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Abstract. We start by providing an overview of research on probabilistic spatiotem-
poral databases. The bulk of the paper is a review of our previous results about prob-
abilistic spatiotemporal databases using the SPOT approach. Presently these results
are scattered in various papers and it is useful to provide a uniform overview. We
also present numerous interesting research problems using the SPOT framework
for probabilistic spatiotemporal databases that await further work.

1 Introduction

In recent years much interest has focused on the tracking of moving objects and
reasoning about moving objects. Particularly with GPS systems it becomes possi-
ble to track vehicles, cell phones, supply items, RFID tags, and the importance of
such tracking continues to increase. Clearly, space and time are important factors
in this endeavor but probability is also useful. The reason for that is that the loca-
tions, and possibly the identity of the objects and the time may be known only with
some uncertainty and we can express such uncertainty by the use of probability. Fur-
thermore, we claim that in many cases the probability itself is not known exactly,
in which case the use of a probability interval is appropriate. Thus our framework
involves space, time, and probability intervals.
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A couple of years ago we became interested in providing a formalism for the
representation, querying, and updating of probabilistic spatiotemporal databases in
a straightforward manner with a simple syntax and an intuitive model-theoretic se-
mantics. For this purpose we introduced the SPOT (Spatial PrObabilistic Temporal)
framework in which a basic statement (atomic formula) states that a particular ob-
ject is in a particular region (for location) at a particular time with a probability that
is in a particular probability interval.

We then implemented the SPOT formalism and tackled several issues concerning
SPOT databases. In particular, we showed that several problems involving SPOT
databases can be transformed into linear programming problems. We developed in-
dexing methods to speed several types of selection queries. We also studied updating
SPOT databases in the spirit of AGM-style belief revision. Altogether we published
five papers on the SPOT approach. The purpose of this paper is to summarize our
results in one place and to propose numerous research questions for the further study
of probabilistic spatiotemporal databases in the SPOT framework.

We start in Section 2 by reviewing some of the important work done by other re-
searchers related to probabilistic spatiotemporal databases that did not use the SPOT
approach. Then Section 3 introduces the syntax and semantics of SPOT databases
and provides an example that will be used throughout the paper to illustrate various
concepts. Section 4 contains the fundamental results about SPOT databases includ-
ing the transformation to linear programming. The processing of certain kinds of
selection queries is discussed in Section 5; both optimistic and cautious answers are
considered. Section 6 reviews the algorithms for database updating/revision. Finally,
Section 7 contains interesting research questions.

2 Review of Previous Related Research

In order to place the SPOT framework in the proper context we now review re-
search related to it. This is by no means an exhaustive survey; we give a historical
background and briefly review some important papers; many additional references
appear in the works we mention. The problem of predicting where moving objects
will be in the future, when they will be there, and with what probability is intrinsi-
cally challenging. This can be easily understood by observing that reasoning with
just one or two of these three aspects (probability, space and time) is already quite
challenging. In fact, researchers have investigated separately probabilistic databases,
probabilistic spatial databases, probabilistic temporal databases, and probabilistic
spatiotemporal databases.

Kiessling and his group [28] develop the DUCK framework for reasoning with
uncertainty. They provide an elegant, logical, axiomatic theory for uncertain rea-
soning in the presence of rules. In the same spirit as Kiessling et al., Ng and Sub-
rahmanian [45] present a probabilistic semantics for deductive databases — they
assume absolute ignorance, and furthermore, assume that rules are present in the
system. Lakshmanan and Sadri [38] show how selected probabilistic strategies can
be used to extend the previous probabilistic models. Lakshmanan and Shiri [39]
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demonstrate how deductive databases may be parameterized through the use of con-
junction and disjunction strategies. Barbara et al. [3] develop a probabilistic data
model and propose probabilistic operators. Their work is based on the assumption
that probabilities of compound events can always be precisely determined. Cav-
allo and Pittarelli [8, 54], propose a model for probabilistic relational databases in
which tuples in a probabilistic relation are interpreted using an exclusive or. Dey and
Sarkar [15] propose an elegant 1NF approach to handling probabilistic databases.
In another work Kifer and Li [33] examine quantitative logic programming and in-
troduce formal semantics for such systems. Other systems from the probabilistic
database community also provide insight into probabilistic information reasoning
and storage [18, 19, 13, 34, 31]. Lukasiewicz and his colleagues [41, 42] study prob-
abilistic reasoning in logic programming, as does Dekhtyar [14]. However, none of
these works explicitly handle space or time.

The problem of efficiently storing and querying data representing spatial predic-
tions has deserved much attention by many researchers. Tao et al [60] develop an
indexing structure for spatial probabilistic data designed to solve a specific problem.
They assume that there is a single probability distribution function detailing where
an object might be at a given point in time in the entire space and their focus is on op-
timizing access to that probability density function. Using an R-tree-inspired U-tree
indexing structure they use hyperplanes to approximate the evolution of these prob-
abilistically constrained regions between time points. In [46], methods for dealing
with positionally uncertain spatial data are considered. Their data model associates
each point with a cluster, where points in the same cluster have the same error. This
model also allows only one pdf. The authors describe a PrR-tree for storing and
querying survey data, which uses a rectangular bounding region whose corners are
defined via Gaussian distributions. Like the above work, in [40], Lian et al use a
data model with one pdf over each object’s locations. They introduce probabilistic
group nearest neighbor queries, where given a set of points and a probability thresh-
old the system returns the set of objects that have minimal aggregate distance to the
set of points with a probability over the threshold. Dai et al [12] focus on proba-
bilities for the existence of a given object at a given point without worrying about
the possibility of the object being at another point. They show how to build an aug-
mented R-tree and use that tree to answer selection queries more effectively than
considering probability as an extra dimension in the R-tree. [7] uses a paradigm
called “line simplification” to approximate trajectories of moving objects, though
their framework does not involve uncertainty.

On the purely temporal side, Snodgrass is one of the first to model indetermi-
nate instances [59] — he proposes the use of a model based on three valued logic.
Dutta [17] later give a fuzzy logic based approach to handle generalized tempo-
ral events — events that may occur multiple times. This approach is also used by
Dubois and Prade [16]. Gadia [25] proposes an elegant model to handle incomplete
temporal information as well. He models values that are completely known, values
that are unknown but are known to have occurred, values that are known if they have
occurred, and values that are unknown even if they occurred. Koubarakis [36] pro-
poses the use of constraints for representing temporal data. Brusoni [6] develops a
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system called LaTeR that restricts constraints to conjunctions of linear inequalities,
as does Koubarakis’ work. [4] develops a framework to track uncertainty, time, and
the pedigree of data, but does not handle spatial information. As a matter of fact
none of these works handle both space and time.

There is also much work on spatio-temporal logics [24, 43] in the literature.
These logics extend temporal logics to handle space. This includes work on qual-
itative spatio-temporal theories (for a survey see [11, 44] [58] which discusses
the frame problem when constructing a logic-based calculus for reasoning about
the movement of objects in a real-valued co-ordinate system). [55] focuses on
relative position and the orientation of objects with existing methods for qualita-
tive reasoning in a Newtonian framework. Other efforts combine a spatial logic,
such as RCC − 8 [56], BRCC − 8 [62] and S4u [5], with propositional tempo-
ral logics (PT L ). The work on spatio-temporal reasoning is mostly qualitative
[11, 43, 63, 23], and focuses on relations between spatio-temporal entities while
dealing with discrete time. However, these works are not intended for reasoning
about moving objects whose location at a given point in time (past, present or fu-
ture) is uncertain (they not consider probabilities).

In addition to the above works on spatio-temporal logics, there are works on
logics integrating time and probabilities. Much of this work was performed in the
model checking community. The PRISM system [37] supports a mix of time and
probabilities for model checking with respect to specifications written in the tem-
poral probabilistic logics PCTL [30] and CSL [2]. However, none of these works
has any spatial element in them, and they focus on model checking, not on handling
knowledge bases. The work on “go” theories [20, 22, 21] focuses on spatio-temporal
logical theories that are sets of “go” atoms. Such atoms intuitively describe known
plans of moving objects. A go-atom states that an object will go from location A to
location B, leaving A at a time point in some time interval, arriving at B at a time
point in some interval, and traveling in the interim at a velocity within some stated
interval. [20] develops a basic theory of “go” theories, while [22] gives a closed
world assumption for such theories. Later, [51] extends this logic to include some
probabilistic information about such plans. Finally, the SPOT framework extends
this work to uncertainty about where objects might be at a given time [50, 49].

While there is substantial work in indexing spatial temporal data without proba-
bilities [52, 61, 35, 1, 53, 29], none of these works address a data model compatible
with our SPOT framework: they suppose no probabilities and model object move-
ment as linear. SPOT databases were developed by the authors in past work [50, 49]
to store such predictions without making the assumptions in prior work[60, 12, 7, 4].
In fact, our observations about the advantages of the SPOT approach hold also for
some very recent papers we mention in the next paragraph.

Up to this point we reviewed work done prior to our formulation of SPOT
databases. We end this section with a brief review of some recent papers on prob-
abilistic spatiotemporal databases. These papers do not use the SPOT approach.
Chung et al. [10] derive a pdf for the location of an object moving in a one-
dimensional space by using its past moving behavior or the moving velocity dis-
tribution. Their probabilistic range queries find objects that are in a specified region
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of space within a specified time interval, and with a probability that is at least a
threshhold value. Their indexing takes care of eliminating object that are too far
from consideration. Zhang et al. [65] provide a framework that allows their model
to be incorporated easily into existing DBMSs and work for all objects even if their
location and velocity are uncertain and the movements are unusual. For indexing
they use a Bx-tree which is a variant of a B+-tree that is applicable to moving ob-
jects. Yang et al. [64] work with moving objects in indoor space which is different
from Euclidean and spatial network spaces. Their query asks for all sets of k ob-
jects that have at least a threshold probability of containing the k nearest objects
to a given object. This paper defines a minimal indoor walking distance and uses
two types of pruning to efficiently solve such queries. Chen et al. [9] deal with a
similar problem but use a TPR-tree for indexing. They also deal with the query re-
sult quality by using both a false positive and a false negative rate. Finally, the most
recent paper we mention, [66] deals primarily with objects moving along road net-
works, certainly an important application. They introduce a novel indexing mech-
anism called UTH (Uncertain Trajectories Hierarchy) for efficiently processing
probabilistic range queries.

3 A SPOT Database

This section reviews the syntax and semantics of SPOT databases given in [50].

Syntax

We assume the existence of a set ID of objects ids, a set T of time points ranging over
the integers, and a finite set Space of points. Unless stated otherwise, we assume
that Space is a grid of size N ×N where we only consider integer coordinates 1. We
assume that an object can be in only one location at a time, but that a single location
may contain more than one object.

A rectangle is any region in Space that can be described by constraints of the
form le f t ≤ x ≤ right and bottom≤ y ≤ top where le f t,right,bottom, top are inte-
gers in [0..N]. Thus, all rectangles have edges parallel to the x and y-axes. A rectan-
gle is empty if either le f t > right or bottom > top.

Definition 1 (SPOT atom/database). A SPOT atom is a tuple (id,r, t, [�,u]), where
id ∈ ID is an object id, r ⊆ Space is a non-empty rectangular region in the space,
t ∈ T is a time point, and �,u ∈ [0,1] are probability bounds with � ≤ u. A SPOT
database is a finite set of SPOT atoms.

Intuitively, the SPOT atom (id,r, t, [�,u]) says that objects id is/was inside the spec-
ified region r at time t with probability in the [�,u] interval.

1 The framework is easily extensible to higher dimensions.
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Example 1. Consider a lab where data coming from biometric sensors are collected,
analyzed and stored. Biometric data such as faces, voices, and fingerprints recog-
nized by sensors are matched against given profiles (such as those of people having
access to the lab) and tuples like those in Table 1 are obtained. Every tuple con-
sists of the profile id resulting from the matching phase, the area of the lab where
the sensor recognizing the profile is operating, the time point at which the profile
has been recognized, and the lower and upper probability bounds of the recognizing
process getting the tuple. For instance, the tuple in the first row of Table 1 rep-
resenting the SPOT atom (id1,d,1, [0.9,1]) says that profile having id id1 was in
region d at time 1 with probability in the interval [0.9,1]. In Figure 1, the plan
of the lab and the areas covered by biometric sensors are shown. In area d a fin-
gerprint sensor is located, whose high accuracy entails a narrow probability inter-
val with upper bound equal to 1. After fingerprint authentication, the id1 profile
was recognized at time 3 in areas b and c with probability in [0.6,1] and [0.7,0,8],
respectively.

Table 1 SPOT database Slab

Id Area Time Lower Prob Upper Prob
id1 d 1 0.9 1
id1 b 3 0.6 1
id1 c 3 0.7 0.8
id2 b 1 0.5 0.9
id2 e 2 0.2 0.5
id2 e 3 0.6 0.9

Fig. 1 Areas of the lab
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Given a SPOT database S , a fixed object id and a fixed time t, we use the notation
S id,t to refer to the set:

S id,t = {(id′,r′, t ′, [�′,u′]) ∈ S | id′ = id ∧ t ′ = t}.

Semantics

The meaning of a SPOT database is given by the set of interpretations that satisfy
it.

Definition 2 (SPOT interpretation). A SPOT interpretation is a function I : ID×
Space×T → [0,1] such that for each id ∈ ID and t ∈ T ,

∑
p∈Space

I(id, p, t) = 1.

For a given an interpretation I, we sometimes abuse notation and write Iid,t(p) =
I(id, p, t). In this case, Iid,t is a probability distribution function (PDF).

Example 2. Interpretation I1 for the SPOT database Slab introduced in Example 1
is as follows.

I1(id1,(3,6),1) = 0.4 I1(id1,(2,5),1) = 0.2
I1(id1,(3,5),1) = 0.3 I1(id1,(5,5),1) = 0.1
I1(id1,(7,5),2) = 0.5 I1(id1,(4,2),2) = 0.5
I1(id1,(10,10),3) = 0.7 I1(id1,(7,5),3) = 0.3
I1(id2,(8,10),1) = 0.1 I1(id2,(12,12),1) = 0.9
I1(id2,(9,7),2) = 0.3 I1(id2,(12,13),2) = 0.7
I1(id2,(14,5),3) = 0.8 I1(id2,(12,14),3) = 0.2

Moreover, I1(id, p, t) = 0 for all triplets (id, p, t) not mentioned above.

Given an interpretation I and region r, the probability that object id is in r at time t
according to I is Σp∈rI(id, p, t). We now define satisfaction by an interpretation.

Definition 3 (Satisfaction). Let a = (id,r, t, [�,u]) be a SPOT atom and let I be a
SPOT interpretation. We say that I satisfies a (denoted I |= a) iff ∑p∈r I(id, p, t) ∈
[�,u]. I satisfies SPOT database S (denoted I |=S ) iff I satisfies every atom in S .

Example 3. Continuing with our running example, interpretation I1 satisfies the
SPOT atom (id1,d,1, [0.9,1]) as, for id id1 and time point 1, I1 assigns proba-
bility 0.4 to (3,6), 0.3 to (3,5), and 0.2 to (2,5) (which are points in area d), and
probability 0.1 to (5,5) which is outside area d. Hence, the probability that id1 is
in area d at time point 1 is 0.9, which belongs to the interval [0.9,1] specified by
the considered SPOT atom. Reasoning analogously, it is easy to see that I1 satisfies
all of the atoms in Table 1 except for (id2,b,1, [0.5,0.9]), as the probability to be in
area b at time 1 for id id2 is set to 0.1 by I1, instead of a value in [0.5,0.9].

Let I2 be an interpretation equal to I1 except that I2(id2,(8,10),1) = 0.7 and
I2(id2,(12,12),1) = 0.3. This interpretation satisfies the SPOT database Slab.
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4 The Basic Definitions and Results

We use I(S ) to denote the set of interpretations that satisfy a SPOT database S ,
that is, I(S ) = {I | I |= S }.

Definition 4 (Consistency). A SPOT database S is consistent iff I(S ) �= /0.

Definition 5 (Compatibility). A SPOT atom a is compatible with a SPOT database
S , denoted as a � S , iff S ∪{a} is consistent.

Definition 6 (Entailment). A SPOT database S entails a SPOT atom a, denoted
as S |= a, iff ∀I ∈ I(S ), I |= a. A SPOT database S1 entails a SPOT database
S2, denoted as S1 |= S2, iff ∀a ∈ S2, S1 |= a.

Example 4. Interpretation I2 of Example 3 proves that the SPOT database Slab of
Example 1 is consistent. It is easy to see that a = (id1, f ,2, [0,0.5])� Slab because
I2 |= Slab ∪{a} and Slab |= (id1,d,1, [0.75,1]).

Given a SPOT database S , an object id ∈ ID, and a time point t ∈ T , that is, S id,t ,
[50] defined a set LC(S , id, t) of linear constraints. LC(S , id, t) uses variables vp

to denote the probability that object id will be at point p ∈ Space at time t.

Definition 7 (LC(·)). For SPOT database S , id ∈ ID, and t ∈ T , LC(S , id, t)
contains:

- ∀(id,r, t, [�,u]) ∈ S id,t ,(
∑p∈r vp ≥ �

) ∈ LC(S , id, t),(
∑p∈r vp ≤ u

) ∈ LC(S , id, t)
-

(
∑p∈Space vp = 1

) ∈ LC(S , id, t),
- ∀p ∈ Space (vp ≥ 0) ∈ LC(S , id, t)
- No other constraints are in LC(S , id, t).

The problem of checking the consistency of a SPOT database was addressed in
[50], where it was shown that SPOT database S is consistent iff LC(S , id, t) is
feasible for all 〈id, t〉 pairs. The compatibility and entailment of a SPOT atom can
be checked via the following result shown in [50].

Theorem 1. Given a SPOT database S and a SPOT atom (id,r, t, [�,u]),

i) (id,r, t, [�,u])� S iff LC(S ∪{(id,r, t, [�,u])}, id, t) is feasible.
ii) S |= (id,r, t, [�,u]) iff [�′,u′]⊆ [�,u] where

- �′ = minimize Σp∈rvp subject to LC(S , id, t)
- u′ = maximize Σp∈rvp subject to LC(S , id, t).

Hence, the consistency of a SPOT database, as well as the compatibility and en-
tailment of a SPOT atom, can be checked by a linear programming algorithm. The
complexity of these algorithms was shown to be O(|ID| · |T | · (|Space| · |S |)3).
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An optimized version of these algorithms was proposed in [49], where the num-
ber of variables of LC(·) was drastically reduced by introducing an equivalence
relation on points in Space, giving a partition of Space, P = {P1, . . . ,Pn} so that
all the points in any Pi cannot be distinguished by S id,t . It was proved that con-
sistency, compatibility, and entailment can be checked by considering a version of
LC(·) (namely PLC(·)) where the points in Space are replaced by the partitions in
P , so that the points p ∈ Pi are replaced by a new single variable vPi . As the size
of P is typically very much lower than the number of points in Space, the amount
of time needed for solving PLC(·) is very much smaller than that needed for solv-
ing LC(·) [49] experimentally shows that reduced-size algorithms are much more
efficient than those introduced in [50].

5 Query Processing in SPOT

The most investigated kind of query in SPOT database is selection.

Definition 8 (Selection query). A selection query is an expression of the form
(?id,q,?t, [�,u]) where q is a region of Space, not necessarily rectangular, [�,u] is
a probability interval, ?id is a variable ranging over ids in ID, and ?t is a variable
ranging over time points in T .

Intuitively, a selection query says: “Find all objects id and times t such that the
object id is inside the specified region q at time t with a probability in the [�,u]
interval.” There are two semantics for interpreting this statement, leading to two
types of selection queries.

Definition 9 (Optimistic/Cautious selection). Suppose S is a SPOT database and
(?id,q,?t, [�,u]) is a selection query.
The optimistic answer to (?id,q,?t, [�,u]) is the set

{〈id, t〉 | id ∈ ID ∧ t ∈ T ∧ (id,q, t, [�,u])� S }.

The cautious answer to (?id,q,?t, [�,u]) is the set

{〈id, t〉 | id ∈ ID ∧ t ∈ T ∧ S |= (id,q, t, [�,u])}.

Optimistic selection returns objects and time points that may be in the query region
with probability in the specified interval, whereas cautious selection only returns
those objects and time points that are guaranteed to be in that region with probability
in that interval. Thus, the cautious answer is a subset of the optimistic one.

Example 5. Continuing our running example, one may be interested in knowing the
ids and time points of profiles that were in the room where the fingerprint sensor is
located, with probability greater than 0.75. This can be expressed by the selection
query (?id,q,?t, [0.75,1]), where q is the rectangle defined by constraints 0 ≤ x ≤ 6
and 4 ≤ y ≤ 8 (this query region includes the whole area d, a portion of area b, and
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some other points). The optimistic answer of this query is the set {< id1,1 >,<
id1,2 >,< id1,3 >,< id2,1 >}, whereas the cautious answer only contains the pair
< id1,1 >.

Optimistic and cautious selection can be computed by exploiting the results of The-
orem 1. Specifically, given the selection query Q = (?id,q,?t, [�,u]) over the SPOT
database S , the optimistic answer to Q can be computed by solving, for each pair
〈id, t〉 in S , the linear program LC(S ∪ {(id,q, t, [�,u])}, id, t): if it has a solu-
tion then 〈id, t〉 is in the optimistic answer of Q. The cautious answer to Q can be
computed by solving, for each pair 〈id, t〉 in S , the two optimization problems of
Theorem 1(ii) which return the interval [�′,u′]. Then, checking if [�′,u′] ⊆ [�,u] is
sufficient for deciding if the pair 〈id, t〉 is in the cautious answer of Q. We refer to
these approaches as the naive algorithms for optimistic and cautious selection.

Efficient algorithms for computing optimistic and cautious selection were pro-
posed in [49] and [47], respectively. Both proposed approaches exploit strategies
for pruning the search space of candidate answers of a given query.

Optimistic Selection

An index structure, called SPOT -tree, and algorithms to compute optimistic an-
swers to selection queries using the index were proposed in [49]. Each node of a
SPOT -tree is labeled with a composite SPOT atom, which compactly represents a
set of SPOT atoms (that is, a SPOT database). The relationship between parent and
children nodes of a SPOT -tree is based on logical implication of SPOT databases.
Basically, there is an entailment relationship between each composite atom labeling
a child node and the composite atom labeling its parent node. Hence, the composite
atom labeling the root node of a SPOT -tree is entailed by every composite atom
labeling any node of the tree. Further, composite atoms labeling leaf nodes are en-
tailed by SPOT atoms in the database.

The SPOT -tree reduces the set of < id, t > pairs to be considered as candidates
for the optimistic answer of a selection query — potentially, this set contains all the
< id, t > pairs in the SPOT database. The logical relationship between nodes of a
SPOT -tree entails that, for each child node, the set of SPOT interpretations of its
composite atom is a subset of the set of SPOT interpretations of its parent node
composite atom. As a consequence, given a selection query Q, if the composite
atom labeling the node n is not compatible with Q (this condition can be checked in
constant time due to the structure of composite atoms), then any composite atom of
the subtree rooted in n is not compatible with Q, which in turns means that all the
< id, t > pairs of SPOT -tree rooted in n do not belong to the optimistic answer of
Q, i.e., they can be pruned from the search space.

For < id, t > pairs that cannot be pruned by traversing the SPOT -tree, the naive
algorithm is used for checking whether they are in the optimistic answer. Thus,
for every pair pruned, we save the time needed for solving the linear programming
problem of Theorem 1(i), as confirmed by the experimental study in [49].
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Cautious Selection

In [47] the problem of efficiently computing cautious answers to selection queries
was investigated. The proposed approach is based on geometric considerations
which follow from the fact that both SPOT databases and selection queries de-
fine convex polytopes in the so-called SPOT PFD Space. The relationship between
these polytopes can be used to answer queries. Specifically, it was shown that an
< id, t > pair belongs to the cautious answer of a given selection query iff the poly-
tope defined by the query contains that defined by the SPOT database S id,t .

Approximations of the S id,t polytope by interior and containing regions were in-
troduced, instead of using the original S id,t polytope which would have lead to an
approach as computationally expensive as solving optimization problems of The-
orem 1(ii). Thus, an < id, t > pair is in the cautious answer of a given selection
query if the query polytope contains a region containing the S id,t polytope (this en-
sures that the query polytope contains that defined by S id,t ). Similarly, an < id, t >
pair in not in the cautious answer (i.e., it can be pruned) if the query polytope does
not contain an interior region of the S id,t polytope. Both of these strategies can be
jointly used to prune the search space when answering a query.

Efficient ways of finding interior and containing regions were also proposed.
Containing regions can be obtained by starting from composite atoms introduced
in [49] for defining SPOT -tree nodes. Internal regions can be obtained by follow-
ing an inline or preprocessing approach. The former consist of storing solutions (that
is, internal points of S id,t polytope) of previously asked selection queries and then
building the convex envelopes of found points. The latter approach, which is prefer-
able to inlining when spare resources are available for precomputation, consists of
solving a few optimization problems to find some internal points to be used to con-
struct their convex envelope. As experimentally proved in [47], using either interior
and containing regions yields improvement in terms of the efficiency of cautious
selection.

SPOT Query Algebra

A relational-style algebra for SPOT databases has been proposed in [50]. This al-
gebra contains a version of the selection, union, intersection, difference and join
operators. Specifically, selection considered in [50] is a special case of cautious
selection which returns ids only. Processing such queries by linear programming
algorithms can be avoided if the database is known to satisfy the following disjoint-
ness property: there are no two distinct SPOT atoms in the database referring to the
same object, the same time point and intersecting regions of Space.

Set operations and join in SPOT databases are more complicated and challenging
than selection. We start by discussing the union operator, the simplest one. Union
adds restrictions on the set of SPOT interpretations of the databases involved in the
union operation. The intuition is that adding new information to a SPOT database
reduces the degree of freedom that one has in choosing an interpretation. Formally,
the union of SPOT databases S1 and S2 results in a SPOT database whose set
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of interpretation is I(S1)∩ I(S2). On the contrary, intersection and difference re-
move restrictions on SPOT interpretations of databases involved. Semantically, one
would expect that I(S1 ∩S2) = I(S1)∪ I(S2) and I(S1 −S2) = I(S1)\ I(S2),
where I(S2) = {I | I /∈ I(S2)}. However, such semantics for intersection and differ-
ence cannot be expressed by SPOT databases since disjunction of probability inter-
vals of SPOT atoms would be required. Hence, weaker definitions of intersection
and difference operators returning supersets of the expected sets of interpretations
(defined above) were introduced. Finally, a version of join was introduced that puts
together information from different SPOT atoms having the same < id, t > pair and
satisfying an input function combining atom regions.

Nearest Neighbor Queries

Another kind of query in which SPOT database users may be interested is a nearest
neighbor query, that is finding the nearest expected object neighbor to a given point
of Space at a given time. As an example, a cell phone company may want to know
the nearest cell phone to a given cell tower. Also the nearest neighbor to a given
object, whose position is not known exactly, at a given time may be needed, such as
finding the cell phone nearest to another one at a given time. Dealing with nearest
neighbor queries implicitly requires dealing with the expected distances of objects
from a given point or object at a given time. Here the expression “expected distance”
is used in the strict sense of statistical expected values.

As SPOT databases do not state exactly where objects are at any given time, nor
the exact probability that an object is in a given region of Space at a given time,
minimal expected distance and maximal expected distance between objects were
investigated in [50]. Then, these concepts were used to define two versions of nearest
expected neighbor queries which return the object id whose expected distance from
a given point at a given time is minimum or maximum, respectively. Under the
assumption that the database is disjoint, algorithms for computing expected distance
and nearest neighbor queries were proposed and experimentally validated.

6 Updates in SPOT

As SPOT databases provide information on moving objects, one of the aspect to be
addressed is that information on these objects may continuously change as objects
move. An object may encounter unexpected situations during its move, which may
lead to a revision of estimates of where it may be in the future, as well as a revision
of where it may have been in the past. The problem of revising SPOT data was first
addressed in [48] and then further investigated in [27], where several strategies for
revising SPOT data were proposed.

If the insertion of a SPOT atom a into a SPOT database S leads to no incon-
sistency then the atom can just be added to the database. However, when it leads to
inconsistency, that is I(S ∪{a}) = /0, then many different belief revision operations
are possible. A first revision strategy proposed in [27] consists of finding a maximal
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(w.r.t. either subset inclusion or cardinality) subset S ′ of S such that S ′ ∪ {a} is
consistent.

Example 6. Assume that the SPOT atom a = (id1,e,3, [0.5,1]) providing new fresh
information on the profile id1 recognized at time 3 by the sensor in area e should be
added to the SPOT database Slab of Example 1. It is easy to see that Slab ∪{a}
is not consistent, as id1 cannot stay at the same time in the disjoint areas c and
e with probability in the intervals [0.7,0.8] and [0.5,1], respectively. A maximal
consistent subset revision of Slab is S ′

lab = Slab \ {(id1,c,3, [0.7,0.8])}. As this
revision removes only one atom from the database, it is maximal under both the
subset inclusion and the subset cardinality criterion.

Maximal consistent subset revision works at the tuple level in the sense that the ba-
sic primitive to update the SPOT database is deletion of whole tuples. Strategies
exploiting finer basic primitives such as updates of attribute values of tuples are also
possible. For instance, in the example above, a revision may consist of changing
the value of the temporal component of the tuple (id1,c,3, [0.7,0.8]) in Slab from
3 to 2. Revising strategies consisting of minimally modifying the spatial, temporal,
or object components in S were investigated in [27]. Further, three revision mech-
anisms based on minimally revising the probability intervals in a SPOT database
were addressed. In particular, by changing the relevant atoms’ probability intervals
to [0,1], consistency is restored; however, such a change loses much information and
will usually not be minimal. It turns out that all of above-cited revision mechanisms
lead to computational intractability except the strategy that revises the probabil-
ity bounds. Probability revision can be computed by solving a linear programming
problem similar to LC(S , id, t) (see Definition 7) where, for each SPOT atom ai,
additional variables lowi and upi are used to represent the atom’s modified lower
and upper probability bounds.

Example 7. A probability revision for the SPOT database Slab w.r.t. atom
a = (id1,e,3, [0.5,1]) is obtained by solving the following linear programming
problem which is obtained by considering that S id1,3

lab = {(id1,b,3, [0.6,1]),
(id1,c,3, [0.7,0.8])}:

minimize (0.6− low1)+ (up1 − 1)+ (0.7− low2)+ (up2 − 0.8)
subject to⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

low1 ≤ ∑p∈b vp ≤ up1

0 ≤ low1 ≤ 0.6
1 ≤ up1 ≤ 1
low2 ≤ ∑p∈c vp ≤ up2

0 ≤ low2 ≤ 0.7
0.8 ≤ up2 ≤ 1
0.5 ≤ ∑p∈e vp ≤ 1
∑p∈Space vp = 1
∀p ∈ Space vp ≥ 0

Basically, for each atom ai = (id,ri, t, [�i,ui]) in the database, where id and t are the
object identifier and the time point of the atom added to the database, the modified
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probability interval [lowi,upi] is such that [�i,ui]⊆ [lowi,upi]⊆ [0,1]. The inequal-
ities with variables vp, where p is a point in Space, ensure that there is a PDF
satisfying the revision atom and every atom ai in the database with [�i,ui] replaced
by [lowi,upi]. Finally, the objective function guarantees that the revised probability
bounds are as close as possible to the original ones.

In [48] and [27], the SPOT framework was extended to remove the assumptions
that there are no velocity constraints on moving objects and that all points in S
are reachable from all other points by all objects. A general notion of reachabil-
ity definition was provided to capture the scenario where objects have speed limits
and only some points are reachable by objects depending on both the distance be-
tween the points, the objects’ speed, and possible obstacles in the way. Reachability
constraints require the use of more complex variables in the linear programming
problem of Definition 7. However, in this case the size of the problem increases
quadratically in the size of Space and the maximum time range in S . As exact op-
timizations like that discussed after Theorem 1 do not work in this case due to the
new structure of the linear programming problem, a suite of heuristics was proposed
in [27] in order to speed up the computation of probability revision.

7 Research Questions about SPOT

As sketched in the previous sections we have found SPOT to be a very useful
approach to the study of probabilistic spatiotemporal databases. We believe that
there are interesting research problems within the SPOT framework as well through
various extensions of SPOT . The purpose of this section is to specify and elaborate
on such issues, thereby inviting researchers to do further work in this area. The
topics are mostly independent of each other, although some could be combined.

We present five general topics. The first two are within the present SPOT frame-
work; the other three present extensions to SPOT . First we discuss additional types
of selection queries not considered in our papers. Then we suggest investigating
the handling of aggregates and views. Recalling that SPOT databases use spatial
regions and probability intervals, we suggest an extension to SPOT that allows
for groups of objects and temporal intervals. Another possible extension involves
adding connectives and quantifiers, thereby creating a full SPOT logic. Finally we
suggest combining SPOT with logical terminology involving space and time.

7.1 Additional Selection Queries

As we discussed in Section 4, in our papers we dealt with selection queries of the
form (?id,q,?t, [�,u]) finding pairs of 〈id, time〉 values that provide answers to the
query for a specific region q and probability interval [�,u] using both the optimistic
and cautious semantics. For the purpose of this section we will write such a query as
{〈id, t〉 |(id,qc, t, [�c,uc])} indicating by the use of the subscript c that the region and
probability values are fixed constants. We dealt with this selection query because we
thought it was important, and we devised index structures for its efficient processing.
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We believe that these and other index structures will be useful in answering other
types of selection queries. In this subsection we list some queries with a similar
form.

Let us start with atomic queries. Considering these systematically we start with
one variable queries where the answer will be a set of values. Two of these appear
interesting, namely {〈id〉 | (id,qc, tc, [�c,uc])} and {〈t〉 | (idc,qc, t, [�c,uc])}. These
are just like the queries we considered previously, but simpler, because in the first
case we are considering a single time value and in the second case a single id value.
The other two one variable queries appear less interesting because in the case of
{〈q〉|(idc,q, tc, [�c,uc])} there may be many regions in the answer that are almost the
same; while for {〈[�,u]〉 |(idc,qc, tc, [�,u])} the probability interval [0,1] is always in
the answer. In the latter case we would likely be interested only in the smallest such
probability interval. So, for example, if the answer is [.8,1], that means that idc is in
the region qc at time tc with probability at least .8.

We move on to two variable queries. Altogether there are 6 two variable queries.
The query {〈id, t〉 | (id,qc, t, [�c,uc])} is the one we considered in the previous pa-
pers. As suggested for the one variable queries, asking for a region is less interesting,
but asking for the smallest probability interval may be useful. For example, the query
{〈id, [�,u]〉 | (id,qc, tc, [�,u])} asks for all the objects and their smallest probability
intervals such that the object is in region qc at time tc with that probability interval.
Then, {〈t, [�,u]〉 | (idc,qc, t, [�,u])} is interpreted in a similar way. Among the three
variable queries probably the most interesting one is {〈id, t, [�,u]〉 | (id,qc, t, [�,u])}
which essentially asks for all information about a region, that is, what objects were
in the region at what times with what probability intervals.

Next we consider queries with connectives. Although it is not necessary to
use the same selection queries that we used in the previous papers, we will do
so here. Starting with conjunction, consider the query {〈id, t〉 | (id,qc, t, [�c,uc])∧
(id,qd , t, [�d ,ud])} asking for all 〈id, t〉 pairs such that the object was at that time
both in region qc with probability in the interval [�c,uc] and in the region qd with
probability in the interval [�d ,ud ]. The result will be the intersection
of two answers to two atomic queries. Similarly, the query {〈id, t〉 | (id,qc, t, [�c,uc])
∨ (id,qd , t, [�d ,ud])} gives the union of two atomic queries, and
{〈id, t〉 | ¬(id,qc, t, [�c,uc])} gives the complement of the query answer without
the negation but only if we also switch between optimistic and cautious selec-
tion. Finally, we add quantifiers. We consider only two examples. The query
{〈id〉 | ∃t(id,qc, t, [�c,uc])} gives all objects that were at some time value in the re-
gion qc with the probability in [�c,uc]. The same query with the universal quantifier,
namely {〈id〉 | ∀t(id,qc, t, [�c,uc])} gives all objects that were in the region qc with
probability in [�c,uc] for all time values.

7.2 Aggregates and Views

[57] is the definitive work on aggregates in probabilistic databases. A typical exam-
ple in that paper concerns a day-ahead energy market with probabilities for various
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prices. Basic aggregate queries involve finding the mean or standard deviation over
prices for specified values of other attributes. In the SPOT framework this does not
apply directly as we don’t actually deal with numeric values (although we use in-
tegers for time values). Even so we may want to count the number of objects in a
certain region at a certain time. Here we would compute the expected value based
on the probabilities. The research problem is the application of the algorithms de-
veloped earlier for probabilistic aggregates in the SPOT framework.

Actually, we could add genuine numeric values to SPOT . Consider that there
may be a benefit value given to the presence of an object being in a certain region
at a certain time. This might be helpful, say, in a military operation or in the case of
a taxi service. In this case we would augment the standard 4 columns by adding a
fifth column of numeric values. We could then try to solve the problem of answering
typical aggregate queries in an efficient way.

Views have been found very useful in relational databases. In the SPOT frame-
work the most useful views would be obtained by asking a selection query that
preserves all the attributes, so that the end result is also a SPOT database. Here the
query {〈idc,q, t, [�,u]〉} selects all the SPOT atoms for idc. Thus one user may have
a view with information only about a single object. Standard questions about views
involve answering queries using views and view maintenance. In this simple exam-
ple the view given can answer only queries about one object, idc (it gives the null
result for all other objects). View maintenance may involve atoms not in the view in
case there are obstacles and speed issues concerning the movement of objects that in
previous papers we modeled by using a reachability definition. The challenge here
is to check when this needs to be done and find ways to speed up the process.

7.3 Groups of Objects and Time Intervals

In the SPOT framework some of the atomic values represent a set. In particular, a
region is a set of points in Space; we have dealt mainly with rectangular regions,
but only for ease of implementation. Also, for probabilities we allow probability
intervals. Now we show how to extend SPOT for objects and time intervals.

In the case of objects we may be interested in a group of objects. For example, a
military convoy may consist of multiple vehicles moving together. We can use the
notation (G,q, t, [�,u]) to mean that the group of objects G is in region q at time t
with probability in [�,u]. In such a case, if say G = {id1, id2, id3}, we could have
written this in SPOT as (idi,q, t, [�,u]) for i = 1,2,3, that is, as three SPOT atoms.
But there may be another meaning assigned to the atom (G,q, t, [�,u]): namely, that
some object in G is in the region q at time t with probability interval [�,u]. The latter
is the disjunctive interpretation of G, while the former is the conjunctive interpreta-
tion. The disjunctive interpretation cannot be expressed in SPOT .

In the case of time it would be natural to extend a single time value to a time
interval. Consider the notation (id,q, [t1, t2], [�,u]) to indicate that the object id is
in region q at times between t1 and t2 with probability in [�,u]. Again, there is a
conjunctive and a disjunctive interpretation. In the conjunctive interpretation the
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object is in the region with the given probability interval for all time values between
t1 and t2, while in the disjunctive interpretation it is the case for some time value
between t1 and t2.

The two cases, objects and times, can be combined to obtain the new generalized
atom (G,q, [t1, t2], [�,u]) where there are four possible meanings using the conjunc-
tive and disjunctive interpretations. The research challenge then is to extend the
previous SPOT results to such generalized atoms. This involves answering various
types of queries and doing database updates in the sense of revision. An interesting
question is what data structures will be useful for speeding up processing in these
cases.

7.4 Full SPOT Logic

The SPOT framework allows only atomic formulas, but these formulas have a
strong expressive capability. Still, it is reasonable to consider what can be done
if we allow connectives and quantifiers in the language. Actually, in such a case it
will be useful also to allow both open and half-open probability intervals, so that,
for example, (id,q, t,(�,u]) states that id is in region q at time t with probability
interval greater than � and at most u.

Starting with conjunction we note that a conjunction of SPOT atoms, a1∧. . .∧an

is equivalent to the set {a1, . . . ,an}. There is a difference however in updating a
SPOT database. Recall that in order to retain consistency we introduced several
strategies (see Section 5). Suppose that the conflict of a new atom is with a1 only.
Using maximal consistent set revision with {a1, . . . ,an} we delete a1, but if we have
the conjunction only, we must delete it, thereby losing the information in the other
ai, i = 2, . . . ,n. Even if we apply a different strategy, such as minimizing probability,
the definitions must be rewritten allowing, for example, in a1 ∧ . . .∧ an to change
only one probability interval.

Disjunction presents substantial challenges (but then the same goes for going
from relational to disjunctive databases). It is not clear that we can write a single
linear program where the existence of a solution signifies the consistency of a dis-
junctive database, such as, if the disjunction (id1,q1, t1, [�1,u1])∨(id2,q2, t2, [�2,u2])
is included. Thus it may not be possible to adapt our approach using linear pro-
gramming for this case. So it may be appropriate to limit disjunction in cer-
tain ways. For example, we may allow only one of the values to change, as in
(id1,q, t, [�,u])∨ (id2,q, t, [�,u]) where the identity of the object is known to be
id1 or id2. Actually, this is the same situation that we considered in the pre-
vious subsection where we allowed groups of objects. However, the disjunction
(id,q, t, [�1,u1])∨ (id,q, t, [�2,u2]) assuming that u1 < �2 is not covered there.

Let’s consider negation next. Here is where our extension to half-open inter-
vals becomes useful. Essentially, the negation of an atom in SPOT can be ex-
pressed in the form of a disjunction, as follows: ¬(id,q, t, [�,u]) ≡ (id,q, t, [0, �))∨
(id,q, t,(u,1]), with the appropriate modification in case �= 0 or u= 1. In that sense
negation can be eliminated in full SPOT logic.
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Finally, we take a look at quantifiers. In case Id, Space and Time are finite
and we do not quantify over probabilities, we can rewrite quantified statements
using conjunction and disjunction. For example, if T = {0, . . . ,N}, the statement
∃t(idc,qc, t, [�c,uc]), expressing that the object idc was in region qc at some time
value with probability in the interval [�c,uc] can be written without the existential
quantifier as the disjunction (idc,qc,0, [�c,uc])∨ . . .∨ (idc,qc,N, [�c,uc]). Similarly,
changing the existential quantifier to a universal quantifier results in the disjunction
changed to a conjunction. However, if we choose T to be infinite, then the quantifier
cannot be replaced.

7.5 Adding Spatial and Temporal Concepts

Space and time are essential components in the SPOT framework. However, al-
though SPOT is based on logical formalism, it does not take into account any con-
cepts from the logics that have been developed for space and time. This subsection
discusses some ideas that that could be used to augment the SPOT framework with
spatial and temporal logic concepts.

We refer to the survey paper [32] for logical formalisms concerning spatial con-
cepts. There are formal logical systems for spatial relations between regions such as
part o f and overlap as well as spatial properties of regions such as open, closed,
and connected, as well as operators such as closure and boundary. Thus we propose
that this extension contain the usual SPOT atoms as well as atomic formulas that
represent spatial concepts, and a proper mixture of the two. We assume here that
regions are not restricted to rectangles in Space; in fact Space itself can be any set
of points.

Allowing O to represent the overlap relation, the following three atoms:
(id,q, t, [�,u]); (id,r, t, [�,u]); O(q,r) clearly give more information than just the
first two. We would also like to allow operators inside SPOT atoms; for example
(id,B(q), t, [�,u]), where B stands for boundary, indicates the probability interval for
the object id to be on the boundary of region q at time t. For connectedness, in the
case of moving objects we may wish to define several types, such as a region is car-
connected if one can travel by car from any point to any other point in the region
versus plane-connected where travel is by plane. The research here involves the best
spatial extensions and algorithms to deal with them.

Important issues about temporal logic are well summarized in [26]. As explained
there, temporal logics have temporal operators such as F : “It will at some time be
the case that ... ” and G: “It will always be the case that ... ”. Using such temporal
operators to make general statements we may allow SPOT statements without the
time component to write G(id,q, [.8,1]) to mean that the object id will always be in
the region q with probability at least .8. If time were finite, say T = {0,1, . . . ,N} and
the present time now is known, then we could have written the N − now statements
(id,q,n, [.8,1]) for n= now +1, . . . ,N with the same meaning. However, this cannot
be done with our assumption that T is the set of integers. Also, even with finite time
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we cannot express F(id,q, [.8,1]). So, in general, temporal operators expand the
expressibility of the SPOT framework.

In the previous subsection we considered the addition of quantifiers to SPOT .
Using quantifiers and inequality predicates we can express the temporal operators.
For example, F(id,q, [.8,1]) would be written as ∃t(t > now∧ (id,q, t, [.8,1]); G is
the same but with the universal quantifier. However, quantifiers can cause compli-
cations and if our interest is only in expressing various temporal concepts, it may
be better to use temporal operators. The important issue is the development of data
structures to process such concepts as efficiently as possible. Finally, we mention
the combination of spatial and temporal concepts that might be added to the SPOT
framework for widening its expressibility.
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