Beyond simple dead-code optimizations, more sophisticated optimizations using par-
tial evaluation can be applied to statically eliminate variability (Jones et al. 1993),
but these are far from mainstream or easy to use yet. All in all, despite limited possi-
bilities, the parameter approach is not well-suited for compile-time binding. We will
see a specialized form of if statements for compile-time binding later in the context
of preprocessors, in Sect. 5.3.

Dependencies between features must be checked when the parameters are config-
ured at startup, or whenever parameters are changed at run time. In our experience,
feature dependencies are rarely checked in a systematic way when using parameters.
The parameter approach cannot statically guarantee invariants on feature selections
(meaning that without considerable effort, it may be possible to activate features at
run time that are not compatible with each other).

Adding conditional statements to the source code is a form of annotation (see
annotation versus composition in Sect. 3.1.3, p. 50). Annotations with conditional
statements are available at a fine granularity (see granularity in Sect. 3.2.5, p. 59).
With if statements, we can change the program behavior at statement level, and many
languages even provide conditionals at the expression level (such as, “a?b:c” in
Java). Most languages do not provide conditionals at the level of methods or classes,
because they are not necessary to influence the behavior of the program (they become
relevant only for compile-time variability, which is not the goal of the parameter
approach). Extensions are usually performed invasively, but therefore also do not
require specific preplanning (see preplanning in Sect. 3.2.1, p. 53). Configuration
parameters can be encoded in essentially all programming languages; however, they
are usually not applicable to noncode artifacts, such as, design documents, grammars,
and documentation (see uniformity in Sect. 3.2.6, p. 60).

Configuration parameters often lead to implementations that have a poor code
quality. On the one hand, global parameters are tempting but reduce modularity (they
violate separation of concerns and potentially breach information-hiding interfaces).
On the other hand, propagating method arguments requires boilerplate code and
may lead to methods with many parameters (considered as code smell by Fowler
(1999, pp. 78f)). A typical recommendation is to pass a single configuration object
that encapsulates multiple configuration options, known as parameter objects (see,
Fowler 1999, pp. 295ff).

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

4.1 Parameters 69

Finally, with the parameter approach, variability-related code crosscuts the
remaining implementation (see crosscutting concerns in Sect. 3.2.3, p. 55). Feature
code is scattered across multiple files and modules, in variables, in method arguments,
in if statements, and so forth. Furthermore, feature code is tangled with the base code
and code of other features. Due to the crosscutting nature, it is difficult to encapsu-
late a feature’s code behind an interface and to place all feature code in one cohesive
structure (see information hiding in Sect. 3.2.4, p. 57). Due to the scattering and lack
of cohesion, it can be nontrivial to trace a feature to all code fragments implement-
ing it (see feature traceability in Sect. 3.2.2, p. 54): Unless specific conventions are
used, one has to follow the control flow, possible assignments to other variables, and
possible operations on the configuration parameters. The parameter approach can
lead to undisciplined ad-hoc implementations that are difficult to analyze, maintain,
and debug.

Summary parameters
Strong points:

• Easy to use, well-known.
• Flexible and fine grained (see Sect. 3.2.5, p. 59).
• First-class programming-language support (see Sect. 3.2.6, p. 60).
• Different configurations within the same program possible.

Weak points:

• All code is deployed, no compile-time configuration (see Sect. 3.1.1, p. 48).
• Often used in ad-hoc or undisciplined fashion.
• Boilerplate code or nonmodular solutions.
• Scattering and tangling of configuration knowledge (see Sect. 3.2.3, p. 55).
• Separation of feature code and information hiding possible, but left to the

discipline of developers (see Sects. 3.2.3 and 3.2.4, p. 55 and 57).
• Extensions typically require invasive changes, but little preplanning though

(see Sect. 3.2.1, p. 53).
• No support for noncode artifacts (see Sect. 3.2.6, p. 60).
• Nontrivial tracing between features and code (see Sect. 3.2.2, p. 54), and

thus difficult to analyze statically (see Sect. 10.2.3, p. 257).

4.2 Design Patterns

A problem of the parameter approach is that variability is scattered and hard-wired
in the source code, often in an undisciplined fashion. Consequently, many patterns
have evolved on how variability can be separated and decoupled, among them many

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_10

70 4 Classic, Language-Based Variability Mechanisms

well-known design patterns for object-oriented programming, such as observer,
template method, strategy, decorator (Gamma et al. 1995).

Definition 4.1. Design patterns are descriptions of collaborating objects and
classes that are customized to solve a general design problem in a particular
context.

(Gamma et al. 1995) �

Because design patterns are already a part of many curricula, they are increasingly
common in practice, and there are many excellent descriptions (most prominently,
Gamma et al. 1995), we describe only four design patterns briefly that are well-suited
for variability implementations.

4.2.1 Observer Pattern

The observer pattern (also known as publish/subscribe pattern) describes a common
way to implement distributed event handling, in which a subject notifies all registered
observers of changes to its state. The observer pattern decouples subject and observers
and adds flexibility to add or remove observers later. For example, a data store
(the subject) could notify user-interface elements such as tables, charts, and alerts
(the observers) whenever its data changes, independent of how many user-interface
elements currently display the data.

The observer pattern consists of three roles: (a) An observer interface, which
contains one or more methods that are invoked by the subject upon state changes
or other events. (b) Concrete observers, implementing the observer interface and
reacting to changes by the subject. (c) A subject, to which observers can register
themselves. A subject dispatches events to all registered observers. In Fig. 4.2, we
illustrate the architecture and a small schematic implementation.

A subject broadcasts events to all registered observers. Instead of hardwiring the
notification mechanism, developers can flexibly add and remove observers at run-
time. The subject does not need to know all observers; in fact, the subject only knows
the observer interface and has a (dynamically-changing) list of observers.

In product-line development, the observer pattern makes it easy to add and remove
features, provided that a feature can be implemented as an observer. Each feature
implements the observer interface and registers itself with the subject for relevant
events, such as opening a file, sending a mail, committing a transaction, or print-
ing the nodes of a graph. Variability is achieved by registering or not registering
observers. Code of different features can be separated into distinct observer classes
(see separation of concerns in Sect. 3.2.3, p. 55). This way, additional features can
be added without changing the implementation of a subject (the part that is common
to all products of the product line).

http://dx.doi.org/10.1007/978-3-642-37521-7_3

4.2 Design Patterns 71

Fig. 4.2 Observer pattern

The observer pattern requires preplanning (see Sect. 3.2.1, p. 53). A developer
needs to decide upfront where variation will be needed later and to prepare the code,
by providing a registration facility and exposing relevant information through the
observer interface. Extensions can only be added without invasive modifications of
the base code, when the observer pattern was prepared in the base code. Further-
more, additional indirections (for example, calling notifyObservers) cause (a small)
architectural run-time overhead, even if no observers are added.

In Fig. 4.3, we adapt the observer pattern to decouple feature code inside the
print methods of our graph example. The base implementation of the graph acts
as subject, and edges issue notifications when they are printed. These notifications
are consumed by the observers WeightPrintObserver and ColorPrintObserver, which
implement the parts of the features Weighted and Colored, respectively. Note that the
observer mechanism is general; we could use it to implement also other features than
printing at the same extension point without changing the base code.

4.2.2 Template-Method Pattern

The template-method pattern defines a skeleton of an algorithm in an abstract class,
but leaves certain steps of the algorithm to be specified by a subclass. Different
subclasses can provide different implementations of these steps by overriding one
or multiple methods, and can thus influence program behavior. The pattern exploits
subtype polymorphism and late binding in object-oriented programming to execute
always the most specific implementation of each method. The template-method pat-
tern is the core mechanism for implementing white-box frameworks, discussed later
in Sect. 4.3.1.

http://dx.doi.org/10.1007/978-3-642-37521-7_3

72 4 Classic, Language-Based Variability Mechanisms

Fig. 4.3 Graph library: Variability in method print implemented following the observer pattern

Implementations of this pattern are straightforward in Java: We implement the
algorithm skeleton as one or more methods in an abstract class. For invoking behavior
that is subclass-specific, we call corresponding abstract methods. Alternatively, we
could provide default behavior in virtual but concrete methods that may be overridden
by a subclass. Subsequently, a subclass extends the abstract class and provides custom
behavior. Different subclasses can provide different specific behaviors, but all share
the overall implementation skeleton of the algorithm.

In product-line development, we can exploit this pattern and implement behavior
of alternative features by means of different subclasses. Especially, if the algorithm
differs only in minor details in each feature, we can share the common parts of the
algorithm in a common abstract class. In Fig. 4.4, we illustrate how to implement
weighted and unweighted graphs in an excerpt of our graph example. Note that,
beyond just overriding existing methods, a subclass can also introduce additional
behavior, as with the additional method add in class WeightedGraph.

The template-method pattern is best suited for alternative features (that is, when
only one feature out of a set of features can be selected at a time, see Sect. 2.3, p. 26).
Also individual optional features can be implemented, when a default implementation
is provided for each template method. However, the template-method pattern is not

http://dx.doi.org/10.1007/978-3-642-37521-7_2

4.2 Design Patterns 73

Fig. 4.4 Graph library: Variability between weighted and unweighted graphs with the template-
method pattern

suited for combining multiple features, due to limitations of inheritance (see the
discussion in Fig. 4.9, p. 78).

Similar to the other patterns, the template-method pattern separates feature code
from base code (see separation of concerns in Sect. 3.2.3, p. 55). Feature code is
placed in distinct classes and induces a moderate run-time overhead, due to addi-
tional invocations of virtual methods. Some authors classify variation through the
template-method pattern as a distinct implementation strategy ‘inheritance’ or ‘sub-
type polymorphism’ (Anastasopoules and Gacek 2001; Muthig and Patzke 2002).

4.2.3 Strategy Pattern

The strategy pattern aims at variability in algorithms, similar to the template-
method pattern. The strategy pattern is different in that it uses delegation instead
of inheritance. Instead of writing an abstract method to be overridden by clients, a

http://dx.doi.org/10.1007/978-3-642-37521-7_3

74 4 Classic, Language-Based Variability Mechanisms

Fig. 4.5 Strategy pattern

developer specifies a strategy interface that is implemented by clients. The strategy
pattern encodes a callback mechanism and is the core mechanism for implementing
black-box frameworks, as discussed in Sect. 4.3.2.

The strategy pattern consists of three roles, as illustrated in Fig. 4.5: The context
that implements the main algorithm (comparable to the abstract class in the template-
method pattern, or the subject in the observer pattern); a strategy interface that
describes the functionality that can be provided by clients (similar to the observer
interface); and concrete implementations of the strategy. A strategy is passed to the
context in some form, for example, as a constructor parameter, with a setter method,
or as method argument; the context may call the strategy’s methods.

Using the strategy pattern, a client can select which implementation of the strategy
should be used during the execution. In this way, it is easy to add subsequently new
implementations.

In product-line development, the strategy pattern is well-suited to implement
alternative features, provided that features correspond to different implementations
of methods. The pattern replaces ad-hoc conditional statements in the source code
with polymorphic calls to the strategy interface. The language dispatches the method
call to the concrete strategy implementation. Implementing features as a strategy
encourages programmers to encapsulate features with interfaces in a disciplined
form (see information hiding in Sect. 3.2.4, p. 57). Developers can precisely specify
the interface for alternative implementations and future variations. In Fig. 4.6, we
show the weighted-versus-unweighted decision from the template-method example,
implemented using the strategy pattern.

Although the strategy pattern is best suited for alternative features, developers
can also encode optional features. To that end, developers provide default or dummy
implementations of strategies for deselected features or accept null as strategy para-
meter. Finally, combining multiple features is possible, if prepared accordingly: we
could accept multiple strategies and execute them all (and potentially pass the result
of one strategy as input for the next); we show an example later with filter plug-ins
in Sect. 4.3.3.).

http://dx.doi.org/10.1007/978-3-642-37521-7_3

4.2 Design Patterns 75

Fig. 4.6 Graph library: Weighted and unweighted graph variability with the strategy pattern

The strategy pattern encourages encapsulation and decoupling of features, and
even enables distributed development and separate compilation. We discuss benefits
and drawbacks of variability with the strategy pattern in more detail in the context
of frameworks, in Sect. 4.3.5.

4.2.4 Decorator Pattern

The decorator pattern (also known as the wrapper pattern) describes a delegation-
based mechanism to flexibly extend objects with additional behavior. Decorators
enable objects of a (prepared) class to be extended with additional behavior at run
time. Multiple extensions can be combined. The delegation-based decorator pattern
can elegantly solve some composition problems that are problematic with inheritance.
It can be seen as a dynamic and restricted form of mixin composition (see also Fig. 4.9
and Sect. 6.1.3).

http://dx.doi.org/10.1007/978-3-642-37521-7_6

76 4 Classic, Language-Based Variability Mechanisms

Fig. 4.7 Decorator pattern

According to the terminology of the decorator pattern, the extensible class is
called a component. The decorator pattern consists of four roles, as illustrated in
Fig. 4.7: The component interface that describes the (extensible) behavior of the
component, a concrete implementation of the component, optionally, an abstract
decorator class, and one or more concrete decorator implementations. The concrete
component implementations and all decorators implement the component interface.
The decorators receive a component as a constructor argument and forward all calls
to that component, except for the intended changes to the behavior. For example, a
decorator can intercept selected method invocations, whereas it forwards all remain-
ing invocations to the decorated component. Decorators are added to a component
object o by wrapping around it (for example, o = new DecoratorA(o);).

The strength of decorators is that additional behavior can be added incrementally
at run time to existing classes. Furthermore, a series of decorators can wrap the
same class, integrating the wrapper and class functionality. To the outside world,
the class always provides the same interface, decorated or not. Probably the best
known application of the decorator pattern in the Java world is streams in Java’s
standard library. Input streams all share a common interface, but there are multiple
concrete implementations, such as ByteArrayInputStream and FileInputStream. The
concrete implementations can be extended with several optional decorators, such
as BufferedInputStream, CipherInputStream, and AudioInputStream. A developer can
flexibly select core implementation and decorators, even at run-time. For example,
in the following code fragment each decorator adds additional functionality to the
methods of FileInputStream:

InputStream str = new BufferedInputStream(
new CipherInputStream(

new FileInputStream(file)));

4.2 Design Patterns 77

Fig. 4.8 Graph library: Decorators for the features Weighted and Colored

In product-line development, the decorator pattern is well-suited to implement
optional features and feature groups of which multiple features can be selected. In
Fig. 4.8, we illustrate decorators by implementing extensions of the features Weighted
and Colored to class Edge (similar to the observer-pattern example, in Fig. 4.3). Note
that we hard-code the installation of decorators in method addEdge depending on
configuration parameters. Of course, we could use also the strategy pattern or other
mechanisms to customize which decorators to install. We could even add decorators
to existing objects in a running system.

4.2.5 Discussion

Design patterns offer general solutions to reoccurring design problems. Implement-
ing variability is a reoccurring problem, and several patterns provide guidance, as
we have shown. Design patterns provide building blocks that are often adopted, used
combined, or used in a larger context, for example, as part of frameworks, which we
discuss in Sect. 4.3.

The advantages and drawbacks of design patterns are similar to those of the para-
meter solution, discussed in Sect. 4.1.1; here, we focus on the differences. In general,

78 4 Classic, Language-Based Variability Mechanisms

Edge

WeightedEdge ColoredEdge UndirectedEdge

Edge

WeightedEdge

Weighted-
ColoredEdge

WeightedColored-
UndirectedEdge

 extensions are

not combinable

Weighted-
ColoredEdge

Colored-
UndirectedEdge

WeightedColored-
UndirectedEdge

mandatory

inner extensions

Edge

+print()
+connects()

+Node _a, _b

UndirectedEdge

+print()
+connects()

WeightedEdge

+print()

+weight

Weighted-
UndirectedEdge

+print()

Edge

WeightedEdge ColoredEdge UndirectedEdge

(a) (c)

(b)

(d)

Fig. 4.9 Limitations of Inheritance with regard to compositional flexibility

4.2 Design Patterns 79

design patterns provide good-practice guidelines for disciplined implementations of
variability. They are well-known and facilitate communication between developers.
In contrast to native ad-hoc implementations with parameters, they encourage decou-
pling and encapsulation of features (see separation of concerns and information hid-
ing in Sects. 3.2.3 and 3.2.4, p. 55 and 57) and support a clear tracing of features
to observers, subclasses, strategies, decorators and others (see feature traceability
in Sect. 3.2.2, p. 54). Design patterns enable noninvasive future extensions without
changing the base implementation, at the cost of some preplanning effort (see pre-
planning effort in Sect. 3.2.1, p. 53). Since the patterns describe only designs—not
concrete code snippets—they can be encoded in different programming languages,
but not in noncode languages (uniformity in Sect. 3.2.6, p. 60). However, most imple-
mentations of design patterns add boilerplate code and architectural overhead, which
may influence binary size and performance negatively.

All design patterns discussed here enable variability at run-time (see binding
times in Sect. 3.1.1, p. 48). For some languages, there are also encodings of these
patterns that allow compile-time specialization (such as inlining and static bind-
ing) for cases when the configuration choice is already known at compile-time. For
example, Czarnecki and Eisenecker (2000, Chap. 7) discuss how to encode design
patterns efficiently with generic-programming techniques in C++.

Summary design patterns. Similar to parameters (see Sect. 4.1.1, p. 66), but
with the following distinctions.

Strong points:

• Well established, ease communication between developers.
• Guidelines for disciplined design.
• Separate feature code from base code (see Sect. 3.2.3, p. 55), possibly with

clear interfaces (see Sect. 3.2.4, p. 57).
• Noninvasive extensions without modifying the base code, given a preplan-

ning effort (see Sect. 3.2.1, p. 53).

Weak points:

• Boilerplate code and architectural overhead.
• Preplanning of extension points necessary (see Sect. 3.2.1, p. 53).

4.3 Frameworks

A framework is an incomplete set of collaborating classes that can be extended and
tailored for a specific use case. It represents a reusable base implementation for a
related set of problems, and thus perfectly fits the needs of product-line development.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

80 4 Classic, Language-Based Variability Mechanisms

A framework provides explicit points for extensions, called hot spots, at which devel-
opers can extend the framework. Often, extensions are called plug-ins. In the same
manner as the template-method design pattern (see Sect. 4.2.2, p. 71) and the strategy
design pattern (see Sect. 4.2.3, p. 73), a framework is responsible for the main con-
trol flow and asks its extensions for custom behavior, on demand; a principle called
inversion of control (Johnson and Foote 1988).

Nowadays, frameworks with plug-ins are popular in end-user software, including
web browsers, graphics-editing software, media players, and integrated development
environments (IDEs). For example, the Eclipse IDE is a framework (actually a set
of many frameworks) that can be tailored with thousands of plug-ins (Gamma and
Beck 2003). In Eclipse and all other frameworks, the basic application is extensi-
ble with specific plug-ins. Furthermore, plug-ins are often developed and compiled
independently by third-party developers.

In feature-oriented product-line development, ideally, we develop one plug-in per
feature and configure the application by assembling and activating plug-ins corre-
sponding to the feature selection—a composition process (see annotation versus
composition in Sect. 3.1.3, p. 50).

Definition 4.2. A framework is a set of classes that embodies an abstract
design for solutions to a family of related problems, and supports reuse at a
larger granularity than classes. A framework is open for extension at explicit
hot spots.

(Johnson and Foote 1988) �

Although historically frameworks predate design patterns, technically, they can
be best explained with the design patterns introduced in the previous section.
Researchers distinguish between two kinds of frameworks: white-box and black-
box (Johnson and Foote 1988). The latter are well-known for using plug-ins.

4.3.1 White-Box Frameworks

White-box frameworks consist of a set of concrete and abstract classes. To customize
their behavior, developers extend white-box frameworks by overriding and adding
methods through subclassing. A white-box framework can be best thought of as a
class containing one or more template-methods (see Sect. 4.2.2, p. 71) that developers
implement or overwrite in a subclass (actually, it consists of multiple classes).

The “white-box” in white-box framework comes from the fact that developers
need to understand the framework’s internals. Developers need to identify template
methods and can additionally override all other accessible methods. Extensions in
white-box frameworks can usually directly access the state of superclasses. All non-

http://dx.doi.org/10.1007/978-3-642-37521-7_3

4.3 Frameworks 81

private fields and methods can be regarded as hot spots of the framework. Extensions
in white-box frameworks are usually compiled together with the framework code.

On the one hand, the ability to override existing behavior provides additional
flexibility to implement unforeseen extensions. On the other, white-box frameworks
require detailed understanding of internals and do not clearly encapsulate extensions
from the framework; thus, they are criticized for neglecting modularity.

Typical examples of white-box frameworks are libraries of graphical user inter-
faces, such as Swing or MFC, and extensible compilers, such as abc or Polyglot. We
provide a concrete code example, after discussing black-box frameworks.

When using white-box frameworks for product-line variability, we can only add
one subclass at a time to a given class, but not mix and match multiple exten-
sions (as explained for the template-method design pattern in Sect. 4.2.2). Hence,
as the template-method design pattern, white-box frameworks are best suited for
implementing alternative features.

4.3.2 Black-Box Frameworks

Black-box frameworks separate framework code and extensions through interfaces.
An extension of a black-box framework can be separately compiled and deployed and
is typically called a plug-in. In feature-oriented product-line development, ideally,
each feature is implemented by a separate plug-in.

Definition 4.3. A plug-in extends hot spots of a black-box framework with
custom behavior. A plug-in can be separately compiled and deployed. �

Whereas white-box frameworks can be understood in terms of the template-
method pattern, black-box frameworks follow the strategy and observer patterns (see
Sect. 4.2, p. 69). The framework exposes explicit hot spots, at which plug-ins can
register observers and strategies. That is, instead of subclassing, black-box frame-
works register objects and callback functions. As discussed for the corresponding
design patterns, it is possible to provide hot spots that can be extended with multiple
plug-ins.

Black-box frameworks are called “black-box” because, ideally, developers need
to understand merely their interfaces, but not the internal implementation of the
framework. In contrast to a white-box framework, the interface (set of hot spots) of a
black-box framework is explicit. Extensions can access only state of the framework
that exposed in the interface. Developers can add extensions only to hot spots foreseen
(or preplanned) by the framework developer. Although restricting extensions to an
interface may limit flexibility, it enables a strict decoupling of framework code and
extension code. Furthermore, it can make the framework easier to understand and
use, because only a comparably small amount of interface code must be understood.

82 4 Classic, Language-Based Variability Mechanisms

Fig. 4.10 Three similar applications (calculator, ping, and file loader) that can be implemented on
top of a common framework

The decoupling of extensions encourages separate development and indepen-
dent deployment of plug-ins, as known from many application-software frameworks,
including web-browsers or development environments. As long as the plug-in inter-
faces remain unchanged, framework and plug-ins can evolve independently.

4.3.3 An Implementation Example for Frameworks

We illustrate the implementation of white-box and black-box frameworks in Java by
means of a small example. In Fig. 4.10, we show screenshots of three applications that
perform different tasks (calculator, ping, and file loader), but have a similar (trivial)
user interface. Their implementations share a relatively large amount of source code
for initializing the user interface (fields, buttons, and layout), for starting and stopping
the application, and so forth. From the code of the calculator application in Fig. 4.11,
only the underlined code fragments differ between the applications, the rest is shared.
We demonstrate how to implement the common behavior in a framework and extend
it with specific plug-ins, for example, to get the three applications.

A white-box framework is shown in Fig. 4.12: We replace variable code frag-
ments by abstract methods (or overridable methods with default implementations),
following the template-method pattern (see Sect. 4.2.2, p. 71). For each extension,
we create a subclass and implement the abstract methods to specify custom behavior.
The extensions can directly access protected and public methods of the framework,
such as getInput in Line 44.

A black-box framework of the same design is listed in Fig. 4.13. Here, we decouple
framework and extensions (plug-ins) with an interface Plugin. The extension does not
subclass the framework, but implements only the interface. Note the similarity to the
strategy pattern (see Sect. 4.2.3, p. 73): The interface Plugin represents a strategy
interface called from the context in class App, whereas class CalcPlugin is a concrete
strategy.

4.3 Frameworks 83

Fig. 4.11 Example code of the calculator application. Specifics for the calculator are highlighted

Fig. 4.12 White-box framework for single-button applications and two extensions of the framework

84 4 Classic, Language-Based Variability Mechanisms

Fig. 4.13 Black-box framework for single-button applications and a plug-in

Recall, in a black-box framework, the extension cannot access internals of the
framework. To allow extensions accessing information from the framework, we need
to provide a callback mechanism. In our example, the framework registers itself to the
extension (Line 17), such that the extension can access methods from the framework
(Line 53). We even decouple the callback with an additional interface InputProvider
to protect what information the framework exposes. Such a callback is not always
needed and must not necessarily be implemented with an additional interface as in
our example.

To provide a hot spot that can be extended with multiple plug-ins, we store a list
of plug-ins instead of a single plug-in (similar to the observer pattern, see Sect. 4.2.1,
p. 70). Further, instead of providing a single plug-in interface for all variability,
we provide multiple specialized plug-in interfaces. We illustrate both extensions

4.3 Frameworks 85

Fig. 4.14 Framework that supports multiple plug-ins of different kinds

in Fig. 4.14: Encoders and filters have different plug-in interfaces and the frame-
work accepts a list of both plug-ins; all plug-ins work together to encode and filter
messages.

Observe the inversion of control that is typical for frameworks. The framework
controls the execution and only calls the extension when it requires information.

4.3.4 Loading Plug-Ins

A final question is how to load extensions, especially, plug-ins in black-box
frameworks. In white-box frameworks, we simply pass the desired subclass or invoke
its main method. In our black-box framework example, we passed the desired plug-
in as constructor parameters to the framework from a separate starter class (class
CalcStarter in Fig. 4.13). In practice, separate plug-in loaders are common.

In Fig. 4.15, we illustrate a simple plug-in loader for our black-box framework.
The loader expects a command-line parameter naming the plug-in class. The loader
then uses Java’s reflection mechanism to dynamically load the class and instantiate
the framework with it.

Beyond this simple example, a plug-in loader typically searches for plug-ins in
a certain directory or loads plug-ins listed in a configuration file. Subsequently, the
plug-in loader sets up the framework with the corresponding loaded plug-ins. The
loader decouples framework and plug-ins even further, as the plug-in loader identifies
and loads plug-ins during startup. No further code must be written to activate a plug-
in, in the simplest case it is just copied to a specific directory.

Plug-in loaders may additionally check that the plug-in implements required inter-
faces and check dependencies or ordering constraints between plug-ins. Thus, invalid

86 4 Classic, Language-Based Variability Mechanisms

Fig. 4.15 Simple plug-in loader using the Java reflection API

plug-in combinations can be rejected at load-time. End-user applications also often
provide sophisticated mechanisms to install, update, deactivate, or configure plug-ins,
often with graphical front-ends.

4.3.5 Discussion

Frameworks, especially, black-box frameworks, are a suitable way to implement
variability in product lines. Using typical plug-in loaders, individual products are
created by composing plug-ins at load-time, but in principle run-time changes are
possible (see binding times and annotation versus composition in Sects. 3.1.1 and
3.1.3, p. 48 and 50). Much like design patterns, frameworks are general in that they
can be implemented in most programming languages, but not in noncode languages
(XML, documentation, and so forth; see uniformity in Sect. 3.2.6, p. 60).

When features are implemented as plug-ins, we can trace them directly (see trace-
ability in Sect. 3.2.2, p. 54). With plug-ins in black-box frameworks, we can encode
alternative as well as optional features in a disciplined way. We can even combine
multiple optional features, as illustrated in Fig. 4.14. Developing one plug-in per fea-
ture allows us to flexibly select other features and load the corresponding plug-ins.
The entire process from a feature selection to a tailored program can be automated.
Plug-ins for deselected features do not need to be deployed, so we can potentially
reduce binary size. Also white-box frameworks can be used to implement alterna-
tive features or a single optional feature, but combining multiple optional features is
problematic due to the limitations of subclassing, as discussed in Fig. 4.9 (p. 78).

In contrast to the parameter approach (Sect. 4.1) and an ad-hoc use of design
patterns (Sect. 4.2), black-box frameworks facilitate modularity by following well-
defined conventions (see separation of concerns in Sect. 3.2.3, p. 55). Plug-ins are
encapsulated from the framework implementation through clear interfaces. Ideally,
an interface is designed not only for a specific extension in mind, but for a whole set
of potential extensions. Framework and plug-ins can be changed independently as
long as they still adhere to the common interface. In the best case, all code related

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

4.3 Frameworks 87

to a feature is encapsulated in a single plug-in, and it is possible to understand and
maintain the feature by looking only at this plug-in’s code (see information hiding
in Sect. 3.2.4, p. 55).

Modularity allows developers to provide third-party plug-ins that can be com-
piled and deployed independently. This is especially important for software ecosys-
tem (Bosch 2009), in which a community of specialized companies or independent
developers provides additional features. Such a development model works both for
open-source projects and closed-source projects. Well-known examples of are web
browsers and development environments, such as Eclipse and Visual Studio, both con-
sisting of multiple (mostly black-box) frameworks. For example, users of Eclipse can
select from many independently developed open source and commercial plug-ins.

However, frameworks are not without difficulties. Creating and maintaining
frameworks is a challenging task. The framework designer must anticipate (or pre-
plan) where hot spots are needed and design corresponding template methods or plug-
in interfaces. They must design for change, which requires an upfront investment
(see preplanning effort in Sect. 3.2.1, p. 53). If a framework designer chooses not to
expose information that extensions need, these extensions are difficult or impossible
to build (without invasive refactoring the framework). Designing a framework is
often handed to senior developers, because it requires substantial experience and a
deep understanding of the domain.

Once hot spots and interfaces have been fixed, they are hard to evolve: Although
developers can add new hot spots to the framework, it is not possible to change the
plug-in interface without invasively changing all existing plug-ins (some of which
might be provided by third parties and not available with source code or not even
known). The inflexibility to change a framework may slow down future evolution
of the product line. Hence, frameworks are better suited for proactive adoption of
product lines than for reactive or extractive adoption (see Sect. 2.4, p. 39).

Plug-ins may be reused in many different instantiations of a framework, but, in
contrast to components (which we discuss next), they are not intended to be reused
across different frameworks. It is highly unlikely that plug-ins for one framework (or
product line) can be plug-ins for other frameworks (or product line). The reason is
simple: every framework encodes structures, architectural conventions, and imple-
mentation details that are specific to it, and that are unlikely to be shared verbatim
by any other framework.

Furthermore, frameworks induce both development and run-time overhead. Devel-
opers need to write additional code to decouple extensions from the framework, such
as interface Plugin in Fig. 4.13. Even if a hot spot is not extended, additional code
for the extension point is required. Hence, frameworks often require more source
code, result in a larger binary size, and perform slower due to additional indirec-
tions. Often the overhead is acceptable, but not always: In high-performance and
embedded scenarios, unnecessary overhead can not be tolerated. Furthermore, when a
framework exhibits too many hot spots for potential extensions that are never used (a
problem named speculative generality by Fowler (1999); a common overreaction to
experiencing a too narrow framework), artificial overhead can become problematic.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_2

88 4 Classic, Language-Based Variability Mechanisms

Fine-grained and crosscutting features (see granularity and crosscutting in
Sects. 3.2.5 and 3.2.3, p. 59 and 55) are hard to implement with frameworks. Fine-
grained extensions require hot spots for minimal extensions and crosscutting features
require many hot spots; both lead to disproportionally complex designs. Whereas, in
our calculator example, an extension modified only four code locations, features such
as the transaction subsystem in a database system affect many parts of the frame-
work. For fine-grained and crosscutting features, the framework must expose many
details of the framework. This is hard to do: interfaces become bloated making new
plug-ins harder to understand and build. Then there is the problem of speculative
generality mentioned earlier. When there are simply too many hot spots, the benefits
of modularity diminish and other variability techniques must be considered.

Overall, frameworks are better suited for coarse extensions that extend few well-
defined points in the control flow (see granularity in Sect. 3.2.5, p. 59). There is no
technical limitation, but the overhead for implementing fine-grained and crosscutting
features can become overwhelming. Features such as transaction management in a
database system (crosscutting the entire implementation and changing the behavior
in many locations in nontrivial ways) are rarely separated into plug-ins.

Summary frameworks. Like the parameter approach, frameworks are
language-based (see Sect. 3.1.2, p. 49). However, frameworks differ from para-
meters in that they are primarily composition-based, not annotation-based (see
Sect. 3.1.3, p. 50), and in that variability is usually decided at load-time, not
run-time (see Sect. 3.1.1, p. 48).
Strong points:

• Well-suited for implementing variability.
• Automated product derivation by plug-in loading.
• Static tailoring, deploying only selected features (see Sect. 3.1.1, p. 48).
• Modularity by separating features, hiding feature internals, and enabling

feature traceability (especially in black-box frameworks; see Sects. 3.2.2–
3.2.4, p. 54–57).

• Suitable for open-world development (black-box frameworks only).
• Disciplined implementation, well-known.

Weak points:

• High upfront design effort (see Sect. 3.2.1, p. 53).
• Difficult evolution.
• Potential development, run-time, and size overhead.
• No reuse outside the framework.
• Unsuited for fine-grained and crosscutting features (see Sects. 3.2.5 and

3.2.3, p. 59 and 55).
• No support for noncode artifacts (see Sect. 3.2.6, p. 59).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

4.4 Components and Services 89

4.4 Components and Services

As a last classic language-based implementation approach, we discuss components
and services (including the notion of web service). Although component-based
implementations are common in product-line practice, they lack the automation
potential of feature orientation that we aim at. However, as we will see, components
can be integrated to some degree with other implementation approaches. Hence, we
introduce components briefly and discuss their benefits and limitations.

Definition 4.4. A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by
third parties.

(Szyperski 1997) �

The key idea of a component is to form a modular, reusable unit. A component
provides its functionality through an interface, whereas its internal implementation
is encapsulated (also for components, there is a white-box versus black-box discus-
sion (Szyperski 1997, Chap. 4); here, we assume black-box components). To reuse
components, they are composed with other components in different combinations
(see annotation versus composition in Sect. 3.1.3, p. 50). A class can be seen as a small
component that can be reused in many applications; a library of graph algorithms is
an example of a larger component, consisting of many classes.

Already more than three decades ago, Parnas (1979) proposed to implement prod-
uct lines (back then called program families) by encapsulating changing parts and
hiding their internals (see information hiding in Sect. 3.2.4, p. 57), so that those parts
could be exchanged and removed easily. Domain analysis is essential to design for
change and to identify and separate those parts that differ between products of a
product line.

Proponents motivate the use of components for another reason: building markets.
The idea is that developers can implement and deploy components independently,
and compose components from different sources. As a consequence, developers can
decide whether to implement their own components or whether to buy and reuse
third-party components. Component markets open a new perspective: Developers
can focus on their expertise and develop, perfect, and sell an individual component.
Others can buy the component and use it in their software, instead of reimplement-
ing the functionality or buying an entire software product that contains the desired
functionality, but that is otherwise not tailored to their needs. Components facili-
tate a best-of-breed approach, in which developers can decide, for each subsystem,
whether to buy the best (or cheapest) component from the market or to implement
the functionality individually (Szyperski 1997).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

90 4 Classic, Language-Based Variability Mechanisms

Fig. 4.16 Simple example of component managing colors

Of course, the fallacy here is that components are plug-compatible only if they
and their interfaces are designed to existing standards. In fact, reusing components
from markets is often problematic, because their architectural assumptions mis-
match (Garlan et al. 1995). Unless planned together, components are likely incom-
patible and require significant engineering effort to compose. Domain engineering
improves this picture, as we will discuss shortly.

Services, as discussed in the context of service-oriented architecture (Erl 2005),
are a special form of software components. A service encapsulates functionality
behind an interface, just like a component. Similarly, proponents envision a mar-
ket of services. Services typically emphasize standardization, interoperability, and
distribution. Especially in the popular form of web services, a service is reachable
over a standardized Internet protocol and may run on remote servers; that is, it is
not necessary to install and integrate a service locally. Even the lookup of a ser-
vice can occur at run-time, through the use of service registries. In addition, com-
munication between services is standardized, so services written in different lan-
guages can exchange messages. To connect services, called service orchestration,
several specialized tools and (graphical) languages exist, which simplify the compo-
sition process. For our discussion of product-line development, we make no further
distinction between components and services.

Example 4.2 In Fig. 4.16, we exemplify a small component from our graph library.
Assume that storing and printing colors is nontrivial and might be reused in another
project outside the product line. We could extract color management into a reusable
component (or package). The component’s interface exposes a class ColorModule
with several public methods and a Java interface Color, whereas other implementa-
tion details are hidden. We use Java’s scoping and package mechanism to enforce

4.4 Components and Services 91

encapsulation. That is, to ensure that other components may not access private imple-
mentation details, we use package visibility. Classes ColorImpl, ColorPrinter, and Col-
orMapping are not public and visible only inside the package, so other components
in other packages can only interact with public classes and methods.

A component is independent of a specific application or product line. Develop-
ers can reuse it when implementing the color feature for the graph library, but also
for other applications. Note that developers need to write custom code to connect
the implementation with the component, for example, extra code to call the com-
ponent’s methods. To reuse the component, only the public interface is of interest;
implementation details are not accessible. In Java, we can deploy the component
separately as class or jar files.1 �

4.4.1 Sizing Components

Deciding when to build a reusable component and what to include in that component
is a difficult design decision. There is a well-known trade-off between reuse and
use (Biggerstaff 1994; Szyperski 1997): A large component that provides plenty
functionality is easy to integrate and use, but there might be only few applications in
which the component fits. In contrast, one might be tempted to build small reusable
components that can be combined flexibly (in an extreme case, put every method
into a distinct component), but, then, the overhead of using the component becomes
discouraging. The smaller the component, the more programming is left to the user
that has to connect the components with the base code and with each other; in extreme
cases, components are so small that little remains to reuse and to hide behind their
interfaces. Szyperski (1997, Chap. 4) rephrases this as the maxim “maximizing reuse
minimizes use.”

Example 4.3 Consider the common scenario that a developer searches the web for
a piece of software. Suppose you find two choices: One that is small (less than
1000 lines of code) with only a fraction of the functionality that you want; and one
that is huge (100 000 lines of code) with many extra functionalities that are highly
intertwined with the desired functionality. Which one should be selected? Just on
intimidation alone, many developers would select the small application as there is a
higher potential to understand what it does, while the rest could still be added man-
ually. In contrast, the big one likely makes incompatible architectural assumptions.
It would require considerable integration effort and pose considerable risks. That is,
most developers would likely reuse less and implement more themselves. �

1 In our example, we use the facade design pattern to provide a concise interface and the singleton
design pattern to ensure that only one instance of the component exists at at time (Gamma et al.
(1995) discuss these patterns in more detail). A developer would invoke a method somewhat like
this: ColorModule.getInstance().createColor(...).

92 4 Classic, Language-Based Variability Mechanisms

In the tension between reuse and use, developers need to strive for a balance of
a component that is large enough to provide useful functionality but small enough
to be reused in many contexts. Unfortunately, without knowing when and how a
component will be reused, even experienced developers may only guess suitable
component size. Unsuitable component size has often been claimed a reason for the
limited success of market places for components and services.

In product-line development, domain analysis solves this dilemma and guides us
in how to size a component to balance reuse and use. As described in Sect. 2.2, during
domain analysis, a domain expert investigates potential products within the domain
and decides which products are in the scope of the product line. With this information,
we can decide upfront which functionality will be reused within the product line;
thus, we can size components accordingly and coordinate their architectural assump-
tions. That is, in product-line development, developers solve the sizing problem by
preplanning reuse systematically. For example, when we know that certain function-
ality is always used together, we can combine it in the same component and make
it easier to use; in contrast, when we know that functionality is only used in few
products, it should be separated into its own component. In short, domain analysis
helps us to decide how to divide code into components.

4.4.2 Composing Components

Developing product lines by constructing and composing reusable components was
a common strategy, especially, in the early era of product-line engineering (Bass
et al. 1998; Krueger 2006). With domain analysis, developers decided which func-
tionality should be reused across multiple products of the product line and designed
components accordingly. In application engineering, developers then composed the
corresponding components. In principle, one could create one component per feature
or map features to components in some other form.

In contrast to plug-ins in frameworks, components are generally not designed
to be composed automatically. Component-based software engineering pursues a
different mind set, in which building units of functionality is the goal; being plug-
compatible with other components is typically not a priority. A common goal of the
design-for-change strategy is to (potentially) exchange a component by another one
with the same interface, but again automation is not the focus.

Given this, to derive a product for a given feature selection during application
engineering (see Sect. 2.2, p. 19), a developer selects suitable components and then
manually writes glue code to connect components for every product individually.
Module interconnection languages (DeRemer and Kron 1976) and service orches-
tration (Erl 2005) aim at providing high-level scripting approaches to gluing together
components. Although definitely a manual process, implementing product lines with
components still offers a huge benefit over constructing each product from scratch.
When considering the economical motivation of product lines in Fig. 1.4 (p. 9) from
the first chapter, manual effort during application engineering increases costs per

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_1

4.4 Components and Services 93

product (and hence the slope), but does not change the overall expected benefit of
product lines.

Building product lines with components is suitable if feature selection is per-
formed by developers (not customers) and the number of products is low. For
example, Phillips builds software for consumer electronics from reusable compo-
nents (van Ommering 2002). In this case, product-line developers can construct
new products from reusable parts. If required, they can also perform customiza-
tions beyond what was preplanned as product-line feature (and without propagating
the customization back to the feature model). Especially, when publishing only a
few distinct preconfigured products or when implementing tailor-made solutions for
few customers, the manual effort in application engineering may be negligible or
acceptable.

The goal of feature-oriented product-line development is to entirely automate
product derivation after selecting features in application engineering (see push-button
approach in Sect. 2.2.4, p. 26). In a component-based approach, there is no gener-
ator that would automatically build a product for a given feature selection; manual
developer intervention is required. We argue that automated product derivation is
essential for effective, large-scale product-line development. Krueger (2006) even
claims “application engineering considered harmful” to emphasize the importance
of automation.

4.4.3 Components Versus Plug-Ins

Components and plug-ins share many similarities. They both pursue a modular
implementation (ideally a module per feature) and hide implementation details
behind an interface (see traceability and information hiding in Sects. 3.2.2 and 3.2.4,
p. 54 and 57) and require similar preplanning effort (see Sect. 3.2.1, p. 53).

Their main difference lies in the automation potential and in reuse beyond a
product line: A plug-in is always tailored for a specific framework, and, as such, has
very specific requirements on its context. In contrast, components can be intended
to be reused even outside a product line. At the same time, the tight integration of
plug-ins into a framework allows loading plug-ins automatically without additional
per-product development. Deriving a product for a feature selection in a framework
requires only assembling the corresponding plug-ins, not writing additional glue
code, as necessary for components.

Of course, components can be used within frameworks. We can write glue code
that adapts a general-purpose component to the plug-in interface of a framework
(see also the adapter and bridge design patterns as described by Gamma et al.
(1995)). This way, we can reuse components within a framework and automate their
integration based on a feature selection, while we can still reuse the component in
different contexts outside the framework.

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

94 4 Classic, Language-Based Variability Mechanisms

Components can be encoded in many languages. Ideally, the language should
provide some encapsulation mechanism that can hide internals of the component
behind an interface, and that enforces the interface mechanically. However, also
weaker notions of encapsulation are possible that translate also to noncode arti-
facts. For example, we can simply separate grammars, design documents, or models
into separate artifacts and let developers combine them manually during product
derivation.

Apart from automation and uniformity, as components and plug-ins use similar
modularity mechanisms, they share similar benefits and limitations. They modularize
features and allow compile-time product derivation, deploying only selected func-
tionality (see binding times in Sect. 3.1.1, p. 48). At the same time, both components
interfaces and plug-in interfaces are difficult to evolve once they are fixed and other
(potentially third-party) implementations rely on them. Both may add overhead due to
additional indirections and boilerplate code. Most importantly, components have the
same limitations regarding fine-grained and crosscutting extensions (see granularity
and crosscutting in Sects. 3.2.5 and 3.2.3, p. 59 and 55). For example, integrating
a crosscutting transaction subsystem provided as component into a database will
require much glue code.

Summary components and services
Strong points:

• Well-known and established implementation technique.
• Static tailoring, deploying selected features only (see Sect. 3.1.1, p. 48).
• Separation of concerns, information hiding, and feature traceability (see

Sects. 3.2.2–3.2.4, p. 54–57).
• Reuse within and beyond the product line.
• Reuse of third-party implementations.
• Reuse in distributed environments, even with features maintained and run

by third parties (especially services).
• Uniformly applicable to many languages (see Sect. 3.2.6, p. 60).

Weak points:

• No automated product derivation, glue code is necessary
• Difficult evolution.
• Potential development, run-time, and size overhead.
• Preplanning necessary to size components (see Sect. 3.2.1, p. 53).
• Unsuited for fine-grained and crosscutting features (see separation of con-

cerns in Sect. 3.2.5, p. 59).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

4.5 Further Reading 95

4.5 Further Reading

The classical language-based implementation approaches discussed in this chapter
are frequently used to implement product lines, but rarely discussed explicitly as
such in literature.

Especially for the parameter approach, there is little literature. Modularity and
the related concepts of encapsulation and coupling are discussed generally by Meyer
(1997, Chaps. 3 and 4). Regarding the problem of methods with too many parameters,
Fowler (1999) discusses a corresponding code smell and a solution with a refactoring
toward parameter objects. More recently, Reisner et al. (2010) and Rabkin and Katz
(2011) began exploring the use of configuration options in programs (not necessarily
product lines). Reisner et al. (2010) found that in three analyzed programs many
configuration options are orthogonal and rarely interact. Rabkin and Katz (2011)
found that configuration options are often not consistently documented, which we
interpret as an encouragement to use product-line technology to plan variability in a
more systematic way.

The book of Gamma et al. (1995) is still the best reference on design patterns
and explains patterns in much detail. Some product-line literature (for example,
Muthig and Patzke 2002; Anastaspoules and Gacek 2001) distinguishes variability
implementations further into techniques based on delegation, inheritance, parametric
polymorphism, and so forth. Many of them and their best practices can be explained
in terms of design patterns as well. Czarnecki and Eisenecker (2000, Chap. 7) discuss
low-overhead design-pattern implementations for static configuration with C++.

Frameworks have a long tradition. The seminal paper “Designing Reusable
Classes” (Johnson and Foote 1988) provides an excellent introduction and discusses
trade-offs between white-box and black-box frameworks. An impressive example
of framework design in practice is the Eclipse development environment. Several
books (and web articles) describe Eclipse’s architecture and how they make use of
design patterns; even though not the newest book on Eclipse, we recommend the
introduction by Gamma and Beck (2003).

Finally, Szyperski (1997) provides a detailed introduction into the concept of com-
ponents, including a discussion of building markets, technology choices, and how
to size components. Erl (2005) provides a broad introduction into the philosophy
behind service-oriented architectures. High-level languages for composing compo-
nents can be traced back to the idea of programming-in-the-large by DeRemer and
Kron (1976) and have been evolved since with many module interconnection lan-
guages, and more recently service-orchestration approaches (Erl 2005). Czarnecki
and Eisenecker (2000) discuss in detail how domain engineering helps to preplan
and size components for reuse. If not planned accordingly, reuse can be very hard
though: Garlan et al. (1995) discuss architectural mismatch, the reason why com-
posing components that have not been designed together is so difficult.

96 4 Classic, Language-Based Variability Mechanisms

Exercises

4.1. Implement a basic chat system consisting of a server and multiple clients (in
the domain discussed in Exercise 2.4, page 43). The clients show messages received
from the server and allow users to post messages to the server. The server broadcasts
all received messages to all connected clients.

Subsequently, extend this implementation with the following features:

(a) Colors: Messages may have a text and background color. The color can be
specified in the client when writing a message.

(b) Authentication: To connect to the server, the client must provide a username and
password.

(c) Encryption: Messages are encrypted. Provide at least two optional encryption
mechanisms.

(d) History: Server and clients keep a log of all received messages. The client can
show the last 10 entries of the log in a dialog.

Hint: Reuse existing source code where possible.
4.2. Implement all features of the chat system (Exercise 4.1) using the parameter
approach, such that all features can be configured at load-time with command-line
parameters, with a configuration file, or even with a graphical dialog in the chat
client’s user front-end. Critically discuss code quality and implementation effort of
the resulting system.
4.3. Discuss the potential of design patterns for implementing the chat system (Exer-
cise 4.1 and 4.2). Change the implementation where appropriate. Discuss the influ-
ence of this change on the quality criteria introduced in Chap. 3.
4.4. Find an open-source project that can be configured using configuration files or
command-line parameters (for example, command-line utilities, web servers, data-
base engines). Study the end-user documentation to find three (Boolean) configu-
ration options that could be considered as features and investigate how those are
implemented.

(a) What is the binding time of the configuration option?
(b) Is the configuration option implemented cohesively or is it scattered throughout

the source code?
(c) Are global variables used or are parameters propagated? Are design patterns

used in the implementation? Discuss traceability, separation of concerns, and
information hiding with regard to the implementation of the configuration option.

(d) Discuss whether design patterns could be used to improve the implementation
and prepare it for future extensions.

4.5. Implement the chat system (Exercise 4.1) as a framework that can be extended
with plug-ins. Provide a plug-in for each feature. Ensure that framework and features
can be compiled separately. Provide a simple plug-in loader (see Sect. 4.3.4) so that
the configuration can be changed without any modifications to source code. Critically
reflect on code quality and implementation effort of the resulting system; consider
also the quality criteria from Chap. 3.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

Exercises 97

4.6. Extend the implementation of Exercise 4.5 with an additional feature Spam Filter
that rejects all messages that contain words from a blacklist. Review your implemen-
tation: Are new extension points necessary? Is it necessary to change the framework
or other plug-ins? Can the new plug-in be understood in isolation? Would the same
hold for feature Command-Line Interface (instead of a graphical user interface) or a
feature File Transfer?
4.7. Find a software product that is extensible with plug-ins (for example Miranda-
IM,2 Netbeans,3 or Mozilla Firefox4). Study the developer documentation or source
code to find possible extension points.

(a) Is the framework implemented as black-box framework, or white-box frame-
work, or as some combination of those? Are design patterns used for extensibility?

(b) Can plug-ins be compiled separately? What mechanism is used to load plug-ins?
What is the binding time?

(c) Name three features that can be added noninvasively as plug-ins using existing
extension points.

(d) Name three features that cannot be added with existing extension points but
would require invasive changes to the framework.

4.8. Decompose the chat application from Exercise 4.1 into reusable components.
Build three different chat products out of these components.
4.9. Discuss possible components that could be reused within and beyond a product
line of (a) graph algorithms, (b) chat applications, and (c) the scenarios from Exer-
cise 2.5 (page 43). Discuss suitable size of the components and the potential costs of
using them.
4.10. Reconsider the scenarios of Exercise 2.9 (page 44). Which implementation
approach would you recommend to the developers and why?
4.11. Compare all discussed implementation approaches in terms of (a) modular-
ity, (b) suitability of distributed development with multiple developers and multiple
companies, (c) possibility of buying and integrating parts or features developed by
third parties, (c) overhead on run-time performance, (d) overhead on binary size, (e)
development effort and required skill, and (f) maintainability.

Use your implementations of the chat example (Exercises 4.2, 4.3, 4.5, and 4.8)
to support your analysis.

2 http://www.miranda-im.org/
3 http://netbeans.org/
4 http://www.mozilla.org/

http://www.miranda-im.org/
http://netbeans.org/
http://www.mozilla.org/

Chapter 5
Classic, Tool-Driven Variability Mechanisms

After reading the chapter, you should be able to

• implement compile-time variable software with version-control systems, build
systems, and preprocessors,

• discuss trade-offs between language-based and tool-based implementation tech-
niques,

• select a suitable implementation technique (or combination) for a given domain,
and

• distinguish lexical from syntactic preprocessors and disciplined from undisciplined
annotations.

Besides language-based techniques, which encode variability with available concepts
within programming languages (discussed in the previous chapter), external tools can
also be used to implement and manage variability. In particular, we discuss version-
control systems (Sect. 5.1), build systems (Sect. 5.2), and preprocessors (Sect. 5.3).
Together, these tools are also often called configuration-management tools.

Whereas language-based approaches focus mostly on run-time variability, tool-
driven approaches typically target compile-time variability (see binding times in
Sect. 3.1.1, p. 48). The goal of compile-time variability is to compile and include
only code that is needed; typically, a tool decides which code fragments the compiler
receives. We investigate how different tools handle optional and alternative code.

5.1 Version-Control Systems

Version-control systems track changes in source code and other development arti-
facts to facilitate collaborative development. Popular examples are CVS, Subver-
sion, Perforce, Visual SourceSafe, git, and Mercurial. Version control is a subfield of
software configuration management. As a general discipline, it covers management
activities around software building and evolution as a whole, including management

S. Apel et al., Feature-Oriented Software Product Lines, 99
DOI: 10.1007/978-3-642-37521-7_5, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-37521-7_3

100 5 Classic, Tool-Driven Variability Mechanisms

decisions such as when and how to process change requests and publish releases
(Sommerville 2010, Chap. 25). Here, we focus on using version-control systems for
product line development.

5.1.1 Terminology

Version-control systems are best known for tracking revisions of source code, that
is, variation over time. Each revision gets an identifier and possibly a comment
explaining the changes. Developers can go back in time to retrieve earlier revisions
of the source code and investigate changes (asking questions regarding when, by
whom, and why). Revisions are ordered, newer revisions supersede previous ones.

Most version-control systems allow some form of branching. In different branches,
the same files can be changed independently; changes in one branch do not affect
the files in other branches. In this case, we speak of variants1 of the same file.
Instead of revisions over time, variants describe intentional versioning by develop-
ers, sometimes also called variation in space. Variants are not ordered and do not
supersede each other; they exist in parallel. Each variant can have an independent
revision history.

Whereas branching creates a new variant, merging combines two variants. Typi-
cally, the changes in the revision of one branch are applied to another branch. Merging
is typically semiautomated. In practice, merges are mostly performed in a line-based
fashion using textual patches, and only when there is a conflict (that is when different
changes are applied to the same line) manual intervention is necessary (Mens 2002).

The term version denotes both revisions and variants. Most version-control sys-
tems provide a history of revisions and branching of variants.

Closely related to revisions are releases. A release is a selected revision of the
software that is given a specific name or number and that is deployed to customers.
When to release revisions and what release names or numbers to chose, is a manage-
ment decision. Releases may refer to specific variants or to all variants. Similarly,
many version-control systems provide tags to label specific versions.

In Fig. 5.1, we illustrate the difference between revisions and variants. Of the same
database system (for the scenario see Sect. 1.4, p. 9), there are several revisions (and
releases) over time. In our example, version 1.0 is revised to versions 1.1, 2.0, and
3.0. At the same time, there are different variants of the database, one for cars, one
for smart cards, one for sensor networks, and so forth. Note that variants may not
exist for all revisions and releases. In our example, some variants have been created
only in later revisions, whereas some variants are no longer maintained in recent
revisions.

1 As many terms in software engineering, the term variant is overloaded with different meanings.
Some authors refer to alternative features in feature models and implementations as variants (for
example, Pohl et al. 2005), others call the different products of a product line variants (Heidenreich
et al. 2010). In this section, we use ‘variants’ as a technical term to distinguish different kinds of
versions.

http://dx.doi.org/10.1007/978-3-642-37521-7_1

5.1 Version-Control Systems 101

Fig. 5.1 Revisions and vari-
ants in a product line of
embedded data management
systems

Sensor DB (Car)

Sensor DB (Habitat Monitoring)

Sensor DB (Earthquake Monitoring)

SmartCard DB

Satnav DB

V
ar

ia
n

ts

Revisions

V 1.0 V 1.1 V 2.0 V 3.0

We summarize the terminology with the following definition:

Definition 5.1 A revision describes ordered variations over time; a release is
a specifically named revision. A variant describes intentional variations that
exist in parallel. Versions encompass both revisions and variants. �

5.1.2 Building Product Lines with Version-Control Systems

It is appealing to implement a product line by means of multiple branches in a
version-control system. Before illustrating how to achieve that, let us look at a typical
development process with branching. Many different ways of using branches are
established in practice; in Fig. 5.2 we illustrate a common one:

• Development branch. The central branch of the project is the development branch
in which most development happens.

• Release branches. For each planned release, a separate branch is created (branches
Release 1 and Release 2 in our example). The separate release branch allows
developers to focus on getting a release stable (for example, from beta release to
a main release) without interference from the daily ongoing development of the
main development branch.

• Feature branches. Larger blocks of functionality can also be developed in a
separate branch; such feature branches are typically used to separate longer or
risky projects, or in our example to develop a feature for a future release. When the
feature implementation is finished, it can be merged as a whole into another branch.

• Bug fixes. Similar to feature branches, bug fixes can be developed in separate
branches and can be merged into one or multiple other branches. In our example,
the second bug fix is merged into both release branches in our case and subse-
quently also into the development branch.

102 5 Classic, Tool-Driven Variability Mechanisms

Development

New feature for 2.0

Release 1

1 beta 1.0

Release 2

2 alpha 2.0

branch create branchmergerelease

Legend

end of branch

Bug fix Bug fix

Fig. 5.2 Branching and merging during development and releases

Each of these branches may be terminated at some point, when it is no longer needed.
For a discussion of this and other processes, see the broad literature on version-control
systems (for example, Chacon 2009 Chaps. 3 and 5).

Developers familiar with branching, often use it to build customer-specific vari-
ations, as illustrated in Fig. 5.3. Here, all development of code that is shared by all
products happens in a main branch. But upon a release, a new branch is created per
customer that requests some modification or extension. In such customer branch,
developers might change logos and texts or implement customer-specific features.
Changes for specific customers are not merged back into the main branch. In the
other direction, we can still merge recent developments and bug fixes from the main
branch into the customer branches, if desired. Staples and Hill (2004) describe the
experience with this a-branch-per-product style of product line development.

An obvious drawback from customer branches (or product branches) is that each
customer that requests a variation needs an own branch with custom modifications.
Instead of feature-oriented developing where features can be combined flexibly, we
develop custom products.

Core

1.41.3

Customer A

Customer B

Customer A

1.3 fixes fixes

Fig. 5.3 Branching for customer-specific variations: a branch per product (adopted from Staples
and Hill 2004)

5.1 Version-Control Systems 103

Colored

Base

Product: colored + weighted

1.0 2.0

Weighted

Fig. 5.4 Developing product lines by merging per-feature branches

Instead of developing each product in a separate branch, we can also implement
each feature in a distinct branch and create products by merging corresponding feature
branches. We exemplify this pattern for the graph example in Fig. 5.4: Developers
create a branch per feature (Colored and Weighted in this case) and implement that
feature in the branch. To create a product for a given feature selection, a developer
merges all changes from all relevant feature branches (for Release 1.0). If changes
occur in individual branches, they can be merged again into the product branch
(shown for Release 2.0). Note that each feature branch also contains the base code,
not only the code of the feature; how to trace a feature to its implementation is no
longer obvious (see feature traceability in Sect. 3.2.2, p. 54).

5.1.3 Discussion

Developers use version-control systems routinely in their work. Since developers
use them to track revisions anyway, it seems tempting to use the well-known branch-
ing and merging techniques and mature tools for feature variability. In contrast to
language-based variability, branching can be used uniformly for code and noncode
artifacts (such as models, documentation, build scripts, license files, and binary files;
see uniformity Sect. 3.2.6, p. 60), and changes can be applied at arbitrary granu-
larity (from removing directories to changing individual characters; see granularity
in Sect. 3.2.5, p. 59). Also changes that crosscut an implementation are straightfor-
ward, as developers can simply invasively change arbitrary code fragments in the
entire code base without upfront preplanning (see crosscutting features and preplan-
ning Sects. 3.2.3 and 3.2.1, p. 55 and 53). Especially, in the beginning of a project,
making a quick change for a customer in a distinct branch is easy without exten-
sive preplanning. Developers simply create a branch and apply changes, instead of
thinking about patterns, extensions points, or information hiding. Often, branches
are complemented with other implementation techniques in later phases of the
project.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

104 5 Classic, Tool-Driven Variability Mechanisms

However, as a product line evolves, problems accumulate. Unless only few small
variations are required for few customers, the use of version-control systems should
be restricted to revision control. Version-control systems should not be used for
feature variability; its drawbacks far outweigh its benefits. Here are some reasons:

• Version-control systems encourage the development of distinct products of the
product line, not features. Instead of developing individual features in our graph
example, we would rather develop a directed graph in one branch and an undirected
graph in another branch and subsequently open another branch if we need weights.
In principle, we could develop each feature in a separate branch and merge them
depending on a feature selection (as sketched in Fig. 5.4); however, this pattern
relies strongly on effective merging and is problematic for related features that
touch similar code fragments (see code tangling in Sect. 3.2.3, p. 55).

• If there are many customer-specific variants (or many features in distinct branches),
evolution becomes difficult. When applying a fix to a code base, the fix must be
merged into all (relevant) branches. It is easy to forget such merges and lose track of
branches, so branches easily diverge more than intended. Except for determining
deltas between branches, there is no effective means to trace features to their
implementation (see feature traceability in Sect. 3.2.2, p. 54). Branching provides
no form of structured reuse or modularity; branches are essentially copies. The
merge operation copies changes from one branch into another.

• Finally, merging branches is a problematic composition technique. Although
language-specific merge mechanisms exist (Mens 2002; Apel et al. 2012b), merg-
ing is usually performed in a text-based fashion, oblivious to the meaning of the
merged artifacts. Differences are usually determined in terms of textual differences
between lines of text. Those differences are copied as textual patches. When the
same line has been changed in both branches, merging tools report conflicts. Usu-
ally, developers have to resolve conflicts manually. Even worse, as merge tools are
based on heuristics, they may miss conflicts and produce incorrect code. In prac-
tice, the heuristics of merge tools work well when distinct code fragments have
been changed, but may require high manual effort when related or similar changes
have been performed in multiple branches. Furthermore, with text-based tools, we
give up the potential of detecting language-specific composition problems.

Summary version-control systems
Strong points:

• Well-known, established, and mature tools.
• External infrastructure.
• Arbitrary compile-time customization independent of granularity and cross-

cutting (see Sects. 3.1.1, 3.2.3, and 3.2.5, p. 48, 55 and 59).
• Uniform application to source code and noncode artifacts (see Sect. 3.2.6,

p. 60).
• Only minor effort for preplanning.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

5.1 Version-Control Systems 105

Weak points:

• Mixture of revisions and variants.
• Encourages development of variants, not features (inconvenient encoding

of feature-oriented development). No feature traceability, no separation of
feature code, and no information hiding (see Sects. 3.2.2–3.2.4, p. 54–57).

• No structured reuse (copy and edit of plain text).
• Relies on merging, prone to conflicts and errors.
• Hard to maintain with many branches. Fixes must be merged potentially into

many branches.
• Almost all practical tools are text based.

5.2 Build Systems

A build system is responsible for scheduling and executing all build-related tasks,
which may include running generators, compiling source code, running tests, and
creating and copying deliverable units. With a build system, developers document
and automate the build process. Especially in large projects, a build process is not
trivial, since many different build tools (compilers, linkers, parser generators, test-
ing frameworks, documentation generators) and dependencies (libraries, tools) are
involved. Like version-control systems, build systems are a part of software config-
uration management.

There are many different build systems with different levels of sophistication. In
the simplest case, a build system is a shell script that executes the relevant tools
with corresponding parameters. More sophisticated systems, such as make, ant,
and maven, support multiple build targets, manage dependencies, avoid unneces-
sary recompilation with incremental builds, download and update required libraries
and tools automatically, and create build reports.

Since a build system already decides when, what, and how to compile, it is an obvi-
ous candidate to manage compile-time variability (see binding times in Sect. 3.1.1,
p. 48). Variability can be encoded in many different ways. In the following, we
illustrate three common approaches.

5.2.1 Variability in Build Scripts

Shell scripts and batch files are typical means to automate tasks. As such, they can
also be used to automate builds. A simple build script in shown in Fig. 5.5 (left): The

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

106 5 Classic, Tool-Driven Variability Mechanisms

Fig. 5.5 A build script for the graph example without variability (left) and with variability (right)

script first removes all old class files, subsequently compiles all Java files of the graph
example, and finally packages all resulting class files in a JAR file for distribution.

Now, let us introduce variability into this build script. In Fig. 5.5 (right), we check
whether the parameter withColor is provided, and we compile one of two implemen-
tations of the classes Node and Edge, one with and one without colors. Further, we
compile class Color conditionally. In this example, we use the parameter approach
from Sect. 4.1 and apply it at build-system level. Depending on the parameters, dif-
ferent files are compiled and packaged.

Instead of passing configuration options to the build script as command-line para-
meters, build systems can read configuration options also from configuration files
(potentially generated by a feature-selection tool). Furthermore, build systems can
determine configuration options automatically by inspecting the current context; for
example, they can read the operating system’s localization settings or detect whether
certain hardware features or software libraries are available.

When building against external libraries, variability in a build script can control in
which libraries (and which library revision and variant) the product is compiled with
(van der Storm 2004). Finally, features can control how files are compiled, including
triggering optimizations and including debugging information.

5.2.2 Custom Build Scripts

Staples and Hill (2004) describe a setup in which product line developers create
a custom build script for each customer (that is, for each product of the product
line). They store a base implementation in one directory and customer-specific build
scripts together with corresponding customer-specific extensions in other directories.
A customer-specific build script may replace files from the base implementation and
can add additional files to the build (see Fig. 5.6).

http://dx.doi.org/10.1007/978-3-642-37521-7_4

5.2 Build Systems 107

Fig. 5.6 Customer-specific extensions encoded with build-system variability (adopted from Staples
and Hill 2004)

In principle, this encoding is similar to branching in version control (see Sect. 5.1).
However, files that are not changed are not copied. When changing a file of the base
implementation, the change is merged into configurations that replace the file.

5.2.3 Case Study: Build-System Variability in Linux

The Linux kernel is built using a custom build system, Kbuild, which comprises a
hierarchy of build scripts as input for the tool make, following a specific convention.
The build scripts decide which of the several thousand C files should be compiled
and linked together when building a Linux kernel. The logic for selecting source files
for a particular configuration is spread over more than 600 smaller build scripts in
the entire source tree (Berger et al. 2010a; Dietrich et al. 2012b). Some build scripts
are only conditionally executed depending on the feature selection.

Typical lines of a build script look like this: “obj-y += foo.o” means that file foo.c
should be compiled and linked into the kernel. Similarly, the line “obj-m += foo.o”
specifies that file foo.c should be built as a loadable kernel module and “lib-y +=
foo.o” means that the file should be included as a library. Variability is encoded
in the form “obj-(CONFIG_FOO) += foo.o”, in which CONFIG_FOO is a feature name
selectable in Linux’s feature model. During configuration (see requirements analysis
in Sect. 2.2.2, p. 24), CONFIG_FOO is set either to y (compile), m (compile as module),

http://dx.doi.org/10.1007/978-3-642-37521-7_2

108 5 Classic, Tool-Driven Variability Mechanisms

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Fig. 5.7 Excerpt of the build script of the Linux kernel (drivers/media/video/Makefile)

or n (do not compile). This way, Kbuild controls which files are included for com-
pilation for a given feature selection and how they are compiled. Of 9146 C files in
Linux release 2.6.33.3, 97 % are included conditionally in some feature selections.

Furthermore, several patterns exist for libraries and for grouping files that belong
to the same feature. Compiler parameters, such as include paths and optimization
level, can be set depending on configuration options from the feature model for all
files as well as for individual files. As Kbuild relies on a Turing-complete language,
complex conditions can be encoded. Figure 5.7 shows an excerpt of the build script
responsible for selecting video drivers.

In the Linux kernel, the build system controls variability at the file level: It selects
which files are passed to the compiler. Variability at finer granularity is expressed
using preprocessor directives inside files, which we discuss in Sect. 5.3.

5.2.4 Discussion

Large software projects use a build system that controls which files are compiled and
how. It is natural to use the build system for variability at compile time. Typically,
build systems use a parameter-based approach (as discussed in Sect. 4.1) when they
are executed at compile time (see binding times in Sect. 3.1.1, p. 48).

Build systems are suitable to control variability at the file level (see granularity
in Sect. 4.4, p. 89). They can directly control which files to compile under which
condition. Therefore, we typically consider them as an annotation-based mechanism

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7 _3
http://dx.doi.org/10.1007/978-3-642-37521-7 _4

5.2 Build Systems 109

at the file level (see annotation versus composition in Sect. 3.1.3, p. 50). Typical
encodings support choosing from alternative variants of a file or replace files with
customer-specific variants. At the file level, a build system is language-agnostic and
can uniformly implement variability for different code and noncode artifacts (see
uniformity in Sect. 3.2.6, p. 60). As such, arbitrary changes are possible at compile
time, there is no need for extensive preplanning activities, but there is no notion of
consistency or modularity.

As long as features can be mapped to files, build systems are well-suited for
feature-oriented product lines (see feature traceability in Sect. 3.2.2, p. 54). File-
level granularity can be problematic though. In case of only small changes, we
need to replicate entire files. For example, in Fig. 5.6, we had to copy the entire
class implementation to add one field weight and one print statement. When multiple
features affect the same file, we need mechanisms beyond file selection and file
replacement. However, even with file-level variability, many implementation patterns
can be used to reduce replication and enable composition. For example, developers
can encode feature-specific extensions as observers, subclasses, strategy objects,
and decorators in separate files (see design patterns in Sect. 4.2, p. 69) or use the
factory-method pattern (Gamma et al. 1995) to control which classes to instantiate in
a central place.

Beyond file-level variability, a build system typically orchestrates other variability
mechanisms. For example, it can conditionally apply textual patches, load a file from
a selected branch in a version-control system (see Sect. 5.1, p. 99), run preproces-
sors (see Sect. 5.3, p. 110), or create a suitable configuration file for configuration
parameters (see Sect. 4.1, p. 66), or plug-in loaders (see Sect. 4.3, p. 79).

Many build systems are constructed with Turing-complete scripting languages
and allow sophisticated encodings of variability. Therefore, when trying to statically
analyze build scripts (for example, to extract traceability links between features and
files), issues similar to those of the parameter approach arise (see Sect. 4.1, p. 66):
Most static analysis tasks on build systems are undecidable; the build system may
just call arbitrary shell scripts. A precise and complete analysis is only possible for
restricted languages or when developers use only specific patterns. For example,
several researchers have tried to analyze the build system of the Linux kernel Kbuild
to extract traceability links between features and files (Berger et al. 2010a; Nadi
and Holt 2010; Dietrich et al. 2012a). The example in Fig. 5.7 is still rather simple,
but also not trivial with ifqe statements evaluated at compile time. Due to the power
of the underlying scripting language, all three approaches had to approximate or
simulate build-system behavior. We return to this problem when discussing product
line analysis in Sect. 10.2.3.

We recommend (a) to stick to simple variability patterns when using a build sys-
tem (or even restricted statically analyzable languages) (b) to always complement
build systems with other variability mechanisms at subfile level, and (c) never clone
code for file-level variability. In combination with other variability mechanisms,
build systems are a common, suitable, and well-known means to implement vari-
ability, especially as a form of conditional compilation for entire files.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_10

110 5 Classic, Tool-Driven Variability Mechanisms

Summary build systems
Strong points:

• Well-known and established tools.
• Suitable for conditional compilation at file level (see Sect. 3.2.5, p. 59).
• Orchestration of other variability mechanisms.
• Arbitrary compile-time customization (see Sects. 3.1.1 and 3.2.5, p. 48 and

59).
• Uniform application to source code and noncode artifacts (see Sect. 3.2.6,

p. 60).
• No extensive preplanning necessary.

Weak points:

• Limitation to file-level variability and discouragement of systematic pre-
planning leads to code replication.

• Largely unsuitable for feature-oriented programming at a fine grain (see
Sect. 3.2.5, p. 59).

• No notion of modularity (see Sects. 3.2.3 and 3.2.4, p. 55 and 57).
• Feature traceability at the file level only (see Sect. 3.2.2, p. 54).
• Undisciplined and complex scripts can become hard to maintain and analyze

(see Sect. 10.2.3, p. 257).

5.3 Preprocessors

A preprocessor is a tool that manipulates source code before compilation. A popular
preprocessor is the C preprocessor cpp, which is used in almost every C and C++
project. It provides directives to inline files, to define macros, and to remove code frag-
ments based on user-defined conditions. In addition to cpp, many other preprocessors
exist and are used for specific purposes. Most important in product line development,
preprocessors typically provide facilities for conditional compilation, where marked
code fragments in the source code are conditionally removed before compilation—
#ifdef and #endif in cpp. Conditional compilation is probably the most common mech-
anism for implementing variability in product lines in industrial practice.

5.3.1 The C Preprocessor cpp

Historically, cpp has been developed for lightweight metaprogramming. It provides
facilities for file inclusion, lexical macros, and conditional compilation. At #include

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_10

5.3 Preprocessors 111

directives, the preprocessor lexically inlines files, for example, to reuse header files.
Lexical macros are defined with #define directives. After defining a macro, the
preprocessor replaces all occurrences of a corresponding token by another token
sequence. Macros serve as compile-time variables and functions; they can be defined,
redefined, and undefined while preprocessing a file. Finally, conditional compilation,
with #if, #ifdef, and similar directives can suppress token sequences so that they are not
compiled. The #if directives evaluate compile-time expressions, typically checking
whether macros are defined or not.

The C preprocessor is oblivious to the underlying language and operates on token
sequences. Hence, it can and has been used on other languages with a similar lexical
syntax than C, such as C++, Fortran, Java, and assembly languages. Furthermore,
many language environments provide their own but similar preprocessing facilities,
including C#, Visual Basic, Erlang, Pascal, D, and PL/SQL, sometimes in sepa-
rate tools, sometimes built into the compiler. For languages without such facilities,
developers have implemented their own preprocessors, such as Munge2 and Antenna3

for Java.

5.3.2 Implementing Variability with Preprocessors

The typical way to implement variability with preprocessors is to wrap a code frag-
ment with conditional-compilation directives, such as #ifdef and #endif. We say such
code fragment is annotated (see annotation versus composition in Sect. 3.1.3, p. 50).
Depending on whether certain macros are defined (potentially using command-line
parameters passed to the preprocessor), the code fragments are included or removed
before compilation. To implement feature-oriented software product lines, we reserve
a name per feature (typically F as the name of the feature), and define the macro (using
“#define F”) only when the feature is selected.

In Fig. 5.8, we show an example of conditional compilation with the C preproces-
sor in a code excerpt from Oracle’s Berkeley DB. In addition to the common #ifdef
and #endif directives, we can see negation (#ifndef), alternatives (#else), and nesting
of preprocessor directives. The example illustrates also the common case of long
annotated code fragments, here annotating over 100 lines of code (see comment
in Line 16). The preprocessor removes code according to macro definitions before
compilation.

For completeness, in Fig. 5.9, we show an implementation of our graph product
line implemented with conditional compilation. Since the example is implemented
in Java, we use the preprocessor Munge instead of cpp. The syntax is similar: code
fragments are annotated by feature directives using IF and END inside comments (so
they do not interfere with development environments such as Eclipse). We run the
preprocessor Munge as follows:

2 http://weblogs.java.net/blog/tball/archive/munge/doc/Munge.html
3 http://antenna.sf.net

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://weblogs.java.net/blog/tball/archive/munge/doc/Munge.html
http://antenna.sf.net

112 5 Classic, Tool-Driven Variability Mechanisms

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Fig. 5.8 Excerpt from Oracle’s Berkeley DB implementing variability with conditional compilation
using Munge

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

Fig. 5.9 Graph library: Variability implemented with conditional compilation

5.3 Preprocessors 113

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

Fig. 5.10 Further preprocessor usage pattern for variability implementation: Alternative macro
definitions (top left), alternative includes (top right), dependent feature definitions (bottom left),
and alternative function definition (bottom right)

java Munge -DFEAT_WEIGHTED -DFEAT_COLORED
Graph.java Node. java ... targetDirectory

in which the -D parameters define macros. Munge removes all annotated code frag-
ments, for which the corresponding macros have not been defined. Subsequently, we
call the compiler on the preprocessed code in the target directory.

Of course, developers can also use other preprocessor mechanisms to encode vari-
ability, typically in combination with conditional compilation. Four common patterns
are illustrated in Fig. 5.10. First, we can define a macro differently, depending on the
feature selection. In our example, SIZE expands to 64 or 32 depending on whether
feature BigInt is selected. Second, we can include alternative files, depending on the
feature selection. In our example, we include the header files of either Windows or
Unix. Third, we can define, redefine, and undefine macros during the preprocessor’s
execution, among others to encode dependencies. In our example, feature Windows is
automatically undefined when feature SELinux is defined, thus potentially overriding
feature selections by users. Finally, a pattern that is quite common in the Linux kernel
is to provide an alternative to an optional function as a macro (or an empty function
definition to be inlined). If feature Rand is not selected in our example, the function
call is replaced by a literal ‘0’ to be optimized away by the compiler.

5.3.3 Further Preprocessors

Annotating and conditionally removing code fragments is a very general concept
that takes many different shapes in practice. In this section, we briefly outline some
specialized preprocessors to give an overview of the variety of different possibilities.

Java. Natively, Java has limited facilities for conditional compilation. If the com-
piler can statically determine that the condition of an if statement always evaluates to
false, it may chose not to compile the body of the if statement. The Java language spec-

114 5 Classic, Tool-Driven Variability Mechanisms

1
2
3
4
5
6
7
8

Fig. 5.11 Native conditional compilation in Java

ification explicitly provides an exception to detecting unreachable code in the body
of if statements, to allow this simple form of conditional compilation at expression
level (Gosling et al. 2005, Sect. 14.21). Hence, although using normal parameters,
the code in Fig. 5.11 can be seen as a form of conditional compilation. However, not
all compilers implement this optimization. By using the same construct, compile-
time and run-time variability (see Sect. 3.1.1, p. 48) become difficult to distinguish.
Furthermore, conditional compilation is not natively available for removing entire
methods or classes; for that, external tools are required.

Antenna. Antenna is a preprocessor developed for Java ME projects, which usu-
ally target embedded devices with limited resources and varying capabilities. Antenna
is unusual as it integrates into existing development processes and code editors for
Java. It mimics the syntax of the C preprocessor, but, as with Munge, preprocessor
directives are written in comments not to interfere with existing code editors. Instead
of removing code fragments, Antenna comments out code fragments annotated with
deselected features and uncomments code fragments of selected features. This way,
developers can edit Java code in their normal code editors and quickly switch between
alternative feature selections; code is changed in-place and not generated in separate
files. There are even plug-ins to integrate Antenna and the switching between feature
selections into development environments such as NetBeans and Eclipse.

Customizable preprocessors. Although the C preprocessor can be used on all
languages with a token structure similar to C, its fixed notation can be limiting: Pre-
processor directives always start with # in a new line. There are several customizable
preprocessors that developers can adjust preprocessor syntax to align with the host
language’s syntax, for example, to appear in comments in the respective language.
Examples are GPP—Generic Preprocessor, GNU M4, and preprocessors provided
as part of the commercial product line tools pure::variants and Gears.

Syntactic preprocessors. Most preprocessors work at the lexical level: They
transform token sequences without considering the underlying language structure.
Several syntactic preprocessors exist that take a specific language into account. For
example, consider the code excerpt in Fig. 5.12 in the tag-and-prune approach of
Boucher et al. (2010). There is no end tag; instead, an annotation applies to a whole
syntactic unit, such as a function, a statement, or a case of a switch statement. Syn-
tactic preprocessors promise to be less prone to subtle syntax errors, as they enforce
a certain discipline of annotations. Instead of removing token sequences, a syntactic
preprocessor performs transformations as rewrites of abstract syntax trees. In addi-

http://dx.doi.org/10.1007/978-3-642-37521-7_3

5.3 Preprocessors 115

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Fig. 5.12 Syntactic preprocessor in the tag-and-prune approach of Boucher et al. (2010)

tion to conditional compilation, syntactic preprocessors typically (or even primarily)
provide syntactic macros that rewrite language structures instead of replacing tokens
(Brabrand and Schwartzbach 2002). Syntactic preprocessors and, especially, syn-
tactic macro systems are well known from Lisp-like languages and C++ templates
(Brabrand and Schwartzbach 2002), but have been also explored with a look and feel
familiar to C programmers (Weise and Crew 1993; McCloskey and Brewer 2005;
Kästner et al. 2009b; Boucher et al. 2010; Batory et al. 2011).

Preprocessors for nontext artifacts. Many preprocessors can be uniformly
applied to all kinds of textual artifacts. However, preprocessor annotations have been
explored also for graphical models and other nontext artifacts. For graphical mod-
els in Eclipse, both fmp2rsm (Czarnecki and Antkiewicz 2005) and FeatureMapper
(Heidenreich et al. 2008b) provide annotation and preprocessing facilities. The tool
fmp2rsm uses UML stereotypes to encode annotations, whereas FeatureMapper uses
an external syntactic mapping. Both tools provide some form of syntactic macro facil-
ities. In Fig. 5.13, we show a screenshot of an annotated entity-relationship model in
FeatureMapper. Similarly, specialized preprocessors for documents in word proces-
sors are provided by vendors of the commercial product line tools pure::variants and
Gears and have been explored in academic contexts as well (Batory et al. 2011).

Template processors. Most preprocessors discussed so far were rather restricted
to replacing or removing tokens. There are several preprocessors that allow you
to write powerful generators. Some provide Turing-complete facilities beyond
conditional compilation. Typical features of template engines not provided by
preprocessors are loops over some data structures and arbitrary computations of val-

116 5 Classic, Tool-Driven Variability Mechanisms

Fig. 5.13 Model annotations of an entity-relationship diagram in FeatureMapper (Siegmund et al.
2009a)

ues at generation time. XVCL by Jarzabek et al. (2003) is a lexical template engine
based on frame technology that was explicitly designed for product line development.
Another example of a lexical template engine is StringTemplate by Parr (2004). Both
are applicable to any text-based language; but, like lexical macros, they are oblivious
to the underlying language structure. Several syntactic template engines exist for
specific languages that can provide guarantees about the generated code, for exam-
ple, that it is always syntactically correct or well-typed (Huang et al. 2005; Arnoldus
et al. 2007; Huang and Smaragdakis 2011).

5.3.4 Disciplined Annotations

Preprocessors are powerful tools that allow almost arbitrary source-code manip-
ulation at compile time. The power comes at the price of writing complex and
hard-to-maintain and hard-to-understand source code. Similar to the goto statement,
preprocessors have earned a poor reputation.

Preprocessor annotations of lexical preprocessors can align with the underlying
structure but do not have to: Developers can use conditional compilation to annotate
entire syntactic blocks of source, such as entire functions or entire statements. In this
case, annotations align with the syntactic structure of the source code. We say an
annotation is disciplined, if it aligns with the source code structure of a language.
Disciplined annotations can be mapped to elements of the documents abstract syntax
tree and are restricted to selected structures, typically, top-level declarations, fields,

5.3 Preprocessors 117

1

2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Fig. 5.14 Excerpts of vim with disciplined annotations: an annotation around entire top-level dec-
larations (left) and an annotation round an entire statement (right) (Liebig et al. 2011)

1
2
3
4
5
6
7
8
9

1
2
3
4
5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 5.15 Excerpts of vim with undisciplined annotations at substatement and subexpression level
(Liebig et al. 2011)

and statements, but not subexpressions or parameter declarations. In Figs. 5.14 and
5.15, we show a number of code fragments from the source code of the text editor vim
that we judge as disciplined or undisciplined, respectively. Notice how the annotation
in the first example of Fig. 5.15 changes the structure and decides whether Line 8 is
in the body of a for loop or not.

The notion of disciplined annotations can help developers to avoid complex ad
hoc implementations that might be hard to maintain. We argue that disciplined anno-
tations are usually also easier to read and maintain. Baxter and Mehlich (2001)
observed about undisciplined annotations: “The reaction of most staff to this kind
of trick is first, horror, and then second, to insist on removing the trick from the
source.” Undisciplined annotations are not only problematic for developers, but also
for tools: Even parsing code with undisciplined annotations is a challenge, so refac-
toring engines rarely fully support code with undisciplined annotations. Refactoring
engines for Java are more advanced than those for C and C++, because in the latter
languages the preprocessor hinders proper parsing, analysis, and rewrites.

So far, few tools enforce disciplined annotations (usually only syntactic preproces-
sors, discussed above). Typically, developers agree upon them by convention. For
example, the Linux developers have agreed upon a convention to restrict the use of

118 5 Classic, Tool-Driven Variability Mechanisms

conditional compilation to few disciplined patterns: “Code cluttered with ifdefs is
difficult to read and maintain. Do not do it. Instead, put your ifdefs in a header, and
conditionally define static inline functions, or macros, which are used in the code”.4

In an empirical study of typical C code, Liebig et al. (2011) found that most #ifdef
annotations (84 %) are already in a disciplined form. The remaining annotations can
mostly be rewritten if desired. The study also discusses benefits and limitations of
disciplined annotations in more detail.

5.3.5 Preprocessors in Practice

Preprocessors are widely used in practice, especially, in C and C++ projects, to a
much lesser degree in Java projects. There are several studies on preprocessor usage
in open-source projects, for example, by Ernst et al. (2002) and Liebig et al. (2010),
(2011). Here we summarize some key results from Liebig’s work, which focused
primarily on conditional compilation and product-line development.

By looking at 40 C open-source projects from different domains, Liebig et al.
(2010, 2011) found that all analyzed open-source projects contained some amount
of conditional compilation with between 13 and 16 167 features covering between
2.5 % and 69 % of all C code. Over all projects, on average, each feature contributed
7 #ifdef blocks with a total of 60 lines of code. Only about 10 % of all features
inject the same code in multiple locations (also known as homogeneous extensions,
see later discussions in Sect. 6.3.1, p. 153), all other code fragments inject always
different code at each extended location.

In practice, most uses of #ifdef directives are disciplined and at a comparably
coarse granularity (see granularity in Sect. 3.2.5, p. 59). On average, only 1.8 % of
all #ifdef blocks modify code inside a statement. Most #ifdef blocks actually guard
entire statements (52 %, on average) or entire functions or other top-level declarations
(46 %, on average). Of these #ifdef blocks, 84 % are disciplined, according to our
notion of disciplined.

By comparing the projects, we can also find that the number of features and the
amount of #ifdef-guarded code grows roughly linearly with the size of the project
(measured in lines of code), whereas the scattering and complexity of #ifdef differs
strongly between projects but is independent of the size of the project.

All of these values differ quite significantly between individual projects, but are
consistent in their general tendency: conditional compilation is used intensively in
open-source C projects.

In Table 5.1, we list some results of these studies for all 40 analyzed projects. For
more data and more information about the metrics and studies, refer to the original
publications (Liebig et al. 2010, 2011).

4 see /Documentation/SubmittingPatches in the kernel sources.

http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_3

5.3 Preprocessors 119

Table 5.1 Preprocessor usage in 40 open-source C systems (data excerpt from Liebig et al. (2010,
2011))

Project LoC Feat. FeatC LoC/Feat. Scat. Granularity (in %) Discipl.
(in %) Global Stmt. Finer (in %)

apache 208 785 1 158 22 39 5.6 39 59 1.8 80.5
berkeley-db 185 433 915 15 31 4.7 31 68 0.8 88.0
cherokee 50 571 328 15 23 3.7 52 48 0.7 77.4
clamav 74 142 285 15 38 5.9 52 48 0.2 82.6
dia 128 400 91 4 59 5.4 59 40 1.6 88.1
emacs 232 224 1 373 33 55 10.6 46 52 2.2 87.4
freebsd 5 845 346 16 167 14 52 10.5 48 51 1.6 84.7
gcc 1 599 365 5 063 18 56 7.0 56 41 3.4 82.2
ghostscript 438 379 816 5 27 4.0 53 46 1.2 89.5
gimp 585 875 392 3 49 6.5 56 44 0.1 90.5
glibc 729 065 3 012 12 29 7.3 60 38 1.9 80.2
gnumeric 253 280 291 5 41 3.2 19 76 5.2 83.6
gnuplot 74 801 434 27 47 7.7 44 53 2.9 79.1
irssi 49 450 55 3 23 2.5 38 61 0.5 86.0
libxml2 205 618 2 047 68 68 8.4 70 29 0.3 93.5
lighttpd 38 499 167 22 51 4.7 32 60 7.5 91.3
linux 5 882 780 9 102 11 71 6.1 52 46 1.2 92.3
lynx 115 238 806 38 54 11.6 31 67 2.0 79.5
minix 62 573 356 17 30 5.1 53 47 0.3 92.5
mplayer 588 625 1 236 19 92 5.8 38 60 2.2 82.8
mpsolve 10 142 13 3 20 2.5 59 41 0.0 100.0
openldap 243 691 708 27 95 4.7 35 62 2.6 87.9
opensolaris 8 107 717 10 901 20 151 10.4 39 60 1.0 75.7
openvpn 33 777 276 69 84 6.7 43 53 3.8 92.5
parrot 101 482 539 26 49 6.1 62 38 0.1 89.9
php 565 046 2 426 35 81 5.6 50 49 1.3 82.9
pidgin 267 349 576 15 70 3.2 42 56 1.9 86.2
postgresql 448 495 692 5 34 4.9 42 57 0.9 80.1
privoxy 23 597 153 38 59 7.0 39 59 1.8 74.2
python 370 119 5 127 27 20 4.1 23 76 1.4 89.5
sendmail 81 158 880 39 36 5.9 39 58 2.7 74.8
sqlite 93 213 292 55 174 7.7 45 54 1.3 88.1
subversion 506 085 409 6 70 14.0 61 38 0.2 69.7
sylpheed 100 326 271 19 70 4.2 56 42 2.2 83.3
tcl 131 284 2 481 20 11 3.8 69 30 0.6 80.9
vim 222 682 779 60 170 19.3 23 69 8.4 72.6
xfig 72 067 107 7 48 4.7 43 55 1.9 80.6
xine-lib 484 898 1 692 35 101 5.3 44 54 1.2 85.2
xorg-server 513 702 1 360 19 70 9.0 48 50 1.4 83.9
xterm 48 481 453 40 42 8.1 42 57 1.2 86.7

Sum/Avg. 29 773 760 74 229 23 60 6.6 46 52 1.8 84.4

LoC= n lines of normalized C code; Feat.= total of n feature constants in conditional-compilation
directives; FeatC= n percent of code in the project belonging to any feature; L/Feat.= n lines of
code on average per feature; Scat.= average scattering per feature over n annotated code fragments;
Granularity= n percent of annotations at global/statement/finer granularity (see text); Discipl.=
n percent of annotations in a disciplined form (see text)

120 5 Classic, Tool-Driven Variability Mechanisms

5.3.6 Discussion

Preprocessors are controversial. On the one hand, they are used in practice in many
product-line projects. On the other, academics heavily criticize preprocessors as
summarized in the claim “#ifdef Considered Harmful” (Spencer and Collyer 1992)
and in the colloquial term “#ifdef hell” (Lohmann et al. 2006a), and recommend
that their use should be abandoned. Numerous studies discuss the negative effect of
preprocessor usage on code quality and maintainability (for example, Spencer and
Collyer 1992; Krone and Snelting 1994; Favre 1995, 1997; Ernst et al. 2002; Adams
et al. 2008b). In the following, we examine the advantages and disadvantages of
preprocessors more closely.

Benefits

On the positive side, preprocessors are lightweight and easy-to-use tools for compile-
time variability that are already available in many language environments (see binding
times in Sect. 3.1.1, p. 48). They have a simple programming model: Annotate and
conditionally remove code. Most developers, especially C developers, are familiar
with them; otherwise, they are easy to learn. In environments without preprocessors,
they can be added as lightweight tools.

Developers can apply lexical preprocessors such as the C preprocessor uniformly
to artifacts of different kinds, even noncode and nontext artifacts (see uniformity in
Sect. 3.2.6, p. 60). Thus, the same variability mechanism can be used for source code,
grammars, models, documentation, and so forth. They allow changes at arbitrary
levels of granularity, not confined by mechanisms of the host language, as illustrated
in examples throughout this section (see granularity in Sect. 3.2.5, p. 59). Fine-
grained compile-time variability allows controlling precisely what code is actually
deployed, even at statement level. Even disciplined annotations scale to many levels
of granularity.

Since most preprocessors are rather simple, it is usually easy to extract feature-
traceability information (see feature traceability in Sect. 3.2.2, p. 54). Annotations
can refer directly to features. Although feature code may not be localized in one file,
a simple search or an analysis tool can statically determine code locations affected
by a feature.

Finally, granularity, expressiveness, and their lightweight nature render preproces-
sors well-suited for extractive product line adoption (see adoption paths in Sect. 2.4,
p. 39). It is easy to add a few preprocessor directives to existing code, to make code
fragments optional or encode alternative. In contrast to frameworks, little preplanning
is required, as code is changed invasively (see preplanning in Sect. 3.2.1, p. 53). This
lightweight, easy-to-learn, and easy-to-adopt nature is what makes them so popular
in practice.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_3

5.3 Preprocessors 121

Criticism

Preprocessors are criticized for neglecting separation of concerns (see Sect. 3.2.3,
p. 55). Similar to simple parameter approaches (see Sect. 4.1, p. 66), feature code is
scattered across the code base and tangled with code of other features. There is no
support of encapsulation (see information hiding in Sect. 3.2.4, p. 57, as achievable,
for example, with frameworks and components. Even when feature code is roughly
separated into distinct files, scattered annotations remain to inject the feature code
into the base code (as scattered method invocations or #include directives).

Scattering not only affects source code, but configuration knowledge as well.
Configuration parameters can be defined, redefined, or undefined within the source
code, as exemplified earlier in Fig. 5.10. Such scattering of configuration knowledge
can make it hard to understand when or why a certain code fragment is included in
a product.

Favre (1995) and Baxter and Mehlich (2001) argue that preprocessors, due to
their simplicity, invite developers to make ad hoc extensions and use “quick and
dirty” solutions, instead of restructuring the code. Features are steadily added in a
patch-by-patch fashion, but never removed or reflected in the design. Such ad hoc
use can lead to implementations that are hard to understand and maintain.

Furthermore, preprocessors are criticized for obfuscating source. Although already
a problem of the parameter approach, preprocessors intensify the problem, because
annotations are typically not part of the language, but added on top by an external
tool, multiple languages are intermixed in the same file. Especially, when annotations
are applied at a fine grain, are strongly scattered, or are used in undisciplined ways,
it can be difficult to follow the control flow in the host language. The term “#ifdef
hell” reflects this problem.

The degree of source-code obfuscation depends on how the preprocessor is used.
Similar to parameters (see Sect. 4.1, p. 66), a small number of disciplined annotations
is often perceived as acceptable. However, if applied in an ad hoc fashion, fine-
grained annotations and a large number of annotations can quickly reduce readability.
We illustrate code obfuscation in Fig. 5.16 with a small constructed example and,
in Fig. 5.17, with an illustration of preprocessor directives in the source code of
Femto OS, a small real-time operating system.

Preprocessors are also considered to be error prone. Most preprocessors lack
proper diagnostic tools. Using annotations to implement optional features can easily
introduce errors that can be difficult to detect. If used in an undisciplined fashion at
token level, even simple syntax errors, such as not closing a corresponding bracket
in some feature selections can sneak in undetected. There is no way to check features
in isolation, as one might attempt for modular implementations, such as plug-ins or
components.

We illustrate a simple syntax error in the adapted code excerpt from Berkeley DB
in Fig. 5.18: The opening bracket in Line 4 is closed in Line 17 only when feature
Have_Queue is selected, all other products contain a syntax error. The worst part is
that compilers cannot detect such syntax errors, unless the developer (or customer)
happens to build a product with a problematic feature combination (without fea-

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4

122 5 Classic, Tool-Driven Variability Mechanisms

Fig. 5.16 Java code
obfuscated by fine-grained
annotations with cpp (Kästner
et al. 2008a)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

ture Have_Queue in our case). However, since there are so many potential products
(2n products for n independent optional features), we might not compile products
with a problematic feature combination during initial development. Compiling all
products is infeasible due to its high number, so even simple syntax errors might
go undetected for a considerable time. The bottom line is that errors are found only
late in the development cycle, when they are more expensive to fix. Beyond syntax
errors, also type errors and semantic errors can occur, as we discuss in Chap. 10.

Overall, preprocessors are a simple means to implement variability, but one
with several dangerous pitfalls. Judging preprocessors as beneficial or problem-
atic depends significantly on how they are used. We recommend using syntactic
preprocessors or enforcing disciplined usage. If used sparely in a disciplined fash-
ion, and if possible with suitable tool support, such as the extensions we discuss in
Chap. 7, many problems can be avoided.

Summary preprocessors
Strong points:

• Easy to use, well-known.
• Simple programming model: annotate and conditionally remove.
• Compile-time customization of the source code. No boilerplate code (see

Sect. 3.1.1, p. 48).
• Flexible and supports arbitrary granularity (see Sect. 3.2.5, p. 59).
• Little preplanning required (see Sect. 3.2.1, p. 53).
• Features usually traceable to (several) code locations (see Sect. 3.2.2, p. 54).
• Lightweight mechanism for extractive product line adoption.

http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

5.3 Preprocessors 123

Fig. 5.17 Preprocessor directives in the code of Femto OS: highlighted lines represent preprocessor
directives such as #ifdef, white lines represent the remaining C code, comment lines are not shown

124 5 Classic, Tool-Driven Variability Mechanisms

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Fig. 5.18 Adapted code excerpt of Berkeley DB, which contains a syntax error in products without
Have_Queue

• Uniform application to source code and noncode artifacts (see Sect. 3.2.6,
p. 60).

Weak points:

• Scattering and tangling of feature code and configuration knowledge. No
clear separation of concerns (see Sect. 3.2.3, p. 55),

• No support for information hiding (see Sect. 3.2.4, p. 57).
• May obfuscate source code.
• Often used in ad hoc or undisciplined fashion.
• Prone to simple errors.
• Difficult to analyze and to write tool support for the underlying language.

5.4 Further Reading

Although version-control systems are typical in practice, there is little literature on
using them for variability implementation. A notable exception is the experience
report by Staples and Hill (2004), who report on using a combination of branches
and build-system scripts to implement variability. Issues regarding comparing and
merging revisions and the role of structure are discussed by Mens (2002) and Apel
et al. (2011, 2012b).

Build systems are discussed more broadly in the literature. A typical problem is
that build systems become complex and slow in many large projects, so there exists
quite some work on visualizing and reengineering build systems. Adams et al. (2007)

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

5.4 Further Reading 125

offer a good introduction to challenges and reengineering of build systems. In the
context of product line development, the build system of the Linux kernel is well-
documented and was studied intensively in the recent years (Adams et al. 2008a;
Berger et al. 2010a; Nadi and Holt 2010; Dietrich et al. 2012a). Especially, Adams et
al. (2008a) reflect on the challenges of the build system and illustrate how the Linux
developers have repeatedly attempted simpler and more disciplined strategies for
their build system. All these pieces of work demonstrate the difficulty of statically
analyzing build systems.

There is plenty of literature on preprocessors, mostly criticizing their deficits and
recommending alternatives or tools. For example, Spencer and Collyer (1992) and
Favre (1995, 1997) wrote critical articles on preprocessor usage; Ernst et al. (2002)
have analyzed C source code in the wild and identified many pitfalls especially
regarding macros; Liebig et al. (2011) discuss problems in building tool support and
how disciplined annotations can help; and Kästner (2010) has collected a detailed
catalog of advantages and disadvantages of preprocessors and proposals for corre-
sponding tool support. In Chaps. 7 and 10, we come back to preprocessors and discuss
advanced tool support and analysis methods.

Finally, Sommerville (2010, Chap. 25) provides a broader overview of software
configuration management, beyond variability implementation. Software configura-
tion management encompasses all techniques discussed in this chapter and many
more, such as change management and release planning.

Exercises

5.1 Implement the chat system (Exercise 4.1, page 96) with a combination of a
version-control and a build system. For Java, we recommend to try a combination of
Subversion and ANT . Build at least three different products.

(a) Discuss different strategies of using branches for implementing the chat system’s
variability.

(b) Reflect on code quality and granularity of the resulting implementation.
(c) Modify the chat system, such that (a) the application prints its version to the

command line during initialization, (b) encryption uses a different key. Can these
changes be made locally?

(d) Does the implementation replicate code? Discuss possible mechanisms to avoid
code replication.

5.2 Find an open-source project with a reasonable large history and developer base
(for example, homebrew,5 node,6 and Stellarium7). Investigate how the version-
control system is used in the project. Are branches used for patches, for developing

5 https://github.com/mxcl/homebrew
6 https://github.com/joyent/node
7 http://sourceforge.net/projects/stellarium/

http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_10
https://github.com/mxcl/homebrew
https://github.com/joyent/node
http://sourceforge.net/projects/stellarium/

126 5 Classic, Tool-Driven Variability Mechanisms

features, for variability, or for other reasons? What code and noncode artifacts are
tracked? Are branches merged again, are patches applied to multiple branches? Are
there any policies around using branches? Do merge conflicts arise frequently and
are they hard to resolve?
5.3 Find an open-source project that uses a build script (for example, make, ANT,
maven). Possible example projects are Rhino,8 PHP,9 and TinyOS.10 Analyze the
tasks performed by the build system. Does the build system manage variability by
selecting which files to generate, which files to compile, or how to compile files?
Does the build system orchestrate other variability mechanisms? Is there variability
in the dependencies of the project? Is there variability in noncode artifacts? What
effort is required to trace features in the build process?
5.4 Implement the variability of the chat system (Exercise 4.1, page 96) with pre-
processor directives. Aim at minimal code size (code not needed in a product should
be removed by the preprocessor). When using Java, we recommend to use Fea-
tureIDE with the Munge or Antenna plug-in (see Appendix A).

(a) Reflect on code quality and implementation effort of the resulting system criti-
cally.

(b) Add a new feature Console that replaces the graphical user interface with a
minimalistic command-line interface. Reflect on the required code changes (at
least regarding invasiveness, effort, and code quality).

5.5 Find an open-source project that uses conditional compilation with a preprocessor
(for example, Vim,11 Berkeley DB,12 MobileRSSReader,13 and MobileMedia14).
Investigate how the processor is used. Select three features and investigate how
those are implemented in the source code.

(a) On what code and noncode artifacts is the preprocessor used?
(b) Does conditional compilation control variability in the sense of product line

features or does it serve a different purpose?
(c) At what granularity is conditional compilation used?
(d) Is conditional compilation used in a disciplined way? Find three examples of

disciplined and undisciplined use (if available).
(e) Is the implementation of features scattered? Is any effort for separation of con-

cerns recognizable?
(f) Discuss the benefits and drawbacks of using the preprocessor as variability mech-

anism in the context of this project.

8 https://github.com/mozilla/rhino
9 https://github.com/php/php-src
10 http://www.tinyos.net/
11 http://www.vim.org/
12 http://www.oracle.com/technetwork/products/berkeleydb/
13 http://code.google.com/p/mobile-rss-reader/
14 http://mobilemedia.sourceforge.net/

https://github.com/mozilla/rhino
https://github.com/php/php-src
http://www.tinyos.net/
http://www.vim.org/
http://www.oracle.com/technetwork/products/berkeleydb/
http://code.google.com/p/mobile-rss-reader/
http://mobilemedia.sourceforge.net/

Exercises 127

5.6 Explain the difference between lexical and syntactic preprocessors and provide
corresponding examples. What are their mutual strengths and weaknesses? What
might be a reason that most preprocessors used in practice are lexical preprocessors?
5.7 Locate and classify the errors in the following three code snippets. Discuss the
role of the preprocessor for introducing and locating errors. What is the relation to
annotation discipline?

1 int a = 1;
2 int b = 0;
3 #ifdef A
4 int c = a;
5 #else
6 char c = a;
7 #endif
8 if (c) {
9 #ifdef B

10 c += a;
11 c /= b;
12 }
13 #endif

(a)

1 int a = 1;
2 int b = 0;
3 #ifdef A
4 char c[] = a;
5 #else
6 int c = a;
7 #endif
8 if (c) {
9 #ifdef B

10 c += a;
11 c /= b;
12 #endif
13 }

(b)

1 int a = 1;
2 int b = 0;
3 #ifdef A
4 int c = a;
5 #else
6 char c = a;
7 #endif
8 if (c) {
9 c += a;

10 #ifdef B
11 c /= b;
12 #endif
13 }

(c)

5.8 Reconsider the scenarios of Exercise 2.9 (page 43). Which implementation
approach would you recommend to the developers and why? Would you give addi-
tional advice on how to use these implementation mechanisms?
5.9 Extend the comparison of Exercise 4.11 (page 101) with the additional imple-
mentation strategies from this chapter.

Chapter 6
Advanced, Language-Based Variability
Mechanisms

After reading the chapter, you should be able to

• explain the key concepts of collaboration-based design and feature-oriented pro-
gramming,

• understand the key mechanisms of AspectJ and write simple aspects in this lan-
guage,

• implement product lines with feature-oriented and aspect-oriented languages and
their combination,

• discuss trade-offs between these and previous implementation techniques,
• contrast feature-oriented and aspect-oriented languages regarding their key mech-

anisms,
• select a suitable implementation technique for a given product line,
• critically discuss the conflict between preplanning and obliviousness, and
• discuss strategies of developing feature-oriented extensions of other code and

noncode languages.

Motivated by the shortcomings of classic implementation techniques (surveyed in
Chaps. 4 and 5) new techniques have been proposed. Their goal is to provide efficient
means to implement product lines, to make their variability, features, and interactions
explicit, as well as to ease their handling and the reasoning about them.

Again, we distinguish between two types: those that extend a language to express
feature-oriented concepts and those that provide tool support to develop and manage
features. In this chapter, we examine advanced, language-based approaches. Specif-
ically, we introduce and discuss two in detail: feature-oriented programming and
aspect-oriented programming, both of which are composition-based. We discuss their
mutual strengths and weaknesses and present an approach to combine them. Finally,
we briefly review other notable language-based approaches. Almost all approaches
discussed in this and the next chapter support static (that is, compile-time) variability
only and are largely composition-based.

S. Apel et al., Feature-Oriented Software Product Lines, 129
DOI: 10.1007/978-3-642-37521-7_6, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5

130 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.1 Mapping between features and implementation artifacts in feature-oriented programming

6.1 Feature-Oriented Programming

Feature-oriented programming is a composition-based approach for building soft-
ware product lines that relies directly on the notion of features. The idea is to decom-
pose a system’s design and code into the features it provides (Prehofer 1997; Batory
et al. 2004). This way, the structure of a system aligns with its features, ideally, one
module or component per feature. To this end, new language constructs are needed
to express which parts of a program contribute to which features and to encapsulate
the feature’s code in composable, modular units.

Feature modularity1 has many benefits, in particular, a simple mapping between
features and their implementations, which eases tracing and debugging (as we will
discuss in Sect. 6.1.5). Once a user selects a set of features, the corresponding imple-
mentation modules are composed automatically. Figure 6.1 illustrates the (ideally)
clean mapping that feature-oriented programming establishes between features and
their implementing artifacts.

6.1.1 Collaboration-Based Design

Collaborations lie at the center of feature-oriented design, and whose concept has
been known for over twenty years (Reenskaug et al. 1992). To motivate collabora-
tions, we start with a simple, nonprogramming example: the mentor-student collab-
oration.

A person in the role of a mentor has responsibilities to instruct students on certain
topics, guide their development, and provide a stimulating environment in which
to learn. A person in the role of a student has responsibilities to study the offered
material, attend lectures, complete homework on time, and to seek an appreciation
for what is being presented, asking questions otherwise. Some persons play multiple

1 There is an ongoing discussion on the role and goals of modularity (Ostermann et al. 2011); we
use a liberal interpretation to which modules are a code structuring mechanism; see Sect. 3.2.4.

http://dx.doi.org/10.1007/978-3-642-37521-7_3

6.1 Feature-Oriented Programming 131

roles, for example, student and mentor simultaneously (for example, Niels Bohr
simultaneously played the role of student with Ernest Rutherford and the role of
mentor to Werner Heisenberg—all famous physicists and Nobel laureates). Much
like in the real world, collaborations are ubiquitous in software.

Collaboration-based design is a fundamental technique to decompose systems
into collaborations (Reenskaug et al. 1992; VanHilst and Notkin 1996; Smaragdakis
and Batory 2002). A collaboration is a set of interacting classes, each class playing
a distinct role, to achieve a certain function or capability. For example, to implement
a graphical user interface, typically, a large number of classes collaborate, each
playing a different role: capture events, represent buttons, action handling, and so
on. A collaboration can implement a feature, but not all collaborations implement
features.

Feature-oriented programming and collaboration-based design can be applied on
top of a wide variety of host languages, including object-oriented, functional, and
domain-specific languages (Apel et al. 2013a). We use Java in our examples, but the
underlying concepts are largely language independent.

Definition 6.1 A collaboration is a set of classes (or parts thereof) that coop-
erate to implement the functionality of a feature. �

Typically, a software system consists of multiple collaborations implementing
multiple features. So, a class often participates in the implementation of multiple
features. That is, a class plays multiple roles in multiple collaborations with other
classes.

Definition 6.2 A role defines the responsibilities a class takes in a collabora-
tion. �

A class that plays multiple roles defines multiple sets of functionalities (sets of
methods and fields) associated with the individual roles. Separating the different
roles of a class as well as bundling all roles that belong to a collaboration are key
objectives of collaboration-based design and feature-oriented programming.

Example 6.1 In Fig. 6.2, we show a sample collaboration-based design inspired by
the graph library. The diagram uses UML-like notation with some extensions: rows
(grey boxes) denote collaborations; white boxes represent classes or roles; solid
arrows (that link classes column-wise) denote the application of a new role to a
class.

Let us interpret Fig. 6.2 row-wise: Collaboration BasicGraph consists of the classes
Graph, Node, and Edge, which together provide the functionality to construct and
display graph structures. Collaboration Weighted adds roles to the classes Graph and
Edge as well as a new class Weight; Weighted extends the graph implementation to
support weighted edges. Collaboration Colored adds roles to the classes Node and

132 6 Advanced, Language-Based Variability Mechanisms

Basic

void print();

class Weight

class Node
void print();

Weighted

Graph Node a, b;

void print();

void print();

Color color;

void print();

Weight weight;

class Edge

class Edge

class Edge class Node

void print();

Color color;

Edge add(Node, Node, Weight);

Edge add(Node, Node);

class Graph

Edge add(Node, Node);

void print();

class Graph

Aggregation Association Role of

class Color
...Colored

Fig. 6.2 Collaboration-based design of a simple graph implementation

Edge as well as a new class Color; it provides support for colored output of nodes
and edges on the command line.

Now a column-wise interpretation: The Graph class simultaneously plays two roles
in two different collaborations (BasicGraph and Weighted). Class Edge simultaneously
plays three different roles in all three collaborations. Class Node simultaneously plays
roles in collaborations BasicGraph and Weighted, and class Weight and class Color play
their part in individual collaborations.

Composing collaborations is, in effect, superimposing them by lining-up classes
according to the roles they play. �

6.1.2 Feature Modules

In feature-oriented programming, each collaboration maps to a feature and is called
a feature module. Different combinations of feature modules satisfy different needs
of customers or application scenarios. For example, based on the design shown in
Fig. 6.2, we can create four different graph products by composing different sets of
collaborations, a basic graph, a weighted graph, a colored graph, and a weighted and
colored graph.

In Fig. 6.2, we also illustrate how features crosscut a given (object-oriented) pro-
gram structure. A feature module refines the content of a base program (which itself
may result from a composition of feature modules) either by adding new elements or
by modifying and extending existing elements. Hence, the order in which features
are applied is important: earlier features in the sequence may add elements that are
refined by later features. This is typical for the step-wise development of programs.

6.1 Feature-Oriented Programming 133

Fig. 6.3 A simple graph implementation (feature module BasicGraph)

6.1.3 The Jak Language

Jak is an extension of Java for feature-oriented programming (Batory et al. 2004). In
Fig. 6.3, we show the Jak implementation of our graph example as a feature module.
It consists of the classes Graph, Node, and Edge. Except keyword layer, which denotes
the feature a class belongs to, the Jak code in Fig. 6.3 is not different from plain Java
code.

Roles that extend existing classes are implemented using class refinements,
denoted by keyword refines. A class refinement can add new members to a class

134 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.4 Extending the basic graph implementation by introducing weights to edges (feature module
Weighted)

and extend existing methods. A method extension is implemented by method over-
riding and calling the overridden method via the keyword Super.2

In Fig. 6.4, we show feature Weighted implemented in Jak. It introduces a new
class Weight that represents the weight of an edge (bottom) and refines (applies a role
to) class Graph (top) by introducing a new method add that assigns a given weight
value to an edge, and by overriding the existing method add to assign a default weight
value. Furthermore, it refines class Edge (middle) by adding a field and by extending
the print method to display the weight.

Class refinement is a form of mixin-based inheritance (Bracha and Cook 1990;
Flatt et al. 1998), in which subclasses, called mixins, are abstract in the sense that they
can be applied to different concrete superclasses (which is not possible with subclass-
ing in Java). In the graph example, the mechanism of class refinement gives us the
flexibility to refine either class Edge of feature BasicGraph or its refinement applied by
Weighted. Mixins are the static counterpart to the Decorator design pattern, discussed
in Sect. 4.2.4. They overcome the problems of inheritance with regard to step-wise

2 Jak’s keyword Super is similar to Java’s keyword super. While Super refers to the method that
has been overridden by a class refinement, super refers to the method that has been overridden by a
subclass. To avoid confusion, other feature-oriented languages use instead keywords such as original
(Apel et al. 2009).

http://dx.doi.org/10.1007/978-3-642-37521-7_4

6.1 Feature-Oriented Programming 135

development and code reuse (see Fig. 4.9). Mixin layers have been introduced to bun-
dle multiple mixins that form a semantically coherent unit (Smaragdakis and Batory
2002). Feature modules are rooted in the concept of mixin layers. A feature module
bundles all classes and class refinements that contribute to the implementation of a
feature.

The semantics of feature-module (and mixin-layer) composition is as follows:
(1) all classes of all feature modules are assembled in a single program; (2) each
class is merged with all of its refinements in that all members of the refinements
are added to the class; (3) in the case an existing method is overridden (that is, a
refinement contains a method that is already present), the overridden method can be
called by the overriding method via keyword Super. The actual composition mecha-
nism at the technical level may vary (Batory et al. 2004). For example, refinements
may be implemented by subclassing with name mangling or by mixin composition
(Smaragdakis and Batory 2002). Furthermore, different implementations handle spe-
cial cases such as field overriding differently.

In Jak and in other contemporary feature-oriented programming languages and
tools, feature modules are represented by file-system directories, called containment
hierarchies; classes and their refinements are stored in files inside the correspond-
ing containment hierarchies. Programmers select features by name before compila-
tion via command-line parameters or tool support. In Fig. 6.6, we show a snapshot
of the containment hierarchies and the feature model of the graph example in the
development environment FeatureIDE (see Appendix A). For each feature, there is
a directory that contains the files with the classes and refinements implementing the
features.

6.1.4 Models of Feature-Oriented Programming

To abstract from implementation details, researchers have developed models of
feature-oriented programming that capture essential properties and emphasize its
generality.

GenVoca is an algebraic model for feature-oriented programming (Batory and
O’Malley 1992). Each product line is modeled by a corresponding algebra, which
is called its GenVoca model. For example, ‘Graph = {BasicGraph, Weighted, Colored}’
denotes a model Graph that has the features BasicGraph, Weighted, and Colored.

Features are modeled as program transformations (a.k.a. functions that map pro-
grams to programs). A constant function (a.k.a. constant) represents a base program.
All other functions are unary (single-parametered) that receive a program as input
and return a modified program as output. The returned program is the original plus

http://dx.doi.org/10.1007/978-3-642-37521-7_4

136 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.5 Composing the feature modules BasicGraph and Weighted

the changes that are needed to add the designated feature. That is, functions represent
program refinements that implement features. For example, ‘Weighted • X’ adds fea-
ture Weighted to program X, where ‘•’ is function composition. Similarly, ‘Colored •
X’ adds Colored to X. The design of a software product is a named feature expression,
for example:

6.1 Feature-Oriented Programming 137

Fig. 6.6 Containment hierarchy (left) and feature model (right) of the graph example

WeightedGraph = Weighted • BasicGraph

ColoredWeightedGraph = Colored • Weighted • BasicGraph

AHEAD (Algebraic Hierarchical Equations for Application Design) is the successor
of GenVoca (Batory et al. 2004). It scales the ideas of GenVoca to all kinds of software
artifacts, thus applying the principle of uniformity (see Sect. 3.2.6) to feature-oriented
programming. That is, a feature consists not only of source code but of all artifacts
that contribute to that feature, including documentation, test cases, design documents,
makefiles, performance profiles, and mathematical models.

The AHEAD tool suite implements these ideas. It contains several tools for devel-
oping, debugging, and composing code and noncode artifacts. As said previously,
each feature is represented by a containment hierarchy, which is a directory that
maintains a substructure organizing the feature’s artifacts (see Fig. 6.6). Compos-
ing features means composing containment hierarchies and, to this end, composing
corresponding artifacts recursively by name and type (see Fig. 6.8 for an example).
For each artifact type, a different implementation of the composition operator ‘•’
(that is, a tool that performs the composition) has to be provided in AHEAD, much
like Jak for Java artifacts. For example, the graph implementation of Fig. 6.2 may be
paired with documentation in HTML, as illustrated in Fig. 6.7.

Distinct composition tools have been created to work with particular kinds of
software artifacts. That is, there is a special tool for defining and composing Jak
representations of programs, there is another special tool for defining and composing
XML artifacts, and so on. For each artifact type, at least one special tool has to be built.

http://dx.doi.org/10.1007/978-3-642-37521-7_3

138 6 Advanced, Language-Based Variability Mechanisms

Colored

Weighted

Basic
Graph

Edge.jak

Edge.jak

Edge.jak Node.jakGraph.jak

Weight.jak

Graph.htmlColor.jak

Graph.html

Graph.html

Fig. 6.7 Collaboration-based design of the graph library including HTML documentation

build.xml

Weight.jak Graph.jak Edge.jak Graph.jak Edge.jakNode.jak Graph.html

build.xml

Graph.htmlGraph.jak Graph.htmlEdge.jakNode.jak Weight.jak

Edge.jak = Edge.jak Edge.jak

src docsrc docsrc

WeightedGraph BasicGraphWeighted

doc

Fig. 6.8 Composing containment hierarchies of the graph library (Apel 2007)

The AHEAD tool suite brings these separate tools together and selects different tools
for different kinds of files during feature composition, establishing a clear interface
to the build system. Composing Jak files will invoke a Jak-composition tool, whereas
composing XML files invokes an XML-composition tool, and so on, as illustrated
in Fig. 6.8.

Following the philosophy of AHEAD, the FeatureHouse tool suite has been devel-
oped that allows programmers to enhance given languages rapidly with support for
feature-oriented programming, for example, C#, C, JavaCC, Haskell, Alloy, and
UML (Apel et al. 2009). FeatureHouse is a framework for software composition
supported by a corresponding tool chain. It provides facilities for feature composi-
tion based on a language-independent model and tool chain for software artifacts,
and a plug-in mechanism for the integration of new artifact languages. A language
plug-in is essentially the language’s grammar plus some further information on how
different structural elements are composed. The benefit of this generality is that it is
now substantially easier to build new languages and tools for feature-based develop-
ment.

6.1.5 Discussion

Like all approaches in this chapter, feature-oriented programming is a language-based
and composition-based approach to product-line implementation (see language-
based versus tool-based and annotation versus composition in Sects. 3.1.2 and 3.1.3,

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

6.1 Feature-Oriented Programming 139

p. 49 and 50). The feature modules can then be composed statically at compile
time or even dynamically at run time (Rosenmüller et al. 2011) (see binding times
in Sect. 3.1.1, p. 48). Although some static composition mechanisms encode class
refinement as inheritance, there are composition mechanisms that entirely inline
extensions into the base code without run-time overhead.

Feature-oriented programming languages provide a means to collect the entire
implementation of a feature cohesively in a feature module. Every piece of code
that contributes to the implementation of a feature is included in the corresponding
feature module, which can be referred to by the feature’s name (see separation of
concerns in Sect. 3.2.3, p. 55).

Feature-oriented programming excels at feature traceability. There is a direct
mapping from features to feature modules that implement them (see feature trace-
ability in Sect. 3.2.2, p. 54). Attaining a similarly simple traceability is difficult with
classic implementation approaches. For example, using run-time parameters and pre-
processor directives, a feature’s code is typically scattered all across the code base.
Frameworks and components alleviate this problem by leveraging encapsulation and
extension mechanisms such as interfaces and inheritance, but the lack of crosscutting
modularity makes it difficult to really separate a feature’s code from the code of other
features (see Chap. 4).

In feature-oriented programming, a feature is implemented by a collaboration
of classes contained in a feature module. This way, feature-oriented programming
supports the separation of crosscutting concerns, which eases feature tracing: What
would be otherwise scattered, is encapsulated in a single place. As we will see
in Sect. 6.3, there are further kinds of crosscutting concerns that are not so well
supported by feature-oriented programming.

In Chap. 4, we have learned that, using classic implementation approaches, many
additions and modifications a feature has to apply, have to be planned upfront when
designing the extension points (see preplanning in Sect. 3.2.1, p. 53.). That is, a
programmer has to anticipate at which places a feature will “hook into” the system,
or she has to manually alter the existing code.

Using feature-oriented programming, one can extend existing classes via class
refinement, without touching existing implementations. In contrast to inheritance,
one can refine a class without breaking any client code. For example, in Jak, we
can add a field weight to class Edge transparently: Every reference to an Edge object
points immediately to the extended version. Using inheritance (for example, in Java),
we can also add fields, but then we have to introduce a new type (for example, class
WeightedEdge), and every instantiation of Edge objects have to be replaced with the
new type, as illustrated in Fig. 6.9. This can be controlled by the template-method
pattern, but only if that extension was anticipated by the programmer.

Once we have multiple optional features, we want to compose them in different
combinations, for example, a simple graph, a weighted graph, or a weighted and
colored graph. Using classic approaches that rely on inheritance and delegation,
this is difficult, as discussed in Fig. 4.9, p. 78. As we have seen there, this leads to
exploding class hierarchies, or induces other problems such as the diamond problem

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4

140 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.9 Inheritance versus class refinement

(Smaragdakis and Batory 2002). With class refinement, one can flexibly combine
extensions.

Although specific tools and language extensions for feature-oriented program-
ming extend specific programming languages, such as Jak for Java, the under-
lying concepts are more general, as we have discussed in Sect. 6.1.4. Hence,
feature-oriented programming is possible in most languages, which allows refining
code and noncode artifacts uniformly (see uniformity in Sect. 3.2.6, p. 60).

Most languages for feature-oriented programming, including Jak, compose code
at the level of methods (see granularity in Sect. 3.2.5, p. 59), which is finer than the
granularity of most traditional language-based approaches. Refinements can intro-
duce new methods and override existing methods. Injecting changes at a finer level
of granularity is not possible though. In different languages, different levels of gran-
ularity are possible, but granularity is limited by the need to find structures with
addressable names for composition (Apel et al. 2013a).

Finally, it is important to note that feature-oriented programming is no silver
bullet. Its composition model is syntax-directed, which is the price for the degree of
uniformity and generality embodied in feature-oriented tools and languages. There
is no support, yet, for information hiding in the sense that each feature module has
an explicit contractual interface and protects internal implementation details (see
information hiding in Sect. 3.2.4, p. 57). Though recent proposals for byte-code based
composition and access control at the feature level aim at closing this gap (Apel et
al. 2012a). With regard to crosscutting, feature-oriented programming is superior
to object-oriented programming, but falls behind the capabilities of aspect-oriented
programming, as we will discuss in Sect. 6.3. Finally, the ideal goal of mapping
each feature to a single feature module is hard to achieve in practice, especially,
when features depend structurally on each other and interact. We discuss this issue
in Chap. 9.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_9

6.1 Feature-Oriented Programming 141

Summary feature-oriented programming
Strong points:

• Easy to use language-based mechanism, requires only minimal language
extensions.

• Compile-time customization of source code without run-time overhead (see
Sect. 3.1.1, p. 48).

• Separation of (possibly crosscutting) feature code into distinct feature mod-
ules (see Sect. 3.2.3, p. 55).

• Direct feature traceability from a feature to its implementation in a feature
module (see Sect. 3.2.2, p. 54).

• Conceptually uniformly applicable to code and noncode artifacts, tools
already cover many languages (see Sect. 3.2.6, p. 60).

• Little preplanning required due to mixin-based extension mechanism (see
Sect. 3.2.1, p. 53).

Weak points:

• Requires adoption of a language extension or unfamilar composition tools
as part of the development process.

• Granularity at the level of methods (or other named structural entities) (see
Sect. 3.2.5, p. 59).

• Composition is syntax-directed and does not offer enforced interfaces
between feature modules (see Sect. 3.2.4, p. 57).

• Tools need to be constructed for every language (see Sect. 3.2.6, p. 60), but
these may be generated (see Sect. 6.1.4, p. 135).

• Only academic tools so far, little experience in practice.

6.2 Aspect-Oriented Programming

Aspect-oriented programming aims at the modularization of crosscutting concerns
(Kiczales et al. 1997). In our discussion of feature-oriented programming, we have
already considered a kind of crosscutting concern: A collaboration extends a pro-
gram at different places, thus it cuts across the module boundaries introduced
by classes. Feature modules implement collaborations in a cohesive way. While
feature-oriented programming has been developed as a feature-implementation
(collaboration-implementation) technique, aspect-oriented programming targets
crosscutting concerns from a different perspective, as we will explain shortly.

As we have seen in earlier chapters, crosscutting leads to code scattering and tan-
gling. In Fig. 6.10, we show how the implementation of feature Colored is scattered
across the basic graph implementation. The implementation of feature Colored is
scattered across three classes, and inside these classes it affects two methods (code
associated with feature Colored is highlighted). Notice also a certain amount of code

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

142 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.10 Scattered and replicated code of feature Colored (highlighted)

replication: code for managing and changing colors is replicated in the classes Edge
and Node. Aspect-oriented programming aims at reducing such code scattering, tan-
gling, and replication induced by concerns that are not well-separated.

6.2.1 Aspects: Separating Crosscutting Concerns

Aspect-oriented programming addresses the problems caused by crosscutting con-
cerns as follows: concerns that can be localized well using classic implementation
mechanisms, such as classes and methods, are implemented further using these mech-
anisms; all other concerns that crosscut the implementation of other concerns are
implemented as aspects.

An aspect is a programming construct that encapsulates the implementation of a
crosscutting concern. It enables code that is associated with one crosscutting concern
to be localized into one code unit, thereby eliminating code scattering and tangling.
Moreover, aspects can affect multiple other concerns with one piece of code, thereby
avoiding code replication.

6.2 Aspect-Oriented Programming 143

Definition 6.3 An aspect encapsulates the implementation of a crosscutting
concern. �

The base program and the aspects are combined using an aspect weaver, forming
an executable program.

Definition 6.4 An aspect weaver merges the separate aspects of a program
and the remaining program elements at user-selected program locations, called
join points. This process is called aspect weaving. �

In Fig. 6.11, we illustrate the weaving of two aspects into a base program consisting
of three components. The result is a program that contains the functionality of all
components and all aspects, including the effects the aspects have on the structure
and behavior of the components. In some sense, the aspect weaver produces again
tangled and scattered code, but hidden from the programmer.

Definition 6.5 A join point is an event in the execution of a program at which
aspects can be woven into the program. The source code locations that give
rise to a join point are called its join-point shadows. �

Join points are, for instance, the execution or call of a method, the access of a
field, the raise of an exception, and the initialization of a class. Join point shadows
are, for example, statements that access fields or invoke methods as well as method
declarations.

In most aspect-oriented languages, aspects contain pointcuts, advice, and inter-
type declarations, or similar language constructs. A pointcut defines which join
points an aspect affects. One can think of a pointcut as a filter that selects those join
points of all possible join points in a program that are of interest to a certain aspect.

Definition 6.6 A pointcut is a declarative specification of the join points that
an aspect affects. It is a predicate that determines whether a given join point
matches. �

Advice and inter-type declarations are mechanisms to inject and execute code that
belongs to the aspect.

Definition 6.7 A piece of advice is a method-like element of an aspect that
encapsulates the instructions that are executed at a set of join points. Pieces

144 6 Advanced, Language-Based Variability Mechanisms

Woven Program

Component A

AspectsBase Program

Component C

Component B

Component A Component B

Component C

Aspect B

Aspect A

Aspect
Weaver

Fig. 6.11 An aspect weaver weaves the aspects into the base program (adapted from Spinczyk
2002)

of advice are bound to pointcuts that define the set of predefined join points
being advised. �

Definition 6.8 An inter-type declaration injects a method, field, or interface
from inside an aspect into an existing class or interface. �

Compared to other extension mechanisms, such as inheritance, aspects can quan-
tify over whole sets of join points (Filman and Friedman 2005). For example, an
aspect can advise all method executions of a program or all field accesses from
within in a certain package that match a certain type and name pattern. From a weav-
ing perspective, the code associated with the aspect is woven into many locations of
the base program.

6.2 Aspect-Oriented Programming 145

Definition 6.9 Quantification is the process of selecting multiple join points
based on a declarative specification (that is, based on a pointcut). �

6.2.2 The AspectJ Language

AspectJ3 is an aspect-oriented language extension of Java. It is the most popular
and widely used aspect-oriented language. Many of the aspect-oriented concepts
discussed so far have been introduced first by AspectJ.

In Fig. 6.12, we illustrate how an aspect in concert with a class and an interface
implements our feature Colored. Dashed arrows point to the structural elements of the
graph implementation affected by the aspect (only a subset is depicted). The AspectJ
weaver weaves the aspect into the basic graph implementation, thus creating a graph
implementation incorporating colors.

In Fig. 6.13, we depict one possible implementation of feature Colored in AspectJ.
Aspect Colored defines an interface IColored for all classes that maintain a color
value (Line 2) and declares via inter-type declaration that the classes Node and Edge
implement that interface (Line 3) using the keywords declare parents. Furthermore, it
introduces a field color and a method getColor by means of two inter-type declarations,
which are like Java field or method declarations except that the name of the target type
precedes the name of the field or method. Finally, the aspect advises the execution of
method print of all colored entities (that is, Edge and Node) to change the display color
at run time. Keyword before states that the advice is executed before every selected
join point. The pointcut execution(void print()) && this(c) selects all executions of print
methods and passes an instance c of a colored entity to the advice body (using this).

In Fig. 6.13, advice is executed before (keyword before) the execution of method
print. Alternatively, using the keywords after and around, advice can be executed after

before() : execution(void print())...

class Node
void print();

class Color
...

Graph

...

aspect Colored

Edge add(Node, Node);

class Graph
Node a, b;

class Edge

void print(); void print();

...
interface IColored

Basic

Fig. 6.12 Implementing feature Colored with aspect-oriented programming

3 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

146 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.13 Implementing feature Colored using AspectJ

Fig. 6.14 Examples of before, around, and after advice

or instead of the advised join point. In Fig. 6.14, we give examples for all three kinds
of advice.

The output of the program of Fig. 6.14 illustrates the execution order of different
kinds of advice:

before print
around print (before)
... // output of method print
around print (after)
after print

In the case of around advice, keyword proceed is used to trigger the advised method
execution (or other kind of join point).

Beside three types of advice, there are many predefined pointcuts that can be used
and logically combined to select different types of join points, for example, call for
method calls, set and get for field accesses, cflow for control-flow related join points,
and so on. AspectJ is a powerful language that offers many more mechanisms and
syntaxes to express them. Rather than explaining them, which is done elsewhere
to a large extent (Laddad 2003), we illustrate the power by means of examples. In
Fig. 6.15, we show and explain typical patterns to capture entire sets of join points,
and in Fig. 6.16, we show and explain four typical aspects.

6.2 Aspect-Oriented Programming 147

Fig. 6.15 Typical patterns used in AspectJ pointcuts

6.2.3 Aspects for Product Lines

Aspect-oriented programming can be used to develop feature-oriented product lines.
The straightforward approach is to implement one aspect per feature. Based on
a user’s feature selection, the corresponding aspects are included in the weaving
process, possibly controlled by a build system.

Developers using the above pattern inevitably encounter the following problem:
Aspects encapsulate changes that need to be made to existing classes. Aspects do not
encapsulate new classes and packages that a feature introduces; they allow for the
introduction of nested classes within an aspect, but this is often unsatisfactory (and
no solution for package introductions). Implementing a feature using multiple aspect
files (and, possibly, class and package introductions), the weaving process becomes
more complicated, because it has to keep track of which aspects and parts thereof
contribute to the selected features. So, developers often invent their own form of
feature modularization to encapsulate the set of aspects, new classes and packages,
new artifact files and directories, and so on that define the changes that a feature
makes to a program (Hunleth and Cytron 2002; Apel et al. 2008b).

Example 6.2 Variations in the graph library can be implemented using aspects. The
idea is to separate all code specific to features such as Colored and Weighted, so that we
have a plain basic graph implementation. Note that classes are introduced by graph
features, but these must be nested classes without substantially altering the basic
design of the graph example. (In more complex software product lines, the use of
nested classes may become too complicated, as references and qualified names have
to be adapted consistently.) In Fig. 6.17, we show an aspect-oriented implementation
of an excerpt of the graph library. �

148 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.16 Four typical aspects, based on Laddad (2003): (1) a profiler that measures the execution
time of every public method of a package, (2) pooling and reusing open connections, (3) connecting
observers and subjects in a shape library, and (4) ensuring that after five commands an autosave
operation is performed

Example 6.3 Similar to the graph example, we can implement a product line for
data management systems using aspect-oriented programming, starting from a base
program, say, written in C or Java, and applying aspects implementing individual
features. As a case study, Kästner et al. have refactored the Java version of Berkeley
DB (Oracle’s embedded database system) into a basic Java version and 149 AspectJ

6.2 Aspect-Oriented Programming 149

Fig. 6.17 An implementation of the graph library with AspectJ (excerpt); the features Weighted
and Colored are implemented as aspects

aspects implementing 38 features (Kästner et al. 2007). Remarkably, they were unable
to implement one aspect per feature, because the aspects would have become too
large—an issue that we discuss in Sect. 6.3. �

6.2.4 Discussion

Aspect-oriented programming is a language-based and composition-based approach
to product-line implementation (see language-based versus tool-based in Sect. 3.1.2,

http://dx.doi.org/10.1007/978-3-642-37521-7_3

150 6 Advanced, Language-Based Variability Mechanisms

p. 49 and see annotation versus composition in Sect. 3.1.3, p. 50).4 Selected aspects
and classes are woven to form the desired product. Different weaving technologies
support different binding times (See Sect. 3.1.3, p. 50) including compile-time bind-
ing (such in AspectJ) and load-time binding (Sato et al. 2003; Popovici et al. 2003).

The granularity of extensions is driven by the join-point model of the aspect-
oriented language. In AspectJ, developers can make flexible extensions at from
introducing classes and methods, to extending the behavior of methods calls inside
a function (see granularity in Sect. 3.2.5, p. 59). However, especially local variables
and control structures are not accessible from AspectJ’s join point model, or can
only be extended with workarounds or invasive preparations (Laddad 2003; Kästner
et al. 2007). Overall, AspectJ supports more fine-grained extensions than any other
composition-based approach presented in this book, but it does not allow the very
fine-grained extensions that some annotation-based approaches support.

Proper feature traceability is achieved by using one aspect to implement one fea-
ture (see feature traceability in Sect. 3.2.2, p. 54). This way, all code implementing
a feature is encapsulated in a single, addressable code location, which is difficult or
impossible with classic implementation approaches. In Sect. 6.3, we discuss limita-
tions of this approach compared to using feature modules.

More than feature-oriented programming, aspect-oriented programming is capa-
ble of extending a given program noninvasively without the need of planning the
extension in advance (see preplanning in Sect. 3.2.1, p. 53). Much like class refine-
ment, inter-type declarations can be used to extend existing classes by adding new
members, and execution pointcuts can be used to refine existing methods via over-
riding (using around advice). In addition, aspects can be used to extend a program
by intercepting its control flow at arbitrary join points and by executing additional
code (advice). For example, an aspect may trigger the execution of advice code when
certain fields of the base program are accessed, methods are called, or exceptions are
thrown, and so on. This is difficult with feature-oriented programming. In Sect. 6.3,
we will discuss how the advice mechanism improves over the simple mechanism of
extending existing methods via overriding, as used in feature-oriented programming.

Much like in feature-oriented programming, aspects can be applied in different
combinations to a given program. However, due to the more powerful extension
mechanism, this process is error prone when the number of aspects increases (Lopez-
Herrejon 2006). Although there are attempts to extract code ideas of aspect-oriented
programming into language-independent models (Lafferty and Cahill 2003; Mehner
and Rashid 2003) and tools (Boxleitner et al. 2009), there is no unifying theory like
AHEAD and no aspect-oriented tool that is truly language independent and similarly
expressive than AspectJ.

The most controversial concept of aspect-oriented programming is that the base
program is oblivious with regard to the aspects that “hook into” the system (Filman
and Friedman 2005). Although often referred to as modularization mechanism, most
aspect-oriented languages violate the principle of information hiding (Lieberherr

4 Note that AspectJ advice may bind to Java annotations, which makes it effectively a combination
of an annotation-based and a composition-based approach.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

6.2 Aspect-Oriented Programming 151

et al. 2003; Aldrich 2005; Sullivan et al. 2005; Dantas and Walker 2006; Steimann
2006): an aspect may affect internals of other modules directly, possibly even break-
ing module interfaces.

The idea behind obliviousness is that the developers of the base program imple-
ment their concerns as if there were no aspects, and aspect programmers extend then
the base program. For example, a business application is developed and then features
such as persistence and authentication are added in the form of aspects. The business
application does not need to be prepared for the features to add, but also cannot hide
its internals from these aspects. In this sense, the obliviousness principle takes the
goal of reducing preplanning to an extreme by giving up guarantees of information
hiding (see preplanning and information hiding in Sects. 3.2.1 and 3.2.4, p. 53 and
p. 57).

A problem is that if programmers are not aware of extensions, they are also not
aware of the possible problems induced by these extensions. Extensions are not visi-
ble locally by inspecting just the module at hand. There are no guaranteed invariants
of interfaces and no hiding barriers of local information. What if the programmer
modifies the base program such that the set of join points changes in undesired and
inadvertent ways? This includes situations in which join points are removed acci-
dentally (for example, by renaming a method that is to be advised) and in which
join points are captured by aspects accidentally. This problem is also called the
fragile-pointcut problem (Störzer and Koppen 2004). Suppose we advise the drawing
primitives in a chess program (for example, drawKing, drawQueen, and drawKnight)
to optimize display update: after() : execution(void draw*()). Adding a method draw
somewhere else to the program (to finish the game without winner), would inadver-
tently let the display optimization advice advise this method, possibly without being
noticed by the programmer. The fragile-pointcut problem is especially daunting as
the changes may occur globally, somewhere in the program. It is caused by the fact
that quantification (Sect. 6.2.1) is based on syntactic comparisons (for example, the
names and types of methods). Obliviousness worsens the fragile-pointcut problem.
Because the base programmer does not know about aspects, it is more likely that
changes may break aspect bindings and that nobody notices that.

There are several experimental aspect-oriented languages that give up on the
notion of obliviousness and introduce interfaces between base code and aspects, thus
reestablishing information hiding but also reintroducing preplanning effort (Aldrich
2005; Steimann et al. 2010; Sullivan et al. 2005).

Summary aspect-oriented programming
Strong points:

• Compile-time variability without run-time overhead; load-time variability
possible as well (see Sect. 3.1.1, p. 48).

• Separation of (possibly crosscutting) feature code into distinct aspects (see
Sect. 3.2.3, p. 55).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

152 6 Advanced, Language-Based Variability Mechanisms

• Direct feature traceability from feature to its implementation in an aspect
(see Sect. 3.2.2, p. 54).

• Fine granularity based on events during the program execution, depending
on the join point model (see Sect. 3.2.6, p. 60).

• Little or no preplanning effort required (see Sect. 3.2.1, p. 53).

Weak points:

• Requires adoption of a sophisticated language extension, including a novel
programming paradigm.

• Different aspect-oriented extensions for different code and noncode lan-
guages, only experimental uniform models so far (see Sect. 3.2.6, p. 60).

• Composition is syntax-directed and does not offer enforced interfaces
between feature modules (see Sect. 3.2.4, p. 57).

• Though conceptually uniform, tools need to be constructed for every lan-
guage (see Sect. 3.2.6, p. 60).

• Only academic tools so far, little application in practice.

6.3 Aspects and Feature Modules in Concert

We hope that previous sections made clear that aspects and feature modules are pow-
erful mechanisms, but they have different strengths and weaknesses, not to mention
design philosophies. We now examine their mutual strengths and weaknesses more
systematically to provide programming guidelines about when to use which mech-
anism and to motivate a combination of aspect and feature modules that enables
programmers to use the best of the two worlds.

Our comparison is structured along two dimensions: (1) the spatial pattern of
extension (homogeneous or heterogeneous) and (2) the temporal pattern of extension
(static or dynamic). We concentrate on the implementation mechanisms associated
with these two programming paradigms. For simplicity and purpose of a focused
discussion, we do not take software-development methodologies, tool support, type
systems, or other kinds of language-specific mechanisms into account. For feature-
oriented programming this means that a feature module encapsulates a collaboration
of software artifacts (classes and class refinements, in our case) that are composed
by superimposition. For aspect-oriented programming this means that an aspect is a
class-like entity that contains additionally pointcuts, advice, and inter-type declara-
tions.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

6.3 Aspects and Feature Modules in Concert 153

6.3.1 Homogeneous and Heterogeneous Crosscutting Concerns

Overview

We distinguish homogeneous and heterogeneous crosscutting concerns depending
on the uniformity of the program extensions they induce.

Definition 6.10 A homogeneous crosscutting concern extends a program at
multiple join points by applying a single extension. In contrast, a heteroge-
neous crosscutting concern extends multiple join points by adding multiple
extensions, where each individual extension differs and targets exactly one
join point.

(Colyer et al. 2004b) �

Extensions are either additions of new program elements (for example, imple-
mented by inter-type declarations) or modifications or existing behavior (for exam-
ple, implemented by advice).

For example, feature Colored is a homogeneous crosscutting concern. It extends
the two classes Node and Edge in the same way (see Fig. 6.12): Aspect Colored advises
two method executions (print in Node and Edge) and four inter-type declarations that
introduce members and an interface to both classes, Node and Edge. In contrast,
feature Weighted is a heterogeneous crosscutting concern (see Fig. 6.4). It extends
the classes Graph and Edge but each in a different way: the extension of Graph
introduces a method add; the extension of Edge introduces a method setWeight and
a field weight, and it overrides method print.

In Fig. 6.18, we illustrate the difference between homogeneous and heterogeneous
concerns. White boxes denote program elements, either elements being extended or
elements that extend others (for example, advice or class refinements). Gray boxes
denote the program and the crosscutting concern that extends the program. Note
that a homogeneous crosscutting concern can be implemented using a set of distinct
extensions, like a heterogeneous crosscutting concern; but this results in code repli-
cation. In Fig. 6.19, we depict an aspect with one piece of advice that advises three
methods; in Fig. 6.20, we depict an equivalent aspect but with three distinct pieces
of advice that advise only one method execution each—all with an identical advice
body.

Comparison

Collaborations of classes are typically of a heterogeneous structure. That is, the roles
and classes added to a program differ in their functionality, as in our graph example.
A collaboration is a heterogeneous crosscutting concern, and a heterogeneous cross-
cutting concern can be understood as collaboration applied to a program. Feature
modules are designed to implement heterogeneous crosscutting concerns.

154 6 Advanced, Language-Based Variability Mechanisms

heterogeneous

extension

homogeneous
crosscutting concern crosscutting concern

extends

Fig. 6.18 Homogeneous versus heterogeneous crosscutting concerns

Fig. 6.19 A homogeneous
crosscutting concern imple-
mented using a piece of advice

Fig. 6.20 A homogeneous
crosscutting concern imple-
mented using three pieces of
advice

In contrast, aspects perform well in extending a set of join points using a single
piece of advice, thus modularizing a homogeneous crosscutting concern, thereby
avoiding code replication. The more join points are captured by a homogeneous
crosscutting concern, the higher is the pay-off in terms of reduction of code replica-
tion. Although both feature-oriented and aspect-oriented programming support the
crosscutting concerns the other focuses on, they cannot do both elegantly (Mezini
and Ostermann 2004; Apel et al. 2008b).

For example, implementing feature Colored (a homogeneous crosscutting concern)
using feature-oriented programming, we would apply two refinements to the classes
Node and Edge, which introduce exactly the same code (see Fig. 6.21). Our aspect-
oriented solution discussed previously avoids this code replication (see Fig. 6.22).

Conversely, an aspect may implement a collaboration (a heterogeneous crosscut-
ting concern) by bundling a set of inter-type declarations and pieces of advice, as
shown in Fig. 6.23; but, this way, the object-oriented structure of the program is lost
and aspect-oriented mechanisms induce certain linguistic overhead (for example, to
capture and pass arguments from pointcut to advice).

For this simple example, it does not matter whether one uses feature modules
or aspects. The difference between paradigms becomes apparent when considering

6.3 Aspects and Feature Modules in Concert 155

Fig. 6.21 Implementing feature Colored with feature-oriented programming

Fig. 6.22 Implementing feature Colored with aspect-oriented programming

aspect Weighted class Weight
void print();

<<advice>>

class Node
void print();

Edge Graph.add(Node, Node, Weight);

Weight Edge.weight;

<<inter−type decl.>>

Edge add(Node, Node);

void print();

class Graph
Node a, b;

void print();

class EdgeBasic
Graph

after(Edge) : execution(void Edge.print()) ...

<<inter−type decl.>>

Fig. 6.23 Implementing a collaboration as an aspect

features at a larger scale. Suppose a base program consists of many classes and a
feature extends most of them. In a feature-oriented solution the programmer defines
a new role per class to be extended (see Fig. 6.25). This way, the programmer is able
to recognize the program structure within the new feature. There is a one-to-one
mapping between the structural elements of the base program and the elements of
the feature (Fig. 6.24).

In an aspect-oriented solution, one would merge all participating roles into one
aspect, as illustrated in Fig. 6.26. While this is possible, it flattens the inherent object-

156 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.24 An AspectJ aspect that implements a collaboration

base
program

feature
module

Fig. 6.25 Implementing a large-scale feature using a feature module (Apel 2007)

oriented structure of the feature (that is, the dominant decomposition; see Sect. 3.2.3)
and makes it hard to trace the mapping between base program and feature (Steimann
2005; Mezini and Ostermann 2004; Apel et al. 2008b). The difference between
feature-oriented and aspect-oriented solutions, as illustrated in Figs. 6.25 and 6.26,
is not only a matter of visualization. The point is that the inner structure of the
aspect does not reflect the structure of the base program; there is no natural mapping
between structural elements of the base program and the feature. It is no coincidence
that the mapping is complicated and hard to trace for the programmer. The one-to-
one mapping of the feature-oriented solution is easier to understand especially for
large-scale features.

Of course, implementing each role as a distinct aspect would be possible—in
our example, we would implement the refinements of Graph and Edge as two dis-
tinct aspects. Doing so would enable to establish a one-to-one mapping between the
structural elements of the base program and the elements of the feature. Bundled in
a containment hierarchy, we could even locate all aspects contributing to a feature in
a single place. In Sect. 6.3.4, we discuss this possibility—the combination of feature
modules and aspects—but we also discuss why aspects should not be used this way.

http://dx.doi.org/10.1007/978-3-642-37521-7_3

6.3 Aspects and Feature Modules in Concert 157

base

aspect

program

Fig. 6.26 Implementing a large-scale feature using an aspect (Apel 2007)

Fig. 6.27 Implementing static crosscutting concerns in Jak (left) and AspectJ (right)

6.3.2 Static and Dynamic Crosscutting Concerns

Overview

A static crosscutting concern extends the structure of a program statically (Mezini and
Ostermann 2004). That is, it adds new classes and interfaces and injects new fields,
methods, interfaces, and so on. Note that method extensions are not static crosscutting
concerns, as we explain shortly. AspectJ’s inter-type declarations and Jak’s class
refinements that introduce new members are examples of static crosscutting concerns
(see Fig. 6.27).

A dynamic crosscutting concern affects the control flow of a program (Mezini and
Ostermann 2004). The semantics of a dynamic crosscutting concern can be under-
stood and defined in terms of an event-based model (Wand et al. 2004; Lämmel 1999):
A dynamic crosscutting concern runs additional code when predefined events occur
during the program execution. Examples of programming constructs that implement
dynamic crosscutting concerns are method extensions in Jak (via overriding) and
advice in AspectJ (see Fig. 6.28).

The rule of thumb is that static crosscutting affects the static program structure in
terms of newly introduced classes, methods, and fields (in Fig. 6.27, we add a field

158 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.28 Implementing dynamic crosscutting concerns in Jak (left) and AspectJ (right)

Fig. 6.29 Tracing changes of edge weights only within the control flow of a test run

to a class using a class refinement and an inter-type declaration), whereas dynamic
crosscutting affects the dynamic program behavior in terms of execution paths that
are altered and added, and code that is executed additionally or instead of existing base
code (for example, in Fig. 6.28, we execute an additional statement after the execution
of an existing method). In other words, static crosscutting is concerned with program
elements above the level of statements and expressions; dynamic crosscutting is
concerned with the execution of statements and evaluation of expressions.

Dynamic crosscutting concerns are interesting when they not only affect method
executions, but, for instance, field accesses, class instantiations, and the flow of
exceptions. Work on aspect-oriented programming argues that expressing a program
extension in terms of sophisticated events increases the abstraction level and cap-
tures the programmer’s intention more directly (Mezini and Ostermann 2004). For
example, in Fig. 6.29, we show an aspect that traces events in which weights of edges
are changed, but only if they occur in the control flow of a test run (directly or indi-
rectly invoked by TestSuite.run, for debugging purposes), not in an actual program
execution. This control-flow dependency is expressed concisely using the predefined
pointcut cflow.

Capturing and advising sophisticated events such as the one of Fig. 6.29 using
classic implementation mechanisms, such as provided in Jak, results in complicated
workarounds, as we illustrate shortly. There are many proposals for new language
constructs for defining and catching new kinds of events during the program execution
(Ostermann et al. 2005; Harbulot and Gurd 2006; Masuhara and Kawauchi 2003).
In order to distinguish these new events and the novel language mechanisms that
support them from simpler events known from object-oriented programming, we
distinguish between basic dynamic crosscutting concerns and advanced dynamic
crosscutting concerns:

6.3 Aspects and Feature Modules in Concert 159

Fig. 6.30 Implementing a static crosscutting concern with class refinement (left) and inter-type
declarations (right)

Definition 6.11 A basic dynamic crosscutting concern addresses only events
that are related to method executions; advanced dynamic crosscutting concerns
address all other events, for example, throwing an exception or assigning a
value to a field. �

The definition implies that a basic dynamic crosscutting concern accesses only
run-time variables that are related to the method execution that is advised, that
is, arguments, result value, and enclosing object instance of the advised method;
advanced dynamic crosscutting concerns can expose more information related to a
join point, for example, the run-time type of the caller of a method. Furthermore,
basic dynamic crosscutting concerns affect a program’s control flow uncondition-
ally, whereas advanced dynamic crosscutting concerns may specify a condition that
is evaluated at run-time, for example, a method execution is only affected if it occurs
in the control flow of another method execution. Finally, a basic dynamic crosscut-
ting concern addresses only simple events; advanced dynamic crosscutting concerns
can specify composite events and event patterns, for example, trace matches are exe-
cuted when events fire in a specific pattern, thus, involving the history of computation
(Allan et al. 2005).

A key property of basic dynamic crosscutting concerns is that they can be imple-
mented as method extensions, as possible with inheritance and class refinement.
They extend a method execution unconditionally and access only information that
is available in method extensions, that is, the arguments, the result, and the enclos-
ing run-time object. In short, basic dynamic crosscutting concerns can be used to
implement collaborations.

Comparison

Both feature modules and aspects can extend the structure of a base program statically
(that is, by injecting new members and introducing new superclasses and interfaces
to existing classes). In Fig. 6.30, we depict a class refinement and an aspect, both of
which inject a method and a field, and both of which introduce a new interface to
class Edge.

Additionally, feature modules are able to encapsulate and introduce new classes
(and interfaces), which is not possible with aspects (which can introduce only static

160 6 Advanced, Language-Based Variability Mechanisms

composite node (subgraph)

node

Fig. 6.31 A recursive graph data structure (Apel 2007)

Fig. 6.32 Advising the printing mechanism using advanced advice

inner classes). In fact, AspectJ lacks a mechanism to group multiple aspects and
classes that contribute to a feature to a larger composable unit (Lopez-Herrejon et al.
2005).

Feature-oriented programming provides no dedicated language support for imple-
menting dynamic crosscutting concerns. Dynamic crosscutting concerns can be
implemented—typically, only with preplanning and invasive changes—but there are
no dedicated abstraction mechanisms to express them; feature-oriented programming
supports only basic dynamic crosscutting concerns in the form of method extensions.
In contrast, aspects provide a sophisticated set of mechanisms to refine a base pro-
gram based upon its dynamic execution (for example, mechanisms for tracing the
dynamic control flow and for accessing the run-time context of join points).

As an example, suppose we extend our graph example, such that a node may
contain an inner graph, to model composite nodes, as illustrated in Fig. 6.31. Printing
such an extended graph means that the Graph object invokes print on all of its Node
objects, and that every Node object invokes print on its inner Graph object (if there is
one), and so on.

Now, suppose we want to trace when a Graph object is printed, but only for the
entire top-level graph, not its individual subgraphs. In order not to advise all execu-
tions of print, but only the top-level calls (that is, calls that do not occur in the dynamic
control flow of other executions of print), we can use AspectJ’s cflowbelow pointcut
as condition evaluated at run time, as shown in Fig. 6.32; the advice implements an
advanced dynamic crosscutting concern.

Generally, recursive data structures (for example, trees that contain subtrees that,
again, contain subtrees, and so on) are an appropriate use case for aspect-oriented
programming. Aspect-oriented language constructs for advanced dynamic crosscut-
ting concerns (for example, cflow, cflowbelow) advise only selected join points within
the control flow of a program. Though language abstractions such as cflow and cflow-
below can be implemented (emulated) by feature-oriented programming, this usu-
ally results in code replication, tangling, and scattering. For example, in Fig. 6.33,

6.3 Aspects and Feature Modules in Concert 161

Fig. 6.33 Implementing the extended printing mechanism with class refinement

we depict the above extension (Fig. 6.32) to the printing mechanism implemented
using feature-oriented programming. Omitting aspect-oriented language constructs
results in a complicated workaround (highlighted) for tracing the control flow (Lines
2,6,8) and executing the actual extension conditionally (Lines 4-5). Compared to the
feature-oriented solution (which is even simplified and does not work with multiple
Graph objects), the aspect-oriented solution captures the intension of the programmer
more precisely and explicitly (see Fig. 6.32).

6.3.3 Summary of Comparison

In Table 6.1, we summarize the overall comparison. Feature-oriented programming
focuses on collaborations, which are heterogeneous crosscutting concerns; aspect-
oriented programming focuses on homogeneous crosscutting concerns, thus avoiding
code replication. Furthermore, aspect-oriented programming is strong in abstract-
ing the dynamic control flow, while feature-oriented programming’s strength lies
in abstracting collaborations that implement features. The benefits of using both
feature-oriented and aspect-oriented programming together offer rewards that nei-
ther of them could accomplish in isolation. In the same vein, a feature may involve
a mix of homogeneous and heterogeneous as well as of static and dynamic cross-
cutting, so a combination of different specialized mechanisms to handle them seems
promising.

6.3.4 Combining Aspects and Feature Modules

As shown in Table 6.1, aspects and feature modules have mutual strengths and weak-
nesses, which suggests a combination of the two. The combination, as illustrated in
Fig. 6.34, shows that the two are not competing approaches, but decompose in concert
a program along three dimensions: classes, features, and aspects: an object-oriented
design is the basis; aspects implement certain kinds of concerns that crosscut the
underlying object-oriented design; feature modules decompose the design to impose

162 6 Advanced, Language-Based Variability Mechanisms

Table 6.1 A comparison of feature-oriented programming and aspect-oriented programming

Feature-oriented programming Aspect-oriented programming

Heterogeneous Good support : Feature modules
encapsulate and compose
collaborations of classes and
refinements

Limited support : Aspects bundle
sets of inter-type declarations
and advice, but obfuscate the
object-oriented structure

Homogeneous No support : Feature modules
provide no explicit language
constructs for refining multiple
join points simultaneously

Good support : Aspects provide
wildcards and pattern
matching mechanisms to
refine multiple join points
simultaneously

Static Good support : Feature modules
can inject new fields, methods,
classes, and interfaces, as well
as declare new
superclasses/interfaces

Limited support : Aspects can
inject new fields and methods
as well as declare new
superclasses/interfaces, but
cannot inject classes or
interfaces

Dynamic Weak support : Feature modules
can implement only basic
dynamic crosscutting concerns
via overriding (method
extensions); there is no support
for advanced dynamic
crosscutting concerns

Good support : Aspects provide
sophisticated mechanisms for
advising a program based on
its dynamic execution (basic
and advanced dynamic
crosscutting concerns)

aspect

feature module

class, role refinement

inheritance association

weaving

decomposition

Fig. 6.34 Feature-driven decomposition of an aspect-oriented design (Apel et al. 2008b)

a structure that is of interest to stakeholders, that is, the features of a program.
Hence, a feature is implemented by a collaboration of classes and aspects (right
side of Fig. 6.34).5 In this symbiosis, features and aspects profit from each other and
overcome their individual limitations.

Feature modules that contain aspects are called henceforth aspectual feature mod-
ules. In Fig. 6.34, the aspectual feature module (middle layer) refines the base pro-
gram (top layer) in two ways: (1) it adds two classes and a class refinement, and (2)

5 Note that the original aspect has been split into two pieces (a base aspect and a subsequent
refinement), which is discussed elsewhere (Apel et al. 2007).

6.3 Aspects and Feature Modules in Concert 163

aspect Coloredclass Color
...

void print();

class Weight

class Node
void print();

...
interface IColored

before() : execution(void print())...

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

Node a, b;

void print();

...

class Graph class Edge

class Graph class Edge

Colored

Weighted

Basic
Graph

Fig. 6.35 Implementing feature Colored as an aspectual feature module (Apel et al. 2008b)

it weaves an aspect to implement crosscutting changes. Probably the most impor-
tant contribution of aspectual feature modules is that programmers may choose the
appropriate technique, refinements or aspects, that fits a given problem best.

In Fig. 6.35, we depict the collaboration-based design of our graph example, con-
sisting of the features BasicGraph, Weighted, and Colored. Feature Colored is imple-
mented by means of an aspect, a class, and an interface; all are encapsulated by
an aspectual feature module. As discussed earlier, advising executions of the print
methods in Node and Edge is a homogeneous crosscutting concern—the same is
true for injecting field color and the methods setColor and getColor to Node and Edge
(see Fig. 6.22). In this situation, it is beneficial to use an aspect because it is able
to avoid replicated code. Encapsulating aspect Colored, interface IColored, and class
Color improves feature cohesion and traceability, compared to a pure aspect-oriented
implementation.

As with standard feature modules, an aspectual feature module is represented
as a containment hierarchy. Beside Jak files, an aspectual feature module also con-
tains aspect files. In Fig. 6.36, we depict the simplified containment hierarchies of
our graph features BasicGraph, Weighted, and Colored. The containment hierarchy
synthesized is generated by composing the three feature hierarchies. The result is
a set of collaborating software artifacts. In the case of aspectual feature modules,
we have an aspect-oriented program (and in the case of traditional feature modules,
an object-oriented program). Now it becomes clear that it is necessary to weave the
aspects and the object-oriented base program in a subsequent step, after all classes
and their refinements have been composed. These two steps can be accomplished by
different compiler passes or by different tools (Apel 2007).

6.3.5 A Study on Advanced Crosscutting Mechanisms

In the previous sections, we discussed the mutual strengths and weaknesses of feature-
oriented and aspect-oriented programming, and we discussed an approach to combine

164 6 Advanced, Language-Based Variability Mechanisms

Weight.jak

IColored.jak Node.jak

Graph.jak Edge.jakColored.aj

Color.jak

IColored.jak Graph.jak Node.jak

Edge.jak

Weight.jak

Edge.jak

Graph.jakColor.jakColored.aj

Colored WeightedColoredWeightedGraph BasicGraph

Fig. 6.36 Composing containment hierarchies that include aspects

both. While feature-oriented programming à la Jak is a modest extension to object-
oriented programming, aspect-oriented programming à la AspectJ introduces a num-
ber of novel and powerful mechanisms for the implementation of homogeneous and
advanced dynamic crosscutting concerns. The downside of this expressiveness is
that mechanisms such as advice and quantification may actually violate the princi-
ple of information hiding and hamper program comprehension, maintenance, and
evolution (see Sect. 6.2.4). So, questions arise on how frequently these advanced
crosscutting mechanisms are actually used, as compared to basic mechanisms that
are also directly supported in feature-oriented programming?

The first author (Apel) has conducted an empirical study to investigate how pro-
grammers use AspectJ and whether they use the advanced and unique mechanisms
provided by the language (Apel 2010). Apel defined a number of source-code metrics
to quantify the usage of individual mechanisms provided by AspectJ, including basic
and advanced crosscutting mechanisms. The study was based on a diverse selection
of publicly available AspectJ programs from different domains and of different sizes
(up to 130, 000 lines of code); a summary of the results is shown in Table 6.2.

The key result of this study is that only a minor fraction of extensions use advanced
crosscutting mechanisms. In Fig. 6.37, we depict the fractions of the code base of the
AspectJ programs that exploit basic and advanced crosscutting mechanisms (which
are also supported by feature-oriented programming). On average, only 2 ± 2 % of the
analyzed code exploits the advanced capabilities of AspectJ; 12 ± 9 % implements
basic aspects, and the remaining 86 % is object-oriented code.

Furthermore, the use of aspects led to a reduction of code size of 6 ± 9 %, which
is in line with prior work on clone detection (Baxter et al. 1998), which estimates
that 5 to 15 % of large software projects are clones. So, there might be an untapped
potential (further 9 %=15–6 %) of AspectJ to reduce code replication further because
not all clones have been discovered.

6.3.6 Discussion

Aspectual feature modules are independent of a specific host language. They can
be implemented in any pair of object-oriented and aspect-oriented language that

6.3 Aspects and Feature Modules in Concert 165

Table 6.2 Overview of the AspectJ programs analyzed by Apel (2010)

Name LOC Source Description

Tetris 1,030 Blekinge Inst. of
Technologya

Implementation of the
popular game

OAS 1,623 Lancaster Universityb Online auction system
Prevayler 3,964 University of Torontoc Main-memory database

system
AODP 3,995 University of British

Columbiad
AspectJ impl. of 23 design

patterns
FACET 6,364 Washington Universitye CORBA event-channel

implementation
ActiveAspect 6,664 University of British

Columbiaf
Crosscutting-structure

presentation tool
HealthWatcher 6,949 Lancaster Universityg Web-based information

system
AJHotDraw 22,104 open source projecth 2D graphics framework
Hypercast 67,260 University of Virginiai Protocol for multicast

overlay networks
AJHSQLDB 75,556 University of Passauj SQL relational database

engine
Abacus 129,897 University of Torontok CORBA middleware

framework
ahttp://www.guzzzt.com/coding/aspecttetris.shtml
bThe sources were kindly released by A. Rashid.
chttp://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/
dhttp://www.cs.ubc.ca/~jan/AODPs/
ehttp://www.cs.wustl.edu/~doc/RandD/PCES/facet/
fThe sources were kindly released by W. Coelho and G. Murphy.
gThe sources were kindly released by A. Garcia.
hhttp://sourceforge.net/projects/ajhotdraw/
iThe sources were kindly released by Y. Song and K. Sullivan.
jhttp://sourceforge.net/projects/ajhsqldb/
kThe sources were kindly released by C. Zhang and H.-A. Jacobsen.

can be woven, for example, Java and AspectJ, C++ and AspectC++6, or C# and
AspectC#7, and others. This circumstance makes the concept of aspectual feature
modules invariant to the specifics of the host languages.

Including aspects in the layered organization of feature modules raises a number
of further issues. Most importantly, there is the issue of the scope of aspects within
the layer structure. There are two alternatives: (1) aspects may affect only program
elements of layers above (add previously) and within the own feature module, or
(2) aspects may affect all program elements, even those of feature modules added
subsequently. While the former alternative enforces a disciplined incremental devel-
opment style, the latter improve extensibility. For a deeper discussion, we refer the
reader elsewhere (Apel et al. 2010).

6 http://www.aspectc.org/
7 http://www.dsg.cs.tcd.ie/dynamic/?category_id=169

http://www.guzzzt.com/coding/aspecttetris.shtml
http://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/
http://www.cs.ubc.ca/~jan/AODPs/
http://www.cs.wustl.edu/~doc/RandD/PCES/facet/
http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhsqldb/
http://www.aspectc.org/
http://www.dsg.cs.tcd.ie/dynamic/?category_id=169

166 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.37 Fractions of basic and advanced AspectJ mechanisms of the overall analyzed code base
(Apel 2010)

Apel’s study of 11 AspectJ programs revealed that only 2 % of the code base
takes advantage of the sophisticated mechanisms provided by aspect-oriented pro-
gramming à la AspectJ (Apel 2010). This raises the question of whether this fraction
justifies the use of AspectJ, thereby inviting the fragile-pointcut problem and others
(see Sect. 6.2.4). Or is this fraction relevant and justifies the use of AspectJ, especially
as Apel found a noticable reduction in code size when using aspects? Certainly, a
compromise is to use the basic crosscutting mechanisms of feature-oriented program-
ming for heterogeneous and basic dynamic crosscutting concerns and the advanced
crosscutting mechanisms of aspect-oriented languages (pointcuts and advice) for
homogeneous and advanced dynamic crosscutting concerns. Aspectual feature mod-
ules are a promising approach that supports this combination.

6.4 Tooling

AHEAD8 and FeatureHouse9 are the most popular tools for feature-oriented pro-
gramming. They are publicly available for experimentation including several exam-
ples. Both are command-line tools, used mainly for academic purposes. The tool
FeatureIDE provides a graphical front-end in Eclipse, with corresponding editors, a
mapping from features to feature modules, automatic composition of selected fea-
tures in the background, generation of collaboration diagrams, and much more (see
Appendix A). FeatureIDE ships with AHEAD and FeatureHouse and several example
projects, ready to explore. After a developer graphically configures the desired fea-
tures, FeatureIDE automatically invokes the corresponding composition tools such
as the Jak compiler. It is likely the easiest way to try AHEAD and FeatureHouse, for

8 http://www.cs.utexas.edu/users/schwartz/ATS.html
9 http://fosd.net/fh

http://www.cs.utexas.edu/users/schwartz/ATS.html
http://fosd.net/fh

6.4 Tooling 167

developers familiar with Eclipse. A video tutorial on FeatureIDE is available on the
web.10 In Appendix A, we get back to FeatureIDE and explain its facilities in more
detail.

AspectJ is the most-popular and widely-used aspect-oriented language.11 It is
publicly available, can be used out of the box, and it is deployed with proper
documentation, tutorial, and examples. Beside AspectJ , there are several aspect-
oriented languages available including AspectC++12 for C++ and ACC13 for C.
AspectJ and AspectC++ are supported by plug-ins in Eclipse (AJDT14 and ACDT15),
which include syntax highlighting, enabling and disabling aspects selectively, and
various visualization and navigation facilities. Furthermore, there are a number of
framework-based solutions available that incorporate concepts from aspect-oriented
programming, such as JBoss AOP16 and Spring.17 Finally, FeatureIDE supports the
development of feature-oriented product lines by integrating AJDT into the product-
line–development life cycle.

FeatureC++18 is a language extension of C++ that supports feature-oriented pro-
gramming (Apel et al. 2005). It consists of a tool for composing feature modules
and a compiler for C++ artifacts. FeatureC++ supports aspectual feature modules
by integrating AspectC++ (Spinczyk et al. 2005). A further way to implement aspec-
tual feature modules is to combine the AHEAD tool suite and AspectJ . While Jak
is used to compose traditional feature modules, AspectJ weaves the aspects of the
feature modules into the synthesized class hierarchies (Apel 2007). However, this
combination does not work “out of the box” and requires manual tool integration.

6.5 Practical Relevance

Finally, we would like to say a few words on the practical relevance of aspect-oriented
and feature-oriented programming, as well as on ways of industrial adoption. Clearly,
work on aspect-oriented and feature-oriented programming is still mainly driven by
academics. A major goal of academic research is to explore and understand why
classic implementation approaches often fail to modularize code. Work on aspect-
oriented programming introduced the concept of crosscutting concerns as well as
mechanisms to implement them. Work on feature-oriented programming emphasized

10 http://www.cs.utexas.edu/users/dsb/cs392f/Videos/FeatureIDE/
11 http://www.eclipse.org/aspectj/
12 http://www.aspectc.org/
13 http://research.msrg.utoronto.ca/ACC
14 http://www.eclipse.org/ajdt/
15 http://acdt.aspectc.org/
16 http://www.jboss.org/jbossaop
17 http://www.springsource.org/
18 http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/

http://www.cs.utexas.edu/users/dsb/cs392f/Videos/FeatureIDE/
http://www.eclipse.org/aspectj/
http://www.aspectc.org/
http://research.msrg.utoronto.ca/ACC
http://www.eclipse.org/ajdt/
http://acdt.aspectc.org/
http://www.jboss.org/jbossaop
http://www.springsource.org/
http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/

168 6 Advanced, Language-Based Variability Mechanisms

feature modularity, feature composition, and proper handling of feature interactions
(see Chap. 9).

Research on aspect-oriented and feature-oriented programming made significant
progress, but corresponding languages are mainly used for implementing academic
tools and conducting empirical studies. Although there are several substantial sys-
tems written using these implementation approaches (for example, the AHEAD tool
suite (Batory et al. 2004) and the IBM middleware product line (Colyer and Clement
2004)), there remains a long way to industrial adoption. While it is common that
results from basic research need their time to ripe, there are other more subtle ways
for the transition of ideas of aspect-oriented and feature-oriented programming to
industrial practice. A notable example is the inclusion of noninvasive extension
mechanisms such as traits and partial classes—both closely related to Jak’s class
refinement—to mainstream languages such as Scala and C#. Another example is the
inclusion of aspect-oriented concepts in major frameworks such as Spring (Dessi
2009).

6.6 Further Approaches

A number of programming mechanisms has been proposed to support the imple-
mentation of roles and collaborations, most notably, virtual classes (Madsen and
Moller-Pedersen 1989), classboxes (Bergel et al. 2005), mixin layers (Smaragdakis
and Batory 2002), and object teams (Herrmann 2002). Although they differ in details
from feature modules (Apel 2010), the big picture and the basic concepts are the
same, especially, with regard to the comparison of feature-oriented programming
and aspect-oriented programming (see Sect. 6.3.3). An in-depth discussion of their
individual differences is outside the scope of this book. Next, we concentrate on
programming paradigms that are in the spirit of aspect-oriented and feature-oriented
programming, but diverge substantially from the core concepts of the two. We outline
the most important approaches, from our perspective.

6.6.1 Delta-Oriented Programming

The idea of delta-oriented programming is closely related to aspect-oriented and
feature-oriented programming (Schaefer et al. 2010). A program consists of a base
module and a set of delta modules that modify the base module in a stepwise manner.
This asymmetry between the two kinds of modules is similar to aspect-oriented
programming, which distinguishes between base program and aspects, and to feature-
oriented programming, which distinguishes between classes and class refinements.
Much like a feature module, a delta module can add new classes and members as
well as extend existing methods by overriding. In contrast to feature modules, delta
modules can also delete existing classes and individual members. In Fig. 6.38, we

http://dx.doi.org/10.1007/978-3-642-37521-7_9

6.6 Further Approaches 169

Fig. 6.38 Using a delta module to replace method print with method display

use a delta module to replace method print of our graph example (which is contained
in the base module) with another method with name display.

The fact that delta modules can delete program elements has several implications.
First, delta modules may shrink the base program; with feature modules, it always
grows. That is, one can start with a monolithic program and incrementally remove
functionality that is associated with individual features, which is similar to annotative
approaches such as using preprocessors and conditional compilation (see Sect. 5.3),
and which aligns well with the extractive model of product-line engineering (see
Sect. 2.4.2).

An issue is that the additional expressiveness gained by using delta modules may
cause problems regarding maintenance and program comprehension. For example,
looking at a program, it may be hard to overview whether some other delta mod-
ule will delete an element that is needed. Work on type checking of delta-oriented
programs aims at alleviating this problem (Schaefer et al. 2011).

6.6.2 Refactoring Feature Modules

A similar approach but stricter than delta modules in terms of permitted transfor-
mations is refactoring feature modules (Kuhlemann et al. 2009a). The idea is to
include refactorings (that is, declarative descriptions of refactorings to perform)
beside classes and class refinements into a feature module. As refactorings change
the structure but not the observable behavior, the expressiveness is limited compared
to delta modules. A typical use case is to adapt a given feature module to a base pro-
gram or library, which requires guarantees that the adapter does not alter the overall
program behavior.

In Fig. 6.39, we use the refactoring feature module NodeToVertex to rename class
Node of feature BasicGraph to Vertex, so that it become compatible with the expecta-

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_2

170 6 Advanced, Language-Based Variability Mechanisms

Fig. 6.39 Using a refactoring feature module for renaming class Node to Vertex, in order to make
it compatible with the implementation of feature MinSpanTree

tions of feature MinSpanTree. Similar to delta-oriented programming, operations such
as renaming are potential sources of confusion and errors, which can be alleviated
by proper analysis mechanisms (Kuhlemann et al. 2009b).

6.6.3 Context-Oriented Programming

The basic idea of context-oriented programming is that the programming language
should support the programmer to express context-dependent behavior of a pro-
gram (Hirschfeld et al. 2008). That is, depending on the current context, which may
change dynamically at run-time, program behavior can differ. Context is every piece
of information that is external to the program such as the operating system, net-
work throughput, physical location of the device, and so on. Hence, context-oriented
programming is a language-based approach that is related to run-time adaptation,
location-aware services, and dynamic software evolution.

The relation to product lines is as follows: One can view the behaviors that are
triggered in certain contexts as features of the system, the triggering mechanism as
dynamic feature composition (Rosenmüller et al. 2011), and the family of systems
that emerge from different contexts that occur in a domain as a product line. Tech-
nically, context-oriented languages use a variety of mechanisms to implement the
different context-dependent behaviors including collaborations and roles as well as
specific dynamic or static conditions based on pointcut-like mechanisms (Hirschfeld
et al. 2008).

In Fig. 6.40, we show an implementation of feature Colored using a context-
dependent layer written in the context-oriented language ContextJ (Appeltauer et al.

6.6 Further Approaches 171

Fig. 6.40 Implementing feature Colored as a context-dependent layer in ContextJ

2011). Using ContextJ’s layer activation mechanism, one can activate and deacti-
vate feature Colored at run time. Note that the implementation of Colored is scattered
across the classes Node and Edge: the code that belongs to a layer within a given class
is declared using keyword layer. ContextJ provides a mechanism similar to AspectJ’s
advice to extend method executions (for example, keyword before). In other context-
oriented languages, all code that belongs to a layer (that is, a feature in our case) can
be located in a single spot (Hirschfeld et al. 2008).

6.7 Further Reading

There are no principle text books on feature-oriented programming. Seminal research
papers include the papers of Prehofer (1997) and Batory et al. (2004). The text book
of Czarnecki and Eisenecker (2000) covers some material related to feature-oriented
and aspect-oriented programming. Apel and Kästner (2009) provide a quite up-to-
date overview of research on feature-oriented software development.

There are several text books about aspect-oriented programming and AspectJ
(Laddad 2003; Colyer et al. 2004a; Gradecki and Lesiecki 2003; Dessi 2009). In
particular, Laddad’s book and the AJDT plug-in provide a good start to learn AspectJ,
the major aspect-oriented language. For readers interested in original publications,
we refer to Kiczales’ papers introducing the ideas of aspect-oriented programming
(Kiczales et al. 1997) and the AspectJ language (Kiczales et al. 2001). Filman et al.
(2005) collect (early) key papers on aspect-oriented programming in a comprehensive

172 6 Advanced, Language-Based Variability Mechanisms

text book. Steimann (2006) provides a comprehensive overview of core work on
aspect-oriented programming, mostly from a critical perspective. Several researchers
discuss the potential of aspect-oriented programming for developing product lines
(Griss 2000; Lee et al. 2006; Mezini and Ostermann 2004; Lohmann et al. 2006b;
Voelter and Groher 2007; Apel et al. 2008b).

The combination of feature-oriented and aspect-oriented programming is rela-
tively new. The approach of aspectual feature modules is explained in detail by Apel
et al. (2008b). Several researchers explored combinations of feature-oriented and
aspect-oriented programming that are similar to (and even predate) the approach of
aspectual feature modules, in particular, CaesarJ (Aracic et al. 2006), Object Teams
(Herrmann 2002), and Aspectual Collaborations (Lieberherr et al. 2003).

Exercises

6.1. Explain and relate the following concepts:

(a) Feature and crosscutting concern,
(b) Aspect, role, and collaboration,
(c) Class refinement, inter-type declaration, and advice,
(d) Homogeneous and heterogeneous crosscutting concern, and
(e) Static and dynamic crosscutting concern.

6.2. Implement the chat system (Exercise 4.1, p. 96) using feature-oriented program-
ming. If using Java, we recommend using FeatureHouse within the FeatureIDE
plug-in or Jak in combination with the AHEAD tool suite (see AppendixA).

(a) Before implementation, design a collaboration diagram covering the key con-
cepts and extensions.

(b) Reimplement the chat system using feature-oriented programming. Critically
discuss separation of concerns, code quality, feature traceability, and effort.
Update the collaboration diagram if necessary.

(c) Subsequently add an additional feature Sound: When sending and receiving
messages, corresponding sounds should be played. Also, when typing a message,
there should be a sound on every keystroke. Discuss effort and the degree of
invasiveness of implementing this additional feature.

6.3. Find a project implemented with feature-oriented programming. Given the aca-
demic status of current feature-oriented languages, the best chance will be selecting
a program from the SPL2go repository,19 an example program bundled with Feature-
House or the AHEAD tool suite, or one of the examples deployed with FeatureIDE
(see Appendix A). Explore how feature-oriented concepts have been used in this
program.

(a) Create a collaboration diagram based on the feature-oriented implementation.

19 http://spl2go.cs.ovgu.de/

http://spl2go.cs.ovgu.de/

Exercises 173

(b) What language constructs are used?
(c) Are extensions homogeneous or heterogeneous?
(d) What kind of concerns are separated into feature modules? Do feature modules

represent product-line features?

6.4. Implement the chat system (Exercise 4.1, p. 96) using aspect-oriented program-
ming. If using Java, we recommend using AspectJ with the AJDT and FeatureIDE’s
Eclipse plug-ins.

(a) Summarize which language constructs have been used in your implementation?
Were there opportunities to exploit aspect-oriented mechanisms for homoge-
neous extensions?

(b) Critically discuss separation of concerns, code quality, and effort of the imple-
mentation.

(c) Subsequently add an additional feature BusyStatus: Users can set the status of
their clients as available or busy; the status is sent to the server; the server with-
holds all messages from a busy user and sends all messages in a bulk update after
the user becomes available again. Observe effort and the degree of invasiveness
of implementing this additional feature.

6.5. Find an industrial or academic open-source project that uses aspect-oriented
programming. Popular examples are AJHotdraw,20 Health Watcher,21 and Mobile-
Media.22 Investigate how AspectJ has been used. What kind of concerns are imple-
mented as aspects? What aspect-oriented language constructs are used? Are exten-
sions homogeneous or heterogeneous? Are aspects used to implemented features in
a product line?
6.6. Rewrite the three code fragments below as follows: First remove all highlighted
source code; subsequently write (a) a class refinement with Jak and (b) an aspect
with AspectJ that recreate the original behavior of the source code.

Discuss the expressive power of Jak and AspectJ. What kind of extensions are
easily possible and what kind of extensions require workarounds?

6.7. In Fig. 4.9 (p. 78), we discussed limitations of inheritance. Does feature-oriented
programming or aspect-oriented programming overcome this limitation? Illustrate
your argument with the example of Fig. 4.9.

20 http://sourceforge.net/projects/ajhotdraw/
21 http://www.comp.lancs.ac.uk/~greenwop/tao/
22 http://mobilemedia.sourceforge.net/

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://sourceforge.net/projects/ajhotdraw/
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://mobilemedia.sourceforge.net/

174 6 Advanced, Language-Based Variability Mechanisms

6.8. Consider implementing a stack class with two optional features Logging and
Synchronization. Discuss the difference between inheritance (class SyncStack extends
Stack { ... }), the decorator pattern (class SyncStack {SyncStack(Stack s)... }), feature
modules (layer Sync; class Stack { ... }) and aspects (aspect Sync { ... }) with regard to
preplanning. What form of preplanning is required in each implementation strategy?
6.9. Obliviousness in aspect-oriented programming is a controversial concept.

(a) Discuss benefits and drawbacks of obliviousness, especially with regard to pre-
planning and information hiding. Can you give examples from your implemen-
tations (Exercise 6.4) or open-source projects (Exercise 6.5) to support your
statements?

(b) Does the concept of obliviousness also apply to feature-oriented program-
ming? Discuss the differences and commonalities of aspect-oriented and feature-
oriented programming with regard to obliviousness.

6.10. Select a code or noncode language for which there is not already feature-
oriented or aspect-oriented support (for example, JavaScript, Scheme, Make, SQL,
or Markdown). Sketch how a feature-oriented or aspect-oriented extension of this
language could look like. Give an example of a code example in that language and
two optional features of your choice extending the code.
6.11. Discuss the mutual strengths and weaknesses of feature-oriented and aspect-
oriented programming based on the Jak and AspectJ implementations of the chat
system (Exercises 6.2 and 6.4).
6.12. Can you identify synergies by combining feature-oriented and aspect-oriented
programming when implementing the chat system (Exercise 4.1, p. 96)? Revise
the implementation of Exercise 6.2 accordingly. Follow the guidelines of Table 6.1.
Discuss what you gained by combining the two approaches, if anything.
6.13. Based on your experience and the discussions so far, judge the practical rele-
vance of programming-language mechanisms that support:

(a) homogeneous crosscutting concerns,
(b) heterogeneous crosscutting concerns,
(c) static crosscutting concerns,
(d) basic dynamic crosscutting concerns, and
(e) advanced dynamic crosscutting concerns.

6.14. Discuss the benefits and drawbacks of using the alternative implementation
approaches discussed in Sect. 6, compared to feature-oriented and aspect-oriented
programming. Refer to your chat implementation or code fragments of open-source
systems to support your points.
6.15. Reconsider the scenarios of Exercise 2.9 (p. 44). Which implementation
approach would you recommend to the developers and why? Under which conditions
would you recommend feature-oriented or aspect-oriented programming?
6.16. Extend the comparison of Exercise 4.11 (p. 97) with the additional implemen-
tation strategies from this chapter.

http://dx.doi.org/10.1007/978-3-642-37521-7_6

Chapter 7
Advanced, Tool-Driven Variability Mechanisms

After reading the chapter, you should be able to

• discuss use cases of leveraging traceability information beyond variability in prod-
uct generation,

• tradeoff benefits and drawbacks of views on source code compared to composi-
tional implementations (that is, virtual versus physical separation of concerns),

• discuss opportunities for future tool-driven variability mechanisms, and for the
integration of development phases.

There are several attempts to support the development and management of feature-
oriented product lines by means of tool support that exceeds traditional tools such
as preprocessors, build systems, and version control systems. They typically build
on concepts of build systems and conditional compilation, but provide tool support
that goes beyond traditional systems. Most tool-driven solutions are available only
in academic prototypes yet. We introduce three classes of tools that build on one
another in Sects. 7.1–7.3, and discuss their strengths and weaknesses in Sect. 7.4.

7.1 Exploiting Feature Tracing

An idea to alleviate the problem of crosscutting feature implementations is to leverage
and maintain tracing links between the features of the feature model and the artifacts
implementing the features.

Definition 7.1 A tracing link connects a feature with its implementation arti-
facts (or parts thereof). �

S. Apel et al., Feature-Oriented Software Product Lines, 175
DOI: 10.1007/978-3-642-37521-7_7, © Springer-Verlag Berlin Heidelberg 2013

176 7 Advanced, Tool-Driven Variability Mechanisms

Fig. 7.1 Tool-managed mapping between features and implementation artifacts using tracing links
(dashed lines)

Typically, tracing information is available during development; the key is to cap-
ture and exploit this information. Proper tool support can help to maintain the map-
ping between each individual feature and its program elements, as illustrated in
Fig. 7.1, and present it to developers for given maintenance tasks. Programmers
can modify the feature model, the implementation artifacts, as well as the mapping
between the two by assigning explicit tracing links.

Depending on the feature implementation technique, tracing information is more
or less easy to capture and maintain, as discussed in the previous chapters. For
example, using frameworks or feature-oriented programming (see Sects. 4.3 and 6.1,
pp. 79 and 130), we can trace a feature to its implementation in a single module (often
feature and module share the same name). When using preprocessor directives (see
Sect. 5.3, p. 110), we can reconstruct tracing links from features to multiple code
locations, given the consistency assumption that feature names and corresponding
preprocessor constants match. However, using runtime parameters in the program or
build system, tracing is much more challenging, because it is difficult to statically
determine which code fragments the parameter affects (see Sects. 4.1 and 5.2, pp. 66
and 105). For yet other concerns of the system that are currently not configurable, no
tracing information may be present in the source code; in such cases, tracing links can
be extracted manually or with semi-automatic feature-location tools (Biggerstaff et al.
1993; Robillard and Murphy 2002; Poshyvanyk et al. 2007; Cornelissen et al. 2009).

Tracing links cannot only be extracted from implementations (such as preproces-
sor directives or feature-module names), they can be managed as prime development
artifact in a tool. Let us illustrate feature tracing by means of our graph example.
Given just plain Java code without variability, we can use a separate tool to trace
features BasicGraph and Weighted, as shown in Fig. 7.2 with the tool ConcernMap-
per (Robillard and Weigand-Warr 2005). The tool maintains a separate mapping
from a list of concerns (or features) to code fragments. Several other tools have been

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5

7.1 Exploiting Feature Tracing 177

Fig. 7.2 Feature tracing with the tool ConcernMapper. Concerns and their associated code struc-
tures are shown in the bottom left view

developed to maintain similar tracing links, including CIDE (Kästner et al. 2008a),
fmp2rms (Czarnecki and Antkiewicz 2005), and FeatureMapper (Heidenreich et al.
2008b)—the last two map features to fragments of graphical models. In all cases, the
internal mapping between feature and artifact fragments is maintained in a mapping
model, but the code and model artifacts are not actually changed. Since the mappings
are based on the artifacts’ structure, the mapping is similar to disciplined (syntac-
tic) preprocessor annotations (see Sect. 5.3, p. 110). If changes are made under the
control of the tracing tool, the tool can update the map to preserve the mapping, for
example, when moving code to a different file.

Having tracing links accessible to tools (either extracted from implementations
or directly specified by the programmer) has benefits beyond just easing the imple-
mentation of variability: consistency checking and visualization.

7.1.1 Consistency Checking

We can check or enforce consistency of the mapping. For example, Tartler et al. (2011)
found several preprocessor directives in the Linux kernel that refer to undefined

http://dx.doi.org/10.1007/978-3-642-37521-7_5

178 7 Advanced, Tool-Driven Variability Mechanisms

Fig. 7.3 Graph implementation in CIDE; feature code is colored

features. Those code fragments will never be included in any product, because they
cannot be selected by the user. Similarly, we can check whether a feature has any
influence on the product derivation at all, otherwise we do not need to present the
decision to the user. For many analyses discussed in Chap. 10, reasoning about the
tracing information from the mapping is essential.

7.1.2 Visualizing Tracing Information

Tracing information can be visualized and presented to the user for comprehension
and maintenance tasks. For example, with the tracing information from Fig. 7.2, the
user can navigate between code fragments implementing a feature, even though the

http://dx.doi.org/10.1007/978-3-642-37521-7_10

7.1 Exploiting Feature Tracing 179

Fig. 7.4 Graph implementation in FeatureCommander; #ifdef-wrapped code is highlighted with
background colors

mapping is not directly visible in the source code. In the tools CIDE and FeatureMap-
per, background colors (a distinct color per feature) are used to indicate feature code
without visible #ifdef directives or other markers.

In Fig. 7.3, we show the annotated code of our graph example in CIDE, with the
code of feature Weighted in red and the code of feature Colored in blue. For simplicity,
the background color of the code of BasicGraph is not displayed (or rather, the color
of BasicGraph is “clear”).

Even when tracing information is visible in the source code (for example, in the
form of #ifdef directives), tool support can still improve navigation beyond simple
textual search, and it helps to overcome the code-obfuscation problem discussed in
Sect. 5.3. For example, as illustrated in Fig. 7.4, the tool FeatureCommander high-
lights code fragments belonging to selected features with markers and background
colors in the code editor. Markers in the file browser indicate which files contain
code of the feature, markers in the margin of the text editor indicate where feature
code is located inside a file, and background colors allow the programmer to visually
find scattered and nested feature code quickly (even if the starting #ifdef is scrolled
out of the current page).

Of course, tracing information can be visualized also in abstractions extracted
from the implementation, such as dependency models, architectural models, and so
forth. Several studies have indicated that visualizations of tracing information in
product lines can improve program comprehension, navigation, and the overall per-

http://dx.doi.org/10.1007/978-3-642-37521-7_5

180 7 Advanced, Tool-Driven Variability Mechanisms

formance in maintenance tasks (Feigenspan et al. 2012; Le et al. 2011). Feigenspan
et al. (2012) discuss also limitations of colors and how to scale visualizations for
product-lines with many features by using an on-demand mapping.

7.2 Views on Code

Given tracing links, a further opportunity to improve classic tool-based approaches is
to emulate separation of concerns by providing views on source code (and noncode
artifacts). One of the key motivations for separation of concerns (see Sect. 3.2.3, p. 55)
is that developers can find all code belonging to a feature in one place, without being
distracted by other code. A classic preprocessor-based implementation, for example,
does not support this kind of locality, as the code of a feature is often scattered across
the code base. By providing (editable) views on source code, advanced tool support
can try to mitigate the problems and emulate separation of concerns.

Definition 7.2 In product-line development, a view on source code hides
implementation details that are not relevant to a given feature selection. �

A typical view on a product-line implementation with many scattered features
would show only the code of a particular feature or feature combination and hide
the remaining code (similar to code folding). In Fig. 7.5, we illustrate the concept
with a view in CIDE that hides feature Colored from the implementation of our
graph example. The editor shows only code of the features BasicGraph and Weighted
(features are annotated by the user and highlighted with background colors in the
editor, as discussed in Sect. 7.1). Markers indicate hidden code, to make developers
aware of hiding and to resolve ambiguities during editing. In addition to hiding code
fragments inside files, also entire files can be hidden from the file navigator in a view.
CIDE supports views on individual features and previews of generated products (that
is, views on feature combinations).

Views allow the programmer to see all code belonging to a feature (possibly with
some context information) in one place, even though it is physically scattered over
many files. It is also possible to create a view on multiple features to inspect them all
and their interactions. With views, developers can quickly explore feature code as if
it was modularized. For this reason, Kästner has coined the term virtual separation
of concerns (Kästner 2010), because separation is only emulated with views, but not
actually enforced physically (see Sect. 7.4, p. 184).

In addition to views on individual features, views can also be used to give a preview
on the source code that would be generated for a given feature selection on the fly
(hiding all deselected features). This allows a developer to explore the structure and
behavior of a product when multiple features interact more conveniently, without the

http://dx.doi.org/10.1007/978-3-642-37521-7_3

7.2 Views on Code 181

Fig. 7.5 Graph library in CIDE; code of feature Colored is hidden; markers point to the hidden code

distracting code of unrelated features or having to trigger a lengthy build process to
see the isolated code of multiple features.

The Version Editor takes this even a step further (Atkins 1998; Atkins et al.
2002). Given a preprocessor-like implementation, the version editor shows the code
only of a single product (as if running the preprocessor with a feature selection).
Changes to the code are propagated to the underlying product-line implementation
(domain artifacts), such that they affect only the specified product (that is, with
#ifdef directives around added and changed code to preserve the behavior of all
other products).

Views have been explored in text and code editors (Atkins 1998; Singh et al.
2007; Kästner et al. 2008a,b; Batory et al. 2011), in model editors (Heidenreich
et al. 2008a), integrated in version control systems (Chu-Carroll et al. 2003), and

182 7 Advanced, Tool-Driven Variability Mechanisms

Fig. 7.6 Fine-grained annotations in Berkeley DB with CIDE

even directly in a file system (Hofer et al. 2011). To approach real modularity with
information hiding, Janzen and De Volder (2004) even attempt to rewrite the source
code physically on demand, called effective views, and Ribeiro et al. (2010) compute
interfaces for views on the fly.

When many fine-grained features interact, such as in Berkeley DB (Fig. 7.6), views
can be a tremendous help (Kästner 2010). Atkins et al. (2002) found that views in
the Version Editor improve developer productivity in variation-rich code by 40 %,
compared to standard editors without views.

7.3 Integrated Product Derivation

Many modern tools integrate all steps of the process of product-line development (see
Sect. 2.2, p. 19). They do not necessarily provide a novel variability-implementation
mechanism, but rather integrate existing approaches (parameters, frameworks, build
systems, version control, feature-oriented programming, tool-driven tracing, and so
forth) and combine these with feature models as central artifacts describing and
connecting features in the system.

A tight integration of all development phases can pay off, especially, during appli-
cation engineering and product derivation, when we want to derive a product for
specific customers and their requirements. Tools can provide support in two ways:
checking validity of feature selections and automation of product derivation. Without
integrating feature models, developers were often left alone with figuring out how

http://dx.doi.org/10.1007/978-3-642-37521-7_2

7.3 Integrated Product Derivation 183

Fig. 7.7 Support for product derivation in FeatureIDE

to configure parameters and how they interact, or how to assemble components, or
which plug-ins are compatible.

Instead of an arbitrary list of configuration options, feature models provide guid-
ance to users configuring a product. The hierarchical structure of feature models gives
structure to the configuration space, and feature descriptions (see Sect. 2.3.1, p. 27)
explain the functionality and rationale for each feature. Dependencies between fea-
tures are documented explicitly and can be automatically enforced, for example, by
automatically propagating feature selections to dependant features or by deactivating
mutually exclusive features.

Advanced analyses have been proposed to guide the process of product derivation
(Should this feature selected or an alternative feature? What features are selectable at
a certain point during the configuration process?) and to predict the effect of a feature
selection on nonfunctional properties (see Chap. 10). All these analyses can be used
to guide stakeholders in making efficient decisions during product derivation. Finally,
given a feature selection, an integrated tool often can automate the actual generation
of the product, for example, by running build systems, generating configuration files,
or controlling the composition process of plug-ins, feature modules, and aspects, as
described in the previous chapters.

As example, consider the screenshot from the tool FeatureIDE in Fig. 7.7. In the
middle, we see the feature model of our graph example. On the left, we see the
project overview (implemented with feature-oriented programming). On the right,
we see a feature-selection dialog that can be used interactively to derive a product
by selecting features. Internally, FeatureIDE translates both the feature model and
the feature selection to a propositional formula, and it uses a satisfiability solver to
check the validity of a feature selection, as we will explain in detail in Chap. 10.
The user gets immediate feedback which features are still available, given that some

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10

184 7 Advanced, Tool-Driven Variability Mechanisms

are already selected and deselected, and how many products are still possible to
derive. The corresponding product is automatically generated in the background.
Similar functionality has found its way into commercial product-line tools and also
the Eclipse update manager, which checks dependencies between plug-ins before
installing features.

7.4 Discussion: Virtual Separation of Concerns

We have discussed various possible improvements in product-line tooling. We call
the combination virtual separation of concerns.

Definition 7.3 Virtual separation of concerns is a tool-based approach to
product-line development. Based on a combination of tracing information,
visualization facilities, source-code views, and the integration of feature mod-
els, code that belongs to individual features can be displayed, edited, and
understood in separation. �

We see virtual separation of concerns as an improvement over the limitations
of classic tool-driven approaches (see Chap. 5) and as a full-fledged alternative to
advanced, language-based approaches (see Chap. 6). The key idea is to provide tool
support to facilitate a separation of concerns without relying on language mechanisms
such as class refinements or advice, but to achieve similar benefits.

Tracing information is typically used to customize code at compile-time (see
binding times in Sect. 3.1.1, p. 48; though load-time and run-time binding is con-
ceptually possible as well by injecting variability mechanisms into the source code
before compilation). Feature traceability is a key goal and exploited in many forms
for navigation, visualization, and analysis (see feature traceability in Sect. 3.2.2,
p. 54). Explicit, disciplined feature traceability actually facilitates writing tools, for
example, for refactoring (see Chap. 8) and analysis (see Chap. 10).

Despite tool improvements, virtual separation of concerns preserves the general
mechanisms and feel of preprocessor-based implementations. Tools use annotation-
based mechanisms (see annotation versus composition in Sect. 3.1.3, p. 50) and
operate at arbitrary levels of granularity (see granularity in Sect. 3.2.5, p. 59). Also
similar to preprocessors, little upfront preplanning is required and code is rather
changed invasively (see preplanning in Sect. 3.2.1, p. 53), which aligns well with
extractive product line adoption (see adoption paths in Sect. 2.4, p. 39). The mecha-
nisms remain lightweight and easy to learn and adopt. Although based on structures of
the source code, the discussed tool improvements can be typically applied uniformly
to code and noncode artifacts (see principle of uniformity in Sect. 3.2.6, p. 60).

The systematic integration of the feature model in tools combats the scattering of
configuration knowledge, and visualizations and views attempt to limit code obfus-

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_8
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_3

7.4 Discussion: Virtual Separation of Concerns 185

cation, for which preprocessors are often criticized (see Sect. 5.3.6, p. 120). The
structured nature with disciplined annotations helps to prevent basic syntax errors
and enables more sophisticated analyses, as discussed in Chap. 10.

Approaches for virtual separation of concerns do not physically separate code of
different features. Instead, the code is intermixed in a common code base. Unlike
classic preprocessors though, views allow programmers to virtually separate code
of different features, which facilitates separation of concerns (see Sect. 3.2.3, p. 55).
For example, one can view the code only of a certain feature or feature combination,
whereas the remaining code is hidden. Additionally, a developer can get a view on
the combined code of multiple feature (thus seeing the interacting code fragments in
place), which is not easily possible in language-based approaches. Whereas virtual
separation of concerns assists the programmer in understanding the system in terms
of the features it provides, it does not support information hiding with interfaces and
separate compilation though (see Sect. 3.2.4, p. 57).

Compared to advanced language-based approaches (Chap. 6), virtual separation of
concerns provides a simpler underlying mechanism based on annotations. It remains
limited regarding information hiding, but excels, especially, at fine-grained exten-
sions, where composition-based approaches are limited.

Summary virtual separation of concerns
Strong points:

• Simple programming model: annotate and conditionally remove.
• Structured tracing of features (see Sect. 3.2.2, p. 54).
• Compile-time customization of source code; no boilerplate code (see

Sect. 3.1.1, p. 48).
• Flexible, and support of arbitrary granularity (see Sect. 3.2.5, p. 59).
• Little preplanning required (see Sect. 3.2.1, p. 53).
• Virtual separation of concerns, despite physical scattering and tangling of

feature code (see Sect. 3.2.3, p. 55),
• Lightweight mechanism for extractive product-line adoption.
• Uniform application to source code and noncode artifacts (see Sect. 3.2.6,

p. 60).
• Easy to use and analyze.

Weak points:

• No support for information hiding (see Sect. 3.2.4, p. 57).
• Mostly academic tools so far, little experience in practice.
• Many fined-grained and interleaved annotation hinder program comprehen-

sion.

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

186 7 Advanced, Tool-Driven Variability Mechanisms

7.5 Tooling

Ideas in this chapter have been explored individually and in combination in various
tools, mostly academic prototypes.

There are several tools which manage a mapping between features and code frag-
ments inside the tool infrastructure. Tools that support basic feature tracing (but no
further advanced mechanisms) are, for example, FEAT and ConcernMapper. FEAT1

is an Eclipse plug-in that supports feature modeling and tracing. ConcernMapper2

is more general in that all kinds of concerns are supported; there is no support for
full-fledged feature models. The tools CIDE,3 FeatureMapper,4 and fmp2rsm5 go
further and use the mapping also for generating products given a feature selection,
such functioning as a form of preprocessor.

Various visualizations of the mapping between features and their implementation
artifacts have been implemented in FeatureCommander,6 FeatureMapper, CIDE,
and View Infinity.7

Views have been explored in several tools. Unfortunately, to the best of our knowl-
edge, only CIDE and FeatureMapper are available for experimentation.

FeatureIDE8 is a tool suite for product-line development that supports fea-
ture modeling and tracing, but also feature-guided product derivation. Gears9 and
pure::variants10 are two commercial tools that support feature-guided product
derivation in different ways incorporating different technologies.

7.6 Further Reading

There is no standard literature on tool-based approaches to feature-oriented product
lines. Of course, product-line tools are covered by the standard books on software
product lines (Clements and Northrop 2001; Pohl et al. 2005). Greenfield and Short
introduce the related concept of a software factory—a tool infrastructure for the gen-
erative development of software systems based on models, patterns, and frameworks.
Software factories can be used to develop software product lines using a tool-based
approach, and the tools we have discussed in this chapter can be viewed as software
factories.

1 http://www.cs.mcgill.ca/~swevo/feat/
2 http://www.cs.mcgill.ca/~martin/cm/
3 http://fosd.net/cide/
4 http://featuremapper.org/
5 http://gsd.uwaterloo.ca/fmp2rsm
6 http://fosd.net/fc/
7 http://fosd.net/vi/
8 http://fosd.net/FeatureIDE/
9 http://www.biglever.com/solution/product.html
10 http://www.pure-systems.com/pure_variants.html

http://www.cs.mcgill.ca/~swevo/feat/
http://www.cs.mcgill.ca/~martin/cm/
http://fosd.net/cide/
http://featuremapper.org/
http://gsd.uwaterloo.ca/fmp2rsm
http://fosd.net/fc/
http://fosd.net/vi/
http://fosd.net/FeatureIDE/
http://www.biglever.com/solution/product.html
http://www.pure-systems.com/pure_variants.html

7.6 Further Reading 187

Kästner (2010) provides a comprehensive introduction to virtual separation of
concerns in his dissertation; a corresponding journal article summarizes the main
ideas (Kästner and Apel 2009). There is a whole set of proposals that are related
to or instances of virtual separation of concerns, mainly published in scientific
papers (Atkins 1998; Singh et al. 2007; Batory et al. 2011; Heidenreich et al. 2008a;
Chu-Carroll et al. 2003; Hofer et al. 2011; Janzen and De Volder 2004; Ribeiro et al.
2010).

Exercises

7.1 Reimplement the chat system (Exercise 4.1, page 96) with CIDE or a similar tool
(see Appendix A).

(a) How does CIDE manage traceability links and enforces consistency?
(b) Explore views on the source code (views on features and views on products).

Is it feasible to understand and maintain (possibly scattered) implementations
of the features in isolation? Explore whether views help with the following two
maintenance tasks:

• Change the format in which colors are exchanged between client and server
(only when feature Color is active).

• Add a message to the history whenever a user successfully logs in (only when
features History and Authentication are both activated).

(c) Compare your experience with the preprocessor implementation (Exercise 5.4,
page 125). Is CIDE’s restriction to disciplined annotations or the confinement
to a specific tool environment limiting? Does tool-based traceability add any
practical benefits?

(d) Compare the implementation in CIDE with previous implementations using
feature-oriented and aspect-oriented programming (Exercises 6.2 and 6.4,
page 172 and 173), especially with regard to feature traceability, separation of
concerns, information hiding, and program comprehension.

7.2 Discuss the potential benefits and drawbacks of virtual separation of concerns. To
what degree can tool support to replace physical separation of concerns? Does virtual
separation of concerns discourage preplanning and designing for change, and thus
introduce bad habits for developers? Does virtual separation of concerns require com-
mitment to a specific tool (vendor locking)? Can it scale for large projects with many
developers? Can or should it be integrated with other variability-implementation
approaches?
7.3 Brainstorm possible uses of traceability information, maintained in a tool
infrastructure. What benefits or problems would arise from tracking not only vari-
able features of a product line used during product derivation, but also concerns and
design decisions that may be the same in all products? Do you know any existing
tools that could be used to trace features or that already exploit feature traceability?
Can you envision any direct use of the traceability information from Exercise 7.1?

188 7 Advanced, Tool-Driven Variability Mechanisms

7.4 Draw a diagram consisting of all phases of the product-line-development process
(see Fig. 2.1). Enhance this diagram with connections between the phases that could
be exploited with tool support. A possible example could be that the domain-
implementation phase can use information about available features in the domain-
analysis phase to check the correctness of annotations. Explore further potential for
integration and tool support.
7.5 Reconsider the scenarios of Exercise 2.9 (page 44). Under which circumstances
would you recommend adopting any of the additional tool support discussed in this
section?
7.6 Complete the comparison of Exercise 4.11 (page 97) by adding virtual separation
of concerns.

Exercises Spanning Entire Part II

7.7 After the discussion of many different variability-implementation approaches,
the ultimate question is which approach should be used for a practical product-line
project. Unfortunately, there is no single solution that serves all needs. Provide a tech-
nical consulting service for the developers of the following scenarios and recommend
an implementation approach or a combination of implementation approaches and a
possible migration strategy where applicable. Asses the involved risk. Explain why
you rule out specific adoption strategies and implementation mechanisms or why
you prefer others in each scenario. Use the quality criteria from Chap. 3 for your
arguments where suitable. The scenarios are all intentionally short and underspeci-
fied; describe which additional context knowledge you would need for a decision or
which additional knowledge would change your recommendation.

(a) A small company selling universal remote controls has had a long history with
only two separately developed products. More recently resellers have requested
specialized editions that required small modifications to the firmware (mostly
different startup logos, different pre-configurations of channels, and different
algorithms for controlling battery loading). The company focuses mostly on
hardware; the firmware has been developed by a single developer in a C dialect
specialized to produce small binaries for micro-controllers. To accommodate the
modification requests of resellers the developer has used branches in a version
control system. Lately, the developer maintains 15 branches and complains about
increasing maintenance effort.

(b) A small startup specializes in developing simple games for smartphones with a
marketing message. The start-up plans to quickly build games for big corporate
customers. Quick production at reasonable quality is the key goal. The start-up
has a small team of developers and designers who work on new projects that
come up with a fresh new concept for every game. Technically, the games are all
based on HTML5 and JavaScript on the smartphone, and Ruby on the backend.

(c) A development group of a large software company focused on graphics and mul-
timedia software plans to release a new easy-to-use video-editing software. A
low-end version of the software should be release for free, for which consumers

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_3

Exercises 189

can buy advanced functionality (editing tools, filters, formats, and so forth) indi-
vidually at low prices. To keep revenue, the company plans to frequently release
new functionality. Development has not started yet, but the company is willing
to provide a sizable budget and an experienced team. Functionality from existing
high-end professional products, written in C++, may be reused, while making
sure that the new low-end product does not compete with the professional prod-
ucts.

(d) A group of enthusiastic developers builds hardware and writes software for a
quadrotor helicopter in their free time and shares the results as open-source
hardware and open-source software. They experiment with various hardware
alternatives and extensions, including various sensors, motors, and radio equip-
ment. Their software should be flexible for extensions and experimentation and
adjustable to different hardware parts used by others rebuilding the helicopter.
Code quality and extensibility is important, but also binary size, performance,
and energy consumption should not be neglected entirely.

(e) A team of open-source developers wants to implement a nerdy and cool window
manager for Linux. The window manager will make heavy use of graphical
effects and can be controlled over various input methods (keyboard, touch, voice,
and so forth). The system should be extremely configurable so that no two
installations look alike and that the behavior can be tailored precisely to the
personal preferences. The initial implementation is based on Python and C++.

(f) A group of computer science graduate students from different institutions wants
to build an infrastructure for testing and benchmarking communication protocols
as part of their research. The infrastructure must be flexible and configurable to
connect to different protocols over different communication links under different
loads.

(g) The three core developers of a new and hyped NoSQL database system for dis-
tributed and high-load web sites want to experiment with introducing distributed
transactions. Their system, written in Java, was especially fast since it had no
transaction support. Now the developers want to experiment with different trans-
action strategies, to determine which may be suited for their needs. Potentially,
they may want to offer different strategies (or none) to their customers. Transac-
tion systems are notoriously crosscutting and the developers want to ensure that
development of and experimentation with transaction mechanisms does not inter-
fere with their core product (without transactions) that is continuously extended
and maintained in the meanwhile.

(h) A development team in a large software company explores extensions of a mid-
dleware platform that was previously developed in Java by open-source develop-
ers paid by several other companies on the open-source platform Github. Several
forks of the project already exist, but, except for one, the forks are hardly main-
tained. The developers fork the project again and plan to add multiple features that
are important in their proprietary company context and they plan to experiment
with alternative implementations. In the long run, they consider contributing all
or some of their changes back to the original project, if the original developers
are interested.

Part III
Advanced Topics

Chapter 8
Refactoring of Software Product Lines

After reading the chapter, you should be able to

• characterize the basics of refactorings in object-oriented source code,
• discuss characteristics of refactorings in software product lines,
• describe and find variability-specific code smells,
• perform variability-related refactorings, and
• select and perform suitable refactorings for product-line adoption and explain their

chances and limitations.

Refactoring is an important activity in software development, maintenance, and evo-
lution. Refactorings are changing the structure of software, without changing its
behavior. Refactorings are typically performed to improve the code structure, for
example, to make code more readable or to prepare it for an extension. Typically,
refactorings are performed as a reaction to a code smell, a perceived problem in the
source code. Refactorings are a core ingredient for agile development practices, but
have been generally embraced by developers in practice. Many refactorings can be
performed automatically by modern development environments.

In the context of product lines, the notion of refactorings is interesting, because
one develops not only a single product, but a set of domain artifacts that may be
used to generate a whole family of products. For example, we could expect that a
refactoring may not change the behavior of any derivable product, but also more
relaxed notions are useful, as we will discuss. Also, software product lines give
rise to a new group of code smells that arise from the use of features and variable
implementations. Finally, refactorings can be used in the adoption phase of product-
line technology, for example, by extracting and rewriting reusable parts of legacy
systems.

Refactoring in software product lines is still a young topic, which needs further
exploration. In this chapter, we will give an overview of different notions of refactor-
ings and possible avenues for research and practice of refactorings in feature-oriented
software product lines.

S. Apel et al., Feature-Oriented Software Product Lines, 193
DOI: 10.1007/978-3-642-37521-7_8, © Springer-Verlag Berlin Heidelberg 2013

194 8 Refactoring of Software Product Lines

8.1 Refactoring in General

Before we get to the specifics of refactoring product lines, let us lay a foundation by
introducing traditional object-oriented refactorings. Refactorings are typically traced
to the dissertation of Opdyke (1992) and have been popularized by the seminal book
of Fowler (1999). Fowler defines refactoring as a process as follows:

Definition 8.1. Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the code yet improves
its internal structure. (Fowler 1999) �

A refactoring is typically performed in response to a perceived problem of the
structure of existing code, called “code smell.” The term “code smell” is used in an
informal fashion for an indicator of a potential problem, such as very long methods.
A very long method can be a sign of poor program structure that could be worth
improving, for example, by splitting the method into multiple smaller methods to
simplify understanding and maintenance. However, a very long method by itself is
not a bug and not always worth changing (depending on the context), hence the
rather vague term “smell.” (Preferably, code smells are defined in a measurable form
to enable tool support that points developers to possible locations.)

Definition 8.2. A code smell is a perceivable property of source code that is
an indicator of an undesired code property. �

Fowler (1999) characterize code smells as “indications that there is trouble that can
be solved by refactoring.” They collected a long list of code smells in object-oriented
programs, including

• Duplicate code: Duplicate code is an indicator for missed abstraction possibilities.
Instead of repeating code, one could consider to abstract it into a shared function
or class.

• Large class: A large class with many fields and methods may become difficult
to understand and may no longer focus on a single abstraction. Developers could
consider splitting the class into smaller classes with clear responsibilities.

• Shotgun surgery: When maintenance or evolution tasks often require perform-
ing crosscutting changes throughout many classes, this could be an indicator for
inadequate separation of concerns (see Sect. 3.2.3, p. 55 and our discussions of
modularity throughout Part II). Instead of scattering code and changes, developers
could consider separating concerns more explicitly.

http://dx.doi.org/10.1007/978-3-642-37521-7_3

8.1 Refactoring in General 195

To eliminate code smells, developers typically know a set of common strategies
to change code without changing its behavior, such as splitting methods, extracting
shared code, moving code fragments, and many more. These common behavior-
preserving transformations are called refactoring steps (note, the term refactoring is
overloaded to denote both the overall process of improving the structure of code as
well as refactoring steps, the individual code transformations).

Definition 8.3. A refactoring or refactoring step is a change made to the inter-
nal structure of software to make it easier to understand and cheaper to modify
without changing its observable behavior.

(Fowler 1999) �

To facilitate communication and sharing among developers, refactorings have
been collected in catalogs and described using a uniform structure (typically con-
taining name, motivation and potential gain, addressed code smells, mechanics for
the actual transformation, preconditions for its applicability, and examples)—similar
to collections of design patterns (see Sect. 4.2, p. 69). Refactoring steps are usually
described in the form of recipes to be performed manually. However, many refactor-
ing steps have been implemented in modern development environments and can be
performed automatically (the development environment then checks preconditions
and performs the rewrites).

Examples of typical refactorings, collected by Fowler (1999), are:

• Renaming method: Change the name of a method and of all corresponding method
invocations. This refactoring can address a code smell of inadequately named
methods.

• Move method: Move a method to a different class, while updating all the invo-
cations of the method. This refactoring addresses, among others, the code smells
shotgun surgery and large class.

• Extract method: Move a sequence statements to a new method introduced for
this purpose and call this method from the previous location. This refactoring
addresses, among others, the long-method code smell and, as a preparatory step,
the duplicate-code code smell.

Much like design patterns, refactorings have been explored in many languages
and domains, including refactorings for object-oriented languages Fowler (1999),
aspect-oriented languages Monteiro and Fernandes (2005), and graphical models
Sunyé et al. (2001); Arendt et al. (2010). In the remainder of the chapter, we will
concentrate on refactorings for product lines.

http://dx.doi.org/10.1007/978-3-642-37521-7_4

196 8 Refactoring of Software Product Lines

On the Correctness of Refactorings

Refactorings are, by definition, behavior preserving. However, they are often
described as technical recipes, to be executed manually. Many refactorings
have intricate preconditions and require upfront analysis of the entire code
base (for example, finding all calls to a function). In fact, performing refac-
torings manually can easily introduce bugs, and even automated refactorings
implemented by development environments have been shown to be frequently
incorrect in corner cases. For instance, the seemingly innocent extract-method
refactoring has quite complex implications when the extracted code contains
assignments to local variables (Murphy-Hill and Black, 2008).

Refactorings are rarely formalized, as are the languages in which they are
performed. Although there is research on formally proving behavioral equiv-
alence of the code before and after applying a refactoring (Estler et al., 2007;
Sultana and Thompson, 2008), most refactorings are not formally verified. A
typical strategy to ensure correctness is to define very small refactoring steps
that are easy to check for correctness and then build larger refactoring steps by
combining smaller ones (Kniesel and Koch, 2004; Cole and Borba, 2005). The
standard practice relies on testing of the refactoring engine (if automated) and
regression testing of the refactored code (especially, if refactored manually).
With this caveat in mind, we return to the happy land where refactorings are,
by definition, “correct.”

Example 8.1 In Fig. 8.1, we illustrate the Extract Method refactoring. A programmer
decides to extract some statements of a method (Lines 6–7 on the left) into a separate
method printDetails. Extracting the statements and moving them to a new method
should not change the observable behavior of the program. �

Fig. 8.1 Example of a typical refactoring: Extract Method

8.2 Refactoring in Software Product Lines 197

8.2 Refactoring in Software Product Lines

How does refactoring interplay with software product lines? What does it mean to
change the structure but preserve behavior in a product line, in domain artifacts,
in feature models, or in generated code? Are there code smells specific to product-
line implementations? Does the notion of refactoring in product lines differ between
different implementation mechanisms?

First of all, of course, traditional object-oriented refactorings can also be applied
to implementation artifacts in product lines, to eliminate well-known code smells
such as long methods, large classes, or duplicate code. For example, we can use an
extract-method refactoring also in parameter-based implementations (see Sect. 4.1,
p. 66), inside plug-ins of a framework (see Sect. 4.3, p. 79), in a method surrounded
by conditional-compilation statements (see Sect. 5.3, p. 110), in the body of a piece
of advice of an aspect (see Sect. 6.2, p. 141), and so forth. Especially, for classic
language-based variability-mechanisms, existing tool support in development envi-
ronments can be used.

However, in our context, the interplay between code artifacts and variability is
more interesting. Let us start with a number of smells that occur in software product
line and subsequently discuss possible refactorings.

8.2.1 Variability Smells in Software Product Lines

Also, in product lines, there are many smells which indicate potentially inadequate
feature modeling or inadequate implementations. To emphasize the difference focus
on variability, let us name them variability smells. As with traditional smells, a
variability smell is an indicator of a potential design problem, but is not a problem
by itself.

Definition 8.4. A variability smell is a perceivable property of a product line
that is an indicator of an undesired code property. It may be related to all kinds
of artifacts in a product line, including feature models, domain artifacts, feature
selections, and derived products. �

Let us collect a list of examples for variability smells:

• Obscure feature model: During application engineering, stakeholders have prob-
lems mapping their requirements to the features of the product line. This can
indicate suboptimal naming and documentation of features, an unsuitable struc-
ture of the feature model where features are located in unsuspected branches,
or overly complex and hard to understand cross-tree dependencies in the feature

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_6

198 8 Refactoring of Software Product Lines

model. Developers may rename features or restructure the feature model to ease
understanding.

• Unused variability: A feature is modeled and implemented as optional feature,
yet it is selected in all products currently derived. Although we might explicitly
decide to keep the feature optional for future customers, unused variability can be
an indicator of variability that is not actually needed, so developers might decide
to remove the induced overhead.

• Unused feature: The inverse of unused variability is a feature that is optional, but
not selected in any product currently derived. Again, we might decide to keep
the feature for future customers, but unused features can also be an indicator that
encourage removing unnecessary code.

• Dead feature: A feature modeled as optional feature in the feature model, but actu-
ally not selectable due to constraints (for example, a mutually exclusion constraint
with a mandatory feature) is called a dead feature. A dead feature might be an
indicator of an incorrect feature model or a feature that is no longer needed.

• Dead feature code: A code fragment is dead if it can never be included in the
derivation of any derivable valid product, for example, because it requires the
selection of two mutually exclusive features. Dead feature code can easily occur
in annotative implementation strategies, from runtime parameters, to conditional
compilation, and to build systems. Dead feature code is a strong indicator for a
problem in the feature model, in the implementation, or the mapping between
features and code fragments (see also Sect. 10.2).

• Fat products: Despite tailoring to user needs, the derived products are still unnec-
essarily large and contain unneeded functionality. This can be an indicator for
insufficient variability. Developers may decide to identify additional features and
make the corresponding code fragments optional.

• Dependency clusters: Intricate implementation dependencies between features
may overly restrict variability during feature selection. Developers may take this
as indicator to restructure the implementation and decouple feature implemen-
tations (see also the optional-feature problem in Chap. 9) or alternatively merge
those features into a single feature.

• Duplicate code in alternative features: Two alternative features replicate code
in their implementation. Developers may take this as an indicator to extract the
common code into a shared implementation unit (plug-in, feature module, aspect,
and so forth) that is imported by both features. It may also be an indicator of
unsuitable granularity provided by the variability mechanisms (for example, file-
level granularity of build systems, Sect. 5.2, p. 105) and encourage selecting a
different implementation strategy.

• #ifdef hell or many extension points: Depending on the implementation strategy, the
implementation of a feature may be scattered across the code base (see Sects. 4.1.1
and 5.3.6, p. 66 and 120) or require many scattered extension points (see Sect. 4.3.5,
p. 86). Like the code smell shotgun-surgery, this can be an indicator for suboptimal
separation of concerns. Developers may want to invest into a redesign or consider
changing the implementation strategy.

http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_9
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_4

8.2 Refactoring in Software Product Lines 199

• Runtime overhead: Many runtime checks for features or dynamic dispatch may
cause overproportional performance penalties during execution, especially in
small, embedded systems (see Sects. 4.1.1 and 4.3.5, p. 66 and 86). Developers can
take this as indicator to consider changing load-time bindings into compile-time
bindings, for example, changing from if statements to #ifdef directives or feature
modules.

• Binary chaos: Compile-time binding requires regenerating and recompiling the
project for every new feature selection. With many customers or many changes,
the compilation overhead or the storage space required for the many binaries may
be excessive. Developers can take this as an indicator to change compile-time
bindings into runtime bindings that can be configured with configuration files or
command-line parameters.

• Traceability mess: Developers struggling to find the implementation of a fea-
ture, especially in parameter-based and build-system-based implementations (see
Sects. 4.1.1 and 5.2.4, p. 66 and 108), may be seen as an indicator to use addi-
tional traceability tools (see Sect. 7.1, p. 175) or to use a different implementation
strategy.

• Language and variability-mechanism overload: In a project with artifacts in differ-
ent code and noncode languages, developers struggle with a mix of many different
variability-implementation mechanisms (for example, parameters combined with
build systems and conditional compilation and aspects) and extensions for many
different languages (for example, AspectC, AspectUML, and AspectJ). Develop-
ers may take this as an indicator to rewrite variability implementations with fewer
and more uniform implementation mechanisms.

• Limited extensibility: After significant preplanning effort and commitment to non-
invasive extensions, developers struggle with finding suitable extension points.
Developers might take this as an indicator to redesign extension points or to adopt
a more invasive implementation strategy.

Research on variability smells is still in its early steps. A next step will be to
categorize these example smells into proper categories.

The list of feature code smells is meant to give an overview of the wide variety
of possible code smells in product-line implementations, but the field is too young
and in a state of flux to propose a comprehensive catalog. Note that these smells
address all facets of product-line implementations, from feature models and feature
selections to feature implementations. As discussed in Part II, developers need to
decide between many trade-offs regarding, for example, binding times, preplanning
effort, granularity, and uniformity. Some smells are linked to specific trade-offs,
such as deciding to use an invasive and crosscutting implementation strategy such
as conditional compilation.

For many code smells, we can identify corresponding changes to the product line
to eliminate those smells, such as adding, removing, and merging features, rewriting
variability implementations, and changing binding times. For many of these changes
we can describe instructions for transformations that preserve the key behaviors in
the product line.

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_7

200 8 Refactoring of Software Product Lines

8.2.2 Defining Product-Line Refactorings

Refactorings in product lines aim at improving the structure while generally pre-
serving observable behavior. Previously, we raised the question of what behavior
preserving means for a product line. For example, is adding a feature to a product
line while leaving existing products unchanged preserving behavior; is changing
binding times preserving behavior?

First, we need to decide for which products we want to preserve behavior:

• Preserving the set of possible valid products and the behavior of all these prod-
ucts is the most restrictive definition of product-line refactoring, which we name
variability-preserving refactoring. A variability-preserving refactoring may not
remove or add products to a product line and may not change the observable behav-
ior of any potential or actually delivered product. This strict notion of behavior
preserving is useful if we want to improve the structure of the product line, but
make sure that we do not break any existing behavior or accidentally introduce
additional behavior.

• Preserving the behavior of all valid products (but not necessarily preserving the
exact set of valid products) is a less restrictive definition of product-line refactoring,
which we call variability-enhancing refactoring. It allows us adding new variations
in order to be able to derive additional products (for example, adding features,
removing constraints), but not removing or affecting the behavior of products that
were previously possible. This slightly relaxed notion of behavior preserving is
useful if we want ensure backward compatibility when evolving the entire product
line to broaden its scope.

• Preserving the behavior of products currently derived for customers is the least restr-
ictive definition of product-line refactoring, which we name product-preserving
refactoring. These refactorings may remove or add features, as long as they
do not change the behavior of a given subset of valid products. This relaxed
notion of behavior preserving is useful if we care only about a specific subset of
products—potentially products currently delivered to customers—but want flexi-
bility to change the remainder of the product line.

Second, we have a certain flexibility regarding which transformations we consider
as refactorings:

• Renaming features: Technically, renaming a feature in the feature model does not
change the total number of possible products, but does change the set of possible
feature selections (see Sects. 2.3 and 10.1.7, p. 26 and 252), hence, we can argue
that renaming a feature is not a refactoring that preserves the variability of a product
line. However, considering a more holistic view of product-line development, we
can argue that renaming a feature would also rename the feature in all feature
selections and yield an equivalent set of possible feature selections.

• Changing binding times: Technically, changing the binding time of a feature from
compile-time binding to load-time binding, or vice versa, changes the possible
behavior of the compiled product. However, we argue that, conceptually, the

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_10

8.2 Refactoring in Software Product Lines 201

product line preserves variability and runtime behavior of the product in equivalent
feature selections.

In summary, we adopt the following definitions:

Definition 8.5. A product-line refactoring is a refactoring step specific to
feature-oriented product-line development that may affect the feature model
and the domain artifacts of a software product line.

A variability-preserving refactoring is a product-line refactoring that does
not change the set of valid products and corresponding feature selections (mod-
ulo renaming) and preserves the observable behavior of all valid products
(modulo binding time changes).

A variability-enhancing refactoring is a product-line refactoring that does
not remove products from the set of valid products and preserves the observable
behavior of all previously valid products. A variability-enhancing refactoring
may introduce additional valid products.

A product-preserving refactoring is a product-line refactoring that does not
remove products from a given set of products and preserves the observable
behavior of all those products. A product-preserving refactoring may add and
remove products outside the given set. �

8.2.3 Examples of Product-Line Refactorings

With Definition 8.5, we can now come back to refactorings that address variability
smells, as introduced in Sect. 8.2.1. Again, we do not strive for completeness but for
breadth to illustrate the large design spectrum of possible refactorings. Designing
a comprehensive catalog of product-line refactorings and formally ensuring correct
behavior and variability preservation of these refactorings is an interesting research
direction (see also further readings below).

• Move feature: Rearranges a feature in the feature model to address the smell
obscure feature model (for example, by moving a feature closer to semantically
related features in the feature model). When all valid feature selections are pre-
served, this is a variability-preserving refactoring that does not even affect the
implementation.

• Rename feature: Variability-preserving refactoring that renames a feature consis-
tently in the feature model, in existing feature selections, and in the implementa-
tion and mapping. For instance, in preprocessor-based implementations this may
require renaming flags in all #ifdef directives. This refactoring can address vari-
ability smells, such as obscure feature models.

202 8 Refactoring of Software Product Lines

• Delete feature: Product-preserving refactoring that removes an unnecessary feature
from the feature model and removes all corresponding implementation artifacts. If
the feature or feature implementation was dead, the removal is even a variability-
preserving refactoring. This refactoring can address smells such as unused feature,
dead feature, and dead feature code.

• Merge features: Product-preserving refactoring that merges the implementation of
two features to address the smells unused variability and dependency cluster. A
special case is merging a feature with the base code, that is, removing variability.
Depending on the implementation mechanism, developers may merge two #ifdef
flags or combine two plug-ins, feature modules, or aspects into a single one, as
illustrated in Example 8.2.

• Extract feature: Variability-enhancing refactoring that adds a new feature to the
feature model and maps it to existing implementation artifacts. The refactoring
preserves existing behavior (when the new feature is selected), but allows users
to deactivate functionality, which can address the fat-product smell. Depending
on the implementation approach, extracting a feature may require introducing
new parameters and if statements, to inject #ifdef directives, or to move code to
separate implementation units (similar to object-oriented extract-method or move-
method refactorings). We discuss the extract-feature refactoring in the context of
an extractive adoption strategy in Sect. 8.3, including some examples.

• Extract shared code: Variability-preserving refactoring that moves code replicated
between two features into a new artifact that is included by both features, to address
the smell duplicate code. Depending on the implementation strategy, developers
may annotate shared code properly (for example, with a disjunction of both fea-
tures) or move the code into a separate plug-in, feature module, or aspect that is
automatically included with either feature.

• Change binding-time: Variability-preserving refactoring to change the existing
variability-implementation mechanism to one with a different binding time. For
example, we could introduce a new load-time parameter and if statements to
replace #ifdef variability (see Sects. 4.1 and 5.3, p. 66 and 110). Such refactoring
addresses code smells such as binary chaos and runtime overhead.

In general, we can envision variability-preserving refactorings that change the
entire variability-implementation mechanism, for example, rewriting preprocessor-
based implementations to plug-ins. Such rewrites should fulfill exactly the behavior
preservation requirements of variability-preserving refactorings and could address
smells such as #ifdef hell, variability-mechanisms overload, limited extensibility,
traceability mess, and binary chaos. However, large-scale rewrites between imple-
mentation mechanisms will be difficult to automate and may require significant
manual effort.

Example 8.2 As one example of a refactoring that is easy to automate, let us illus-
trate the merge-features refactoring for feature-oriented programming (see Sect. 6.1,
p. 130). In Fig. 8.2, we illustrate two consecutively applied class refinements, called
Inner and Outer, introduced by two different feature modules, which we merge into
one refinement InnerOuter, located in a single feature module. The two refinements of

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_6

8.2 Refactoring in Software Product Lines 203

Fig. 8.2 Example of the refactoring Merge Feature

method print are merged by substituting the Super.print() statement in the Outer class
by the code of the print method in the Inner class. Merges of other implementation
approaches can be automated similarly. �

8.3 Refactoring as Path Toward a Product Line

A special but important use case of automated variability-enhancing refactorings,
such as extract feature, is to use them for extractive product-line adoption (Sect. 2.4,
p. 39). We can start with a legacy application without variability, and incrementally
extract features. In each step, we would preserve the behavior of all products up to
this point, but would make more behavior variable. Let us demonstrate such adoption
through refactorings by an example.

8.3.1 Example: Extraction of Feature Colored of the Graph Library

We demonstrate feature extraction by extracting feature Colored from our graph-
library example. Specifically, we want to extract the feature code highlighted in
Fig. 8.3 into a separate feature, while preserving the original behavior when this
feature is selected. We demonstrate the extraction for feature-oriented program-
ming (see Sect. 6.1, p. 130) and aspect-oriented programming (see Sect. 6.2, p. 141),
but other implementation mechanisms could be supported similarly (when using

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6

204 8 Refactoring of Software Product Lines

Fig. 8.3 Intermixed code of the graph example before extraction (feature code highlighted)

a preprocessor, it would even be as simple as just adding conditional-compilation
directives around the highlighted code). We use this example also to illustrate the role
of granularity during refactorings (see Sect. 3.2.5, p. 59). To make the refactoring
understandable and automate, and to ensure that we actually preserve behavior, we
break down the refactoring into smaller steps.

First, we introduce a new feature Colored and a corresponding empty feature
module into the product line, and mark it as mandatory. Adding a mandatory feature
without any implementation clearly does not change the behavior of any existing
product.

Second, we move class Color to the feature module. Again, this does not change
the behavior of any product, since the class is still included in all products.

Third, we extract the code from class Node that is related to feature Colored.
For feature-oriented programming, we create a new class refinement and move the
field declaration of field color there, as shown in Fig. 8.4. Similarly, we move the

Fig. 8.4 Extraction of Color code into a Jak refinement

http://dx.doi.org/10.1007/978-3-642-37521-7_3

8.3 Refactoring as Path Toward a Product Line 205

Fig. 8.5 Extraction of Color code into an AspectJ aspect

setDisplayColor call to a method refinement. Note that the base class and the refinement
reproduce the original behavior when composed; that is, the extraction is behavior
preserving. The solution for aspect-oriented programming is very similar: We create
an aspect and move the field to an inter-type declaration and the statement to a
piece of advice that reproduces the original behavior when the aspect is woven. In
contrast to Jak, we have to be very careful with the use of pointcuts in AspectJ to
ensure that we affect only the correct joint points (see the fragile-pointcut problem
in Sect. 6.2). Corresponding refactorings have been explored and automated in the
research communities of feature-oriented and aspect-oriented programming (Schulze
et al. 2012; Hanenberg et al. 2003; Monteiro and Fernandes 2005).

After the code of feature Colored was moved to a feature module or aspect, we
can mark the feature as optional in the feature model. The behavior remains the same
in all feature selections that include feature Colored, but we have enabled generating
additional products without that feature. That is, we have performed a variability-
enhancing refactoring.

The extraction of feature Colored is straightforward. However, not all extractions
are easy. Look at a modified version of method print in Fig. 8.6, which we want to
move into feature Colored. In contrast to prior examples, the code to move is spread
over the body of method print.

A problem of feature-oriented programming is that the code appears at two places
and is not directly addressable by method refinements (a matter of limited granularity
of feature-oriented programming, see Sect. 6.1.5, p. 138). As solution, we introduce a
hook method to prepare an additional extension point which can be refined by a feature
module as shown in Fig. 8.8. To create a hook method, we perform a common extract-
method refactoring to move the corresponding feature code into its own function.
Subsequently, we can then move the feature code to a method refinement of the hook
method.

Due to the finer granularity of extensions in AspectJ (see Sect. 6.2.4, p. 149), we
can move all feature code from this example to an aspect without the need of an extra
hook method, as shown in Fig. 8.8. We can use a combination of call and withincode

http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6

206 8 Refactoring of Software Product Lines

Fig. 8.6 Feature code (highlighted) in the middle of a method

Fig. 8.7 Extracting feature code from the middle of a method using hooks in Jak

Fig. 8.8 Extracting feature code from the middle of a method using advice in AspectJ

8.3 Refactoring as Path Toward a Product Line 207

Fig. 8.9 Feature extraction at the level of method parameters

pointcuts (all calls to method print of class Weight within the code of method print of
class Edge) to select the join points to be extended in the middle of the method in
question.

Finally, there are examples of code fragments to be extracted for which the gran-
ularity of both feature-oriented and aspect-oriented programming is too coarse, such
as additional parameters and exceptions, shown in Fig. 8.9. While preprocessors can
cope with this fine granularity, in feature-oriented and aspect-oriented solutions, we
need to replicate code and provide two separate implementations of the function in
question.

8.3.2 Case Study: Refactoring of Berkeley DB with AspectJ

Incremental extract-feature refactorings are a viable approach to extractive product-
line adoption, which has been used in several product-line projects. To give additional
insights into challenges, advantages, and risks of such adoption, we summarize expe-
rience from a refactoring project we performed with AspectJ to extract features from
Berkeley DB.1

Berkeley DB. The subject of the study was the Java version of the database system
Berkeley DB (by now acquired by Oracle).2 Its performance and transaction safety
make it popular in open-source and commercial applications. It consists of five large
subsystems as shown in Fig. 8.10: access methods as an abstraction and programming
interface to the user, a B+-tree as the internal data storage and index, various caching
and buffering mechanisms, a concurrency and transaction system, and a persistence
layer.

Already in the Java version that we started from, it was possible to deactivate some
parts such transactions at load-time (parameter-based implementation, Sect. 4.1,
p. 66), but it was not possible to create a tailored database system at compile time
by excluding unnecessary code.

1 Full details of the study are available in a corresponding publication (Kästner et al., 2007).
2 http://www.oracle.com/technetwork/products/berkeleydb/

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://www.oracle.com/technetwork/products/berkeleydb/

208 8 Refactoring of Software Product Lines

Fig. 8.10 Architecture of Berkeley DB (Java version)

Feature location. By analyzing the domain, manual, configuration parameters,
and source code, we identified several candidates for features. The implementations
of features were implicit and scattered across the code base. The size of the features
varied from small caches to entire transaction or persistence subsystems. All features
represented domain abstractions and functionality a user would select or deselect
when customizing a database system. From these features, we selected 38 for actual
refactoring, as illustrated in the feature diagram shown in Fig. 8.11.

Feature modules. A first interesting issue, which arose early during feature extrac-
tion, was how to organize the code belonging to a particular feature in terms of aspects.
Although it is possible to implement large features in terms of single aspects and even
introduce classes as inner classes, it became necessary to decompose large aspects
during development to keep them readable (see Sect. 6.3.1, p. 153 and 207 for a dis-
cussion of this issue). Hence, we grouped classes and aspects into feature modules,
which can be seen as a form of aspectual feature modules (see Sect. 6.3.4, p. 161).

Fig. 8.11 Feature diagram of Berkeley DB after feature extraction

http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_4

8.3 Refactoring as Path Toward a Product Line 209

Table 8.1 Refactoring of Berkeley DB: extracted code fragments and their granularity

Refactoring # times applied

Move method to aspect 365
Extract statement sequence (beginning/end) 214
Move field to aspect 213
Extract statement sequence (with hook method) 164
Extract statement sequence (at call join point) 121
Move class to feature 58
Move interface to feature 4

Feature extraction. To extract features from the original Java code and to encap-
sulate them in aspects, we used a diverse selection of refactorings, as exemplified in
Sects. 8.2.3 and 8.3 and described in more detail in the literature (Hanenberg et al.
2003; Cole and Borba 2005; Monteiro and Fernandes 2005; Binkley et al. 2006).

We needed to extract code at very different levels of granularity, from moving
entire classes and interfaces, to extracting entire methods and fields, to extracting
individual statements. In Table 8.1, we summarize information on the kind and num-
bers of refactorings performed. For sequences of statements extracted from a method,
we distinguish between (a) statements in the beginning or end of a method, which
can be moved to a method refinement or around advice, (b) statements in the middle
of a method, which can be reinjected with a call join point (as done in our example
in Fig. 8.8), and (c) statements in the middle of a method, for which we needed to
introduce a hook method (as done in our example in Fig. 8.7).

Although the refactorings had been documented in the literature for some time,
we had to apply them manually, as there was no proper refactoring tool available
for this task. We applied feature extraction incrementally, one feature after the other,
each into one or multiple (up to 45) aspects and classes. Of the 38 refactored features,
16 were small with less than 140 lines of code, involving 10 or fewer refactorings.
The features Latches, Statistics, Logging, and MemoryBudget were large with 958–1864
lines of code, requiring between 118 and 345 refactorings to extract. All other features
had a size in-between. Overall, we extracted 10 % of the code base of Berkeley DB
into features.

Observations. First of all, we found that product-line adoption by incremental
refactoring is possible. We were able to extract code that was previously common to
all products or customizable via load-time parameters into aspects, so that different
aspect combinations can be woven at compile time for different feature selections.

It is worth noting that this refactoring process just extracted feature implemen-
tations in their current form, without any redesign of the system. As a result, the
resulting aspects inject fine-grained extensions at many locations, often with the help
of hook methods. Although all feature code has been moved to individual aspects
(see separation of concerns Sect. 3.2.3, p. 55), the implementation does not follow
well-defined extension points to hide implementation details (see information hiding
Sct. 3.2.4, p. 57). As we discussed in the corresponding publications, maintainability
of the corresponding code is quite questionable and hardly improves over scattered

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

210 8 Refactoring of Software Product Lines

Fig. 8.12 Extensions applied by aspects in the refactored version of Berkeley DB

#ifdef directives (Kästner et al., 2007, 2008a). A proper redesign, possibly defining
extension points based on a framework, would have required substantial preplanning
(see Sect. 3.2.1, p. 53), but could potentially have resulted in a better maintainable
implementation.

As noted already by Clements and Krueger (2002), the extractive adoption
approach through refactoring requires tools that can deal with fine-grained exten-
sions. While many extracted code fragments were relatively coarse grained, there
were also quite some fine-grained extensions, as illustrated in Fig. 8.12. These
fine-grained extensions brought AspectJ to its limits. We often had to resort to
workarounds that resulted in complex or ’strange’ designs, including many hook
methods. An in-depth discussion of the challenges and limitations regarding AspectJ
is provided in the original study (Kästner et al., 2007).

With regard to our discussion about the differences between feature-oriented and
aspect-oriented programming in Sect. 6.3, the study confirms most observations:
Feature extraction in Berkeley DB rarely required crosscutting mechanisms that
were unique to AspectJ. Most aspects applied static and basic dynamic crosscutting
concerns that could be implemented directly with feature-oriented programming
(gray pieces). Homogeneous crosscutting concerns occurred rarely: Less than 11 %
of all advice targeted homogeneous crosscutting concerns, and only 2 % advise more
than 3 join points.

8.4 Further Reading

A good source to get acquainted with code smells and refactorings in object-oriented
programming is the book by Fowler (1999). It is also worth exploring the automated
refactorings of development environments, such as Eclipse. For a broader overview,
Mens and Tourwé provide a comprehensive survey of existing research in the field
of software refactoring (Mens and Tourwé (2004).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_6

8.4 Further Reading 211

Alves et al. (2006) were among the first to propose to extend the traditional
notion of refactoring to software product lines. Their view of product-line refactoring
aligns with our definition of variability-enhancing refactorings. Initially, they focused
mostly on changes to feature models, but later they and their collaborators also
incorporated changes to implementation artifacts and the mapping between problem
and solution space, also under the names product-line refinement (Borba et al. 2010)
and safe evolution (Neves et al. 2011). Schulze et al. (2012) introduced the notion
variant-preserving refactorings, similar to our distinction in Sect. 8.2.2.

A specific variability code smell in product lines is raised by replicated code in
feature implementation artifacts. Schulze (2013) discussed this special case in his
thesis and presented several refactorings reacting on this code smell. Savolainen et al.
(2009) discuss when a product line should preserve mandatory features, even though
they do not add anything to the product line’s variability.

Thüm et al. (2009) proposed an automated analysis to identify refactorings on
feature models (variability-preserving refactorings, excluding also renaming) and
generalizations of feature models (equivalent to variability-enhancing refactorings
in our definition). We will come back to such analysis in Chap. 10.

Incremental refactorings to extract features were proposed in multiple
projects, both using feature-oriented programming (Liu et al. 2006; Rosenmüller
et al. 2009a; Schulze et al. 2012) and aspect-oriented programming (Murphy et al.
2001; Hunleth and Cytron 2002; Zhang and Jacobsen 2003; Colyer et al. 2004b;
Tešanović et al. 2004; Lohmann et al. 2006a; Kästner et al. 2007). Especially aspect-
oriented refactorings have been explored in depth (Hanenberg et al. 2003; Cole and
Borba 2005; Monteiro and Fernandes 2005; Binkley et al. 2006). Lohmann et al.
(2006a) and Adams et al. (2009) have investigated whether (automatic) refactoring
of #ifdef variability into aspects is a viable approach.

Liu et al. (2006) introduced the concept of feature refactoring and extraction.
They provided a formal model based on algebra. Their focus lies on dealing with
overlapping and interacting features, which we will discuss in the context of feature
interactions in Sect. 9.3.

Kästner et al. (2009a) developed a model based on a subset of Java that shows how
annotation-based feature implementations can always be transformed to composition-
based feature implementations and vice versa (see Sect. 3.1.3, p. 50). The work sys-
tematically explores the workarounds needed to rewrite fine-grained extensions.

In many composition-based implementation mechanisms, the order in which fea-
tures are composed, matters. Apel et al. (2008a) introduced the notion of pseudo-
commutativity, whose definition involves reordering of features and a proof that such
a refactoring is always possible in AspectJ.

The experience with feature extraction in Berkeley DB using AspectJ is reported
in-depth in a separate publication (Kästner et al. 2007). Based on the Berkeley DB
case, Kästner et al. (2008a) also discussed the granularity implications of feature
implementations. In a parallel effort, Rosenmüller et al. (2009a) refactored the C
version of Berkeley DB (using the feature-oriented language FeatureC++). They
also discuss implications on performance and binary size.

http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_9
http://dx.doi.org/10.1007/978-3-642-37521-7_3

212 8 Refactoring of Software Product Lines

Exercises

8.1 Select four refactorings from the ‘refactoring’ menu of Eclipse (or another source-
code editor). Argue what characteristics these transformations fulfill to be called
a refactoring. What code smell does each refactoring address? Demonstrate each
refactoring on a suitable code example.
8.2 In Sect. 8.2.1, we have collected an initial list of variability smells.

(a) For each variability smell answer the question of which quality criteria is affected
(see Chap. 3 and possibly consider additional criteria). Also, identify in which
phase of the product-line development process (see Sect. 2.2) the variability smell
is relevant.

(b) Search for instances of each variability smell in the implementation of the graph
example in Figs. 4.1 and 5.9 and in the implementation of the chat system (Exer-
cises 4.2, 4.3, 4.5, 4.8, 5.1, 5.4, 6.2, 6.4, and 7.1).

(c) Extend the list with additional variability smells.
(d) Discuss possible product-line refactorings that can eliminate each variability

smell.

8.3 Characterize the differences between variability-preserving, variability-enha-
ncing, and product-preserving refactorings. For which purpose can they be used?
Provide an example for each from the context of the graph library and your imple-
mentation of the chat system (Exercises 4.2ff).
8.4 Describe the product-line refactorings (a) rename feature and (b) merge feature
such that they could be included into a catalog of refactorings and that they could be
automated by a tool. Describe the motivation, the mechanics (preconditions, postcon-
ditions, transformation steps), their impact on variability, and provide an illustrative
example.
8.5 What is the role of refactoring in product-line development, especially, with
regard to adoption paths. Exemplify opportunities in the context of scenarios from
Exercises 2.9 and 7.7 (p. 44 and 188). Discuss the potential pitfalls of creating a
product line by refactorings.
8.6 In Sect. 8.3, we illustrated by an example how to perform a variability-enhancing
refactoring to extract a new feature. Perform a similar extraction. If necessary, design
suitable refactoring steps. Document and explain all steps.

(a) Extract feature Print (all functionality that is responsible for printing to the
command line) from the graph example of Fig. 6.5 (Sect. 6.1) using (i) feature-
oriented programming and (ii) aspect-oriented programming.

(b) Extract a feature from the initial implementation of the chat system (Exercise
4.1, p. 96) to make it optional. Use a variability-implementation strategy of your
choice.

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6

Chapter 9
Feature Interactions

After reading the chapter, you should be able to

• understand the role of feature interactions in feature-oriented product lines,
including intended and inadvertent interactions,

• identify reasons for feature interactions and the feature-interaction problem,
• characterize the nature of 2-way and higher-order interactions,
• outline techniques to detect feature interactions,
• select suitable solutions to implement coordination code for known feature inter-

actions, and
• weigh their mutual strengths and weaknesses.

After a broad discussion of a diverse selection of techniques for implementing fea-
tures in Part II, we now have a closer look at how features interact when combined
with other features. The key idea of feature orientation is to make features explicit
in design and code, either by annotating code belonging to a certain feature or by
separating and modularizing feature code. But a feature is not an island. Features
interact in various ways, both in positive and intended ways, as well as in critical
and inadvertent ways. Features are often expected to interact: to exchange infor-
mation, refine the behavior of other features, reuse the functionality of other fea-
tures, and accomplish a task in cooperation. However, inadvertent interactions can
cause unexpected erroneous behaviors and result in undesired and critical system
states. Specifying and managing intended feature interactions as well as detecting
and resolving unintended feature interactions is one of the key challenges of feature-
oriented product-line development.

In this chapter, we take a closer look at interactions between features and how they
manifest in program code and behavior, rather than at the features themselves and
their implementations. We illustrate different kinds of feature interactions, discuss
strategies to detect them, raise awareness of an instance of the feature-interaction
problem, called optional-feature problem, and compare techniques to implement
known feature interactions in a controlled manner.

S. Apel et al., Feature-Oriented Software Product Lines, 213
DOI: 10.1007/978-3-642-37521-7_9, © Springer-Verlag Berlin Heidelberg 2013

214 9 Feature Interactions

9.1 The Feature-Interaction Problem

A feature that works perfectly well in a given system may exhibit inadvertent behavior
when combined with other features. The problem is that, when features are devel-
oped independently, it is difficult to predict their mutual interactions when combined.
Typically, the behavior of the generated product that contains multiple indepen-
dently developed features is not easily deducible from understanding the features in
isolation—we have to identify and understand their interactions.

Definition 9.1 A feature interaction between two or more features is an
emergent behavior that cannot be easily deduced from the behaviors associated
with the individual features involved.

An inadvertent feature interaction occurs when a feature influences the
behavior of another feature in an unexpected way (for example, regarding the
expected control flow, program or data state, or visible behavior).

The feature-interaction problem is to detect, manage, and resolve (inadver-
tent) feature interactions among features. �

When features are combined, their interactions need to be coordinated, for exam-
ple, by ordering their execution, synchronizing data access, defining precedence rules
for action handling, and including missing behavior.

For illustration, we provide a list of examples of feature interactions and the
corresponding problems:

Example 9.1 Call forwarding and call waiting. A canonical example of a feature
interaction occurs in telecommunication networks, in which the two features Call-
Forwarding and CallWaiting interact (Calder et al. 2003). CallForwarding forwards calls
made to a busy line to another host. CallWaiting notifies the called party on a busy
line of another incoming call and allows the user to switch between both calls. Both
features work fine in isolation, but it is unspecified what happens with an incoming
call on a busy line if both features are activated. Either feature could take precedence
over the other or, even worse, both may attempt to act at the same time.
The interaction between CallForwarding and CallWaiting is undesired and can lead to
race conditions and unexpected and inconsistent behavior. The interaction can be
hard to predict, because it occurs only in specific conditions (a second call on a busy
line). If the interaction is known, we can take measures to control it by giving explicit
precedence to one feature (possibly even configurable by the user) or by making both
features mutually exclusive (only one can be selected at a time). �

Example 9.2 Fire and flood control. In a building-automation system, as outlined
by Kang et al. (2002), feature FireControl activates sprinklers when sensors detect
a fire, and feature FloodControl cuts off water supply when water is detected on the
floor. Individually, both features operate as desired, but they interact in inadvertent

9.1 The Feature-Interaction Problem 215

and critical ways: When fire is detected, feature FireControl activates sprinklers; sub-
sequently, feature FloodControl detects standing water, and turns off the water main;
as a consequence, the building burns down.
Clearly, the interaction between FireControl and FloodControl is undesired, and inad-
vertent in the sense that it is hard to predict when planning and implementing the
involved features independently. Only when the interaction is known, we can take
corresponding steps to manage or resolve it, in this case, for example, by giving
explicit priority to feature FireControl over feature FloodControl, controled by some
coordination code. �

Example 9.3 Read-only data structures and indexes. As a further example, suppose
we incrementally develop a simple data-management solution by starting with a sim-
ple read-only data structure and by extending it with two optional features Write and
Index. Feature Write adds functionality to add, change, and remove data. Indepen-
dently, feature Index is developed on top of the read-only data structure to speed-up
data retrieval (say, by storing an index as a separate hash map, which is created at
load time). Without the other, both features work well on top of the basic data struc-
ture; but when combined, changes in the data due to feature Write are not reflected
in the index maintained by feature Index. As a consequence, the index can become
inconsistent with the data structure such that queries return incorrect results.
Clearly, some coordinating behavior is missing when combining two features. Fea-
ture Write does not know about the index that needs to be updated, and feature Index is
not aware that the data structure can be modified. When we understand their interac-
tion, we can implement additional coordination code, such that the index is updated
properly when the data are modified. �

Example 9.4 Database transactions and statistics. Similar to the previous exam-
ple, the features Transactions and Statistics interact in a database system. Transactions
ensures ACID properties (atomicity, consistency, isolation, durability) in the case of
concurrent access to persistent data, and defines the granularity of recovery actions.
Statistics collects information for tuning and optimizing data management (for exam-
ple, number of tables).
Transactions and Statistics interact. On the one hand, Statistics collects information
on transaction operations (for example, the number of transactions per second is
measured and stored for self-tuning). On the other hand, feature Transactions provides
transactional access to statistics data: we want to access data collected by feature
Statistics under the umbrella of transactional control.
If we develop both features independently, Statistics would not know about trans-
actions and could not collect statistics on them. Conversely, Transactions would not
know about statistics and could not control access to statistics data. Only when we
know about this interaction, we can implement corresponding coordination code to
make them work correctly together. �

These examples show the breadth of possible feature interactions. Some feature
interactions are undesired and inadvertent in the sense that they are hard to pre-
dict when planning and implementing features in isolation (see Example 9.2). Other

216 9 Feature Interactions

Fig. 9.1 Visualization of
three features, three 2-way
interactions and one 3-way
interactions

A B

C

A\B

B\CA\C

A\B\C

feature interactions are desired and planned in advance (see Example 9.4). In any
case, features need to be coordinated (more or less explicitly), and that may require
additional coordination code, which we discuss in Sect. 9.3 in more depth. That also
means, feature interactions may harm feature modularity (see Sect. 3.2.4, p. 57),
because, besides the fact that each feature has its own code, there is additional code
that does not belong to a single feature, but to a combination. We discuss this issue
further in Sect. 9.4.

9.1.1 Higher-Order Interactions

All examples so far illustrate interactions between pairs of features. However, there
can also be interactions between more than two features, which are called higher-order
interactions or n-way interactions. The interaction between FireControl and FloodCon-
trol is a 2-way interaction or first-order interaction. An interaction that occurs when
three features are selected, but not for feature selections of pairs of these features, is
called a 3-way interaction or second-order interaction. In Fig. 9.1, we illustrate the
possible interactions between the three features A, B, and C by overlapping circles.
Three features can give rise to three 2-way interactions and one 3-way interactions
(intersections between circles).

Definition 9.2 If n features interact, but none of their strict subsets, this is
called an n-way interaction. �

Example 9.5 Higher-order interactions are difficult to illustrate in small examples.
They emerge from the complex interplay of multiple features. Here, we have created
a small but dense code example of a Stack to illustrate a specific case in which
three features interact. In this example, variability is encoded using preprocessor
directives (see Sect. 5.3, p. 110). The code that coordinates the features of Stack is
implemented in the form of nested preprocessor directives (that is, its absence does
not cause misbehavior like in the fire-and-flood-control example).

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_5

9.1 The Feature-Interaction Problem 217

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Fig. 9.2 Implementing a stack data structure with preprocessor directives; coordination code is
implemented by nesting preprocessor directives

In Fig. 9.2, we show the code of the features Locking, Logging and Undo. There is
code that belongs to the individual features, and code that belongs to combinations
of features (intersections in Fig. 9.1), which is recognizable from nested #ifdef direc-
tives (the code is only included if multiple features are selected). Note particularly
Line 29, which is only included if and only if all three features are selected. If this
line caused a failure (for example, threw a null-pointer exception), the failure would
occur only in products with all three features, but not in products that select only
strict subsets of these features. �

Empirical evidence, for example by Kolberg et al. (2000), Kuhn et al. (2004), and
Reisner et al. (2010), indicates that (a) higher-order interactions occur in practice, but
also that (b) higher-order interactions are rare compared to interactions between pairs
of features; most failures are related to individual features or interactions between two
features (such as Examples 9.1–9.4). This empirical evidence suggests to concentrate
effort on detecting 2-way feature interactions by analyzing mostly pairs of features,
an approach also frequently taken in product-line testing 10.3.2.

9.2 Detecting Feature Interactions

Especially when features are developed independently, detecting and identifying
feature interactions is a challenging task, and is still one of the big open problems
of product-line development. There are many different strategies, mostly pioneered
in the domain of telecommunication systems since the 1990s (Calder et al. 2003;
Nhlabatsi et al. 2008), but there is no single strategy that can be claimed as general,
scalable, and production-ready, yet.

http://dx.doi.org/10.1007/978-3-642-37521-7_10

218 9 Feature Interactions

A key problem of detecting feature interactions is that inadvertent feature
interactions may lurk behind any feature combination. In a product line with n fea-
tures, there are

(n
2

) = n(n−1)
2 pairs of features that may potentially interact, and

there are
(n
k

)
possibilities for k-way interactions. In short, the exponential number

of potential interactions limits any systematic and complete search. Even investigat-
ing only 2-way interactions (which are empirically much more likely to occur than
higher-order interactions) may be overwhelming for industrial-sized product lines.

Within this book, we will not go into details regarding feature-interaction detec-
tion, but refer to the corresponding research literature; good starting points are the
surveys by Calder et al. (2003) and Nhlabatsi et al. (2008). A typical strategy to
detect feature interactions is to make requirements and assumptions regarding fea-
tures explicit and check them as part of systematic requirements analysis in the
domain-analysis phase (see Sect. 2.2, p. 19):

• At the requirements level, a typical strategy is to systematically search for shared
resources. Two features that share resources may potentially interact over this
resource. For example, the features FireControl and FloodControl from Example 9.2
both affect the resource water supply. A typical strategy is to model all resources
relevant for each feature and subsequently investigate manually all pairs of features
that share a resource.

• The strategy applied to resources can be used also for events (and preconditions
of operations). Two features that react to the same event (or that have overlapping
preconditions) are potential candidates for feature interactions. For example, the
features CallForwarding and CallWaiting from Example 9.1 both react to the same
event (that is, an incoming call on a busy line). Again, modeling events allows us
to manually investigate all pairs of features reacting to the same event.

• Inconsistent requirements and conflicting goals of features revealed during domain
engineering can also be an indicator of potential interactions. For example, features
Acceleration to increase the speed of a car and AdaptiveCruiseControl to automati-
cally adjust the distance to other cars by decreasing speed have conflicting goals.
Again, requirements and goals need to be made explicit, for example, by modeling
them.

• Making assumptions (or invariants) of features explicit can help detecting when an
assumption is violated by other features. For example, feature Index in Example 9.3
assumes that the data structure is immutable, an assumption violated by feature
Write.

In addition to manual investigation of requirements documents during domain
analysis, formal methods can be applied to feature-interaction detection. For example,
if preconditions or goals are formally stated, automatic reasoners can detect overlaps,
inconsistencies, and critical program states. Similarly, if the behavior of the system
can be modeled and assumptions or invariants can be specified formally, model
checkers and other reasoners can detect violations.

Example 9.6 Consider the example of an e-mail client that has two optional fea-
tures for encryption and automatic forwarding (Hall 2005). Both features have been

http://dx.doi.org/10.1007/978-3-642-37521-7_2

9.2 Detecting Feature Interactions 219

developed and tested based on the basic e-mail client, independently of the respective
other feature. As it happens, both features interact in an inadvertent way: The inter-
action occurs if one host sends an encrypted e-mail to a second host that forwards
the e-mail automatically to a third host. If the second host does not have the public
key of the third host, it forwards the e-mail in plain text (the forwarding feature has
been developed independently and thus does not take encryption into account).

Apel et al. (2013) have shown that this situation contradicts the specification that
encrypted e-mails must never be sent in plain text over the network (Hall 2005),
and that product-line model-checking technology can be used to detect this situation
automatically. �

For a comprehensive overview of formal approaches for feature-interaction
detection, see the recent surveys by Calder et al. (2003) and Nhlabatsi et al.
(2008). Formal methods have been successfully applied on core models of product
lines (Heymans 2012), but to scale them to be able to analyze source code instead of
requirements models or manually abstracted models remains an open problem.

Finally, excessive product-line testing can be employed, if suitable test cases are
available or if the assumptions of features are specified as run-time assertions. We
return to product-line analysis in Chap. 10, including combinatorial testing for feature
interactions.

For the remainder of this chapter, we assume that we already know which features
interact. We focus on how to implement features with a known interaction by means
of coordination code.

9.3 The Optional-Feature Problem

As we have seen so far, interactions between features often require additional coor-
dination code. This code has to be implemented somewhere, and it has to take action
only if the corresponding features are present in a given product. The combination
of the fact that features can be optional and the need of code to coordinate features
give rise to the optional-feature problem.

Definition 9.3 The optional-feature problem is the mismatch between
intended variability (as specified in the feature model) and the actual variabil-
ity provided by the implementation, due to coordination code. It occurs when
two (or more) optional features interact, and the presence of coordination code
reduces the intended variability of the product line. �

Suppose, in our database example, feature Statistics counts the number of transac-
tions per second. If the user configures a database without feature Trans-
actions, the implementation of Statistics breaks (as code concerning transaction
management is missing). That is, the implemented variability (Statistics requires

http://dx.doi.org/10.1007/978-3-642-37521-7_10

220 9 Feature Interactions

1
2
3
4
5

6
7
8
9

10
11
12
13
14

15
16
17
18
19
20

21
22
23
24

25
26
27
28
29
30

Fig. 9.3 Excerpts of the implementations of the features Weighted and ShortestPath of the graph
implementation in Jak/AHEAD

Transactions) does not align with the intended variability (both features shall be
independently selectable).

The optional-feature problem is a specific, but common implementation-level
instance of the feature-interaction problem. From a developer’s perspective it deserves
special attention, because, although often simple to detect, it occurs frequently. When
talking about feature interactions so far, we discussed problems regarding incorrect
behavior due to missing coordination code. In contrast, the optional-feature problem
is concerned with incorrect implementations of variability that reduce intended vari-
ability or that have other negative effects such as nonmodular code, as we discuss in
the remaining chapter.

Let us illustrate the optional-feature problem further with an example from our
graph library.

Example 9.7 The optional-feature problem in the graph example. Suppose a ver-
sion of our graph example in which the features Weighted and ShortestPath are both
optional and independent. The feature model also specifies that feature Cycle con-
ceptually depends on feature DFS.

Now, let us consider implementations of these features. In Fig. 9.3, we show
excerpts of implementations using feature-oriented programming using Jak/AHEAD,
which are based on the graph implementation of Sect. 6.1. Notice how the imple-
mentation of feature Cycle refers to method search from feature DFS, and how the
implementation of feature ShortestPath refers to field weight from feature Weighted.
Due to these references, there are implementation dependencies from feature Cycle
to feature DFS and from feature ShortestPath to feature Weighted.

The implementation dependency between features Cycle and DFS is acceptable
and possibly even not avoidable, because the dependency is fundamental in the
domain. The feature model already documents this intended dependency.

http://dx.doi.org/10.1007/978-3-642-37521-7_6

9.3 The Optional-Feature Problem 221

1
2
3
4
5

6
7
8
9

10

11
12
13
14

15
16
17
18
19
20

Fig. 9.4 Alternative implementation of Weighted and ShortestPath in Jak/AHEAD, without any
implementation dependency between them

But, the optional-feature problem occurs between the features ShortestPath and
Weighted (in this implementation). Although desired, we cannot generate a product
for a feature selection with feature ShortestPath, but without feature Weighted: The
generated code would contain a dangling reference to field weight. Conceptually,
however, such a product should be possible to generate, because both features are
optional and independent in the feature model and desired by stakeholders (finding
the path with the fewest edges). Hence, we have an implementation dependency
that reduces the variability of the product line beyond the domain expert’s intention,
only because of the coordination code that let the features Weighted and ShortestPath
properly interact (Line 27).

Since implementation dependencies are specific to one implementation but not
essential in the domain, we can usually provide an alternative implementation without
that dependency. We sketch a naive, alternative implementation in Fig. 9.4, in which
we can freely combine the features ShortestPath and Weighted: We move the field
weight with a default value to the base code, so that feature ShortestPath works inde-
pendently of feature Weight, without any dedicated coordination code that impairs
variability (however, now the base code contains a field that is unused in products
without feature Weighted). We discuss different implementation strategies to solve
the optional-feature problem in Sect. 9.4. �

As illustrated in the example, the optional-feature problem arises from a mis-
match between variability specified in the feature model and variability provided
by a specific implementation. The problem occurs when coordination code is hard-
wired inside a feature. The optional-feature problem often manifests in the form of
type errors (for example, a dangling reference to a feature that is absent), which
can be detected when actually compiling a derived product (see also Chap. 10 for
mechanisms how to detect type errors in all products of a product line).

The optional-feature problem and the feature-interaction problem are highly
related, but the goals and challenges are different. In the feature-interaction prob-
lem, the challenge is identifying missing behavior (and coming up with correspond-
ing coordination code), whereas, in the optional-feature problem, the challenge is
implementing the coordination code such that it does not impair variability.

http://dx.doi.org/10.1007/978-3-642-37521-7_10

222 9 Feature Interactions

9.4 Implementing Feature Interactions

After we have identified that two features interact, we need to find a strategy to
deal with the interaction, preferably a strategy that does not introduce the optional-
feature problem. As one possibility, we can change the feature model to prevent the
interaction (or, alternatively, enforce it in all products). For example, we could declare
interacting features as mutually exclusive. However, usually the goal is to generate
all products properly as intended by domain experts, that is, generate products with
both features combined and with each feature in isolation.

Essentially, all resolutions of feature interactions (and the optional-feature prob-
lem) can be abstracted to and described by the following pattern: There are two
implementations of the individual features, and, to use them together, some coor-
dination code is required to patch up both features (typically, by adding additional
code, but potentially also by overriding behavior or removing code). This pattern
applies to all examples throughout this chapter.

• Call forwarding and call waiting (Example9.1). When both features are selected,
additional code should coordinate them. Coordination code can give priority to
one feature, invoke them in sequence, or provide a configuration dialog for users
to configure the desired behavior.

• Fire and flood control (Example9.2). When both features are selected, additional
coordination code is required to specify that feature FireControl overrules feature
FloodControl.

• Read-only data structures and indexes (Example9.3). In the data-structure exam-
ple, the need for coordination code is especially obvious. When we select both
features Write and Index, we need additional code to update the index on write
operations.

• Database transactions and statistics (Example9.4). Similar to the previous exam-
ple, we need coordination code to implement the missing behavior of collecting
statistics about transactions and for synchronizing the access to statistics data.

• Weighted graphs and shortest path (Example9.7). Finally, feature ShortestPath
can be implemented independently of feature Weighted and vice versa; but, to use
them together, we need to include coordination code, such that the shortest-path
algorithm uses the correct weights.

For illustration, we use a graphical notation of two interacting features, shown
in Fig. 9.5. Each feature is represented by a circle and the overlap between them
represents the code that coordinates their interaction. With this graphical notation,
we can also illustrate the desired products, as shown in Fig. 9.6: Either we want both
features with their interaction properly coordinated, or we want each feature in isola-
tion, without any coordination code. In Fig. 9.1, we already illustrated an equivalent
picture for higher-order interactions. Now the question is how to implement feature
code and coordination code properly inside a product-line implementation. We will
use the graphical notation to illustrate and discuss six implementation strategies.

9.4 Implementing Feature Interactions 223

Statistics
(buffer hit ratio,
table size,
cardinality,...)

Transactions
(locks, commit,
rollback,...)

coordination code
(transactions per second)

Fig. 9.5 The features Transactions and Statistics in concert

database with statistics
and transactions

database with statistics
without transactions

database with transactions
without statistics

Fig. 9.6 Desired products using the features Transactions and Statistics

9.4.1 Implementation Strategies: Overview and Goals

What makes a good strategy to implement coordination code for feature interactions
and to solve the optional-feature problem? There are at least four goals that we want
to achieve.

1. Variability. The implementation strategy should allow the programmer to generate
all products for all feature selections specified as valid in the feature model. That
is, we do not want to reduce variability merely due to implementation issues, as
described by the optional-feature problem (see Sect. 9.3).

2. Implementation effort. The implementation strategy should not require over-
whelming implementation effort, because such implementation strategy would
not be attractive to use in practice.

3. Binary size and performance. The implementation strategy should not increase
binary size or decrease performance of products compared to an individual
implementation of each product.

224 9 Feature Interactions

4. Code quality. Finally, the implementation strategy should not reduce code quality,
which would make the product line harder to maintain. As discussed in Part II,
there are many trade-offs, but the implementation strategy for interactions should
fit to the interaction strategy chosen for features in the first place.

In the following, we discuss six implementation strategies. None of the strategies
fulfills all goals; they have different trade-offs, as we will discuss. The discussed
strategies are:

• Change feature model. Instead of a proper implementation, we exclude problematic
feature combinations from the feature model.

• Multiple implementations. To account for configurations with and without coor-
dination code, we implement the features separately for each combination.

• Moving code. Coordination code is moved to one of the interacting features or to
a shared required feature.

• Conditional compilation. Using a preprocessor, the coordination code annotated
and only complied if both features are present.

• Optional weaving. Coordination code is implemented as implicitly optional, using
mechanisms inspired by aspect weaving.

• Distinct module for coordination code. A distinct module separates coordination
code from feature code; the module is automatically included when both features
are included.

We discuss these strategies separately, before we compare them in the end.

9.4.2 Change Feature Model

The simplest solution to resolve a known, undesired feature interaction is to for-
bid the problematic feature selection. Instead of solving the problem by adding
proper coordination code or reimplementing features, we restrict the feature model
to exclude problematic feature selections with an additional constraint. Similarly,
we can declare an implementation dependency as domain dependency in the feature
model. For example, we could mark the features FireControl and FloodControl from
Example 9.2 as mutually exclusive, and we could enforce that feature ShortestPath
cannot be selected without feature Weighted in Example 9.7.

This solution, of course, restricts variability (or at least acknowledges the reduced
variability) compared to what should be valid products in the domain. On the positive
side, this solution does not require to change the implementation and, thus, does not
affect performance or code quality. Depending on the importance of the excluded
products, the reduced variability can be acceptable or can have a serious impact on
the strategic value of the product line.

When adopting this solution, we recommend documenting clearly which con-
straints in the feature model are driven by implementation dependencies. Such
documentation helps to separate conceptual considerations in the domain from
implementation issues.

9.4 Implementing Feature Interactions 225

module
boundary

products

miss
ing products

Fig. 9.7 Ignore feature interactions and restrict variability

In Fig. 9.7, we illustrate the solution graphically. We have two features that already
contain coordination code, but the coordination code is encoded such that it causes an
implementation dependency (as in Example 9.7 about the shortest-path algorithm).
Here, we add the implementation dependency to the feature model, again disallowing
the corresponding products. In a similar case (not shown graphically), we have two
feature implementations but the necessary coordination code is missing (as in Exam-
ple 9.2 about fire and flood control). We simply declare both features as mutually
exclusive in the feature model, thus prohibiting products with both features.

9.4.3 Multiple Implementations

A simple strategy to handle interactions is to provide multiple implementations of
a feature, one with and one without coordination code. For example, we can have
two implementations of feature FloodControl from Example 9.2, one that always turns
off water when flooding is detected and one that turns off water only after checking
with feature FireControl. Similarly, we could provide an implementation of feature
ShortestPath of Example 9.7 for weighted graphs and a second implementation for
unweighted graphs. During product derivation, we would then include the suitable
implementation, depending on which other features are selected.

Unfortunately, this strategy neglects code reuse, the prime benefit of product-
line development, and encourages code replication instead. We need to implement a
feature multiple times, one for each feature combination. Furthermore, the approach
does not scale if a feature interacts with multiple other features. We need up to 2n

implementations of a feature that interacts with n other features.

226 9 Feature Interactions

co
de re

plica
tio

n

products
module
boundary

Fig. 9.8 Multiple implementations to make features optional

In Fig. 9.8, we visualize the multiple-implementations strategy. We provide two
implementations of the dark-gray feature (say, feature ShortestPath), one with and one
without code for coordination with other features. We can generate products for all
feature combinations at the price of code replication and additional implementation
effort.

9.4.4 Moving Code

In many cases, it is possible to implement the coordination code in one of the two
features or in a third feature to which both features refer. For example, feature Flood-
Control from Example 9.2 could always include code for checking overriding condi-
tions, independent of whether feature FireControl is selected. In the graph example in
Fig. 9.4, we have already shown another instance of this solution: We have moved the
field weight into the implementation of the base feature. The solution works, because
we move the coordination code where it does not cause dependencies.

This solution has two drawbacks. The first drawback is a conceptual one: We
violate the principle of separation of concerns (see Sect. 3.2.3, p. 55), because we
move code to implementation units where it does not belong to. For example, feature
FloodControl must now be aware of other overriding features as the fire sensor. Also,
in our solution for feature ShortestPath in Fig. 9.4, we moved field weight that
conceptually belongs to feature Weighted into the base code. With this implementation
strategy, we give up the clear traceability from features to their implementation,
as postulated in Sect. 3.2.2. The point is that coordination code does not belong

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3

9.4 Implementing Feature Interactions 227

products

possibly not

module
boundary

Fig. 9.9 Move code between features

to a single feature, but to combinations of features, so it is between modules that
implement individual features.

Second, more technically, we include unnecessary code in some products. In the
flood-control example, we would always include and execute code to check for a
potential fire sensor, even in products without feature FireControl. In our solution
for feature ShortestPath, all edges in all products now contain a field weight (which
requires additional memory per object), even when neither feature ShortestPath nor
feature Weighted is selected. Including unnecessary code potentially increases binary
size, increases memory consumption, and decreases performance.

In Fig. 9.9, we visualize the implementation strategy. The coordination code is part
of the implementation of one feature (or of some external feature that both features
depend on; not shown here). The coordination code is implemented such that it does
not cause a dependency; it remains as dead code in one feature, if the other feature
is not selected. As a result, at least one product contains unnecessary code.

9.4.5 Conditional Compilation

If we use an annotative implementation strategy (see annotation versus composition
3.1.3, p. 50) for the product line, such as parameters (see Sect. 4.1) or preprocessors
(see Sect. 5.3, p. 110), implementing glue code that is only executed if both features
are selected is straightforward.

We simply place the coordination code that binds both features in nested if state-
ments, nested #ifdef directives, or the like. Particularly compile-time approaches
(see binding times in Sect. 3.1.1, p. 48), such as conditional compilation with

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_3

228 9 Feature Interactions

1
2
3
4
5
6

7
8
9

10

11
12
13
14
15
16
17
18

Fig. 9.10 Preprocessor-based implementation of Weighted and ShortestPath that implements coor-
dination code as a conditional block

preprocessors, have the advantage that coordination code is only compiled and
included when both features are selected. In Fig. 9.1 (p. 216), we have already
illustrated interactions, including higher-order interactions, in terms of nested #ifdef
directives.

Even when we use a primarily composition-based implementation strategy (such
as components, frameworks, feature-oriented programming, and aspect-oriented pro-
gramming, see Chaps. 4 and 6), we can use #ifdef directives inside composition units
to conditionally remove unnecessary coordination code before compilation. We illus-
trate a possible solution for our shortest-path example (Example 9.7) in Fig. 9.10,
where we eliminate unnecessary code from the composition unit at compile-time
with a preprocessor.

This solution can implement all products without code replication and without
compiling unnecessary code causing performance penalties. However, as already
discussed in the context of parameters in preprocessors in Sects. 4.1 and 5.3, code
quality is usually regarded as poor due to scattering and tangling of feature code and
due to neglecting separation of concerns.

The preprocessors solution to known feature interactions is visualized in Fig. 9.11.
It does not support an explicit separation of feature implementations. Consequently,
in our graphics we have no module borders.

9.4.6 Optional Weaving

Instead of annotating optional coordination code inside the implementation explicitly
with #ifdef directives or similar techniques, several researchers have explored more
implicit mechanisms (Kästner 2007; Leich et al. 2005; Lohmann et al. 2011). These
mechanisms are aimed at composition-based approaches (see annotation versus com-
position in Sect. 3.1.3, p. 50). The mechanisms, which we summarize under the name
optional weaving, are inspired by the quantification mechanism in aspect-oriented
programming (see Sect. 6.2, p. 141).

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_6

9.4 Implementing Feature Interactions 229

not modular

products

#ifdef TXN
lock();
#ifdef STAT
lockCount++;
#endif
#endif

Fig. 9.11 Use of preprocessor annotations for implementing a feature interaction

In aspect-oriented programming, a developer declaratively specifies which code
fragments to extend by means of a pointcut. The additional code is woven to all join
points matched by the pointcut (possibly one, multiple, or even none).1 Similarly,
optional weaving declares where to add coordination code, but silently fails if the
target is not present. As in the conditional-compilation strategy, coordination code is
located in one of the features, but only included for compilation when both features
are selected.

In Fig. 9.12, we illustrate the idea of optional weaving with a small code exam-
ple for the fire-and-flood-control example. If the system does not contain methods
startFireAlarm and endFireAlarm (when FireControl is not selected), the corresponding
glue code in the advice body is simply never woven into the system.

Optional weaving is controversial and has not been fully explored yet. First,
the weaving concepts of AspectJ are technically too restrictive for application of
optional weaving at larger scale: Pointcuts cannot refer to class names that are pos-
sibly not present in the system, and optional weaving is not available for inter-type
declarations. However, adopting the optional-weaving idea to other languages seems
possible; AspectC is more flexible in this regard than AspectJ (Lohmann et al. 2011).
Second, optional weaving depends on the silent failure to weave code when the tar-
get is not present. However, silent failure eliminates the chance to check or enforce
weaving. For example, if a developer renames method startFireAlarm to beginFire-
Alarm without updating the pointcut, the coordination code is no longer woven into
the system, but this failure is indistinguishable from correctly not weaving the coor-
dination code if feature FireControl is not selected. Critics of optional weaving fear

1 AspectJ issues a warning for a pointcut that does not match any join point shadow, but does not
enforce any specific number of matches.

230 9 Feature Interactions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 9.12 Example for optional weaving

that the mechanism is too implicit and will result in a large amount of optional code
for which it remains unclear when exactly it is applied. However, optional weaving
is a comparably recent solution, for which further research is needed.

9.4.7 Distinct Module for Coordination Code

In previous implementation strategies, we have discussed where to move coordination
code. An alternative for composition-based implementations is to create yet another
module for code that coordinates features. As illustrated in Fig. 9.14, we separate
coordination code and compose it with the implementation of both features if and
only if both features are selected. This strategy also scales for higher-order interactions
with more additional modules for coordination code as illustrated in Fig. 9.1.

In the literature, the additional modules for glue code are well known, but have
many different names. They are called lifters (by Prehofer (1997), because they lift
the implementation of one feature to the implementation of another feature), tiles (by
Kühne (1999), because they connect features from different dimensions shown as a
matrix), derivatives (by Liu et al. (2006), because they are derived from two features),
connectors (terminology in Eclipse, because they connect two other plug-ins), and
so forth.

In our fire-and-flood-control example (Example 9.2), we could implement both
features in separate modules and add the coordination code (which overrides one
feature with the other) as a separate module. The separate module is automatically
included when both features are selected. For our shortest-path example (Exam-
ple 9.7), we have exemplified one possible solution in Fig. 9.13: The implementation
of feature ShortestPath calls a method isLonger with a default implementation that is
overridden by coordination code in a separate module (ShortestPath_Weighted).

The key to this implementation strategy is that the additional module for the coor-
dination code is automatically included during generation in the product derivation
process, if and only if all participating features are selected. Some automation should

9.4 Implementing Feature Interactions 231

1
2
3
4

5
6
7
8
9

10
11
12
13

14
15
16
17
18
19

20
21
22
23
24
25
26

Fig. 9.13 Alternative implementation of Weighted and ShortestPath with an additional module for
the glue code between them

additio
nal m

odule

(co
mplex)

products
module
boundary

Fig. 9.14 Distinct modules implement coordination code

make sure that we cannot forget the coordination code. In the simplest case, we can
create a new feature for the coordination code in the feature model and use con-
straints to enforce consistent selection (for example, ShortestPath_Weighted⇔
(ShortestPath∧ Weighted)). More sophisticated support in the generation step
can help to hide the additional modules. Liu et al. (2006) and Batory et al. (2011) dis-
cuss a conceptual and theoretical framework that includes also a concept for naming
and automatic selection.

In some cases it can be debatable whether the added module should be hidden
and automatically selected, or whether it should be exposed as an extra feature.
In our statistics-and-transactions example, we could argue that collecting statistics
about transactions is another optional feature, but we could also argue that it belongs
conceptually to the features transactions and statistics and should be selected auto-

232 9 Feature Interactions

matically. In most cases, though, the extra module clearly does not constitute a
domain abstraction that should be modeled as feature, but mere coordination code
that should be included automatically. For example, the coordination code of the fire-
and-flood-control example and the write-and-index example should not be offered as
optional feature; not including the coordination code when both features are included
would be considered as interaction bug in these scenarios.

An interesting insight about this strategy is that it can also work in open-world
scenarios (see software ecosystems in Sect. 4.3.5, p. 86) where features are provided
by independent developers without central authority. For example, in Eclipse, when
two plug-ins interact (or should interact), we can add the corresponding coordination
code as another plug-in, which is typically called connector in this domain. However,
a yet unsolved problem in open-world scenarios is to detect the interaction and make
sure that a corresponding connector is provided, because there is no central product
derivation mechanism that could automatically include the required coordination
code.

The use of distinct modules for coordination code is a way of handling interac-
tions, but there are also drawbacks. The number of derivatives may explode in cases
where many interactions exist. This may lead to a high number of additional but
potentially very small modules that can be overwhelming for developers and hard to
understand in isolation. In the future, this increased complexity may be more man-
ageable by tools supporting the automatic refactoring of existing coordination code
into distinct modules (see Chap. 8), and their tool-driven maintenance throughout
the whole lifetime of a software product line (see Chap. 7)—but more research is
needed.

9.4.8 Comparison of Solutions

After we have discussed the implementation strategies in isolation, we can now take
a look at the complete picture and discuss how the strategies perform with regard
to our four goals of variability, implementation effort, binary size and performance,
and code quality.

• Regarding variability, all implementation strategies, except mere changes to the
feature model, support the full variability.

• The implementation effort differs significantly. Creating multiple implementa-
tions per feature requires significant overhead, and also creating distinct modules
for coordination code requires significantly rewriting existing code and creating
additional modules.

• Potential overhead regarding binary size, memory consumption, and performance
is a problem when moving the code. For optional weaving, we do not yet have
sufficient experience.

• Code quality can be discussed controversially. However, code replication of the
multiple-implementation strategy is obviously a problem. Also, suboptimal sepa-

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_8
http://dx.doi.org/10.1007/978-3-642-37521-7_7

9.4 Implementing Feature Interactions 233

Table 9.1 Comparison of implementation approaches for the feature interaction problem

Implementation strategy Variability Implementation Binary size Code quality
effort and performance

Change the feature model � � �
Multiple implementations � �
Moving code � � �
Conditional compilation � � �
Optional weaving � � �? ?
Distinct modules for glue code � � �

ration of concerns and scattering and tangling of code associated with conditional
compilation is typically regarded as poor quality. Also, the implicit mechanisms
of optional weaving potentially threaten code quality.

We summarize the discussion in Table 9.1.
As the table shows, there is no clear generally preferable strategy. Merely the

multiple-implementation strategy seems never to be a good idea. From the remaining
strategies, we need to select depending on the context and on which goal is currently
most important to developers. Changing the feature model is the easiest solution, but
decreases variability. Moving code is also simple, but potentially produces overhead.
The main criticism of conditional compilation is its effect on code quality. Creating
distinct modules for coordination code seems elegant, but can require significant
additional effort from developers. Optional weaving is a new research approach for
which not much experience is available. In practice, developers typically will mix
and match the approaches according to their needs.

9.5 Experience

From the previous discussion, it seems that developers have to decide for the lesser
evil when selecting an implementation strategy for feature interactions. All strategies
have different trade-offs and none is without drawbacks. To gain experience, we
conducted two case studies on the database systems Berkeley DB (both the Java
edition and C edition) and FAME-DBMS (C++ implementation). In all cases, we
observed and analyzed product-line development, counted instances of the optional-
feature problem, and discussed and explored different implementation strategies.
The results were published in Kästner et al. (2009), but here we repeat the key results
to provide some context for the different strategies.

The case studies followed different implementation strategies. In the case of
Berkeley DB, we decomposed an existing system into a product line. We started
with legacy code that already contained many features, without making them
explicit or configurable. Interactions between features were already hard-coded

234 9 Feature Interactions

(all features were hard-coded as part of the mandatory base code, so was the coor-
dination code between them). We subsequently extracted features and made them
optional, a process in which we found coordination code and needed to decide how
to implement it. In the case of FAME-DBMS, we developed the product line from
scratch. However, since the domain of database systems is well known, we could
easily anticipate and plan interactions between features. In both case studies, we
focused on the optional-feature problem, that is, how to implement known feature
interactions without restricting the intended variability.

9.5.1 Decomposition of Berkeley DB

Oracle’s Berkeley DB2 is an open-source database engine implemented in approxi-
mately 70,000 lines of code, that can be embedded into applications as a library. In two
independent endeavors, we decomposed both the Java and the C version of Berkeley
DB into features (described in more detail by Kästner et al. (2007) and Rosenmüller
et al. (2008)). We pursued a composition-based implementation strategy with the
goal of separating each feature in a distinct module, using aspect-oriented program-
ming with AspectJ in the Java version (see Sect. 6.2, p. 141) and feature-oriented
programming with FeatureC++ in the C version (see Sect. 6.1, p. 130).

In the Java version, we identified 38 features. Almost all features are optional
and there are only 16 domain dependencies; in theory, we should be able to derive
3.6 billion different products. However, implementation dependencies occurred much
more often than domain dependencies. With manual and automated source-code
analysis, we found 53 implementation dependencies corresponding to 2-way inter-
actions that were not covered by domain dependencies. We did not find higher-
order interactions. We show an excerpt of features and corresponding dependencies
between their implementation modules in Fig. 9.15 (implementation dependencies
marked with ‘x’; there are no domain dependencies between the shown features).
Overall, in Berkeley DB, the optional-feature problem occurred between 53 pairs of
features, which are independent in the domain, but not in their implementation.

Changing the feature model to simply document all implementation dependen-
cies is not acceptable, because this would restrict the ability to generate tailored
products drastically. In pure numbers the reduction from 3.6 billion to 0.3 million
possible products may appear acceptable, considering that still many products can
be generated. Nevertheless, when having a closer look, we found that especially
in the core of Berkeley DB, there are many implementation dependencies. Impor-
tant features regarding statistics, transactions, memory management, and database
operations shown in Fig. 9.15 must be included in virtually every valid feature selec-
tion. The remaining variability of 0.3 million products is largely due to several small
independent debugging, caching, and IO features. Considering all implementation
dependencies, essentially all intended variability is lost.

2 http://www.oracle.com/database/berkeley-db

http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://www.oracle.com/database/berkeley-db

9.5 Experience 235

11. 12. 13. 20. 27. 29. 30. 31. 33.
11.
12. x
13. x x
20. x x x
27. x x x x
29. x x x x
30. x x x
31. x x x
33. x x x x x

Fig. 9.15 Implementation dependencies (‘x’) in Berkeley DB (excerpt)

In the C version, which has a very different architecture and was independently
decomposed into a different set of features, we identified 24 features (see Rosenmüller
et al. (2008) for details). But, the overall picture is similar: With only 8 domain depen-
dencies almost 1 million products are conceptually possible, but only 784 products
can be generated considering all 78 implementation dependencies between feature
pairs that we found. Again, important features were de facto mandatory in every
feature selection.

These numbers give a first insight into the impact of the optional-feature problem.
We found more instances of feature interactions than there are features (as explained
in Sect. 9.2, there can be a quadratic number of interactions between pairs of fea-
tures, and even an exponential number considering also higher-order interactions). In
Berkeley DB, the strategy to merely change the feature model reduces variability to
a level that makes the product line almost useless.

Exploring Implementation Srategies

After the analysis revealed that changing the feature model is not a general option, we
explored different solutions to eliminate implementation dependencies. Focusing on
a clean composition-based implementation, and following the principle of separation
of concerns, we started with creating distinct modules for coordination code.

In the Java version, we first created nine distinct modules to encapsulate coor-
dination code of all nine interactions of the feature Statistics. These nine modules
alone required over 200 additional pieces of advice or inter-type declarations with
AspectJ. Of 1867 lines of code of the statistics feature, we rewrote 76 % as modules
(which would also be the amount of code we needed to move into different features
for the moving-code strategy). This shows that most of the functionality of feature
Statistics is in its interactions with other features. In the C version, we created 19
distinct modules for coordination. In both versions, we experienced the necessary
rewrites as rather tedious. We needed between 15 min and 2 h for each new module,
depending on the amount of code. Due to the high effort, we refrained from creating
distinct modules for all implementation dependencies.

Next, we experimented with conditional compilation. In the C version, we used
#ifdef statements inside FeatureC++ modules, as illustrated in Sect. 9.4.5. In the Java

http://dx.doi.org/10.1007/978-3-642-37521-7_9

236 9 Feature Interactions

version, we used a preprocessor-like environment CIDE to eliminate all implemen-
tation dependencies (see virtual separation of concerns in Sect. 7.4 p. 184). Using
conditional compilation was significantly faster than implementing distinct modules,
because no changes to the code were necessary except for introducing annotations.
However, we deviated from our original goal of a clean composition-based imple-
mentation. As a result, feature code is scattered and tangled, with up to 300 annotated
code fragments in 30 classes per feature.

In Berkeley DB, both creating distinct modules for coordination code and condi-
tional compilation were acceptable despite their drawbacks. While we prefer a clean
separation of concerns, we felt that the required effort was overwhelming. In this
project, a mixture of additional modules and conditional compilation felt as a good
compromise to us.

9.5.2 Design and Implementation of FAME-DBMS

The question remains of whether the high number of implementation dependencies is
caused by the design of Berkeley DB and our subsequent refactoring, or whether they
are inherent in the domain. In the latter case, they should also appear in a database
product line that was designed from scratch.

FAME-DBMS is a prototype of a database product line implemented with Fea-
tureC++ (see feature-oriented programming in Sect. 6.1 p. 130). FAME-DBMS was
designed specifically for small embedded systems. Its goal was to show that product-
line technologies are appropriate to tailor data management for special tasks in even
small embedded systems (for example, BTNode with Nut/OS, 8 MHz, and 128 kB of
memory). FAME-DBMS is minimalistic and provides only essential data manage-
ment functionality to store and retrieve data using an API. Advanced functionality
such as transactions, set operations on data, or query processing was not part of the
prototype. The initial development that we describe here was performed in a project
by a group of four graduate students at the University of Magdeburg, after our expe-
rience with Berkeley DB.

Design

FAME-DBMS was designed after careful domain analysis and analysis of scenarios
and existing embedded database engines. The initial feature model of FAME-DBMS
as presented in the kick-off meeting of the project, is depicted in Fig. 9.16 (only layout
and feature names were adapted for consistency). It contains 14 concrete features
(grayed features were not linked to code). To customize FAME-DBMS, we can
choose between different operating systems, between a persistent and an in-memory
database, and between different memory-allocation mechanisms and paging strate-
gies. Furthermore, index support using a B+-tree is optional, so is debug logging,
and finally it is possible to select from three optional operations get, put, and delete.

http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_6

9.5 Experience 237

FAME-DBMS

BufferManagerDebugLoggingOS-Abstraction

Win Nut/OS InMemory PersistentStorage

delete get putUnindexed B+-Tree Static Dynamic LRU LFU

API MemAlloc PageReplacementIndexing

Fig. 9.16 Initial feature model of FAME-DBMS

Fig. 9.17 Domain dependen-
cies (‘o’) and implementation
dependencies (‘x’) in FAME-
DBMS

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1.
2. o
3.
4. o
5. x x o o
6. x x o o o
7. o o
8. o o o
9.
10. o
11. x x x x x
12. x x x x x
13. x x x x x x x
14. x x x x x x x x x x x x x

The intended variability, captured by the feature model, describes 320 valid feature
selections.

Soon after the initial design, the students realized that many of the features would
require code to coordinate interactions. In Fig. 9.17, we show the domain dependen-
cies (‘o’) and the implementation dependencies (‘x’) that were expected in addition.
The latter give rise to the optional-feature problem. For example, the debug logging
feature has an implementation dependency with every other feature (it extends them
with additional debugging code), but should be independent according to the feature
model. Also the features Get, Put, Delete, Nut/OS, and Win interact with many other
features. This analysis already shows that it is necessary to find suitable strategies for
the implementation of coordination code. Again, merely changing the feature model
was not an option, because this would almost entirely eliminate variability.

238 9 Feature Interactions

Implementation

We left the implementation up to the students. We recommended the solution with
extra modules for coordination code, but did not enforce it. In the remainder of this
section, we describe the final implementation at the end of the project and discuss
choices and possible alternatives.

First, as expected, the students chose implementation strategies to implement
coordination code without restricting variability. There were only two exceptions, in
which they changed the feature model: They merged features Put and Delete, so they
cannot be selected independently, and they marked feature Get as mandatory. With
this choice, they reduced the number of interactions they needed to implement from
36 to 22. At the same time, they reduced the number of possible products from 320
to 80. The intension behind changing the feature model was the following: Although
there are use cases for a database that can write but not delete data, or even for
a write-only database (see Szewczyk et al. (2004)), these feature selections are so
rarely demanded that the students considered the reduced variability acceptable.

Second, the 11 interactions of feature DebugLogging with other features have
been implemented using conditional compilation. This scattered the debugging code
across all implementation modules. Alternatively, some debugging code could have
been moved into the base implementation causing a small run-time penalty, or 11
additional modules could have been created. The students decided to use conditional
compilation despite the scattered code, because it required least effort.

Third, the implementation of feature B+-tree always contains code to add and
delete entries, even in read-only configurations. This is an instance of the moving-
code implementation strategy. In read-only configurations with feature B+-tree, the
additional code is included but never called. The students choose this strategy,
because it was simpler than creating distinct modules. An ex-post evaluation revealed
that the unnecessary code increased binary size by 4–9 kB (5–13 %; depending on
the remaining feature selection).

Fourth, the remaining 10 interactions were implemented using distinct modules,
following our original recommendation. The students considered the additional effort
as the lesser evil compared to a further reduction of variability, a further scattering
of code with preprocessor annotations, or a further unnecessary increase in binary
size. The multiple-implementations strategy was not considered at any time.

The implementation of FAME-DBMS used a combination of various strategies,
but still increased the code size of some products, reduced variability, and required
effort for creating 10 additional modules. Even in such small product line, the
optional-feature problem pervades the entire implementation.

All our case studies are from the database domain and we believe that other
developers may have chosen different trade-offs. The frequent occurrence of the
optional-feature problem may be due to the domain or the used fine granularity,
but we believe that observations will be possible in other product lines. In each case,
developers have to make their own choices with regard to implementing coordination
code, but we hope that sharing our experience helps with these trade-offs.

9.6 Further Reading 239

9.6 Further Reading

When the feature-interaction problem became a crisis in the telecommunications
industry in the late 1980s (Bowen et al. 1989), researchers began to develop for-
malisms to enable automatic detection of feature interactions (Blom et al. 1994;
Bruns et al. 1998; Felty and Namjoshi 2003; Lin and Lin 1994; Pomakis and Atlee
1996), architectures that avoid classes of interactions (Hay and Atlee 2000; Jackson
and Zave 1998; Utas 1998; van der Linden 1994; Zave 2010), and techniques for
resolving interactions at run-time (Griffeth and Velthuijsen 1994; Tsang and Magill
1998).

While the pioneering work on the feature-interaction problem in telecommunica-
tion systems was foundational and successful (see the surveys by Calder et al. (2003)
and Nhlabatsi et al. (2008)), it is limited, as it is based on assumptions that hold for
telecommunication systems, but not for other domains, for example, the enforcement
of architectural styles or the need of explicit specifications of feature interactions.

Recently, researchers began to propose solutions (mostly based on verification
techniques) to the feature-interaction problem that take the specific properties of
software product lines into account, especially, the possibly exponential number of
products (Apel et al. 2013; Classen et al. 2012; Lauenroth et al. 2009; Thüm et al.
2012).

The testing community has introduced the concept of interaction faults, which
denotes implementation defects that are only triggered when multiple parameters are
set to specific values. Garvin and Cohen (2011) provide a good definition of feature-
interaction faults, which includes the possibility that a defect occurs only when a
feature is deselected in combination with another feature. Several researchers have
empirically investigated how defects and code paths in practical software systems are
related to feature interactions (Kolberg et al. 2000; Kuhn et al. 2004; Reisner et al.
2010). The general insight is that the majority of bugs and code paths are triggered
by individual features or n-way interactions with low values for n. This confirms
a tendency in the testing community to search primary for 2-way interactions, in
software product lines and any other software systems.

Our discussion of the optional feature problem and the trade-offs of different
implementation strategies, as well as our experience report, is based on prior
work (Kästner et al. 2009). Most implementation strategies are quite obvious and
not discussed in-depth in the literature. However, the strategy of using additional
modules was discussed implicitly and explicitly in many contexts (Kühne 1999; Liu
et al. 2006; Lopez-Herrejon et al. 2005; Prehofer 1997). Also, optional weaving has
been discussed repeatedly in recent years (Adler 2010; Kästner 2007; Leich et al.
2005; Lohmann et al. 2011).

240 9 Feature Interactions

Exercises

9.1. Collect a list of interactions that may appear between (a) common features of a
mobile phone and (b) features identified in Exercise 2.4 (p. 43).
9.2. Hall (2005) has collected a list of possible interactions between basic features of
an e-mail delivery system, of which we show two below. Discuss possible strategies
how these two interactions could have been detected.

(a) Bob sends a signed message to Alice, who has no signing key provisioned. Yet
Alice forwards the message to a third party. The message will arrive there signed,
not by the sender (Alice), but by the originator (Bob). Thus, the signature will not
verify, even if the third party has a verifying key for Bob, since the verification
is defined to determine whether the message was signed by the sender of the
message.

(b) Bob sets up forwarding to Alice. Alice has an auto-response feature enabled.
A third party sends a message to Bob, which is forwarded to Alice. The auto-
response is sent back to Bob and then forwarded to Alice. Thus, messages arriving
at Alice via Bob are not effectively auto-responded.

9.3. Are all feature interactions undesired? Discuss this issue by means of the fol-
lowing feature interaction in a phone system:3 Alice is forwarding calls to Bob, and
Bob is forwarding calls to Carol. If Alice is called, should the call be forwarded to
Carol?
9.4. Extend the graph library with an additional feature that introduces a feature
interaction. Discuss the implementation strategies from Sect. 9.4; argue which imple-
mentation strategy is most suitable to resolve the optional-feature problem in this
case.
9.5. Did any implementation of the chat system (Exercise 4.1 and following) give rise
to feature interactions or the optional-feature problem? If yes, how did you handle
the interaction?

Below is a list of extensions for the chat system. For each extension:

(a) Explain which interaction is triggered by the extension. What is the required
coordination code in this case (if any)?

(b) Modify the chat system of Exercise 4.5, 6.2, or 6.4 accordingly.
(c) Observe whether the extension triggers an instance of the optional-feature prob-

lem. Illustrate the optional-feature problem in terms of intended and actual vari-
ability.

(d) Explore and compare all implementation strategies discussed in Sect. 9.4. Argue
which implementation strategy is most suitable for this extension.

The extensions for this exercise are:

1. Document in the history of the server whenever a user tries to authenticate with
an incorrect password (features History and Authentication).

3 Adopted from: http://www2.research.att.com/~pamela/faq.html.

http://www2.research.att.com/~pamela/faq.html

Exercises 241

2. Ensure that authentication messages are encrypted and that the spam filter always
works on decrypted messages (features Encryption, Authentication, and SpamFilter
from Exercise 4.5, p. 96)

3. Ensure that a message is never encrypted twice (encryption features).
4. The dialog showing the history should display the color of the message (features

History and Color).
5. Even when the user is busy, messages with red color are still delivered (features

Color and BusyStatus from Exercise 6.4, p. 173).

9.6. Consider a product line with 20 optional features of which 10 participate in
2-way interactions (each feature participates only in one interaction).

(a) How many modules are necessary to implement all coordination code using the
distinct-modules strategy?

(b) If we change the feature model to forbid interacting feature to be selected inde-
pendently, how many valid products can be generated?

Chapter 10
Analysis of Software Product Lines

After reading the chapter, you should be able to

• characterize opportunities and challenges for analyses of product lines (feature
model, implementation artifacts, mappings),

• perform analyses of feature models using a corresponding encoding as satisfiability
problem,

• detect dead code fragments manually and mechanically, and
• outline and compare strategies to perform variability-aware type checking of entire

product-line implementations.

Variability raises new challenges for establishing correctness or any kind of functional
or nonfunctional guarantees about programs. Testing, type checking, static analysis,
verification, or software and performance measurement are well-established for indi-
vidual systems, but they do not scale to product lines due to the huge configuration
space with a combinatorial explosion of feature selections.

Instead of a single product, a product line gives rise to dozens, thousands, or
billions of potential products that we might want to analyze. Analyzing every product
in isolation, using traditional analysis methods in a brute-force fashion, will not
scale: For a product line with n optional features, there are up to 2n products for
distinct feature combinations. Already with 33 optional and independent features,
we could create a product line with more products than persons on the planet; and
from a product line with 265 optional and independent features, we could derive
more products than there are estimated atoms in the universe.1 Industrial product
lines often have even more features; for example, according to Refstrup (2009),
HP’s product line Owen of printer firmware has roughly 2,000 features and the Linux
kernel currently has over 10,000 features (Tartler et al. 2011). These numbers clearly
rule out any brute-force strategy for product-line analysis.

Traditionally, developers get away with analyzing only a small set of products.
For example, Refstrup (2009) reports that even though HP’s printer firmware has

1 There are estimated 7B ≈ 233 people on earth and 1O8O ≈ 2265 atoms in the universe.

S. Apel et al., Feature-Oriented Software Product Lines, 243
DOI: 10.1007/978-3-642-37521-7_10, © Springer-Verlag Berlin Heidelberg 2013

244 10 Analysis of Software Product Lines

2,000 features, HP’s developers derive and test firmware only for about 100 current
printer models. Only when they produce a new printer, they test its (new) feature
combination; when a printer is no longer supported, the corresponding firmware is
no longer derived and tested. However, the strategy of checking few selected products
works only in cases when few products of a product line are actually needed and
application engineering is performed by the original developers.

In contrast, our view of feature-oriented product lines includes scenarios in which
users can freely configure features and automatically generate the corresponding
product. For example, instead of choosing from a small set of preconfigured products,
users of the Linux kernel can freely select from the 10,000 features they want to
include in their kernel. In such scenario, the Linux developers cannot predict which
products need testing; users may select any product and expect it to work properly.

In this chapter, we discuss a broad range of strategies and methods to analyze
a whole product line (or to attain a reasonable coverage) instead of analyzing all
derivable products individually. To this end, we explicitly consider variability in the
analysis, hence the name variability-aware analysis (also sometimes named product
line-aware analysis, family-based analysis, feature-aware analysis, whole-product-
line analysis, or 150-% analysis). We introduce mechanisms that are specific to
product-line variability and illustrate how to extend existing mechanisms such as
type checking, model checking, and static analysis to cover entire product lines.

We start with the basic analyses of feature models (Sect. 10.1) and a simple analysis
of the mapping between features and implementation artifacts (Sect. 10.2). Lastly, we
discuss examples of how to lift existing analyses to entire product lines (Sect. 10.3).

10.1 Analysis of Feature Models

Analyzing feature models is a good starting point, because it is well understood and
comparably simple. These analyses not only provide support for reasoning about
feature models themselves, but also provide a foundation for analyzing the code of a
software product line later. All the analyses discussed in this section are concerned
with the feature model (in domain analysis) and feature selections (in requirements
analysis) as illustrated in Fig. 10.1.

Among many others, feature model analyses can provide answers to the following
questions:

• Is a given feature selection valid for a given feature model?
• Is the given feature model consistent (that is, is there at least one valid feature

selection)?
• Do the following assumptions hold for my feature model (testing)?
• Which features are mandatory?
• Which features can never be selected (dead features)?
• How many valid feature selections does a given feature model have?
• Are two feature models equivalent (that is, do they define the same feature selec-

tions)?

10.1 Analysis of Feature Models 245

class Weight{

 void print(){
 ...
 }

}
 Weight w = new Weight();

 void print(){
 Super.print();w.print();
 }

}

class Node{

 int id = 0;

 void print(){
 System.out.print(id);
 }

}

Domain implementation

class Edge{

 Node a, b;
)b_edoN,a_edoN(egdE

 {
 a = _a; b = _b;
 }
 void print(){
 a.print(); b.print();
 }
}

Product derivationRequirements analysis
GraphLibrary

Edge Type

Weighted

Directed
Undirected

Search
BFS
DFS

Algorithm
Cycle
MST

ShortestPath

Prim
Kruskal

Transpose

(invalid, ... Solutions)

Product

D
om

ai
n

en
gi

ne
er

in
g

 A
pp

lic
at

io
n

en
gi

ne
er

in
g

GraphLibrary

Edge Type Weighted Algorithm

BFS DFS Cycle MSTShortestPath

Search

Domain analysis

TransposeUndirectedDirected

Prim Kruskal
MST => Weighted
Cycle => Directed

Fig. 10.1 Analysis of feature models in domain and application engineering

• Given a partial feature selection, what other features must be included (or
excluded)?

• Given a partial feature selection, what features should be selected to produce the
product with lowest cost, lowest size, best security, or highest performance?

All of these questions can be answered with analyses of feature models and feature
selections, and can be automated with tool support. Each can be encoded as formula
in a suitable formalism, and automated solvers can answer the questions more or less
efficiently. In this chapter, we discuss encodings as Boolean satisfiability problem
that can be answered with SAT solvers, but other encodings and tools are possible.

A word on notation: We denote the set of all features of a product line with F

and the set of all possible feature selections by 2F. We denote the propositional
representation of a feature model as φ. We write |= p to denote that formula p is
a tautology. We write SAT(p) to determine whether formula p is satisfiable (has at
least one model).2 Both notions are translatable: |= p ≡ ¬SAT(¬p).

10.1.1 Valid Feature Selection

A question that we can answer easily is whether a given feature selection is valid for a
given feature model. To this end, we translate the feature model into a propositional
formula φ as described in Sect. 2.3.3. A feature selection is valid if and only if
the interpretation of the formula, in which we assign true (� for short) for every

2 A model is a solution (that is, a true/false assignment to each feature variable) that satisfies φ.

http://dx.doi.org/10.1007/978-3-642-37521-7_2

246 10 Analysis of Software Product Lines

GraphLibrary

Edge Type Weighted

UndirectedDirected

MST => Undirected Weighted

Cycle => Directed

Algorithm

Cycle MSTShortestPath

Prim Kruskal

Fig. 10.2 Simplified feature model of our graph example

selected feature and false (⊥ for short) otherwise, it is a model of the formula.
In other words, we substitute every variable corresponding to a selected feature by
true and every other variable by false; the selection is valid if φ is true. The
operation is computationally very cheap (linear in the size of φ).

Example 10.1 In Fig. 10.2 below, we show a subset of the feature model of our graph
example (originally Fig. 2.6, p. 33) and its corresponding propositional formula φ.

To check whether {GraphLibrary,EdgeType,Directed} is a valid selection, we sub-
stitute all variables of φ with the corresponding assignment:

φ =� ∧ � ∧ (� ∨ ⊥) ∧ ¬(� ∧ ⊥)
∧ ((⊥ ∨ ⊥ ∨ ⊥) ⇔ ⊥) ∧ (⊥ ⇒ ⊥)
∧ ((⊥ ∨ ⊥) ⇔ ⊥) ∧ ¬(⊥ ∧ ⊥) ∧ (⊥ ⇒ (⊥ ∧ ⊥))

=�

This result confirms that the selection is valid.
At the same time, {GraphLibrary,EdgeType,Directed,Undirected} is not a valid

selection:

φ =� ∧ � ∧ (� ∨ �) ∧ ¬(� ∧ �)
∧ ((⊥ ∨ ⊥ ∨ ⊥) ⇔ ⊥) ∧ (⊥ ⇒ ⊥)
∧ ((⊥ ∨ ⊥) ⇔ ⊥) ∧ ¬(⊥ ∧ ⊥) ∧ (⊥ ⇒ (⊥ ∧ ⊥))

=⊥
�

http://dx.doi.org/10.1007/978-3-642-37521-7_2

10.1 Analysis of Feature Models 247

Fig. 10.3 Feature-selection dialog in FeatureIDE with an incomplete feature selection (simple
variant left, advanced variant right)

A typical application of this analysis is during requirements-analysis phase of
application engineering. When a user selects features, the tool can give immediate
feedback whether the current selection is valid. For example, in Fig. 10.3, we show
a screenshot of the configuration dialog of FeatureIDE.3 Next to the root feature,
FeatureIDE indicates whether the current selection is valid. In this example, the
current selection is invalid because the user has not yet selected feature Directed or
Undirected. (Both Directed and Undirected are false in this evaluation).

10.1.2 Consistent Feature Models

The next question we attempt to answer is: Is there any valid feature selection for
a given feature model? We say a feature model is consistent if it has at least one
valid feature selection; otherwise, we say the feature model is inconsistent. In a
model with many cross-tree constraints, such question is not trivial to answer; adding
contradictory constraints by accident can easily happen.

Naively, we could automatically check all possible feature selections (s ∈ 2F,
exponentially many) until we find a valid one. In practice, we encode the question
as a Boolean satisfiability problem and use a SAT solver to compute the answer. To
ask whether a feature model is consistent, we simply determine whether its Boolean
representationφ is satisfiable (SAT(φ)). Modern SAT solvers are mature tools, which

3 For more information on the open-source tool FeatureIDE, see Appendix A.

248 10 Analysis of Software Product Lines

can solve such problems with great efficiency.4 If desired, most SAT solvers can also
output a valid feature selection (that is, a model of the formula).

Determining whether a propositional formula is satisfiable is an NP-complete
problem, meaning that there is no guaranteed efficient algorithm. Consequently,
determining whether a feature model is consistent is NP-complete, as well. We can
verify a solution quickly (see Sect. 10.1.1), but there is (most likely) no polynomial
algorithm to check whether a solution exists; in the worst case, execution time might
be exponential in the number of features. Despite exponential worst-case complexity,
researchers have empirically shown that modern SAT solvers can solve practical
Boolean satisfiability problems quickly in the context of feature-model analysis,
even for very large feature models (Mendonça et al. 2009). For real-world feature
models, modern SAT solvers, such as SAT4J (Berre and Parrain 2010), can determine
satisfiability within milliseconds on good-sized formulas.

Example 10.2 The feature model depicted in Fig. 10.2 is consistent. In Example 10.1,
we showed that at least one valid feature selection exists. In contrast, if we extended
the feature model as follows: φ′ = φ∧ (Directed ∧ Undirected), φ′ is inconsistent
and has not a single valid feature selection. Reason: φ′ requires that both features
Directed and Undirected be selected and not selected together. �

10.1.3 Testing Facts about Feature Models

A domain engineer typically knows certain facts that must hold in the domain and that
should also hold in the feature model. For example, in graph library of Fig. 2.6 (p. 33)
we know that feature Cycle requires feature Directed. This fact must be embodied in
the feature model; the feature model must not allow any feature selection to violate
that dependency. In the graph example, the constraint is obviously fulfilled, it is
even stated directly as a cross-tree constraint in the feature model. However, not all
constraints may hold so obviously, especially in large models.

To test a feature model, we check an assumption, encoded as propositional formula
ψ (such as Cycle ⇒ Directed), in a feature model φ. The idea is simple: We check
that the feature model implies the assumption (|= φ ⇒ ψ). Phrased differently, we
check whether φ ∧ ¬ψ is satisfiable; if it is, the feature model is incorrect as there
exists a valid feature selection in φ that does not satisfy ψ .

In a practical setting, a domain expert can test a feature model by creating a list
of assumptions that the feature model must satisfy. As in all testing, there is a certain
redundancy in that we need to specify knowledge about features twice (in the feature
model and in the assumptions) and then check that both align. As usual, testing can
only show the presence of errors and not their absence.

4 Typically, SAT solvers require formulas to be in conjunctive normal form, but these details should
be hidden by feature-modeling tools.

http://dx.doi.org/10.1007/978-3-642-37521-7_2

10.1 Analysis of Feature Models 249

Example 10.3 Here is a list of facts that could be used to test the feature model for
the graph example:

Kruskal ⇒ Weighted

Prim ⇒ Weighted

¬(Prim ∧ Kruskal)

· · ·

The first two facts state that an MST algorithm requires Weighted graphs. The third
states that both Prim and Kruskal algorithms will never both be present in a graph
product, and so on. In our example, all tests pass. �

10.1.4 Dead Features and Mandatory Features

Next, we might want to know if a feature is dead or mandatory. A dead feature is
never used in any product. In contrast, a mandatory feature is always used in every
product.

Given φ of a feature model, there is at least one valid feature selection with
feature f, iff φ ∧ f is satisfiable, and there is at least one valid feature selection
without feature f, iff φ ∧ ¬f is satisfiable. A feature is dead if there is no valid
feature selection with it (¬SAT(φ ∧ f)) and mandatory if there is none without it
(¬SAT(φ ∧ ¬f)). To detect all dead (or mandatory) features, we simply iterate over
all features.

Example 10.4 The feature model depicted in Fig. 10.2 has no dead features:
GraphLibrary and EdgeType are mandatory. If we make also feature Undirected manda-
tory (φ′′ = φ ∧ Undirected), the features Directed and Cycle become dead fea-
tures. In an inconsistent feature model, as φ′ from Example 10.2, all features are
simultaneously dead and mandatory (that is why we should rule out this fact first).

�

A typical application of detecting dead features is to report warnings in the feature
model editor. Also, an editor may issue a warning as false optional feature if analysis
reports that a feature that is modeled as optional feature (or part of a choice or
alternative group) is actually mandatory in all valid feature selections. Dead and
false optional features can be considered code smells of feature models that indicate
possible defects (see Chap. 8).

http://dx.doi.org/10.1007/978-3-642-37521-7_8

250 10 Analysis of Software Product Lines

10.1.5 Constraint Propagation

As a user chooses features during feature selection, some features may no longer
be selectable (they would invalidate the feature model) and others become required.
A good editor can provide tool support to infer feature selections by automatically
disabling or hiding unavailable features and selecting implied features automatically.
This mechanism is called constraint propagation.

So far, we specified feature selections as a set of features and assumed that all
features not within the set are deselected. In contrast, in a partial feature selection, we
have not yet made a decision about all features, in particular, as product configuration
and derivation is often an incremental process. Therefore, there are three possibilities:
a feature is selected, a feature is deselected, or no decision has been made. As a
consequence, we specify a partial feature selection with two sets: the set of selected
features (S ⊆ F) and the set of deselected features (D ⊆ F, with S ∩ D = ∅).

Determining which features must be selected or deactivated given a partial feature
selection is similar to detecting dead or mandatory features. We encode a partial
feature selection with the sets S and D as predicate pfs(S,D):

pfs(S,D) =
∧

s∈S
s ∧

∧

d∈D
¬d

A partial feature selection is valid, iff φ ∧ pfs(S,D) is satisfiable. We say a feature
f is deactivated or no longer selectable, iff φ ∧ pfs(S,D) ∧ f is not satisfiable.
Conversely, we say a feature is activated or must be selected, iff φ∧pfs(S,D)∧¬f
is not satisfiable.

Example 10.5 In Fig. 10.3 (p. 247), we showed a screenshot from FeatureIDE, where
we selected feature Cycle. Due to the implication Cycle ⇒ Directed, the selection
is propagated automatically to feature Directed. Technically, we see that for a partial
selection S = {Cycle}, D = {}, the corresponding formula is a contradiction:

φ ∧ pfs(D,S) ∧ ¬Directed

= . . . ∧ (Cycle ⇒ Directed) ∧ Cycle ∧ ¬Directed

Since features Directed and Undirected are mutually exclusive, the selection is further
propagated to deactivate feature Undirected. We derive this again, by determining
that the corresponding formula is a contradiction:

φ ∧ pfs(S,D) ∧ Undirected

= . . . ∧ ¬(Directed ∧ Undirected) ∧ (Cycle ⇒ Directed)∧
Cycle ∧ Undirected

In FeatureIDE, disabled and propagated selections are updated instantaneously dur-
ing interactive editing. �

10.1 Analysis of Feature Models 251

How to communicate the three possible states of whether a feature is selected,
deselected, or yet open is a tricky user interface problem; one possibility is to use
different symbols instead of normal check boxes as shown in Fig. 10.3 (right).

For an efficient mechanism to propagate constraints for a set of features with a
minimal number of SAT-solver calls, see Janota’s algorithm (Janota 2010).

10.1.6 Number of Valid Feature Selections

A question that managers ask is: How many valid feature selections does a feature
model allow? Phrased differently: How many distinct products are part of this product
line?

From a feature diagram without cross-tree constraints, a simple recursive algo-
rithm calculates the number:

count root(c) = count(c)
count mandatory(c) = count(c)
count optional(c) = count(c)+ 1

count and(c1, . . . , cn) = count(c1) ∗ . . . ∗ count(cn)
count alternative(c1, . . . , cn) = count(c1)+ . . .+ count(cn)
count or(c1, . . . , cn) = (count(c1)+ 1) ∗ . . . ∗ (count(cn)+ 1)− 1

count leaf = 1

In a nutshell, function count is a recursive function that traverses the tree struc-
ture of a feature diagram from the root to the leaves. Depending on the type
of feature, count is defined differently. This is implemented by pattern match-
ing: for example, count optional(c) adds one to the number of valid feature selec-
tions and proceeds recursively with the subfeatures of the feature in question;
count alternative(c1, . . . , cn) sums the valid feature selections of the alternative sub-
features of the feature in question. The recursion terminates when the features at the
leaves of the tree are reached (count leaf).

Example 10.6 Ignoring the two cross-tree constraints, the simplified feature valid
feature selections:

count(f) = 1 //for all leaf nodes
count(EdgeType) = count(Directed)+ count(Undirected) = 1 + 1 = 2

count(MST) = count(Prim)+ count(Kruskal) = 1 + 1 = 2

count(Algorithm) = (count(Cycle)+ 1) ∗ (count(ShortestPath)+ 1) ∗
(count(MST)+ 1)− 1

= (1 + 1) ∗ (1 + 1) ∗ (2 + 1)− 1 = 11

252 10 Analysis of Software Product Lines

count(GraphLibrary) = count(Mandatory(EdgeType)) ∗
count(Optional(Weighted)) ∗
count(Optional(Algorithm))

= 2 ∗ (1 + 1) ∗ (11 + 1) = 48

�

For feature models with cross-tree constraints, the number is not easy to determine.
A single cross-tree constraint can already eliminate a huge number of valid fea-
ture selections. For small feature models, we can simply count the solutions (for
example, in a brute-force fashion, or with a SAT solver or binary decision diagrams).
Fernandez-Amoros et al. (2009) have investigated a more sophisticated algorithm
that can deal with certain kinds of cross-tree constraints.

Overall, this metric is of questionable utility. Due to the combinatorial number of
feature selections in most product lines, a huge number is produced. Unless you like
large numbers, saying that a product line yields 15 trillion valid feature selections in
contrast to 3 quintillion of another, the number itself provides little insight. Most tools
only provide approximations, such as an upper bound ignoring cross-tree constraints
or an information on a small lower bound (“more than 1,000 valid feature selections”),
which are cheap to compute and sufficient for many practical tasks.

10.1.7 Comparing Feature Models

Given two feature models φ1 and φ2, what is their relationship? Does φ1 define
the same set of feature selections (products) than φ2 Is φ1 a generalization of φ2
(meaning that the set of products of φ1 includes those of φ2)? Or conversely, is φ2 a
specialization of φ1?

These questions about the relationship between two feature models arose early in
feature modeling. When a designer edits a feature model, she wants to know if her
changes have altered the set of existing valid products. Enlarging the set of products
may be acceptable, but eliminating products (particularly those that have been fielded)
is often not. However, except for trivial cases such as adding or removing a single
feature, the relationship is not always obvious. Even simple feature models are of
sufficient complexity to make analyzing their relationships by manual inspection
difficult.

Changing (improving) the structure of a feature model, while preserving all feature
selections it describes is related to refactorings, a topic we considered in more depth
in Chap. 8. A feature-model refactoring is an edit to a feature model that does not alter
the set of legal feature selections (equivalent to a variability-preserving refactoring
in Sect. 8.2.2).

In Fig. 10.4, we describe four possible relationships that we want to identify.
A feature-model refactoring preserves exactly the set of valid feature selections,
whereas a specialization removes feature selections without adding new ones and

http://dx.doi.org/10.1007/978-3-642-37521-7_8
http://dx.doi.org/10.1007/978-3-642-37521-7_8

10.1 Analysis of Feature Models 253

No Products
Deleted

Products
Deleted

No Products
Added

Products
Added

Refactoring Generalization

Specialization Arbitrary Edit

Fig. 10.4 Refactoring, specializations, and generalizations of feature models, between an old fea-
ture model (feature selections described by the solid circle) and a new feature model (feature
selections described by shaded area)

a generalization adds valid feature selections without removing any. All differences
that both add and remove valid feature selections are classified as arbitrary edits.

One approach to classify the relationship between two feature models is to describe
their difference in terms of a set of known transformations (Alves et al. 2006).
If we can express a feature-model difference in terms of a chain of well-known
transformations, we can deduce the nature of the difference based on the properties
of the transformations, for example, whether the difference represents a refactoring.
In a feature-model editor, it would be possible to provide editing operations that are
guaranteed to be refactorings.

A more general solution supporting arbitrary edits (without the limitations of a
structured editor and more flexible with regard to cross-tree constraints) is again
based on Boolean satisfiability. Two feature models φ1 and φ2 are equivalent when
their propositional formulas are equivalent, that is, |= φ1 ⇔ φ2, or operationalized
for a SAT solver ¬SAT(¬(φ1 ⇔ φ2)

)
. Similarly, φ1 is a specialization of φ2 and φ2

is a generalization of φ1, iff |= φ2 ⇒ φ1. Thüm et al. (2009) discuss in more detail
the different kinds of relationships and how to efficiently encode them as Boolean
satisfiability problems, even for very large feature models.

Example 10.7 In Fig. 10.5, we show two feature models φright and φleft (φleft is
an excerpt of the graph example). The propositional formulas for both the models
are:

φleft = Algorithm ∧ ((Cycle ∨ ShortestPath ∨ MST) ⇔ Algorithm)

φright = Algorithm ∧ (Cycle ⇒ Algorithm) ∧ (ShortestPath ⇒ Algorithm)

∧ (MST ⇒ Algorithm) ∧ (Cycle ∨ ShortestPath ∨ MST)

A SAT solver can prove φright ⇔ φleft. �

254 10 Analysis of Software Product Lines

MSTShortestPathCycle

Algorithm

Cycle v ShortestPath v MST

(b)

MSTShortestPathCycle

(a) Algorithm

Fig. 10.5 Two equivalent feature models

A typical use case for the comparison of feature models is during feature-model
editing. For example, FeatureIDE displays after each edit whether all changes since
the feature model was last saved forms a refactoring, a specialization, or a general-
ization. It also lists examples of added or removed feature selections. Furthermore,
the analysis can be used to compare and possibly merge two independently changed
feature models (Thüm et al. 2009).

10.1.8 Other Feature-Model Analyses

Other analyses detect redundancies, explain feature selections, optimize selections,
and calculate various metrics. Other variability models (with cardinalities, attributes
and non-Boolean features) have been explored along with different kinds of solvers,
from SAT solvers as in this chapter, to binary decision diagrams, to solvers for con-
straint satisfaction problems. For instance, an interesting class of problems deals with
attributes to features that describe nonfunctional properties, such as costs, memory
consumption, performance impact, footprint, and security; optimization algorithms
can then find the best solution (for some target function or some nonfunctional con-
straints) given a partial feature selection (Benavides et al. 2005; Sincero et al. 2010;
Siegmund et al. 2011). For an introduction and overview of the state of the art on
feature-model analysis and solvers, see the survey by Benavides et al. (2010).

10.2 Analysis of Feature-to-Code Mappings

We reviewed in the last section analyses that focus on the problem space with feature
model and feature selections. Now, we investigate the mapping from features to code,
that is, the mapping from problem space to solution space, as shown in Fig. 10.6.
By leveraging the analyses of the previous section, we show how to detect unused
modules in feature-oriented programming, dead code in preprocessor-based imple-
mentations, and elaborate on issues regarding build systems that can complicate
analyses (see Sect. 5.2 p. 105). We will not yet look at structures in the source code
such as methods or statements (we will do that in Sect. 10.3); instead, we consider
code fragments as arbitrary text sequences. Specifically, we explore the following:

http://dx.doi.org/10.1007/978-3-642-37521-7_5

10.2 Analysis of Feature-to-Code Mappings 255

GraphLibrary

Edge Type Weighted Algorithm

BFS DFS Cycle ShortestPath

Search

Domain analysis

TransposeUndirectedDirected

Prim Kruskal
MST => Weighted
Cycle => Directed

class Weight{

 void print(){
 ...
 }

}
 Weight w = new Weight();

 void print(){
 Super.print();w.print();
 }

}

class Node{

 int id = 0;

 void print(){
 System.out.print(id);
 }

}

Domain implementation

class Edge{

 Node a, b;
)b_edoN,a_edoN(egdE

 {
 a = _a; b = _b;
 }
 void print(){
 a.print(); b.print();
 }
}

Product derivationRequirements analysis
GraphLibrary

Edge Type

Product

D
om

ai
n

en
gi

ne
er

in
g

 A
pp

lic
at

io
n

en
gi

ne
er

in
g

MST

Weighted

Directed

Undirected

Search
BFS

DFS
Algorithm

Cycle
MST

ShortestPath

Prim
Kruskal

Transpose

(invalid, ... Solutions)

Fig. 10.6 Analysis of feature-to-code mappings incorporates knowledge about the mapping and
the feature model, but not yet about structures in the source code

Fig. 10.7 Simple example of a dead code fragment in Line 5

• Which code fragments are never included in any product?
• Which code fragments are included in all products?
• Which features have no influence on the product portfolio?

10.2.1 Dead Code

Our first goal is to find dead code—fragments that are never included in any valid
feature selection. Dead code can be an indicator for an incorrect mapping or an
over-constrained feature model. Look at Fig. 10.7: Line 5 is included only if the
features A and B are both selected, but the feature model specifies both features as
mutually exclusive. That is, Line 5 can be never included in any product of the
product line. Developers were likely unaware that features A and B are defined as
mutually exclusive, or the feature model was too strict and thus both features could
be optional.

256 10 Analysis of Software Product Lines

Detecting dead code is different from traditional detection of unreachable code.
Compilers analyze a program’s control flow of a single product using static analyses.
In contrast, we find code that is dead with regard to feature selections in a product line.
Performing control-flow analysis on a whole product line requires more sophisticated
techniques outlined in Sect. 10.3.7.

To identify dead code, we need to reason about the mapping from features to
code. A code fragment can be a plug-in of framework (Sect. 4.3, p. 79), a file that is
conditionally excluded by a build system (Sect. 5.2, p. 105), a block of code guarded
by conditional-compilation directives as in Fig. 10.7 (Sect. 5.3, p. 110), a feature
module (Sect. 6.1, p. 130), an aspect (Sect. 6.2, p. 141), or some other variable code.
We can even regard a parameter in a build script (for example, calling the compiler
at different optimization levels) or flags generated in a configuration file (Sect. 4.1,
p. 66) as analyzable code fragments.

Formally, we describe the mapping as a function from code fragments (from the
set C of all code fragments) to sets of products represented by feature selections
(pc: C → 22

F
). That is, we map each code fragment to the set of products in

which it is included. As a compact representation of large sets of feature selections
and corresponding products, we use a presence condition—a propositional formula
representing a set of feature selections. This is in line with the propositional formula
representing the set of valid feature selections in a feature model (see Sect. 2.3.3
p. 31). A presence condition defines the feature selections in which a code fragment
is present. For example, in Fig. 10.7, the code fragment in Line 3 has the presence
condition A and is included in all products with feature A; Line 3 has the presence
condition A∧ B and is included in all products with the features A and B; and Line 8
has presence condition ¬A and is included in all products that do not include feature
A. In this section, we use function pc(c) to denote the presence condition of a code
fragment c in the form of a propositional formula.

A code fragment is dead if it is never included in any product of a product line.
Since the representation of the feature model as propositional formula φ represents
all valid feature selections (products), a code fragment c is dead iff the conjunction
of presence condition and feature model is not satisfiable: ¬SAT(φ ∧ pc(c)). That
is, there is no feature selection that is both valid according to a feature model and
that fulfills the presence condition.

Example 10.8 Returning to our example of Fig. 10.7, we have the presence condi-
tions �, A, A ∧ B, and ¬A for the Lines 1, 3, 5, and 8 respectively. The predicate of
the feature model is φ = root∧ (A∨B)∧¬(A∧B). Line 5 is dead because φ∧A∧B

is unsatisfiable. �

In a similar manner, we can detect code fragments that are included in all products.
Such code fragments are mandatory. A code fragment c is mandatory iff |= φ ⇒
pc(c), that is, ¬SAT(φ ∧ ¬pc(c)).

http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_2

10.2 Analysis of Feature-to-Code Mappings 257

10.2.2 Abstract Features

As introduced in Sect. 2.3.5, abstract features are used in some notations of feature
models, but are not mapped to any code. That is, selecting or not selecting abstract
features does not have an influence on product derivation, and those features may be
skipped during the requirements analysis process.

As a conservative approximation, every feature that does not occur syntactically
in any presence condition is abstract. This approximation is usually sufficient in
practice, but would not catch corner cases such as a presence condition A ∨ ¬A,
which contains the feature name but does not influence product derivation. For a
more precise analysis, we can again encode the analysis as a corresponding Boolean
satisfiability problem (Thüm et al. 2011a): Feature f is abstract, iff the following
formula is satisfiable:

∨

c∈C
pc(c)[f → �] ⊕ pc(c)[f → ⊥]

where p[A → B] denotes substituting all occurrences of A by B in predicate p and ⊕
denotes exclusive or. In our example A ∨ ¬A, we would substitute A both by true

(�) and false (⊥) to yield (� ∨ ¬�)⊕ (⊥ ∨ ¬⊥), which is true; so we know the
Boolean value of feature A has no impact on selecting code fragments.

10.2.3 Determining Presence Conditions

Previously, we assumed that we knew the presence conditions for all code frag-
ments. In Example 10.8, we used a simple presence condition without explanation.
Although, we may separately model presence conditions of implementation artifacts
(Metzger et al. 2007), we argue that it is usually more convenient and reliable to
extract them directly from the variability in the implementation. In this section, we
discuss how to extract presence conditions for different implementation mechanisms.

Feature-Oriented Programming

In Sect. 6.1, we considered feature modules as code fragments to analyze. Developers
mostly use an implicit one-to-one mapping between features and feature modules,
that is, the feature module has the same name as the feature in the feature model.
Therefore, we can extract a mapping as follows: A feature module X has the presence
conditionpc(X) = X (referring to a feature with the same name). Hence, determining
presence conditions is trivial.

Of course also explicit external mappings are possible, for example, a table
describing the presence condition for every module or a build system selecting which

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_6

258 10 Analysis of Software Product Lines

modules to compose. Especially with regard to extra modules for feature interactions
(Sect. 9.4.7, p. 230) presence conditions such as A ∧ B are common.

Conditional Compilation with the C Preprocessor

Extracting a presence condition for code fragments using conditional compilation
(Sect. 5.3, p. 110) is also straightforward. In the context of the C preprocessor, a code
fragment refers to a sequence of code lines within a file; code fragments are separated
by conditional-compilation directives. Macros that control conditional compilation
are often mapped directly to features or have a simple mapping (for example, in the
Linux kernel, macro ‘CONFIG_X’ represents feature X).

As described in Sect. 5.3, the C preprocessor has the directives #ifdef, #ifndef, #if,
#elif, #else, and #endif, which can be nested. Instead of explaining in detail how to
extract the mapping, we simply give the example in Fig. 10.8. For a precise descrip-
tion, see the formalization by Tartler et al. (2011).

Determining a presence condition for code that includes conditional-compilation
directives is not always as simple as in Sect. 5.3.2. Using #define and #undef directives,
developers can activate and deactivate macros within the source code during the
execution of the preprocessor (possibly depending on other features using conditional
compilation on macro definitions). A precise analysis is outside the scope of our
book and discussed elsewhere (Hu et al. 2000; Favre 2003; Latendresse 2003, 2004;
Kästner et al. 2011; Tartler et al. 2011; Gazzillo and Grimm 2012). However, simple,
disciplined preprocessors (or preprocessor usage) can significantly ease analyses. For
example, we recommend not changing the definition of macros that denote features
within the source code; so the intuitive extraction procedure above can be used.

Fig. 10.8 Examples of presence conditions extracted from conditional compilation

http://dx.doi.org/10.1007/978-3-642-37521-7_9
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5

10.2 Analysis of Feature-to-Code Mappings 259

More modern annotation-based implementation strategies enforce a direct map-
ping. For example, FeatureMapper (Sect. 5.3.3, p. 113) and virtual separation of
concerns (Sect. 7.4, p. 184) store feature-code mappings separately, for example, in
a table explicitly mapping code fragments to presence conditions. Here, extracting
presence conditions is trivial.

Build Systems

A build system selects which files to compile and how (Sect. 5.2). As build systems
control the inclusion of entire files or directories, code fragments in this context can
refer to plug-ins (see Sect. 4.3, p. 79), aspects (see Sect. 6.2, p. 141), feature modules,
or any other files or containers. As build systems also control how (for example, with
which parameters) files are compiled and initiate generators, we can also determine
presence conditions for compiler parameters or settings in configuration files.

In the simplest case, a build system maintains a list of presence conditions for
each file. Unfortunately, determining presence conditions from a build system is
not always easy, because most build systems are written in sophisticated Turing-
complete scripting languages. Extracting presence conditions is often undecidable,
because many build systems may perform arbitrary computations by calling shell
scripts.

Analysts wanting to extract variability from build systems can pursue different
strategies. First, they can use a disciplined build system with limited expressiveness
designed for analysis (for example, a system providing a direct mapping between
presence conditions and files). Second, automated tools can try to detect common
patterns used in existing build scripts, however, accuracy will depend on whether
and how those patterns are used (for example, Berger et al. (2010a) and Nadi and
Holt (2012) describe experience with such extraction for the Linux kernel). Finally,
an analyst could perform different kinds of more heavyweight dynamic and static
analysis on the build script, such as symbolic execution (Tamrawi et al. 2012).

There is a trade-off between how expressive and how analyzable the build system
is. It may be that the expressiveness provided by contemporary build systems is
not needed, but is used simply because the developers are familiar with it. The
more expressive the build system’s language, the less accurate and the more difficult
the analysis process becomes. Imprecision in the analysis can yield to both false
positives and false negatives when searching for dead code fragments and abstract
features. For many purposes, restricted domain-specific languages would suffice and
allow precise analysis, though some migration effort may be necessary in existing
projects.

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_6

260 10 Analysis of Software Product Lines

In practice, it is typical to combine conditions extracted from the build system
with conditions from other implementation mechanisms, such as preprocessors.

Parameters

For software product lines that use run-time variability (see Sect. 4.1, p. 66), static
presence conditions are the most difficult to extract. With intra-procedural control-
flow and data-flow analysis, we could attempt to trace configuration parameters to
specific code fragments. Detecting feature code in a product line implemented with
run-time parameters is conceptually similar to detecting unreachable code in com-
pilers (with some extra knowledge about these parameters). However, as parameters
can be passed throughout the program and assigned and modified, we would need
sophisticated and computationally expensive abstract interpretation or slicing analy-
sis. Further, such analysis is always incomplete or unsound, so either false positives
or false negatives cannot be avoided (see Rice’s theorem).5

When parameters are used in a restricted and disciplined fashion, specific analysis
techniques could in principle detect many presence conditions (Haase 2012; Ouellet
et al. 2012). Anyway, implementations based on compile-time variability (especially
advanced language-based and tool-based approaches) are naturally easier to analyze
statically than approaches based on run-time variability. To perform variability-aware
analysis, a reliable extraction of presence conditions is important and disciplined
implementation approaches can simplify that task significantly.

10.3 Analysis of Domain Implementations

After analyzing feature models and the mapping from features to code, we now focus
on analyzing variability in program structures, such as function calls or statements.
We call these analyses variability-aware analysis, because they perform traditional
analyses, such as type checking and model checking, but they incorporate knowledge
about variability in the system. Again, we want to analyze and ensure properties for
all possible products of a product line. These analyses build on top of the analyses
we have presented earlier, and reason about all kinds of domain-engineering artifacts
(feature models, domain implementations, and the mapping):

5 Rice’s theorem says in the general result no static analysis can prove a non-trivial property for any
programs in a finite time. Of course, by restricting the domain of programs, by requiring certain
structures or properties of these programs, a non-trivial property can be proven. This is analogous
to the Halting Problem—for straight-line programs, the Halting Problem is solvable.

http://dx.doi.org/10.1007/978-3-642-37521-7_4

10.3 Analysis of Domain Implementations 261

GraphLibrary

Edge Type Weighted Algorithm

BFS DFS Cycle MSTShortestPath

Search

Domain analysis

TransposeUndirectedDirected

Prim Kruskal
MST => Weighted
Cycle => Directed

class Weight{

 void print(){
 ...
 }

}
 Weight w = new Weight();

 void print(){
 Super.print();w.print();
 }

}

class Node{

 int id = 0;

 void print(){
 System.out.print(id);
 }

}

Domain implementation

class Edge{

 Node a, b;
)b_edoN,a_edoN(egdE

 {
 a = _a; b = _b;
 }
 void print(){
 a.print(); b.print();
 }
}

Product derivationRequirements analysis

Product

D
om

ai
n

en
gi

ne
er

in
g

 A
pp

lic
at

io
n

en
gi

ne
er

in
g

(invalid, ... Solutions)

Weighted

Directed
Undirected

Search
BFS
DFS

Algorithm
Cycle
MST

ShortestPath

Prim

Kruskal

Transpose

GraphLibrary
Edge Type

The idea of variability-aware analysis is not to invent new kinds of analysis tech-
niques, but to lift existing analysis techniques developed for individual programs to
entire product lines (that is, to domain artifacts). Examples of established analyses
that we want to lift include type checking, model checking, data-flow analysis, and
deductive verification. The goal is to perform the same analysis on a product line
that we could perform on every possible product separately. Ideally, variability-aware
analysis should yield the same results, but in a more efficient way.

Let us explain the vision of variability-aware analysis in Fig. 10.9. We have two
possible paths to check a property for an entire product line:

• Brute-force analysis. Starting from a product line, we can derive a product per
valid feature selection (Step 1). For each product, we can now perform a given
off-the-shelf analysis (Step 2). For example, we could compile the source code
to detect syntax errors and type errors. If we repeat that process for every valid
product (exponentially many, in the worst case), we can aggregate the results and
determine whether the property holds for all products of the product line (Step 4).

• Variability-aware analysis. We analyze the domain artifacts of the product line,
without checking all products of a product line individually. Variability-aware
analysis produces a result for the entire product line (for example, ‘the property
holds for all products’, or ‘the property does not hold for products with feature A’).
From the result, we can derive whether the property holds for a specific product
(Step 4).

Given an ideal variability-aware analysis, both paths should come to the same con-
clusions. That is, variability-aware analysis should yield the same result as applying
an existing analysis in a brute-force approach. At the same time, we expect that
variability-aware analysis is typically much faster, because it can exploit similarities
and reuse analysis results across products. For example, if multiple products share

262 10 Analysis of Software Product Lines

Software
product line

Results

3 2

1

4

aggregate

configure

configure

variability-aware

analysis

analysis

Result

Product

Fig. 10.9 Ideally, variability-aware analysis should reach the same result as traditional analysis
applied to all products in isolation

code (from the base code or from some feature code), variability-aware analysis
might only need to analyze it once and not over and over again for each possible
feature selection. (Note: Not all variability-aware analyses follow this ideal picture.
Some provide approximations that are not exact, but still useful and much faster to
compute).

We illustrate variability-aware analysis with type checking, because it is well-
understood and comparably easy to explain. Type checking of product lines is only
interesting for implementation approaches with compile-time variability though. In
approaches with run-time variability, such as parameters (see Sect. 4.1, p. 66), only
a single program is compiled (and checked), which can be both a strength (easy
check for type errors) and a weakness (some errors caught only at run time). We use
examples from type checking product-line implementations based on preprocessors
and feature-oriented programming.

10.3.1 Design Space

There is a large design space of different analyses and researchers have explored
many different strategies. Before we discuss specific analyses, we introduce some
additional terminology that helps to distinguish different variability-aware analyses
within the design space.

First, different kinds of analysis check different properties and give different
guarantees. For example, a type system checks well-typedness of programs to ensure
the absence of a certain class of errors, whereas model checking verifies that the
behavior of a program satisfies a given specification.

Second, in a product-line context, the issue arises of how to specify the expected
behavior of a product line. Can we specify the behavior of each feature in isolation,

http://dx.doi.org/10.1007/978-3-642-37521-7_4

10.3 Analysis of Domain Implementations 263

should we provide a specification per product, or is a single global specification for
all products sufficient? For simplicity, here we always expect a global specification
that must hold for all products, such as ‘all products shall be well-typed’ or ‘there
shall be no null-pointer exception during the execution of any product.’

Finally, there are different strategies to lift analyses to handle the large configura-
tion space of a product line. We say a variability-aware analysis is complete, if it finds
the same property violations that the brute-force approach would find (see Fig. 10.9).
We say a variability-aware analysis is sound, if every property violation found in
domain artifacts is also a property violation in a corresponding derived product.

10.3.2 Sampling Strategies

A first strategy, which is easy to apply, is to check only a (suitable) subset of all
products of a product line with an off-the-shelf, single-product analysis. For example,
we can choose interesting feature selections, derive the corresponding products, and
simply compile them to find type errors in the sampled products. This corresponds
taking the path 1–3 in Fig. 10.9 multiple times (though not in a brute-force fashion
for all products).

The main question is how to select the sample of feature selections to analyze?
Typically, we want to check only a small number of products, but achieve a high
coverage according to some criterion. Among many others, possible coverage criteria
in product lines are:

• Feature coverage: Select products such that every feature (from the problem space)
is included in at least one product.

• Feature-code coverage: Select products such that every code fragment (from the
solution space) is included in at least one product.

• Pair-wise feature coverage: Select products such that each pair of features is
included in at least one product. Additionally, we can demand that for each feature
pair (f, g) there is a product with f but without g and a product with g but without
f, in addition to a product with both f and g.

• N-wise feature coverage: Much like pair-wise feature coverage, but all possible
n-tuples of features should be included in at least one product.

• Popular products and features: Select products frequently used by customers or
products with features that are often requested.

• Domain-specific: In many domains experts can provide suitable coverage criteria
for the domain, for example, critical features such as transaction management in
a database system.

Sampling with feature coverage may result in a poor detection error rate, because
problems related to interactions between multiple features might not be detected (see
Chap. 9). Pair-wise coverage attempts to address this problem by analyzing every pair
of features, so that we can detect all interactions between two features. To achieve
pair-wise coverage, only a moderate number of products are necessary: For example,

http://dx.doi.org/10.1007/978-3-642-37521-7_9

264 10 Analysis of Software Product Lines

Oster et al. (2010) shows an example of a feature model with 88 features that can be
covered by 40 products and a feature model with 287 features that can be covered
with 62 products. Also, n-wise coverage with larger n is possible; we may detect
more interactions, but this approach requires much larger samples. When selecting a
sample, we always have to face a trade-off between the number of products selected
(analysis effort) and the desired coverage.

There are many other coverage criteria and combinations of them. Furthermore,
there are different strategies to find the smallest (or a small) number of product that
fulfills one or more coverage criteria, some of which require sophisticated analysis
with SAT solvers that are outside our discussion (see Sect. 10.6, p. 277).

Note that sampling strategies are sound but always incomplete. Since we do not
look at all products, we might miss errors. We cannot establish guarantees for an
entire product line. However, when we find an error, we are sure that it actually is an
error. In this respect, variability-aware analysis with sampling is similar to software
testing and borrows from a large amount of research on combinatorial testing and
test coverage.

10.3.3 Family-Based Type Checking of Preprocessor-Based
Implementations

Next, we look at an example of how to analyze entire product lines: family-based
type checking. We first illustrate family-based type checking of preprocessor-based
implementations, and subsequently demonstrate its generality by applying it also to
feature-oriented programming.

To illustrate family-based, variability-aware type checking, we slightly extend
our graph example again, and use an almost trivial excerpt. As shown in Fig. 10.10,
we extend the graph example from Fig. 5.9 (p. 112), such that nodes can optionally
have a name, in addition to their id (for example, to store names if nodes represent
persons). Feature Name introduces a new method getName, and, to provide the same
interface without names, feature NoName provides the same method, but with a
dummy implementation.

Together with the already known feature Color, our example has three features,
which can be combined to eight different products. Obviously, for some of these
products, a Java compiler will issue type errors: Selecting neither Name nor NoName
leads to a dangling method invocation in the parameter of the print statement (Line
20; getWeight has not been declared); selecting both Name and NoName leads to a
method declared twice.

To detect these kinds of errors with a brute-force approach, we have to derive
and compile all eight products individually. While a brute-force approach seems
acceptable for this example, it clearly does not scale for product lines with more
features, as the number of products to check grows exponentially. Instead, we lift
Java’s type system to take variability into account.

http://dx.doi.org/10.1007/978-3-642-37521-7_5

10.3 Analysis of Domain Implementations 265

Fig. 10.10 Extended graph example implementing colors and optional names of nodes using
preprocessor directives

Presence Conditions on Structures

Variability-aware type systems reasons about presence conditions in the source
code. However, in contrast to the presence conditions for arbitrary textual frag-
ments in Sect. 10.2, we now reason about presence conditions for structural pro-
gram elements of in the domain implementation, such as variables, fields, and
methods. In our example, the two methods getWeight have the presence condi-
tion Name (Line 6) and NoName (Line 9), respectively; the first statement in
the main function has presence condition Color ∧ Name (Line 18). We empha-
size the mapping of presence condition to program elements (instead of lines of
plain text) by showing an abstract-syntax tree of the code fragment that includes
nodes for variability in Fig. 10.11 (<optional> nodes denote optional subtrees with
a presence condition). Again, we denote presence conditions with function pc.
Depending on the implementation mechanism, extracting such mapping is more
or less complex (usually straightforward for composition-based and disciplined
annotation-based implementations; more difficult for undisciplined annotations; see
also Sect. 5.3.4).

http://dx.doi.org/10.1007/978-3-642-37521-7_5

266 10 Analysis of Software Product Lines

<class>
Node

<optional>
Color

<class>
Color

<optional>
NoName

<optional>
Name

<optional>
Name

<optional>
Color

<method>
getName

<method>
getName

color

name

id

<method>
print

<type>
String

<body>

<type>
String

<body>
return

<type>
String

<type>
int

<initializer>
0

<type>
Color

<initializer>

<type>
String

<body>
{block}

<m.invocation>
System.out.print

<optional>
Color Name

this.name

this.color
<m.invocation>

Color.setDisplayColor

<m.invocation>
this.getMethod

<method>
setDisplayColor

...

Java Std
Library

Fig. 10.11 Abstract syntax tree of the domain implementation of the graph example of Fig. 10.10,
describing all variations

Reachability Constraints

A family-based analysis operates on a program representation that is variable. In our
example, family-based type checking takes place at a variable abstract syntax tree that
represents the whole space of possible products. Let us generalize from an example:
When resolving a method invocation, there can be different target declarations in
different products. The type system must ensure that all derivable products that
contain the method invocation must also contain a corresponding method declaration
as target (with an expected type). In our example, method getName is invoked in all
products with presence condition true (Line 20, expected to return type String), but a
corresponding method declaration is only present in products with the features Name
or NoName (Lines 6 and 9, both returning type String). Just by comparing presence
conditions within the product-line implementation, we can identify that products
without feature Name and without feature NoName will contain a type error. If such
feature selections are valid according to the feature model, we can issue an error
message: “cannot resolve method getName() in Line 20 if ¬Name ∧ ¬NoName”, as
shown in Fig. 10.12.

A type system performs many other lookups, of fields, local variables, meth-
ods, classes, types, and so on. In all cases, we need to ensure that a target element is
present whenever the source element is present (and often with additional constraints
on types). For instance, a field can only have type Color and we can only instanti-
ate class Color when a corresponding class declaration is present. More generally,

10.3 Analysis of Domain Implementations 267

Fig. 10.12 Selected constraints in the graph example and corresponding output of a family-based
type system

given a feature model φ, presence conditions pc, a source element s, and a set of
target elements T, we can formulate the following generic constraint, which we call
reachability condition:

φ ⇒ (
pc(s) ⇒

∨

t∈T
pc(t)

)

If that constraint is not a tautology (that is, if its negation is satisfiable), we report
an error message, indicating that there are products in the product line that do not
compile. Once again, we use a SAT solver to perform this analysis. We can even
pinpoint the error message to a set of feature selections by negating the constraint;
for debugging, a SAT solver can provide specific feature selections to reproduce the
error with an existing single-product analysis.

In a similar way, we can also detect redeclaration (or multiple-declaration) errors.
In our example, we must not declare method getName twice. To this end, we check

268 10 Analysis of Software Product Lines

Table 10.1 Reachability constraints in the graph example

Construct Source Target Constraint

String (type reference) 5 JSL φ ⇒ (Name ⇒ �)
String (type reference) 6 JSL φ ⇒ (Name ⇒ �)
name (field access) 6 5 φ ⇒ (Name ⇒ Name)

String (type reference) 9 JSL φ ⇒ (NoName ⇒ �)
String.valueOf (method invocation) 9 JSL φ ⇒ (NoName ⇒ �)
id (field access) 9 2 φ ⇒ (NoName ⇒ �)
Color (type reference) 13 24 φ ⇒ (Color ⇒ Color)

Color (instantiation) 13 24 φ ⇒ (Color ⇒ Color)

Color.setDisplayColor (method inv.) 18 25 φ ⇒ ((Color ∧ Name) ⇒ Color)

color (field access) 18 13 φ ⇒ ((Color ∧ Name) ⇒ Color)

System.out (field access) 20 JSL φ ⇒ (� ⇒ �)
PrintStream.print (method invocation) 20 JSL φ ⇒ (� ⇒ �)
getName (method invocation) 20 6, 9 φ ⇒ (� ⇒ (Name ∨ NoName))

Color (type reference) 25 24 φ ⇒ (Color ⇒ Color)

getName (method redeclaration) 9 6 φ ⇒ ¬(Name ∧ NoName)

Source and target refer to lines in Fig. 10.10; JSL represents targets in the Java Standard Library
with presence condition �

that all declarations in a set of potentially conflicting declarations D are pair-wise
mutually exclusive (within feature selections specified as valid by the feature model).
We use the following constraint and report an error if it is not a tautology:

φ ⇒
∧

d1∈D, d2∈D, d1 �=d2

¬(
pc(d1) ∧ pc(d2)

)

Example 10.9 We illustrate selected constraints derived from our graph example in
Fig. 10.12. We give a full list of constraints in Table 10.1. Note that some references
such as String and System refer to the Java Standard Library which is included in all
products.
By solving the constraints, we can see that, without additional restrictions from
a feature model, two constraints are violated. We can report corresponding error
messages, as shown in Fig. 10.12 (bottom). More compactly, we could report the
result of our analysis as “if (Name ⊕ NoName) then well-typed else ill-typed”.
The result is equivalent to the result gained from a brute-force application using
the standard Java type system.
When the feature model is repaired, namely that Name and NoName are alternative
features (φ ⇒ Name ⊕ NoName), all constraints we had to check in our example
above are tautologies, so we now know that every valid product of our product line
is well-typed. �

10.3 Analysis of Domain Implementations 269

Performance

So, how does variability-aware type checking with a family-based strategy improve
over the brute-force approach? Instead of checking reachability and redeclaration
errors again and again in the generated code separately for each product, we formulate
constraints over the space of all products. The important benefit of this approach is
that we check variability locally in domain artifacts, where it occurs. For code that is
not variable, we perform only a single check overall, instead of a check per product.
For example, we check whether method System.out.print exists only once (instead of
eight times for each product in the brute-force approach), and we check only two
possible targets of the method invocation of getName, independent of whether feature
Color is selected.

Rather than checking the surface complexity of up to 2n products in isolation,
family-based strategies analyze the domain artifacts of the entire product line and
check only essential complexity where variability actually matters. Worst-case effort
is still exponential, since developers could write product lines without any code
sharing, but experience suggests that this happens rarely, because reuse is a key goal
of product-line development.6

A family-based type checker can be sound and complete with regard to the brute-
force approach, but also unsound or incomplete approximations are possible, to
simplify implementation or improve the performance of the analysis (still useful to
find some errors early in domain artifacts and enforce consistent use of variability
implementations).

10.3.4 Family-Based Type Checking for Feature-Oriented
Programming

To illustrate the generality of lifting analyses, let us investigate family-based type
checking also for feature-oriented programming. The basic mechanism is similar to
that for preprocessor implementations: we look up all possible targets of method
invocations, field accesses, class references, and so forth. Subsequently, we check
reachability constraints and redeclaration errors with presence conditions as before.
There are two main differences, though. First, presence conditions for code structures
are easily identifiable: All code structures with a feature module have the same
presence condition (see Sect. 10.2.3, p. 257). Second, we have a new (extended)
language and need to perform different kinds of lookups, some of which are local to
the feature module and some of which cross feature module boundaries.

Let us extend the graph example once more as shown in Fig. 10.13: In addition
to the basic graph and the extension for feature Weighted from Fig. 6.4 (p. 134),

6 We do know of cases of “product line” development where this is not so. The situation arises
when different versions of a common system are produced in version control by branching code
bases that are never merged. We strongly recommend against this practice.

http://dx.doi.org/10.1007/978-3-642-37521-7_6

270 10 Analysis of Software Product Lines

Fig. 10.13 Checking whether references to add are well-typed in all products

we add a new optional feature AccessControl. Feature AccessControl can prevent users
from adding additional edges. We type check this program with a similar strategy as
before:

• In Line 8, we access field nodes. The field is defined locally in Line 4 in the same
feature module. Thus, the presence conditions of source and target are the same,
and the reachability constraint is trivially a tautology:

10.3 Analysis of Domain Implementations 271

φ ⇒ (
BasicGraph ⇒ BasicGraph

)

• In feature module Weighted, we refine method add(Node, Node) of class Graph.
Since we use a Super call, we require that a prior declaration of the method exists.
A lookup across module boundaries finds a possible target in feature module
BasicGraph.7 Hence, we derive the following reachability constraint:

φ ⇒ (
AccessControl ⇒ BasicGraph

)

• In feature module AccessControl, we refine method add(Node, Node) once more.
This time, we find two possible targets, in feature modules BasicGraph and
Weigthed, leading to the following constraint:

φ ⇒ (
AccessControl ⇒ (BasicGraph ∨ Weighted)

)

• Similarly, we refine method add(Node, Node, Weight), but only with one possible
target in feature module Weighted. Thus, we add the constraint:

φ ⇒ (
AccessControl ⇒ Weighted

)

This constraint can be stricter than a developer might have assumed. In fact this is
an instance of the optional-feature problem discussed in Sect. 9.3.

The interesting point is that we can check some constraints within a single fea-
ture module. Although we cannot compile feature modules in isolation like plug-ins,
we still exploit the locality of feature modules. Recently, researchers have started
to exploit this locality further in several approaches and even declare or infer cor-
responding feature interfaces to enable plug-in-like modular type checking despite
crosscutting implementations (Apel and Hutchins 2010; Delaware et al. 2009; Schae-
fer et al. 2011; Kästner et al. 2012b).

10.3.5 Family-Based Analysis with Variability Encoding

When discussing refactorings in Chap. 8, we already mentioned the possibility
of variability-preserving rewrites between different variability implementations to
change binding times (see Sect. 8.2.3, p. 201). For example, within some limits,
we can rewrite a preprocessor-based implementation into one using parameters or
feature-oriented programming and vice versa. Where available, we can exploit such
rewrites for variability-aware analysis. For example, instead of developing a new
variability-aware type system for feature-oriented programming, we could provide

7 Here, we assume a fixed order of feature modules. A lookup is performed only in previous feature
modules. If we want to type check feature modules with a flexible composition order, we need a
more sophisticated encoding that reasons about the composition order as well.

http://dx.doi.org/10.1007/978-3-642-37521-7_9
http://dx.doi.org/10.1007/978-3-642-37521-7_8
http://dx.doi.org/10.1007/978-3-642-37521-7_8

272 10 Analysis of Software Product Lines

Fig. 10.14 Possible variability encoding of the graph example from Fig. 10.10; conditionally exe-
cuted code is highlighted

an automated rewrite that transforms feature-oriented programs into preprocessor-
based implementations and type checks them.

Especially for analyses in the course of model checking, rewrites from compile-
time variability into run-time variability using parameters are common. The process
is called configuration lifting or variability encoding (Post and Sinz 2008; Apel et
al. 2013b).

In Fig. 10.14, we show an example of a possible variability encoding for the graph
example of Fig. 10.10. The presence and absence of the features Name, NoName, and
Colored is modeled by three corresponding Boolean variables, located in class Conf.
Code that is specific to particular features is executed conditionally based on the
values of these variables (highlighted in Fig. 10.10). Using standard testing, symbolic
execution, model checking, or other existing analysis techniques, we can find that
a variability exception is raised when neither Name nor NoName is selected, which
indicates an error in the product line (provided this selection is valid according to its
feature model).

10.3.6 Feature-Based Analysis Strategies

A Grand Challenge of variability-aware analysis is to analyze features in isolation.
Black-box frameworks are especially interesting because their plug-ins can be com-
piled separately (see Sect. 4.3, p. 79). Separate compilation implies that each plug-in
can be type checked in isolation, by compiling against the plug-in interface of the
framework. Thus, type errors are detected locally within a plug-in without consider-
ing other plug-ins.

http://dx.doi.org/10.1007/978-3-642-37521-7_4

10.3 Analysis of Domain Implementations 273

However, separate compilation does not yet ensure that all combinations of these
plug-ins can be loaded. We still need to ensure that plug-ins and the framework share
the same interface. Furthermore, there may dependencies between plug-in interfaces,
and there could be constraints on which and how many plug-ins may be loaded. For
example, we might want to guarantee that in every product at least one (or at most
one, or exactly one) plug-in is installed. That is, some checks are still required at
composition time.

Also, in feature-oriented programming (and aspect-oriented programming and
delta-oriented programming) modular type checking has been explored. The idea
is to type check a feature module in isolation as far as possible. As we have seen
previously in Fig. 10.13, many checks can be performed locally within a feature
module. Checks that are not performed locally, can be deferred to composition time.
That is, constraints referring to code fragments of other features can be expressed
(explicitly or inferred) in an interface. An interface constraint of a feature module
might specify that it requires some other feature module to provide a class, method, or
field. The interface also describes which structures are exported, so they can be used
by other features. Compatibility between modules is then checked at composition
time (usually called linker checks). In Fig. 10.15, we exemplify this idea by means
of our previous graph example.

An exponential number of possible feature selections and corresponding module
compositions remains, for which we need to check interface compatibility. Each
compatibility check is cheaper than rechecking the entire source code of the product
though. To aim for complete coverage of all feature selections, while avoiding a
brute-force approach, we can again use sampling or a family-based approach that
checks reachability constraints between interfaces, as illustrated in Fig. 10.15.

Feature-based analysis enables an open-world development strategy where not
all features may be known at development time or analysis time. For example, when
extending a framework, plug-in developers may not know about all other plug-ins
in the system. It can be a good strategy to first check plug-ins in isolation as far
as possible and then check plug-in compatibility when actually composing specific
plug-ins. Open-world development becomes increasingly important with software
ecosystems to which multiple independent parties contribute (Bosch 2009). In con-
trast, the family-based strategies discussed previously require that all features are
known at analysis time, it requires a closed-world scenario.

10.3.7 Beyond Type Checking

So far, we have illustrated different analysis strategies by means of type checking. The
outlined strategies can be applied to other kinds of analyses as well. In all cases, the
idea is to lift an existing analysis to check a given property for the entire product line.
If possible, we want to move beyond brute-force and sampling approaches. So far,
researchers have investigated variability-aware parsing (Kästner et al. 2011; Gazzillo
and Grimm 2012), variability-aware data-flow, control-flow, and information-flow

274 10 Analysis of Software Product Lines

Fig. 10.15 References to field sealed can be checked entirely within feature AccessControl (left);
references to the add methods and the class Graph cut across feature boundaries and are checked
at composition time based on the features’ interfaces (right)

analysis (Brabrand et al. 2012; Bodden 2012; Liebig et al. 2012), variability-aware
testing, mostly based on sampling (Cohen et al. 2007; Oster et al. 2010; Kästner et al.
2012c; Kim et al. 2012), variability-aware model checking (Li et al. 2005; Post and
Sinz 2008; Classen et al. 2010, 2012; Apel et al. 2013b), variability-aware theorem
proving (Thüm et al. 2011b; Thüm et al. 2012b), and variability-aware consistency
checking of models (Czarnecki and Pietroszek 2006).

We will not go into details of these approaches, but there seem to be repeating
patterns. A general strategy is to perform analysis on shared code only once and
to reason about entire configuration spaces by means of propositional formulas and

10.3 Analysis of Domain Implementations 275

SAT solvers. For the interested reader, we recommend a survey of variability-aware
analysis (analysis strategies, specification strategies, and classification of existing
analyses) by Thüm et al. (2012a).

10.4 Case Studies and Experience

Analysis of product lines is a comparably new research area, and most results are
from academic contexts. Nevertheless, we want to highlight some achievements and
share some results to give an impression of what product-line analysis is capable of.

Regarding analysis of feature models, early product configurators were hard to
use and allowed people to configure invalid products or get stuck in the configura-
tion process. Modern configurators, also of commercial product-line tools, are quite
advanced, thanks to feature-model analysis. Partial selections are rapidly propagated
and conflicts are explained (see tooling section below). Researchers have found that
the tools scale interactive configuration easily to feature models with several hun-
dreds or even thousands of features.

Tartler et al. (2011) have analyzed the feature-to-code mapping of the Linux ker-
nel in detail with the goal of finding inconsistencies, especially dead code. To this
end, they reverse engineered the feature-modeling language Kconfig (see Sect. 2.3.6,
p. 36) and extracted presence conditions from Linux’s build system Kbuild (see
Sect. 5.2.3, p. 107) and Linux’s preprocessor-based implementation. They found
117 incorrect mappings between features and code fragments, where #ifdef con-
structs referred to features that are not declared in the feature model (typically, typos
such as CONFIG_CPU_HOTPLUG instead of CONFIG_HOTPLUG_CPU). Following
the approach outlined in Sect. 10.2.1, they found over 1,000 dead code fragments
and manually proposed 214 patches to the Linux community, of which a majority
was accepted to be included into the kernel. They classify 22 of those dead code
fragments as actual bugs that change the behavior of the kernel in unexpected ways.
The analysis is fast and can analyze the entire kernel in about 15 min. Challenges
arise mostly from the difficult extraction of information from the feature model and
the build system (due to subtle semantic details and anachronisms of the language),
so the analysis is not entirely precise. Overall, this project impressively shows how
even lightweight analyses can discover many problems, even in well-developed and
peer-reviewed code of the Linux kernel.

Also variability-aware analysis, especially type checking, was applied to a series of
larger projects and discovered many implementation bugs. Notable studied systems
are AHEAD itself (70 features; 48k lines of composition-based Jak code; Thaker
et al. 2007), Mobile RSS Reader (14 features, 20k lines of annotation-based Java
code; Kästner et al. 2012a), Mobile Media (14 features; 6k lines of annotation-based
Java code; Kästner et al. 2012a), Busybox (811 features; 260k lines of annotation-
based C code; Kästner et al. 2012b), and the x86 Linux kernel (7000 features;
6.7M lines of annotation-based C code). In all projects, bugs were found: conflict-
ing introductions of a method in multiple modules in AHEAD, dangling calls across

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_5

276 10 Analysis of Software Product Lines

Fig. 10.16 Variability-related bug in Busybox: When feature NTPD_SERVER is deactivated,
field listen_fd is removed from struct globals. but still accessed in Line 19 (ENABLE_
FEATURE_NTPD_SERVER is a macro defined to either 0 or 1 depending on the feature selection)

feature boundaries in Mobile RSS Reader, a missing dependency in the feature model
and incorrectly annotated import statements in Mobile Media, and dangling refer-
ences in Busybox. In Fig. 10.16, we exemplify a bug found in Busybox, which is
hard to find manually. In all cases, performance is in the realm of analyzing less than
ten sampled products.

Experience with variability-aware static analysis (Brabrand et al. 2012; Bodden
2012; Liebig et al. 2012) and variability-aware model checking (Li et al. 2005; Post
and Sinz 2008; Classen et al. 2012; Apel et al. 2013b) is similar, but tools in this
field are just starting to approach larger scale studies.

Overall, experience shows that efficient analysis of entire product lines is possi-
ble and useful. Analysis finds real bugs and can be performed in reasonable time.
Difficulties typically stem from undisciplined implementation strategies and legacy
artifacts (for example, extracting presence conditions from build systems and lexi-
cal preprocessors and reverse engineering feature modeling languages), whereas the
analysis is typically straightforward.

10.5 Tooling

Analysis of feature models has matured and some analyses are now available even in
commercial product-line tools, such as pure::variants. The SPLOT website8 offers
the possibility to try many analyses directly online. FeatureIDE integrates many

8 http://www.splot-research.org/

http://www.splot-research.org/

10.5 Tooling 277

feature-model analyses. The FAMA9 tool suite is probably the most comprehensive
selection of different analyses available right now. FAMA also allows selecting from
a large range of different solvers.

For checking the feature-code mapping only few tools are readily available.
Specifically for the Linux kernel, the Undertaker10 tool analyzes the mapping with
the goal to dead (and undead) code fragments. Some implementation approaches
ensure directly that only features declared in the feature model are referenced in the
implementation; examples are CIDE11 and FeatureMapper.12

For variability-aware analysis, almost only concept and research prototypes are
available. Some tools that can be used for experimentation are SafeGen,13 Type-
Chef ,14 CIDE,15 CIDE+,16 SPLverifier,17 VMC,18 and ProVeLines and SNIP.19

10.6 Further Reading

Analyses of feature models are well explored in the literature. Batory (2005), Bena-
vides et al. (2005), and van der Storm (2004) were among the first to describe encod-
ings of feature models as propositional formulas to reason about them with SAT
solvers, solvers for constraint satisfaction problems, and binary decision diagrams.
Benavides et al. (2010) provide an excellent overview of developments in the field,
including many analysis questions and different implementation strategies and tools.
They also provide a good introduction of how to reason about feature models in the
presence of non-Boolean features and constraints.

A good example of analysis of the feature-code mapping is the Undertaker project
by Tartler et al. (2011). The authors describe in detail the challenges of extracting
feature models and presence conditions and their experience with reporting bugs to
the developer community. An earlier and simpler approach was described by Metzger
et al. (2007) who provided a separate variability model for each implementation
artifact (instead of extracting presence conditions from some implementation), and
subsequently checked intended variability against the variability modeled for the
implementation.

9 http://www.isa.us.es/fama/
10 http://vamos.informatik.uni-erlangen.de/trac/undertaker
11 http://fosd.net/cide
12 http://featuremapper.org/
13 http://www.cs.utexas.edu/~schwartz/ATS.html
14 http://ckaestne.github.com/TypeChef/
15 http://fosd.net/CIDE
16 http://homepages.dcc.ufmg.br/~mtov/cideplus/
17 http://fosd.net/FAV
18 http://fmtlab.isti.cnr.it/vmc/
19 http://www.info.fundp.ac.be/fts/

http://www.isa.us.es/fama/
http://vamos.informatik.uni-erlangen.de/trac/undertaker
http://fosd.net/cide
http://featuremapper.org/
http://www.cs.utexas.edu/~schwartz/ATS.html
http://ckaestne.github.com/TypeChef/
http://fosd.net/CIDE
http://homepages.dcc.ufmg.br/~mtov/cideplus/
http://fosd.net/FAV
http://fmtlab.isti.cnr.it/vmc/
http://www.info.fundp.ac.be/fts/

278 10 Analysis of Software Product Lines

Sampling strategies have been first explored outside the product-line context as
combinatorial testing, but have quickly been applied to product lines as well. There
is a large body of research to which we can only provide initial pointers (Cohen et al.
2007; Oster et al. 2010; Perrouin et al. 2010).

The idea to analyze the domain artifacts of the entire product line originated ini-
tially from work on generators (Huang et al. 2005) and checking model consistency
(Czarnecki and Pietroszek 2006). The first type checking approach for product line
was proposed by Thaker et al. (2007). The field of variability-aware analysis has
recently exploded with research contributions from different fields. Readers inter-
ested in this field may follow the references in Sect. 10.3.7 as a starting point. Also,
a recent survey by Thüm et al. (2012a) provides a good overview of the field and the
different strategies applied.

Work on feature-based analysis often has striking parallels with research in pro-
gramming languages, regarding modularity and module systems. The goal is the
same: Check errors locally and early to allow development in an open-world style.
Again, we can only provide initial pointers to a large body of research (Leroy 1994;
Cardelli 1997; Blume and Appel 1999; Ancona and Zucca 2001; Ancona et al. 2005;
Strniša et al. 2007).

Finally, there is plenty of work on product-line testing. Unfortunately, testing
cannot yet exploit the similarities between products as static variability-aware analy-
ses do, but relies more on sampling. Typical technical strategies are to test domain
artifacts in isolation as far as possible and to prepare reusable test cases as part of
domain engineering that can be executing during application engineering. Pohl et al.
(2005) provide a good overview of basic testing strategies and Engström and Rune-
son (2011) and da Mota Silveira Neto et al. (2011) have conducted recent surveys of
product-line testing that provide good starting points for further reading.

Exercises

10.1. When are analyses of software product lines useful or even necessary? Discuss
opportunities and challenges. Which phases of the product-line-development process
can be supported by analyses? Provide illustrative examples to explain your position.
10.2. Analyze (i) the feature models in Fig. 10.17, (ii) the feature models of the
graph example in Fig. 2.6, and (iii) the feature models created in Exercises 2.4 and
2.5 (p. 43) as follows:

(a) Translate the feature model into a propositional formula.
(b) Provide two valid and two invalid feature selections (if possible).
(c) Check whether the feature model is consistent.
(d) Provide two assumptions that hold in the feature model and two assumptions

that do not hold. Select assumptions that could be reasonably used as tests.
(e) Detect whether the feature model contains any dead or false optional features.

http://dx.doi.org/10.1007/978-3-642-37521-7_2

Exercises 279

(a) (b)

(c) (d)

Fig. 10.17 Sample feature models

(f) Illustrate constraint propagation on a partial feature selection (if possible). As
partial feature selection use the last two features of the valid feature selections
of Exercise 10.2b)

(g) Calculate the number of valid feature selections (you may ignore cross-tree
constraints).

(h) Perform a change of the feature model that is (i) a refactoring, (ii) a general-
ization, (iii) a specialization, and (iv) none of the above. Demonstrate that the
change actually falls into the given category.

10.3. Build an infrastructure to answer the questions of Exercise 10.2 mechanically.
Define a simple textual (or XML) format for feature models; translate feature models
into propositional formulas; answer the questions by translating them into Boolean
satisfiability problems; solve the satisfiability problems by handing them over an
off-the-shelf SAT solver as sat4j or MiniSat20; and print the solution.
10.4. In the context of the domains from Exercise 2.5 (p. 43), discuss when optimiz-
ing feature selections may be useful or necessary. Which nonfunctional requirements
may be worth to optimize? Which functional requirements may be implemented
by different features with different nonfunctional trade-offs? Provide illustrative
examples.
10.5. Discuss how you could extend your analysis infrastructure from Exercise 10.3
to support constraints over non-Boolean feature attributes and optimization goals. For
example, assume each feature has a known price and a known impact on binary size

20 http://www.sat4j.org/, http://minisat.se/

http://www.sat4j.org/
http://minisat.se/

280 10 Analysis of Software Product Lines

and you want to complete a partial feature selection such that the resulting product
is smaller than 500 kb and has the lowest possible price. Investigate what technology
could be used to perform such optimization problem.
10.6. Derive presence conditions for each code fragment in the following file. Sub-
sequently determine which code fragments are dead code fragments given the four
feature models:

(a)

(b)

(c)

(d)

10.7. To test a product line, we want to pursue a sampling strategy.

(a) Discuss possible coverage criteria. Which coverage would be necessary to detect
the division-by-zero in Line 17 of the example in Exercise 10.6?

(b) Collect a small set of feature selections to fulfill the following coverage goals:

(i) Feature coverage: Each feature of the product lines described by the feature
models in Fig. 2.6 and in Fig. 10.17a should be included in at least one feature
selection.

(ii) Feature-code coverage: Each line of code in the code example of Exercise
10.6 should be included in at least one feature selection (not considering
any feature models).

(iii) Feature-code coverage: Each line of code in the code example of Exercise
10.6 should be included in at least one feature selection that is also valid in
the corresponding feature models.

(iv) Pair-wise coverage: In a product line with five optional and independent
features A, B, C, D, and E, for every pair of features (f,g), there should be a
feature selection with f and g, one with f and without g, and one without f
but with g.

(v) Pair-wise coverage: For the feature model of the graph example in Fig. 2.6
and for the feature model in Fig. 10.17a–c, achieve pair-wise coverage as in
the previous task.

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2

Exercises 281

10.8. Explain the strategy of family-based type checking on the following two code
examples. What reachability constraints can be derived from the code base? For
which feature selections will the code not compile? Provide a feature model that
describes all compilable products.

(a) A simple hello-world program with three features World, Bye and Slow, declared
as optional and independent.

(b) A simple object-oriented store with two alternative base features (SingleStore
and MultiStore) and an optional feature AccessControl implemented with feature-
oriented programming.

282 10 Analysis of Software Product Lines

10.9. Provide examples of analyses for product lines that are not sound or complete
with regard to what an analysis using a brute-force approach would find. Discuss in
which scenarios such analyses may still be useful.
10.10. Advanced task, requires a background in type systems (Pierce 2002). Design
a formal type system for product lines based on the simply typed lambda calculus.

We start with an extended version of the lambda calculus enhanced with compile-
time variability annotations:

e = x | λx : τ. e | e e | c | ϒf. e − e

ϒf. e− e represents a compile-time choice between two expressions depending on
feature f. By evaluating compile-time choices ϒ with a feature selection, we can
derive a traditional lambda-calculus expression.

Design a type system for the variability-enhanced lambda calculus, such that an
variability-enhanced expression is well-typed if and only if all derivable lambda-
calculus expressions are well-typed (see Fig. 10.9). Proof soundness and complete-
ness with regard to the brute-force approach.

Appendix A
Tool Support

Throughout the book, we have seen several examples of tools for product-line
development, from simple preprocessors to sophisticated composition tools and
compilers. In this chapter, we introduce a number of tools for practical product-
line development or useful for teaching. We do not intend to provide a
comprehensive overview or discuss the pros and cons of specific commercial or
academic tools—the field is too broad and continuously changing. Instead, we give
brief recommendations of available tools, where we focus on freely available and
stable tools that left the status of early academic prototypes.

A.1 Overview

As introduced in Chap. 2, product-line development consists of multiple phases,
each of which shall be supported by proper tools.

• Domain analysis. During domain analysis, tools shall support the creation of and
reasoning about feature models. They shall offer facilities to manage scoping
decisions and document other concerns.

• Domain implementation. Depending on the modeling or implementation
mechanism, editor support as known from modern IDEs like Eclipse shall
support domain implementation. Furthermore, tools shall support different kinds
of mappings between features and development artifacts.

• Requirements analysis. During requirements analysis, tools shall guide
developers when selecting desired features, and verify the correctness or
completeness of a selection with regard to the feature model.

• Product derivation. Again, depending on the implementation mechanisms,
compilers, preprocessors, or composition engines shall automate the derivation
process.

For each of these phases, proper tool support is desirable. However, there must
also be tools that integrate multiple or all phases of product-line development.
Integration allows tool support to cross phases, for example, to propagate the
renaming of a feature from the feature model to the implementation mapping and

S. Apel et al., Feature-Oriented Software Product Lines,
DOI: 10.1007/978-3-642-37521-7, � Springer-Verlag Berlin Heidelberg 2013

283

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2

to all existing feature selections. Given the variety of different mechanisms in each
phase, the mixture of mechanisms in practice, and the demand to process different
artifacts uniformly with regard to variability (see Sect. 3.2.6, p. 62), most product-
line tools are extensible and try to connect the phases.

A.2 Commercial Tools

At the time of writing there are two major players on the market for product-line
tools pure-systems GmbH with pure::variants and BigLever Software, Inc with
Gears (and several more regarding processes and consulting, which are not in our
focus here). Both tools are used in industrial practice by many companies.
Technically, both are extensible frameworks that cover all phases of the process of
product-line development.

A.2.1 pure::variants

pure::variants is a commercial tool developed and marketed by the German
company pure-systems GmbH (http://www.pure-systems.com/). It
integrates all phases of product-line development and can be used with different
implementation mechanisms (they key concepts are independent of any specific
language or tool). pure::variants integrates into Eclipse and can be extended with
additional plug-ins.

For domain analysis, pure::variants uses feature models very close to the
notation introduced in Sect. 2.3. For large-scale models (with hundreds or thou-
sands of features), pure::variants provides scalable tree-based editors and simple
facilities to decompose feature models. Features can be enhanced with all kinds of
annotations and parameters (only briefly discussed in Sect. 2.3) and logical rules
can be used to express even complex non-Boolean constraints. There are con-
nectors to various requirements-engineering tools. An editor for the requirements-
engineering phase to select features is tightly integrated and supports various kinds
of feature-model analyses (see Sect. 10.1, p. 260).

For the mapping between problem and solution space, pure::variants provides a
generic component model, the component family model. This model relates
individual components to features. The term component is used in a broad sense
and refers to a set of configurable functionalities, ranging from classes and aspects
to compiler flags. In this context, pure::variants works like a sophisticated build
system, in which developers can specify how and when to process artifacts and
with which compilers, preprocessors, or composition tools. In addition to
preconfigured scenarios for C/C++ and Java programs, pure::variants also ships
with a customizable preprocessor for conditional compilation in arbitrary artifacts
and can be extended with connectors, for example, for various modeling and
testing tools.

284 Appendix A: Tool Support

http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://www.pure-systems.com/
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10

Earlier in this book, in Fig. 2.10 (p. 38), we have shown a screenshot of the
pure::variant’s workbench for our graph example, including editors for feature
models and family models. A community edition of pure::variants, limited to
comparably small models, is freely available for experimentation.

A.2.2 Gears

Gears is a product-line tool of BigLever Software, Inc. (http://www.
biglever.com/). Also, Gears aims at automating product derivation starting
from a feature selection. Gears supports both feature models and simple lists of
configuration parameters. Products are configured by selecting features or values
for configuration parameters.

Given a configuration, Gears acts as a sophisticated build system that can run
compilers, preprocessors, and composition tools, as specified by the developer.
Next to calling external tools, standard examples are to use conditional
compilation in various artifacts (a generic preprocessor is provided) or to inline
the content of feature-specific files at marked locations in other files (named
variation points). This way, building products from reusable artifacts can be
automated entirely.

In addition, Gears is highly extensible. Connectors for integrated development
environments (such as Eclipse), requirements engineering tools, modeling tools,
word processors, and others exist. Gears provides an API so that tool builders can
connect to a single central variability-management mechanism.

A.3 FeatureIDE: An Open-Source Tool for Product-Line
Implementation

While the commercial tools provide flexible production-quality solutions for
industrial product-line development, researchers and educators might look for
open-source solutions, easy for experimentation, extension, and class-room usage.
FeatureIDE is an open-source development environment for product lines,
targeted primarily at researchers, teachers, and students (http://fosd.
net/fide). FeatureIDE integrates closely with several research tools, such as
the AHEAD tool suite, FeatureC++, FeatureHouse, AspectJ, DeltaJ, and Java
preprocessors. It is extensible using Eclipse’s plug-in mechanism.

For domain analysis, FeatureIDE provides a graphical feature-model editor, as
shown in Fig. A.1, which incorporates several analysis techniques (see Sect. 10.1,
p. 248). The ability to produce high-quality graphics of feature models (for
example, for teaching and research publications) was given precedence over
scalability of the graphic editor. Also, the support for extra annotations and non-
Boolean parameters is restricted compared to the commercial tools. Feature
modeling is tightly integrated with the feature selection of the requirements-

Appendix A: Tool Support 285

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://www.biglever.com/
http://www.biglever.com/
http://fosd.net/fide
http://fosd.net/fide
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10

analysis phase (see Fig. 10.3 on p. 276; supporting reasoning about partial con-
figurations, propagating feature renaming, updating feature selections when fea-
ture model constraints change, and so forth). The research nature is also visible by
the fact that FeatureIDE provides several import and export mechanisms for
feature models specified by several research tools.

For the solution space, FeatureIDE supports several specific tools, currently the
AHEAD tool suite (Jak), FeatureC++, FeatureHouse, AspectJ, DeltaJ, and Java
preprocessors. FeatureIDE is extensible by writing plug-ins, but, in contrast to the
commercial tools, it does not provide general-purpose build-system mechanisms
that would allow it to call arbitrary other tools. The tighter integration of specific
implementation strategies (with plug-ins) provides better editor support and
simplifies the learning curve (as most complexity from the build process is
hidden).

For AHEAD, FeatureIDE provides an editor for Jak files as illustrated in
Fig. A.3 (see also Sect. 6.1.3, p. 139). A tight integration allows several editor
services for product lines implemented in Jak: syntax highlighting, automatic
generation and compilation in the background, error reporting (traced back from
Java errors on the composed files), and sophisticated visualizations such as the
collaboration diagram shown in Fig. A.2 (see also Sect. 6.1.1, p. 136). We again
see integration with other phases: Features are mapped to feature modules by
name, and feature renaming propagates to the solution space, products are auto-
matically recompiled when changing the feature selection, and so forth. The other
mentioned languages are similarly deeply integrated; when languages come with

Fig. A.1 The feature-model editor of FeatureIDE

286 Appendix A: Tool Support

http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6

Fig. A.2 FeatureIDE: the collaboration diagram view

Fig. A.3 FeatureIDE: A syntax error in a class refinement in Jak

Appendix A: Tool Support 287

their own editor, such as C++ and AspectJ, these are reused.
FeatureIDE is not necessarily aimed at supporting industrial-scale product-line

development. However, it provides a good base for teaching product-line
engineering, with feature models (Chap. 2), preprocessors (Chap. 3), and
advanced language-based mechanisms (Chap. 6). With its open-source nature
based on Eclipse plug-ins it is highly extensible.

An overview on design considerations for FeatureIDE and learned lessons can
be found in Thüm et al. (2013).

A.4 Further Tools

In the corresponding parts of the book, we have mentioned and discussed several
other tools for product-line development (mostly focused on one specific task).
Here, we provide only a brief list of the stable research tools as well as publicly
available open-source tools that can be used right away for implementing product
lines. More experimental tools can be found in the corresponding chapters of the
book. For each tool, we summarize for which task they were designed, where we
discussed them in this book, and where to get them.

AHEAD Tool Suite. Collection of composition and supporting tools for
feature-oriented programming in Jak and other languages. Includes a tool SafeGen
for variability-aware type checking. Command-line research tools, partially
integrated in FeatureIDE. See also Sect. 6.1.
http://www.cs.utexas.edu/*schwartz/ATS.html

Antenna. Lexical preprocessor designed for Java ME applications, with
integrations in several IDEs, such as NetBeans, Eclipse, and FeatureIDE. See also
Sect. 5.3.3.
http://antenna.sourceforge.net

AspectJ. Aspect-oriented programming language based on Java with
corresponding compiler. A commercial-quality Eclipse-based IDE AJDT is
available. See also Sect. 6.2.
http://www.eclipse.org/aspectj/

CDL. Textual variability modeling language and corresponding tool
infrastructure. Originally designed for the eCos operating system. See also the
description of Berger et al. (2010).
http://ecos.sourceware.org/docs-2.0/cdl-guide/cdl-
guide.html
https://code.google.com/p/variability/wiki/CDLTools

288 Appendix A: Tool Support

http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_3
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://www.cs.utexas.edu/~schwartz/ATS.html
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://antenna.sourceforge.net
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://www.eclipse.org/aspectj/
http://ecos.sourceware.org/docs-2.0/cdl-guide/cdl-guide.html
http://ecos.sourceware.org/docs-2.0/cdl-guide/cdl-guide.html
https://code.google.com/p/variability/wiki/CDLTools

CIDE. Eclipse-based research prototype for virtual separation of concerns. Has
been partially reimplemented in several other projects. See also Chap. 7.
http://fosd.net/CIDE
http://fosd.net/fc
http://www.dcc.ufmg.br/*mtov/cideplus/

Clafer. A lightweight yet expressive language for structural modeling: feature
modeling and configuration, class and object modeling, and metamodeling. Clafer
Tools is Integrated set of tools based on Clafer, supporting model analysis,
configuration, and multi-objective optimization, exploration, and visualization.

http://clafer.org

ConcernMapper. Feature mapping and tracing tool, targeted at arbitrary
concerns in general software development. See also Sect. 7.1.
http://www.cs.mcgill.ca/*martin/cm/

ContextJ. Context-oriented extension of Java. Similar extensions with varying
maturity exist for many other languages (ContextL, ContextJS, ContextR, and so
forth). See also Sect. 6.6.3.
http://www.swa.hpi.uni-potsdam.de/cop/

cpp. Lexical preprocessor part of the C language standard (ISO). Shipped with
every C and C++ compiler. See also Sect. 5.3.1.
http://gcc.gnu.org/
http://clang.llvm.org/, and others

CVL. Common variability language. Upcoming industry standard for variability
modeling. Basic tool support is available in the form of Eclipse plug-ins.
http://www.omgwiki.org/variability/doku.php/doku.php?

id=cvl_tool_from_sintef

DeltaJ. Delta-oriented programming language based on Java and corresponding
composition engines. Command-line research tool and Eclipse-based IDE. See
also Sect. 6.6.1.
http://deltaj.sourceforge.net/

FAMA. Comprehensive research framework for feature-model analysis. See
also Chap. 10.
http://www.isa.us.es/fama/

FeatureHouse. Composition engine for feature-oriented programming in
various languages. Declarative extension mechanisms to plug-in new languages.
Command-line research tool, integrated also in FeatureIDE. See also Sect. 6.1.
http://fosd.net/fh

FeatureMapper. Eclipse editor for product lines of ecore models; annotation-
based; supports views and some analysis. See also Sects. 5.3.3 and 7.5.
http://featuremapper.org/

Appendix A: Tool Support 289

http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://fosd.net/CIDE
http://fosd.net/fc
http://www.dcc.ufmg.br/~mtov/cideplus/
http://clafer.org
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://www.cs.mcgill.ca/~martin/cm/
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://www.swa.hpi.uni-potsdam.de/cop/
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://gcc.gnu.org/
http://clang.llvm.org/
http://www.omgwiki.org/variability/doku.php/doku.php?id=cvl_tool_from_sintef
http://www.omgwiki.org/variability/doku.php/doku.php?id=cvl_tool_from_sintef
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://deltaj.sourceforge.net/
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://www.isa.us.es/fama/
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://dx.doi.org/10.1007/978-3-642-37521-7_6
http://fosd.net/fh
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_7
http://featuremapper.org/

git. State-of-the-art distributed version-control system, with advanced
branching and merging capabilities. See also Sect. 5.1.
http://git-scm.com/

Kbuild. A collection of build files and conventions that form the build system of
the Linux kernel. Part of the Linux kernel, but also used by several other projects.
Integrates with Kconfig. See also Sect. 5.2.3.
http://www.kernel.org

http://www.kernel.org/doc/Documentation/kbuild/
makefiles.txt

Kconfig. Textual variability-modeling language and corresponding
configurator. Developed for and distributed with the Linux kernel, but also used
by several other projects. See also Sect. 2.3.6 and the description of Berger et al.
(2010).
http://www.kernel.org

http://www.kernel.org/doc/Documentation/kbuild/kconfig-
language.txt
http://gsd.uwaterloo.ca/feature-models-in-the-wild

Koala. Component infrastructure and composition mechanisms, originally
developed by Philips Research for consumer electronics. An open-source
implementation is available as well. See also Sect. 4.4.
http://www.program-transformation.org/Tools/Koala

Compiler

Munge. Simple, open-source, lexical preprocessor for Java that does not break
existing Java tooling (conditional-inclusion directives are inside comments). See
also Sect. 5.3.3.
http://sonatype.github.com/munge-maven-plugin/

OSGi framework. Module system for Java applications that can be used to
develop framework and component-based solutions. Underlying technology of the
Eclipse project. See also Sects. 4.3 and 4.4.
http://www.osgi.org;

http://www.eclipse.org

SNIP. Variability-aware model-checking tool for product-line models written
in the specification language Promela. See also Chap. 10.
http://www.info.fundp.ac.be/fts/

SPLOT. Research tools for editing, collecting, and analyzing feature models.
Entirely available as web-based online tools. See also Chap. 10.
http://www.splot-research.org/

SPLverifier. Tool suite for variability-aware model checking of FeatureHouse-
based product lines written in C and Java. See also Chap. 10.
http://fosd.net/FAV

290 Appendix A: Tool Support

http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://git-scm.com/
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://www.kernel.org
http://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
http://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://dx.doi.org/10.1007/978-3-642-37521-7_2
http://www.kernel.org
http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
http://gsd.uwaterloo.ca/feature-models-in-the-wild
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://www.program-transformation.org/Tools/KoalaCompiler
http://www.program-transformation.org/Tools/KoalaCompiler
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://dx.doi.org/10.1007/978-3-642-37521-7_5
http://sonatype.github.com/munge-maven-plugin/
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://dx.doi.org/10.1007/978-3-642-37521-7_4
http://www.osgi.org
http://www.eclipse.org
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://www.info.fundp.ac.be/fts/
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://www.splot-research.org/
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://fosd.net/FAV

TypeChef. Research framework of variability-aware analysis of preprocessor-
based product lines written in C, such as the Linux kernel; includes variability-
aware type checking and data-flow analysis. See also Chap. 10.
https://github.com/ckaestne/TypeChef
Undertaker. Tool that analyzes the mapping of preprocessor directives to

configuration models, including dead-code detection and other analyses. See also
Chap. 10.
http://vamos.informatik.uni-erlangen.de/trac/
undertaker/

VMC. Variability-aware model-checking tool for product-line models
represented as transition systems. See also Chap. 10.
http://fmtlab.isti.cnr.it/vmc/

Appendix A: Tool Support 291

http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10
https://github.com/ckaestne/TypeChef
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://vamos.informatik.uni-erlangen.de/trac/undertaker/
http://vamos.informatik.uni-erlangen.de/trac/undertaker/
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://dx.doi.org/10.1007/978-3-642-37521-7_10
http://fmtlab.isti.cnr.it/vmc/

References

Adams B, De Meuter W, Tromp H, Hassan AE (2009) Can we refactor conditional compilation
into aspects? In: Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM
Press, pp 243–254

Adams B, De Schutter K, Tromp H, De Meuter W (2007) Design recovery and maintenance of
build systems. In: Proc. Int’l Conf. Software Maintenance (ICSM). IEEE Computer Society,
pp 114–123

Adams B, De Schutter K, Tromp H, De Meuter W (2008a) The evolution of the Linux build
system. Electronic Communications of the EASST, 8

Adams B, Van Rompaey B, Gibbs C, Coady Y (2008b) Aspect mining in the presence of the C
preprocessor. In: Proc. AOSD Workshop on Linking Aspect Technology and Evolution
(LATE). ACM Press, pp 1–6

Adler C (2010) Optional composition: A solution to the optional feature problem? Master’s
thesis, School of Computer Science, University of Magdeburg

Aldrich J (2005) Open modules: Modular reasoning about advice. In: Proc. Europ. Conf. Object-
Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol 3586. Springer,
pp 144–168

Allan C, Avgustinov P, Christensen A, Hendren L, Kuzins S, Lhotak O, de Moor O, Sereni D,
Sittampalam G, Tibble J (2005) Adding trace matching with free variables to AspectJ. In:
Proc. Int’l Conf. Object-Oriented Programming, systems, languages, and applications
(OOPSLA), ACM Press, pp 345–364

Alves V, Gheyi R, Massoni T, Kulesza U, Borba P, Lucena C (2006) Refactoring product lines.
In: Proc. Int’l Conf. Generative Programming and Component Engineering (GPCE). ACM
Press, pp 201–210

Anastasopoules M, Gacek C (2001) Implementing product line variabilities. In: Proc. Symposium
on Software Reusability (SSR), ACM Press, pp 109–117

Ancona D, Damiani F, Drossopoulou S, Zucca E (2005) Polymorphic bytecode: Compositional
compilation for Java-like languages. In: Proc. Int’l Symp. Principles of Programming
Languages (POPL). ACM Press, pp 26–37

Ancona D, Zucca E (2001) True modules for Java-like languages. In: Proc. Europ. Conf. Object-
Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol 2072. Springer,
pp 354–380

Apel S (2007) The role of features and aspects in software development. Ph.D. thesis, School of
Computer Science, University of Magdeburg

Apel S (2010) How AspectJ is used: An analysis of eleven AspectJ programs. J Object Technol
(JOT) 9(1):117–142

Apel S, Hutchins D (2010) A calculus for uniform feature composition. ACM Trans Program
Lang Syst (TOPLAS) 32(5):1–33

Apel S, Kästner C (2009) An overview of feature-oriented software development. J Object
Techno (JOT) 8(5):49–84

S. Apel et al., Feature-Oriented Software Product Lines,
DOI: 10.1007/978-3-642-37521-7, � Springer-Verlag Berlin Heidelberg 2013

293

Apel S, Kästner C, Batory D (2008) Program refactoring using functional aspects. In: Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE). ACM Press,
pp 161–170

Apel S, Kästner C, Leich T, Saake G (2007) Aspect refinement—unifying AOP and stepwise
refinement. J Object Technol (JOT)—Special Issue: TOOLS, EUROPE 2007 6(9):13–33

Apel S, Kästner C, Lengauer C (2009) FeatureHouse: Language-independent, automated
software composition. In: Proc. Int’l Conf. Software Engineering (ICSE), IEEE Computer
Society, pp 221–231

Apel S, Kästner C, Lengauer C (2013a) Language-independent and automated software
composition: The FeatureHouse experience. IEEE Trans Software Eng (TSE) 39(1):63–79

Apel S, Kolesnikov S, Liebig J, Kästner C, Kuhlemann M, Leich T (2012a) Access control in
feature-oriented programming. Sci Comput Program (SCP) 77(3):174–187

Apel S, Leich T, Rosenmüller M, Saake G (2005) FeatureC++: On the symbiosis of feature-
oriented and aspect-oriented programming. In: Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE). Lecture Notes in Computer Science, vol 3676. Springer,
pp 125–140

Apel S, Leich T, Saake G (2008b) Aspectual feature modules. IEEE Trans Software Eng (TSE)
34(2):162–180

Apel S, Lengauer C, Möller B, Kästner C (2010) An algebraic foundation for automatic feature-
based program synthesis. Sci Comput Program 75(11):1022–1047

Apel S, Leßenich O, Lengauer C (2012). Structured merge with auto-tuning: Balancing precision
and performance. In: Proc. Int’l Conf. Automated Software Engineering (ASE). ACM Press,
pp 120–129

Apel S, Liebig J, Brandl B, Lengauer C, Kästner C (2011) Semistructured merge: Rethinking
merge in revision control systems. In: Proc. Europ. Software Engineering Conf. and Symp.
Foundations of Software Engineering (ESEC/FSE). ACM Press, pp 190–200

Apel S, von Rhein A, Wendler P, Größlinger A, Beyer D (2013b) Strategies for product-line
verification: Case studies and experiments. In: Proceedings of the IEEE/ACM International
Conference on Software Engineering (ICSE). IEEE Computer Society, pp 482–491

Appeltauer M, Hirschfeld R, Haupt M, Masuhara H (2011) ContextJ: Context-oriented
programming with Java. Comput Softw 28(1):272–292

Aracic I, Gasiunas V, Mezini 1082 M, Ostermann K (2006) An overview of CaesarJ. Trans
aspect-orient Softw Dev (TAOSD) 1(1):135–173

Arendt T, Biermann E, Jurack S, Krause C, Taentzer G (2010) Henshin: Advanced concepts and
tools for in-place EMF model transformations. In: Proc. Int’l Conf. Model Driven Engineering
Languages and Systems (MoDELS), lecture notes in computer science, vol. 6394. Springer,
pp 121–135

Arnoldus J, Bijpost J, van den Brand M (2007) Repleo: A syntax-safe template engine. In: Proc.
Int’l Conf. Generative Programming and Component Engineering (GPCE). ACM Press,
pp 25–32

Atkins DL (1998) Version sensitive editing: Change history as a programming tool. In: Proc.
ECOOP Symposium on System Configuration Management (SCM). Lecture Notes in
Computer Science, vol 1439. Springer, pp 146–157

Atkins DL, Ball T, Graves TL, Mockus A (2002) Using version control data to evaluate the
impact of software tools: A case study of the version editor. IEEE Trans Software Eng
28(7):625–637

Bass L, Clements P, Kazman R (1998) Software architecture in practice. Wesley
Batory D (2005) Feature models, grammars, and propositional formulas. In: Proc. Int’l Software

Product Line Conference (SPLC), Lecture Notes in Computer Science, vol 3714. Springer,
pp 7–20

Batory D, Höfner P, Kim J (2011) Feature interactions, products, and composition. In: Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE). ACM Press, pp 13–22

294 References

Batory D, O’Malley S (1992) The design and implementation of hierarchical software systems
with reusable components. ACM Trans Software Eng Methodol (TOSEM) 1(4):355–398

Batory D, Sarvela JN, Rauschmayer A (2004) Scaling step-wise refinement. IEEE Trans Software
Eng (TSE) 30(6):355–371

Baxter I, Mehlich M (2001) Preprocessor conditional removal by simple partial evaluation. In:
Proc. Working Conf. Reverse Engineering (WCRE). IEEE Computer Society, pp 281–290

Baxter I, Yahin A, Moura L, Sant’Anna M, Bier L (1998) Clone detection using abstract
syntaxtrees. In: Proc. Int’l Conf. Software Maintenance (ICSM), IEEE Computer Society,
pp 368–377

Benavides D, Seguraa S, Ruiz-Cortés A (2010) Automated analysis of feature models 20 years
later: A literature review. Inf Syst 35(6):615–636

Benavides D, Trinidad P, Ruiz-Cortes A (2005) Automated reasoning on feature models. In: Proc.
Conf. Advanced Information Systems Engineering (CAiSE). Lecture notes in computer
science, vol 3520. Springer, pp 491–503

Bergel A, Ducasse S, Nierstrasz O (2005) Classbox/J: Controlling the scope of change in Java. In:
Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM Press, pp 177–189

Berger T, She S, Czarnecki K, Wąsowski A (2010a) Feature-to-code mapping in two large
product lines. In: Proc. Int’l Software Product Line Conference (SPLC). Lecture Notes in
Computer Science, vol 6287. Springer, pp 498–499

Berger T, She S, Lotufo R, Wąsowski A, Czarnecki K (2010b) Variability modeling in the real: A
perspective from the operating systems domain. In: Proc. Int’l Conf. Automated Software
Engineering (ASE). ACM Press, pp 73–82

Berre DL, Parrain A (2010) The Sat4j library, release 2.2. J Satisf Boolean Model Comput
(JSAT) 7(2–3):59–64

Beuche D, Papajewski H, Schröder-Preikschat W (2004) Variability management with
featuremodels. Sci Comput Program 53(3):333–352

Biggerstaff T (1994) The library scaling problem and the limits of concrete component reuse. In:
Proc. Int’l Conf. Software Reuse (ICSR), IEEE Computer Society, pp 102–109

Biggerstaff T, Mitbander BG, Webster D (1993) The concept assignment problem in program
understanding. In: Proc. Int’l Conf. Software Engineering (ICSE). IEEE Computer Society,
pp 482–498

Binkley D et al (2006) Tool-supported refactoring of existing object-oriented code into aspects.
IEEE Trans Softw Eng (TSE) 32(9):698–717

Blom J, Jonsson B, Kempe L (1994) Using temporal logic for modular specification of telephone
services. In: Bouma LG, Velthuijsen H (eds) Feature interactions in telecommunications
systems. IOS Press, pp 197–216

Blume M, Appel AW (1999) Hierarchical modularity. ACM Trans Program Lang Syst
(TOPLAS) 21(4):813–847

Bodden E (2012) Inter-procedural data-flow analysis with IFDS/IDE and Soot. In: Int’l Workshop
on the State of the Art in Java Program Analysis (SOAP). ACM Press, pp 3–8

Boehm BW (1988) A Spiral Model of Software Development and Enhancement. Computer
21(5):61–72. http://dx.doi.org/10.1109/2.59

Borba P, Teixeira L, Gheyi R (2010) A theory of software product line refinement. In: Proc. Int’l
Colloquium Theoretical Aspects of Computing (ICTAC). Springer, pp 15–43

Bosch J (2000) Design and use of software architectures: Adopting and evolving a product-line
approach. ACM Press/Addison-Wesley

Bosch J (2009) From software product lines to software ecosystems. In: Proc. Int’l Software
Product Line Conference (SPLC), ACM Press, pp 111–119

Boucher Q, Classen A, Heymans P, Bourdoux A, Demonceau L (2010) Tag and prune: A
pragmatic approach to software product line implementation. In: Proc. Int’l Conf. Automated
Software Engineering (ASE). ACM Press, pp 333–336

References 295

http://dx.doi.org/10.1109/2.59

Bowen T, Dworack F, Chow C, Griffeth N, Lin GHY-J (1989) The feature interaction problem in
telecommunications systems. In: Proc. Int’l Conf. Software Engineering for Telecommuni-
cation Switching Systems (SETSS), IEEE Computer Society, pp 59–62

Boxleitner S, Apel S, Kästner C (2009) Language-independent quantification and weaving for
feature composition. In: Proc. Int’l Symp. Software Composition (SC). Lecture Notes in
Computer Science, vol 5634. Springer, pp 45–54

Brabrand C, Ribeiro M, Tolêdo T, Borba P (2012) Intraprocedural dataflow analysis for software
product lines. In: Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM
Press, pp 13–24

BrabrandC, Schwartzbach MI (2002) Growing languages with metamorphic syntax macros. In:
Proc. Int’l Symp. Partial Evaluation and Semantics-Based Program Manipulation (PEPM).
ACM Press, pp 31–40

Bracha G, Cook W (1990) Mixin-based inheritance. In: Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM Press, pp 303–311

Bruns G, Mataga P, Sutherland I (1998) Features as service transformers. In: Feature Interactions
in Telecommunications Systems V. IOS Press, pp 85–97

Calder M, Kolberg M, Magill EH, Reiff-Marganiec S (2003) Feature interaction: A critical
review and considered forecast. Comput Netw 41(1):115–141

Cardelli L (1997) Program fragments, linking, and modularization. In: Proc. Int’l Symp.
Principles of Programming Languages (POPL). ACM Press, pp 266–277

Chacon S (2009) Pro Git. Apress. http://progit.org/
Chen K, Zhang W, Zhao H, Mei H (2005) An approach to constructing feature models based on

requirements clustering. In: Proc. Int’l Conf. Requirements Engineering (RE). IEEE
Computer Society, pp 31–40

Cheng B, de Lemos R, Giese H, Inverardi P, Magee J et al (2009) Software engineering for
selfadaptive systems: A research roadmap. In: Software Engineering for Self-Adaptive
Systems, Lecture Notes in Computer Science, vol 5525. Springer, pp 1–26

Chu-Carroll M, Wright J, Ying A (2003) Visual separation of concerns through multidimensional
program storage. In: Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM
Press, pp 188–197

Classen A, Heymans P, Schobbens P (2008) What’s in a feature: A requirements engineering
perspective. In: Proc. Int’l Conf. Fundamental Approaches to Software Engineering (FASE)
Lecture notes in computer science, vol 4961. Springer, pp 16–30

Classen A, Heymans P, Schobbens P-Y, Legay A, Raskin J-F (2010) Model checking lots of
systems: Efficient verification of temporal properties in software product lines. In: Proc. Int’l
Conf. Software Engineering (ICSE). ACM Press, pp 335–344

Classen A, Cordy M, Heymans P, Legay A, Schobbens P-Y (2012) Model checking software
product lines with SNIP. Software Tools Technol Transfer (STTT) 14(5):589–612

Clements P, Krueger CW (2002) Point/counterpoint: Being proactive pays off/eliminating the
adoption barrier. IEEE Softw 19(4):28–31

Clements P, Northrop L (2001) Software product lines: Practices and patterns. Addison-Wesle
Cohen MB, Dwyer MB, Shi J (2007) Interaction testing of highly-configurable systems in the

presence of constraints. In: Proc. Int’l Symp. Software Testing and Analysis (ISSTA). ACM
Press, pp 129–139

Cole L, Borba P (2005) Deriving refactorings for AspectJ. In: Proc. Int’l Conf. Aspect-Oriented
Software Development (AOSD). ACM Press, pp 123–134

Colyer A, Clement A, Harley G, Webster M (2004a) Eclipse AspectJ: Aspect-oriented
programming with AspectJ and the eclipse AspectJ development tools, 1st edn. Addison-
Wesley Professional, Reading

Colyer A, Greenfield J, Jacobson I, Kiczales G, Thomas D (2005) Aspects: Passing fad or new
foundation? In: Companion Int’l Conf. Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), ACM Press, pp 376–377

296 References

http://progit.org/

Colyer A, Rashid A, Blair G (2004b) On the separation of concerns in program families.
Technical Report COMP-001-2004, Computing Department, Lancaster University

Colyer A, Clement A (2004) Large-scale AOSD for middleware. In: Proc. Int’l Conf. Aspect-
Oriented Software Development (AOSD), ACM Press, pp 56–65

Cornelissen B, Zaidman A, van Deursen A, Moonen L, Koschke R (2009) A systematic survey of
program comprehension through dynamic analysis. IEEE Trans Software Eng 35(5):684–702

Czarnecki K, Antkiewicz M (2005) Mapping features to models: A template approach based on
superimposed variants. In: Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE). Lecture notes in computer science, vol 3676. Springer, pp 422–437

Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Wąsowski A (2012) Cool features and tough
decisions: A comparison of variability modeling approaches. In: Proc. Int’l Workshop on
Variability Modelling of Software-intensive Systems (VaMoS). ACM Press, pp 173–182

Czarnecki K, Helsen S, Eisenecker U (2005a) Formalizing cardinality-based feature models and
their specialization. Softw Process: Improv Pract 10(1):7–29

Czarnecki K, Helsen S, Eisenecker U (2005b) Staged configuration through specialization and
multilevel configuration of feature models. Softw Process: Improv Pract 10(2):143–169

Czarnecki K, Pietroszek K (2006) Verifying feature-based model templates against wellform-
edness OCL constraints. In: Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE). ACM Press, pp 211–220

Czarnecki K, Eisenecker U (2000) Generative programming: Methods, tools, and applications.
ACM Press/Addison-Wesley

da Mota Silveira Neto PA, do Carmo Machado I, McGregor JD, de Almeida ES, de Lemos Meira
SR (2011) A systematic mapping study of software product lines testing. Inf Softw Technol
53(5):407–423

Dantas D, Walker D (2006) Harmless advice. In: Proc. Int’l Symp. Principles of Programming
Languages (POPL), ACM Press, pp 383–396

Delaware B, Cook WR, Batory D (2009) Fitting the pieces together: A machine-checked model
of safe composition. In: Proc. Europ. Software Engineering Conf. and Symp. Foundations of
Software Engineering (ESEC/FSE). ACM Press, pp 243–252

DeRemer F, Kron HH (1976) Programming-in-the-large versus programming-in-the-small. IEEE
Trans Softw Eng 2:80–86

Dessi M (2009) Spring 2.5 Aspect Oriented programming. Packt Publishing
Dietrich C, Tartler R, Schröder-Preikschat W, Lohmann D (2012a) A robust approach for

variability extraction from the Linux build system. In: Proc. Int’l Software Product Line
Conference (SPLC). ACM Press, pp 21–30

Dietrich C, Tartler R, Schröder-Preikschat W, Lohmann D (2012b) Understanding Linux feature
distribution. In: Proc. AOSD Workshop on Modularity In Systems Software (MISS). ACM
Press, pp 15–20

Dijkstra EW (1976) A discipline of programming. Prentice-Hall
Engström E, Runeson P (2011) Software product line testing—a systematic mapping study. Inf

Softw Technol (IST) 53(1):2–13
Erl T (2005) Service-oriented architecture: Concepts, technology, and design. Prentice Hall
Ernst M, Badros G, Notkin D (2002) An empirical analysis of C preprocessor use. IEEE Trans

Softw Eng (TSE) 28(12):1146–1170
Estler H-C, Ruhroth T, Wehrheim H (2007) Model checking correctness of refactorings—some

experiments. Electron Notes Theor Comput Sci 187:3–17
Favre J-M (1995) The CPP paradox. In: Proc. European Workshop on Software Maintenance
Favre J-M (1997) Understanding-in-the-large. In: Proc. Int’l Workshop on Program Compre-

hension. IEEE Computer Society, p 29
Favre J-M (2003) CPP denotational semantics. In: Proc. Int’l Workshop Source Code Analysis

and Manipulation (SCAM). IEEE Computer Society, pp 22–31

References 297

Feigenspan J, Kästner C, Apel S, Liebig J, Schulze M, Dachselt R, Papendieck M, Leich T, Saake
G (2012) Do background colors improve program comprehension in the #ifdef hell?
Empirical Software Eng. Online first. doi:10.1007/s10664-012-9208-x

Felty A, Namjoshi K (2003) Feature specification and automated conflict detection. ACM Trans
Software Eng Methodol (TOSEM) 12(1):3–27

Fernandez-Amoros D, Gil RH, Somolinos JC (2009) Inferring information from feature diagrams
to product line economic models. In: Proc. Int’l Software Product Line Conference (SPLC).
ACM Press, pp 41–50

Filman R, Friedman D (2005) Aspect-oriented programming is quantification and obliviousness.
In: Aspect-Oriented Software Development, Addison-Wesley, pp 21–35

Filman RE, Elrad T, Clarke S, Aksit M (eds) (2005a) Aspect-oriented software development.
Addison-Wesley

Flatt M, Krishnamurthi S, Felleisen M (1998) Classes and mixins. In: Proc. Int’l Symp. Principles
of Programming Languages (POPL), ACM Press, pp 171–183

Ford H, Crowther S (1922) My life and work (the autobiography of Henry ford). Doubleday
Fowler M (1999) Refactoring: Improving the design of existing code. Addison-Wesley
Gamma E, Beck K (2003) Contributing to eclipse: Principles, patterns, and plugins. Wesley
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: Elements of reusable object

oriented software. Addison-Wesley, Reading
Garlan D, Allen R, Ockerbloom J (1995) Architectural mismatch or why it’s hard to build

systems out of existing parts. In: Proc. Int’l Conf. Software Engineering (ICSE), IEEE
Computer Society, pp 179–185

Garvin BJ, Cohen MB (2011) Feature interaction faults revisited: An exploratory study. In: Proc.
Int’l Symp. Software Reliability Engineering (ISSRE), IEEE Computer Society, pp 90–99

Gazzillo P, Grimm R (2012) SuperC: Parsing all of C by taming the preprocessor. In: Proc. Int’l
Conf. Programming Language Design and Implementation (PLDI). ACM Press, pp 323–334

Gosling J, Joy B, Steele G, Bracha G (2005) JavaTM language specification. The JavaTM series,
3rdedn. Addison-Wesley, Reading

Gradecki JD, Lesiecki N (2003) Mastering AspectJ: Aspect-oriented programming in Java. John
Wiley & Sons, Inc.

Griffeth N, Velthuijsen H (1994) The negotiating agents approach to runtime feature interaction
resolution. In: Bouma LG, Velthuijsen H (eds) Feature interactions in telecommunications
systems. IOS Press, pp 217–235

Griss M (2000) Implementing product-line features by composing aspects. In: Proc. Int’l
Software Product Line Conference (SPLC). Kluwer Academic Publishers, pp 271–288

Griss ML, Favaro J, d’ Alessandro M (1998) Integrating feature modeling with the RSEB. In:
Proc. Int’l Conf. Software Reuse (ICSR). IEEE Computer Society, p 76

Haase S (2012) A program slicing approach to feature identification. Master’s thesis, School of
Computer Science, University of Magdeburg

Hall RJ (2005) Fundamental nonmodularity in electronic mail. Autom Software Eng 12(1):41–79
Hanenberg S, Oberschulte C, Unland R (2003) Refactoring of aspect-oriented software. In: Proc.

Int’l Conf. Object-Oriented and Internet-based Technologies, Concepts, and Applications for
a Networked World (Net.ObjectDays), pp 19–35 (tranSIT GmbH)

Harbulot B, Gurd J (2006) A join point for loops in AspectJ. In: Proc. Int’l Conf. Aspect-Oriented
Software Development (AOSD), ACM Press, pp 63–74

Hay J, Atlee J (2000) Composing features and resolving interactions. In: Proc. Int’l Symp.
Foundations of Software Engineering (FSE), ACM Press, pp 110–119

Heidenreich F, Kopcsek J, Wende C (2008b) FeatureMapper: Mapping features to models. In:
Companion Int’l Conf. Software Engineering (ICSE). ACM Press, pp 943–944

Heidenreich F, S�avga I, Wende C (2008a) On controlled visualisations in software product line
engineering. In: Proc. SPLCWorkshop on Visualization in Software Product Line Engineering
(ViSPLE) Lero, pp 303–313

298 References

http://dx.doi.org/10.1007/s10664-012-9208-x

Heidenreich F, Sánchez P, Santos J a, Zschaler S, Alférez M, Araújo J. a, Fuentes L, Kulesza U,
Moreira A, Rashid A (2010) Relating feature models to other models of a software product
line: A comparative study of FeatureMapper and VML. In: Transactions on aspect-oriented
software development VII. Springer, pp 69–114

Herrmann S (2002) Object teams: Improving modularity for crosscutting collaborations. In: Proc.
Int’l Conf. Object-Oriented and Internet-based Technologies, Concepts, and Applications for
a Networked World (Net.ObjectDays). Lecture Notes in Computer Science, vol 2591.
Springer, pp 248–264

Heymans P (2012) Formal methods for the masses. In: Proc. Int’l Software Product Line
Conference (SPLC), ACM Press, p 4

Hirschfeld R, Costanza P, Nierstrasz O (2008) Context-oriented programming. J Object Technol
(JOT) 7(3):125–151

Hofer W, Elsner C, Blendinger F, Schröder-Preikschat W, Lohmann D (2011) Tool chain
independent variant management with the Leviathan filesystem. In: Proc. GPCE Workshop on
Feature-Oriented Software Development (FOSD) ACM Press, pp 18–24

Hu Y, Merlo E, Dagenais M, Laguë B (2000) C/C++ conditional compilation analysis using
symbolic execution. In: Proc. Int’l Conf. Software Maintenance (ICSM). IEEE Computer
Society, pp 196–206

Huang SS, Smaragdakis Y (2011) Morphing: Structurally shaping a class by reflecting on others.
ACM Trans Prog Lang Syst (TOPLAS) 33(2), 6:1–6:44

Huang SS, Zook D, Smaragdakis Y (2005) Statically safe program generation with SafeGen. In:
Proc. Int’l Conf. Generative Programming and Component Engineering (GPCE). Lecture
Notes in Computer Science, vol 3676. Springer, pp 309–326

Hubaux A, Xiong Y, Czarnecki K (2012) A user survey of configuration challenges in Linux and
eCos. In: Proc. Int’l Workshop on Variability Modelling of Software-intensive Systems
(VaMoS). ACM Press, pp 149–155

Hunleth F, Cytron RK (2002) Footprint and feature management using aspect-oriented
programming techniques. In: Proc. Conf. Languages, Compilers and Tools For Embedded
systems (LCTES), ACM Press, pp 38–45

Hunleth F, Cytron RK (2002) Footprint and feature management using aspect-oriented
programming techniques. In: Proc. Conf. Languages, Compilers and Tools For Embedded
Systems (LCTES). ACM Press, pp 38–45

Jackson M, Zave P (1998) Distributed feature composition: A virtual architecture for
telecommunications services. IEEE Trans Software Eng (TSE) 24(10):831–847

Janota M (2010) SAT solving in interactive configuration. Ph.D. thesis, Department of Computer
Science, University College Dublin

Janzen D, De Volder K. (2004). Programming with crosscutting effective views. In: Proc. Europ.
Conf. Object-Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol
3086. Springer, pp 195–218

Jarzabek S, Bassett P, Zhang H, Zhang W (2003) XVCL: XML-based variant configuration
language. In: Proc. Int’l Conf. Software Engineering (ICSE). IEEE Computer Society,
pp 810–811

Johnson RE, Foote B (1988) Designing reusable classes. J Object-Oriented Program 1(2):22–35
Jones ND, Gomard CK, Sestoft P (1993) Partial evaluation and automatic program generation.

Prentice-Hall
Kang K, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain analysis

(FODA) feasibility study. Tech Rep CMU/SEI-90-TR-21, SEI
Kang K, Kim S, Lee J, Kim K, Kim G, Shin E (1998) FORM: A feature-oriented reuse method

with domain-specific reference architectures. Ann Softw Eng 5(1):143–168
Kang K, Lee J, Donohoe P (2002) Feature-oriented project line engineering. IEEE Softw

19:58–65
Kang KC, Sugumaran V, Park S (eds) (2009) Applied software product line engineering.

Auerbach Publications

References 299

Kästner C (2007) Aspect-oriented refactoring of Berkeley DB. Master’s thesis, School of
Computer Science, University of Magdeburg

Kästner C (2010) Virtual separation of concerns. Ph.D. thesis, School of Computer Science,
University of Magdeburg

Kästner C, Apel S (2009) Virtual separation of concerns—a second chance for preprocessors.
J Object Technol 8(6):59–78

Kästner C, Apel S, Batory D (2007) A case study implementing features using AspectJ. In: Proc.
Int’l Software Product Line Conference (SPLC). IEEE Computer Society, pp 223–232

Kästner C, Apel S, Kuhlemann M (2008) Granularity in software product lines. In: Proc. Int’l
Conf. Software Engineering (ICSE). ACM Press, pp 311–320

Kästner C, Apel S, Kuhlemann M (2009) A model of refactoring physically and virtually
separated features. In: Proc. Int’l Conf. Generative Programming and Component Engineering
(GPCE). ACM Press, pp 157–166

Kästner C, Apel S, Ostermann K (2011) The road to feature modularity? In: Proc. SPLC
Workshop on Feature-Oriented Software Development (FOSD), ACM Press, pp 5:1–5:8

Kästner C, Apel S, Thüm T, Saake G (2012a) Type checking annotation-based product lines.
ACM Trans Softw Eng Methodol (TOSEM) 21(3):14:1–14:39

Kästner C, Apel S, Trujillo S, Kuhlemann M, Batory D (2009b) Guaranteeing syntactic
correctness for all product line variants: A language-independent approach. In: Proc. Int’l
Conf. Objects, Models, Components, Patterns (TOOLS EUROPE). Lecture Notes in Business
Information Processing, vol 33. Springer, pp 175–194

Kästner C, Apel S, ur Rahman SS, Rosenmüller M, Batory D, Saake G (2009) On the impact of
the optional feature problem: Analysis and case studies. In: Proc. Int’l Software Product Line
Conference (SPLC), ACM Press, pp 181–190

Kästner C, Giarrusso PG, Ostermann K (2011) Partial preprocessing of C code for variability
analysis. In: Proc. Int’l Workshop on Variability Modelling of Software-intensive Systems
(VaMoS). ACM Press, pp 137–140

Kästner C, Giarrusso PG, Rendel T, Erdweg S, Ostermann K, Berger T (2011) Variability-aware
parsing in the presence of lexicalmacros and conditional compilation. In: Proc. Int’l Conf.
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM
Press, pp 805–824

Kästner C, Trujillo S, 432 Apel S (2008b) Visualizing software product line variabilities in source
code. In: Proc. SPLC Workshop on Visualization in Software Product Line Engineering
(ViSPLE). Lero, University of Limerick, pp 303–313

Kästner C, von Rhein A, Erdweg S, Pusch J, Apel S, Rendel T, Ostermann K (2012c) Toward
variability-aware testing. In: Proc. GPCE Workshop on Feature-Oriented Software Devel-
opment (FOSD). ACM Press, pp 1–8

Kästner C, Ostermann K, Erdweg S (2012b). Avariability-awaremodule system. In: Proc. Int’l
Conf. Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
ACM Press, pp 773–792

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold W (2001) An overview of
AspectJ. In: Proc. Europ. Conf. Object-Oriented Programming (ECOOP). Lecture Notes in
Computer Science, vol 2072. Springer, pp 327–353

Kiczales G, Lamping J, Menhdhekar A, Maeda C, Lopes C, Loingtier J-M, Irwin J (1997) Aspect
oriented programming. In: Proc. Europ. Conf. Object-Oriented Programming (ECOOP).
Lecture Notes in Computer Science, vol 1241. Springer, pp 220–242

Kim CHP, Khurshid S, Batory D (2012) Shared execution for efficiently testing product lines. In:
Proc. Int’l Symp. Software Reliability Engineering (ISSRE). IEEE Computer Society
pp 221–230

Kniesel G, Koch H (2004) Static composition of refactorings. Sci Comput Progr (SCP)
52(1–3):9–51

300 References

Kolberg M, Magill E, Marples D, Reiff S (2000) Results of the second feature interaction contest.
In: Calder M, Magill E (eds) Feature interactions in telecommunication systems, vol VI. IOS
Press, pp 311–325

Krone M, Snelting G (1994) On the inference of configuration structures from source code. In:
Proc. Int’l Conf. Software Engineering (ICSE). IEEE Computer Society, pp 49–57

Krueger CW (2002) Easing the transition to software mass customization. In: Proc. Int’l
Workshop on Software Product-Family Engineering (PFE) Lecture Notes in Computer
Science, vol 2290. Springer, pp 282–293

Krueger CW (2006) New methods in software product line practice. Commun ACM 49:37–40
Kuhlemann M, Batory D, Apel S (2009a) Refactoring feature modules. In: Proceedings of the

International Conference on Software Reuse (ICSR), Springer, pp 106–115
KuhlemannM, Batory D, Kästner C (2009b) Safe composition of non-monotonic features. In:

Proc. Int’l Conf. Generative Programming and Component Engineering (GPCE), ACM Press,
pp 177–185

Kuhn DR, Wallace DR, Gallo AM (2004) Software fault interactions and implications for
software testing. IEEE Trans Software Eng (TSE) 30:418–421

Kühne T (1999) A functional pattern system for object-oriented design. Ph.D. thesis, Department
of Computer Science, Darmstadt University of Technology

Laddad R (2003) AspectJ in action: Practical aspect-oriented programming. Manning
Publications

Laddad R (2003b) AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications

Lafferty D, Cahill V (2003) Language-independent aspect-oriented programming. In: Proc. Int’l
Conf. Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
ACM Press, pp 1–12

Lämmel R (1999) Declarative aspect-oriented programming. In: Proc. Int’l Symp. Partial
Evaluation and Semantics-Based Program Manipulation (PEPM), ACM Press, pp 131–146

Latendresse M (2003). Fast symbolic evaluation of C/C++ preprocessing using conditional
values. In: Proc. Europ. Conf. on Software Maintenance and Reengineering (CSMR). IEEE
Computer Society, pp 170–179

Latendresse M (2004) Rewrite systems for symbolic evaluation of C-like preprocessing. In: Proc.
Int’l Conf. Automated Software Engineering (CSMR). IEEE Computer Society, pp 165–173

Lauenroth K, Pohl K, Toehning S (2009) Model checking of domain artifacts in product line
engineering. In: Proc. Int’l Conf. Automated Software Engineering (ASE), IEEE Computer
Society, pp 269–280

Le D, Walkingshaw E, Erwig M (2011) #ifdef confirmed harmful: Promoting understandable
software variation. In: Proc. Int’l Symp. Visual Languages and Human-Centric Computing
(VLHCC). IEEE Computer Society, pp 143–150

Lee K et al (2006) Combining feature-oriented analysis and aspect-oriented programming for
product line asset development. In: Proc. Int’l Software Product Line Conference (SPLC),
IEEE Computer Society, pp 103–112

Leich T (2012) Variables Nanodatenmanagement für eingebettete Systeme. Ph.D. thesis, School
of Computer Science, University of Magdeburg

Leich T, Apel S, Rosenmüller M, Saake G (2005) Handling optional features in software product
lines. In: OOPSLA workshop on managing variabilities consistently in design and code.
http://www.kircher-schwanninger.de/workshops/MVCDC/

Leroy X (1994) Manifest types, modules, and separate compilation. In: Proc. Int’l Symp.
Principles of Programming Languages (POPL). ACM Press, pp 109–122

Li HC, Krishnamurthi S, Fisler K (2005) Modular verification of open features using three-valued
model checking. Autom Softw Eng 12(3):349–382

Lieberherr KJ, Lorenz DH, Ovlinger J (2003) Aspectual collaborations—Combining modules and
aspects. Comput J 46(5):542–565

References 301

http://www.kircher-schwanninger.de/workshops/MVCDC/

Liebig J, Apel S, Lengauer C, Kästner C, Schulze M (2010) An analysis of the variability in forty
preprocessor-based software product lines. In Proc. Int’l Conf. Software Engineering (ICSE).
ACM Press, pp 105–114

Liebig J, Kästner C, Apel S (2011) Analyzing the discipline of preprocessor annotations in
30million lines of C code. In: Proc. Int’l Conf. Aspect-Oriented Software Development
(AOSD). ACM Press, pp 191–202

Liebig J, von Rhein A, Kästner C, Apel S, Dörre J, Lengauer C (2013) Scalable analysis of
variable software. In: Proc. Europ. Software Engineering Conf. and Symp. Foundations of
Software Engineering (ESEC/FSE). ACM Press, to appear

Lin F, Lin Y-J (1994) A building block approach to detecting and resolving feature interactions.
In: Bouma LG, Velthuijsen H (eds) Feature interactions in telecommunications systems. IOS
Press, pp 86–119

Liu J, Batory D, Lengauer C (2006) Feature oriented refactoring of legacy applications. In: Proc.
Int’l Conf. Software Engineering (ICSE), ACM Press, pp 112–121

Lohmann D, Hofer W, Schröder-Preikschat W, Spinczyk O (2011) Aspect-aware operating
system development. In: Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD),
ACM Press, pp 69–80

Lohmann D, Scheler F, Tartler R, Spinczyk O, Schröder-Preikschat W (2006a) A quantitative
analysis of aspects in the eCos kernel. In: Proc. Int’l EuroSys Conference (EuroSys). ACM
Press, pp 191–204

Lohmann D, Spinczyk O, Schröder-Preikschat W (2006b) Lean and efficient system software
product lines: Where aspects beat objects. Trans Aspect-Orient Softw Dev (TAOSD)
2(1):227–255

Lopez-Herrejon R (2006) Understanding feature modularity. Ph.D. thesis, Department of
Computer Sciences, The University of Texas at Austin

Lopez-Herrejon R, Batory D, Cook W (2005) Evaluating support for features in advanced
modularization technologies. In: Proc. Int’l Conf. Generative and Component-Based Software
Engineering (ECOOP). Lecture notes in computer science, vol 3586. Springer, pp 169–194

Lotufo R, She S, Berger T, Czarnecki K, Wąsowski A (2010) Evolution of the Linux kernel
variability model. In: Proc. Int’l Software Product Line Conference (SPLC). Springer,
pp 136–150

Madsen OL, Moller-Pedersen B (1989) Virtual classes: A powerful mechanism in object-oriented
programming. In: Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), ACM Press, pp 397–406

Masuhara H, Kawauchi K (2003) Dataflow pointcut in aspect-oriented programming. In: Proc.
Asian Symp. Programming Languages and Systems (APLAS), Lecture Notes in Computer
Science, vol 2895. Springer, pp 105–121

McCloskey B, Brewer E (2005) ASTEC: A new approach to refactoring C. In: Proc. Europ.
Software Engineering Conf. and Symp. Foundations of Software Engineering (ESEC/FSE).
ACM Press, pp 21–30

McIlroy MD (1969) Mass produced software components. In: Software engineering: Report of a
conference sponsored by the NATO science committee, Garmisch, Germany, 7–11 Oct. 1968,
Scientific Affairs Division, NATO, pp 138–155

Mehner K, Rashid A (2003) Towards a generic model for AOP (GEMA). Technical report CSEG/
1/03, Computing Department, Lancaster University

Mendonça M, Wąsowski A, Czarnecki K (2009) SAT-based analysis of feature models is easy.
In: Proc. Int’l Software Product Line Conference (SPLC). ACM Press, pp 231–240

Mens T (2002) A state-of-the-art survey on software merging. IEEE Trans Softw Eng (TSE)
28(5):449–462

Mens T, Tourwé T (2004) A survey of software refactoring. IEEE Trans Softw Eng (TSE) 30(2):
126–139

302 References

Metzger A, Pohl K, Heymans P, Schobbens P-Y, Saval G (2007) Disambiguating the
documentation of variability in software product lines: A separation of concerns, formaliza-
tion and automated analysis. In: Proc. Int’l Conf. Requirements Engineering (RE). IEEE
Computer Society, pp 243–253

Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice-Hall
Mezini M, Ostermann K (2004) Variability management with feature-oriented programming and

aspects. In: Proc. Int’l Symp. Foundations of Software Engineering (FSE), ACM Press,
pp 127–136

Michel R, Classen A, Hubaux A, Boucher Q (2011) A formal semantics for feature cardinalities
in feature diagrams. In: Proc. Int’l Workshop on Variability Modelling of Softwareintensive
Systems (VaMoS). ACM Press, pp 82–89

Monteiro MP, Fernandes JM (2005) Towards a catalog of aspect-oriented refactorings. In: Proc.
Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM Press, pp 111–122

Murphy GC, Lai A, Walker R, Robillard M (2001) Separating features in source code: An
exploratory study. In: Proc. Int’l Conf. Software Engineering (ICSE). IEEE Computer
Society, pp 275–284

Murphy-Hill E, Black AP (2008) Breaking the barriers to successful refactoring: Observations
and tools for extract method. In: Proc. Int’l Conf. Software Engineering (ICSE). ACM Press,
pp 421–430

Muthig D, Patzke T (2002) Generic implementation of product line components. In: Proc. Int’l
Conf. Object-Oriented and Internet-based Technologies, Concepts, and Applications for a
Networked World (Net.ObjectDays), Lecture Notes in Computer Science, vol 2591. Springer,
pp 313–329

Nadi S, Holt RC (2012) Mining Kbuild to detect variability anomalies in Linux. In: Proc. Europ.
Conf. on Software Maintenance and Reengineering (CSMR). IEEE Computer Society,
pp 107–116

Neves L, Teixeira L, Sena D, Alves V, Kulezsa U, Borba P (2011) Investigating the safe
evolution of software product lines. In: Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE). ACM Press, pp 33–42

Nhlabatsi A, Laney R, Nuseibeh B (2008) Feature interaction: The security threat from within
software systems. Prog inform 5:75–89

Opdyke WF (1992) Refactoring object-oriented frameworks. Ph.D. thesis, University of Illinois
at Urbana-Champaign

Oster S, Markert 1235 F, Ritter P (2010) Automated incremental pairwise testing of software
product lines. In: Proc. Int’l Software Product Line Conference (SPLC). Lecture Notes in
Computer Science, vol 6287. Springer, pp 196–210

Ostermann K, Giarrusso PG, Kästner C, Rendel T (2011) Revisiting information hiding:
Reflections on classical and nonclassical modularity. In: Proc. Europ. Conf. Object- Oriented
Programming (ECOOP). Lecture Notes in Computer Science, vol 6813. Springer, pp 155–178

Ostermann K, Mezini M, Bockisch C (2005) Expressive pointcuts for increased modularity. In:
Proc. Europ. Conf. Object-Oriented Programming (ECOOP). Lecture Notes in Computer
Science, vol 3586. Springer, pp 214–240

Ouellet M, Merlo E, Sozen N, Gagnon M (2012) Locating features in dynamically configured
avionics software. In: Proc. Int’l Conf. Software Engineering (ICSE). IEEE Computer
Society, pp 1453–1454

Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun
ACM 15(12):1053–1058

Parnas DL (1979) Designing software for ease of extension and contraction. IEEE Trans Software
Eng (TSE), SE-5(2):128–138

Parnas, DL (1976) On the design and development of program families. IEEE Trans Software
Eng (TSE), 2(1):1–9

Parr TJ (2004) Enforcing strict model-view separation in template engines. In: Proc. Int’l
Conference on World Wide Web. ACM Press, pp 224–233

References 303

Perrouin G, Sen S, Klein J, Baudry B, le Traon Y (2010) Automated and scalable t-wise test case
generation strategies for software product lines. In: Proc. Int’l Conf. Software Testing,
Verification, and Validation. IEEE Computer Society, pp 459–468

Pierce BC (2002) Types and programming languages. MIT Press
Pohl K, Böckle G, van der Linden FJ (2005) Software product Line engineering: Foundations,

principles and techniques. Springer
Pomakis K, Atlee J (1996) Reachability analysis of feature interactions: A progress report. In:

Proc. Int’l Symp. Software Testing and Analysis (ISSTA), ACM Press, pp 216–223
Popovici A, Alonso G, Gross T (2003) Just-in-time aspects: Efficient dynamic weaving for Java.

In: Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD), ACM Press,
pp 100–109

Poshyvanyk D, Guéhéneuc Y-G, Marcus A, Antoniol G, Rajlich V (2007) Feature location using
probabilistic ranking of methods based on execution scenarios and information retrieval.
IEEETrans Software Eng 33(6):420–432

Post H, Sinz C (2008) Configuration lifting: Verification meets software configuration. In: Proc.
Int’l Conf. Automated Software Engineering (ASE). IEEE Computer Society, pp 347–350

Prehofer C (1997) Feature-oriented programming: A fresh look at objects. In: Proc. Europ. Conf.
Object-Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol 1241.
Springer, pp 419–443

Rabkin A, Katz R (2011) Static extraction of program configuration options. In: Proc. Int’l Conf.
Software Engineering (ICSE), IEEE Computer Society, pp 131–140

Rashid A, Royer J-C, Rummler A (2011) Aspect-oriented, model-driven software product lines:
The AMPLE way. Cambridge University Press

Reenskaug T, Andersen E, Berre A, Hurlen A, Landmark A, Lehne O, Nordhagen E, Ness-Ulseth
E, Oftedal G, Skaar A, Stenslet P (1992) OORASS: Seamless support for the creation and
maintenance of object-oriented systems. J Object-Orient Program (JOOP) 5(6):27–41

Refstrup JG (2009) Adapting to change: Architecture, processes and tools: A closer look at HP’s
experience in evolving the Owen software product line. In: Proc. Int’l Software Product Line
Conference (SPLC). Keynote presentation

Reisner E, Song C, Ma K-K, Foster JS, Porter A (2010) Using symbolic evaluation to understand
behavior in configurable software systems. In: Proc. Int’l Conf. Software Engineering (ICSE),
ACM Press, pp 445–454

Ribeiro M, Pacheco H, Teixeira L, Borba P (2010) Emergent feature modularization. In:
Companion Int’l Conf. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). ACM Press, pp 11–18

Robillard M, Weigand-Warr F (2005) ConcernMapper: Simple view-based separation of
scattered concerns. In: Proc. OOPSLA Workshop on Eclipse Technology eXchange (ETX).
ACM Press, pp 65–69

Robillard M, Murphy GC (2002) Concern graphs: Finding and describing concerns using
structural program dependencies. In: Proc. Int’l Conf. Software Engineering (ICSE). ACM
Press, pp 406–416

Rosenmüller M, Apel S, Leich T, Saake G (2009a) Tailor-made data management for embedded
systems: A case study on Berkeley DB. Data Knowl Eng (DKE) 68(12):1493–1512

Rosenmüller M, Kästner C, Siegmund N, Sunkle S, Apel S, Leich T, Saake G (2009b) SQL à la
carte—toward tailor-made data management. In: Proc. GI-Fachtagung Datenbanksysteme für
Business, Technologie und Web (BTW) Lecture Notes in Informatics. Gesellschaft für
Informatik (GI), vol P-144, pp 117–136

RosenmüllerM(2011) Towards flexible feature composition: Static and dynamic binding in
software product lines. Ph.D. thesis, School of Computer Science, University of Magdeburg

Rosenmüller M, Siegmund N, Apel S, Saake G (2011) Flexible feature binding in software
product lines. Autom Software Eng 18(2):163–197

304 References

Rosenmüller M, Siegmund N, Schirmeier H, Sincero J, Apel S, Leich T, Spinczyk O, Saake G
(2008) FAME-DBMS: Tailor-made data management solutions for embedded systems. In:
Proc. EDBT Workshop on Software Engineering for Tailor-made Data Management. ACM
Press, pp 1–6

Saake G, Rosenmüller M, Siegmund N, Kästner C, Leich T (2009) Downsizing data management
for embedded systems. Egyptian Comput Sci J 31(1):1–13

Sato Y, Chiba S, Tatsubori M (2003) A selective, just-in-time aspect weaver. In: Proc. Int’l Conf.
Generative Programming and Component Engineering (GPCE). Lecture Notes in Computer
Science, vol 2830. Springer, pp 189–208

Savolainen J, Bosch J, Kuusela J, Männistö T (2009) Default values for improved product line
management. In: Proc. Int’l Software Product Line Conference (SPLC). Carnegie Mellon
University, pp 51–60

Schaefer I, Bettini L, Damiani F (2011) Compositional type-checking for delta-oriented
programming. In: Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM
Press, pp 43–56

Schaefer I, Bettini L, Damiani F, Tanzarella N (2010) Delta-oriented programming of software
product lines. In: Proc. Int’l Software Product Line Conference (SPLC), Springer, pp 77–91

Schmid K, Rabiser R, Grünbacher P (2011) A comparison of decision modeling approaches in
product lines. In: Proc. Int’l Workshop on Variability Modelling of Software-intensive
Systems (VaMoS). ACM Press, pp 119–126

Schobbens P-Y, Heymans P, Trigaux J-C, Bontemps Y (2007) Generic semantics of feature
diagrams. Comput Netw 51(2):456–479

Schulze S (2013) Analysis and removal of code clones in software product lines. Ph.D. thesis,
School of Computer Science, University of Magdeburg

Schulze S, Thüm T, Kuhlemann M, Saake G (2012) Variant-preserving refactoring in feature
oriented software product lines. In: Proc. Int’l Workshop on Variability Modelling of
Software-intensive Systems (VaMoS). ACM Press, pp 73–81

She S, Lotufo R, Berger T, Wąsowski A, Czarnecki K (2011) Reverse engineering feature
models. In: Proc. Int’l Conf. Software Engineering (ICSE). ACM Press, pp 461–470

She S, Lotufo R, Berger T, Wąsowski A, Czarnecki K (2010) The variability model of the Linux
kernel. In: Proc. Int’l Workshop on Variability Modelling of Software-intensive Systems
(VaMoS). University of Duisburg-Essen, pp 45–51

Siegmund N, Kästner C, Rosenmüller M, Heidenreich F, Apel S, Saake G (2009a) Bridging the
gap between variability in client application and database schema. In: Proc. GI-Fachtagung
Datenbanksysteme für Business, Technologie und Web (BTW). Lecture Notes in Informatics,
vol. P-144. Gesellschaft für Informatik (GI), pp 297–306

Siegmund N, Rosenmüller M, Kuhlemann M, Kästner C, Apel S, Saake G (2011) SPL
Conqueror: Toward optimization of non-functional properties in software product lines. Softw
Qual J Spec Issue Qual Eng Softw Prod Lines 3:487–517

Siegmund N, Rosenmüller M, Moritz G, Saake G, Timmermann D (2009b) Towards robust data
storage in wireless sensor networks. IETE Tech Rev 26(5):335–340

Simos MA (1995) Organization domain modeling (ODM): Formalizing the core domain
modeling life cycle. In: Proc. Symp. Software Reusability (SSR). ACM Press, pp 196–205

Sincero J, Schirmeier H, Schröder-Preikschat W, Spinczyk O (2007) Is the Linux kernel a
software product line? In: Proc. Int’l Workshop Open Source Software and Product Lines
(SPLC-OSSPL)

Sincero J, Schröder-Preikschat W, Spinczyk O (2010) Approaching non-functional properties of
software product lines: Learning from products. In: Proc. Asia-Pacific Software Engineering
Conf. (APSEC). IEEE Computer Society, pp 147–155

Singh N, Gibbs C, Coady Y (2007) C-CLR: A tool for navigating highly configurable system
software. In: Proc. AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS). ACM Press, p 9

References 305

Smaragdakis Y, Batory D (2002a) Mixin layers: An object-oriented implementation technique for
refinements and collaboration-based designs. ACM Trans Softw Eng Methodol
11(2):215–255

Smaragdakis Y, Batory D (2002) Mixin layers: An Object-oriented implementation technique for
refinements and collaboration-based designs. ACM Trans Software Eng Methodol (TOSEM)
11(2):215–255

Snyder A (1986) Encapsulation and inheritance in object-oriented programming languages. In:
Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM Press, pp 38–45

Sommerville I (2010) Software engineering, 9th edn. Pearson Addison Wesley
Spencer H, Collyer G (1992) #ifdef considered harmful or portability experience with C news. In:

Proc. USENIX Conf., USENIX Association, pp 185–198
Spinczyk O, Lohmann D, Urban M (2005) AspectC++: An AOP extension for C++. Softw Dev J

14:68–74
Spinczyk O (2002) Aspektorientierung und Programmfamilien im Betriebssystembau. Ph.D.

thesis, School of Computer Science, University of Magdeburg
Staples M, Hill D (2004) Experiences adopting software product line development without a

product line architecture. In: Proc. Asia-Pacific Software Engineering Conf. (APSEC). IEEE
Computer Society, pp 176–183

Steimann F (2005) Domain models are aspect free. In: Proc. Int’l Conf. Model Driven
Engineering Languages and Systems (MoDELS). Lecture Notes in Computer Science, vol
3713. Springer, pp 171–185

Steimann F (2006) The paradoxical success of aspect-oriented programming. In: Proc. Int’l Conf.
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), ACM
Press, pp 481–497

Steimann F, Pawlitzki T, Apel S, Kästner C (2010) Types and modularity for implicit invocation
with implicit announcement. ACM Trans Software Eng Methodol (TOSEM) 20(1):1:1–1:43

Störzer M, Koppen C (2004) PCDiff: Attacking the fragile pointcut problem, abstract. In:
European Interactive Workshop on Aspects in Software

Streitferdt D, Riebisch M, Philippow I (2003) Details of formalized relations in feature models
using OCL. In: Proc. Int’l Conf. and Workshop Engineering of Computer-Based Systems
(ECBS). IEEE Computer Society, pp 297–304

Strniša R, Sewell P, Parkinson M (2007) The Java module system: Core design and semantic
definition. In: Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM Press, pp 499–514

Sullivan K, Griswold W, Song Y, Cai Y, Shonle M, Tewari N, Rajan H (2005) Information
hiding interfaces for aspect-oriented design. In: Proc. Int’l Symp. Foundations of Software
Engineering (FSE), ACM Press, pp 166–175

Sultana N, Thompson S (2008) Mechanical verification of refactorings. In: Proc. Int’l Symp.
Partial Evaluation and Semantics-Based Program Manipulation (PEPM). ACM Press,
pp 51–60

Sunyé G, Pollet D, Traon YL, Jézéquel J-M (2001) Refactoring UML models. In: Proc. Int’l
Conf. UML. Modeling Languages, Concepts, and Tools, of Lecture Notes in Computer
Science, vol. 2185. Springer, pp 134–148

Svahnberg M, van Gurp J, Bosch J (2005) A taxonomy of variability realization techniques.
SoftwPract Exp 35(8):705–754

Szewczyk R et al (2004) Habitat monitoring with sensor networks. Commun ACM 47(6):34–40
Szyperski C (1997) Component software: Beyond object-oriented programming. Wesley
Tamrawi A, Nguyen HA, Nguyen HV, Nguyen TN (2012) Build code analysis with symbolic

evaluation. In: Proc. Int’l Conf. Software Engineering (ICSE). IEEE Computer Society,
pp 650–660

306 References

Tarr P, Ossher H, Harrison W, Sutton S Jr (1999) N degrees of separation: Multi-
dimensionalseparation of concerns. In: Proc. Int’l Conf. Software Engineering (ICSE), IEEE
Computer Society, pp 107–119

Tartler R, Lohmann D, Sincero J, Schröder-Preikschat W (2011) Feature consistency in
compiletime-configurable system software: Facing the linux 10,000 feature problem. In: Proc.
Int’l EuroSys Conference (EuroSys). ACM Press, pp 47–60

Tešanovic0 A, Sheng K, Hansson J (2004) Application-tailored database systems: A case of
aspects in an embedded database. In: Proc. Int’l Database Engineering and Applications
Symposium. IEEE Computer Society, pp 291–301

Thaker S, Batory D, Kitchin D, Cook W (2007) Safe composition of product lines. In: Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE). ACM Press, pp 95–104

Thüm T, Apel S, Kästner C, Kuhlemann M, Schaefer I, Saake G (2012a) Analysis strategies for
software product lines. Technical Report FIN-004-2012, School of Computer Science,
University of Magdeburg

Thüm T, Batory D, Kästner C (2009) Reasoning about edits to feature models. In: Proc. Int’l
Conf. Software Engineering (ICSE). IEEE Computer Society, pp 254–264

Thüm T, Kästner C, Erdweg S, Siegmund N (2011a) Abstract features in feature modeling. In:
Proc. Int’l Software Product Line Conference (SPLC). IEEE Computer Society, pp 191–200

Thüm T, Schaefer I, Apel S, Hentschel M (2012b) Family-based theorem proving for deductive
verification of software product lines. In: Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE). ACM Press, pp 11–20

Thüm T, Schaefer I, KuhlemannM, Apel S (2011b) Proof composition for deductive verification
of software product lines. In: Proc. Int’l Workshop on Variability-Intensive Systems Testing,
Validation & Verification (VAST). IEEE Computer Society, pp 270–277

Tsang S, Magill E (1998) Learning to detect and avoid run-time feature interactions in intelligent
networks. IEEE Trans Software Eng (TSE) 24(10):818–830

Utas G (1998) A pattern language of feature interaction. In: Kimbler K, Bouma LG (eds) Feature
interactions in telecommunications systems V, IOS Press, pp 98–114

van der Linden FJ, Schmid K, Rommes E (2007) Software product lines in action: The best
industrial practice in product line engineering. Springer

van der Linden R (1994) Using an architecture to help beat feature interaction. In: Bouma W,
Velthuijsen H (eds) Feature interactions in telecommunications systems. IOS Press, pp 24–35

van der Storm T (2004).Variability and component composition. In: Proc. Int’l Conf. Software
Reuse (ICSR) Lecture notes in computer science, vol 3107. Springer, pp 157–166

van Ommering R (2002) Building product populations with software components. In: Proc. Int’l
Conf. Software Engineering (ICSE), ACM Press, pp 255–265

VanHilst M, Notkin D (1996) Using role components in implement collaboration-based designs.
In: Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM Press, pp 359–369

Voelter M, Groher I (2007) Product line implementation using Aspect-oriented and model-driven
software development. In: Proc. Int’l Software Product Line Conference (SPLC), IEEE
Computer Society, pp 233–242

Wand M, Kiczales G, Dutchyn C (2004) A semantics for advice and dynamic join points in aspect
oriented programming. ACM Trans Program Lang Syst (TOPLAS) 26(5):890–910

Weise D, Crew R (1993) Programmable syntax macros. In: Proc. Int’l Conf. Programming
Language Design and Implementation (PLDI). ACM Press, pp 156–165

Zave P (2003) An experiment in feature engineering. In: Programming Methodology. Springer,
pp 353–377

References 307

Zave P (2010) Modularity in distributed feature composition. In: Nuseibeh B, Zave P (eds)
Software requirements and design: The work of Michael Jackson. Good Friends Publishing,
pp 267–290

Zhang C, Jacobsen H-A (2003) Quantifying aspects in middleware platforms. In: Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD). ACM Press, pp 130–139

308 References

Index

Symbols
• composition operator, 137
#define, 110
#else, 111
#ifdef, 110, 181
#ifdef hell, 120
#ifndef, 111
#include, 110
#undef, 113
n-way interaction
150-percent analysis, 244
2-way interaction, 216
3-way interaction, 216

A
abc, 81
Abstract feature

detection, 257
extension, 35

Abstract method, 71, 72
ACC, 167
ACDT, 167
Activated feature, 250
Adapter pattern, 93
Adoption path, 40
Advanced dynamic crosscutting concern, 158
Advice, 143
AFM, 161
AHEAD, 137, 138, 166, 167, 172, 275
AHEAD Tool Suite
AJDT, 167, 171
Algebraic Hierarchical Equations for Appli-

cation Design, 137
Alternative, 28, 31, 32
Alternative macros, 113
Analysis

approximations, 269
brute force, 261

family-based, 264, 269
feature-based, 272
of product lines, 260
sampling, 263
variability aware, 260
variability-aware, 243, 261
annotation, 111

Annotation-based approach, 50
ANT, 125
ant, 105
Antenna, 111, 114, 126
AOP, 141
Application engineering, 20, 21

component composition, 92
Aspect, 142, 143
Aspect weaver, 143
Aspect weaving, 143
Aspect-oriented programming, 141
AspectC++, 167
AspectC#, 165
AspectJ, 145, 146, 167
Aspectual Collaborations, 172
Aspectual feature modules, 162
Atoms in the universe, 243
Automatic product derivation, 14
Automation

component composition and plug-in
selection, 92

Automation of product derivation, 182

B
Basic dynamic crosscutting concern, 158
BDD, 254
Berkeley DB, 111, 207, 234
Best-of-breed approach, 89
BigLever Software, Inc., 304
Binary decision diagram, 254
Binding time, 48

S. Apel et al., Feature-Oriented Software Product Lines,
DOI: 10.1007/978-3-642-37521-7, � Springer-Verlag Berlin Heidelberg 2013

309

Black box
component, 89

Black box, 80
Black-box framework, 81
Boolean satisfiability problem, 247
Branch

version control, 100
Bridge pattern, 93
Brute-force analysis, 261
Build system, 105

analysis, 109, 259
presence conditions, 259

Busybox, 275

C
CaesarJ, 172
Calculator example, 82
Call forwarding and call waiting interaction,

214
Callback, 74
Callback function, 73
Captain Feature, 39
Case study

variability-aware analysis, 275
CDL, 39, 309
Cflow, 146, 158
Cflowbelow, 160
Change feature model, 224
Checking validity, 182
Choice, 31
CIDE, 177, 180, 186, 277
CIDE+, 277
Class refinement, 133
Clone-and-own approach, 41
Closed world, 273
Coarse-grained, 59
Code fragment

analysis, 254
Code scattering, 56
Code smell, 194

duplicate code, 194
large class, 194
long method, 194
shotgun surgery, 194

Code tangling, 56
Cohesion, 55, 56
Collaboration, 130, 131
Collaboration-based design, 131
Combinatorial explosion, 243
Command-line parameter, 66
Comparing feature models, 252
Compile-time, 120
Compile-time binding, 48

Compile-time variability, 49
Completeness, 263
Component, 76, 89

definition, 89
sizing, 89
versus plug-in, 93

Component family model, 304
Component interface, 76
Composition operator, 137
Composition-based approach, 50
ConcernMapper, 176, 186
Concrete observer, 70
Conditional compilation, 110, 227

in Java, native, 113
on models, 115
presence conditions, 258
with Antenna, 114
with cpp, 111
with Munge, 111

Conditional statement, 66
Configuration file, 66
Configuration knowledge, 121
Configuration lifting, 272
Configuration object, 68
Configuration parameter, 66
Consistency

of tracing, 177
Consistent feature model, 247
Constant, 135
Constant function, 135
Constraint satisfaction problem, 254
Containment hierarchy, 135
Context-oriented programming, 170
ContextJ, 170
ContextJS, 309
ContextL, 309
ContextR, 309
Control flow

with preprocessors, 121
Control-flow analysis, 255

variability-aware, 273
cpp, 110, 111, 122
Cross-tree, 32
Cross-tree constraint, 29, 252
Crosscutting concern, 55
CSP solver, 254
CVL, 99
CVS, 99

D
Data-flow analysis

variability-aware, 273
Deactivated feature, 250

310 Index

Dead feature
detection, 249

Dead feature code, 255
Dead-code elimination, 255
Decision model, 26, 42
Decorator class, 76
Decorator pattern, 75
Delegation, 73
Delta-oriented programming, 168
DeltaJ, 309
Derivative modules

presence conditions, 257
Design for change, 58, 87, 89, 92
Design pattern, 70

adapter, 93
bridge, 93
decorator, 75
definition, 70
facade, 91
factory method, 109
observer, 70
singleton, 91
strategy, 73
template method, 71

Diamond problem, 82
Disciplined annotation, 116
Distinct module for coordination

code, 230
Domain, 19
Domain analysis, 21, 22

for sizing components, 92
Domain engineering, 20, 21
Domain implementation, 21, 25
Domain modeling, 22, 23
Domain scoping, 22
Duplicate-code code smell, 194
Dynamic binding, 48
Dynamic crosscutting concern, 157
Dynamic variability, 48

E
Early binding, 48
Eclipse, 80, 87
eCos
Edits of feature models, 252
Embedded data management, 12
Encapsulation, 56
endif, 110
Equivalent feature models, 252
Exponential explosion, 243
Extract Method, 208
Extract-method refactoring, 195
Extractive product line adoption, 120, 184

F
Facade pattern, 91
Factory-method pattern, 109
False optional code fragments, 257
False optional feature

detection, 249
FAMA, 277
FAME-DBMS, 236
Family-based analysis, 264
Family-based type checking, 264, 269
FEAT, 186
Feature, 17, 18
Feature attribute, 38
Feature dependency, 18
Feature diagram, 26, 28, 32
Feature expression, 136
Feature interaction
Feature model, 26, 27

analysis, 244
consistent, 247
generalization, 252
Linux kernel, 36
normalization, 35
refactoring, 252
specialization, 252
testing, 248
validity, 247

Feature modeling, 26
Feature Modeling Plug-in, 39
Feature modularity, 130
Feature module, 132
Feature orientation
Feature selection, 18

validity analysis, 245
Feature traceability, 54
Feature-aware analysis, 244
Feature-based type checking, 272
Feature-code mapping

analysis, 254
Feature-interaction problem, 214
Feature-model refactoring, 252
Feature-oriented programming, 130

presence conditions, 257
FeatureC++, 167
FeatureCommander, 178, 180, 186
FeatureHouse, 138, 166, 172
FeatureIDE, 39, 126, 135, 166, 167, 172, 183,

186, 276
FeatureMapper, 115, 116, 177, 186, 277
Femto OS, 121, 123
File-level variability, 108
Fine-grained, 59
Fire and flood control interaction, 214
First-order interaction, 216

Index 311

fmp2rsm, 115, 177, 186
FOP, 130
Fragile-pointcut problem, 151
Framework, 79, 80

black-box, 81
definition, 80, 81
versus preprocessor, 120
white-box, 80

Framework evolution, 87
Framework example, 82
Function parameter, 66

G
Gears, 39, 114, 115, 186
Generalization, 252, 253

feature model, 252
GenVoca, 135, 137
GenVoca model, 135
git, 99
Global variable, 66
Glue code, 92
GNU M4, 114
GPP, 114
Granularity, 59

with preprocessors, 120

H
Handcrafting, 3
Hello-world example, 264
Heterogeneous crosscutting concern, 153
Higher-order interaction, 216
Homogeneous crosscutting

concern, 153
Hook method, 217
Hot spot, 80

I
IDE, 80
ifdef, 110
ifdef hell, 120
ifndef, 111
Implementation strategy, 25
Inadvertent feature interaction, 214
Include directive, 111
Inconsistent feature model, 247
Inflexible inheritance hierarchies, 82
Information hiding, 56–58
Inheritance

limitations, 82
Inlining functions, 113
Integrated development environment, 80

Inter-type declaration, 144
Interface, 56, 57
Interface compatibility, 272
Interface inference, 272
Invasive extension, 54
Inversion of control, 80, 85

J
Jak, 133
JBoss AOP, 167
Join point, 143
Join-point shadow, 143

K
Kbuild, 107–109, 275
Kconfig, 36, 39
Koala, 310

L
Language-based approach, 50
Large-class code smell, 194
Late binding, 48
Level of granularity, 59
Lifting

analysis, 261
Linux kernel, 310

dead-code analysis, 275
feature modeling, 36

Load-time binding, 48
Load-time variability, 49
Long-method code smell, 194

M
M4, 114
Macro, 111
make, 105, 107
Mandatory, 31, 32, 257
Mandatory feature, 249

detection, 249
Mapping

analysis, 254
Market

for components, 89
for services, 90

Mass customization
Mass production
maven, 105
Mentor-student collaboration, 130
Mercurial, 99
Metaprogramming

312 Index

lightweight, with preprocessors, 110
Method argument, 66
MFC, 81
Mixin composition, 82
Mixin-based inheritance, 134
Mobile Media, 275
Model checking, 276

variability-aware, 273
Modular analysis, 272
Modular reasoning, 57, 58
Modularity, 58, 86
Module, 56, 58
Module interconnection language, 92, 95
Move-method refactoring, 195
Moving code, 226
Multiple implementations, 225
Multiple inheritance
Munge, 111–114, 126
Mutually exclusive, 28

N
n-way interaction, 216
Negative variability, 51
Noncode artifacts, 60
Noninvasive extension, 54
Number of valid feature selections, 251

O
Obfuscation

code, with preprocessors, 121
Object Teams, 172
Obliviousness, 54
Observer interface, 70
Observer pattern, 70
One-size-fits-all, 7
Open world, 273
Open-world development, 87
Optional, 31, 32
Optional weaving, 228
Optional-feature problem, 219
or, 31, 32
Orthogonal variability model, 26, 42
OSGi framework, 310

P
Parameter, 66

static analysis, 260
Parameter object, 68
Parsing

variability-aware, 273

Partial evaluation, 68
Partial feature selection

analysis, 250
valid, 250

Patch, 100, 104, 109
Perforce, 99
Physical separation of concerns, 52, 175
Plug-in, 80, 81

versus component, 93
Pointcut, 143
Polyglot, 81
Positive variability, 51
Preference dialog, 66
Preplanned, 81
Preplanning, 52, 71, 79

for design patterns, 70
with preprocessors, 121

Preprocessor, 109, 110
lexical vs syntactic, 114

Presence condition, 265
extraction, 257
on structures, 265

Presence conditions, 265
symbolic execution, 258

Principle of uniformity, 60
Problem space, 20, 21

analysis, 244
Product, 19
Product assembly, 21
Product configuration, 21
Product derivation, 21, 26

with components, 92
Product generation, 21
Product line

manufacturing, 4
software, 7

Product line-aware analysis, 244
Product-line refactoring, 201
Product-line refinement, 223
Product-preserving refactoring, 200, 201
Programming-in-the-large, 95
Propositional formula

feature selection, 245
Propositional logic, 28
ProVeLines, 277
Publish/subscribe pattern, 70
Pure-systems GmbH, 304
pure::variants, 38, 39, 114, 115, 186, 276
Push-button approach, 26

Q
Quantification, 145

Index 313

R
Refactoring, 193–195

extract method, 195
feature model, 252
move method, 195
product-preserving, 201
rename method, 195
variability-enhancing, 201
variability-preserving, 201

Refactoring catalog, 195
Refactoring feature modules, 169
Refactoring product lines, 169
Refactoring step, 195
Release, 100, 101
Rename-method refactoring, 195
Requirements analysis, 21, 24
Reuse, 20
Reuse framework, 25
Reuse-versus-use dilemma, 91
Revision, 100, 101

definition, 100
Revision control, 99
Role, 131
Run-time binding, 48
Run-time variability, 49

S
Safe evolution, 223
SafeGen, 277
Sampling strategy, 263
SAT solver, 247
Scattered code, 56
Scope, 21
Second-order interaction, 216
Separate compilation, 58
Separate concerns, 55
Separation of concerns, 58, 121

with preprocessors, 121
Service, 89, 90
Service orchestration, 90, 92
Service-oriented architecture, 90
Service-oriented architectures, 95
Shotgun-surgery code smell, 194
Singleton, 91
Singleton pattern, 91
Size of a feature model, 251
SNIP, 277
Software component, 89

definition, 89
Software configuration management, 99, 105
Software ecosystem, 87
Software factory, 186
Software product line, 7

Solution space, 20, 21
Soundness, 263
Specialization, 252, 253

feature model, 252
Specification

global, 263
SPL2go, 172
SPLOT, 276
SPLverifier, 277
Spring, 167
Staged configuration, 25
Standard software, 7
Static analysis, 243, 276

of build systems, 109, 259
Static binding, 48
Static crosscutting concern, 157
Static variability, 48
Store example, 269
Strategy pattern, 73
StringTemplate, 116
Structuring, 20
Subject, 70
Subversion, 99, 125
Swing, 81
Syntactic preprocessor, 114

T
Tag-and-prune, 114, 115
Tangled code, 56
Template processor, 115
Template-method design pattern, 81
Template-method pattern, 71
Testing

variability-aware, 273
Theorem proving

variability-aware, 273
Tool-based approach, 50
Tracing link, 175
Type checking

family-based, 264, 269
feature-based, 272

TypeChef, 277
Tyranny of the dominant decomposition, 55

U
Undead code fragments

detection, 257
undef, 113
Undertaker, 277
Uniformity, 60

in version-control systems, 103
with preprocessors, 120

314 Index

Uniformly, 103, 120
Unreachable-code detection, 255

V
Valid feature model, 247
Valid feature selection, 27, 245

counting, 251
Valid product, 27
Variability, 20, 48
Variability encoding, 272
Variability model, 26

analysis, 244
Variability modeling, 26
Variability smell, 197
Variability-aware analysis, 243, 244, 260, 261

patterns, 274
Variability-enhancing refactoring, 200, 201
Variability-preserving refactoring, 200, 201
Variant, 100, 101
Version

definition, 100
Version control, 99

Version Editor, 181, 182
View, 179
View Infinity, 186
Vim, 117
Virtual product, 49
Virtual separation of concerns, 52, 175, 180,

184
Visual SourceSafe, 99
Visual Studio, 87
Visualization

of tracing, 178
VMC, 277

W
Web service, 89, 90
White-box, 80
White-box framework, 80
Whole-product-line analysis, 244, 260

X
XVCL, 116

Index 315

	Foreword
	Preface
	Contents
	Part ISoftware Product Lines
	1 Software Product Lines
	1.1 From Individualism to Standardization and Back Again
	1.2 Specialized and Standardized Software
	1.3 Software Product Lines
	1.4 Promises of Software Product Lines
	1.5 Success Stories
	1.6 A Feature-Oriented Approach
	1.7 Running Examples
	1.8 Intended Audience of the Book
	1.9 How to Read this Book
	1.10 Further Reading

	2 A Development Process for Feature-Oriented Product Lines
	2.1 Features and Products
	2.2 A Process for Product-Line Development
	2.2.1 Domain Analysis
	2.2.2 Requirements Analysis
	2.2.3 Domain Implementation
	2.2.4 Product Derivation

	2.3 Feature Modeling
	2.3.1 Feature Models
	2.3.2 Feature Diagrams
	2.3.3 Formalization in Propositional Logic
	2.3.4 The Feature Model for the Graph Library
	2.3.5 Variations and Extensions of Feature Models
	2.3.6 Feature Modeling in Practice
	2.3.7 Tooling

	2.4 Adoption Paths of the Product-Line Approach
	2.4.1 Proactive Approach
	2.4.2 Extractive Approach
	2.4.3 Reactive Approach

	2.5 Further Reading

	Part IIVariability Implementation
	3 Basic Concepts, Classification, and Quality Criteria
	3.1 Dimensions of Variability Implementation
	3.1.1 Binding Time
	3.1.2 Technology: Language-Based Versus Tool-Based
	3.1.3 Representation: Annotation Versus Composition

	3.2 Quality Criteria
	3.2.1 Preplanning Effort
	3.2.2 Feature Traceability
	3.2.3 Separation of Concerns
	3.2.4 Information Hiding
	3.2.5 Granularity
	3.2.6 Uniformity

	3.3 Structure of Subsequent Chapters
	3.4 Further Reading

	4 Classic, Language-Based Variability Mechanisms
	4.1 Parameters
	4.1.1 Discussion

	4.2 Design Patterns
	4.2.1 Observer Pattern
	4.2.2 Template-Method Pattern
	4.2.3 Strategy Pattern
	4.2.4 Decorator Pattern
	4.2.5 Discussion

	4.3 Frameworks
	4.3.1 White-Box Frameworks
	4.3.2 Black-Box Frameworks
	4.3.3 An Implementation Example for Frameworks
	4.3.4 Loading Plug-Ins
	4.3.5 Discussion

	4.4 Components and Services
	4.4.1 Sizing Components
	4.4.2 Composing Components
	4.4.3 Components Versus Plug-Ins

	4.5 Further Reading

	5 Classic, Tool-Driven Variability Mechanisms
	5.1 Version-Control Systems
	5.1.1 Terminology
	5.1.2 Building Product Lines with Version-Control Systems
	5.1.3 Discussion

	5.2 Build Systems
	5.2.1 Variability in Build Scripts
	5.2.2 Custom Build Scripts
	5.2.3 Case Study: Build-System Variability in Linux
	5.2.4 Discussion

	5.3 Preprocessors
	5.3.1 The C Preprocessor cpp
	5.3.2 Implementing Variability with Preprocessors
	5.3.3 Further Preprocessors
	5.3.4 Disciplined Annotations
	5.3.5 Preprocessors in Practice
	5.3.6 Discussion

	5.4 Further Reading

	6 Advanced, Language-Based Variability Mechanisms
	6.1 Feature-Oriented Programming
	6.1.1 Collaboration-Based Design
	6.1.2 Feature Modules
	6.1.3 The Jak Language
	6.1.4 Models of Feature-Oriented Programming
	6.1.5 Discussion

	6.2 Aspect-Oriented Programming
	6.2.1 Aspects: Separating Crosscutting Concerns
	6.2.2 The AspectJ Language
	6.2.3 Aspects for Product Lines
	6.2.4 Discussion

	6.3 Aspects and Feature Modules in Concert
	6.3.1 Homogeneous and Heterogeneous Crosscutting Concerns
	6.3.2 Static and Dynamic Crosscutting Concerns
	6.3.3 Summary of Comparison
	6.3.4 Combining Aspects and Feature Modules
	6.3.5 A Study on Advanced Crosscutting Mechanisms
	6.3.6 Discussion

	6.4 Tooling
	6.5 Practical Relevance
	6.6 Further Approaches
	6.6.1 Delta-Oriented Programming
	6.6.2 Refactoring Feature Modules
	6.6.3 Context-Oriented Programming

	6.7 Further Reading

	7 Advanced, Tool-Driven Variability Mechanisms
	7.1 Exploiting Feature Tracing
	7.1.1 Consistency Checking
	7.1.2 Visualizing Tracing Information

	7.2 Views on Code
	7.3 Integrated Product Derivation
	7.4 Discussion: Virtual Separation of Concerns
	7.5 Tooling
	7.6 Further Reading

	Part IIIAdvanced Topics
	8 Refactoring of Software Product Lines
	8.1 Refactoring in General
	8.2 Refactoring in Software Product Lines
	8.2.1 Variability Smells in Software Product Lines
	8.2.2 Defining Product-Line Refactorings
	8.2.3 Examples of Product-Line Refactorings

	8.3 Refactoring as Path Toward a Product Line
	8.3.1 Example: Extraction of Feature Colored of the Graph Library
	8.3.2 Case Study: Refactoring of Berkeley DB with AspectJ

	8.4 Further Reading

	9 Feature Interactions
	9.1 The Feature-Interaction Problem
	9.1.1 Higher-Order Interactions

	9.2 Detecting Feature Interactions
	9.3 The Optional-Feature Problem
	9.4 Implementing Feature Interactions
	9.4.1 Implementation Strategies: Overview and Goals
	9.4.2 Change Feature Model
	9.4.3 Multiple Implementations
	9.4.4 Moving Code
	9.4.5 Conditional Compilation
	9.4.6 Optional Weaving
	9.4.7 Distinct Module for Coordination Code
	9.4.8 Comparison of Solutions

	9.5 Experience
	9.5.1 Decomposition of Berkeley DB
	9.5.2 Design and Implementation of FAME-DBMS

	9.6 Further Reading

	10 Analysis of Software Product Lines
	10.1 Analysis of Feature Models
	10.1.1 Valid Feature Selection
	10.1.2 Consistent Feature Models
	10.1.3 Testing Facts about Feature Models
	10.1.4 Dead Features and Mandatory Features
	10.1.5 Constraint Propagation
	10.1.6 Number of Valid Feature Selections
	10.1.7 Comparing Feature Models
	10.1.8 Other Feature-Model Analyses

	10.2 Analysis of Feature-to-Code Mappings
	10.2.1 Dead Code
	10.2.2 Abstract Features
	10.2.3 Determining Presence Conditions

	10.3 Analysis of Domain Implementations
	10.3.1 Design Space
	10.3.2 Sampling Strategies
	10.3.3 Family-Based Type Checking of Preprocessor-Based Implementations
	10.3.4 Family-Based Type Checking for Feature-Oriented Programming
	10.3.5 Family-Based Analysis with Variability Encoding
	10.3.6 Feature-Based Analysis Strategies
	10.3.7 Beyond Type Checking

	10.4 Case Studies and Experience
	10.5 Tooling
	10.6 Further Reading

	Appendix A Tool Support
	References
	Index

