
Tractable Probabilistic Description Logic
Programs

Thomas Lukasiewicz and Gerardo I. Simari

Abstract. We propose tractable probabilistic description logic programs (dl-pro-
grams) for the Semantic Web, which combine tractable description logics (DLs),
normal programs under the answer set and the well-founded semantics, and prob-
abilities. In detail, we first provide novel reductions of tight query processing and
of deciding consistency in probabilistic dl-programs under the answer set semantics
to the answer set semantics of the underlying normal dl-programs. Based on these
reductions, we then introduce a novel well-founded semantics for probabilistic dl-
programs, called the total well-founded semantics. Contrary to the previous answer
set and well-founded semantics, it is defined for all probabilistic dl-programs and
all probabilistic queries. Furthermore, tight (resp., tight literal) query processing
under the total well-founded semantics coincides with (resp., approximates) tight
(resp., tight literal) query processing under the previous well-founded (resp., an-
swer set) semantics in all cases where the latter is defined. We then present an
anytime algorithm for tight query processing in probabilistic dl-programs under
the total well-founded semantics. We also show that tight literal query processing
in probabilistic dl-programs under the total well-founded semantics can be done
in polynomial time in the data complexity and is complete for EXP in the com-
bined complexity. Finally, we describe an application of probabilistic dl-programs
in probabilistic data integration for the Semantic Web.

1 Introduction

During recent years, formalisms for dealing with probabilistic uncertainty have
started to play an important role in research related to the Web and the Semantic
Web, which is an extension of the current Web by standards and technologies that
help machines to understand the information on the Web so that they can support
richer discovery, data integration, navigation, and automation of tasks [8, 7]. As

Thomas Lukasiewicz · Gerardo I. Simari
Department of Computer Science, University of Oxford
e-mail: {thomas.lukasiewicz,gerardo.simari}@cs.ox.ac.uk

Z. Ma & L. Yan (Eds.): Advances in Probabilistic Databases, STUDFUZZ 304, pp. 131–159.
DOI: 10.1007/978-3-642-37509-5_6 c© Springer-Verlag Berlin Heidelberg 2013

{thomas.lukasiewicz,gerardo.simari}@cs.ox.ac.uk

132 T. Lukasiewicz and G.I. Simari

User Interface and Applications

Trust

XML

URI / IRI

Unifying Logic

SPARQL
Ontology: OWL

RDF S Rule:

RIF Cr
yp
to

Proof

RDF

Fig. 1 Hierarchical layers of the Semantic Web

an example of the role of uncertainty in today’s Web, note that the order in which
Google returns the answers to a Web search query is computed by using proba-
bilistic techniques. Besides Web search and information retrieval, other important
Web and Semantic Web applications of formalisms for dealing with probabilistic
uncertainty are especially data integration [85] and ontology mapping [67].

The Semantic Web consists of several hierarchical layers, as shown in Fig. 1,
where the Ontology layer, in the form of the OWL Web Ontology Language [86, 38,
87], is currently the highest layer of sufficient maturity. OWL consists of three in-
creasingly expressive sublanguages, namely, OWL Lite, OWL DL, and OWL Full,
where OWL Lite and OWL DL are essentially very expressive description log-
ics (DLs) with an RDF syntax [38]. As shown in [37], ontology entailment in
OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the DL
SH IF (D) (resp., SH OIN (D)). As a next step in the development of the
Semantic Web, one currently aims especially at sophisticated reasoning capabili-
ties for the Rules, Logic, and Proof layers of the Semantic Web.

In particular, there is a large body of work on integrating rules and ontologies,
which is a key requirement of the layered architecture of the Semantic Web. One
type of integration is to build rules on top of ontologies, i.e., for rule-based systems
that use vocabulary from ontology knowledge bases. Another form of integration is
to build ontologies on top of rules, where ontological definitions are supplemented
by rules or imported from rules. Both types of integration have been realized in
recent hybrid integrations of rules and ontologies, called description logic programs
(or dl-programs), which are of the form KB=(L,P), where L is a DL knowledge
base, and P is a finite set of rules involving queries to L in a loose coupling [25, 26].

Other research efforts are directed towards formalisms for uncertainty reason-
ing in the Semantic Web: An important recent forum for uncertainty in the Seman-
tic Web is the annual Workshop on Uncertainty Reasoning for the Semantic Web
(URSW) at the International Semantic Web Conference (ISWC); there was also a

Tractable Probabilistic Description Logic Programs 133

W3C Incubator Group on Uncertainty Reasoning for the World Wide Web. There
are especially extensions of DLs [31], ontology languages [15, 83], and dl-programs
[53] by probabilistic uncertainty (to encode ambiguous information, such as “John is
a student (resp., teacher) with the probability 0.7 (resp., 0.3)”, which is very different
from vague/fuzzy information, such as “John is tall with the degree of truth 0.7”).

In particular, the probabilistic dl-programs in [53] are one of the most promis-
ing approaches to uncertainty reasoning for the Semantic Web, since they faith-
fully generalize two well-established logic programming and uncertainty formalisms,
namely, answer set programming and Bayesian networks, respectively. They also
generalize Poole’s independent choice logic (ICL) [70], which is a powerful rep-
resentation and reasoning formalism for single- and also multi-agent systems. The
ICL combines logic and probability, and generalizes many important uncertainty for-
malisms, in particular, influence diagrams, Bayesian networks, Pearl’s causal models,
Markov decision processes, and normal form games. Moreover, it allows for natural
notions of causes and explanations as in Pearl’s causal models [27]. It is also closely
related to other approaches to probabilistic logic programming, such as P-log [5] and
Bayesian logic programs [42].

Since the Web contains a huge amount of data, as an important feature, Web and
Semantic Web formalisms should allow for efficient algorithms. However, no such
algorithms were known so far for the probabilistic dl-programs in [53]. In this work,
we aim at filling this gap. We propose an approach to probabilistic dl-programs that
is defined on top of tractable DLs (rather than SH IF (D) and SH OIN (D) as
in [53]), and show that this approach allows for tight query processing with polyno-
mial data complexity. In the course of this, we also provide some other new results
around probabilistic dl-programs, which are briefly summarized as follows:

• We provide novel reductions of deciding consistency and of tight query process-
ing in probabilistic dl-programs under the answer set semantics to computing the
answer sets of the underlying normal dl-programs. These reductions significantly
simplify previous reductions proposed in [53], which additionally require to de-
cide the solvability of a (in general quite large) system of linear inequalities and
to solve two linear optimization problems relative to them, respectively.

• We define a novel well-founded semantics of probabilistic dl-programs, called
the total well-founded semantics, since it defines tight answers for all proba-
bilistic queries. This is in contrast to the previous well-founded semantics of
probabilistic dl-programs in [53], which defines tight answers only for a quite
restricted class of probabilistic queries. The total well-founded semantics is also
defined for all probabilistic dl-programs, contrary to the answer set semantics,
which is only defined for consistent probabilistic dl-programs.

• As for other nice semantic features of the total well-founded semantics, the tight
answers under the total well-founded semantics coincide with the tight answers
under the well-founded semantics of [53], if the latter are defined. For literal
queries, the tight answers under the total well-founded semantics approximate
the tight answers under the answer set semantics, if the latter are defined.

134 T. Lukasiewicz and G.I. Simari

• We provide an anytime algorithm for tight query processing in probabilistic dl-
programs under the total well-founded semantics, along with a precise charac-
terization of its anytime error. Furthermore, we show that tight query processing
under the total well-founded semantics can be done in polynomial time in the
data complexity and is complete for EXP in the combined complexity.

• We describe an application of probabilistic dl-programs in probabilistic data inte-
gration for the Semantic Web, where probabilistic dl-programs allow for dealing
with probabilistic uncertainty and inconsistencies. We especially discuss differ-
ent types of probabilistic data integration that can be realized with our approach.

The rest of this paper is organized as follows. In Sections 2 and 3, we recall tract-
able DLs and dl-programs under the answer set and the well-founded semantics,
respectively. Section 4 recalls probabilistic dl-programs. In Section 5, we provide
a new reduction of tight query processing in probabilistic dl-programs under the
answer set semantics to the answer set semantics of normal dl-programs. Section 6
introduces the total well-founded semantics of probabilistic dl-programs. In Sec-
tion 7, we provide an anytime algorithm for tight query processing in probabilistic
dl-programs under the total well-founded semantics, as well as tractability and com-
plexity results. Section 8 describes an application of probabilistic dl-programs in
probabilistic data integration for the Semantic Web. In Section 9, we discuss related
work. Section 10 summarizes our results, and gives an outlook on future research.

2 Description Logics

The probabilistic dl-programs of this paper assume that the underlying description
logic (DL) allows for decidable conjunctive query processing. The tractability and
complexity results (see Section 7.2) also assume that the underlying DL allows
for conjunctive query processing in polynomial data complexity. We use DL-Lite
here, but the tractability and complexity results also hold for the variants of DL-Lite
in [11, 68]. We now recall the syntax and the semantics of DL-Lite. Intuitively, DLs
model a domain of interest in terms of concepts and roles, which represent classes
of individuals and binary relations between classes of individuals, respectively.

2.1 Syntax

We first define concepts and axioms, and then knowledge bases and conjunctive
queries in DL-Lite. We assume pairwise disjoint sets A, R, and I of atomic concepts,
(atomic) roles, and individuals, respectively. We use R− to denote the set of all
inverses R− of roles R∈R. A basic concept B is either an atomic concept A∈A or
an existential role restriction ∃R, where R∈R∪R−. An axiom is either:

• A concept inclusion axiom B�C, where B is a basic concept, and C is either a
basic concept B′ or its negation ¬B′ (called concept),

• a concept membership axiom B(x), where B is a basic concept and x∈ I,

Tractable Probabilistic Description Logic Programs 135

• a role membership axiom R(x,y), where R∈R and x,y∈ I,
• a functionality axiom (funct R), where R∈R∪R−.

Given the basic definitions above, a (DL) knowledge base L is a finite set of axioms;
a conjunctive query over L is of the form

Q(x)=∃y(conj(x,y)), (1)

where x and y are tuples of distinct variables, and conj(x,y) is a conjunction of
assertions B(z) and R(z1,z2), where B and R are basic concepts and roles from R,
respectively, and z, z1, and z2 are individuals from I or variables in x or y.

Example 1. An online store (such as amazon.com) may use a DL knowledge base to
classify and characterize its products. For example, suppose that (1) textbooks are
books, (2) personal computers and cameras are electronic products, (3) books and
electronic products are products, (4) every product has at least one related product,
(5) only products are related to each other, (6) tb ai and tb lp are textbooks, which
are related to each other, (7) pc ibm and pc hp are personal computers, which are
related to each other, and (8) ibm and hp are providers for pc ibm and pc hp, respec-
tively. This knowledge is expressed by the following DL-Lite knowledge base L:

(1) Textbook� Book;
(2) PC�Camera� Electronics;
(3) Book�Electronics� Product;
(4) Product� ∃related;
(5) related� related− � Product;
(6) Textbook(tb ai) Textbook(tb lp); related(tb ai, tb lp);
(7) PC(pc ibm); PC(pc hp); related(pc ibm,pc hp);
(8) provides(ibm,pc ibm); provides(hp,pc hp).

2.2 Semantics

The semantics of DL-Lite is defined as usual in first-order logics. An interpretation
I =(ΔI , ·I) consists of a nonempty domain ΔI and a mapping ·I that assigns to
each A∈A a subset of ΔI , to each o∈ I an element of ΔI (such that o1 �=o2 implies
oI

1 �=oI
2 , commonly referred to as the unique name assumption), and to each R∈R

a subset of ΔI ×ΔI . We extend ·I to all concepts and roles as follows:

• (¬B)I = ΔI \BI , for all basic concepts B;
• (∃R)I = {x | ∃y : (x,y) ∈ RI }, for all roles R∈R∪R−;
• (R−)I = {(y,x) | (x,y) ∈ RI }, for all atomic roles R∈R.

Next, we define the satisfaction of an axiom F by I , denoted I |=F , as usual:

• I |=B�C iff BI ⊆CI , for all basic concepts B and concepts C;
• I |=B(a) iff aI ∈BI , for all basic concepts B;
• I |=R(a,b) iff (aI ,bI)∈RI , for all atomic roles R∈R;
• I |=(funct R) iff (x,y) ∈ RI ∧ (x,z) ∈ RI ⇒ y = z, for all roles R∈R∪R−.

136 T. Lukasiewicz and G.I. Simari

An interpretation I satisfies the axiom F , or I is a model of F , iff I |=F . Fur-
thermore, I satisfies a knowledge base L, or I is a model of L, denoted I |=L,
iff I |=F for all F∈L. We say that L is satisfiable (resp., unsatisfiable) iff L has
a (resp., no) model. An axiom F is a logical consequence of L, denoted L |=F , iff
every model of L satisfies F . A negated axiom ¬F is a logical consequence of L,
denoted L |=¬F , iff every model of L does not satisfy F .

A tuple c of individuals from I is an answer for a conjunctive query Q(x) =
∃y(conj(x,y)) to a knowledge base L iff for every model I =(ΔI , ·I) of L, there
exists a tuple o of elements from ΔI such that all assertions in conj(c,o) are satisfied
in I . In DL-Lite, computing all such answers has a polynomial data complexity.

3 Description Logic Programs

We adopt the description logic programs (or dl-programs) of [25, 26], which consist
of a DL knowledge base L and a generalized normal program P, which may contain
queries to L (called dl-queries). Note that these dl-programs can be extended by
queries to other formalisms, such as RDF theories [24]. We first define the syntax of
dl-programs and then their answer set and their well-founded semantics. Note that in
contrast to [25, 26], we assume here that dl-queries may be conjunctive queries to L.

3.1 Syntax

We assume a function-free first-order vocabulary Φ with finite nonempty sets of
constant and predicate symbols Φc and Φp, respectively, and a set of variables X .
We make the following assumptions:

• Φc is a subset of I (since the constants in Φc may occur in concept and role
assertions of dl-queries); and

• Φ and A (resp., R) have no unary (resp., binary) predicate symbols in common
(and thus dl-queries are the only interface between L and P).

A term is a constant symbol from Φ or a variable from X . If p is a predicate symbol
of arity k�0 from Φ , and t1, . . . , tk are terms, then p(t1, . . . , tk) is an atom. A literal
is an atom a or a default-negated atom nota. A (normal) rule r is of the form

a← b1, . . . ,bk,not bk+1, . . . ,not bm , (2)

where a,b1, . . . ,bm are atoms and m�k�0. We call a the head of r, denoted H(r),
while the conjunction b1, . . . ,bk,not bk+1, . . . ,not bm is the body of r; its positive
(resp., negative) part is b1, . . . ,bk (resp., not bk+1, . . . ,not bm). We define B(r) as the
union of B+(r)={b1, . . . ,bk} and B−(r)={bk+1, . . . ,bm}. A (normal) program P is
a finite set of (normal) rules. We say P is positive iff it is “not”-free.

A dl-query Q(t) is a conjunctive query of the form (1). A dl-atom has the form

DL[S1
 p1, . . . ,Sm
 pm;Q(t)] ,

where each Si is a concept or role, pi is a unary resp. binary predicate symbol, Q(t)
is a dl-query, and m�0. We call p1, . . . , pm its input predicate symbols. Intuitively,

Tractable Probabilistic Description Logic Programs 137

 increases Si by the extension of pi. A (normal) dl-rule r is of the form (2), where
any b∈B(r) may be a dl-atom. A (normal) dl-program KB=(L,P) consists of a
DL knowledge base L and a finite set of (normal) dl-rules P. We say KB=(L,P)
is positive iff P is positive. Ground terms, atoms, literals, etc., are defined as
usual. We denote by ground(P) the set of all ground instances of dl-rules in P
relative to Φc.

Example 2. Consider the dl-program KB=(L,P), where L is the DL knowledge base
from Example 1, and P is the following set of dl-rules:

(1) pc(pc 1); pc(pc 2); pc(pc 3);
(2) brand new(pc 1); brand new(pc 2);
(3) vendor(dell,pc 1); vendor(dell,pc 2); vendor(dell,pc 3);
(4) avoid(X)← DL[PC
pc;PC](X),not offer(X);
(5) offer(X)←DL[PC
pc;Electronics](X),not brand new(X);
(6) provider(V)← vendor(V,X),DL[PC
pc;Product](X);
(7) provider(V)← DL[provides](V,X),DL[PC
pc;Product](X);
(8) similar(X ,Y)← DL[related](X ,Y);
(9) similar(X ,Y)← pc(X), pc(Y), X �= Y ;
(10) similar(X ,Z)← similar(X ,Y),similar(Y,Z), X �= Z;
(11) buyPC(X)←DL[PC
pc;PC](X),not avoid(X),not exclude(X);
(12) exclude(X)← DL[PC
pc;PC](X),buyPC(Y),similar(X ,Y).

The above dl-rules express that (1) pc 1, pc 2, and pc 3 are additional personal
computers, (2) pc 1 and pc 2 are brand new, (3) dell is the vendor of pc 1, pc 2,
and pc 3, (4) a customer avoids all PCs that are not on offer, (5) all electronic prod-
ucts that are not brand new are on offer, (6) every vendor of a product is a provider,
(7) every entity providing a product is a provider, (8) all related products are similar,
(9) all PCs are similar to each other (but a PC is not similar to itself), (10) the bi-
nary similarity relation on products is transitively closed, and (11), (12) a customer
buys a PC if he does not avoid it and has not decided to buy a similar one already.

3.2 Answer Set Semantics

The Herbrand base HBΦ is the set of all ground atoms constructed from constant
and predicate symbols in Φ . An interpretation I is any I⊆HBΦ . We say I is a
model of a∈HBΦ under a DL knowledge base L, denoted I |=L a, iff a∈ I. We say I
is a model of a ground dl-atom a=DL[S1
 p1, . . . , Sm
 pm;Q(c)] under L, de-
noted I |=L a, iff L∪⋃m

i=1 Ai(I) |=Q(c), where Ai(I)={Si(e) | pi(e)∈I}. We say I
is a model of a ground dl-rule r iff I |=L H(r) whenever I |=L B(r), i.e., I |=L a for
all a∈B+(r) and I �|=L a for all a∈B−(r). We say I is a model of a dl-program
KB=(L,P), denoted I |=KB, iff I |=L r for all r∈ground(P).

Like ordinary positive programs, each positive dl-program KB has a unique least
model, denoted MKB, which naturally characterizes its semantics. The answer set
semantics of general dl-programs is then defined by a reduction to the least model

138 T. Lukasiewicz and G.I. Simari

semantics of positive ones, using a reduct that generalizes the ordinary Gelfond-
Lifschitz reduct [30] and removes all default-negated atoms in dl-rules: For dl-
programs KB = (L,P), the dl-reduct of P relative to L and an interpretation I⊆HBΦ ,
denoted PI

L, is the set of all dl-rules obtained from ground(P) by:

• deleting each dl-rule r such that I |=L a for some a∈B−(r), and
• deleting from each remaining dl-rule r the negative body.

An answer set of KB is an interpretation I⊆HBΦ such that I is the unique least
model of (L,PI

L). A dl-program is consistent iff it has an answer set.

Example 3. Consider the dl-program KB = (L,P) from Example 2, which in turn
relies on the DL-Lite knowledge base L from Example 1. Intuitively, any answer set
of KB contains the atoms offer(pc3), offer(pc ibm), and offer(pc hp) (since none
of these PCs is brand new), avoid(pc1) and avoid(pc2) (since they are not on offer),
provider(dell), and a set of atoms for similar consisting of all possible irreflexive
pairs of objects in the set {pc 1,pc 2,pc 3,pc ibm,pc hp}.

On the other hand, all answer sets will differ with respect to the buyPC atom.
Rule (11) in Example 2 states that buyPC(X) is true only if X corresponds to a PC
(via the query to the DL-Lite knowledge base, augmented with the pc predicate),
there is no avoid(X) atom in the answer set, and there is no other buyPC(Y) atom
in the knowledge base, where Y is similar to X . Therefore, there will be three an-
swer sets, each containing one of buyPC(pc3), buyPC(pc ibm), and buyPC(pc hp),
as well as exclude(X) atoms for the other two objects.

The answer set semantics of dl-programs has several nice features. In particular, for
dl-programs KB=(L,P) without dl-atoms, it coincides with the ordinary answer set
semantics of P. Answer sets of a general dl-program KB are also minimal models
of KB. Furthermore, positive and locally stratified dl-programs have exactly one
answer set, which coincides with their canonical minimal model.

3.3 Well-Founded Semantics

Rather than associating with every dl-program a (possibly empty) set of two-
valued interpretations, the well-founded semantics associates with every dl-program
a unique three-valued interpretation.

A (classical) literal is either an atom a or its negation ¬a. For sets S⊆HBΦ ,
we define ¬S={¬a |a∈S}. We define LitΦ =HBΦ ∪¬HBΦ . A set of ground classi-
cal literals S⊆LitΦ is consistent iff S∩{a,¬a}= /0 for all a∈HBΦ . A three-valued
interpretation is any consistent I⊆LitΦ . We define the well-founded semantics of
dl-programs KB=(L,P) via a generalization of the operator γ2 for ordinary nor-
mal programs. We define the operator γKB as follows. For every I⊆HBΦ , we define
γKB(I) as the least model of the positive dl-program KBI =(L,PI

L). The operator γKB

is anti-monotonic, and thus the operator γ2
KB (defined by γ2

KB(I)=γKB(γKB(I)), for
every I⊆HBΦ) is monotonic and has a least and a greatest fixpoint, denoted lfp(γ2

KB)
and gfp(γ2

KB), respectively. Then, the well-founded semantics of the dl-program KB,
denoted WFS(KB), is defined as lfp(γ2

KB)∪¬(HBΦ−gfp(γ2
KB)).

Tractable Probabilistic Description Logic Programs 139

Example 4. Consider once again the dl-program KB=(L,P) from Example 2, where
L is as in Example 1. The well-founded semantics of KB contains all the atoms in
all answer sets in Example 3, but no atoms among buyPC(pc3), buyPC(pc ibm),
buyPC(pc hp), exclude(pc3), exclude(pc ibm), and exclude(pc hp) (and their nega-
tions); such atoms are thus undefined under the well-founded semantics of KB.

As an important property, the well-founded semantics for dl-programs approximates
their answer set semantics. That is, for all consistent dl-programs KB and literals
�∈LitΦ , every �∈WFS(KB) is true in every answer set of KB.

4 Probabilistic Description Logic Programs

In this section, we recall probabilistic dl-programs from [53], which are defined as a
combination of dl-programs with Poole’s independent choice logic (ICL)[70]. The
ICL is based on ordinary acyclic logic programs under different “choices”, where
every choice along with an acyclic logic program produces a first-order model, and
one then obtains a probability distribution over the set of all first-order models by
placing a probability distribution over the different choices. Informally, differently
from the ICL, probabilistic dl-programs consist of a dl-program (L,P) and a proba-
bility distribution μ over a set of total choices B. Every total choice B along with the
dl-program (L,P) then defines a set of Herbrand interpretations of which the proba-
bilities sum up to μ(B). We now first define the syntax of probabilistic dl-programs
and probabilistic queries, and then their answer set semantics.

4.1 Syntax

We now define the syntax of probabilistic dl-programs and probabilistic queries
addressed to them. We first define choice spaces and probabilities on choice spaces.

We assume a function-free first-order vocabulary Φ with nonempty finite sets of
constant and predicate symbols, and a set of variables X , as above for dl-programs.
We use HBΦ (resp., HUΦ) to denote the Herbrand base (resp., universe) over Φ . In
the sequel, we assume that HBΦ is nonempty. An event α is any Boolean combina-
tion of atoms (i.e., constructed from atoms via the Boolean operators “∧” and “¬”).
A conditional event is of the form β |α , where α and β are events. Ground terms,
ground events, and substitutions are defined as usual.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ . Any
A∈C is called an alternative of C, and any element a∈A is called an atomic choice
of C. Intuitively, every alternative A∈C represents a random variable and every
atomic choice a∈A one of its possible values. A total choice of C is a set B⊆HBΦ
such that |B∩A|=1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B
of C represents an assignment of values to all the random variables. A probability μ
on a choice space C is a probability function on the set of all total choices of C.
Intuitively, every probability μ is a probability distribution over the set of all variable
assignments. Since C and all its alternatives are finite, μ can be defined by

• a mapping μ :
⋃

C→ [0,1] such that ∑a∈A μ(a)=1 for all A∈C, and
• μ(B) = Πb∈Bμ(b) for all total choices B of C.

140 T. Lukasiewicz and G.I. Simari

Intuitively, the first condition defines a probability over the values of each random
variable of C, and the second assumes independence between the random variables.

A probabilistic dl-program KB=(L,P,C,μ) consists of

• a dl-program (L,P),
• a choice space C such that (i)

⋃
C⊆HBΦ and (ii) no atomic choice in C coincides

with the head of any r∈ground(P), and
• a probability μ on C.

Intuitively, since the total choices of C select subsets of P, and μ is a probability
distribution on the total choices of C, every probabilistic dl-program is the com-
pact encoding of a probability distribution on a finite set of normal dl-programs.
Observe here that P is fully general and not necessarily stratified or acyclic. A prob-
abilistic query has the form

∃(β |α)[r,s] ,

where β |α is a conditional event, and r and s are variables.

Example 5. Consider the probabilistic dl-program KB=(L,P,C,μ), where L and P
are as in Examples 1 and 2, except that the dl-rules (4), (5), and (11) are replaced by
the dl-rules (4′), (5′), and (11′), respectively, and the dl-rule (13) is added:

(4′) avoid(X)← DL[PC
pc;Electronics](X),not offer(X),avoid pos;
(5′) offer(X)← DL[PC
pc;Electronics](X),not brand new(X),offer pos;
(11′) buyPC(X)←DL[PC
pc;PC](X),not avoid(X),not exclude(X),one buy pos;
(13) buyAccessory(X)← DL[Electronics](X),not avoid(X),buyPC(Y),

not DL[PC
pc;PC](X),acc buy pos.

Let C be defined as

{{avoid pos,avoid neg} ,{offer pos,offer neg},
{one buy pos,one buy neg}, {acc buy pos,acc buy neg}},

and let μ be given as follows:

• μ(avoid pos) = 0.7, μ(avoid neg) = 0.3,
• μ(offer pos) = 0.7, μ(offer neg) = 0.3,
• μ(one buy pos) = 0.95, μ(one buy neg) = 0.05,
• μ(acc buy pos) = 0.8, μ(acc buy neg) = 0.2.

The new dl-rules (4′) and (5′) express that the original dl-rules (4) and (5) now only
hold with probability 0.7. Furthermore, (11′) expresses that a customer buys a single
PC with probability 0.95, while rule (13) states that a customer buying a PC may
choose to also buy a non-PC electronics item as an accessory with probability 0.8.

In a probabilistic query, one may ask for the tight probability bounds that a cus-
tomer buys a webcam w, if (i) PC p is bought, (ii) p is on offer, and (iii) w is not on
offer; the result to this query may, for instance, help to decide whether it is useful to
automatically show a product w to a customer buying the product p):

∃(buyAccessory(w) |¬offer(w)∧buyPC(p)∧offer(p))[R,S] .

Tractable Probabilistic Description Logic Programs 141

4.2 Answer Set Semantics

We next define an answer set semantics of probabilistic dl-programs, the consistency
of such programs, and tight answers to probabilistic queries.

Given a probabilistic dl-program KB=(L,P,C,μ), a probabilistic interpreta-
tion Pr is a probability function on the set of all I⊆HBΦ . We say that Pr is an
answer set of KB iff the following two conditions hold:

• every interpretation I⊆HBΦ with Pr(I)>0 is an answer set of the dl-program
(L,P∪{p← | p∈B}) for some total choice B of C (which implies B⊆ I), and

• Pr
(∧

p∈B p
)
=μ(B) for every total choice B of C.

Informally, these conditions state that Pr is an answer set of KB=(L,P,C,μ) iff
(i) every interpretation I⊆HBΦ of positive probability under Pr is an answer set of
the dl-program (L,P) under some total choice B of C, and (ii) Pr coincides with μ
on the total choices B of C. We say KB is consistent iff it has an answer set Pr.

Given a ground event α , the probability of α in a probabilistic interpretation Pr,
denoted Pr(α), is the sum of all Pr(I) such that I⊆HBΦ and I |=α . We say that
(β |α)[l,u] (where l,u∈ [0,1]) is a tight consequence of a consistent probabilistic
dl-program KB under the answer set semantics iff l (resp., u) is the infimum (resp.,
supremum) of Pr(α ∧β)/Pr(α) subject to all answer sets Pr of KB with Pr(α)>0
(note that this infimum (resp., supremum) is naturally defined as 1 (resp., 0) iff no
such Pr exists). The tight answer for a probabilistic query Q=∃(β |α)[r,s] to KB
under the answer set semantics is the set of all ground substitutions θ (for the vari-
ables in Q) such that (β |α)[r,s]θ is a tight consequence of KB under the answer set
semantics. For ease of presentation, since the tight answers for probabilistic queries
of the form Q=∃(β |α)[r,s] with non-ground β |α can be reduced to the tight an-
swers for probabilistic queries Q=∃(β |α)[r,s] with ground β |α , we consider only
the latter type of probabilistic queries from now on.

5 Novel Answer Set Characterizations

In this section, we give novel characterizations of (i) the consistency of probabilistic
dl-programs and (ii) tight query processing in consistent probabilistic dl-programs
under the answer set semantics in terms of the answer sets of normal dl-programs.

As shown in [53], a probabilistic dl-program KB=(L,P,C,μ) is consistent iff the
system of linear constraints LC� (see Fig. 2) over yr (r∈R) is solvable. Here, R is
the union of all sets of answer sets of (L,P∪{p← | p∈B}) for all total choices B
of C. Observe, however, that LC� is defined over a set of variables R that corre-
sponds to the set of all answer sets of the underlying normal dl-programs, and thus R
is in general quite large.

Example 6. Consider the probabilistic dl-program KB = (L,P,C,μ), where L and P
are as in Examples 1 and 2, except that the dl-rules (4) and (11) are replaced by the
following dl-rules (4′) and (11′), respectively:

(4′) avoid(X)←DL[PC
pc;PC](X),not offer(X),avoid pos;
(11′) buyPC(X)←DL[PC
pc;PC](X),not avoid(X),not exclude(X),buy pos.

142 T. Lukasiewicz and G.I. Simari

∑
r∈R,r �|=∧

B
−μ(B)yr + ∑

r∈R,r|=∧
B
(1− μ(B))yr = 0 (for all total choices B of C)

∑
r∈R,r|=α

yr = 1

yr � 0 (for all r∈R)

Fig. 2 System of linear constraints LCα

The choice space C is defined as

{{avoid pos,avoid neg},{buy pos,buy neg}},
and μ is given as follows:

• μ(avoid pos) = 0.5, μ(avoid neg) = 0.5,
• μ(buy pos) = 0.8, μ(buy neg) = 0.2.

We then obtain four total choices:

{avoid pos,buy pos}, {avoid pos,buy neg},
{avoid neg,buy pos}, {avoid neg,buy neg}.

The set of linear constraints LC� for KB then comprises four constraints corre-
sponding to each of the total choices, one constraint corresponding to the sum to 1,
and one constraint for each variable, expressing its non-negativeness. There is one
variable for each possible answer set given all possible total choices. Intuitively, we
can see that multiple answer sets can arise only if buy pos is true. The case where
avoid pos is also true was investigated in Example 3, where we saw that there are
three answer sets in this situation. The remaining case corresponds to avoid neg be-
ing true; here, rule (4′) no longer applies, and therefore rule (11′)’s not avoid(X)
atom will hold for all answers to the query in the dl-atom DL[PC
 pc;PC](X),
which contains five objects: pc1, pc2, pc3, pc hp, and pc ibm. Therefore, we have
five more answer sets in this case, and thus a total of 10 variables in LC�.

The following theorem shows that the consistency of probabilistic dl-programs can
be expressed in terms of answer sets of normal dl-programs only, without having to
additionally decide whether or not a system of linear constraints is solvable.

Theorem 1 (Consistency). Let KB = (L,P,C,μ) be a probabilistic dl-program.
Then, KB is consistent iff, for every total choice B of C such that μ(B)>0, the
dl-program (L,P∪{p←| p∈B}) is consistent.

Similarly, as shown in [53], computing tight answers for probabilistic queries can be
reduced to computing all answer sets of normal dl-programs and solving two linear
optimization problems. More specifically, let KB=(L,P,C,μ) be a consistent prob-
abilistic dl-program, and let Q=∃(β |α)[r,s] be a probabilistic query with ground
β |α . Then, the tight answer for Q to KB is given by θ ={r/l, s/u}, where l (resp.,

Tractable Probabilistic Description Logic Programs 143

u) is the optimal value of the subsequent linear program (3) over yr (r∈R), if (3)
has a solution, and it is given by θ ={r/1, s/0}, if (3) has no solution.

min (resp., max) ∑r∈R,r |=α∧β yr subject to LCα (see Fig. 2). (3)

But the linear program (3) is defined over the same (generally quite large) set of
variables as the system of linear constraints LC� above. The following theorem
shows that the tight answers can also be expressed in terms of answer sets of normal
dl-programs only, without additionally solving two linear optimization problems.

Theorem 2 (Tight Query Processing). Let KB=(L,P,C,μ) be a consistent prob-
abilistic dl-program, and let Q=∃(β |α)[r,s] be a probabilistic query with ground
β |α . Let a (resp., b) be the sum of all μ(B) such that (i) B is a total choice of C and
(ii) α ∧β is true in every (resp., some) answer set of (L,P∪{p← | p∈B}). Let c
(resp., d) be the sum of all μ(B) such that (i) B is a total choice of C and (ii) α ∧¬β
is true in every (resp., some) answer set of (L,P∪{p ← | p∈B}). Then, the tight
answer θ for Q to KB under the answer set semantics is given as follows:

θ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{r/1, s/0} if b=0 and d=0;

{r/0, s/0} if b=0 and d �=0;

{r/1, s/1} if b �=0 and d=0;
{

r/ a
a+d , s/ b

b+c

}
otherwise.

6 Total Well-Founded Semantics

In this section, we define a novel well-founded semantics for probabilistic dl-pro-
grams, called the total well-founded semantics, since it is defined for all probabilistic
queries to probabilistic dl-programs, as opposed to the well-founded semantics of
[53], which is only defined for a very limited class of probabilistic queries. Further-
more, the total well-founded semantics is defined for all probabilistic dl-programs,
as opposed to the answer set semantics, which is only defined for consistent ones.

More concretely, given a probabilistic dl-program KB=(L,P,C,μ) and a prob-
abilistic query Q=∃(β |α)[r,s] with ground β |α , the tight answer θ for Q to KB
under the well-founded semantics of [53] exists iff both ground events α ∧β and
α are defined in every S=WFS(L,P∪{p ←| p∈B}) such that B is a total choice
of C. Here, a ground event φ is defined in S iff either I |=φ for every interpretation
I⊆HBΦ such that (i) S∩HBΦ⊆ I and (ii) ¬S∩ I = /0, or I �|=φ for every interpre-
tation I⊆HBΦ such that (i) S∩HBΦ⊆ I and (ii) ¬S∩ I = /0. If α is false in every
WFS(L,P ∪ {p ←| p∈B}) such that B is a total choice of C, then the tight an-
swer is defined as θ ={r/1, s/0}; otherwise, the tight answer (if it exists) is defined
as θ ={r/ u

v , s/ u
v}, where u (resp., v) is the sum of all μ(B) such that:

• B is a total choice of C, and
• α∧β (resp., α) is true in WFS(L,P∪{p← | p∈B}).

144 T. Lukasiewicz and G.I. Simari

We define the total well-founded semantics as follows, taking inspiration from the
novel answer set characterization of tight answers in the previous section.

Definition 1 (Total Well-Founded Semantics). Let KB=(L,P,C,μ) be a proba-
bilistic dl-program, and let Q=∃(β |α)[r,s] be a probabilistic query with ground
β |α . Let a (resp., b−) be the sum of all μ(B) such that (i) B is a total choice of C
and (ii) α∧β is true (resp., false) in WFS(L,P∪{p←| p∈B}). Let c (resp., d−) be
the sum of all μ(B) such that (i) B is a total choice of C and (ii) α∧¬β is true (resp.,
false) in WFS(L, P∪{p ←| p∈B}). Let b=1−b− and d=1−d−. Then, the tight
answer θ for Q to KB under the total well-founded semantics (denoted TWFS(KB))
is defined as follows:

θ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{r/1, s/0} if b=0 and d=0;

{r/0, s/0} if b=0 and d �=0;

{r/1, s/1} if b �=0 and d=0;

{r/ a
a+d , s/ b

b+c} otherwise.

The following theorem shows that for probabilistic queries Q=∃(�)[r,s], where � is
a ground literal, the tight answers under the total well-founded semantics approxi-
mate the tight answers under the answer set semantics (if they exist). This is a nice
semantic feature of the total well-founded semantics. It allows for an efficient ap-
proximation of tight answers to such queries under the answer set semantics by the
bottom-up fixpoint iteration of the well-founded semantics of normal dl-programs.

Theorem 3. Let KB=(L,P,C,μ) be a consistent probabilistic dl-program, and
let Q=∃(�)[r,s] be a probabilistic query with ground literal �. Let θ ={r/l, s/u}
(resp., θ ′={r/l′, s/u′}) be the tight answer for Q to KB under the total well-founded
semantics (resp., answer set semantics). Then, [l′,u′]⊆ [l,u].

The next theorem shows that the total well-founded semantics generalizes the well-
founded semantics of [53], i.e., the tight answers under the former coincide with the
tight answers under the latter, if the tight answers under the latter exist.

Theorem 4. Let KB=(L,P,C,μ) be a probabilistic dl-program, and let Q=∃(β |
α)[r,s] be a probabilistic query with ground β |α . Then, the tight answer for Q
to KB under the total well-founded semantics coincides with the tight answer for Q
to KB under the well-founded semantics of [53] (if it exists).

7 Algorithms and Complexity

In this section, we provide an anytime algorithm for tight query processing in prob-
abilistic dl-programs under the total well-founded semantics, and conclude with
tractability and complexity results.

Tractable Probabilistic Description Logic Programs 145

7.1 An Anytime Algorithm for Tight Query Processing

By Definition 1, computing the tight answer for a probabilistic query to a probabilis-
tic dl-program KB=(L,P,C,μ) under TWFS(KB) can be reduced to computing the
well-founded models of all normal dl-programs (L,P∪{p←| p∈B}) such that B is
a total choice of C. Here, the number of all total choices B is generally a non-neg-
lectable source of complexity. We thus propose:

• to compute the tight answer only up to an error within a given threshold ε∈ [0,1],
• to process the B’s along decreasing probabilities μ(B), and
• to eventually stop the computation after a given time interval.

Given a (not necessarily consistent) probabilistic dl-program KB=(L,P,C,μ), a pro-
babilistic query Q = ∃(β |α)[r,s] with ground β |α , and an error threshold ε ∈
[0,1], algorithm tight answer (see Fig. 3) computes some θ ={r/l′, s/u′} such
that |l− l′|+ |u− u′|�ε , where {r/l, s/u} is the tight answer for Q to KB under
TWFS(KB). More concretely, it computes the bounds l′ and u′ by first initializing
the variables a, b, c, and d (which play the same role as in Definition 1). It then com-
putes the well-founded semantics S of the normal dl-program (L,P∪{p←| p∈Bi})
for every total choice Bi of C, checks whether α∧β and α∧¬β are true or false in S,
and updates a, b, c, and d accordingly. If the possible error in the bounds falls be-
low ε , then it stops and returns the bounds computed so far. Thus, in the special case
where ε =0, the algorithm computes in particular the tight answer for Q to KB under
TWFS(KB). The following theorem shows that algorithm tight answer is sound.

Theorem 5. Let KB be a probabilistic dl-program, let Q = ∃(β |α)[r,s] be a proba-
bilistic query with ground β |α , and let θ ={r/l, s/u} be the tight answer for Q to
KB under TWFS(KB). Let θ ′={r/l′, s/u′} be the output computed by tight answer
for the error threshold ε∈ [0,1]. Then, |l− l′|+ |u− u′|�ε .

Algorithm tight answer is actually an anytime algorithm, since we can always inter-
rupt it, and return the bounds computed thus far. The following theorem shows that
these bounds deviate from the tight bounds with an exactly measurable error (note
that the possible error is also decreasing along the iterations of the while-loop). For
this reason, algorithm tight answer also iterates through the total choices Bi of C
in a way such that the probabilities μ(Bi) are decreasing, so that the error in the
computed bounds is very likely to be low already after few iteration steps.

Theorem 6. Let KB be a probabilistic dl-program, let Q = ∃(β |α)[r,s] be a proba-
bilistic query with ground β |α , let ε∈ [0,1] be an error threshold, and let θ ={r/l,
s/u} be the tight answer for Q to KB under TWFS(KB). Suppose we run tight an-
swer on KB, Q, and ε , and we interrupt it after line (9). Let the returned θ ′={r/l′,
s/u′} be as specified in lines (11) to (14). Then, if v=0, then θ =θ ′. Otherwise,

|l− l′|+ |u− u′|� v
a+ d

+
v

b+ c
.

The algorithm is based on two finite fixpoint iterations for computing the well-
founded semantics of normal dl-programs, which are in turn based on a finite fixpoint

146 T. Lukasiewicz and G.I. Simari

Algorithm tight answer

Input: probabilistic dl-program KB=(L,P,C,μ), probabilistic query
Q=∃(β |α)[r,s] with ground β |α , and error threshold ε∈ [0,1].

Output: θ ={r/l′, s/u′} such that |l− l′|+ |u− u′|�ε , where {r/l, s/u} is the
tight answer for Q to KB under the total well-founded semantics.

Notation: B1, . . . ,Bk is a sequence of all total choices B of C with
μ(B1)� · · ·�μ(Bk).

1. a := 0; b := 1; c := 0; d := 1; v := 1; i := 1;
2. while i�k and v>0 and v

a+d +
v

b+c >ε do begin
3. S := WFS(L,P∪{p← | p∈Bi});
4. if α ∧β is true in S then a := a+ μ(Bi)
5. else if α ∧β is false in S then b := b− μ(Bi);
6. if α ∧¬β is true in S then c := c+ μ(Bi)
7. else if α ∧¬β is false in S then d := d− μ(Bi);
8. v := v− μ(Bi);
9. i := i+ 1

10. end;
11. if b = 0 and d = 0 then return θ ={r/1, s/0}
12. else if b = 0 and d �= 0 then return θ ={r/0, s/0}
13. else if b �= 0 and d = 0 then return θ ={r/1, s/1}
14. else return θ ={r/ a

a+d , s/ b
b+c}.

Fig. 3 Algorithm tight answer

iteration for computing the least model of positive dl-programs. More specifically,
to compute the well-founded semantics of KB, i.e.,

WFS(KB) = lfp(γ2
KB)∪¬(HBΦ−gfp(γ2

KB)),

we compute lfp(γ2
KB) and gfp(γ2

KB) as the limits of the two finite fixpoint iterations

U0 = /0, and Ui+1 = γ2
KB(Ui), for i � 0, and

O0 = HBΦ , and Oi+1 = γ2
KB(Oi), for i � 0,

respectively. Here, the operator γKB, which is defined by γKB(I)=MKBI (with KBI =
(L,PI

L)) for all I⊆HBΦ , is computed as the limit of the finite fixpoint iteration

S0 = /0, and Si+1 = TKBI (Si), for i � 0,

since γKB(I)= lfp(TKBI) for all I⊆HBΦ , where TKBI is the immediate consequence
operator for positive dl-programs, which is defined as follows for every J⊆HBΦ :

TKBI (J) = {H(r) | r∈ground(PI
L), J |=L � for all �∈B(r)} .

All the above three fixpoint iterations are finite, since HBΦ is finite.

Tractable Probabilistic Description Logic Programs 147

7.2 Complexity

The following theorem shows that tight query processing in probabilistic dl-pro-
grams KB=(L,P,C,μ) in DL-Lite (i.e., L is in DL-Lite) under TWFS(KB) can be
done in polynomial time in the data complexity. This follows from Theorem 5 and
the polynomial data complexity of (a) computing the well-founded semantics of a
normal dl-program (see above) and of (b) conjunctive query processing in DL-Lite.
Here, |C| is bounded by a constant, since C and μ define the probabilistic informa-
tion of P, which is fixed as a part of the program in P, while the ordinary facts in P
(along with the concept and role membership axioms in L) are the variable input.

Theorem 7. Given a probabilistic dl-program KB in DL-Lite and a probabilistic
query Q=∃(�)[r,s] with ground literal �, the tight answer θ ={r/l, s/u} for Q to
KB under TWFS(KB) can be computed in polynomial time in the data complexity.

The next theorem shows that computing tight answers is EXP-complete in the com-
bined complexity. The lower bound follows from the EXP-hardness of Datalog in
the combined complexity, and the upper bound follows from Theorem 5.

Theorem 8. Given a probabilistic dl-program KB in DL-Lite and a probabilistic
query Q=∃(β |α)[r,s] with ground β |α , computing the tight answer θ ={r/l, s/u}
for Q to KB under TWFS(KB) is EXP-complete in the combined complexity.

8 Probabilistic Data Integration

Integrating data from different sources is a crucial issue in the Semantic Web. In this
section, we show how probabilistic dl-programs can be employed as a formalism for
data integration in the Semantic Web. We first give some general definitions.

A data integration system (in its most general form, see [47]) I=(G,S,M) con-
sists of the following components:

• a global (or mediated) schema G, which represents the domain of interest,
• a source schema S, which represents the data sources of the system, and
• a mapping M, which relates the source schema and the global schema.

Here, G is purely virtual, while the data are stored in S. The mapping M can be
specified in different ways, which is a crucial aspect in a data integration system.
In particular, when every data structure in G is defined through a view over S, the
mapping is said to be GAV (global-as-view), while when every data structure in S
is defined through a view over G the mapping is LAV (local-as-view). A mixed
approach, called GLAV [28, 12], associates views over G to views over S.

8.1 Modeling Data Integration Systems

In our framework, we assume that the global schema G, the source schema S, and
the mapping M are each encoded by a probabilistic dl-program. More formally, we
partition the vocabulary Φ into the sets ΦG, ΦS, and Φc such that:

148 T. Lukasiewicz and G.I. Simari

• the symbols in ΦG are of arity at least 1 and represent the global predicates,
• the symbols in ΦS are of arity at least 1 and represent source predicates, and
• the symbols in Φc are constants.

Let AG and RG be disjoint denumerable sets of atomic concepts and abstract roles,
respectively, for the global schema, and let AS and RS (disjoint from AG and RG)
be similar sets for the source schema. We also assume a denumerable set of indi-
viduals I that is disjoint from the set of all concepts and roles and a superset of Φc.
A probabilistic data integration system PI = (KBG,KBS,KBM) consists of a prob-
abilistic dl-program KBG=(LG,PG,CG,μG) for the global schema, a probabilistic
dl-program KBS=(LS,PS,CS,μS) for the source schema, and a probabilistic dl-pro-
gram KBM =(/0,PM,CM,μM) for the mapping:

• KBG (resp., KBS) is defined over the predicates, constants, concepts, roles, and
individuals of the global (resp., source) schema, and it encodes ontological, rule-
based, and probabilistic relationships in the global (resp., source) schema.

• KBM is defined over the predicates, constants, concepts, roles, and individuals of
the global and the source schema, and it encodes a probabilistic mapping between
the predicates, concepts, and roles of the source and those of the global schema.

Our probabilistic dl-rules permit a specification of the mapping that can freely use
global and source predicates together in rules, thus having a formalism that general-
izes LAV and GAV in some way. Moreover, with a simple technicality, we are able
to partly model GLAV systems. In GLAV data integration systems, the mapping is
specified by means of rules of the form ψ ← ϕ , where ψ is a conjunction of atoms
of G, and ϕ is a conjunction of atoms of S. We introduce an auxiliary atom α that
contains all the variables of ψ ; moreover, let ψ = β1∧ . . .∧βm. We model the GLAV
mapping rule with the following rules:

β1 ← α;
...

βm ← α;
α ← ϕ .

What our framework does not allow is having rules that are unsafe, i.e., having
existentially-quantified variables in their head.

Note also that correct and tight answers to probabilistic queries on the global
schema are formally defined relative to the probabilistic dl-program KB=(L,P,C,μ),
where L=LG∪LS, P=PG∪PS∪PM, C=CG∪CS∪CM , and μ =μG ·μS ·μM . Infor-
mally, KB is the result of merging KBG, KBS, and KBM . In a similar way, the prob-
abilistic dl-program KBS of the source schema S can be defined by merging the
probabilistic dl-programs KBS1 , . . . ,KBS1 of n�1 source schemas S1, . . . ,Sn.

The fact that the mapping is probabilistic allows for a high flexibility in the treat-
ment of the uncertainty that is present when pieces of data come from heterogeneous
sources whose content may be inconsistent and/or redundant relative to the global
schema G, which in general incorporates constraints. Some different types of prob-
abilistic mappings that can be modeled in our framework are summarized below.

Tractable Probabilistic Description Logic Programs 149

8.2 Types of Probabilistic Mappings

In addition to expressing probabilistic knowledge about the global schema and about
the source schema, the probabilities in probabilistic dl-programs can especially be
used for specifying the probabilistic mapping in the data integration process. We
distinguish three different types of probabilistic mappings, depending on whether
the probabilities are used as trust, error, or mapping probabilities.

The simplest way of probabilistically integrating several data sources is to weight
each data source with a trust probability (which all sum up to 1). This is especially
useful when several redundant data sources are to be integrated. In such a case,
pieces of data from different data sources may easily be inconsistent with each other.

Example 7. Suppose that we want to obtain a weather forecast for a certain place
by integrating the potentially different weather forecasts of several weather forecast
institutes. For ease of presentation, suppose that we only have three weather forecast
institutes A, B, and C. In general, one trusts certain weather forecast institutes more
than others. In our case, we suppose that our trust in the institutes A, B, and C is
expressed by the trust probabilities 0.6, 0.3, and 0.1, respectively. That is, we trust
most in A, medium in B, and less in C. In general, the different institutes do not
use the same data structure to represent their weather forecast data. For example,
institute A may use a single relation

forecast(place,date,weather, temperature,wind)

to store all the data, while B may have one relation

forecast place(date,weather, temperature,wind)

for each place, and C may use several different relations

forecast weather(place,date,weather),
forecast temperature(place,date, temperature),
forecast wind(place,date,wind).

Suppose the global schema G has the relation

forecast rome global(date,weather, temperature,wind),

which may for instance be posted on the Web by the tourist information of the city
of Rome. The probabilistic mapping of the source schemas of A, B, and C to the
global schema G can then be specified by the following KBM =(/0,PM,CM,μM):

PM = {forecast rome global(D,W,T,M)← forecast(rome,D,W,T,M), instA;

forecast rome global(D,W,T,M)← forecast rome(D,W,T,M), instB;

forecast rome global(D,W,T,M)← forecast weather(rome,D,W),

forecast temperature(rome,D,T), forecast wind(rome,D,M), instC} ;

CM = {{instA, instB, instC}} ;

μM : instA, instB, instC �→ 0.6, 0.3, 0.1 .

150 T. Lukasiewicz and G.I. Simari

The mapping assertions state that the first, second, and third rule above hold with
the probabilities 0.6, 0.3, and 0.1, respectively. This is motivated by the fact that
three institutes may generally provide conflicting weather forecasts, and our trust
in A, B, and C are given by the trust probabilities 0.6, 0.3, and 0.1, respectively.

A more complex way of probabilistically integrating several data sources is to asso-
ciate each data source (or each derivation) with an error probability.

Example 8. Suppose that we want to integrate the data provided by the different
sensors in a sensor network. For example, assume a sensor network measuring the
concentration of ozone in several different positions of a certain town, which may
for instance be the basis for the common hall to reduce or forbid individual traf-
fic. Suppose that each sensor i∈{1, . . . ,n} with n�1 is associated with its position
through sensor(i,position) and provides its measurement data in a single relation
readingi(date, time, type,result). Each such reading may be erroneous with the prob-
ability ei. That is, any tuple returned (resp., not returned) by a sensor i∈{1, . . . ,n}
may not hold (resp., may hold) with probability ei. Let the global schema contain
a single relation reading(position,date, time, type,result). Then, the probabilistic
mapping of the source schemas of the sensors i∈{1, . . . ,n} to the global schema G
can be specified by the following probabilistic dl-program KBM =(/0,PM,CM,μM):

PM = {auxi(P,D,T,K,R)← readingi(D,T,K,R), sensor(i,P) | i∈{1, . . . ,n}} ∪
{reading(P,D,T,K,R)← auxi(P,D,T,K,R), not errori | i∈{1, . . . ,n}} ∪
{reading(P,D,T,K,R)← notauxi(P,D,T,K,R), errori | i∈{1, . . . ,n}} ;

CM = {{errori,not errori}| i∈{1, . . . ,n}} ;

μM : error1,not error1, . . . ,errorn,not errorn �→ e1, 1−e1, . . . , en, 1−en .

Note that if there are two sensors j and k for the same position, and they both
return the same tuple as a reading, then this reading is correct with the probability
1−e jek (since it may be erroneous with the probability e jek). Note also that this
modeling assumes that the errors of the sensors are independent from each other,
which can be achieved by eventually unifying atomic choices. For example, if the
sensor j depends on the sensor k, then j is erroneous when k is erroneous, and thus
the atomic choices {error j,not error j} and {errork,not errork} are merged into the
new atomic choice {error jerrork, not error jerrork, not error jnot errork}.
When integrating several data sources, it may be the case that the relationships be-
tween the source schema and the global schema are purely probabilistic.

Example 9. Suppose that we want to integrate the schemas of two libraries, and
that the global schema contains the predicate symbol logic programming, while the
source schemas contain only the concepts rule-based systems and deductive data-
bases in their ontologies. These three concepts are overlapping to some extent, but
they do not exactly coincide. For example, a randomly chosen book from rule-
based systems (resp., deductive databases) may belong to logic programming with

Tractable Probabilistic Description Logic Programs 151

the probability 0.7 (resp., 0.8). The probabilistic mapping from the source schemas
to the global schema can then be expressed by the following KBM =(/0,PM,CM ,μM):

PM = {logic programming(X)← DL[rule-based systems(X)], choice1 ;

logic programming(X)← DL[deductive databases(X)], choice2} ;

CM = {{choice1,not choice1},{choice2,not choice2}} ;

μM : choice1,not choice1,choice2,not choice2 �→ 0.7, 0.3, 0.8, 0.2 .

8.3 Deterministic Mappings on Probabilistic Data

Finally, we briefly describe an approach to use probabilistic dl-programs to model
probabilistic data, such as those in [17].

Example 10. Suppose that the weather in Oxford can be sunny, cloudy, or rainy with
probabilities 0.2, 0.45, and 0.35, respectively, and similar probabilities are assigned
for other cities. This setting is analogous to the “classical” one of probabilistic data,
where there is a probability distribution over ground facts. In such a case, the choice
space is C={{weather(oxford, sunny), weather(oxford, cloudy), weather(oxford,
rainy)}, . . .}, and the probability is μ : weather(oxford, sunny), weather(oxford,
cloudy), weather(oxford, rainy) �→ 0.2,0.45,0.35. A mapping rule such as

candidate destination(L)← weather(L,sunny)

can now express the fact that a destination is a candidate for a day-trip if it has sunny
weather. While the mapping is purely deterministic, the probability distributions on
the sets of atomic choices of the choice space enforce, by virtue of the mapping, a
probability distribution on the ground facts of the global schema. Our framework is
able to capture this situation, allowing for query answering over uncertain data.

9 Related Work

In this section, we discuss more closely related work on (a) the combination of logic
programs, DLs, and probabilistic uncertainty, (b) the combination of logic programs
and probabilistic uncertainty, (c) the combination of logic programs and DLs, and
(d) the combination of DLs (or ontology languages) and probabilistic uncertainty.
Note that more detailed overviews on uncertainty reasoning for the Semantic Web,
which covers (a), (c), and (d), are given in [59, 56].

9.1 Probabilistic Description Logic Programs

To our knowledge, the work of [53] was the first one combining (normal) dl-pro-
grams (under the loose integration) with probabilistic uncertainty. Instead of be-
ing based on the loosely integrated normal dl-programs KB=(L,P) of [25, 26],
probabilistic dl-programs can also be developed as a generalization of the tightly

152 T. Lukasiewicz and G.I. Simari

integrated ones in [50] (see [14, 57]). Rather than having dl-queries to L in rule
bodies in P (which also allow for passing facts as dl-query arguments from P to
L) and assuming that Φ and A (resp., R) have no unary (resp., binary) predicate
symbols in common (and so that dl-queries are the only interface between L and P),
the tightly integrated normal dl-programs of [50] have no dl-queries, but Φ and A
(resp., R) may very well have unary (resp., binary) predicate symbols in common,
and so the integration between L and P is of a much tighter nature. Nearly all the
results of this paper carry over to such tightly integrated probabilistic dl-programs.
As an important feature for the Semantic Web, they also allow for expressing in P
probabilistic relations between the concepts and roles in L, since we can freely use
concepts and roles from L as unary resp. binary predicate symbols in P.

The (loosely coupled) probabilistic fuzzy dl-programs in [58] combine fuzzy
DLs, fuzzy logic programs (with stratified default-negation), and probabilistic un-
certainty in a uniform framework for the Semantic Web. Intuitively, they allow for
defining several rankings on ground atoms using fuzzy vagueness, and then for
merging these rankings using probabilistic uncertainty (by associating with each
ranking a probabilistic weight and building the weighted sum of all rankings). Less
closely related, since they deal with fuzzy vagueness alone, rather than probabilistic
ambiguity and imprecision, are the loosely and tightly coupled fuzzy dl-programs
that have been introduced in [52] and [60], respectively, and extended by a top-k re-
trieval technique in [61]. Related works by Straccia combine (positive) dl-programs
with lattice-based uncertainty [81] and with fuzzy vagueness [78].

9.2 Probabilistic Logic Programs

Ng and Subrahmanian [63, 62] proposed the first approach to probabilistic logic
programs that addresses the problem of combining logic programs [49] with prob-
ability theory by adopting semantics in the style of Nilsson [65] and Halpern [35]
for probabilistic logic. All semantics proposed for quantitative logic programming
prior to this work had been non-probabilistic, of which [84] and [75] are examples;
on the other hand, this approach aims at developing a probabilistic model theory and
fixpoint theory. The general form of rules in their formalism is:

F0 : μ0← F1 : μ1∧ . . .∧Fn : μn ,

where the Fi’s are basic formulas (conjunctions or disjunctions of atoms) and
the μi’s are probabilistic annotations in the form of intervals that may contain ex-
pressions with variables. In [62], heads of rules are restricted to annotated atoms,
where negation is still supported via [0,0] annotations, but conditional probabilities
are not expressible. The formalism is a general framework for expressing probabilis-
tic information, and the authors study its semantics and relationship with probability
theory, model theory, fixpoint theory, and proof theory. They also develop a proce-
dure for answering queries about probabilities of events, which is different from
query processing in classical logic programming, since most general unifiers are not
always unique, and thus maximally general unifiers must be computed.

Tractable Probabilistic Description Logic Programs 153

Other approaches to probabilistic logic programs have especially been proposed
by Ngo and Haddawy [64], Lukasiewicz [54], Lukasiewicz and Kern-Isberner [41],
Lakshmanan and Shiri [46], Dekhtyar and Subrahmanian [21], and Damasio et
al. [19]. Ngo and Haddawy [64] present a model theory, fixpoint theory, and
proof procedure for conditional probabilistic logic programming. Lukasiewicz [54]
presents a conditional semantics for probabilistic logic programs where each rule is
interpreted as specifying the conditional probability of the rule head, given the body.
In closely related work, Lukasiewicz and Kern-Isberner [41] combine probabilistic
logic programs (also adopting an explicit treatment of conditional probabilities) with
maximum entropy, in relation to Nilsson’s proposal for probabilistic logic [65]. Lak-
shmanan and Shiri [46] developed a semantics for logic programs in which differ-
ent general axiomatic methods are given to compute probabilities of conjunctions
and disjunctions, and these are used to define a semantics for probabilistic logic
programs. In [21], Dekhtyar and Subrahmanian consider different conjunction and
disjunction strategies, originally introduced by Lakshmanan et al. [45], and allow
an explicit syntax in probabilistic logic programs so that users are able to express
their knowledge of a dependency. Damasio et al. [19] present a well-founded se-
mantics for annotated logic programs and show how to compute it.

Although there is a rich body of work on probabilistic logic programs, most such
works to date have only addressed the problem of checking whether a given formula
of the form F : [�,u] is entailed by a probabilistic logic program [63, 62] or is true
in a specific model (e.g., the well-founded model [19]). This usually boils down to
finding out if all interpretations that satisfy the probabilistic logic program assign a
probability between � and u to F . An interesting extension of the concept of prob-
abilistic entailment is proposed in [88], where the authors propose to go one step
further and check to what degree of satisfaction the query is entailed by the pro-
gram, similar to the novel approach of Bröcheler et al. [10], who propose to answer
entailment queries with histograms indicating how the density of solutions are dis-
tributed in the probabilistic interval. In contrast, other works have recently focused
on finding most probable worlds [43, 77], and answering abductive queries [76].

9.3 Description Logic Programs

Related work on the combination of logic programs and DLs can be divided into
the following categories: (a) hybrid approaches using DLs as input to logic pro-
grams, (b) approaches reducing DLs to logic programs, (c) combinations of DLs
with default and defeasible logic, and (d) approaches to rule-based well-founded
reasoning in the Semantic Web. Below we give some representatives for these cate-
gories; further works and details are given in [25, 26, 50].

The works by Donini et al. [23], Levy and Rousset [48], and Rosati [73, 74] are
representatives of hybrid approaches using DLs as input. Donini et al. [23] introduce
a combination of (disjunction-, negation-, and function-free) Datalog with the DL
ALC . An integrated knowledge base consists of a structural component in ALC
and a relational component in Datalog, where the integration of both components lies

154 T. Lukasiewicz and G.I. Simari

in using concepts from the structural component as constraints in rule bodies of the
relational component. The closely related work by Levy and Rousset [48] presents
a combination of Horn rules with the DL ALC . In contrast to Donini et al. [23],
Levy and Rousset also allow for roles as constraints in rule bodies, and do not require
the safety condition that variables in constraints in the body of a rule r must also
appear in ordinary atoms in the body of r. Finally, Rosati [73] presents a combina-
tion of disjunctive Datalog (with classical and default negation, but without function
symbols) with ALC , which is based on a generalized answer set semantics. Some
approaches reducing DL reasoning to logic programming are the works by Van Bel-
leghem et al. [6], Alsaç and Baral [1], Swift [82], Grosof et al. [34], and Hufstadt
et al. [39]. Early work on dealing with default information in DLs is the approach
due to Baader and Hollunder [4], where Reiter’s default logic is adapted to termi-
nological knowledge bases. Antoniou [2] combines defeasible reasoning with DLs
for the Semantic Web. In [3], Antoniou and Wagner summarize defeasible and strict
reasoning in a single rule formalism. An important approach to rule-based reasoning
under the well-founded semantics for the Semantic Web is due to Damasio [18]. He
aims at Prolog tools for implementing different semantics for RuleML [9]. So far,
an XML parser library as well as a RuleML compiler have been developed, with
routines to convert RuleML rule bases to Prolog and vice versa. The compiler sup-
ports paraconsistent well-founded semantics with explicit negation; it is planned to
be extended to use XSB [71].

9.4 Probabilistic Description Logics and Ontology Languages

Probabilistic generalizations of the expressive DLs SH OQ(D), SH IF (D), and
SH OIN (D) behind DAML+OIL, OWL Lite, and OWL DL, respectively, have
been proposed by Giugno and Lukasiewicz [31] and Lukasiewicz [51]. They are
based on lexicographic probabilistic reasoning. A companion paper [20] combines
DL-Lite with Bayesian networks. In earlier works, Heinsohn [36] and Jaeger [40]
present probabilistic extensions to the DL ALC , which are essentially based on
probabilistic reasoning in probabilistic logics. Koller et al. [44] present a probabilis-
tic generalization of the CLASSIC DL, which uses Bayesian networks as underlying
probabilistic reasoning formalism. Recently, an extension to the Datalog± family
of ontology languages [13] has been developed in [32, 33] to add the capability of
representing probabilistic uncertainty by means of an integration between Datalog±
ontologies and Markov logic networks [72], focusing on scalability towards appli-
cations in data extraction and reasoning in the Web. Note that fuzzy DLs, such as
the ones by Straccia [79, 80] are less closely related to probabilistic DLs, since they
deal with fuzzy vagueness, rather than probabilistic ambiguity and imprecision.

Especially the works by Costa [16], Pool and Aikin [69], and Ding and Peng [22]
present probabilistic generalizations of the Web ontology language OWL. In par-
ticular, Costa’s work [16] is semantically based on multi-entity Bayesian net-
works, while [22] has a semantics in standard Bayesian networks. In closely related
work, Fukushige [29] proposes a basic framework for representing probabilistic

Tractable Probabilistic Description Logic Programs 155

relationships in RDF. Finally, Nottelmann and Fuhr [66] present pDAML+OIL,
which is a probabilistic generalization of the Web ontology language DAML+OIL,
along with a mapping to stratified probabilistic Datalog.

10 Conclusion

We have proposed tractable probabilistic dl-programs for the Semantic Web, which
combine tractable DLs, normal programs under the answer set and the well-founded
semantics, and probabilities. We have given novel reductions of tight query process-
ing and deciding consistency in probabilistic dl-programs under the answer set se-
mantics to the answer set semantics of the underlying normal dl-programs. Based
on them, we have then introduced the total well-founded semantics for probabilis-
tic dl-programs. Contrary to the previous answer set and well-founded semantics,
it is defined for all probabilistic dl-programs and queries. Furthermore, tight (resp.,
tight literal) query processing under the total well-founded semantics coincides with
(resp., approximates) tight (resp., tight literal) query processing under the previous
well-founded (resp., answer set) semantics in all cases where the latter is defined.
We have then presented an anytime algorithm for tight query processing in prob-
abilistic dl-programs under the total well-founded semantics. Note that the novel
reductions, the total well-founded semantics, and the anytime algorithm are not lim-
ited to DL-Lite as underlying DL; they hold for all probabilistic dl-programs on top
of DLs with decidable conjunctive query processing. We have also shown that tight
query processing in probabilistic dl-programs under the total well-founded seman-
tics is possible in polynomial time in the data complexity and is complete for EXP in
the combined complexity. Finally, we have described an application of probabilistic
dl-programs in probabilistic data integration for the Semantic Web.

An interesting topic for future research is to investigate whether one can also de-
velop an efficient top-k query technique for the presented probabilistic dl-programs:
Rather than computing the tight probability interval for a given ground literal, such a
technique returns k most probable ground instances of a given non-ground formula.

Acknowledgements. This work was partially supported by the European Research Council
under the European Union’s 7th Framework Programme (FP7/2007-2013)/ERC grant 246858
— DIADEM, the EPSRC grant EP/J008346/1 “PrOQAW: Probabilistic Ontological Query
Answering on the Web”, a Yahoo! Research Fellowship, and a Google Research Award. This
article is a significantly extended and revised version of a paper that appeared in Proc. SUM-
2007 [55].

References

1. Alsaç, G., Baral, C.: Reasoning in description logics using declarative logic program-
ming. Technical report, Arizona State University (2001)

2. Antoniou, G.: Nonmonotonic Rule Systems on Top of Ontology Layers. In: Horrocks,
I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 394–398. Springer, Heidelberg
(2002)

156 T. Lukasiewicz and G.I. Simari

3. Antoniou, G., Wagner, G.: Rules and Defeasible Reasoning on the Semantic Web. In:
Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS, vol. 2876, pp. 111–120. Springer,
Heidelberg (2003)

4. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge represen-
tation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

5. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic Reasoning With Answer Sets. In:
Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33.
Springer, Heidelberg (2003)

6. Belleghem, K.V., Denecker, M., Schreye, D.D.: A strong correspondence between de-
scription logics and open logic programming. In: Proc. ICLP 1997, pp. 346–360. MIT
Press (1997)

7. Berners-Lee, T.: Spinning the Semantic Web: Bringing the World Wide Web to Its Full
Potential. MIT Press (2003)

8. Berners-Lee, T., Fischetti, M.: Weaving the Web. Harper, San Francisco (1999)
9. Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: A markup language for

Semantic Web rules. In: Proc. SWWS 2001, pp. 381–401 (2001)
10. Broecheler, M., Simari, G.I., Subrahmanian, V.S.: Using Histograms to Better Answer

Queries to Probabilistic Logic Programs. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.
LNCS, vol. 5649, pp. 40–54. Springer, Heidelberg (2009)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reason-
ing and efficient query answering in description logics: The DL-Lite family. J. Autom.
Reasoning 39(3), 385–429 (2007)

12. Calı̀, A.: Reasoning in Data Integration Systems: Why LAV and GAV Are Siblings.
In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI),
vol. 2871, pp. 562–571. Springer, Heidelberg (2003)

13. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable
query answering over ontologies. J. Web Sem (2012) (in press)

14. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly coupled probabilistic
description logic programs for the Semantic Web. J. Data Sem. 12, 95–130 (2009)

15. da Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In:
Proc. FOIS 2006, pp. 237–249. IOS Press (2006)

16. da Costa, P.C.G.: Bayesian Semantics for the Semantic Web. PhD thesis, Fairfax, VA,
USA (2005)

17. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges. In:
Proc. PODS 2007, pp. 1–12. ACM Press (2007)

18. Damasio, C. V.: The W4 project (2002),
http://centria.di.fct.unl.pt/˜cd/projectos/w4/index.htm

19. Viegas Damásio, C., Moniz Pereira, L., Swift, T.: Coherent Well-founded Annotated
Logic Programs. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS
(LNAI), vol. 1730, pp. 262–276. Springer, Heidelberg (1999)

20. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable Reasoning with Bayesian Descrip-
tion Logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291,
pp. 146–159. Springer, Heidelberg (2008)

21. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. In: Proc. ICLP 1997,
pp. 391–405. MIT Press (1997)

22. Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In:
Proc. HICSS 2004, IEEE Computer Society (2004)

23. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL -log: Integrating Datalog and
description logics. J. Intell. Inf. Syst. 10(3), 227–252 (1998)

http://centria.di.fct.unl.pt/~cd/projectos/w4/index.htm

Tractable Probabilistic Description Logic Programs 157

24. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In: Proc. IJCAI 2005,
pp. 90–96. Morgan Kaufmann (2005)

25. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer
set programming with description logics for the Semantic Web. Artif. Intell. 172(12/13),
1495–1539 (2008)

26. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for descrip-
tion logic programs in the Semantic Web. ACM Trans. Comput. Log. 12(2), 11 (2011)

27. Finzi, A., Lukasiewicz, T.: Structure-based causes and explanations in the independent
choice logic. In: Proc. UAI 2003, pp. 225–232. Morgan Kaufmann (2003)

28. Friedman, M., Levy, A.Y., Millstein, T.D.: Navigational plans for data integration. In:
Proc. AAAI 1999, pp. 67–73. AAAI Press (1999)

29. Fukushige, Y.: Representing probabilistic knowledge in the Semantic Web. In: Proceed-
ings of the W3C Workshop on Semantic Web for Life Sciences (2004)

30. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generat. Comput. 9(3/4), 365–386 (1991)

31. Giugno, R., Lukasiewicz, T.: P-S H OQ(D): A Probabilistic Extension of
S H OQ(D) for Probabilistic Ontologies in the Semantic Web. In: Flesca, S., Greco, S.,
Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer,
Heidelberg (2002)

32. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Answering Threshold Queries in Probabilistic
Datalog+/– Ontologies. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929,
pp. 401–414. Springer, Heidelberg (2011)

33. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Conjunctive query answering in probabilistic
datalog+/– ontologies. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902,
pp. 77–92. Springer, Heidelberg (2011)

34. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logic. In: Proc. WWW 2003, pp. 48–57. ACM Press
(2003)

35. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350
(1990)

36. Heinsohn, J.: Probabilistic description logics. In: Proc. UAI 1994, pp. 311–318. Morgan
Kaufmann (1994)

37. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satis-
fiability. J. Web Sem. 1(4), 345–357 (2004)

38. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SH IQ and RDF to OWL:
The making of a Web ontology language. J. Web Sem. 1(1), 7–26 (2003)

39. Hufstadt, U., Motik, B., Sattler, U.: Reasoning for description logics around SH IQ
in a resolution framework. Technical report, FZI Karlsruhe (2004)

40. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proc. KR 1994,
pp. 305–316. Morgan Kaufmann (1994)

41. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the
power of maximum entropy. Artif. Intell. 157(1/2), 139–202 (2004)

42. Kersting, K., De Raedt, L.: Bayesian logic programs. Technical report (2001)
43. Khuller, S., Martinez, M.V., Nau, D.S., Simari, G.I., Sliva, A., Subrahmanian, V.S.: Com-

puting most probable worlds of action probabilistic logic programs: Scalable estimation
for 1030,000 worlds. Ann. Math. Artif. Intell. 51(2-4), 295–331 (2007)

44. Koller, D., Levy, A.Y., Pfeffer, A.: P-CLASSIC: A tractable probabilistic description
logic. In: Proc. AAAI 1997, pp. 390–397. AAAI Press, MIT Press (1997)

158 T. Lukasiewicz and G.I. Simari

45. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: ProbView: A flexible
probabilistic database system. ACM Trans. Database Syst. 22(3), 419–469 (1997)

46. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with un-
certainty. IEEE Trans. Knowl. Data Eng. 13(4), 554–570 (2001)

47. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS 2002, pp.
233–246. ACM Press (2002)

48. Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN.
Artif. Intell. 104(1/2), 165–209 (1998)

49. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)
50. Lukasiewicz, T.: A novel combination of answer set programming with description logics

for the Semantic Web. IEEE Trans. Knowl. Data Eng. 22(11), 1577–1592 (2010)
51. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–

883 (2008)
52. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for

the Semantic Web. Fundam. Inform. 82(3), 289–310 (2008)
53. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reason. 45(2),

288–307 (2007)
54. Lukasiewicz, T.: Probabilistic logic programming with conditional constraints. ACM

Trans. Comput. Log. 2(3), 289–339 (2001)
55. Lukasiewicz, T.: Tractable Probabilistic Description Logic Programs. In: Prade, H., Sub-

rahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 143–156. Springer,
Heidelberg (2007)

56. Lukasiewicz, T.: Uncertainty Reasoning for the Semantic Web. In: Polleres, A., Swift, T.
(eds.) RR 2009. LNCS, vol. 5837, pp. 26–39. Springer, Heidelberg (2009)

57. Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic de-
scription logic programs for representing ontology mappings. Ann. Math. Artif. Intell.
(2011)

58. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty
and fuzzy vagueness. Int. J. Approx. Reasoning 50(6), 837–853 (2009)

59. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics
for the Semantic Web. J. Web Sem. 6(4), 291–308 (2008)

60. Lukasiewicz, T., Straccia, U.: Tightly coupled fuzzy description logic programs under
the answer set semantics for the Semantic Web. Int. J. Semantic Web Inf. Syst. 4(3),
68–89 (2008)

61. Lukasiewicz, T., Straccia, U.: Top-k Retrieval in Description Logic Programs Under
Vagueness for the Semantic Web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007.
LNCS (LNAI), vol. 4772, pp. 16–30. Springer, Heidelberg (2007)

62. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Inform. Com-
put. 101(2), 150–201 (1992)

63. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and
conditional probabilities in deductive databases. J. Autom. Reasoning 10(2), 191–235
(1993)

64. Ngo, L., Haddawy, P.: Probabilistic logic programming and Bayesian networks. In: Kan-
chanasut, K., Levy, J.-J. (eds.) ACSC 1995. LNCS, vol. 1023, pp. 286–300. Springer,
Heidelberg (1995)

65. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
66. Nottelmann, H., Fuhr, N.: pDAML+OIL: A probabilistic extension to DAML+OIL based

on probabilistic Datalog. In: Proc. IPMU 2004 (2004)
67. Pan, R., Ding, Z., Yu, Y., Peng, Y.: A Bayesian Network Approach to Ontology Map-

ping. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 563–577. Springer, Heidelberg (2005)

Tractable Probabilistic Description Logic Programs 159

68. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. J. Data Semantics 10, 133–173 (2008)

69. Pool, M., Aikin, J.: KEEPER and Protégé: An elicitation environment for Bayesian in-
ference tools. In: Proceedings of the Workshop on Protégé and Reasoning (2004)

70. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty.
Artif. Intell. 94(1/2), 7–56 (1997)

71. Rao, P., Sagonas, K.F., Swift, T., Warren, D.S., Freire, J.: XSB: A system for efficiently
computing WFS. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 431–441. Springer, Heidelberg (1997)

72. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1/2), 107–136
(2006)

73. Rosati, R.: Towards expressive KR systems integrating Datalog and description logics:
Preliminary report. In: Proc. DL 1999, pp. 160–164 (1999)

74. Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web
Sem. 3(1), 61–73 (2005)

75. Shapiro, E.Y.: Logic programs with uncertainties: A tool for implementing rule-based
systems. In: Proc. IJCAI 1983, pp. 529–532. William Kaufmann (1983)

76. Simari, G.I., Dickerson, J.P., Subrahmanian, V.S.: Cost-Based Query Answering in Ac-
tion Probabilistic Logic Programs. In: Deshpande, A., Hunter, A. (eds.) SUM 2010.
LNCS, vol. 6379, pp. 319–332. Springer, Heidelberg (2010)

77. Simari, G.I., Martinez, M.V., Sliva, A., Subrahmanian, V.S.: Focused most probable
world computations in probabilistic logic programs. Ann. Math. Artif. Intell. (2012) (in
press)

78. Straccia, U.: Fuzzy description logic programs. In: Proc. IPMU 2006, pp. 1818–1825
(2006)

79. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166
(2001)

80. Straccia, U.: Towards a Fuzzy Description Logic for the Semantic Web (Preliminary
Report). In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp.
167–181. Springer, Heidelberg (2005)

81. Straccia, U.: Uncertainty and description logic programs over lattices. In: Sanchez, E.
(ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence, pp. 115–133. Elsevier
(2006)

82. Swift, T.: Deduction in Ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR
2004. LNCS (LNAI), vol. 2923, pp. 275–288. Springer, Heidelberg (2003)

83. Udrea, O., Yu, D., Hung, E., Subrahmanian, V.S.: Probabilistic Ontologies and Relational
Databases. In: Meersman, R. (ed.) CoopIS/DOA/ODBASE 2005. LNCS, vol. 3760, pp.
1–17. Springer, Heidelberg (2005)

84. van Emden, M.: Quantitative deduction and its fixpoint theory. J. Log. Program. 3(1),
37–53 (1986)

85. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data inte-
gration. In: Proc. ICDE 2005, pp. 459–470. IEEE Computer Society (2005)

86. W3C. OWL Web Ontology Language Overview, 2004. W3C Recommendation (Febru-
ary10, 2004), http://www.w3.org/TR/owl-features/

87. W3C. OWL 2 Web Ontology Language Document Overview, 2009. W3C Recommen-
dation (October 27, 2009), http://www.w3.org/TR/owl2-overview/

88. Yue, A., Liu, W., Hunter, A.: Measuring the Ignorance and Degree of Satisfaction for An-
swering Queries in Imprecise Probabilistic Logic Programs. In: Greco, S., Lukasiewicz,
T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 386–400. Springer, Heidelberg (2008)

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-overview/

	Tractable Probabilistic Description Logic Programs
	Introduction
	Description Logics
	Syntax
	Semantics

	Description Logic Programs
	Syntax
	Answer Set Semantics
	Well-Founded Semantics

	Probabilistic Description Logic Programs
	Syntax
	Answer Set Semantics

	Novel Answer Set Characterizations
	Total Well-Founded Semantics
	Algorithms and Complexity
	An Anytime Algorithm for Tight Query Processing
	Complexity

	Probabilistic Data Integration
	Modeling Data Integration Systems
	Types of Probabilistic Mappings
	Deterministic Mappings on Probabilistic Data

	Related Work
	Probabilistic Description Logic Programs
	Probabilistic Logic Programs
	Description Logic Programs
	Probabilistic Description Logics and Ontology Languages

	Conclusion
	References

