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Uncertain Data: Representations, Query Processing, 
and Applications 

Tingjian Ge, Alex Dekhtyar, and Judy Goldsmith* 

Abstract. Uncertain data is common in many emerging applications.  In this chap-
ter, we start by surveying a few applications in sensor networks, ubiquitous com-
puting, and scientific databases that require managing uncertain and probabilistic 
data.  We then present two approaches to meeting this requirement. In the first 
approach, we propose a rich treatment of probability distributions in the system, in 
particular the SPO framework and the SP-algebra. In the second approach, we stay 
closer to a traditional DBMS, extended with tuple probabilities or attribute proba-
bility distributions, and study the semantics and efficient processing of queries. 

1    Probabilistic Databases and Their Applications 

There is a wide range of emerging applications that produce uncertain data and 
demand new techniques to manage such data. The mature, industry-standard  
relational database management systems have a history of about 40 years, but they 
do not have the capability of managing uncertain or probabilistic data. The appli-
cations that are discussed in this chapter are mainly in the areas of sensor net-
works, ubiquitous computing, bioinformatics and scientific databases. There are 
many applications (often related to the Internet) that also fall in this domain, such 
as information extraction and information integration. 

In this section, we present several applications where large collections of prob-
abilistic data are acquired, stored, and used.  We divide those applications into two 
categories: sensor networks and ubiquitous computing, and scientific databases. 
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Within sensor networks, we consider a person-based application, namely monitor-
ing of individual soldiers’ physical status in the field, and the larger-grained  
examples of monitoring and controlling traffic in a large city, and monitoring and 
controlling power use in a house or community.  Within scientific databases, we 
look at storing and managing astronomical data, microarrays, and proteomics. 
These are meant to be illustrative examples of a few hot research areas that depend 
on intelligent handling of probabilistic data, not a comprehensive catalogue of 
probabilistic database applications. 

1.1    Sensor Networks and Ubiquitous Computing 

Sensor networks and ubiquitous computing are major trends in modern compu-
ting. For example, many smartphones provide location estimates using a variety of 
sensors, such as GPS, WiFi, and/or cellular triangulation.  However, the correct-
ness of the triangulation depends on the proximity of cell towers, and on the local 
interference. It is thus important to handle any new data management issues that 
arise from uncertain data. Let us look at some concrete application scenarios. 

Soldier Physiologic Status Monitoring 

In the Soldier Physiologic Status Monitoring application (Tatbul et al. 2004), sen-
sors are embedded in a “smart uniform” that monitors key biological parameters to 
determine the physiological status of a soldier. Under the harsh environment of the 
battlefield, it is crucial that sufficient medical resources reach wounded soldiers in 
a timely manner. Sensors in a smart uniform monitor thermal signals, hydration 
levels, cognitive and life signs, and wound levels. 

There are a few ways the soldier’s physiological states can be estimated with 
different sensors and with different confidence. An algorithm computes an overall 
score indicating how much medical attention the soldier needs and how urgent his 
or her condition is. 

 

 

Fig. 1 A table generated by sensors monitoring soldiers’ needs for medical attention. The 
Conf. (confidence) attribute is the probability of existence of the tuple. 

In a central database, as shown in Figure 1, a table records the information sent 
out by the sensors in the soldiers’ uniforms. Each tuple in the table is one estimate 
with its related confidence. Sensors might be broken in harsh environments. For 
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high availability, there can be two sets of sensors in a soldier’s uniform in case 
one of them breaks down or loses precision. When each sends out an estimate at 
about the same time and they are inconsistent, at most one of them can be correct 
(together they form a discrete distribution with the confidence indicating the 
weight of each). These estimates may differ considerably due to variations in sen-
sors, possible lost network messages, and different estimation algorithms. 

Dynamic Traffic Routing 

A few projects in both academia and industry (e.g., the CarTel project at MIT1 and 
a product at INRIX2) provide traffic-aware routing and traffic mitigation. The idea 
is that various sensing devices are embedded in the cars that travel on roads and 
highways in urban areas.  Some of the sensors measure the location of the cars 
(e.g., GPS or WiFi (Thiagarajan  et al. 2009)), while others estimate travel delays.  
A large number of sensors from many cars continuously send data to a server. 

The server uses this data to give real-time route planning decisions to drivers 
(e.g., what is the quickest way to travel from A to B right now?). Compared to al-
ternatives such as using a standard online map, the dynamic routing also considers 
real-time factors such as road accidents and rush-hour traffic. 

Such a system uses the travel delays reported in a recent time window to infer 
the probability distribution of current delay at a road. Due to random factors, the 
best we can get is a distribution. Similar to Figure 1, a central database contains a 
relational table with a number of attributes such as road_ID, road_length, date, 
time, speed_limit, and current_delay. Here, the current_delay attribute of a road 
can be modeled as a probability distribution, which is learned from a set of delay 
readings sent out from that road. To answer a routing query as given above, the 
system may need to run a shortest path algorithm over road delays that are proba-
bility distributions. 

Smart Energy Grids 

There is increased interest in monitoring, predicting, and even generating energy 
from multiple sources.  Consider a system that integrates gas, coal, nuclear power, 
solar, hydro, and wind power, that has chips on all electric devices that communi-
cate with central power company servers, local servers, and weather stations.  
Power-intensive tasks, from washing machines to automated factories, could be 
set to run when the solar cells are likely to be charged, the windmills are likely to 
be active, or the demand for heating or air conditioning is expected to be low.   
South Korea is testing such a system (McDonald, 2011), as are other countries.   
Power agents are being developed in situ, and in the context of a Trading Agents 
Competition (Block et al. 2010).  

A power agent needs to be able to reason about likely weather conditions and 
power demands over the immediate and near future.  It needs to condition such 
reasoning on location, time of year, and recent power demands, and to know about 
the tasks it is assigned to schedule. 
                                                           
1  http://cartel.csail.mit.edu/doku.php 
2  http://www.inrix.com/ 
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1.2    Scientific Databases 

Scientific observations are fundamentally uncertain. No measurement is exact. 
When a quantity is observed and measured, the outcome depends on the measur-
ing system, the experimental procedure, the skill of the person conducting the ex-
periment, the environment, and other effects. Even if the quantity were to be 
measured several times, in the same way and in the same circumstances, a differ-
ent measured value would in general be obtained each time, assuming that the 
measuring system has sufficient resolution to distinguish between the values. 

Furthermore, as observed by domain scientists (e.g., (Burton et al. 2009)), due 
to unknown complex factors, contemporary scientific problems (e.g., associations 
of genetic variants and chronic diseases) often demand vast sample sizes and it is 
much needed to synthesize data across many studies and to undertake a pooled 
analysis. Below, we will look at a few concrete examples. 

Astronomy 

In astronomy, observations of the objects and phenomena in the sky are typically 
associated with “error bars” that indicate the estimated Gaussian distributions for 
the values being observed. Let us look at one of the most popular astronomical 
dataset, the Sloan Digital Sky Survey (SDSS). SDSS is one of the most ambitious 
and influential surveys in the history of astronomy3. It covers more than a quarter 
of the sky and contains more than 930,000 galaxies and more than 120,000       
quasars. 

 

Fig. 2 Fold differences of two function groups of genes (among many) as measured by a 
microarray experiment (Komatsu, et al. 2006) 

In the SDSS dataset, objects can have positional attributes:  right ascension (ra) 
and declination (dec) in the J2000 coordinate system. Besides these two attributes, 
there are another two attributes, ra_error and dec_error, which are error bars. 
They indicate that the right ascension (declination, respectively) attribute is a ran-
dom variable that has a Gaussian distribution with a standard deviation ra_error 
(dec_error, respectively) and a mean ra (dec, respectively). 

                                                           
3  http://www.sdss.org/ 
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Microarrays 

DNA microarray analysis has been one of the most widely used sources of ge-
nome-scale data in the life sciences. Microarray expression studies are producing 
massive quantities of gene expression and other functional genomics data, which 
promise to provide key insights into gene function and interactions within and 
across metabolic pathways. 

Figure 2 shows a snippet of the result from a microarray experiment performed 
by a research group (Komatsu, et al. 2006). It shows the fold differences of genes 
under two function groups. Here, a fold difference value indicates the difference 
between the gene’s expressed strength in a tissue sample (e.g., cancer cells) and 
that in a normal tissue being compared with. A positive (negative, resp.) value 
indicates that the gene is expressed more strongly (more weakly, resp.) in the tis-
sue sample. Thus, scientists are interested in finding genes with large absolute fold 
differences, which are characteristic of the disease/tissue being studied. The ± 
range value (e.g., 3.73 in the first gene) is the standard deviation over a few re-
peated runs, each of which is called a replicate. We can see that the variance can 
be quite significant. Figure 2 only shows selected genes from two function groups 
among many. 

 

 

Fig. 3 Sample output from the Mascot software that displays the proteins found in a sam-
ple. The scores indicate the confidence of the detections. 

Proteomics 

Proteomics is the large-scale study of proteins, particularly their structures and 
functions. Mass spectrometry has become a powerful tool in protein analysis and 
the key technology in proteomics (Mann et al. 2001). Proteomics experimental    
results contain information such as what proteins are in a tissue (either with a   
certain disease or normal), and their abundance, etc. Due to the many technical 
constraints in mass spectrometry (Mann et al. 2001), the experimental results have 
significant uncertainty. 

Figure 3 shows a piece of the sample output from the widely used Mascot soft-
ware4 using Peptide Mass Fingerprint. Each possible protein is associated with a 
score, indicating the confidence of the detection. This can become more compli-
cated when a tissue sample contains multiple proteins. A scientist would be        

                                                           
4  http://www.matrixscience.com/ 

PML_HUMAN    Mass: 97455    Score: 194 Expect: 1e-14  Matches: 15
Probable transcription factor PML (Tripartite motif-containing protein 19) (RING finger protein 71)

MURC_IDILO    Mass: 52994    Score: 51 Expect: 2  Matches: 5
UDP-N-acetylmuramate--L-alanine ligase (EC 6.3.2.8) (UDP-N-acetylmuramoyl-L-alanine synthetase) – I

DPO1_RICHE    Mass: 104386   Score: 50 Expect: 2.8  Matches: 6
DNA polymerase I (EC 2.7.7.7) (POL I) - Rickettsia helvetica

:
:



72 T. Ge, A. Dekhtyar, and J. Goldsmith 
 

interested in knowing the abundance of a protein in a tissue, etc. Such information 
is often compared between a tissue sample (e.g., cancer cells) and a control (i.e., 
normal cells). 

We have seen motivating applications in domains that require data management 
systems to handle uncertain and probabilistic data. In the rest of this chapter, we 
focus on two approaches of probabilistic databases. In the first approach (Section 
2), we propose a rich treatment of probability distributions as data, in particular 
the SPO framework and the SP-algebra. In the second approach (Sections 3 and 
4), we stay closer to a traditional DBMS, extend it with tuple probabilities or 
attribute probability distributions, and then study the semantics and efficient 
processing of queries in this model. 

2    Semistructured Probabilistic Database Management Systems 

One of the most common data structures for probabilistic reasoning is the Baye-
sian network, or Bayes net (Pearl 1988).  A Bayes net is a directed acyclic graph, 
where nodes represent random variables and edges represent dependencies; each 
node has a probability table for the associated variable, conditioned on the values 
of its parents in the graph. 
 
Example. Consider the Soldier Physiologic Status Monitoring application dis-
cussed in Section 1.1. Let us assume that a soldier has three sensors that, at set 
time intervals, send information about his/her body temperature, oxygen levels 
and pulse back to the home base server. Based on information supplied by the 
three sensors, which we refer to as T (temperature), O (oxygen) and P (pulse),  
the monitors (human or automatic) at the home base make decisions concerning 
the current state of the soldier.  In this simplified scenario, suppose there are four 
states that a soldier can be in: N(ormal), W(eak), A(gitated) or S(ick).  The re-
ports of each of the three sensors are discretized into two values: H(igh)  and 
N(ormal), with specific values of body temperature (e.g., 101F), blood oxygen 
levels (e.g., 90%) and pulse (e.g, 84) serving as the boundary values between 
them.  The current state of the soldier is determined based on the information ob-
tained from these three sensors. This can be represented graphically in the form of 
a Bayes net shown in Figure 4. 

To complete the Bayes net, we supply the conditional probability distribution 
for the random variable C(ondition) based on the value of random variables 
T(emperature), O(xygen) and P(ulse), and provide marginal probability distri-
butions for the other three random variables. Table 1 shows the former, while Ta-
ble 2 shows a joint probability distribution of T, O and P. 

A software application for tracking the medical conditions of military personnel 
might have to operate with different conditional probability tables and different 
marginal probability distributions based on a variety of factors. For example, the 
distributions shown in Tables 1 and 2 may be based on performance of Army per-
sonnel in temperate, forest-covered hilly environment. A different set of probabili-
ty distributions might cover mountainous or desert terrain and be constructed for  
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Fig. 4 A Bayes net for determining the physiological condition of a soldier in the field 

other branches of the military (e.g., the Marine Corps) or specific military units. 
From joint probability distributions such as the one in Table 2, one can derive 
marginal probability distributions for subsets of parameters (e.g., Table 3 shows 
marginal probability distributions for (a) a pair of parameters T and P and (b) sin-
gle parameter O) and can obtain conditional probability distributions (Table 3 (c) 
shows the distribution of T and O for personnel with high pulse rates). 

Table 1 Conditional probability distribution for the Bayes net for determining the physio-
logical condition of a soldier 

T O P Condition 
Normal Weak Agitated Sick 

High Normal High 0.05 0.1 0.3 0.55 
High Normal Normal 0.2 0.1 0.15 0.65 
High Low High 0.05 0.05 0.1 0.8 
High Low Normal 0.2 0.1 0.05 0.8 

Normal Normal High 0.3 0.05 0.55 0.1 
Normal Normal Normal 0.8 0.05 0.1 0.05 
Normal Low High 0.2 0.2 0.45 0.15 
Normal Low Normal 0.3 0.4 0.05 0.25 

 
For decision-support software designed to work with this data, a data management 

mechanism is needed to deal with all such probability distributions. This is the under-
lying idea behind the Semistructured Probabilistic Objects (SPO) framework (Zhao et 
al. 2005).  In this framework, diverse probability distributions, such as the ones de-
picted in Tables 1, 2, and 3 are stored as first-class database objects. A rich query    
algebra (the SP-algebra) is able to manipulate and retrieve the objects. The algebra 
incorporates traditional relational algebra operations of selection, projection, and  



74 T. Ge, A. Dekhtyar, and J. Goldsmith 
 

Cartesian product and join.  It modifies their semantics to perform appropriate com-
putations on the probability distributions, and adds a conditionalization operation that 
is unique to working with probability distributions. An SQL-style query language 
(SPOQL) has been implemented as a convenient syntax for querying databases of 
SPOs (Dekhtyar et al. 2006), though other implementations are certainly possible. 

In what follows, we define the SPO framework formally, introduce the SP-
algebra and discuss the semantics of its operations, and establish some key facts 
about the SP-algebra.  

The SPO framework was originally introduced (Dekhtyar et al. 2001, Zhao et 
al. 2005) for exact (or “point”) probabilities, i.e., for situations where the exact 
probabilities are known. However, it was observed that in many decision support 
applications, exact probabilities were not known.  Rather, the probabilities of vari-
ous situations/events were known to fall into probability intervals. The SPO 
framework was adapted to address such situations as well (Zhao et al.  2004). The 
notion of an Interval Semistructured Probabilistic Object (ISPO) is not too  differ-
ent than the notion of a SPO, but the Interval SP-algebra is significantly more 
complex (Zhao et. al 2003). We discuss this notion briefly at the end of Section 2. 

Table 2 Joint marginal probability distribution of temperature, blood oxygen levels and 
pulse rate for the Bayes net for determining the physiological condition of a soldier. 

T O P Prob 
High Normal High 0.02 
High Normal Normal 0.01 
High Low High 0.03 
High Low Normal 0.04 

Normal Normal High 0.25 
Normal Normal Normal 0.4 
Normal Low High 0.2 
Normal Low Normal 0.05 

Table 3 Probability distributions computable in the physiological condition monitoring 
scenario 

(a)                                      (b)                                         (c) 

     T P Prob 

High High 0.05 

High Normal 0.05 

Normal High 0.45 

Normal Normal 0.45 

 
  

O Prob 

Normal 0.68 

Low 0.32 

  

  

  

 

  

T O Prob 

High Normal 0.44 

High Low 0.06 

Normal Normal 0.5 

Normal Low 0.4 

Prob(T,O|P=high) 

 

 

The term “semistructured” in the name of the framework was chosen for two 
reasons. The probability distributions stored in a single “relation” inside a Semi-
structured Probabilistic Database can have diverse structures and contain different 



Uncertain Data: Representations, Query Processing, and Applications 75
 

“attributes”. In addition to that, originally, XML was chosen as the representation 
syntax for SP objects (Dekhtyar et al. 2001). As XML representation is essentially 
syntactical in nature, we omit it from this narrative, and instead, concentrate on the 
semantics of the proposed frameworks. 

2.1    Semistructured Probabilistic Objects 

Consider a universe V of discrete random variables {v'1,… ,v'’q}.  With each random 
variable v ∈ V we associate dom(v), a finite set of its possible values. Given a set 
V={v1,…,vq}⊆ V,  dom(V) denotes dom(v1)x … x  dom(vq). 

Let R=(A1,… ,An) be a collection of regular relational attributes. For A∈R, let 
dom(A) denote the domain of A. We define a semistructured schema R* over R as a 
multiset of attributes from R. For example, if  R = {Terrain, MilitaryBranch, 
Conditions} the following are valid semistructured schemas over R: R*

1 = {Ter-
rain, MilitaryBranch};  R*

2 = {Terrain, Conditions, Conditions}; R*
3 = {Ter-

rain, Terrain, Terrain}. 
Let P denote a probability space used in the framework to represent probabilities 

of different events. We present the framework over two different probability spac-
es. The first probability space Ppoint=[0,1], is the unit interval. Values from this  
interval are called exact or point probabilities. The Semistructured Probabilistic 
Object (SPO) framework introduced below uses this probability space.  Another 
possibility, leading to an extended SPO framework (Zhao et al. 2004), is based on 
the probability space Pint=C[0,1]: the set of all subintervals of the unit interval. A 
probability value from this space is called an interval probability. The general defi-
nition of a Semistructured Probabilistic Object given below applies for any probabil-
ity space, however, the query algebra for each of the two frameworks is substantially 
different. We describe the query algebra, the SP-algebra, over the point probability 
space  Ppoin in Section 2.2, and briefly discuss the query algebra (Extended  
SP-algebra) for the interval probability space Pint  at the end of Section 2. 
 
Definition 1. (Zhao et al. 2005)   A Semistructured Probabilistic Object (SPO)} S 
is a tuple S = (T, V, P, C, ω) where 
 

• T is a relational tuple over some semistructured schema R* over R. We refer to 
T as the context of S. 

• V={v1,… ,vq} ⊆ V is a set of random variables. We require that V ≠ ∅, where 
V is called the set of participating random variables. 

• P: dom(V)→ P is the probability table of S. Note that P need not be complete, 
but it must be consistent with respect to P5. 

                                                           
5  Consistency criteria are probability-space dependent. For Ppoint, the consistency criterion 

is that the sum of all probability values is less than or equal to 1. For Pint the consistency 
criterion is essentially equivalent to a requirement that the sum of lower bounds of each 
probability interval is less than or equal to 1. 
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• C = {(u1,X1),…,(us,Xs)}, where U = {u1,…,us} ⊂ V and Xi ⊆ dom(ui), 1≤ i ≤ n, 
such that V ∩ U = ∅ . We refer to C as the conditional of S.  

• ω, called a path, is an expression of the probabilistic query algebra over P. 
We define two different query algebras below. 

An explanation of this definition is in order.  For the SPO data model to possess 
the ability to store all the probability distributions described in Tables 1, 2, and 3 
a--c, the following information needs to be stored in a single object. 

1. Participating random variables. These variables determine the probability 
distribution described in an SPO. 

2. Probability Table. If only one random variable participates, it is a simple 
probability distribution table; otherwise the distribution will be joint.  Proba-
bility table may be complete, when the information about the probability of 
every instance is supplied, or incomplete. In either case, it must be consistent, 
i.e., truly represent a probability distribution. It is convenient to visualize the 
probability table P as a table of rows of the form (x,α), where x ∈ dom(V) and 
α = Prob(x) ∈ P. Thus, we speak about rows and columns of the probability 
table when that makes explanations more convenient. 

3. Conditional. A probability table may represent a distribution, conditioned by 
some prior information. The conditional part of its SPO stores the prior in-
formation in one of two forms: “random variable u has value x” 
or “the value of random variable u is restricted to a 
subset X of its values”. In our definition, this is represented as a 
pair (u,X). When X is a singleton set, we get the first type of the condition. 

4. Context provides supporting information for a probability distribution, in-
formation about the known values of certain parameters, which are not consi-
dered to be random variables by the application. 

5. Path. Participating variables, probability table, conditional and context com-
bined form the content of an SPO. Path, the fifth component, documents the 
object’s history in the database in which it is stored. Objects inserted into the 
database receive unique object identifiers (OIDs) upon insertion. When a new 
SPO is constructed out of one or more existing SPOs as a result of a query al-
gebra expression, the path of the new object will contain that expression. 

2.2    The SP-algebra for Point Probabilities 

Let us fix the universe of random variables V, the universe of context attributes R 
and set the probability space P=Ppoint= [0,1]. A finite collection SP = { S1,… ,Sn} 
of semistructured probabilistic objects over V, R and P is called a semistructured 
probabilistic relation (SP-relation). A finite collection D = {SP1,…,SPr} is called 
a semistructured probabilistic database (SP-database). 
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One important difference between semistructured probabilistic databases and  
traditional relational or relational probabilistic databases is that each table in a  
relational database has a specified schema, whereas all SP-relations are “schema-
less”: any collection of SPOs can form an SP-relation. This means that the divi-
sion of a semistructured probabilistic database into relations is a matter of the  
logic of a particular application. For example, if the SP-database is built from the  
information supplied by three different experts, this information can be arranged 
into three semistructured probabilistic relations according to the origin of each  
object inserted in the database. Alternatively, the information can be arranged in 
SP-relations by the date it was obtained. 

Manipulation of SPOs stored in SP-databases is done by the means of a query 
algebra, called the semistructured probabilistic algebra (SP-algebra). The SP-
algebra contains three standard set operations: union, intersection and difference; 
it extends the definitions of standard relational operations selection, projection, 
Cartesian product, and join to account for the appropriate management and main-
tenance of probabilistic information within SPOs; in addition, it contains a new 
operation, conditionalization. The latter operation is specific to the probabilistic 
databases and results in the construction of SPOs that represent conditional proba-
bility distributions of the input SPOs. 

Before proceeding with the description of individual operations, we define the 
equality and equivalence of SPOs. Two SPOs S and S’ are equal if all their com-
ponents are equal. Two SPOs are equivalent if their set of participating random 
variables, probability table, context and conditional are the same. Notice that in 
the case of equivalence, paths of two SPOs may be different.  More formally, 
 
Definition 2. (Zhao et al. 2005)    Let S =(T,V,P,C,ω) and S' =(T',V',P',C',ω') be 
two SPOs. S is equivalent to S', denoted S≡ S, iff T =T, V = V', P = P' and C = C'. 
 
Set Operations. Semistructured Probabilistic relations are sets of SPOs. There-
fore, the definitions of union, intersection and difference of SP-relations are 
straightforward. 
 
Definition 3. (Zhao et al. 2005)   Let SP  and SP’  be two SP-relations.  
 

• Union: SP ∪ SP' = { S | S ∈ SP or S ∈ SP'}. 
 

• Intersection: SP ∩ SP' = { S | S ∈ SP  and  S ∈ SP'}. 
 

• Difference: SP – SP' = { S | S ∈ SP and  S ∉ SP'}. 
 

We note two features of the set operations in the SP-algebra. Classical relational 
algebra has a restriction on the applicability of the set operations: they are defined 
only on pairs of relations with matching schemas. Because SP-relations are    
schema-less and represent logical rather than syntactic groupings of probability 
distributions in an SP-database, set operations are applicable to any pair of        
SP-relations. 
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Selection. Given an SPO S =(T,V,P,C,ω), a selection query may be issued to any 
of its components except the path. Each part requires its own language of selection 
conditions. Selection on context, participating random variables and conditionals, 
when applied to an SPO, result in the SPO being selected or not in its entirety, as 
is the case with selection in relational algebra. Selection on probability table on 
the other hand, transforms the SPO by including in the selected object only the 
probability table rows that match the selection condition. For any selection opera-
tion, the path expression of the result is updated to include the selection operation. 
We illustrate different types of selections in the following example. 
 

Example 1. Consider the military personnel monitoring application described in 
the example above. Suppose that the application database stores multiple probabil-
ity distributions to be used for decision support. A human analyst working with 
the system may, at different times, want to see and/or use the results of the follow-
ing information requests. 
 

• “Find all probability distributions for members of 
the Marine Corps.”}  This is an example of selection based on con-
text. 

• “Find all probability distributions that involve 
body temperature and oxygen level observations.” Body 
temperature and oxygen level are two of the random variables in the applica-
tion domain. This is an example of selection on participating random variable. 

• “Find all probability distributions for servicemen 
with low oxygen levels”.  Here, the analyst wants to find what is 
known about the probabilities of other random variables in the domain, when 
the oxygen level (a random variable in the domain) is known to be low.  This 
is selection on conditional. 

• “What information is available about the probability 
of having low oxygen level and high body tempera-
ture?”  In each SPO which contains Temperature and Oxygen variables, 
we are interested in the row(s)6 of the probability table which has/have values 
Temperature = high and Oxygen = low. This is an example of selection on 
probability table. 

• “What outcomes have probability over 0.4?” This is an 
example of selection on probabilities.  This information need should result in 
only the SPOs that have probability table rows with probability values of 
above 0.4 returned, and only those rows should be shown to the analyst. 

 

Selection on Context, Participating Variables or Conditionals. We first define 
the three selection operations that do not alter the content of the selected objects. 
We start by defining the acceptable languages for selection conditions for the three 

                                                           
6  If other random variables are also present in the SPO in question, there will be more than 

one row matching this condition. 
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types of selects. Recall that the universe R of context attributes consists of a finite 
set of attributes A1,…, An with domains dom(A1),… ,dom(An).  With each attribute 
A ∈ R we associate a set Predicates(A) of allowed predicates. We assume that 
equality and inequality are allowed for all A ∈ R. 

Definition 4. (Zhao et al. 2005)   An  atomic context selection condition is an ex-
pression c of the form A •  x  (or •(A,x)), where A ∈ R,  x ∈ dom(A) and • ∈ Pre-
dicates(A). 

An atomic participation selection condition is an expression c of the form v ∈ V, 
where v ∈ V is a random variable.7 

An atomic conditional selection condition is one of the following expressions: 
u ={x1,…, xh} or u ∋ x where u ∈ V is a random variable  and x, x1,…,xh ∈ dom(u). 

Complex selection conditions can be formed as Boolean combinations of atom-
ic selection conditions. 

Definition 5. (Zhao et al. 2005)    Let S=(T,V,P,C,ω) be an SPO and let c = A•x be 
an atomic context selection condition. Let ω' = σc(ω) and let S' = (T,V,P,C,ω'). 
Then σc(S) ={S'} iff: 

1. A ∈ S.T; 
2. For some instance A* of A in S.T,   S.T.A*• x is true. 

Otherwise, σc(S) = ∅. 

Definition 6. (Zhao et al. 2005)   Let S=(T,V,P,C,ω) be an SPO and let c = v ∈ V 
be an atomic participation selection condition. Let ω' = σc(ω) and let S' = 
(T,V,P,C,ω'). Then σc(S) ={S'} if v ∈ S.V; otherwise σc(S) = ∅. 

Definition 7. (Zhao et al. 2005)    Let S=(T,V,P,C,ω) be an SPO. Let ω' = σc(ω) 
and let S' = (T,V,P,C,ω'). 

1. Let c =  u ={x1,… ,xh} be an atomic conditional selection condition. Then 
σc(S) ={S'}  if  S.C ∋  (u, X) and X = {x1,…,xh}; otherwise σc(S) = ∅. 

2. Let c = u ∋ x be an atomic conditional selection condition. Then σc(S) ={S'}  
if S.C ∋ (u, X) and x ∈ X; otherwise σc(S) = ∅.  

The semantics of atomic selection conditions can be extended to their Boolean 
combinations in a straightforward manner.  

σc ∧ c'(S) ::= σc(σc’(S)); 
σc ∨ c'(S) ::= σc(S)∪ σc’(S), 

except for the path component, which will become, respectively, σc ∧ c'(S) (σc ∨ 

c'(S)). 
                                                           
7  Note that “∈ V” is syntactic sugar here. Instances of such conditions have the form  

Oxygen ∈ V, Condition ∈ V and so on. 
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The interpretation of negation in the context selection condition requires some 

additional explanation. In order for a selection condition of the form  ¬(A•x) to 
succeed on some SPO S=(T,V,P,C,ω), attribute A must be present in S.T.  If A is 
not in S.T, then σ¬(A•x)(S) = ∅. Therefore, the statement S ∈ σc(S) ∨ S∈ σ¬c (S) is 
not necessarily true. This also applies to conditional selection conditions. 
 
Selection on Probability Table.  The two remaining types of selection operations 
are more complex than the three described above. Here, the result of each opera-
tion applied to an SPO can be a non-empty part of the original SPO. In particular, 
these operations preserve the context, participating random variables and condi-
tionals in an SPO, but may return only a subset of the rows of the probability ta-
ble. In these operations, the selection condition will indicate which rows from the 
probability table are to be included and which are to be omitted. In a sense, these 
operations treat the probability table of an SPO as a relational table, and perform 
selections from it. 

Definition 8. (Zhao et al. 2005)   An atomic probability table selection condition 
is an expression of the form v = x where v ∈ V and x ∈ dom(v). Probability table 
selection conditions are Boolean combinations of atomic probability table selec-
tion conditions. 

Definition 9. (Zhao et al. 2005)   Let S = (T,V,P,C,ω) be an SPO, V = { v1,…,vk} 
and let c = v = x be an atomic probabilistic table selection condition. Let ω' = σ-
c(ω).  If v ∈ V, then (assuming v = vi for some 1≤ i ≤k) the result of selection from 
S on c, σc(S), is a semistructured probabilistic object  S' = ( T,V,P',C,ω'), where 
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Definition 10. An atomic probabilistic selection condition is an expression of the 
form P • α, where α ∈ [0,1] and • ∈ {=,  ≠,  ≤, ≥, <, > }. Probabilistic selection 
conditions are Boolean combinations of atomic probabilistic selection conditions. 

Definition 11. Let S=(T,V,P,C,ω) be an SPO and let c=  P•α be an atomic proba-
bilistic selection condition. Let x ∈ dom(V). The result of selection from S on c is 
defined as follows:  σc(S) = (T,V,P',C,ω'), where ω' = σc(ω) and 
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Different selection operations commute, as shown in the following theorem.  

Theorem 1. (Zhao et al. 2005)  Let c and c' be two (arbitrary) selection conditions 
and let SP be a semistructured probabilistic relation. Then σc(σc’(SP)) ≡ 
σc’(σc(SP)). 
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Projection. SPOs are complex objects consisting of four different components. 
Traditionally, projection in relational algebra is a simplification operation that 
removes attributes. With SPOs, there are three types of simplifications that can be 
performed: removal of context, removal of conditionals and removal of participat-
ing random variables. All three projection operations are introduced below. 

Definition 12. (Zhao et al. 2005)   Let S =(T,V,P,C,ω) be an SPO and let L⊆ R be 
a set of context attributes. The projection of S onto L, denoted πL(S,), is an SPO S' 
= (T',V,P,C,ω'), where T' ={(A,x)| (A,x) ∈ T, A ∈ L} (i.e., T' contains all entries 
from T for attributes from the list L only), and  ω' = πL(ω). 

Definition 13. (Zhao et al. 2005)   Let S=(T,V,P,C,ω) be an SPO and let F⊆V be a 
set of random variables. The projection of the conditional part of S onto F, de-
noted πc:F(S), is an SPO S' = (T,V,P,C',ω') where C' = {(u,X)| (u,X)∈T.C, u∈ F} 
and ω' = πc:F(ω). 

We note that since both the context and the conditional part of an SPO can be 
empty, projections π∅(S) (i.e., removal of all context information for an SPO) and 
πc:∅(S)  (clearing of the list of conditionals) are valid and will yield proper results. 
A somewhat more complicated and delicate operation is the projection on the set 
of participating random variables.  A removal of a random variable from the 
SPO's participant set entails that all information related to this random variable 
has to be removed from the probability table as well. This essentially corresponds 
to removal of a random variable from consideration in a joint probability distribu-
tion, which is usually called marginalization. The result of this operation is a new 
marginal probability distribution that needs to be stored in the probability table 
component of the resulting SPO. 

This computation is performed in two steps. First, the columns for random va-
riables that are to be projected out are removed from the probability table. In the 
remainder of the table, there can now exist duplicate rows whose values for all the 
fields except the probability coincide. All duplicate rows of the same type are then 
collapsed (coalesced) into one, with the new probability value computed as the 
sum of the values in the constituent rows. The formal definition of this procedure 
is given below. 

Definition 14. (Zhao et al. 2005)    Let S =(T,V,P,C,ω) be an SPO,  V = {v1,…, 
vq}, q>=1, and let L⊆ R be a non-empty set of random variables.  If L∩ S.V = ∅, 
then the projection of S on L, denoted πL(S), is an empty set.  If If L∩ S.V ≠ ∅, 
then πL(S) ={S’} where  S' = (T, L, P',C,ω') and where P': dom(L)→[0,1] and for 
each x ∈ dom(L), 

P' x ( )= P x ,y ( )
y ∈dom(V −L );P(x ,y ) is defined

 . 

Notice that projection on the participating random variables is allowed only if the 
S.V is not a singleton and if at least one random variable remains in the resulting 
set. 
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Conditionalization. Conditionalization is an operation specific to probabilistic 
algebras. Dey and Sarkar (Dey and Sarkar 1996) were the first to consider this 
operation in the context of probabilistic databases. Similarly to the variable projec-
tion operation, conditionalization reduces the probability distribution table. The 
difference is that the result of conditionalization is a conditional probability dis-
tribution. Given a joint probability distribution, conditionalization answers the 
general query of the form, “What is the probability distribution 
of the remaining random variables if the value of some 
random variable v in the distribution is restricted to 
subset X of its values?” 

Informally, the conditionalization operation proceeds on a given SPO as follows.  
The input to the operation is one participating random variable of the SPO, v, 

and a subset of its domain X ⊆ dom(v). The first step of the operation consists of 
removal from the probability table of the SPO all rows whose v values are not 
from the set X. Then the v column is removed from the table. The remaining rows 
are coalesced (if needed) in the same manner as in the projection operation and 
afterwards, the probability values are normalized. Finally, (v,X) is added to the set 
of conditionals of the resulting SPO. 

The formal definition of conditionalization is given below. Note that if the origi-
nal table is incomplete, there is no meaningful way to normalize the probability dis-
tribution. The operation can still be performed, but the results may be meaningless. 
Thus, we restrict this operation to situations where normalization is well defined.  

Definition 15. (Zhao et al. 2005)   An SPO S=(T, V,P,C,ω) is conditionalization-
compatible with an atomic conditional selection condition v ={x1,… ,xh} iff (a) v ∈ 
S.V and (b) the restriction of S.P on { x1,… ,xh} for variable v  is a complete function.  

Definition 16. (Zhao et al. 2005)    Let SPO S=(T, V,P,C,ω) be an SPO which is 
conditionalization-compatible with an atomic conditional selection condition  c =  
v ={x1,… ,xh}. The result of conditionalization of S by c, denoted μc(S), is defined 
as follows: μc(S) = (T,V',P',C',ω), where 

• V' = V -{v}; 
• C' = C ∪ {(v,{x1,… ,xh)}; 
• P':V' →[0,1] is defined as follows.  

Let 

N = P(x, y ).
x ∈ xi ,...,xh{ }


y ∈dom( ′ V )

  

Then, for any y ∈ dom(V’), P’ is defined as follows:  
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• ω' = μc(ω). 
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Cartesian Product and Join. Sometimes an SP-database has only simple proba-
bility distributions for some random variables. In order to get a joint probability 
distribution, either a Cartesian product or a join operation can to be performed on 
the SPOs storing these distributions. Intuitively, both a Cartesian product and a 
join of two probabilistic distributions compute the joint probability distribution of 
random variables involved in both original distributions.  The difference between 
them lies in the operation applicability. The Cartesian product can be computed 
only for a pair of SPOs with disjoint participating random variables. The join  
operation is applicable to two SPOs that share common participating random  
variables. 

When a joint probability distribution is computed from individual (marginal) 
probability distributions, knowledge of the relationship between the random va-
riables in the two marginal distributions is necessary to correctly compute the joint 
probability distribution. In this narrative, we restrict ourselves to the case when 
random variables from the two distributions are conditionally independent.  This 
restriction allows us to represent the result as a joint probability distribution which 
can be explicitly computed: the joint probability is the product the marginal prob-
abilities.  Other assumptions that allow for direct computation of joint probability 
distributions are discussed elsewhere (Zhao et al. 2006). 

Two SPOs are compatible for Cartesian product if their participating variables 
are disjoint, but their conditionals coincide.  

Definition 17. (Zhao et al. 2005) Two SPOs S = (T,V,P,C,ω) and S' 
=(T',V',P',C',ω') are Cartesian product-compatible (cp-compatible) if and only if 
(a) V∩ V' = ∅ and (b) C = C'. 

We can now define the Cartesian product. 

Definition 18. (Zhao et al. 2005)  Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be 
two cp-compatible SPOs.  The result of their Cartesian product (under assumption 
of independence), denoted S x S', is: S x S' = S'' = (T'',V'',P'',C'',ω''),  where 

• T''  = T ∪ T'; 
• V'' = V ∪ V'; 
• P'': dom(V'')→ [0,1] is defined as follows.  For all z ∈ dom(V''), where 

( )yxz ,= ,  x ∈ dom(V), y ∈ dom(V'):    ( ) )()( yPxPzP ⋅=′′ ; 

• C'' = C =C'; 
• ω'' = ω x ω’. 

The join operation extends the Cartesian product operation to the situation, where 
two SPOs being combined share random variables.  If we have two probability 
distributions Prob(X,Y) and Prob(Y,Z), then a joint probability distribution 
Prob(X,Y,Z) can be represented as Prob(X,Y,Z) = Prob(X,Y)*Prob(Z|Y) = 
Prob(X|Y) * Prob(Y,Z).  The two representations of the joint probability distribu-
tion (one, conditioning Z on Y and another, conditioning X on Y) are equal if  
the probability distributions are drawn from one known underlying universal 
probability distribution on V. However, the SPO framework can store, in the same 
database, information from multiple universal distributions (e.g., distinguished by 
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the context settings of the SPOs). Thus, Prob(X,Y)*Prob(Z|Y) = Prob(X|Y)* 
Prob(Y,Z) is not necessarily always true. To make sure that SPOs can be joined 
efficiently, we consider two separate join operations, one using the 
Prob(X,Y)*Prob(Z|Y) representation, and the other using the Prob(X|Y)* 
Prob(Y,Z). These operations are known as left join and right join.  

Definition 19. (Zhao et al. 2005) Two SPOs S = (T,V,P,C,ω) and S' 
=(T',V',P',C',ω') are join-compatible if and only if (a) V ∪ V' ≠ ∅ and (b) C = C'. 

Given two join-compatible SPOs S and S', we can break the set V ∪ V' into three 
non-empty disjoint parts: V1 = V – V’, V2= V' – V and Vc = V∩ V'. The informa-
tion about the probability distribution of random variables in Vc can be found in 
both S and S'. The join operation must take this into consideration when the joint 
probability distribution for variables in V∪ V' is computed. The key to computing 
the joint distribution correctly is the following statement. 

Lemma 1. Let x∈ dom(V1), y∈ dom(Vc), z∈ dom(V2), and let V1, Vc and V2 all be 
disjoint. Under the assumption of independence between variables in V1 and V2 the 
following holds: 

).|(*),()|(*),Pr()Pr(/),Pr(*),Pr(),,Pr( yxPyzPyzPyxyzyyxzyx ===
 

We can now define the join operations. We want the join of S and S' to contain the 
joint probability distribution of the set V1∪ Vc ∪ V2. Since Pr(y) could be obtained 
either from S or from S', there exist  two families of join operations, called 
left join and right join, with the following definitions. 
 

Definition 20. (Zhao et al. 2005)   Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be 
two join-compatible SPOs. Let V = V1∪Vc  and V' = V'∪ Vc, and  Vc = V∪ V'. 
We define the operations of left join of S and S', denoted S < S', and right join of 
S and S', denoted S   >  S', as follows: 
 

• S < S' :: =    S'' = (T'',V'',P'',C'',ω''); 
• S  > S' :: = S''' = (T'', V'', P''',C'',ω’’’), where 

1. T''  = T ∪ T'; 
2. V'' = V1 ∪ Vc  ∪   V2; 
3.  P''': dom(V'')→  [0,1] is computed as follows. 

 

For all w ∈ dom(V''); ( )zyxw ,,=  ; x ∈ dom(V1), y ∈ dom(Vc), z ∈ 
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• C'' = C =C'. 
• ω'' = ω < ω';  ω''' = ω  >  ω'. 
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Two join-compatible SPOs are join-consistent if probability distributions on the 
set of shared participating variables are identical for both SPOs. 

Definition 21. (Zhao et al. 2005)  Let Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') 
be two join-compatible SPOs with V∩ V' = Vc. Then, S and S' are join-consistent 

if and only if ( )xPyP ′=)(  for any y ∈ dom(Vc). 

SP-algebra operations can be extended to a semistructured probabilistic relation, 
as described in the following proposition. 

Proposition 1. (Zhao et al. 2005)    Any SP-algebra operation on a semistructured 
probabilistic relation is equivalent to the union of the SP-algebra operation on 
each SPO in the SP-relation: 

• Let SP be a semistructured probabilistic relation and γ be one of the three 
unary SP-algebra operators. Then γ(SP) = S∈SP γ(S). 

• Let SP1 and SP2 be two semistructured probabilistic relations and ⊕ be one of 
the binary SP-algebra operators. Then: 

'
21 '

21 SSSPSP
SPSSPS

⊕=⊕
∈∈
 . 

Semantics of the SP-algebra Operations. The problem of determining the mean-
ing of the results of the operations of the SP-algebra is complicated by the fact that 
at any moment, SP-databases can contain SPOs of two types. In the SPOs of the 
first type, the probabilities of all rows are exact, while in the SPOs of the second 
type, the probabilities of some rows may represent the lower bounds on the proba-
bility of those instances. We proceed by defining the two types of SPOs formally, 
discussing their properties and the effects that different SP-algebra operations 
have on the SPOs in light of this. 

Definition 22. (Zhao et al. 2005)   An SPO S =(T,V,P,C,ω) is a Type I SPO iff 
x∈dom(V)P(x) =1 . Otherwise, S is a Type II SPO. 

When S is a Type I SPO, its probability table is complete: the probabilities of all 
rows add up to exactly 1. The probability table may contain a row for every in-
stance x ∈ dom(V), or it may omit some of the instances. However, because the 
probabilities of the rows present in the table add up to 1, we know that the proba-
bilities of all omitted rows are 0, and these can be added to the probability table of 
S. Basically, when S is a Type I SPO, we are guaranteed that for all x ∈ dom(V) 
P(x) is the exact point probability of instance x. 

The nature of Type II SPOs is somewhat more complex. If the sum of probabilities 
in all rows of the probability table is less than 1, then that the probability table is 
missing some information. This can either be missing instances: some x ∈ dom(V)  
has a non-zero probability but is not included in the probability table of S, or underes-
timation: all possible instances are present, but the probabilities add up to less than 1, 
which means that information about the probabilities of some (or all) instances is 
only a lower bound on the true probability of the instance in the distribution. 
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It is important to note here that SP-algebra operations allow for Type II SPOs 

to occur in the SP-database, even if all original SPOs in the database were Type I.   
The difference in the meaning of probability values for Type I and Type II SPOs 
causes us to apply extra caution when interpreting the results of SP-algebra opera-
tions. In particular, when considering a specific SP-algebra operation applied to an 
SPO or a pair of SPOs, it is important for us to know the type of the input objects 
and be able to determine the type of the result. The following proposition identi-
fies the set of “safe” operations in SP-algebra: operations that, given Type I SPOs, 
are guaranteed to produce Type I results. 

Proposition 2. (Zhao et al. 2005)   Let S and S' be two Type I SPOs. Then, the 
following SPOs are also Type I: 

1. σc(S), where c is a selection condition on context, participating random va-
riables or conditional. 

2. πL(S), πc:F (S) and πF(S), where L is a list of context attribute names and F ⊆ 
V. 

3. μc(S), where c is a conditional selection condition. 
4. S x S'. 
5. S <  S' and S >  S'. 

Two operations missing from the list in Proposition 4 are selection on probabili-
ties and selection on probability table. These operations can take as input Type I 
SPOs and produce Type II SPOs, because both operations can return incomplete 
probability tables. The following statements specify the semantics of the SP-
algebra operations producing Type I results. 

Theorem 2. (Zhao et al. 2005)    Let S = (T,V,P,C,ω) be a Type I SPO and let ∅ ≠ 
L ⊆ V. Let S'= (T, L,P',C,ω') = πL(S). Then S’.P' contains the correct marginal 
probability distribution of random variables in L given the probability distribution 
S.P. 

Theorem 3. (Zhao et al. 2005)    Let S = (T,V,P,C,ω) be a Type I SPO and let c be 
a conditional selection condition involving variable v ∈ S.V. Let S' = (T,V-
{v},P',C',ω') = μc(S). Then S’.P' contains the correct conditional probability dis-
tribution of random variables S.V-{v} from the distribution S.P given condition c 
on v. 

Theorem 4. (Zhao et al. 2005)  Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be 
two cp-compatible SPOs and let S'' = (T'',V'',P'',C,ω'') = S x S'. Then S’’.P'’ is the 
correct joint probability distribution of random variables in S.V and S’.V' under the 
assumption of independence between them. 

Theorem 5. (Zhao et al. 2005) Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be two 
join-compatible SPOs and let S'' = (T'',V'',P'',C,ω'') = S< S'  and S’’’= 
(T’’’,V’’’,P’’’,C,ω’’’) = S > S’. Then S’’.P'' and S’’’.P''' are the correct joint 
probability distributions of random variables in S.V and S’.V' under the assumption 
of independence between them. 
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Theorem 6. (Zhao et al. 2005)   Let S and S' be two join-compatible SPOs. The 
left join S < S' and the right join S > S'$ are equivalent if and only if  S and S’ 
are join-consistent. 

2.3. Extensions of the SPO Framework 

Interval SPO Model. As mentioned above, the probability space  Ppoint=[0,1], is 
not the only way to represent probabilistic information in the SPO framework. 
Probability intervals have been, for some time, considered the next natural  
extension of the notion of probability (Walley 1991, de Campos et al. 1994, 
Weichselberger 2000,  Ng and Subrahmanian 1992).  Because the definition of an 
SPO factors out the probability space, a valid Semistructured Probability Object 
may use probability intervals rather than point probabilities in its probability table.  
Such SPOs were introduced in a somewhat tongue-in-cheek manner (Goldsmith et 
al. 2003) as the means of representing results of political surveys.  While the data 
representation format does not change much, the same cannot be said about the 
semantics of the SPOs and, consequently, the query algebra.  An interval probabil-
ity distribution is modeled using Nilsson's (Nilsson 1986) possible worlds seman-
tics, (Weichselberger 2000, de Campos et al. 1994): a true probability distribution 
assigns point probabilities to all rows in the probability table, but is unknown. 
Probability intervals represent a set of linear constraints on the point probabilities.  
An interval probability distribution will satisfy some (possibly none) point proba-
bility distributions, termed p-interpretations (Ng and Subrahmanian 1992, Zhao et 
al. 2004), each of which is considered equally likely to be the true one. 

The query algebra operations were extended to preserve the mapping between in-
terval probability distributions and the sets of satisfying p-interpretations (Zhao et al. 
2004, Zhao et al. 2003).  The semantics of extended (interval) SP-algebra operations 
that do not alter probabilities, set operations and various selection operations, does 
not change much from the SP-algebra case.  On the other hand, projection, Cartesian 
product, join, and, especially, conditionalization, operations that modify probabili-
ties, become much more involved.  With the exception of conditionalization, ex-
tended SP-algebra versions of all operations preserve the possible worlds semantics: 
i.e., we prove that a p-interpretation satisfies the interval probability distribution 
obtained in the result of an extended SP-algebra operation if and only if it be con-
structed from some p-interpretation (or a pair of p-interpretations) by applying an 
SP-algebra analog of the operation to it/them (Zhao et al. 2004). 

For the conditionalization operation, the interval distribution obtained as result 
of the extended operation is guaranteed to be tight, i.e., some p-interpretations 
satisfying the original interval probability distribution get transformed by a condi-
tionalization operation in a way that matches all interval boundaries. However, the 
resulting interval probability distribution can have satisfying p-interpretations that 
cannot be obtained from any p-interpretation satisfying the original (pre-
conditionalization) interval probability.  This is an instance of a general result, due 
to Jaffray (1992), concerning computing conditional imprecise probabilities. It 
represents an essential structural shortcoming of the interval probability models in 
general, and the extended SPO framework in particular. 
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SPDBMS. The SPO framework was implemented by Zhao (Zhao et al. 2005) us-
ing transformation of SP-relations in collections of relational tables on top of a 
relational DBMS. The Semistructured Probabilistic DBMS (SPDBMS for short) 
supports basic data manipulation (insert, delete, update an SPO) and provides full 
support for the SP-algebra.  Because collections of SPOs are inherently semistruc-
tured, the translation of SPOs into relational tables is rather cumbersome. More 
recently, SPDBMS was re-implemented using the native XML DBMS eXist 
(Rosson 2008). This avoided the data translation step. Query algebra operations 
were implemented using XQuery, and XQuery's user-defined functions. Most of 
the operations behaved efficiently. However, due to the specifics of eXist’s inter-
nal architecture,8 processing Cartesian products and joins was unreasonably slow. 

SPOQL. The SP-algebra provides a functional query language for querying SP-
databases. Direct SP-algebra syntax was implemented in both versions of 
SPDBMS and used as the query language. In addition to the SP-algebra, a declara-
tive query language for SP-databases, called SPOQL, was introduced and imple-
mented as part of the RDBMS-based SPDBMS (Dekhtyar et al. 2006).  

3    Modeling Uncertain Data 

In this section, we consider databases that treat data as uncertain, rather than stor-
ing and managing uncertainty in terms of probability distributions. We model data 
uncertainty in three ways: (1) tuple uncertainty, (2) attribute uncertainty, and (3) 
sub-attribute uncertainty. 

In tuple uncertainty, a probability number (sometimes called confidence) is as-
sociated with each tuple.  An example is shown in Figure 5(a), which is similar to 
Figure 1, except that we have mutual exclusion correlations among tuples.  Recall 
that it is from an application in which various sensors are embedded in the uni-
forms of soldiers in a battle field.  The sensors send out detections of the medical 
conditions of the soldier that wears the uniform.  The second to last column is a 
score that indicates how much medical attention this soldier needs.  The higher the 
score, the more urgent it is to send medical resources to this soldier.  The last col-
umn (Conf.) is the probability that the tuple exists in the table. 

We may specify mutual exclusion rules, which indicate that at most one of a set 
of tuples can exist in the table.  In this way, we can encode a discrete PMF (prob-
ability mass function) by a set of mutually exclusive tuples.  In more detail, for a 
PMF , , , , … , , ,  to  are values in a set of mutually ex-
clusive tuples and  to  are their probabilities.  The sum of the probabilities is 
no more than 1.  If the sum is less than 1, then with remaining probability, none of 
the mutually exclusive tuples exist in the table.  In the example in Figure 4(a), the 
three highlighted tuples (T2, T4, and T7) are mutually exclusive.  They are detec-
tions of the same soldier (same Soldier ID) at around the same time, and hence at  
 

                                                           
8  The version of eXist used by Rosson (Rosson 2008) loaded user-defined functions and 

reinterpreted them each time they were invoked, which affected  the join and Cartesian 
product operations . 
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Fig. 5 Illustrating two kinds of uncertain data: tuple uncertainty (a) and attribute uncertainty 
(b). The last column of (a) (Conf., i.e., confidence) indicates the probability that the tuple 
exists in the table.  The highlighted tuples are mutually exclusive (i.e., at most one of them 
can be true). 

most one of them can have the correct score. The tuple uncertainty model can be 
considered as a generalization of the data model without uncertainty, in which 
each tuple has probability one, and there are no mutual exclusion rules. 

The second type of uncertainty is called attribute uncertainty.  In this case, an 
attribute is uncertain and we model each value of the attribute as a probabilistic 
distribution.  In the example of Figure 5(b), the measurements of the Speed 
attribute can have errors and we model each speed value by a normal distribution.  
This is in contrast with the traditional deterministic model in which each value of 
an attribute is a fixed scalar value.  Attribute uncertainty may also be considered 
as a generalization of the data model without uncertainty, in which each value in 
an attribute is some value with probability one (i.e., a discrete distribution). 

Not only do the two kinds of uncertainty exist in the source data, but they also 
exist in the query result.  Let us look at an example. We take a simple table that 
has attribute uncertainty as shown in Figure 5(b).  We then issue a query as in 
Figure 6(a).  What would the result be?  Each of the three tuples has a non-zero 
probability to satisfy the predicate “Speed > 78”.  For example, the first tuple’s 
Speed attribute has a normal distribution with mean 90 and variance 20, and thus 
has a high probability (say, 0.95) of satisfying the predicate.  The second tuple, on 
the other hand, has a normal distribution with a low mean (62) and has a tiny 
probability (say, 0.001) of satisfying the predicate.  Thus, we have tuple uncertain-
ty in the query result (last column in Figure 6(a)). 

What about the selected “Speed” attribute in the result set?  We know that only 
if the Speed is above 78 should the tuple be in the result at all.  Hence, we can rea-
son that the Speed attribute in the result should not be in its original form, but ra-
ther, a conditional distribution (conditioned on the predicate being true) based on 
the original distribution.  We illustrate this in Figure 6(b), which shows the exam-
ple for the first result tuple.  We cut off the original distribution Normal (90, 20) at 
the value 78, and only take the right side of the curve.  Then, we need to normalize 
it (by multiplying by a constant factor) so that the function still integrates to 1, as a  
 

 

Object ID Speed

28 Normal (90, 20)

11 Normal (62, 15)

72 Normal (78, 10)

distribution

Tuple 
ID

Soldier 
ID

Time Location 
(x, y)

Score for 
Medical 
Needs

Conf.

T1 1 10:50 (10, 20) 49 0.4

T2 2 10:49 (10, 19) 60 0.4

T3 3 10:51 (9, 25) 110 0.4

T4 2 10:50 (10, 19) 80 0.3

T5 4 10:49 (12, 7) 56 1.0

T6 3 10:50 (9, 25) 58 0.5

T7 2 10:50 (11, 19) 125 0.3

Tuple Uncertainty Attribute Uncertainty

(a) (b)
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                    (a)                                                            (b) 

Fig. 6 Illustrating tuple uncertainty and attribute uncertainty in a query result.  We issue the 
query in (a) to the uncertain table in Fig. 4(b).  Each of the three tuples has a non-zero 
probability to be in the result---this is tuple uncertainty (last column in (a)).  The “Speed” in 
the result has attribute uncertainty – a conditional distribution shown in (b). 

probability density function. We can see that the Speed attribute in the result is 
still distributions, and we have attribute uncertainty in the result. 

In addition, we may have sub-attribute uncertainty for some data types. For  
instance, a text string attribute can have uncertain “characters” within it. As for-
malized by Jestes et al. (2010), a probabilistic string can have two models: the 
string-level model and the character-level model, which we define next. 

Definition 23 (string-level and character-level models) (Jestes et al. 2010).  Let Σ be an alphabet. A probabilistic string in the string-level model is represented as , , , , … , , , where Σ , 0, 1 , and ∑ 1. 
A character-level probabilistic string is 1 2 … , where each charac-
ter , , … , , , Σ, 0, 1 , and ∑ 1. That 
is, a string consists of independently distributed characters, some of which can be 
deterministic (i.e., 1). 

While a string-level probabilistic string follows the aforementioned attribute un-
certainty (i.e., an attribute with a discrete distribution), a character-level model has 
distributions (of characters) embedded inside a string attribute, which is why it is 
termed sub-attribute uncertainty. Sub-attribute uncertainty has the finest granulari-
ty among the uncertainty models. Indeed, as shown by Ge and Li (2011), an index 
(for substring search) will point to uncertain character positions inside a string 
attribute, which can potentially be very long (e.g., millions, as in DNA strings). 

4    Query Processing for Uncertain Data 

We describe an algorithm that we devised to answer an arbitrary query on uncer-
tain data (Ge and Zdonik 2008). The algorithm is called Statistical sampling for 
Equidepth Result distribution with Provable error-bounds, or SERP. SERP is  
essentially a Monte Carlo randomized algorithm. 

SELECT ObjectID, Speed FROM table
WHERE Speed > 78

Result?

Object 
ID

Speed Prob.

28 ? 0.95

11 ? 0.001

72 ? 0.5

tuple uncertaintyattribute uncertainty

78 original distribution

conditional distribution 
after normalization
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4.1    The SERP Algorithm 

The basic idea of a Monte Carlo algorithm for processing uncertain data is that we 
sample input data, run a query over the samples using a conventional query  
engine, and then learn a probability distribution for each random variable in the 
output, which includes any probabilistic field in a result tuple and a result tuple’s 
existence probability in the result set. 

The SERP algorithm uses a simple and consistent representation for both input 
data to queries and output query results, namely equidepth histograms. We con-
sider probabilistic fields having continuous distributions. We can partition the 
domain of a probability density function (PDF)  into  intervals such that for 

each interval , it holds that . Thus, a distribution is “described” 

by  contiguous intervals and can be succinctly represented as 1 values indi-
cating the boundaries of the  intervals: , , … , , where ,  is the ith 
interval. We assume a uniform distribution within an interval. 

This is reminiscent of equidepth histograms widely used in query optimizers, 
and reflects the idea that the exact distribution of “high density areas” is more 
important and should be given higher “resolution”. However, note the important 
difference that each bucket of an equidepth histogram contains a number of actual 
column values, whereas an equidepth distribution specifies the PDF of one 
attribute field. This representation is quite compact, only needing k + 1 values to 
describe a distribution. 

Sampling from such a histogram representation is very simple: first pick one of 
the  intervals uniformly at random, and then pick a value from that interval un-
iformly at random. This sampling procedure will be used in the SERP algorithm. We 
consider the query execution as a black box that takes  input random variables (in 
general) and produce a number of output random variables. The  input random 
variables are either binary random variables indicating input tuple probability or 
probabilistic fields in the form of equidepth histograms as described above. Without 
loss of generality, we only need to consider how we obtain the distribution of one of 
the output probabilistic fields. Other fields are obtained in the same way. For exam-
ple, for SUM or AVG, the inputs are the  uncertain fields in  tuples and the output 
is the result. The SERP algorithm (Ge and Zdonik 2008) is shown below. 

Algorithm SERP , … ,  

Input: , … , : probabilistic fields in equidepth histogram distributions 
Output: the distribution of one output field 

// Do the main loop of the algorithm. 
// k is the number of intervals in a distribution,  is to be determined later 

1: for each 1, … ,  do 
2:         Sample each input , … ,  and get , … ,  
3:         Run the query over , … ,  and let the output be  
4: end for 

// Get the output distribution 
5: Sort the output values as , … ,  where  
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6: Get  contiguous intervals, each containing  output values; the first interval 
contains , … , , the second contains , … , , and so on. More pre-

cisely, let , … ,  be the interval boundaries, where  (11), 2 , and 2 . 
7: Return the  contiguous intervals above as the result distribution. 

 
In the algorithm,  is a parameter that balances accuracy with performance, as 

we will investigate in the analysis. Note that we model all inputs as uncertain. In 
reality, some input values can be certain. It is straightforward to extend the algo-
rithm to the mixed case. Also note that from one execution on the  samples to the 
next, to be more efficient, we can share the query plan (i.e., the query is compiled 
only once, and executed many times for each loop). Further, among different  
executions, sub-results of parts of the query plan that only refer to data without 
uncertainty can be shared. Another key optimization is on I/O cost. The database 
engine can pay the I/O cost only once, and incrementally carry out the multiple 
rounds of computation in parallel. It is easy to see that SERP is scalable. The cost 
is no more than a constant factor of that of the same operation on data without 
uncertainty, regardless of the number of tuples. Additionally, SERP works even if 
there is correlation between different inputs. We just need to carry out the sam-
pling from the joint distribution. 

4.2    Analysis of SERP 

We measure the distance between the result distribution computed by some algorithm 
and an “ideal” one based on the same input distributions, but given as much compu-
ting resources as needed. We use a well-known distance metric: variation distance. 

Definition 24 (variation distance) (Mitzenmacher and Upfal 2005). The varia-
tion distance between two distributions  and  (each being a discrete probabil-
ity distribution) on a countable state space  is given by ,∑ | |. 
We first give some insights on the variation distance metric, as we will be using it 
for analysis. 

Lemma 2 (Mitzenmacher and Upfal 2005).  Consider two distributions  and 
. For a state  in the state space , if , then we say  overflows 

at x (relative to ) by the amount . Likewise, if , 
then we say  underflows at x (relative to ) by an amount of . 
We denote the total amount that  overflows (and underflows, respectively) as 

 (and , respectively). Then, , . 

We are now ready to present a novel proof that SERP has a nice bound on the var-
iation distance between its result distribution and the ideal one, even though we do 
not know the exact form of the ideal result distribution, nor do we make any as-
sumption on how to obtain it. 



Uncertain Data: Representations, Query Processing, and Applications 93
 

Theorem 7 (Ge and Zdonik 2008).  In the SERP algorithm, let  and  be para-
meters as described in the algorithm. Then, with probability at least 1 ·

, the variation distance between the result distri-

bution and the ideal one is no more than  0 0.5 . 

Proof.  Consider any one interval  of the ideal distribution. Define  random 
variables  1  as follows: 1,       3  0,       3  . 

Because  is an interval of the ideal distribution, from the definition of the equi-

depth partition, we have Pr 1 , and hence . We define a ran-

dom variable ∑ , indicating the number of output ’s that fall in . From 

the linearity of expectation, we have · . As  is the sum of inde-
pendent 0/1 random variables, we can apply Chernoff bounds that for any 0 0.5, we have Pr 1 2  and Pr1 2 . Then from the union bound, Pr 1 2   1 2 . 

Now consider all  intervals and apply the union bound again: Pr  . | | 2 · . 

Hence, Pr , | | 2 1 · . 

Thus, with probability at least 1 · , all inter-

vals contain sample result points whose number differs from the expected value by 

no more than 2 . As each such point carries weight  into the probability, and 

there are either no more than  overflow intervals (holding more than  points) or 

no more than  underflow intervals, from Lemma 2, we get that the variation dis-

tance is no more than 2 · · .                                                                     □ 

To get a numerical sense about the bound, we take 5, 0.2, and 60. 
Then from Theorem 7, using 300 sample points (rounds), with probability at least 
0.91, the variation distance between the result of the SERP algorithm and the ideal 
distribution is no more than 0.2. This is a (rather conservative) theoretical guaran-
tee, and our experiments (Ge and Zdonik 2008) showed that, in practice, one can 
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obtain a small variation distance with significantly fewer rounds. On the other 
hand, theoretical guarantees are important as they hold for any dataset while the 
result of a particular experiment depends on its data. 

4.3    Join Query Semantics 

We now focus on an important kind of query, namely join queries, on uncertain 
attributes. We show that there are two useful types of join operations specific to 
uncertain attributes: value join (v-join) and distribution join (d-join) (Ge 2011). V-
join is a natural extension of the join operation on deterministic data. Let us first 
look at an example. 

 

 

Fig. 7 Illustrating v-join between two uncertain attributes 

Example 2 (v-join). In Figure 7, we would like to examine the temperature 
attributes in table R and in table S, and find pairs that are very close. Note that 
both temperature attributes are uncertain and contain distributions, which appear 
in various forms. For instance, N(78, 5) denotes a normal distribution with mean 
78 and variance 5, while U(70, 75) is a uniform distribution in the range [70, 75] 
and “hist(…)” indicates a histogram representation whose details we omit for 
clarity. The query is: 

SELECT R.ID, S.ID FROM R, S 
WHERE 

1.0, 0.8
. .R temperature S temperature=  

This is called probabilistic threshold join query in previous work (Cheng et al. 
2006). The interpretation of the join predicate is that with probability at least 0.8, 
the difference between the two join attributes is no more than 1.0 degree, i.e., 
|R.temperature – S.temperature | ≤ 1.0. 

For uncertain attributes (either numerical or categorical), there is a special kind of 
join, which we call d-join. The idea of d-join is to treat probability distributions as 
“objects” and the join operation is based on the similarity of two distributions. We 
now look at some examples. 

Example 3 (sensor fusion). For high availability, five sensors redundantly meas-
ure the same environmental physical property (e.g., temperature) in a sensor net-
work deployment on Great Duck Island (off the coast of Maine) (Szewczyk et al. 

Table R

ID Temperature

1

2
3

… …

N (78, 5)

U (70, 75)
N (86, 10)

Table S

ID Temperature

1

2
3

… …

N (85, 6)

U (92, 94)
N (77, 8)

4 hist(…)

Table R

ID Temperature

1

2
3

… …

N (78, 5)

U (70, 75)
N (86, 10)

Table S

ID Temperature

1

2
3

… …

N (85, 6)

U (92, 94)
N (77, 8)

4 hist(…)
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2004). Due to the harsh environment and the unreliable nature of the sensors, the 
readings can have large errors. A central database system performs a sensor fu-
sion and uses machine learning techniques (e.g., kernel methods) (Bishop 2007) 
to obtain a temperature distribution from the five sensors. We record the tempera-
ture distributions at various times within two months in two tables (one for each 
month). We want to query for two time instances (one from each month) that have 
close temperatures. 

Example 4 (data integration). Consider data integration from several sources. 
We need to perform schema matching and record linkage to combine different 
versions of the same data entity. However, due to schema and format inconsisten-
cies, a data entity can have a lot of uncertainty. In the integrated database, we 
model the uncertainty with distributions (for either numerical or categorical val-
ues) (Dong et al. 2009). If two entities have similar distributions, then they are 
likely to be close. It is useful to find out this information. 

Example 5 (prediction queries). We use different statistical models to predict the 
stock prices of a large number of companies one week from now (Brockwell and 
Davis 2002). Different models gave different results and again, by using tech-
niques such as kernel methods (Bishop 2007), we can get a distribution of the 
predicted price of each company, which is stored in relational tables. The query is 
to ask for pairs of two companies that are likely to have very close stock prices at 
that time. 

In all these three examples, if we were to use v-join, even if two distributions are 
exactly the same, the probability that the join predicate is satisfied might still be 
insignificant. Here is a simple example. Suppose in Example 3, the five sensors 
give readings that are quite different (the difference is more than the v-join value 
difference parameter ε). Thus, the integrated temperature distribution has approx-
imately five buckets, each with the same probability (1/5). Even if we were to do a 
v-join on two identical distributions as such, the probability that they are within ε 
apart would be only about ∑  (i.e., when both random variables fall 

into the same bucket). The observation here is that whether v-join is satisfied or 
not heavily depends on the “width” of the two distributions (i.e., the uncertainty, 
or, the entropy). V-join does not compare the two distributions themselves: two 
identical distributions may still fail to match. However, in all these examples, the 
fact that two distributions are close is also useful: it tends to indicate a special 
relationship of the two tuple entities that are being joined; i.e., their uncertain 
attributes are likely to be close in spite of the uncertainty. Essentially, we treat 
probability distributions themselves as objects and we are joining such objects. 
We are now ready to formalize v-joins and d-joins. 

Definition 25 (domain partition scheme) (Ge 2011). The domain partition 
scheme for an uncertain attribute is a many-to-one mapping of values in the do-
main of the uncertain attribute to a countable number of states. 
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Example 6 (domain partition scheme). If the domain of an uncertain attribute is 
all positive real numbers, then one possible domain partition scheme is based on a 
parameter step: we map all attribute values in the interval (0, step] to state 1, all 
values in (step, 2×step] to state 2, and so on. 

Consider two relations R and S that have uncertain attributes R.A and S.B. In R, 
each record’s A attribute is a probability distribution, rather than a single value, as 
in deterministic databases. The distribution can be encoded in various ways, in-
cluding well-known distributions (e.g., a normal distribution) and histograms. The 
same is true for S.B. 

We denote a join operation between R and S on attributes R.A and S.B as , , , where  and  are optional parameters. There are two types of join: 
value join (v-join) and distribution join (d-join). A v-join has a join predicate that 
is an (approximate) equality or an inequality with some probability threshold. For 
example, a v-join predicate can be 

,
. .

p
R A S B

ε
= , which means Pr(|R.A − S.B| < ε) ≥ 

p. This is a probabilistic version of a band join (DeWitt et al. 1991); for determi-
nistic data, when the predicate is |R.A − S.B| < ε, it is a band-join. Another exam-
ple is . .

p
R A S B< , which means Pr(R.A < S.B) ≥ p (ε is not present here). ε usually 

denotes a small value and p is a probability threshold. Note that, when it is clear 
from the context, we often use R.A to denote the random variable that represents 
the A attribute of a tuple in R, and likewise for S.B.  A d-join predicate is denoted 
as . ~ .R A S B

ε
. It is equivalent to VD(R.A, S.B) ≤ ε, where VD(R.A, S.B) denotes the 

variation distance (Definition 24) between a distribution in R.A and a distribution 
in S.B, and R.A and S.B have a common set of states resulting from their domain 
partition schemes (Definition 25). 

4.4    Efficiently Processing V-joins 

4.4.1  Using the First Two Moments 

Our query processing techniques for v-join are based on probability theory. Spe-
cifically, the kth moment of a random variable X is defined as E[Xk]. The moments 
are a concise way to describe the nature of the distribution of a random variable. 
The first moment is the expectation of the random variable while the first two 
moments determine the variance of the random variable: Var[X] = E[X2] − (E[X])2. 
In fact, all moments of a variable together uniquely define its distribution (Mit-
zenmacher and Upfal 2005).  Simply computing and storing the first two moments 
(or equivalently, the expectation and variance) of a random variable (in our con-
text, an uncertain attribute of a record is a random variable) incurs little overhead 
but, as we show, is very useful in making quick decisions during v-join in order to 
improve the speed. In some well-known distributions, such as Gaussian, the ex-
pectation and variance come for free, since they are part of the description of the 
distribution. 
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Probabilistic Band Join. Perhaps the most often used v-join is the probabilistic 
band join; i.e., when the join predicate is 

,
. .

p
R A S B

ε
= . The basic method for eva-

luating this predicate is by computing a double integral of the form 

, where x is a random variable in R.A, y is a random 
variable in S.B and f1(x) and f2(y) are the density functions of x and y, respectively. 
The result p’ is the probability that R.A and S.B (of two tuples) are at most ε apart. 
Note that the v-join predicate is satisfied if and only if p’ ≥ p. 

The problem with the above solution is that it is very CPU expensive. There-
fore, we wish to use probability bounds to improve the speed of evaluating such a 
predicate. Define a random variable X = R.A – S.B. Then the predicate is equiva-
lent to: 

                                       Pr | | .                                                (1) 

Let E(X) = E(R.A) – E(S.B) = λ. Then we have the following three cases, as shown 
in Figure 8. 

 

Fig. 8 Illustrating the three cases of  

Case (a): λ > ε.  We would like to know if (1) must be false, in which case we can 
exclude the tuple pair. From the Cantelli's inequality (Grimmett and Stirzaker  
2001), we have: Pr | | Pr Pr . 

If , then condition (1) must be false. 

Case (b): λ < -ε.  Similar to case (a), we would like to use Cantelli’s inequality to 
see if we can determine that (1) must be false and rule out the tuple pair: Pr | | Pr Pr . 

If , then condition (1) must be false. 

Case (c): - ε < λ < ε.  In contrast to the previous two cases, we would like to see if 
(1) must be true and hence the tuple pair satisfies the v-join condition. From Can-
telli’s inequality, we have: Pr Pr , Pr Pr , Pr | | 1 Pr   1 . 

0 ε-ε λ = E(X) = E(A) – E(B)

case (a)case (b) case (c)

0 ε-ε λ = E(X) = E(A) – E(B)

case (a)case (b) case (c)
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The last inequality is due to the union bound. Thus, if 1
, then condition (1) must be true. 

Now suppose we are only given the moments of the two fields being joined. For 
clarity, we write A for R.A and B for S.B. For the above methods to work, we need 
to express λ and Var(X) using the moments of A and B. From the linearity of ex-
pectation, λ = E(X) = E(A) – E(B). With the typical assumption that A and B are 
independent, we have Var(X) = Var(A) + Var(B) = E(A2) – E2(A) + E(B2) – E2(B). 

Therefore, only using the first two moments of A and B, we can quickly ex-
clude the (A, B) pair from the join result (Cases a and b) or include it in the result 
(Case c) if the conditions in those cases are met. If the pair is neither excluded nor 
included, we need to resort to the “old-fashioned” way of computing the actual 
probability that |A – B| < ε by a double integral (or summation if they are discrete) 
as in (1) to see if it is greater than p. We can save a great deal of computational 
cost by using moments and probabilistic bounds to make quick judgments. 

Other Inequality V-joins. Thus far we have only considered probabilistic band 
join; we now turn to other inequality v-joins. We only demonstrate . .

p
R A S B< ; we 

can apply similar techniques to other inequalities. Again we define a random vari-
able X = R.A – S.B. Let E(X) = λ. We now examine two cases: 

Case (a): λ < 0.  Then, Pr . . Pr 0 Pr . 

If 1 , it must be true that Pr . .  and the predicate is 

satisfied. 

Case (b): λ ≥ 0.  Then we see if we can exclude the tuple pair: Pr . . Pr 0 Pr . 

If , it must be true that Pr . .  and the tuple pair is ex-

cluded from the result. Details such as obtaining λ and Var(X) from the moments 
of R.A and S.B are the same as in the discussions for probabilistic band join. 

We also devise indexing techniques for v-join queries. For additional details, we 
refer the reader to Ge (2011). 

4.5    Efficiently Processing D-joins 

4.5.1    The Condensed D-join Algorithm 

In this section, we examine how we can process d-join queries efficiently. We can 
perform a d-join on two uncertain attributes if their domain partition schemes (Defi-
nition 3) result in a common set of states. Let the size of the state space S resulting 
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from the domain partition schemes be n. Then the “features” of an uncertain distri-
bution with respect to S can be described as (p1, p2,…, pn), meaning that the uncer-
tain field has probability pi of being in state si. By taking this vector, we can map an 
uncertain distribution to a point in the n-dimensional space. It is then easy to verify 
that the variation distance between two distributions exactly maps to half of the L1 
distance between the two corresponding points in the n-dimensional space. 

This discussion leads us to the direction that a d-join can be reduced to a simi-
larity join, which is well studied in the database literature (e.g., Koudas and Sev-
cik 2000). There are many competing algorithms that can do similarity join. How-
ever, there is a common phenomenon among the algorithms: due to the “curse of 
dimensionality”: as dimensionality increases, performance deteriorates significant-
ly. For example, as shown in Koudas and Sevcik’s Figure 17 (2000), the response 
time grows 17fold as the dimensionality increases from 3 to 20 with the same 
number of data points for both algorithms, as shown by Koudas and Sevcik 
(2000). We therefore propose an algorithm called condensed d-join, as shown be-
low. The algorithm starts by reducing the dimensionality by a procedure called a 
condensation scheme, as we now define. 

Definition 26 (condensation scheme) (Ge 2011).  A condensation scheme for an 
uncertain attribute is an onto function f: S → S’, where S is the original state space 
determined by the domain partition scheme of the attribute and S’ is a state space 
with a smaller cardinality, i.e., |S’ | < | S |. The space S’ is called the condensed 
state space. 

Algorithm CONDENSED-D-JOIN . , . ,  

      Input: Two uncertain attributes R.A and S.B whose domain partition schemes 
have the same states; and value ε. 
     Output: Pairs of R.A and S.B that satisfy . ~ .R A S B

ε
. 

1: Precomputation step: Determine the best condensation scheme for either R.A 
or S.B using the algorithm in Section 4.5.2. 

2: In the condensed state space determined in line 1, we get the new distribu-
tions for all fields in R.A and S.B. If a new state is the merge of a number of 
previous states, then its probability is the sum of the probabilities of the origi-
nal states. 

3: Phase 1: Use any existing similarity join algorithm to compute the join result 
based on the smaller state space, using the L1 distance metric and the distance 
parameter 2ε. 

4: Phase 2: Among the qualified tuple pairs selected in line 3, further refine the 
selections by computing the variation distance (VD) over the original state 
space. 

 
Line 1 of the algorithm is to determine the optimal condensation scheme ac-

cording to any one side of the join and is typically pre-computed. The condensa-
tion algorithm combines a number of neighboring states into one and sums up 
their probabilities. We thus get the new probability distributions in line 2. Phase 1 
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of the condensed d-join is performed in line 3, where we essentially reduce the d-
join problem to the similarity join of multidimensional points (with the parameter 
value 2ε). Because of the reduced dimensionality, it is much faster. Over the quali-
fied tuple pairs, we perform the second phase, which is a post-processing as 
shown in line 4. The goal of the two phase approach is to avoid the slow perfor-
mance caused by high dimensionality. The quality of the condensation scheme is 
of a critical role here since it impacts the number of false positives that must be 
filtered out in the post-processing phase. We study the optimal condensation 
scheme in detail in Section 4.5.2. 

We show the correctness of the CONDENSED-D-JOIN algorithm. 

Lemma 3 (Ge 2011). Over the original state space determined by the domain 
partition scheme, let distribution D1 come from R.A and D2 come from S.B. After 
the condensation, let the distributions (in step 2) be D1’ and D2’. Then VD(D1’, 
D2’) ≤ VD(D1, D2). 

Proof. Suppose the condensation scheme merges k states s1, s2, …, sk into a single 
state s’. Let D1 have probabilities p11, p12, …, p1k and D2 have probabilities p21, 
p22, …, p2k in those states, respectively. Then step (2) of the algorithm indicates 
that D1’ has probability p1’ = p11+ p12+ …+ p1k in state s’ while D2’ has probability 
p2’ = p21+ p22+ …+ p2k in state s’. It holds that: 

                    | p1’− p2’| = |(p11− p21) + (p12− p22) +…+ (p1k− p2k)| 
                                     ≤ | p11− p21| + | p12− p22| +…+ | p1k− p2k |. 

Thus, iterating this over all states of D1’ and D2’, summing up the inequalities as 
produced above, and finally dividing both sides of the resulting inequality by 2, 
we get VD(D1’, D2’) ≤ VD(D1, D2), which directly follows from the definition of 
VD.                                                                                                                            

Theorem 8 (Ge 2011).  The CONDENSED-D-JOIN algorithm gives the correct 
result. 

Proof.  From Lemma 3, we know that if, in the original state space, the VD between 
two distributions is less than ε, then it must also be true after the condensation. Thus, 
phase 1 of the d-join (step 3) will not miss any result tuples that should be returned. 
Finally, the second phase of the algorithm filters out all false positives.                  

4.5.2    The Optimal Condensation Scheme 

Consider an uncertain attribute and a condensation scheme that reduces the num-
ber of its states from n to k (k < n). The question now is how we should merge the 
states in the original state space S. Let us look at a motivating example. Figure 
9(a) shows the distributions of an uncertain attribute. The solid vertical lines de-
scribe the domain partition scheme: an interval between two neighboring lines is a 
state. Suppose the (blue) dotted lines indicate a potential condensation scheme: 
there are three condensed states: the interval [v1, v2) is the first condensed state, 
[v2, v3) is the second, and [v3, v4] is the third. It appears to be a fair condensation 



Uncertain Data: Representations, Query Processing, and Applications 101
 

scheme as each condensed state contains about the same number of the original 
states. However, let us suppose that 1000 distributions fall in the middle range, 
i.e., between v2 and v3, while there is only one distribution in the first and third 
condensed states, respectively. 

 

   
                        (a)                                                    (b)                                (c) 

Fig. 9 (a) The necessity of a good condensation scheme, (b & c) illustrating the concept of 
“minimum disturbance” of a condensation scheme as measured by variation distance 

Then this condensation scheme loses a lot of information: all of the 1000 distri-
butions have the same distribution (0, 1, 0) in the condensed state space (each 
number is the probability of one state). In other words, it is not discriminative. In 
the condensed space, if one of the 1000 distributions matches with a distribution 
in another column for d-join, so will all other 999 distributions. We therefore need 
a principled algorithm to make the condensation scheme more discriminative. 

But how to make it discriminative? The idea is to make the new distributions 
after applying the condensation scheme as faithfully as possible to the original 
ones. The faithfulness is again measured by variation distance. Clearly condensa-
tion would lose some information about the distributions. Thus, we would prefer a 
scheme that would result in new distributions that have the minimum distance 
from the original ones, which we call minimum disturbance. It is quantified by the 
sum of the variation distances between each new distribution and its original one, 
in the original state space. Since a new distribution can be considered as a lossy 
compression of the original one, when we convert the new distribution back to its 
original state space, we simply divide the probability of a condensed state by the 
number of the original states that map to it. This is because we do not distinguish 
between those states in the condensed space. 

Therefore, when computing the variation distance between an original distribu-
tion and the new one, we compare the probabilities of the original states with their 
averages in each group, where each group corresponds to a condensed state. We 
illustrate this in Figure 9(b). In Figure 9(c), the original distribution is mapped to a 
point d1 in the multi-dimensional space. For d-join we need to compute the dis-
tance between d1 and a point d2 that represents a distribution in another column. 
The condensation step brings d1 to another point d1’. The point d1’ corresponds to 
the conversion of the new distribution back to its original state space, which we 
describe in the previous paragraph. Even though d2’s position is not known a pri-
ori, by minimizing the distance between d1 and d1’, the distance between d1 and d2 
is optimally approximated by the distance between d1’ and d2. Moreover, this  
optimization problem is over all distributions in an uncertain column. 
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We first formalize the problem (Ge 2011). An uncertain column has N proba-

bility distributions. The column follows a domain partition scheme that consists of 
n states in some serial order (e.g., n small buckets in value order). The goal of our 
condensation scheme is to merge some neighboring states in order to reduce them 
to k states (k < n). The scheme is chosen in such a way that the variation distance 
between the new distribution and the original one, summing over all records of the 
column, is minimized. 

Let us denote the optimal (i.e., minimum) sum value (over the whole column) 
of the variation distances between the new distributions and the original ones as 
D(k, n), where k is the target number of condensed states and n is the original 
number of states. We then have the following recursion: 

                     ( )

1

( , ) min [ ( 1, 1) ( , ) ]
N

r

k i n
r

D k n D k i C i n
≤ ≤ =

= − − +                                  (2) 

where C(r)(i, n) is the “cost” of merging states from i to n into a single new state 
for the distribution in record r. This cost is just the part of the variation distance 
between the two distributions at states from i to n. More precisely (recall Figure 8 
b & c), 

                    ( ) ( ) ( ) ( ) ( )1 1
( , ) | |,

2 1

n n
r r r r r
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= − =
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Here pj
(r) is the probability of the jth state in the rth distribution. We also note the 

boundary condition that 

                           ( )

1

(1, ) (1, ), 1 1
N

r

r

D i C i for i n k
=

= ≤ ≤ − +
.

                                   (4) 

We then can have an efficient dynamic programming algorithm for this problem, 
as illustrated in Figure 10(a). The figure shows a “D table” for values of the D 
function in Equation (1). The row numbers of the D table (1 to k) are the first pa-
rameter of the function while the column numbers (1 to n) are the second parame-
ter. Our target value is D(k, n), which is indicated by the red “?” at the bottom 
right corner of the D table. From the recursion in Equation (1), the target value can 
be obtained from the values in the row above, assuming we already have all the C 
values. The whole process can be recursively applied for each cell in the table. We 
therefore have a top-down procedure to fill in the shaded region in Figure 10(a) 
row by row, starting from the boundary condition as described in Equation (4). 

In the above algorithm, we assume that we have all the C values. We now de-
scribe how to obtain them. We simply do a scan of the whole uncertain column 
and compute the aggregation of the C values as described in Equation (3). Figure 
10(b) illustrates the C table. It is not hard to verify from Equations (2) and (4) that 
we only need to fill in the shaded region of the C table (C is a two-dimensional 
array). As we scan the column and get each distribution, we obtain the C values of 
the shaded region using Equation (3). Because in Equations (2) and (4) we require 
a sum of the C values over all distributions, we do the aggregation (sum) for each 
cell of the shaded region of the C table as we scan each distribution of the column  
 



Uncertain Data: Representations, Query Processing, and Applications 103
 

 

        (a)                                                 (b) 

Fig. 10 A dynamic programming algorithm to get the D function (a) and a column scan to 
obtain the aggregated C values (b) 

one by one. Eventually, when we finish scanning the uncertain column, each cell 
of the C table contains a sum value.  Combining the above two algorithms (i.e., 
getting the C table followed by getting the D table), we have an efficient method 
to obtain the optimal condensation scheme. 

5    Related Work 

There has been substantial work on managing uncertain data and information in 
recent years due to the rise of new applications that demand this capability. 

Nilsson's seminal paper on probabilistic logic (Nilsson 1986) introduced the  
notion of reasoning with probabilities to the field of artificial intelligence. The 
possible worlds semantics proposed by Nilsson has become a de facto standard for 
interpreting statements about probabilities both in the field of AI and, a bit later, in 
the field of databases. The key idea expressed by Nilsson is that in a world with 
multiple discrete random variables with finite domains, each random variable 
must take an exact value, and the uncertainty essentially expresses the lack of in-
formation an observer has. Each assignment of values to all random variables in 
the model (universe) is known as a possible world. If a probability is associated 
with each possible world, then a probability of a random variable taking a specific 
value is computed as the sum of probabilities of all possible worlds in which this 
assignment occurs. 

The first work on probabilistic databases did not directly use the possible world 
semantics. However, the proposed frameworks were consistent with it. Cavallo 
and Pittarelli (1987) were perhaps the first who studied probabilistic data in the 
context of databases. They proposed a framework in which a probabilistic relation 
represented a single probability distribution.  Tuples in such relations represented 
the probabilities of specific outcomes.  Cavallo and Pittarelli defined two query 
algebra operations for working with such data: join, which produced a joint  
probability distribution for a pair of probabilistic relations, and selection, which 
returned the probabilities of specific outcomes. 

Most of the work that followed the work of Cavllo and Pittarelli (1987), however, 
adopted a different view about what should be represented by a probabilistic relational 
table. Just as individual tuples in classical relational tables represent independent 
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statements of fact, in these approaches each tuple in a probabilistic table represents a 
single probability distribution. The first to propose this approach in early 1990s were 
Barbara, Garcia-Molina and Porter (1992). In their framework a relation had a set of 
certain attributes that jointly formed a primary key, and a collection of uncertain 
attributes, over which a probability distribution was defined. Dey and Sarkar (1996) 
built a 1-NF representation of the probabilistic relations of Barbara et al. (1992) and 
described an extensive query algebra, which included such probabilistic database-
specific operations as data compaction/ coalescence and conditionalization operations. 
The former, given two or more probability distributions for the same event, produces a 
consensus probability distribution. The latter computes the conditional probability 
distribution conditioned on a specific value of one or more of the uncertain attributes.   

Zimanyi explicitly introduced possible worlds semantics of Nilsson to probabil-
istic databases (Zimanyi 1997). His framework uses the language of first-order 
probabilistic logic introduced by Halpern (1990). Zimanyi treats each probabilistic 
relation as a formula in the first-order probabilistic logic. He then defines full 
query algebra on by specifying how the formulas describing the probabilistic rela-
tions change when the operation is performed.  While this approach is not very 
practical, it provides a clear semantics for query algebra operations. 

In the mid- to late 1990s, a number of research groups extended probabilistic 
relational database frameworks. The work on the Semistructured Probabilistic 
Databases model (SPO) described in this chapter takes its roots from two such 
directions. The first is the work of Kornatzky and Shimony who proposed the first 
object-oriented probabilistic database framework (Kornatzky and Shimony 1994). 
This was, to our knowledge, the first extension of the work on probabilistic data-
bases that extended beyond relational database model. In the framework of Kor-
natzky and Shimony, uncertainty was associated not just with the specific values 
of attributes, but also with the hierarchical structure of the objects themselves. 

The second precursor to the work on the SPO model was ProbView, a relation-
al probabilistic database management system which was the first framework to 
introduce interval probabilities to represent uncertainty in data. (Lakshmanan et 
al. 1997). ProvView stored the data in a compact, non-1-NF form, similar to the 
approach of Barbara et al. (1992). The semantics of the data though was defined 
using the 1-NF annotated probabilistic relations similar to those considered by 
Dey and Sarkar (1996). The query algebra operated on the annotated relations, so 
to answer a query ProbView translated the data into annotated form and performed 
the requisite operations.  

In late 1990s, research on specific types of uncertainty in data appeared. Dyreson 
and Snodgrass (1998) considered temporal indeterminancy and introduced a proba-
bilistic temporal database framework.  Dekhtyar, Ross and Subrahmanian (2001) 
adopted and improved the ProbView approach to  management of probabilities in 
temporal databases. 

The SPO model (Dekhtyar et al. 2001, Zhao et al. 2005) came out of the obser-
vations that most of the probabilistic database frameworks at the time were not  
designed to store arbitrary probability distributions of multiple discrete random 
variables (with finite domains).  A semistructured probabilistic object can store 
any probability distribution regardless of how many and which random variables 
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are in it, what meta-data about the variables is present and known, and whether the 
probability distribution is conditional. The SPO framework was further relaxed by 
introducing interval probabilities to represent uncertainty (Goldsmith et al. 2003, 
Zhao et al. 2003, Zhao et al. 2004). 

In parallel with our work on the SPO model, a number of alternative frameworks 
for management of uncertainty using semistructured data models and XML 
emerged. Hung et al. (Hung et al. 2003, Hung et al. 2003A) proposed Probabilistic 
XML framework (PIXML) to encode information about probability distribution.  
Nierman and Jagadish (2002) introduced ProTDB framework for the same purpose. 

Some work addresses imprecise and uncertain data in sensor networks (Cheng 
et al. 2003, Deshpande et al. 2004, Tran et al. 2010, among others). The work pre-
sented in Sections 3 and 4 differs from the sensor network-based work in that we 
can process arbitrary query types based on the possible world semantics, but are 
not restricted to specific query operators. Note, however, that some of these ap-
proaches were shown to be more efficient (Tran et al. 2010). Independently, the 
MCDB project at University of Florida and IBM (Jampani et al. 2008) also em-
ployed Monte Carlo query processing for uncertain data, and focused on efficient 
integration of their techniques into a system. Previous work that is based on tuple 
uncertainty includes that by Dalvi and Suciu (2004) and by Benjelloun et al. 
(2006). In this chapter, our proposed techniques focus on attribute uncertainty, 
which is common in a number of application domains that we present. 

Cheng et al. (2006) proposed probabilistic threshold join, which is similar to 
our v-join semantics. However, their query processing is based on x-bounds, 
which are a number of bounds for some data structure (e.g., each data page), un-
like our dynamic filtering bounds using probability theory. In addition, we study 
indexing for efficient joins and a second type of semantics, d-join, which is useful 
for different applications. 

Similarity join on data points in multidimensional space is well studied (e.g., 
Koudas and Sevcik 2000). The connection between this line of work and our work 
on d-join is due to the fact that we can reduce a d-join to a similarity join. Howev-
er, when the dimensionality is high, with any existing technique, there is invaria-
bly a significant performance penalty. Our design of the condensed d-join and the 
optimal condensation scheme are a novel contribution.  Dimensionality reduction 
is also studied for indexing time series databases (e.g., Keogh et al. 2001).  How-
ever, a salient difference in discrete probability distributions than time series fea-
tures is the constraint that probability values are between 0 and 1 and sum to 1.  
We take advantage of this and devise a simple, efficient, and optimal condensation 
algorithm.  Finally, band-join on deterministic data was studied by DeWitt et al. 
(1991). V-join can deal with a variant of band-join on uncertain data, where the 
old techniques cannot be applied. 

6    Conclusions 

We have introduced several approaches to computation with probabilities, and 
given introductions to databases to support these approaches. The first approach, 
the Semistructured Probabilistic Objects framework, treats joint and conditional 
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probability distributions as fundamental data objects.  This supports reasoning 
with Bayesian networks, hidden Markov models (HMMs), and other probabilistic 
graphical models. We have discussed the queries possible with standard probabili-
ty distributions, and mentioned some of the issues that arise when probability in-
tervals are used. We also mention two implementations of the SPDBMS. The 
second approach, the tuple and attribute uncertainty framework, takes a data-
centric approach and more tightly couples probability distributions with “data” 
itself. That is, either entities (tuples) or their properties (attributes) are extended 
with probabilities. We have discussed the semantics of general SQL queries, in-
cluding joins, in this framework, and proposed some efficient query processing 
techniques. 

We have presented a number of application scenarios in which significant  
uncertainty is present, and in which each of our approaches would be useful. We 
believe that a broad range of applications, albeit all containing uncertain informa-
tion, would require database techniques tailored to their specific requirements. 

As future work, it would be interesting to seamlessly integrate our approaches 
and produce an even more powerful system that can meet the diverse needs of 
modern applications. 
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