
Z. Ma & L. Yan (Eds.): Advances in Probabilistic Databases, STUDFUZZ 304, pp. 67–108.
DOI: 10.1007/978-3-642-37509-5_4 © Springer-Verlag Berlin Heidelberg 2013

Uncertain Data: Representations, Query Processing,
and Applications

Tingjian Ge, Alex Dekhtyar, and Judy Goldsmith*

Abstract. Uncertain data is common in many emerging applications. In this chap-
ter, we start by surveying a few applications in sensor networks, ubiquitous com-
puting, and scientific databases that require managing uncertain and probabilistic
data. We then present two approaches to meeting this requirement. In the first
approach, we propose a rich treatment of probability distributions in the system, in
particular the SPO framework and the SP-algebra. In the second approach, we stay
closer to a traditional DBMS, extended with tuple probabilities or attribute proba-
bility distributions, and study the semantics and efficient processing of queries.

1 Probabilistic Databases and Their Applications

There is a wide range of emerging applications that produce uncertain data and
demand new techniques to manage such data. The mature, industry-standard
relational database management systems have a history of about 40 years, but they
do not have the capability of managing uncertain or probabilistic data. The appli-
cations that are discussed in this chapter are mainly in the areas of sensor net-
works, ubiquitous computing, bioinformatics and scientific databases. There are
many applications (often related to the Internet) that also fall in this domain, such
as information extraction and information integration.

In this section, we present several applications where large collections of prob-
abilistic data are acquired, stored, and used. We divide those applications into two
categories: sensor networks and ubiquitous computing, and scientific databases.

Tingjian Ge
University of Massachusetts, Lowell, MA, USA
e-mail: ge@cs.uml.edu

Alex Dekhtyar
California Polytechnic State University, San Luis Obispo, CA, USA
e-mail: dekhtyar@calpoly.edu

Judy Goldsmith
University of Kentucky, Lexington, KY, USA
e-mail: goldsmith@cs.uky.edu

68 T. Ge, A. Dekhtyar, and J. Goldsmith

Within sensor networks, we consider a person-based application, namely monitor-
ing of individual soldiers’ physical status in the field, and the larger-grained
examples of monitoring and controlling traffic in a large city, and monitoring and
controlling power use in a house or community. Within scientific databases, we
look at storing and managing astronomical data, microarrays, and proteomics.
These are meant to be illustrative examples of a few hot research areas that depend
on intelligent handling of probabilistic data, not a comprehensive catalogue of
probabilistic database applications.

1.1 Sensor Networks and Ubiquitous Computing

Sensor networks and ubiquitous computing are major trends in modern compu-
ting. For example, many smartphones provide location estimates using a variety of
sensors, such as GPS, WiFi, and/or cellular triangulation. However, the correct-
ness of the triangulation depends on the proximity of cell towers, and on the local
interference. It is thus important to handle any new data management issues that
arise from uncertain data. Let us look at some concrete application scenarios.

Soldier Physiologic Status Monitoring

In the Soldier Physiologic Status Monitoring application (Tatbul et al. 2004), sen-
sors are embedded in a “smart uniform” that monitors key biological parameters to
determine the physiological status of a soldier. Under the harsh environment of the
battlefield, it is crucial that sufficient medical resources reach wounded soldiers in
a timely manner. Sensors in a smart uniform monitor thermal signals, hydration
levels, cognitive and life signs, and wound levels.

There are a few ways the soldier’s physiological states can be estimated with
different sensors and with different confidence. An algorithm computes an overall
score indicating how much medical attention the soldier needs and how urgent his
or her condition is.

Fig. 1 A table generated by sensors monitoring soldiers’ needs for medical attention. The
Conf. (confidence) attribute is the probability of existence of the tuple.

In a central database, as shown in Figure 1, a table records the information sent
out by the sensors in the soldiers’ uniforms. Each tuple in the table is one estimate
with its related confidence. Sensors might be broken in harsh environments. For

0.3125(11, 19)10:502T7

0.558(9, 25)10:503T6

1.056(12, 7)10:494T5

0.380(10, 19)10:502T4

0.4110(9, 25)10:513T3

0.460(10, 19)10:492T2

0.449(10, 20)10:501T1

Conf.Score for
Medical
Needs

LocationTimeSoldier
ID

Tuple
ID

0.3125(11, 19)10:502T7

0.558(9, 25)10:503T6

1.056(12, 7)10:494T5

0.380(10, 19)10:502T4

0.4110(9, 25)10:513T3

0.460(10, 19)10:492T2

0.449(10, 20)10:501T1

Conf.Score for
Medical
Needs

LocationTimeSoldier
ID

Tuple
ID

Uncertain Data: Representations, Query Processing, and Applications 69

high availability, there can be two sets of sensors in a soldier’s uniform in case
one of them breaks down or loses precision. When each sends out an estimate at
about the same time and they are inconsistent, at most one of them can be correct
(together they form a discrete distribution with the confidence indicating the
weight of each). These estimates may differ considerably due to variations in sen-
sors, possible lost network messages, and different estimation algorithms.

Dynamic Traffic Routing

A few projects in both academia and industry (e.g., the CarTel project at MIT1 and
a product at INRIX2) provide traffic-aware routing and traffic mitigation. The idea
is that various sensing devices are embedded in the cars that travel on roads and
highways in urban areas. Some of the sensors measure the location of the cars
(e.g., GPS or WiFi (Thiagarajan et al. 2009)), while others estimate travel delays.
A large number of sensors from many cars continuously send data to a server.

The server uses this data to give real-time route planning decisions to drivers
(e.g., what is the quickest way to travel from A to B right now?). Compared to al-
ternatives such as using a standard online map, the dynamic routing also considers
real-time factors such as road accidents and rush-hour traffic.

Such a system uses the travel delays reported in a recent time window to infer
the probability distribution of current delay at a road. Due to random factors, the
best we can get is a distribution. Similar to Figure 1, a central database contains a
relational table with a number of attributes such as road_ID, road_length, date,
time, speed_limit, and current_delay. Here, the current_delay attribute of a road
can be modeled as a probability distribution, which is learned from a set of delay
readings sent out from that road. To answer a routing query as given above, the
system may need to run a shortest path algorithm over road delays that are proba-
bility distributions.

Smart Energy Grids

There is increased interest in monitoring, predicting, and even generating energy
from multiple sources. Consider a system that integrates gas, coal, nuclear power,
solar, hydro, and wind power, that has chips on all electric devices that communi-
cate with central power company servers, local servers, and weather stations.
Power-intensive tasks, from washing machines to automated factories, could be
set to run when the solar cells are likely to be charged, the windmills are likely to
be active, or the demand for heating or air conditioning is expected to be low.
South Korea is testing such a system (McDonald, 2011), as are other countries.
Power agents are being developed in situ, and in the context of a Trading Agents
Competition (Block et al. 2010).

A power agent needs to be able to reason about likely weather conditions and
power demands over the immediate and near future. It needs to condition such
reasoning on location, time of year, and recent power demands, and to know about
the tasks it is assigned to schedule.

1 http://cartel.csail.mit.edu/doku.php
2 http://www.inrix.com/

70 T. Ge, A. Dekhtyar, and J. Goldsmith

1.2 Scientific Databases

Scientific observations are fundamentally uncertain. No measurement is exact.
When a quantity is observed and measured, the outcome depends on the measur-
ing system, the experimental procedure, the skill of the person conducting the ex-
periment, the environment, and other effects. Even if the quantity were to be
measured several times, in the same way and in the same circumstances, a differ-
ent measured value would in general be obtained each time, assuming that the
measuring system has sufficient resolution to distinguish between the values.

Furthermore, as observed by domain scientists (e.g., (Burton et al. 2009)), due
to unknown complex factors, contemporary scientific problems (e.g., associations
of genetic variants and chronic diseases) often demand vast sample sizes and it is
much needed to synthesize data across many studies and to undertake a pooled
analysis. Below, we will look at a few concrete examples.

Astronomy

In astronomy, observations of the objects and phenomena in the sky are typically
associated with “error bars” that indicate the estimated Gaussian distributions for
the values being observed. Let us look at one of the most popular astronomical
dataset, the Sloan Digital Sky Survey (SDSS). SDSS is one of the most ambitious
and influential surveys in the history of astronomy3. It covers more than a quarter
of the sky and contains more than 930,000 galaxies and more than 120,000
quasars.

Fig. 2 Fold differences of two function groups of genes (among many) as measured by a
microarray experiment (Komatsu, et al. 2006)

In the SDSS dataset, objects can have positional attributes: right ascension (ra)
and declination (dec) in the J2000 coordinate system. Besides these two attributes,
there are another two attributes, ra_error and dec_error, which are error bars.
They indicate that the right ascension (declination, respectively) attribute is a ran-
dom variable that has a Gaussian distribution with a standard deviation ra_error
(dec_error, respectively) and a mean ra (dec, respectively).

3 http://www.sdss.org/

Uncertain Data: Representations, Query Processing, and Applications 71

Microarrays

DNA microarray analysis has been one of the most widely used sources of ge-
nome-scale data in the life sciences. Microarray expression studies are producing
massive quantities of gene expression and other functional genomics data, which
promise to provide key insights into gene function and interactions within and
across metabolic pathways.

Figure 2 shows a snippet of the result from a microarray experiment performed
by a research group (Komatsu, et al. 2006). It shows the fold differences of genes
under two function groups. Here, a fold difference value indicates the difference
between the gene’s expressed strength in a tissue sample (e.g., cancer cells) and
that in a normal tissue being compared with. A positive (negative, resp.) value
indicates that the gene is expressed more strongly (more weakly, resp.) in the tis-
sue sample. Thus, scientists are interested in finding genes with large absolute fold
differences, which are characteristic of the disease/tissue being studied. The ±
range value (e.g., 3.73 in the first gene) is the standard deviation over a few re-
peated runs, each of which is called a replicate. We can see that the variance can
be quite significant. Figure 2 only shows selected genes from two function groups
among many.

Fig. 3 Sample output from the Mascot software that displays the proteins found in a sam-
ple. The scores indicate the confidence of the detections.

Proteomics

Proteomics is the large-scale study of proteins, particularly their structures and
functions. Mass spectrometry has become a powerful tool in protein analysis and
the key technology in proteomics (Mann et al. 2001). Proteomics experimental
results contain information such as what proteins are in a tissue (either with a
certain disease or normal), and their abundance, etc. Due to the many technical
constraints in mass spectrometry (Mann et al. 2001), the experimental results have
significant uncertainty.

Figure 3 shows a piece of the sample output from the widely used Mascot soft-
ware4 using Peptide Mass Fingerprint. Each possible protein is associated with a
score, indicating the confidence of the detection. This can become more compli-
cated when a tissue sample contains multiple proteins. A scientist would be

4 http://www.matrixscience.com/

PML_HUMAN Mass: 97455 Score: 194 Expect: 1e-14 Matches: 15
Probable transcription factor PML (Tripartite motif-containing protein 19) (RING finger protein 71)

MURC_IDILO Mass: 52994 Score: 51 Expect: 2 Matches: 5
UDP-N-acetylmuramate--L-alanine ligase (EC 6.3.2.8) (UDP-N-acetylmuramoyl-L-alanine synthetase) – I

DPO1_RICHE Mass: 104386 Score: 50 Expect: 2.8 Matches: 6
DNA polymerase I (EC 2.7.7.7) (POL I) - Rickettsia helvetica

:
:

72 T. Ge, A. Dekhtyar, and J. Goldsmith

interested in knowing the abundance of a protein in a tissue, etc. Such information
is often compared between a tissue sample (e.g., cancer cells) and a control (i.e.,
normal cells).

We have seen motivating applications in domains that require data management
systems to handle uncertain and probabilistic data. In the rest of this chapter, we
focus on two approaches of probabilistic databases. In the first approach (Section
2), we propose a rich treatment of probability distributions as data, in particular
the SPO framework and the SP-algebra. In the second approach (Sections 3 and
4), we stay closer to a traditional DBMS, extend it with tuple probabilities or
attribute probability distributions, and then study the semantics and efficient
processing of queries in this model.

2 Semistructured Probabilistic Database Management Systems

One of the most common data structures for probabilistic reasoning is the Baye-
sian network, or Bayes net (Pearl 1988). A Bayes net is a directed acyclic graph,
where nodes represent random variables and edges represent dependencies; each
node has a probability table for the associated variable, conditioned on the values
of its parents in the graph.

Example. Consider the Soldier Physiologic Status Monitoring application dis-
cussed in Section 1.1. Let us assume that a soldier has three sensors that, at set
time intervals, send information about his/her body temperature, oxygen levels
and pulse back to the home base server. Based on information supplied by the
three sensors, which we refer to as T (temperature), O (oxygen) and P (pulse),
the monitors (human or automatic) at the home base make decisions concerning
the current state of the soldier. In this simplified scenario, suppose there are four
states that a soldier can be in: N(ormal), W(eak), A(gitated) or S(ick). The re-
ports of each of the three sensors are discretized into two values: H(igh) and
N(ormal), with specific values of body temperature (e.g., 101F), blood oxygen
levels (e.g., 90%) and pulse (e.g, 84) serving as the boundary values between
them. The current state of the soldier is determined based on the information ob-
tained from these three sensors. This can be represented graphically in the form of
a Bayes net shown in Figure 4.

To complete the Bayes net, we supply the conditional probability distribution
for the random variable C(ondition) based on the value of random variables
T(emperature), O(xygen) and P(ulse), and provide marginal probability distri-
butions for the other three random variables. Table 1 shows the former, while Ta-
ble 2 shows a joint probability distribution of T, O and P.

A software application for tracking the medical conditions of military personnel
might have to operate with different conditional probability tables and different
marginal probability distributions based on a variety of factors. For example, the
distributions shown in Tables 1 and 2 may be based on performance of Army per-
sonnel in temperate, forest-covered hilly environment. A different set of probabili-
ty distributions might cover mountainous or desert terrain and be constructed for

Uncertain Data: Representations, Query Processing, and Applications 73

Fig. 4 A Bayes net for determining the physiological condition of a soldier in the field

other branches of the military (e.g., the Marine Corps) or specific military units.
From joint probability distributions such as the one in Table 2, one can derive
marginal probability distributions for subsets of parameters (e.g., Table 3 shows
marginal probability distributions for (a) a pair of parameters T and P and (b) sin-
gle parameter O) and can obtain conditional probability distributions (Table 3 (c)
shows the distribution of T and O for personnel with high pulse rates).

Table 1 Conditional probability distribution for the Bayes net for determining the physio-
logical condition of a soldier

T O P Condition
Normal Weak Agitated Sick

High Normal High 0.05 0.1 0.3 0.55
High Normal Normal 0.2 0.1 0.15 0.65
High Low High 0.05 0.05 0.1 0.8
High Low Normal 0.2 0.1 0.05 0.8

Normal Normal High 0.3 0.05 0.55 0.1
Normal Normal Normal 0.8 0.05 0.1 0.05
Normal Low High 0.2 0.2 0.45 0.15
Normal Low Normal 0.3 0.4 0.05 0.25

For decision-support software designed to work with this data, a data management

mechanism is needed to deal with all such probability distributions. This is the under-
lying idea behind the Semistructured Probabilistic Objects (SPO) framework (Zhao et
al. 2005). In this framework, diverse probability distributions, such as the ones de-
picted in Tables 1, 2, and 3 are stored as first-class database objects. A rich query
algebra (the SP-algebra) is able to manipulate and retrieve the objects. The algebra
incorporates traditional relational algebra operations of selection, projection, and

74 T. Ge, A. Dekhtyar, and J. Goldsmith

Cartesian product and join. It modifies their semantics to perform appropriate com-
putations on the probability distributions, and adds a conditionalization operation that
is unique to working with probability distributions. An SQL-style query language
(SPOQL) has been implemented as a convenient syntax for querying databases of
SPOs (Dekhtyar et al. 2006), though other implementations are certainly possible.

In what follows, we define the SPO framework formally, introduce the SP-
algebra and discuss the semantics of its operations, and establish some key facts
about the SP-algebra.

The SPO framework was originally introduced (Dekhtyar et al. 2001, Zhao et
al. 2005) for exact (or “point”) probabilities, i.e., for situations where the exact
probabilities are known. However, it was observed that in many decision support
applications, exact probabilities were not known. Rather, the probabilities of vari-
ous situations/events were known to fall into probability intervals. The SPO
framework was adapted to address such situations as well (Zhao et al. 2004). The
notion of an Interval Semistructured Probabilistic Object (ISPO) is not too differ-
ent than the notion of a SPO, but the Interval SP-algebra is significantly more
complex (Zhao et. al 2003). We discuss this notion briefly at the end of Section 2.

Table 2 Joint marginal probability distribution of temperature, blood oxygen levels and
pulse rate for the Bayes net for determining the physiological condition of a soldier.

T O P Prob
High Normal High 0.02
High Normal Normal 0.01
High Low High 0.03
High Low Normal 0.04

Normal Normal High 0.25
Normal Normal Normal 0.4
Normal Low High 0.2
Normal Low Normal 0.05

Table 3 Probability distributions computable in the physiological condition monitoring
scenario

(a) (b) (c)

 T P Prob

High High 0.05

High Normal 0.05

Normal High 0.45

Normal Normal 0.45

O Prob

Normal 0.68

Low 0.32

T O Prob

High Normal 0.44

High Low 0.06

Normal Normal 0.5

Normal Low 0.4

Prob(T,O|P=high)

The term “semistructured” in the name of the framework was chosen for two
reasons. The probability distributions stored in a single “relation” inside a Semi-
structured Probabilistic Database can have diverse structures and contain different

Uncertain Data: Representations, Query Processing, and Applications 75

“attributes”. In addition to that, originally, XML was chosen as the representation
syntax for SP objects (Dekhtyar et al. 2001). As XML representation is essentially
syntactical in nature, we omit it from this narrative, and instead, concentrate on the
semantics of the proposed frameworks.

2.1 Semistructured Probabilistic Objects

Consider a universe V of discrete random variables {v'1,… ,v'’q}. With each random
variable v ∈ V we associate dom(v), a finite set of its possible values. Given a set
V={v1,…,vq}⊆ V, dom(V) denotes dom(v1)x … x dom(vq).

Let R=(A1,… ,An) be a collection of regular relational attributes. For A∈R, let
dom(A) denote the domain of A. We define a semistructured schema R* over R as a
multiset of attributes from R. For example, if R = {Terrain, MilitaryBranch,
Conditions} the following are valid semistructured schemas over R: R*

1 = {Ter-
rain, MilitaryBranch}; R*

2 = {Terrain, Conditions, Conditions}; R*
3 = {Ter-

rain, Terrain, Terrain}.
Let P denote a probability space used in the framework to represent probabilities

of different events. We present the framework over two different probability spac-
es. The first probability space Ppoint=[0,1], is the unit interval. Values from this
interval are called exact or point probabilities. The Semistructured Probabilistic
Object (SPO) framework introduced below uses this probability space. Another
possibility, leading to an extended SPO framework (Zhao et al. 2004), is based on
the probability space Pint=C[0,1]: the set of all subintervals of the unit interval. A
probability value from this space is called an interval probability. The general defi-
nition of a Semistructured Probabilistic Object given below applies for any probabil-
ity space, however, the query algebra for each of the two frameworks is substantially
different. We describe the query algebra, the SP-algebra, over the point probability
space Ppoin in Section 2.2, and briefly discuss the query algebra (Extended
SP-algebra) for the interval probability space Pint at the end of Section 2.

Definition 1. (Zhao et al. 2005) A Semistructured Probabilistic Object (SPO)} S
is a tuple S = (T, V, P, C, ω) where

• T is a relational tuple over some semistructured schema R* over R. We refer to
T as the context of S.

• V={v1,… ,vq} ⊆ V is a set of random variables. We require that V ≠ ∅, where
V is called the set of participating random variables.

• P: dom(V)→ P is the probability table of S. Note that P need not be complete,
but it must be consistent with respect to P5.

5 Consistency criteria are probability-space dependent. For Ppoint, the consistency criterion

is that the sum of all probability values is less than or equal to 1. For Pint the consistency
criterion is essentially equivalent to a requirement that the sum of lower bounds of each
probability interval is less than or equal to 1.

76 T. Ge, A. Dekhtyar, and J. Goldsmith

• C = {(u1,X1),…,(us,Xs)}, where U = {u1,…,us} ⊂ V and Xi ⊆ dom(ui), 1≤ i ≤ n,
such that V ∩ U = ∅ . We refer to C as the conditional of S.

• ω, called a path, is an expression of the probabilistic query algebra over P.
We define two different query algebras below.

An explanation of this definition is in order. For the SPO data model to possess
the ability to store all the probability distributions described in Tables 1, 2, and 3
a--c, the following information needs to be stored in a single object.

1. Participating random variables. These variables determine the probability
distribution described in an SPO.

2. Probability Table. If only one random variable participates, it is a simple
probability distribution table; otherwise the distribution will be joint. Proba-
bility table may be complete, when the information about the probability of
every instance is supplied, or incomplete. In either case, it must be consistent,
i.e., truly represent a probability distribution. It is convenient to visualize the
probability table P as a table of rows of the form (x,α), where x ∈ dom(V) and
α = Prob(x) ∈ P. Thus, we speak about rows and columns of the probability
table when that makes explanations more convenient.

3. Conditional. A probability table may represent a distribution, conditioned by
some prior information. The conditional part of its SPO stores the prior in-
formation in one of two forms: “random variable u has value x”
or “the value of random variable u is restricted to a
subset X of its values”. In our definition, this is represented as a
pair (u,X). When X is a singleton set, we get the first type of the condition.

4. Context provides supporting information for a probability distribution, in-
formation about the known values of certain parameters, which are not consi-
dered to be random variables by the application.

5. Path. Participating variables, probability table, conditional and context com-
bined form the content of an SPO. Path, the fifth component, documents the
object’s history in the database in which it is stored. Objects inserted into the
database receive unique object identifiers (OIDs) upon insertion. When a new
SPO is constructed out of one or more existing SPOs as a result of a query al-
gebra expression, the path of the new object will contain that expression.

2.2 The SP-algebra for Point Probabilities

Let us fix the universe of random variables V, the universe of context attributes R
and set the probability space P=Ppoint= [0,1]. A finite collection SP = { S1,… ,Sn}
of semistructured probabilistic objects over V, R and P is called a semistructured
probabilistic relation (SP-relation). A finite collection D = {SP1,…,SPr} is called
a semistructured probabilistic database (SP-database).

Uncertain Data: Representations, Query Processing, and Applications 77

One important difference between semistructured probabilistic databases and
traditional relational or relational probabilistic databases is that each table in a
relational database has a specified schema, whereas all SP-relations are “schema-
less”: any collection of SPOs can form an SP-relation. This means that the divi-
sion of a semistructured probabilistic database into relations is a matter of the
logic of a particular application. For example, if the SP-database is built from the
information supplied by three different experts, this information can be arranged
into three semistructured probabilistic relations according to the origin of each
object inserted in the database. Alternatively, the information can be arranged in
SP-relations by the date it was obtained.

Manipulation of SPOs stored in SP-databases is done by the means of a query
algebra, called the semistructured probabilistic algebra (SP-algebra). The SP-
algebra contains three standard set operations: union, intersection and difference;
it extends the definitions of standard relational operations selection, projection,
Cartesian product, and join to account for the appropriate management and main-
tenance of probabilistic information within SPOs; in addition, it contains a new
operation, conditionalization. The latter operation is specific to the probabilistic
databases and results in the construction of SPOs that represent conditional proba-
bility distributions of the input SPOs.

Before proceeding with the description of individual operations, we define the
equality and equivalence of SPOs. Two SPOs S and S’ are equal if all their com-
ponents are equal. Two SPOs are equivalent if their set of participating random
variables, probability table, context and conditional are the same. Notice that in
the case of equivalence, paths of two SPOs may be different. More formally,

Definition 2. (Zhao et al. 2005) Let S =(T,V,P,C,ω) and S' =(T',V',P',C',ω') be
two SPOs. S is equivalent to S', denoted S≡ S, iff T =T, V = V', P = P' and C = C'.

Set Operations. Semistructured Probabilistic relations are sets of SPOs. There-
fore, the definitions of union, intersection and difference of SP-relations are
straightforward.

Definition 3. (Zhao et al. 2005) Let SP and SP’ be two SP-relations.

• Union: SP ∪ SP' = { S | S ∈ SP or S ∈ SP'}.

• Intersection: SP ∩ SP' = { S | S ∈ SP and S ∈ SP'}.

• Difference: SP – SP' = { S | S ∈ SP and S ∉ SP'}.

We note two features of the set operations in the SP-algebra. Classical relational
algebra has a restriction on the applicability of the set operations: they are defined
only on pairs of relations with matching schemas. Because SP-relations are
schema-less and represent logical rather than syntactic groupings of probability
distributions in an SP-database, set operations are applicable to any pair of
SP-relations.

78 T. Ge, A. Dekhtyar, and J. Goldsmith

Selection. Given an SPO S =(T,V,P,C,ω), a selection query may be issued to any
of its components except the path. Each part requires its own language of selection
conditions. Selection on context, participating random variables and conditionals,
when applied to an SPO, result in the SPO being selected or not in its entirety, as
is the case with selection in relational algebra. Selection on probability table on
the other hand, transforms the SPO by including in the selected object only the
probability table rows that match the selection condition. For any selection opera-
tion, the path expression of the result is updated to include the selection operation.
We illustrate different types of selections in the following example.

Example 1. Consider the military personnel monitoring application described in
the example above. Suppose that the application database stores multiple probabil-
ity distributions to be used for decision support. A human analyst working with
the system may, at different times, want to see and/or use the results of the follow-
ing information requests.

• “Find all probability distributions for members of
the Marine Corps.”} This is an example of selection based on con-
text.

• “Find all probability distributions that involve
body temperature and oxygen level observations.” Body
temperature and oxygen level are two of the random variables in the applica-
tion domain. This is an example of selection on participating random variable.

• “Find all probability distributions for servicemen
with low oxygen levels”. Here, the analyst wants to find what is
known about the probabilities of other random variables in the domain, when
the oxygen level (a random variable in the domain) is known to be low. This
is selection on conditional.

• “What information is available about the probability
of having low oxygen level and high body tempera-
ture?” In each SPO which contains Temperature and Oxygen variables,
we are interested in the row(s)6 of the probability table which has/have values
Temperature = high and Oxygen = low. This is an example of selection on
probability table.

• “What outcomes have probability over 0.4?” This is an
example of selection on probabilities. This information need should result in
only the SPOs that have probability table rows with probability values of
above 0.4 returned, and only those rows should be shown to the analyst.

Selection on Context, Participating Variables or Conditionals. We first define
the three selection operations that do not alter the content of the selected objects.
We start by defining the acceptable languages for selection conditions for the three

6 If other random variables are also present in the SPO in question, there will be more than

one row matching this condition.

Uncertain Data: Representations, Query Processing, and Applications 79

types of selects. Recall that the universe R of context attributes consists of a finite
set of attributes A1,…, An with domains dom(A1),… ,dom(An). With each attribute
A ∈ R we associate a set Predicates(A) of allowed predicates. We assume that
equality and inequality are allowed for all A ∈ R.

Definition 4. (Zhao et al. 2005) An atomic context selection condition is an ex-
pression c of the form A • x (or •(A,x)), where A ∈ R, x ∈ dom(A) and • ∈ Pre-
dicates(A).

An atomic participation selection condition is an expression c of the form v ∈ V,
where v ∈ V is a random variable.7

An atomic conditional selection condition is one of the following expressions:
u ={x1,…, xh} or u ∋ x where u ∈ V is a random variable and x, x1,…,xh ∈ dom(u).

Complex selection conditions can be formed as Boolean combinations of atom-
ic selection conditions.

Definition 5. (Zhao et al. 2005) Let S=(T,V,P,C,ω) be an SPO and let c = A•x be
an atomic context selection condition. Let ω' = σc(ω) and let S' = (T,V,P,C,ω').
Then σc(S) ={S'} iff:

1. A ∈ S.T;
2. For some instance A* of A in S.T, S.T.A*• x is true.

Otherwise, σc(S) = ∅.

Definition 6. (Zhao et al. 2005) Let S=(T,V,P,C,ω) be an SPO and let c = v ∈ V
be an atomic participation selection condition. Let ω' = σc(ω) and let S' =
(T,V,P,C,ω'). Then σc(S) ={S'} if v ∈ S.V; otherwise σc(S) = ∅.

Definition 7. (Zhao et al. 2005) Let S=(T,V,P,C,ω) be an SPO. Let ω' = σc(ω)
and let S' = (T,V,P,C,ω').

1. Let c = u ={x1,… ,xh} be an atomic conditional selection condition. Then
σc(S) ={S'} if S.C ∋ (u, X) and X = {x1,…,xh}; otherwise σc(S) = ∅.

2. Let c = u ∋ x be an atomic conditional selection condition. Then σc(S) ={S'}
if S.C ∋ (u, X) and x ∈ X; otherwise σc(S) = ∅.

The semantics of atomic selection conditions can be extended to their Boolean
combinations in a straightforward manner.

σc ∧ c'(S) ::= σc(σc’(S));
σc ∨ c'(S) ::= σc(S)∪ σc’(S),

except for the path component, which will become, respectively, σc ∧ c'(S) (σc ∨

c'(S)).

7 Note that “∈ V” is syntactic sugar here. Instances of such conditions have the form

Oxygen ∈ V, Condition ∈ V and so on.

80 T. Ge, A. Dekhtyar, and J. Goldsmith

The interpretation of negation in the context selection condition requires some

additional explanation. In order for a selection condition of the form ¬(A•x) to
succeed on some SPO S=(T,V,P,C,ω), attribute A must be present in S.T. If A is
not in S.T, then σ¬(A•x)(S) = ∅. Therefore, the statement S ∈ σc(S) ∨ S∈ σ¬c (S) is
not necessarily true. This also applies to conditional selection conditions.

Selection on Probability Table. The two remaining types of selection operations
are more complex than the three described above. Here, the result of each opera-
tion applied to an SPO can be a non-empty part of the original SPO. In particular,
these operations preserve the context, participating random variables and condi-
tionals in an SPO, but may return only a subset of the rows of the probability ta-
ble. In these operations, the selection condition will indicate which rows from the
probability table are to be included and which are to be omitted. In a sense, these
operations treat the probability table of an SPO as a relational table, and perform
selections from it.

Definition 8. (Zhao et al. 2005) An atomic probability table selection condition
is an expression of the form v = x where v ∈ V and x ∈ dom(v). Probability table
selection conditions are Boolean combinations of atomic probability table selec-
tion conditions.

Definition 9. (Zhao et al. 2005) Let S = (T,V,P,C,ω) be an SPO, V = { v1,…,vk}
and let c = v = x be an atomic probabilistic table selection condition. Let ω' = σ-
c(ω). If v ∈ V, then (assuming v = vi for some 1≤ i ≤k) the result of selection from
S on c, σc(S), is a semistructured probabilistic object S' = (T,V,P',C,ω'), where

() ()

≠
=

=′
.

;,...,,...,
,...,,..., 1

1 xyundefined

xyyyyP
yyyP

i

iki
ki

Definition 10. An atomic probabilistic selection condition is an expression of the
form P • α, where α ∈ [0,1] and • ∈ {=, ≠, ≤, ≥, <, > }. Probabilistic selection
conditions are Boolean combinations of atomic probabilistic selection conditions.

Definition 11. Let S=(T,V,P,C,ω) be an SPO and let c= P•α be an atomic proba-
bilistic selection condition. Let x ∈ dom(V). The result of selection from S on c is
defined as follows: σc(S) = (T,V,P',C,ω'), where ω' = σc(ω) and

() ()
()

•¬
•

=′
.)(

;)(

α
α

xPundefined

xPxP
xP

Different selection operations commute, as shown in the following theorem.

Theorem 1. (Zhao et al. 2005) Let c and c' be two (arbitrary) selection conditions
and let SP be a semistructured probabilistic relation. Then σc(σc’(SP)) ≡
σc’(σc(SP)).

Uncertain Data: Representations, Query Processing, and Applications 81

Projection. SPOs are complex objects consisting of four different components.
Traditionally, projection in relational algebra is a simplification operation that
removes attributes. With SPOs, there are three types of simplifications that can be
performed: removal of context, removal of conditionals and removal of participat-
ing random variables. All three projection operations are introduced below.

Definition 12. (Zhao et al. 2005) Let S =(T,V,P,C,ω) be an SPO and let L⊆ R be
a set of context attributes. The projection of S onto L, denoted πL(S,), is an SPO S'
= (T',V,P,C,ω'), where T' ={(A,x)| (A,x) ∈ T, A ∈ L} (i.e., T' contains all entries
from T for attributes from the list L only), and ω' = πL(ω).

Definition 13. (Zhao et al. 2005) Let S=(T,V,P,C,ω) be an SPO and let F⊆V be a
set of random variables. The projection of the conditional part of S onto F, de-
noted πc:F(S), is an SPO S' = (T,V,P,C',ω') where C' = {(u,X)| (u,X)∈T.C, u∈ F}
and ω' = πc:F(ω).

We note that since both the context and the conditional part of an SPO can be
empty, projections π∅(S) (i.e., removal of all context information for an SPO) and
πc:∅(S) (clearing of the list of conditionals) are valid and will yield proper results.
A somewhat more complicated and delicate operation is the projection on the set
of participating random variables. A removal of a random variable from the
SPO's participant set entails that all information related to this random variable
has to be removed from the probability table as well. This essentially corresponds
to removal of a random variable from consideration in a joint probability distribu-
tion, which is usually called marginalization. The result of this operation is a new
marginal probability distribution that needs to be stored in the probability table
component of the resulting SPO.

This computation is performed in two steps. First, the columns for random va-
riables that are to be projected out are removed from the probability table. In the
remainder of the table, there can now exist duplicate rows whose values for all the
fields except the probability coincide. All duplicate rows of the same type are then
collapsed (coalesced) into one, with the new probability value computed as the
sum of the values in the constituent rows. The formal definition of this procedure
is given below.

Definition 14. (Zhao et al. 2005) Let S =(T,V,P,C,ω) be an SPO, V = {v1,…,
vq}, q>=1, and let L⊆ R be a non-empty set of random variables. If L∩ S.V = ∅,
then the projection of S on L, denoted πL(S), is an empty set. If If L∩ S.V ≠ ∅,
then πL(S) ={S’} where S' = (T, L, P',C,ω') and where P': dom(L)→[0,1] and for
each x ∈ dom(L),

P' x ()= P x ,y ()
y ∈dom(V −L);P(x ,y) is defined

 .

Notice that projection on the participating random variables is allowed only if the
S.V is not a singleton and if at least one random variable remains in the resulting
set.

82 T. Ge, A. Dekhtyar, and J. Goldsmith

Conditionalization. Conditionalization is an operation specific to probabilistic
algebras. Dey and Sarkar (Dey and Sarkar 1996) were the first to consider this
operation in the context of probabilistic databases. Similarly to the variable projec-
tion operation, conditionalization reduces the probability distribution table. The
difference is that the result of conditionalization is a conditional probability dis-
tribution. Given a joint probability distribution, conditionalization answers the
general query of the form, “What is the probability distribution
of the remaining random variables if the value of some
random variable v in the distribution is restricted to
subset X of its values?”

Informally, the conditionalization operation proceeds on a given SPO as follows.
The input to the operation is one participating random variable of the SPO, v,

and a subset of its domain X ⊆ dom(v). The first step of the operation consists of
removal from the probability table of the SPO all rows whose v values are not
from the set X. Then the v column is removed from the table. The remaining rows
are coalesced (if needed) in the same manner as in the projection operation and
afterwards, the probability values are normalized. Finally, (v,X) is added to the set
of conditionals of the resulting SPO.

The formal definition of conditionalization is given below. Note that if the origi-
nal table is incomplete, there is no meaningful way to normalize the probability dis-
tribution. The operation can still be performed, but the results may be meaningless.
Thus, we restrict this operation to situations where normalization is well defined.

Definition 15. (Zhao et al. 2005) An SPO S=(T, V,P,C,ω) is conditionalization-
compatible with an atomic conditional selection condition v ={x1,… ,xh} iff (a) v ∈
S.V and (b) the restriction of S.P on { x1,… ,xh} for variable v is a complete function.

Definition 16. (Zhao et al. 2005) Let SPO S=(T, V,P,C,ω) be an SPO which is
conditionalization-compatible with an atomic conditional selection condition c =
v ={x1,… ,xh}. The result of conditionalization of S by c, denoted μc(S), is defined
as follows: μc(S) = (T,V',P',C',ω), where

• V' = V -{v};
• C' = C ∪ {(v,{x1,… ,xh)};
• P':V' →[0,1] is defined as follows.

Let

N = P(x, y).
x ∈ xi ,...,xh{ }

y ∈dom(′ V)

Then, for any y ∈ dom(V’), P’ is defined as follows:

() ;

),(
},...,{ 1

N

yxP

yP hxxx

∈=′

• ω' = μc(ω).

Uncertain Data: Representations, Query Processing, and Applications 83

Cartesian Product and Join. Sometimes an SP-database has only simple proba-
bility distributions for some random variables. In order to get a joint probability
distribution, either a Cartesian product or a join operation can to be performed on
the SPOs storing these distributions. Intuitively, both a Cartesian product and a
join of two probabilistic distributions compute the joint probability distribution of
random variables involved in both original distributions. The difference between
them lies in the operation applicability. The Cartesian product can be computed
only for a pair of SPOs with disjoint participating random variables. The join
operation is applicable to two SPOs that share common participating random
variables.

When a joint probability distribution is computed from individual (marginal)
probability distributions, knowledge of the relationship between the random va-
riables in the two marginal distributions is necessary to correctly compute the joint
probability distribution. In this narrative, we restrict ourselves to the case when
random variables from the two distributions are conditionally independent. This
restriction allows us to represent the result as a joint probability distribution which
can be explicitly computed: the joint probability is the product the marginal prob-
abilities. Other assumptions that allow for direct computation of joint probability
distributions are discussed elsewhere (Zhao et al. 2006).

Two SPOs are compatible for Cartesian product if their participating variables
are disjoint, but their conditionals coincide.

Definition 17. (Zhao et al. 2005) Two SPOs S = (T,V,P,C,ω) and S'
=(T',V',P',C',ω') are Cartesian product-compatible (cp-compatible) if and only if
(a) V∩ V' = ∅ and (b) C = C'.

We can now define the Cartesian product.

Definition 18. (Zhao et al. 2005) Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be
two cp-compatible SPOs. The result of their Cartesian product (under assumption
of independence), denoted S x S', is: S x S' = S'' = (T'',V'',P'',C'',ω''), where

• T'' = T ∪ T';
• V'' = V ∪ V';
• P'': dom(V'')→ [0,1] is defined as follows. For all z ∈ dom(V''), where

()yxz ,= , x ∈ dom(V), y ∈ dom(V'): ())()(yPxPzP ⋅=′′ ;

• C'' = C =C';
• ω'' = ω x ω’.

The join operation extends the Cartesian product operation to the situation, where
two SPOs being combined share random variables. If we have two probability
distributions Prob(X,Y) and Prob(Y,Z), then a joint probability distribution
Prob(X,Y,Z) can be represented as Prob(X,Y,Z) = Prob(X,Y)*Prob(Z|Y) =
Prob(X|Y) * Prob(Y,Z). The two representations of the joint probability distribu-
tion (one, conditioning Z on Y and another, conditioning X on Y) are equal if
the probability distributions are drawn from one known underlying universal
probability distribution on V. However, the SPO framework can store, in the same
database, information from multiple universal distributions (e.g., distinguished by

84 T. Ge, A. Dekhtyar, and J. Goldsmith

the context settings of the SPOs). Thus, Prob(X,Y)*Prob(Z|Y) = Prob(X|Y)*
Prob(Y,Z) is not necessarily always true. To make sure that SPOs can be joined
efficiently, we consider two separate join operations, one using the
Prob(X,Y)*Prob(Z|Y) representation, and the other using the Prob(X|Y)*
Prob(Y,Z). These operations are known as left join and right join.

Definition 19. (Zhao et al. 2005) Two SPOs S = (T,V,P,C,ω) and S'
=(T',V',P',C',ω') are join-compatible if and only if (a) V ∪ V' ≠ ∅ and (b) C = C'.

Given two join-compatible SPOs S and S', we can break the set V ∪ V' into three
non-empty disjoint parts: V1 = V – V’, V2= V' – V and Vc = V∩ V'. The informa-
tion about the probability distribution of random variables in Vc can be found in
both S and S'. The join operation must take this into consideration when the joint
probability distribution for variables in V∪ V' is computed. The key to computing
the joint distribution correctly is the following statement.

Lemma 1. Let x∈ dom(V1), y∈ dom(Vc), z∈ dom(V2), and let V1, Vc and V2 all be
disjoint. Under the assumption of independence between variables in V1 and V2 the
following holds:

).|(*),()|(*),Pr()Pr(/),Pr(*),Pr(),,Pr(yxPyzPyzPyxyzyyxzyx ===

We can now define the join operations. We want the join of S and S' to contain the
joint probability distribution of the set V1∪ Vc ∪ V2. Since Pr(y) could be obtained
either from S or from S', there exist two families of join operations, called
left join and right join, with the following definitions.

Definition 20. (Zhao et al. 2005) Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be
two join-compatible SPOs. Let V = V1∪Vc and V' = V'∪ Vc, and Vc = V∪ V'.
We define the operations of left join of S and S', denoted S < S', and right join of
S and S', denoted S > S', as follows:

• S < S' :: = S'' = (T'',V'',P'',C'',ω'');
• S > S' :: = S''' = (T'', V'', P''',C'',ω’’’), where

1. T'' = T ∪ T';
2. V'' = V1 ∪ Vc ∪ V2;
3. P''': dom(V'')→ [0,1] is computed as follows.

For all w ∈ dom(V''); ()zyxw ,,= ; x ∈ dom(V1), y ∈ dom(Vc), z ∈
dom(V2):

() ()yP

zyP
yxPwP

′
′

⋅=′′),(
,)(

() ()yP

yxP
zyPwP

),(
,)(⋅′=′′

• C'' = C =C'.
• ω'' = ω < ω'; ω''' = ω > ω'.

Uncertain Data: Representations, Query Processing, and Applications 85

Two join-compatible SPOs are join-consistent if probability distributions on the
set of shared participating variables are identical for both SPOs.

Definition 21. (Zhao et al. 2005) Let Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω')
be two join-compatible SPOs with V∩ V' = Vc. Then, S and S' are join-consistent

if and only if ()xPyP ′=)(for any y ∈ dom(Vc).

SP-algebra operations can be extended to a semistructured probabilistic relation,
as described in the following proposition.

Proposition 1. (Zhao et al. 2005) Any SP-algebra operation on a semistructured
probabilistic relation is equivalent to the union of the SP-algebra operation on
each SPO in the SP-relation:

• Let SP be a semistructured probabilistic relation and γ be one of the three
unary SP-algebra operators. Then γ(SP) = S∈SP γ(S).

• Let SP1 and SP2 be two semistructured probabilistic relations and ⊕ be one of
the binary SP-algebra operators. Then:

'
21 '

21 SSSPSP
SPSSPS

⊕=⊕
∈∈
 .

Semantics of the SP-algebra Operations. The problem of determining the mean-
ing of the results of the operations of the SP-algebra is complicated by the fact that
at any moment, SP-databases can contain SPOs of two types. In the SPOs of the
first type, the probabilities of all rows are exact, while in the SPOs of the second
type, the probabilities of some rows may represent the lower bounds on the proba-
bility of those instances. We proceed by defining the two types of SPOs formally,
discussing their properties and the effects that different SP-algebra operations
have on the SPOs in light of this.

Definition 22. (Zhao et al. 2005) An SPO S =(T,V,P,C,ω) is a Type I SPO iff
x∈dom(V)P(x) =1 . Otherwise, S is a Type II SPO.

When S is a Type I SPO, its probability table is complete: the probabilities of all
rows add up to exactly 1. The probability table may contain a row for every in-
stance x ∈ dom(V), or it may omit some of the instances. However, because the
probabilities of the rows present in the table add up to 1, we know that the proba-
bilities of all omitted rows are 0, and these can be added to the probability table of
S. Basically, when S is a Type I SPO, we are guaranteed that for all x ∈ dom(V)
P(x) is the exact point probability of instance x.

The nature of Type II SPOs is somewhat more complex. If the sum of probabilities
in all rows of the probability table is less than 1, then that the probability table is
missing some information. This can either be missing instances: some x ∈ dom(V)
has a non-zero probability but is not included in the probability table of S, or underes-
timation: all possible instances are present, but the probabilities add up to less than 1,
which means that information about the probabilities of some (or all) instances is
only a lower bound on the true probability of the instance in the distribution.

86 T. Ge, A. Dekhtyar, and J. Goldsmith

It is important to note here that SP-algebra operations allow for Type II SPOs

to occur in the SP-database, even if all original SPOs in the database were Type I.
The difference in the meaning of probability values for Type I and Type II SPOs
causes us to apply extra caution when interpreting the results of SP-algebra opera-
tions. In particular, when considering a specific SP-algebra operation applied to an
SPO or a pair of SPOs, it is important for us to know the type of the input objects
and be able to determine the type of the result. The following proposition identi-
fies the set of “safe” operations in SP-algebra: operations that, given Type I SPOs,
are guaranteed to produce Type I results.

Proposition 2. (Zhao et al. 2005) Let S and S' be two Type I SPOs. Then, the
following SPOs are also Type I:

1. σc(S), where c is a selection condition on context, participating random va-
riables or conditional.

2. πL(S), πc:F (S) and πF(S), where L is a list of context attribute names and F ⊆
V.

3. μc(S), where c is a conditional selection condition.
4. S x S'.
5. S < S' and S > S'.

Two operations missing from the list in Proposition 4 are selection on probabili-
ties and selection on probability table. These operations can take as input Type I
SPOs and produce Type II SPOs, because both operations can return incomplete
probability tables. The following statements specify the semantics of the SP-
algebra operations producing Type I results.

Theorem 2. (Zhao et al. 2005) Let S = (T,V,P,C,ω) be a Type I SPO and let ∅ ≠
L ⊆ V. Let S'= (T, L,P',C,ω') = πL(S). Then S’.P' contains the correct marginal
probability distribution of random variables in L given the probability distribution
S.P.

Theorem 3. (Zhao et al. 2005) Let S = (T,V,P,C,ω) be a Type I SPO and let c be
a conditional selection condition involving variable v ∈ S.V. Let S' = (T,V-
{v},P',C',ω') = μc(S). Then S’.P' contains the correct conditional probability dis-
tribution of random variables S.V-{v} from the distribution S.P given condition c
on v.

Theorem 4. (Zhao et al. 2005) Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be
two cp-compatible SPOs and let S'' = (T'',V'',P'',C,ω'') = S x S'. Then S’’.P'’ is the
correct joint probability distribution of random variables in S.V and S’.V' under the
assumption of independence between them.

Theorem 5. (Zhao et al. 2005) Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be two
join-compatible SPOs and let S'' = (T'',V'',P'',C,ω'') = S< S' and S’’’=
(T’’’,V’’’,P’’’,C,ω’’’) = S > S’. Then S’’.P'' and S’’’.P''' are the correct joint
probability distributions of random variables in S.V and S’.V' under the assumption
of independence between them.

Uncertain Data: Representations, Query Processing, and Applications 87

Theorem 6. (Zhao et al. 2005) Let S and S' be two join-compatible SPOs. The
left join S < S' and the right join S > S'$ are equivalent if and only if S and S’
are join-consistent.

2.3. Extensions of the SPO Framework

Interval SPO Model. As mentioned above, the probability space Ppoint=[0,1], is
not the only way to represent probabilistic information in the SPO framework.
Probability intervals have been, for some time, considered the next natural
extension of the notion of probability (Walley 1991, de Campos et al. 1994,
Weichselberger 2000, Ng and Subrahmanian 1992). Because the definition of an
SPO factors out the probability space, a valid Semistructured Probability Object
may use probability intervals rather than point probabilities in its probability table.
Such SPOs were introduced in a somewhat tongue-in-cheek manner (Goldsmith et
al. 2003) as the means of representing results of political surveys. While the data
representation format does not change much, the same cannot be said about the
semantics of the SPOs and, consequently, the query algebra. An interval probabil-
ity distribution is modeled using Nilsson's (Nilsson 1986) possible worlds seman-
tics, (Weichselberger 2000, de Campos et al. 1994): a true probability distribution
assigns point probabilities to all rows in the probability table, but is unknown.
Probability intervals represent a set of linear constraints on the point probabilities.
An interval probability distribution will satisfy some (possibly none) point proba-
bility distributions, termed p-interpretations (Ng and Subrahmanian 1992, Zhao et
al. 2004), each of which is considered equally likely to be the true one.

The query algebra operations were extended to preserve the mapping between in-
terval probability distributions and the sets of satisfying p-interpretations (Zhao et al.
2004, Zhao et al. 2003). The semantics of extended (interval) SP-algebra operations
that do not alter probabilities, set operations and various selection operations, does
not change much from the SP-algebra case. On the other hand, projection, Cartesian
product, join, and, especially, conditionalization, operations that modify probabili-
ties, become much more involved. With the exception of conditionalization, ex-
tended SP-algebra versions of all operations preserve the possible worlds semantics:
i.e., we prove that a p-interpretation satisfies the interval probability distribution
obtained in the result of an extended SP-algebra operation if and only if it be con-
structed from some p-interpretation (or a pair of p-interpretations) by applying an
SP-algebra analog of the operation to it/them (Zhao et al. 2004).

For the conditionalization operation, the interval distribution obtained as result
of the extended operation is guaranteed to be tight, i.e., some p-interpretations
satisfying the original interval probability distribution get transformed by a condi-
tionalization operation in a way that matches all interval boundaries. However, the
resulting interval probability distribution can have satisfying p-interpretations that
cannot be obtained from any p-interpretation satisfying the original (pre-
conditionalization) interval probability. This is an instance of a general result, due
to Jaffray (1992), concerning computing conditional imprecise probabilities. It
represents an essential structural shortcoming of the interval probability models in
general, and the extended SPO framework in particular.

88 T. Ge, A. Dekhtyar, and J. Goldsmith

SPDBMS. The SPO framework was implemented by Zhao (Zhao et al. 2005) us-
ing transformation of SP-relations in collections of relational tables on top of a
relational DBMS. The Semistructured Probabilistic DBMS (SPDBMS for short)
supports basic data manipulation (insert, delete, update an SPO) and provides full
support for the SP-algebra. Because collections of SPOs are inherently semistruc-
tured, the translation of SPOs into relational tables is rather cumbersome. More
recently, SPDBMS was re-implemented using the native XML DBMS eXist
(Rosson 2008). This avoided the data translation step. Query algebra operations
were implemented using XQuery, and XQuery's user-defined functions. Most of
the operations behaved efficiently. However, due to the specifics of eXist’s inter-
nal architecture,8 processing Cartesian products and joins was unreasonably slow.

SPOQL. The SP-algebra provides a functional query language for querying SP-
databases. Direct SP-algebra syntax was implemented in both versions of
SPDBMS and used as the query language. In addition to the SP-algebra, a declara-
tive query language for SP-databases, called SPOQL, was introduced and imple-
mented as part of the RDBMS-based SPDBMS (Dekhtyar et al. 2006).

3 Modeling Uncertain Data

In this section, we consider databases that treat data as uncertain, rather than stor-
ing and managing uncertainty in terms of probability distributions. We model data
uncertainty in three ways: (1) tuple uncertainty, (2) attribute uncertainty, and (3)
sub-attribute uncertainty.

In tuple uncertainty, a probability number (sometimes called confidence) is as-
sociated with each tuple. An example is shown in Figure 5(a), which is similar to
Figure 1, except that we have mutual exclusion correlations among tuples. Recall
that it is from an application in which various sensors are embedded in the uni-
forms of soldiers in a battle field. The sensors send out detections of the medical
conditions of the soldier that wears the uniform. The second to last column is a
score that indicates how much medical attention this soldier needs. The higher the
score, the more urgent it is to send medical resources to this soldier. The last col-
umn (Conf.) is the probability that the tuple exists in the table.

We may specify mutual exclusion rules, which indicate that at most one of a set
of tuples can exist in the table. In this way, we can encode a discrete PMF (prob-
ability mass function) by a set of mutually exclusive tuples. In more detail, for a
PMF , , , , … , , , to are values in a set of mutually ex-
clusive tuples and to are their probabilities. The sum of the probabilities is
no more than 1. If the sum is less than 1, then with remaining probability, none of
the mutually exclusive tuples exist in the table. In the example in Figure 4(a), the
three highlighted tuples (T2, T4, and T7) are mutually exclusive. They are detec-
tions of the same soldier (same Soldier ID) at around the same time, and hence at

8 The version of eXist used by Rosson (Rosson 2008) loaded user-defined functions and

reinterpreted them each time they were invoked, which affected the join and Cartesian
product operations .

Uncertain Data: Representations, Query Processing, and Applications 89

Fig. 5 Illustrating two kinds of uncertain data: tuple uncertainty (a) and attribute uncertainty
(b). The last column of (a) (Conf., i.e., confidence) indicates the probability that the tuple
exists in the table. The highlighted tuples are mutually exclusive (i.e., at most one of them
can be true).

most one of them can have the correct score. The tuple uncertainty model can be
considered as a generalization of the data model without uncertainty, in which
each tuple has probability one, and there are no mutual exclusion rules.

The second type of uncertainty is called attribute uncertainty. In this case, an
attribute is uncertain and we model each value of the attribute as a probabilistic
distribution. In the example of Figure 5(b), the measurements of the Speed
attribute can have errors and we model each speed value by a normal distribution.
This is in contrast with the traditional deterministic model in which each value of
an attribute is a fixed scalar value. Attribute uncertainty may also be considered
as a generalization of the data model without uncertainty, in which each value in
an attribute is some value with probability one (i.e., a discrete distribution).

Not only do the two kinds of uncertainty exist in the source data, but they also
exist in the query result. Let us look at an example. We take a simple table that
has attribute uncertainty as shown in Figure 5(b). We then issue a query as in
Figure 6(a). What would the result be? Each of the three tuples has a non-zero
probability to satisfy the predicate “Speed > 78”. For example, the first tuple’s
Speed attribute has a normal distribution with mean 90 and variance 20, and thus
has a high probability (say, 0.95) of satisfying the predicate. The second tuple, on
the other hand, has a normal distribution with a low mean (62) and has a tiny
probability (say, 0.001) of satisfying the predicate. Thus, we have tuple uncertain-
ty in the query result (last column in Figure 6(a)).

What about the selected “Speed” attribute in the result set? We know that only
if the Speed is above 78 should the tuple be in the result at all. Hence, we can rea-
son that the Speed attribute in the result should not be in its original form, but ra-
ther, a conditional distribution (conditioned on the predicate being true) based on
the original distribution. We illustrate this in Figure 6(b), which shows the exam-
ple for the first result tuple. We cut off the original distribution Normal (90, 20) at
the value 78, and only take the right side of the curve. Then, we need to normalize
it (by multiplying by a constant factor) so that the function still integrates to 1, as a

Object ID Speed

28 Normal (90, 20)

11 Normal (62, 15)

72 Normal (78, 10)

distribution

Tuple
ID

Soldier
ID

Time Location
(x, y)

Score for
Medical
Needs

Conf.

T1 1 10:50 (10, 20) 49 0.4

T2 2 10:49 (10, 19) 60 0.4

T3 3 10:51 (9, 25) 110 0.4

T4 2 10:50 (10, 19) 80 0.3

T5 4 10:49 (12, 7) 56 1.0

T6 3 10:50 (9, 25) 58 0.5

T7 2 10:50 (11, 19) 125 0.3

Tuple Uncertainty Attribute Uncertainty

(a) (b)

90 T. Ge, A. Dekhtyar, and J. Goldsmith

 (a) (b)

Fig. 6 Illustrating tuple uncertainty and attribute uncertainty in a query result. We issue the
query in (a) to the uncertain table in Fig. 4(b). Each of the three tuples has a non-zero
probability to be in the result---this is tuple uncertainty (last column in (a)). The “Speed” in
the result has attribute uncertainty – a conditional distribution shown in (b).

probability density function. We can see that the Speed attribute in the result is
still distributions, and we have attribute uncertainty in the result.

In addition, we may have sub-attribute uncertainty for some data types. For
instance, a text string attribute can have uncertain “characters” within it. As for-
malized by Jestes et al. (2010), a probabilistic string can have two models: the
string-level model and the character-level model, which we define next.

Definition 23 (string-level and character-level models) (Jestes et al. 2010). Let Σ be an alphabet. A probabilistic string in the string-level model is represented as , , , , … , , , where Σ , 0, 1 , and ∑ 1.
A character-level probabilistic string is 1 2 … , where each charac-
ter , , … , , , Σ, 0, 1 , and ∑ 1. That
is, a string consists of independently distributed characters, some of which can be
deterministic (i.e., 1).

While a string-level probabilistic string follows the aforementioned attribute un-
certainty (i.e., an attribute with a discrete distribution), a character-level model has
distributions (of characters) embedded inside a string attribute, which is why it is
termed sub-attribute uncertainty. Sub-attribute uncertainty has the finest granulari-
ty among the uncertainty models. Indeed, as shown by Ge and Li (2011), an index
(for substring search) will point to uncertain character positions inside a string
attribute, which can potentially be very long (e.g., millions, as in DNA strings).

4 Query Processing for Uncertain Data

We describe an algorithm that we devised to answer an arbitrary query on uncer-
tain data (Ge and Zdonik 2008). The algorithm is called Statistical sampling for
Equidepth Result distribution with Provable error-bounds, or SERP. SERP is
essentially a Monte Carlo randomized algorithm.

SELECT ObjectID, Speed FROM table
WHERE Speed > 78

Result?

Object
ID

Speed Prob.

28 ? 0.95

11 ? 0.001

72 ? 0.5

tuple uncertaintyattribute uncertainty

78 original distribution

conditional distribution
after normalization

Uncertain Data: Representations, Query Processing, and Applications 91

4.1 The SERP Algorithm

The basic idea of a Monte Carlo algorithm for processing uncertain data is that we
sample input data, run a query over the samples using a conventional query
engine, and then learn a probability distribution for each random variable in the
output, which includes any probabilistic field in a result tuple and a result tuple’s
existence probability in the result set.

The SERP algorithm uses a simple and consistent representation for both input
data to queries and output query results, namely equidepth histograms. We con-
sider probabilistic fields having continuous distributions. We can partition the
domain of a probability density function (PDF) into intervals such that for

each interval , it holds that . Thus, a distribution is “described”

by contiguous intervals and can be succinctly represented as 1 values indi-
cating the boundaries of the intervals: , , … , , where , is the ith
interval. We assume a uniform distribution within an interval.

This is reminiscent of equidepth histograms widely used in query optimizers,
and reflects the idea that the exact distribution of “high density areas” is more
important and should be given higher “resolution”. However, note the important
difference that each bucket of an equidepth histogram contains a number of actual
column values, whereas an equidepth distribution specifies the PDF of one
attribute field. This representation is quite compact, only needing k + 1 values to
describe a distribution.

Sampling from such a histogram representation is very simple: first pick one of
the intervals uniformly at random, and then pick a value from that interval un-
iformly at random. This sampling procedure will be used in the SERP algorithm. We
consider the query execution as a black box that takes input random variables (in
general) and produce a number of output random variables. The input random
variables are either binary random variables indicating input tuple probability or
probabilistic fields in the form of equidepth histograms as described above. Without
loss of generality, we only need to consider how we obtain the distribution of one of
the output probabilistic fields. Other fields are obtained in the same way. For exam-
ple, for SUM or AVG, the inputs are the uncertain fields in tuples and the output
is the result. The SERP algorithm (Ge and Zdonik 2008) is shown below.

Algorithm SERP , … ,

Input: , … , : probabilistic fields in equidepth histogram distributions
Output: the distribution of one output field

// Do the main loop of the algorithm.
// k is the number of intervals in a distribution, is to be determined later

1: for each 1, … , do
2: Sample each input , … , and get , … ,
3: Run the query over , … , and let the output be
4: end for

// Get the output distribution
5: Sort the output values as , … , where

92 T. Ge, A. Dekhtyar, and J. Goldsmith

6: Get contiguous intervals, each containing output values; the first interval
contains , … , , the second contains , … , , and so on. More pre-

cisely, let , … , be the interval boundaries, where (11), 2 , and 2 .
7: Return the contiguous intervals above as the result distribution.

In the algorithm, is a parameter that balances accuracy with performance, as

we will investigate in the analysis. Note that we model all inputs as uncertain. In
reality, some input values can be certain. It is straightforward to extend the algo-
rithm to the mixed case. Also note that from one execution on the samples to the
next, to be more efficient, we can share the query plan (i.e., the query is compiled
only once, and executed many times for each loop). Further, among different
executions, sub-results of parts of the query plan that only refer to data without
uncertainty can be shared. Another key optimization is on I/O cost. The database
engine can pay the I/O cost only once, and incrementally carry out the multiple
rounds of computation in parallel. It is easy to see that SERP is scalable. The cost
is no more than a constant factor of that of the same operation on data without
uncertainty, regardless of the number of tuples. Additionally, SERP works even if
there is correlation between different inputs. We just need to carry out the sam-
pling from the joint distribution.

4.2 Analysis of SERP

We measure the distance between the result distribution computed by some algorithm
and an “ideal” one based on the same input distributions, but given as much compu-
ting resources as needed. We use a well-known distance metric: variation distance.

Definition 24 (variation distance) (Mitzenmacher and Upfal 2005). The varia-
tion distance between two distributions and (each being a discrete probabil-
ity distribution) on a countable state space is given by ,∑ | |.
We first give some insights on the variation distance metric, as we will be using it
for analysis.

Lemma 2 (Mitzenmacher and Upfal 2005). Consider two distributions and
. For a state in the state space , if , then we say overflows

at x (relative to) by the amount . Likewise, if ,
then we say underflows at x (relative to) by an amount of .
We denote the total amount that overflows (and underflows, respectively) as

 (and , respectively). Then, , .

We are now ready to present a novel proof that SERP has a nice bound on the var-
iation distance between its result distribution and the ideal one, even though we do
not know the exact form of the ideal result distribution, nor do we make any as-
sumption on how to obtain it.

Uncertain Data: Representations, Query Processing, and Applications 93

Theorem 7 (Ge and Zdonik 2008). In the SERP algorithm, let and be para-
meters as described in the algorithm. Then, with probability at least 1 ·

, the variation distance between the result distri-

bution and the ideal one is no more than 0 0.5 .

Proof. Consider any one interval of the ideal distribution. Define random
variables 1 as follows: 1, 3 0, 3 .

Because is an interval of the ideal distribution, from the definition of the equi-

depth partition, we have Pr 1 , and hence . We define a ran-

dom variable ∑ , indicating the number of output ’s that fall in . From

the linearity of expectation, we have · . As is the sum of inde-
pendent 0/1 random variables, we can apply Chernoff bounds that for any 0 0.5, we have Pr 1 2 and Pr1 2 . Then from the union bound, Pr 1 2 1 2 .

Now consider all intervals and apply the union bound again: Pr . | | 2 · .

Hence, Pr , | | 2 1 · .

Thus, with probability at least 1 · , all inter-

vals contain sample result points whose number differs from the expected value by

no more than 2 . As each such point carries weight into the probability, and

there are either no more than overflow intervals (holding more than points) or

no more than underflow intervals, from Lemma 2, we get that the variation dis-

tance is no more than 2 · · . □

To get a numerical sense about the bound, we take 5, 0.2, and 60.
Then from Theorem 7, using 300 sample points (rounds), with probability at least
0.91, the variation distance between the result of the SERP algorithm and the ideal
distribution is no more than 0.2. This is a (rather conservative) theoretical guaran-
tee, and our experiments (Ge and Zdonik 2008) showed that, in practice, one can

94 T. Ge, A. Dekhtyar, and J. Goldsmith

obtain a small variation distance with significantly fewer rounds. On the other
hand, theoretical guarantees are important as they hold for any dataset while the
result of a particular experiment depends on its data.

4.3 Join Query Semantics

We now focus on an important kind of query, namely join queries, on uncertain
attributes. We show that there are two useful types of join operations specific to
uncertain attributes: value join (v-join) and distribution join (d-join) (Ge 2011). V-
join is a natural extension of the join operation on deterministic data. Let us first
look at an example.

Fig. 7 Illustrating v-join between two uncertain attributes

Example 2 (v-join). In Figure 7, we would like to examine the temperature
attributes in table R and in table S, and find pairs that are very close. Note that
both temperature attributes are uncertain and contain distributions, which appear
in various forms. For instance, N(78, 5) denotes a normal distribution with mean
78 and variance 5, while U(70, 75) is a uniform distribution in the range [70, 75]
and “hist(…)” indicates a histogram representation whose details we omit for
clarity. The query is:

SELECT R.ID, S.ID FROM R, S
WHERE

1.0, 0.8
. .R temperature S temperature=

This is called probabilistic threshold join query in previous work (Cheng et al.
2006). The interpretation of the join predicate is that with probability at least 0.8,
the difference between the two join attributes is no more than 1.0 degree, i.e.,
|R.temperature – S.temperature | ≤ 1.0.

For uncertain attributes (either numerical or categorical), there is a special kind of
join, which we call d-join. The idea of d-join is to treat probability distributions as
“objects” and the join operation is based on the similarity of two distributions. We
now look at some examples.

Example 3 (sensor fusion). For high availability, five sensors redundantly meas-
ure the same environmental physical property (e.g., temperature) in a sensor net-
work deployment on Great Duck Island (off the coast of Maine) (Szewczyk et al.

Table R

ID Temperature

1

2
3

… …

N (78, 5)

U (70, 75)
N (86, 10)

Table S

ID Temperature

1

2
3

… …

N (85, 6)

U (92, 94)
N (77, 8)

4 hist(…)

Table R

ID Temperature

1

2
3

… …

N (78, 5)

U (70, 75)
N (86, 10)

Table S

ID Temperature

1

2
3

… …

N (85, 6)

U (92, 94)
N (77, 8)

4 hist(…)

Uncertain Data: Representations, Query Processing, and Applications 95

2004). Due to the harsh environment and the unreliable nature of the sensors, the
readings can have large errors. A central database system performs a sensor fu-
sion and uses machine learning techniques (e.g., kernel methods) (Bishop 2007)
to obtain a temperature distribution from the five sensors. We record the tempera-
ture distributions at various times within two months in two tables (one for each
month). We want to query for two time instances (one from each month) that have
close temperatures.

Example 4 (data integration). Consider data integration from several sources.
We need to perform schema matching and record linkage to combine different
versions of the same data entity. However, due to schema and format inconsisten-
cies, a data entity can have a lot of uncertainty. In the integrated database, we
model the uncertainty with distributions (for either numerical or categorical val-
ues) (Dong et al. 2009). If two entities have similar distributions, then they are
likely to be close. It is useful to find out this information.

Example 5 (prediction queries). We use different statistical models to predict the
stock prices of a large number of companies one week from now (Brockwell and
Davis 2002). Different models gave different results and again, by using tech-
niques such as kernel methods (Bishop 2007), we can get a distribution of the
predicted price of each company, which is stored in relational tables. The query is
to ask for pairs of two companies that are likely to have very close stock prices at
that time.

In all these three examples, if we were to use v-join, even if two distributions are
exactly the same, the probability that the join predicate is satisfied might still be
insignificant. Here is a simple example. Suppose in Example 3, the five sensors
give readings that are quite different (the difference is more than the v-join value
difference parameter ε). Thus, the integrated temperature distribution has approx-
imately five buckets, each with the same probability (1/5). Even if we were to do a
v-join on two identical distributions as such, the probability that they are within ε
apart would be only about ∑ (i.e., when both random variables fall

into the same bucket). The observation here is that whether v-join is satisfied or
not heavily depends on the “width” of the two distributions (i.e., the uncertainty,
or, the entropy). V-join does not compare the two distributions themselves: two
identical distributions may still fail to match. However, in all these examples, the
fact that two distributions are close is also useful: it tends to indicate a special
relationship of the two tuple entities that are being joined; i.e., their uncertain
attributes are likely to be close in spite of the uncertainty. Essentially, we treat
probability distributions themselves as objects and we are joining such objects.
We are now ready to formalize v-joins and d-joins.

Definition 25 (domain partition scheme) (Ge 2011). The domain partition
scheme for an uncertain attribute is a many-to-one mapping of values in the do-
main of the uncertain attribute to a countable number of states.

96 T. Ge, A. Dekhtyar, and J. Goldsmith

Example 6 (domain partition scheme). If the domain of an uncertain attribute is
all positive real numbers, then one possible domain partition scheme is based on a
parameter step: we map all attribute values in the interval (0, step] to state 1, all
values in (step, 2×step] to state 2, and so on.

Consider two relations R and S that have uncertain attributes R.A and S.B. In R,
each record’s A attribute is a probability distribution, rather than a single value, as
in deterministic databases. The distribution can be encoded in various ways, in-
cluding well-known distributions (e.g., a normal distribution) and histograms. The
same is true for S.B.

We denote a join operation between R and S on attributes R.A and S.B as , , , where and are optional parameters. There are two types of join:
value join (v-join) and distribution join (d-join). A v-join has a join predicate that
is an (approximate) equality or an inequality with some probability threshold. For
example, a v-join predicate can be

,
. .

p
R A S B

ε
= , which means Pr(|R.A − S.B| < ε) ≥

p. This is a probabilistic version of a band join (DeWitt et al. 1991); for determi-
nistic data, when the predicate is |R.A − S.B| < ε, it is a band-join. Another exam-
ple is . .

p
R A S B< , which means Pr(R.A < S.B) ≥ p (ε is not present here). ε usually

denotes a small value and p is a probability threshold. Note that, when it is clear
from the context, we often use R.A to denote the random variable that represents
the A attribute of a tuple in R, and likewise for S.B. A d-join predicate is denoted
as . ~ .R A S B

ε
. It is equivalent to VD(R.A, S.B) ≤ ε, where VD(R.A, S.B) denotes the

variation distance (Definition 24) between a distribution in R.A and a distribution
in S.B, and R.A and S.B have a common set of states resulting from their domain
partition schemes (Definition 25).

4.4 Efficiently Processing V-joins

4.4.1 Using the First Two Moments

Our query processing techniques for v-join are based on probability theory. Spe-
cifically, the kth moment of a random variable X is defined as E[Xk]. The moments
are a concise way to describe the nature of the distribution of a random variable.
The first moment is the expectation of the random variable while the first two
moments determine the variance of the random variable: Var[X] = E[X2] − (E[X])2.
In fact, all moments of a variable together uniquely define its distribution (Mit-
zenmacher and Upfal 2005). Simply computing and storing the first two moments
(or equivalently, the expectation and variance) of a random variable (in our con-
text, an uncertain attribute of a record is a random variable) incurs little overhead
but, as we show, is very useful in making quick decisions during v-join in order to
improve the speed. In some well-known distributions, such as Gaussian, the ex-
pectation and variance come for free, since they are part of the description of the
distribution.

Uncertain Data: Representations, Query Processing, and Applications 97

Probabilistic Band Join. Perhaps the most often used v-join is the probabilistic
band join; i.e., when the join predicate is

,
. .

p
R A S B

ε
= . The basic method for eva-

luating this predicate is by computing a double integral of the form

, where x is a random variable in R.A, y is a random
variable in S.B and f1(x) and f2(y) are the density functions of x and y, respectively.
The result p’ is the probability that R.A and S.B (of two tuples) are at most ε apart.
Note that the v-join predicate is satisfied if and only if p’ ≥ p.

The problem with the above solution is that it is very CPU expensive. There-
fore, we wish to use probability bounds to improve the speed of evaluating such a
predicate. Define a random variable X = R.A – S.B. Then the predicate is equiva-
lent to:

 Pr | | . (1)

Let E(X) = E(R.A) – E(S.B) = λ. Then we have the following three cases, as shown
in Figure 8.

Fig. 8 Illustrating the three cases of

Case (a): λ > ε. We would like to know if (1) must be false, in which case we can
exclude the tuple pair. From the Cantelli's inequality (Grimmett and Stirzaker
2001), we have: Pr | | Pr Pr .

If , then condition (1) must be false.

Case (b): λ < -ε. Similar to case (a), we would like to use Cantelli’s inequality to
see if we can determine that (1) must be false and rule out the tuple pair: Pr | | Pr Pr .

If , then condition (1) must be false.

Case (c): - ε < λ < ε. In contrast to the previous two cases, we would like to see if
(1) must be true and hence the tuple pair satisfies the v-join condition. From Can-
telli’s inequality, we have: Pr Pr , Pr Pr , Pr | | 1 Pr 1 .

0 ε-ε λ = E(X) = E(A) – E(B)

case (a)case (b) case (c)

0 ε-ε λ = E(X) = E(A) – E(B)

case (a)case (b) case (c)

98 T. Ge, A. Dekhtyar, and J. Goldsmith

The last inequality is due to the union bound. Thus, if 1
, then condition (1) must be true.

Now suppose we are only given the moments of the two fields being joined. For
clarity, we write A for R.A and B for S.B. For the above methods to work, we need
to express λ and Var(X) using the moments of A and B. From the linearity of ex-
pectation, λ = E(X) = E(A) – E(B). With the typical assumption that A and B are
independent, we have Var(X) = Var(A) + Var(B) = E(A2) – E2(A) + E(B2) – E2(B).

Therefore, only using the first two moments of A and B, we can quickly ex-
clude the (A, B) pair from the join result (Cases a and b) or include it in the result
(Case c) if the conditions in those cases are met. If the pair is neither excluded nor
included, we need to resort to the “old-fashioned” way of computing the actual
probability that |A – B| < ε by a double integral (or summation if they are discrete)
as in (1) to see if it is greater than p. We can save a great deal of computational
cost by using moments and probabilistic bounds to make quick judgments.

Other Inequality V-joins. Thus far we have only considered probabilistic band
join; we now turn to other inequality v-joins. We only demonstrate . .

p
R A S B< ; we

can apply similar techniques to other inequalities. Again we define a random vari-
able X = R.A – S.B. Let E(X) = λ. We now examine two cases:

Case (a): λ < 0. Then, Pr . . Pr 0 Pr .

If 1 , it must be true that Pr . . and the predicate is

satisfied.

Case (b): λ ≥ 0. Then we see if we can exclude the tuple pair: Pr . . Pr 0 Pr .

If , it must be true that Pr . . and the tuple pair is ex-

cluded from the result. Details such as obtaining λ and Var(X) from the moments
of R.A and S.B are the same as in the discussions for probabilistic band join.

We also devise indexing techniques for v-join queries. For additional details, we
refer the reader to Ge (2011).

4.5 Efficiently Processing D-joins

4.5.1 The Condensed D-join Algorithm

In this section, we examine how we can process d-join queries efficiently. We can
perform a d-join on two uncertain attributes if their domain partition schemes (Defi-
nition 3) result in a common set of states. Let the size of the state space S resulting

Uncertain Data: Representations, Query Processing, and Applications 99

from the domain partition schemes be n. Then the “features” of an uncertain distri-
bution with respect to S can be described as (p1, p2,…, pn), meaning that the uncer-
tain field has probability pi of being in state si. By taking this vector, we can map an
uncertain distribution to a point in the n-dimensional space. It is then easy to verify
that the variation distance between two distributions exactly maps to half of the L1
distance between the two corresponding points in the n-dimensional space.

This discussion leads us to the direction that a d-join can be reduced to a simi-
larity join, which is well studied in the database literature (e.g., Koudas and Sev-
cik 2000). There are many competing algorithms that can do similarity join. How-
ever, there is a common phenomenon among the algorithms: due to the “curse of
dimensionality”: as dimensionality increases, performance deteriorates significant-
ly. For example, as shown in Koudas and Sevcik’s Figure 17 (2000), the response
time grows 17fold as the dimensionality increases from 3 to 20 with the same
number of data points for both algorithms, as shown by Koudas and Sevcik
(2000). We therefore propose an algorithm called condensed d-join, as shown be-
low. The algorithm starts by reducing the dimensionality by a procedure called a
condensation scheme, as we now define.

Definition 26 (condensation scheme) (Ge 2011). A condensation scheme for an
uncertain attribute is an onto function f: S → S’, where S is the original state space
determined by the domain partition scheme of the attribute and S’ is a state space
with a smaller cardinality, i.e., |S’ | < | S |. The space S’ is called the condensed
state space.

Algorithm CONDENSED-D-JOIN . , . ,

 Input: Two uncertain attributes R.A and S.B whose domain partition schemes
have the same states; and value ε.
 Output: Pairs of R.A and S.B that satisfy . ~ .R A S B

ε
.

1: Precomputation step: Determine the best condensation scheme for either R.A
or S.B using the algorithm in Section 4.5.2.

2: In the condensed state space determined in line 1, we get the new distribu-
tions for all fields in R.A and S.B. If a new state is the merge of a number of
previous states, then its probability is the sum of the probabilities of the origi-
nal states.

3: Phase 1: Use any existing similarity join algorithm to compute the join result
based on the smaller state space, using the L1 distance metric and the distance
parameter 2ε.

4: Phase 2: Among the qualified tuple pairs selected in line 3, further refine the
selections by computing the variation distance (VD) over the original state
space.

Line 1 of the algorithm is to determine the optimal condensation scheme ac-

cording to any one side of the join and is typically pre-computed. The condensa-
tion algorithm combines a number of neighboring states into one and sums up
their probabilities. We thus get the new probability distributions in line 2. Phase 1

100 T. Ge, A. Dekhtyar, and J. Goldsmith

of the condensed d-join is performed in line 3, where we essentially reduce the d-
join problem to the similarity join of multidimensional points (with the parameter
value 2ε). Because of the reduced dimensionality, it is much faster. Over the quali-
fied tuple pairs, we perform the second phase, which is a post-processing as
shown in line 4. The goal of the two phase approach is to avoid the slow perfor-
mance caused by high dimensionality. The quality of the condensation scheme is
of a critical role here since it impacts the number of false positives that must be
filtered out in the post-processing phase. We study the optimal condensation
scheme in detail in Section 4.5.2.

We show the correctness of the CONDENSED-D-JOIN algorithm.

Lemma 3 (Ge 2011). Over the original state space determined by the domain
partition scheme, let distribution D1 come from R.A and D2 come from S.B. After
the condensation, let the distributions (in step 2) be D1’ and D2’. Then VD(D1’,
D2’) ≤ VD(D1, D2).

Proof. Suppose the condensation scheme merges k states s1, s2, …, sk into a single
state s’. Let D1 have probabilities p11, p12, …, p1k and D2 have probabilities p21,
p22, …, p2k in those states, respectively. Then step (2) of the algorithm indicates
that D1’ has probability p1’ = p11+ p12+ …+ p1k in state s’ while D2’ has probability
p2’ = p21+ p22+ …+ p2k in state s’. It holds that:

 | p1’− p2’| = |(p11− p21) + (p12− p22) +…+ (p1k− p2k)|
 ≤ | p11− p21| + | p12− p22| +…+ | p1k− p2k |.

Thus, iterating this over all states of D1’ and D2’, summing up the inequalities as
produced above, and finally dividing both sides of the resulting inequality by 2,
we get VD(D1’, D2’) ≤ VD(D1, D2), which directly follows from the definition of
VD.

Theorem 8 (Ge 2011). The CONDENSED-D-JOIN algorithm gives the correct
result.

Proof. From Lemma 3, we know that if, in the original state space, the VD between
two distributions is less than ε, then it must also be true after the condensation. Thus,
phase 1 of the d-join (step 3) will not miss any result tuples that should be returned.
Finally, the second phase of the algorithm filters out all false positives.

4.5.2 The Optimal Condensation Scheme

Consider an uncertain attribute and a condensation scheme that reduces the num-
ber of its states from n to k (k < n). The question now is how we should merge the
states in the original state space S. Let us look at a motivating example. Figure
9(a) shows the distributions of an uncertain attribute. The solid vertical lines de-
scribe the domain partition scheme: an interval between two neighboring lines is a
state. Suppose the (blue) dotted lines indicate a potential condensation scheme:
there are three condensed states: the interval [v1, v2) is the first condensed state,
[v2, v3) is the second, and [v3, v4] is the third. It appears to be a fair condensation

Uncertain Data: Representations, Query Processing, and Applications 101

scheme as each condensed state contains about the same number of the original
states. However, let us suppose that 1000 distributions fall in the middle range,
i.e., between v2 and v3, while there is only one distribution in the first and third
condensed states, respectively.

 (a) (b) (c)

Fig. 9 (a) The necessity of a good condensation scheme, (b & c) illustrating the concept of
“minimum disturbance” of a condensation scheme as measured by variation distance

Then this condensation scheme loses a lot of information: all of the 1000 distri-
butions have the same distribution (0, 1, 0) in the condensed state space (each
number is the probability of one state). In other words, it is not discriminative. In
the condensed space, if one of the 1000 distributions matches with a distribution
in another column for d-join, so will all other 999 distributions. We therefore need
a principled algorithm to make the condensation scheme more discriminative.

But how to make it discriminative? The idea is to make the new distributions
after applying the condensation scheme as faithfully as possible to the original
ones. The faithfulness is again measured by variation distance. Clearly condensa-
tion would lose some information about the distributions. Thus, we would prefer a
scheme that would result in new distributions that have the minimum distance
from the original ones, which we call minimum disturbance. It is quantified by the
sum of the variation distances between each new distribution and its original one,
in the original state space. Since a new distribution can be considered as a lossy
compression of the original one, when we convert the new distribution back to its
original state space, we simply divide the probability of a condensed state by the
number of the original states that map to it. This is because we do not distinguish
between those states in the condensed space.

Therefore, when computing the variation distance between an original distribu-
tion and the new one, we compare the probabilities of the original states with their
averages in each group, where each group corresponds to a condensed state. We
illustrate this in Figure 9(b). In Figure 9(c), the original distribution is mapped to a
point d1 in the multi-dimensional space. For d-join we need to compute the dis-
tance between d1 and a point d2 that represents a distribution in another column.
The condensation step brings d1 to another point d1’. The point d1’ corresponds to
the conversion of the new distribution back to its original state space, which we
describe in the previous paragraph. Even though d2’s position is not known a pri-
ori, by minimizing the distance between d1 and d1’, the distance between d1 and d2
is optimally approximated by the distance between d1’ and d2. Moreover, this
optimization problem is over all distributions in an uncertain column.

p

v

1000 distributions
v1 v2 v3 v4

p

v

1000 distributions
v1 v2 v3 v4

p

v
d1

d2

d1
’

p

v
d1

d2

d1
’

102 T. Ge, A. Dekhtyar, and J. Goldsmith

We first formalize the problem (Ge 2011). An uncertain column has N proba-

bility distributions. The column follows a domain partition scheme that consists of
n states in some serial order (e.g., n small buckets in value order). The goal of our
condensation scheme is to merge some neighboring states in order to reduce them
to k states (k < n). The scheme is chosen in such a way that the variation distance
between the new distribution and the original one, summing over all records of the
column, is minimized.

Let us denote the optimal (i.e., minimum) sum value (over the whole column)
of the variation distances between the new distributions and the original ones as
D(k, n), where k is the target number of condensed states and n is the original
number of states. We then have the following recursion:

 ()

1

(,) min [(1, 1) (,)]
N

r

k i n
r

D k n D k i C i n
≤ ≤ =

= − − + (2)

where C(r)(i, n) is the “cost” of merging states from i to n into a single new state
for the distribution in record r. This cost is just the part of the variation distance
between the two distributions at states from i to n. More precisely (recall Figure 8
b & c),

 () () () () ()1 1
(,) | |,

2 1

n n
r r r r r

j i i j
j i j i

C i n p a where a p
n i= =

= − =
− +

.

(3)

Here pj
(r) is the probability of the jth state in the rth distribution. We also note the

boundary condition that

 ()

1

(1,) (1,), 1 1
N

r

r

D i C i for i n k
=

= ≤ ≤ − +
.

 (4)

We then can have an efficient dynamic programming algorithm for this problem,
as illustrated in Figure 10(a). The figure shows a “D table” for values of the D
function in Equation (1). The row numbers of the D table (1 to k) are the first pa-
rameter of the function while the column numbers (1 to n) are the second parame-
ter. Our target value is D(k, n), which is indicated by the red “?” at the bottom
right corner of the D table. From the recursion in Equation (1), the target value can
be obtained from the values in the row above, assuming we already have all the C
values. The whole process can be recursively applied for each cell in the table. We
therefore have a top-down procedure to fill in the shaded region in Figure 10(a)
row by row, starting from the boundary condition as described in Equation (4).

In the above algorithm, we assume that we have all the C values. We now de-
scribe how to obtain them. We simply do a scan of the whole uncertain column
and compute the aggregation of the C values as described in Equation (3). Figure
10(b) illustrates the C table. It is not hard to verify from Equations (2) and (4) that
we only need to fill in the shaded region of the C table (C is a two-dimensional
array). As we scan the column and get each distribution, we obtain the C values of
the shaded region using Equation (3). Because in Equations (2) and (4) we require
a sum of the C values over all distributions, we do the aggregation (sum) for each
cell of the shaded region of the C table as we scan each distribution of the column

Uncertain Data: Representations, Query Processing, and Applications 103

 (a) (b)

Fig. 10 A dynamic programming algorithm to get the D function (a) and a column scan to
obtain the aggregated C values (b)

one by one. Eventually, when we finish scanning the uncertain column, each cell
of the C table contains a sum value. Combining the above two algorithms (i.e.,
getting the C table followed by getting the D table), we have an efficient method
to obtain the optimal condensation scheme.

5 Related Work

There has been substantial work on managing uncertain data and information in
recent years due to the rise of new applications that demand this capability.

Nilsson's seminal paper on probabilistic logic (Nilsson 1986) introduced the
notion of reasoning with probabilities to the field of artificial intelligence. The
possible worlds semantics proposed by Nilsson has become a de facto standard for
interpreting statements about probabilities both in the field of AI and, a bit later, in
the field of databases. The key idea expressed by Nilsson is that in a world with
multiple discrete random variables with finite domains, each random variable
must take an exact value, and the uncertainty essentially expresses the lack of in-
formation an observer has. Each assignment of values to all random variables in
the model (universe) is known as a possible world. If a probability is associated
with each possible world, then a probability of a random variable taking a specific
value is computed as the sum of probabilities of all possible worlds in which this
assignment occurs.

The first work on probabilistic databases did not directly use the possible world
semantics. However, the proposed frameworks were consistent with it. Cavallo
and Pittarelli (1987) were perhaps the first who studied probabilistic data in the
context of databases. They proposed a framework in which a probabilistic relation
represented a single probability distribution. Tuples in such relations represented
the probabilities of specific outcomes. Cavallo and Pittarelli defined two query
algebra operations for working with such data: join, which produced a joint
probability distribution for a pair of probabilistic relations, and selection, which
returned the probabilities of specific outcomes.

Most of the work that followed the work of Cavllo and Pittarelli (1987), however,
adopted a different view about what should be represented by a probabilistic relational
table. Just as individual tuples in classical relational tables represent independent

1 2 n-1 n
1
2

k-1
k ?

n

n k

k

D table C table

1 2 n-1 n
1
2

k-1
k ?

n

n k

k

D table C table

104 T. Ge, A. Dekhtyar, and J. Goldsmith

statements of fact, in these approaches each tuple in a probabilistic table represents a
single probability distribution. The first to propose this approach in early 1990s were
Barbara, Garcia-Molina and Porter (1992). In their framework a relation had a set of
certain attributes that jointly formed a primary key, and a collection of uncertain
attributes, over which a probability distribution was defined. Dey and Sarkar (1996)
built a 1-NF representation of the probabilistic relations of Barbara et al. (1992) and
described an extensive query algebra, which included such probabilistic database-
specific operations as data compaction/ coalescence and conditionalization operations.
The former, given two or more probability distributions for the same event, produces a
consensus probability distribution. The latter computes the conditional probability
distribution conditioned on a specific value of one or more of the uncertain attributes.

Zimanyi explicitly introduced possible worlds semantics of Nilsson to probabil-
istic databases (Zimanyi 1997). His framework uses the language of first-order
probabilistic logic introduced by Halpern (1990). Zimanyi treats each probabilistic
relation as a formula in the first-order probabilistic logic. He then defines full
query algebra on by specifying how the formulas describing the probabilistic rela-
tions change when the operation is performed. While this approach is not very
practical, it provides a clear semantics for query algebra operations.

In the mid- to late 1990s, a number of research groups extended probabilistic
relational database frameworks. The work on the Semistructured Probabilistic
Databases model (SPO) described in this chapter takes its roots from two such
directions. The first is the work of Kornatzky and Shimony who proposed the first
object-oriented probabilistic database framework (Kornatzky and Shimony 1994).
This was, to our knowledge, the first extension of the work on probabilistic data-
bases that extended beyond relational database model. In the framework of Kor-
natzky and Shimony, uncertainty was associated not just with the specific values
of attributes, but also with the hierarchical structure of the objects themselves.

The second precursor to the work on the SPO model was ProbView, a relation-
al probabilistic database management system which was the first framework to
introduce interval probabilities to represent uncertainty in data. (Lakshmanan et
al. 1997). ProvView stored the data in a compact, non-1-NF form, similar to the
approach of Barbara et al. (1992). The semantics of the data though was defined
using the 1-NF annotated probabilistic relations similar to those considered by
Dey and Sarkar (1996). The query algebra operated on the annotated relations, so
to answer a query ProbView translated the data into annotated form and performed
the requisite operations.

In late 1990s, research on specific types of uncertainty in data appeared. Dyreson
and Snodgrass (1998) considered temporal indeterminancy and introduced a proba-
bilistic temporal database framework. Dekhtyar, Ross and Subrahmanian (2001)
adopted and improved the ProbView approach to management of probabilities in
temporal databases.

The SPO model (Dekhtyar et al. 2001, Zhao et al. 2005) came out of the obser-
vations that most of the probabilistic database frameworks at the time were not
designed to store arbitrary probability distributions of multiple discrete random
variables (with finite domains). A semistructured probabilistic object can store
any probability distribution regardless of how many and which random variables

Uncertain Data: Representations, Query Processing, and Applications 105

are in it, what meta-data about the variables is present and known, and whether the
probability distribution is conditional. The SPO framework was further relaxed by
introducing interval probabilities to represent uncertainty (Goldsmith et al. 2003,
Zhao et al. 2003, Zhao et al. 2004).

In parallel with our work on the SPO model, a number of alternative frameworks
for management of uncertainty using semistructured data models and XML
emerged. Hung et al. (Hung et al. 2003, Hung et al. 2003A) proposed Probabilistic
XML framework (PIXML) to encode information about probability distribution.
Nierman and Jagadish (2002) introduced ProTDB framework for the same purpose.

Some work addresses imprecise and uncertain data in sensor networks (Cheng
et al. 2003, Deshpande et al. 2004, Tran et al. 2010, among others). The work pre-
sented in Sections 3 and 4 differs from the sensor network-based work in that we
can process arbitrary query types based on the possible world semantics, but are
not restricted to specific query operators. Note, however, that some of these ap-
proaches were shown to be more efficient (Tran et al. 2010). Independently, the
MCDB project at University of Florida and IBM (Jampani et al. 2008) also em-
ployed Monte Carlo query processing for uncertain data, and focused on efficient
integration of their techniques into a system. Previous work that is based on tuple
uncertainty includes that by Dalvi and Suciu (2004) and by Benjelloun et al.
(2006). In this chapter, our proposed techniques focus on attribute uncertainty,
which is common in a number of application domains that we present.

Cheng et al. (2006) proposed probabilistic threshold join, which is similar to
our v-join semantics. However, their query processing is based on x-bounds,
which are a number of bounds for some data structure (e.g., each data page), un-
like our dynamic filtering bounds using probability theory. In addition, we study
indexing for efficient joins and a second type of semantics, d-join, which is useful
for different applications.

Similarity join on data points in multidimensional space is well studied (e.g.,
Koudas and Sevcik 2000). The connection between this line of work and our work
on d-join is due to the fact that we can reduce a d-join to a similarity join. Howev-
er, when the dimensionality is high, with any existing technique, there is invaria-
bly a significant performance penalty. Our design of the condensed d-join and the
optimal condensation scheme are a novel contribution. Dimensionality reduction
is also studied for indexing time series databases (e.g., Keogh et al. 2001). How-
ever, a salient difference in discrete probability distributions than time series fea-
tures is the constraint that probability values are between 0 and 1 and sum to 1.
We take advantage of this and devise a simple, efficient, and optimal condensation
algorithm. Finally, band-join on deterministic data was studied by DeWitt et al.
(1991). V-join can deal with a variant of band-join on uncertain data, where the
old techniques cannot be applied.

6 Conclusions

We have introduced several approaches to computation with probabilities, and
given introductions to databases to support these approaches. The first approach,
the Semistructured Probabilistic Objects framework, treats joint and conditional

106 T. Ge, A. Dekhtyar, and J. Goldsmith

probability distributions as fundamental data objects. This supports reasoning
with Bayesian networks, hidden Markov models (HMMs), and other probabilistic
graphical models. We have discussed the queries possible with standard probabili-
ty distributions, and mentioned some of the issues that arise when probability in-
tervals are used. We also mention two implementations of the SPDBMS. The
second approach, the tuple and attribute uncertainty framework, takes a data-
centric approach and more tightly couples probability distributions with “data”
itself. That is, either entities (tuples) or their properties (attributes) are extended
with probabilities. We have discussed the semantics of general SQL queries, in-
cluding joins, in this framework, and proposed some efficient query processing
techniques.

We have presented a number of application scenarios in which significant
uncertainty is present, and in which each of our approaches would be useful. We
believe that a broad range of applications, albeit all containing uncertain informa-
tion, would require database techniques tailored to their specific requirements.

As future work, it would be interesting to seamlessly integrate our approaches
and produce an even more powerful system that can meet the diverse needs of
modern applications.

References

Barbará, D., Garcia-Molina, H., Porter, D.: The Management of Probabilistic Data. IEEE
Trans. Knowl. Data Eng. 4(5), 487–502 (1992)

Benjelloun, O., Das Sarma, A., Halevy, A., Widom, J.: ULDBs: Databases with Uncertain-
ty and Lineage. In: VLDB (2006)

Bishop, C.: Pattern Recognition and Machine Learning. Springer (2007)
Block, C., Collins, J., Ketter, W.: Agent-based competitive simulation: Exploring future

retail energy markets. In: Twelfth International Con-ference on Electronic Commerce,
ICEC 2010, pp. 67–76. ACM (August 2010)

Brockwell, P., Davis, R.: Introduction to Time Series and Forecasting, 2nd edn. Springer
Texts in Statistics (2002)

Burton, P., et al.: Size matters: just how big is BIG? – Quanti-fying realistic sample size
requirements for human genome epidemiology. International Journal of Epidemiolo-
gy 38, 263–273 (2009)

Cavallo, R., Pittarelli, M.: The Theory of Probabilistic Databases. In: VLDB, pp. 71–9
(1987)

de Campos, L.M., Huete, J.F., Moral, S.: Uncertainty Management Using Probability Inter-
vals. In: Proc. International Conference on Information Processing and Management of
Uncertainty (IPMU 1994), pp. 190–199 (1994)

Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluating probabilistic queries over imprecise
data. In: SIGMOD (2003)

Cheng, R., Singh, S., Prabhakar, S., Shah, R., Vitter, J., Xia, Y.: Efficient Join Processing
over Uncertain Data. In: CIKM (2006)

Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB
(2004)

Uncertain Data: Representations, Query Processing, and Applications 107

Dekhtyar, A., Goldsmith, J., Hawkes, S.R.: Semistructured Probalistic Databases. In: Proc.
SSDBM, pp. 36–45 (2001)

Dekhtyar, A., Ross, R.B., Subrahmanian, V.S.: Probabilistic temporal databases, I: algebra.
ACM Trans. Database Syst. 26(1), 41–95 (2001)

Dekhtyar, A., Kevin Mathias, K., Gutti, P.: Structured Que-ries for Semistructured Proba-
bilistic Data. In: Proc. 2nd Twente Data Manage-ment Workshop (TDM), pp. 11–18
(June 2006)

Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-driven data
acquisition in sensor networks. In: VLDB (2004)

DeWitt, D., Naughton, J., Schneider, D.: An Evaluation of Non-Equijoin Algorithms. In:
VLDB (1991)

Dey, D., Sarkar, S.: A Probabilistic Relational Model and Algebra. ACM Trans. Database
Syst. 21(3), 339–369 (1996)

Dong, X., Halevy, A., Yu, C.: Data integration with uncer-tainty. The VLDB Journal (April
2009)

Dyreson, C.E., Snodgrass, R.T.: Supporting Valid-Time Indeterminacy. ACM Trans. Data-
base Syst. 23(1), 1–57 (1998)

Ge, T.: Join Queries on Uncertain Data: Semantics and Efficient Processing. In: The Pro-
ceedings of the IEEE 27th International Conference on Data Engineering (ICDE 2011),
Hannover, Germany (April 2011)

Ge, T., Li, Z.: Approximate Substring Matching over Uncertain Strings. The Proceedings of
the VLDB Endowment (PVLDB Journal) 4(11), 772–782 (2011)

Ge, T., Zdonik, S.: Handling Uncertain Data in Array Database Systems. In: Proceedings of
the IEEE 24th International Conference on Data Engineering (ICDE 2008), Cancun,
Mexico (April 2008)

Goldsmith, J., Dekhtyar, A., Zhao, W.: Can Probabilistic Databases Help Elect Qualified
Officials? In: Proceedings FLAIRS 2003 Conference, pp. 501–505 (2003)

Grimmett, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford (2001)
Halpern, J.: An Analysis of First-order Logic of Probability. Artificial Intelligence 46(3),

311–350 (1990)
Hung, E., Getoor, L., Subrahmanian, V.S.: PXML: A Probabilistic Semistructured Data

Model and Algebra. In: ICDE (2003)
Hung, E., Getoor, L., Subrahmanian, V.S.: Probabilistic Interval XML. In: ICDT 2003, pp.

358–374 (2003)
Jaffray, J.: Bayesian Updating and Belief Functions. IEEE Trans. on Systems, Man and

Cybernetics 22(5), 1144–1152 (1992)
Jampani, R., Xu, F., Wu, M., Perez, L., Jermaine, C., Haas, P.: MCDB: A Monte Carlo

Approach to Managing Uncertain Data. In: SIGMOD (2008)
Jestes, J., Li, F., Yan, Z., Yi, K.: Probabilistic String Similarity Joins. In: SIGMOD, pp.

327–338 (2010)
Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M.: Locally Adaptive Dimensionality

Reduction for Indexing Large Time Series Databases. In: SIGMOD (2001)
Komatsu, K., et al.: Gene expression profiling following constitutive activation of MEK1

and transformation of rat intestinal epithelial cells. Molecular Cancer 5, 63 (2006)

108 T. Ge, A. Dekhtyar, and J. Goldsmith

Kornatzky, Y., Shimony, S.E.: A Probabilistic Object-Oriented Data Model. Data Knowl.
Eng. 12(2), 143–166 (1994)

Koudas, N., Sevcik, K.: High Dimensional Similarity Joins: Algorithms and Performance
Evaluation. In: TKDE (2000)

Lakshmanan, L.V.S., Leone, N., Ross, R.B., Subrahmanian, V.S.: ProbView: A Flexible
Probabilistic Database System. ACM Trans. Database Syst. 22(3), 419–469 (1997)

Mann, M., Hendrickson, R., Pandey, A.: Analysis of Proteins and Proteomes by Mass
Spectrometry. Annu. Rev. Biochem. 70, 437–473 (2001)

McDonald, M.: To Build a Better Grid. NY Times. July 28 (2011)
Mitzenmacher, M., Upfal, E.: Probability & Computing: Randomized Algorithms and

Probabilistic Analysis. Cambridge U. Press (2005)
Nierman, A., Jagadish, H. V.: ProTDB: Probabilistic Data in XML. In: VLDB 2002, pp.

646–657 (2002)
Nilsson, N.J.: Probabilistic Logic. Artificial Intelligence 28(1), 71–87 (1986)
Ng, R., Subrahmanian, V.S.: Probabilistic Logic Programming. Inf. Comput. 101(2), 150–201

(1992)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers (1988)
Rosson, E.: Native XML Support for Semistructured Probabilistic Data Management, M.S.

Thesis, Department of Computer Science, California Polytechnic State University (May
2008)

Szewczyk, R., et al.: An analysis of a large scale habitat monitoring application. In: SenSys
(2004)

Tatbul, N., Buller, M., Hoyt, R., Mullen, S., Zdonik, S.: Confidence-based Data Manage-
ment for Personal Area Sensor Networks. In: DMSN (2004)

Thiagarajan, A., Ravindranath, L., LaCurts, K., Mad-den, S., Balakrishnan, H., Toledo, S.,
Eriksson, J.: VTrack: Accurate, Energy-Aware Road Traffic Delay Estimation Using
Mobile Phones. In: SenSys (2009)

Tran, T., Peng, L., Li, B., Diao, Y., Liu, A.: PODS: A New Model and Processing Algo-
rithms for Uncertain Data Streams. In: SIGMOD (2010)

Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall (1991)
Weichselberger, K.: The theory of interval-probability as a unifying concept for uncertain-

ty. Int. J. Approx. Reasoning 24(2-3), 149–170 (2000)
Zhao, W., Dekhtyar, A., Goldsmith, J.: Query algebra operations for interval probabilities.

In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736,
pp. 527–536. Springer, Heidelberg (2003)

Zhao, W., Dekhtyar, A., Goldsmith, J.: Databases for interval probabilities. Int. J. Intell.
Syst. 19(9), 789–815 (2004)

Zhao, W., Dekhtyar, A., Goldsmith, J.: A Framework for Management of Semistructured
Probabilistic Data. J. Intell. Inf. Syst. 25(3), 293–332 (2005)

Zimányi, E.: Query Evaluation in Probabilistic Relational Databases. Theor. Comput.
Sci. 171(1-2), 179–219 (1997)

	Uncertain Data: Representations, Query Processing, and Applications
	Probabilistic Databases and Their Applications
	Sensor Networks and Ubiquitous Computing
	Scientific Databases

	Semistructured Probabilistic Database Management Systems
	Semistructured Probabilistic Objects
	The SP-algebra for Point Probabilities
	Extensions of the SPO Framework

	Modeling Uncertain Data
	Query Processing for Uncertain Data
	The SERP Algorithm
	Analysis of SERP
	Join Query Semantics
	Efficiently Processing V-joins
	Efficiently Processing D-joins

	Related Work
	Conclusions
	References

