
Advances in 
Probabilistic Databases 
for Uncertain Information 
Management 

Zongmin Ma
Li Yan Editors

Studies in Fuzziness and Soft Computing   



Studies in Fuzziness and Soft Computing 304

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/2941



Zongmin Ma and Li Yan (Eds.)

Advances in Probabilistic
Databases for Uncertain
Information Management

ABC



Editors
Zongmin Ma
College of Information Science and
Engineering
Northeastern University
Shenyang
China

Li Yan
School of Software
Northeastern University
Shenyang
China

ISSN 1434-9922 ISSN 1860-0808 (electronic)
ISBN 978-3-642-37508-8 ISBN 978-3-642-37509-5 (eBook)
DOI 10.1007/978-3-642-37509-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013935339

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Databases are designed to support the data storage, processing, and retrieval
activities related to data management in information systems. Database manage-
ment systems provide efficient task support and tremendous gain in productivity is
hereby accomplished using these technologies. In addition, being the de-facto stan-
dard for data representation and exchange over the Web, XML (Extensible Markup
Language) has been widely and deeply applied in many business, service, and mul-
timedia applications, and a large volume of data is managed today directly in XML
format.

While traditional database models provide powerful data modeling and data pro-
cessing capabilities, they may suffer from some inadequacy of necessary semantics.
One of the major areas of database research has been the continuous effort to enrich
existing database models with a more extensive collection of semantic concepts in
order to satisfy the requirements in the real-world applications. In real-world appli-
cations, information is often imperfect, and human knowledge and natural language
have a big deal of imprecision and vagueness. Traditional database models assume
that the models are a correct reflection of the world and further assume that the
stored data is known, accurate and complete. It is rarely the case in real life that
all or most of these assumptions are met. One of some inadequacy of necessary
semantics that traditional database models often suffer from can hereby be general-
ized as the inability to handle imprecise and uncertain information. For this reason,
imprecise and uncertain data have been introduced into databases for imperfect in-
formation processing by applying fuzzy logic, probability, and more generally soft
computing.

It is crucial for databases to explicitly represent and process imprecise and uncer-
tain data. This is because databases have been extensively applied in many applica-
tion domains which may have a big deal of imprecision and vagueness. Imprecise
and uncertain data can be found, for example, in the integration of data sources and
data generation with nontraditional means (e.g., automatic information extraction
and data acquirement by sensor and RFID).

Probabilistic theory can bridge the gap between human-understandable soft logic
and machine-readable hard logic, and has been a crucial means of implementing
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intelligent data processing and intelligent information systems. In order to deal with
probabilistic information in databases, currently the research and development of
probabilistic data management are attracting an increased attention.

This book covers a fast-growing topic in great depth and focuses on the technolo-
gies and applications of probabilistic data management. It aims to provide a single
account of current studies in probabilistic data management. The objective of the
book is to provide the state of the art information to researchers, practitioners, and
graduate students of information technology, and at the same time serving the infor-
mation technology professional faced with non-traditional applications that make
the application of conventional approaches difficult or impossible.

This book consists of six chapters. The first two chapters focus on probabilistic
data management in the context of databases, discussing probabilistic spatiotem-
poral databases and probabilistic object-oriented databases with fuzzy measures,
respectively. The next two chapters present probabilistic data management in the
context of XML. The final two chapters focus on probabilistic data management in
other frameworks, covering uncertain and imprecise multidimensional data streams
in OLAP and tractable probabilistic description logic programs for the Semantic
Web.

Chapter 1 focuses on research in probabilistic spatiotemporal databases and
presents an overview on this topic. Particularly, for the results about probabilistic
spatiotemporal databases using the SPOT (Spatial PrObabilistic Temporal)
approach, this chapter provides a uniform overview. Also the chapter presents nu-
merous interesting research problems using the SPOT framework for probabilistic
spatiotemporal databases that await further work.

Chapter 2 concentrates on modeling probabilistic evens with fuzzy measures in
the object-oriented database model. Instead of crisp probability measures or interval
probability measures of objects and classes, fuzzy sets are applied to represent im-
precise probability measures. A probabilistic object-oriented database model with
fuzzy measures is introduced, which incorporates fuzzy probability degrees to han-
dle imprecision and uncertainty. Based on the proposed probabilistic object-oriented
database model, several major semantic relationships of objects and classes, in-
cluding equivalent object relationships, object-class relationships and subclass-
superclass relationships, are investigated.

Chapter 3 aims to model and manage various kinds of uncertain data in proba-
bilistic XML. The chapter reviews the literature on probabilistic XML. Specifically,
this chapter discusses the probabilistic XML models that have been proposed and
the complexity of query evaluation therein. Also the chapter discusses other data-
management tasks for probabilistic XML like updates and compression, as well as
systemic and implementation aspects.

Chapter 4 surveys a few applications in sensor networks, ubiquitous computing,
and scientific databases that require managing uncertain and probabilistic data. The
chapter presents two approaches to meeting this requirement. The first approach is
proposed for a rich treatment of probability distributions in the system, in particu-
lar the SPO framework and the SP-algebra. The second approach stays closer to a
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traditional DBMS, extended with tuple probabilities or attribute probability
distributions, and studies the semantics and efficient processing of queries.

Chapter 5 introduces a novel approach for tackling the problem of OLAPing un-
certain and imprecise multidimensional data streams via novel theoretical tools that
exploit probability, possible-worlds and probabilistic-estimators theories. The result
constitutes a fundamental study for this scientific field that, behind to elegant theo-
ries, is relevant for a plethora of modern data stream applications and systems that
are more and more characterized by the presence of uncertainty and imprecision.

Chapter 6 proposes tractable probabilistic description logic programs
(dl-programs) for the Semantic Web, which combine tractable description logics
(DLs), normal programs under the answer set and the well-founded semantics, and
probabilities. The chapter first provides novel reductions of tight query processing
and of deciding consistency in probabilistic dl-programs under the answer set se-
mantics to the answer set semantics of the underlying normal dl-programs. Based
on these reductions, the chapter then introduces a novel well-founded semantics
for probabilistic dl-programs, called the total well-founded semantics. The chap-
ter presents an anytime algorithm for tight query processing in probabilistic dl-
programs under the total well-founded semantics. It is also shown that tight literal
query processing in probabilistic dl-programs under the total well-founded seman-
tics can be done in polynomial time in the data complexity and is complete for EXP
in the combined complexity. Finally, the chapter describes an application of proba-
bilistic dl-programs in probabilistic data integration for the Semantic Web.
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Research in Probabilistic Spatiotemporal
Databases: The SPOT Framework

John Grant, Francesco Parisi, and V.S. Subrahmanian

Abstract. We start by providing an overview of research on probabilistic spatiotem-
poral databases. The bulk of the paper is a review of our previous results about prob-
abilistic spatiotemporal databases using the SPOT approach. Presently these results
are scattered in various papers and it is useful to provide a uniform overview. We
also present numerous interesting research problems using the SPOT framework
for probabilistic spatiotemporal databases that await further work.

1 Introduction

In recent years much interest has focused on the tracking of moving objects and
reasoning about moving objects. Particularly with GPS systems it becomes possi-
ble to track vehicles, cell phones, supply items, RFID tags, and the importance of
such tracking continues to increase. Clearly, space and time are important factors
in this endeavor but probability is also useful. The reason for that is that the loca-
tions, and possibly the identity of the objects and the time may be known only with
some uncertainty and we can express such uncertainty by the use of probability. Fur-
thermore, we claim that in many cases the probability itself is not known exactly,
in which case the use of a probability interval is appropriate. Thus our framework
involves space, time, and probability intervals.
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A couple of years ago we became interested in providing a formalism for the
representation, querying, and updating of probabilistic spatiotemporal databases in
a straightforward manner with a simple syntax and an intuitive model-theoretic se-
mantics. For this purpose we introduced the SPOT (Spatial PrObabilistic Temporal)
framework in which a basic statement (atomic formula) states that a particular ob-
ject is in a particular region (for location) at a particular time with a probability that
is in a particular probability interval.

We then implemented the SPOT formalism and tackled several issues concerning
SPOT databases. In particular, we showed that several problems involving SPOT
databases can be transformed into linear programming problems. We developed in-
dexing methods to speed several types of selection queries. We also studied updating
SPOT databases in the spirit of AGM-style belief revision. Altogether we published
five papers on the SPOT approach. The purpose of this paper is to summarize our
results in one place and to propose numerous research questions for the further study
of probabilistic spatiotemporal databases in the SPOT framework.

We start in Section 2 by reviewing some of the important work done by other re-
searchers related to probabilistic spatiotemporal databases that did not use the SPOT
approach. Then Section 3 introduces the syntax and semantics of SPOT databases
and provides an example that will be used throughout the paper to illustrate various
concepts. Section 4 contains the fundamental results about SPOT databases includ-
ing the transformation to linear programming. The processing of certain kinds of
selection queries is discussed in Section 5; both optimistic and cautious answers are
considered. Section 6 reviews the algorithms for database updating/revision. Finally,
Section 7 contains interesting research questions.

2 Review of Previous Related Research

In order to place the SPOT framework in the proper context we now review re-
search related to it. This is by no means an exhaustive survey; we give a historical
background and briefly review some important papers; many additional references
appear in the works we mention. The problem of predicting where moving objects
will be in the future, when they will be there, and with what probability is intrinsi-
cally challenging. This can be easily understood by observing that reasoning with
just one or two of these three aspects (probability, space and time) is already quite
challenging. In fact, researchers have investigated separately probabilistic databases,
probabilistic spatial databases, probabilistic temporal databases, and probabilistic
spatiotemporal databases.

Kiessling and his group [28] develop the DUCK framework for reasoning with
uncertainty. They provide an elegant, logical, axiomatic theory for uncertain rea-
soning in the presence of rules. In the same spirit as Kiessling et al., Ng and Sub-
rahmanian [45] present a probabilistic semantics for deductive databases — they
assume absolute ignorance, and furthermore, assume that rules are present in the
system. Lakshmanan and Sadri [38] show how selected probabilistic strategies can
be used to extend the previous probabilistic models. Lakshmanan and Shiri [39]
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demonstrate how deductive databases may be parameterized through the use of con-
junction and disjunction strategies. Barbara et al. [3] develop a probabilistic data
model and propose probabilistic operators. Their work is based on the assumption
that probabilities of compound events can always be precisely determined. Cav-
allo and Pittarelli [8, 54], propose a model for probabilistic relational databases in
which tuples in a probabilistic relation are interpreted using an exclusive or. Dey and
Sarkar [15] propose an elegant 1NF approach to handling probabilistic databases.
In another work Kifer and Li [33] examine quantitative logic programming and in-
troduce formal semantics for such systems. Other systems from the probabilistic
database community also provide insight into probabilistic information reasoning
and storage [18, 19, 13, 34, 31]. Lukasiewicz and his colleagues [41, 42] study prob-
abilistic reasoning in logic programming, as does Dekhtyar [14]. However, none of
these works explicitly handle space or time.

The problem of efficiently storing and querying data representing spatial predic-
tions has deserved much attention by many researchers. Tao et al [60] develop an
indexing structure for spatial probabilistic data designed to solve a specific problem.
They assume that there is a single probability distribution function detailing where
an object might be at a given point in time in the entire space and their focus is on op-
timizing access to that probability density function. Using an R-tree-inspired U-tree
indexing structure they use hyperplanes to approximate the evolution of these prob-
abilistically constrained regions between time points. In [46], methods for dealing
with positionally uncertain spatial data are considered. Their data model associates
each point with a cluster, where points in the same cluster have the same error. This
model also allows only one pdf. The authors describe a PrR-tree for storing and
querying survey data, which uses a rectangular bounding region whose corners are
defined via Gaussian distributions. Like the above work, in [40], Lian et al use a
data model with one pdf over each object’s locations. They introduce probabilistic
group nearest neighbor queries, where given a set of points and a probability thresh-
old the system returns the set of objects that have minimal aggregate distance to the
set of points with a probability over the threshold. Dai et al [12] focus on proba-
bilities for the existence of a given object at a given point without worrying about
the possibility of the object being at another point. They show how to build an aug-
mented R-tree and use that tree to answer selection queries more effectively than
considering probability as an extra dimension in the R-tree. [7] uses a paradigm
called “line simplification” to approximate trajectories of moving objects, though
their framework does not involve uncertainty.

On the purely temporal side, Snodgrass is one of the first to model indetermi-
nate instances [59] — he proposes the use of a model based on three valued logic.
Dutta [17] later give a fuzzy logic based approach to handle generalized tempo-
ral events — events that may occur multiple times. This approach is also used by
Dubois and Prade [16]. Gadia [25] proposes an elegant model to handle incomplete
temporal information as well. He models values that are completely known, values
that are unknown but are known to have occurred, values that are known if they have
occurred, and values that are unknown even if they occurred. Koubarakis [36] pro-
poses the use of constraints for representing temporal data. Brusoni [6] develops a
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system called LaTeR that restricts constraints to conjunctions of linear inequalities,
as does Koubarakis’ work. [4] develops a framework to track uncertainty, time, and
the pedigree of data, but does not handle spatial information. As a matter of fact
none of these works handle both space and time.

There is also much work on spatio-temporal logics [24, 43] in the literature.
These logics extend temporal logics to handle space. This includes work on qual-
itative spatio-temporal theories (for a survey see [11, 44] [58] which discusses
the frame problem when constructing a logic-based calculus for reasoning about
the movement of objects in a real-valued co-ordinate system). [55] focuses on
relative position and the orientation of objects with existing methods for qualita-
tive reasoning in a Newtonian framework. Other efforts combine a spatial logic,
such as RCC − 8 [56], BRCC − 8 [62] and S4u [5], with propositional tempo-
ral logics (PT L ). The work on spatio-temporal reasoning is mostly qualitative
[11, 43, 63, 23], and focuses on relations between spatio-temporal entities while
dealing with discrete time. However, these works are not intended for reasoning
about moving objects whose location at a given point in time (past, present or fu-
ture) is uncertain (they not consider probabilities).

In addition to the above works on spatio-temporal logics, there are works on
logics integrating time and probabilities. Much of this work was performed in the
model checking community. The PRISM system [37] supports a mix of time and
probabilities for model checking with respect to specifications written in the tem-
poral probabilistic logics PCTL [30] and CSL [2]. However, none of these works
has any spatial element in them, and they focus on model checking, not on handling
knowledge bases. The work on “go” theories [20, 22, 21] focuses on spatio-temporal
logical theories that are sets of “go” atoms. Such atoms intuitively describe known
plans of moving objects. A go-atom states that an object will go from location A to
location B, leaving A at a time point in some time interval, arriving at B at a time
point in some interval, and traveling in the interim at a velocity within some stated
interval. [20] develops a basic theory of “go” theories, while [22] gives a closed
world assumption for such theories. Later, [51] extends this logic to include some
probabilistic information about such plans. Finally, the SPOT framework extends
this work to uncertainty about where objects might be at a given time [50, 49].

While there is substantial work in indexing spatial temporal data without proba-
bilities [52, 61, 35, 1, 53, 29], none of these works address a data model compatible
with our SPOT framework: they suppose no probabilities and model object move-
ment as linear. SPOT databases were developed by the authors in past work [50, 49]
to store such predictions without making the assumptions in prior work[60, 12, 7, 4].
In fact, our observations about the advantages of the SPOT approach hold also for
some very recent papers we mention in the next paragraph.

Up to this point we reviewed work done prior to our formulation of SPOT
databases. We end this section with a brief review of some recent papers on prob-
abilistic spatiotemporal databases. These papers do not use the SPOT approach.
Chung et al. [10] derive a pdf for the location of an object moving in a one-
dimensional space by using its past moving behavior or the moving velocity dis-
tribution. Their probabilistic range queries find objects that are in a specified region
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of space within a specified time interval, and with a probability that is at least a
threshhold value. Their indexing takes care of eliminating object that are too far
from consideration. Zhang et al. [65] provide a framework that allows their model
to be incorporated easily into existing DBMSs and work for all objects even if their
location and velocity are uncertain and the movements are unusual. For indexing
they use a Bx-tree which is a variant of a B+-tree that is applicable to moving ob-
jects. Yang et al. [64] work with moving objects in indoor space which is different
from Euclidean and spatial network spaces. Their query asks for all sets of k ob-
jects that have at least a threshold probability of containing the k nearest objects
to a given object. This paper defines a minimal indoor walking distance and uses
two types of pruning to efficiently solve such queries. Chen et al. [9] deal with a
similar problem but use a TPR-tree for indexing. They also deal with the query re-
sult quality by using both a false positive and a false negative rate. Finally, the most
recent paper we mention, [66] deals primarily with objects moving along road net-
works, certainly an important application. They introduce a novel indexing mech-
anism called UTH (Uncertain Trajectories Hierarchy) for efficiently processing
probabilistic range queries.

3 A SPOT Database

This section reviews the syntax and semantics of SPOT databases given in [50].

Syntax

We assume the existence of a set ID of objects ids, a set T of time points ranging over
the integers, and a finite set Space of points. Unless stated otherwise, we assume
that Space is a grid of size N ×N where we only consider integer coordinates 1. We
assume that an object can be in only one location at a time, but that a single location
may contain more than one object.

A rectangle is any region in Space that can be described by constraints of the
form le f t ≤ x ≤ right and bottom≤ y ≤ top where le f t,right,bottom, top are inte-
gers in [0..N]. Thus, all rectangles have edges parallel to the x and y-axes. A rectan-
gle is empty if either le f t > right or bottom > top.

Definition 1 (SPOT atom/database). A SPOT atom is a tuple (id,r, t, [�,u]), where
id ∈ ID is an object id, r ⊆ Space is a non-empty rectangular region in the space,
t ∈ T is a time point, and �,u ∈ [0,1] are probability bounds with � ≤ u. A SPOT
database is a finite set of SPOT atoms.

Intuitively, the SPOT atom (id,r, t, [�,u]) says that objects id is/was inside the spec-
ified region r at time t with probability in the [�,u] interval.

1 The framework is easily extensible to higher dimensions.
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Example 1. Consider a lab where data coming from biometric sensors are collected,
analyzed and stored. Biometric data such as faces, voices, and fingerprints recog-
nized by sensors are matched against given profiles (such as those of people having
access to the lab) and tuples like those in Table 1 are obtained. Every tuple con-
sists of the profile id resulting from the matching phase, the area of the lab where
the sensor recognizing the profile is operating, the time point at which the profile
has been recognized, and the lower and upper probability bounds of the recognizing
process getting the tuple. For instance, the tuple in the first row of Table 1 rep-
resenting the SPOT atom (id1,d,1, [0.9,1]) says that profile having id id1 was in
region d at time 1 with probability in the interval [0.9,1]. In Figure 1, the plan
of the lab and the areas covered by biometric sensors are shown. In area d a fin-
gerprint sensor is located, whose high accuracy entails a narrow probability inter-
val with upper bound equal to 1. After fingerprint authentication, the id1 profile
was recognized at time 3 in areas b and c with probability in [0.6,1] and [0.7,0,8],
respectively.

Table 1 SPOT database Slab

Id Area Time Lower Prob Upper Prob
id1 d 1 0.9 1
id1 b 3 0.6 1
id1 c 3 0.7 0.8
id2 b 1 0.5 0.9
id2 e 2 0.2 0.5
id2 e 3 0.6 0.9

Fig. 1 Areas of the lab
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Given a SPOT database S , a fixed object id and a fixed time t, we use the notation
S id,t to refer to the set:

S id,t = {(id′,r′, t ′, [�′,u′]) ∈ S | id′ = id ∧ t ′ = t}.

Semantics

The meaning of a SPOT database is given by the set of interpretations that satisfy
it.

Definition 2 (SPOT interpretation). A SPOT interpretation is a function I : ID×
Space×T → [0,1] such that for each id ∈ ID and t ∈ T ,

∑
p∈Space

I(id, p, t) = 1.

For a given an interpretation I, we sometimes abuse notation and write Iid,t(p) =
I(id, p, t). In this case, Iid,t is a probability distribution function (PDF).

Example 2. Interpretation I1 for the SPOT database Slab introduced in Example 1
is as follows.

I1(id1,(3,6),1) = 0.4 I1(id1,(2,5),1) = 0.2
I1(id1,(3,5),1) = 0.3 I1(id1,(5,5),1) = 0.1
I1(id1,(7,5),2) = 0.5 I1(id1,(4,2),2) = 0.5
I1(id1,(10,10),3) = 0.7 I1(id1,(7,5),3) = 0.3
I1(id2,(8,10),1) = 0.1 I1(id2,(12,12),1) = 0.9
I1(id2,(9,7),2) = 0.3 I1(id2,(12,13),2) = 0.7
I1(id2,(14,5),3) = 0.8 I1(id2,(12,14),3) = 0.2

Moreover, I1(id, p, t) = 0 for all triplets (id, p, t) not mentioned above.

Given an interpretation I and region r, the probability that object id is in r at time t
according to I is Σp∈rI(id, p, t). We now define satisfaction by an interpretation.

Definition 3 (Satisfaction). Let a = (id,r, t, [�,u]) be a SPOT atom and let I be a
SPOT interpretation. We say that I satisfies a (denoted I |= a) iff ∑p∈r I(id, p, t) ∈
[�,u]. I satisfies SPOT database S (denoted I |=S ) iff I satisfies every atom in S .

Example 3. Continuing with our running example, interpretation I1 satisfies the
SPOT atom (id1,d,1, [0.9,1]) as, for id id1 and time point 1, I1 assigns proba-
bility 0.4 to (3,6), 0.3 to (3,5), and 0.2 to (2,5) (which are points in area d), and
probability 0.1 to (5,5) which is outside area d. Hence, the probability that id1 is
in area d at time point 1 is 0.9, which belongs to the interval [0.9,1] specified by
the considered SPOT atom. Reasoning analogously, it is easy to see that I1 satisfies
all of the atoms in Table 1 except for (id2,b,1, [0.5,0.9]), as the probability to be in
area b at time 1 for id id2 is set to 0.1 by I1, instead of a value in [0.5,0.9].

Let I2 be an interpretation equal to I1 except that I2(id2,(8,10),1) = 0.7 and
I2(id2,(12,12),1) = 0.3. This interpretation satisfies the SPOT database Slab.
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4 The Basic Definitions and Results

We use I(S ) to denote the set of interpretations that satisfy a SPOT database S ,
that is, I(S ) = {I | I |= S }.

Definition 4 (Consistency). A SPOT database S is consistent iff I(S ) �= /0.

Definition 5 (Compatibility). A SPOT atom a is compatible with a SPOT database
S , denoted as a � S , iff S ∪{a} is consistent.

Definition 6 (Entailment). A SPOT database S entails a SPOT atom a, denoted
as S |= a, iff ∀I ∈ I(S ), I |= a. A SPOT database S1 entails a SPOT database
S2, denoted as S1 |= S2, iff ∀a ∈ S2, S1 |= a.

Example 4. Interpretation I2 of Example 3 proves that the SPOT database Slab of
Example 1 is consistent. It is easy to see that a = (id1, f ,2, [0,0.5])� Slab because
I2 |= Slab ∪{a} and Slab |= (id1,d,1, [0.75,1]).

Given a SPOT database S , an object id ∈ ID, and a time point t ∈ T , that is, S id,t ,
[50] defined a set LC(S , id, t) of linear constraints. LC(S , id, t) uses variables vp

to denote the probability that object id will be at point p ∈ Space at time t.

Definition 7 (LC(·)). For SPOT database S , id ∈ ID, and t ∈ T , LC(S , id, t)
contains:

- ∀(id,r, t, [�,u]) ∈ S id,t ,(
∑p∈r vp ≥ �

) ∈ LC(S , id, t),(
∑p∈r vp ≤ u

) ∈ LC(S , id, t)
-

(
∑p∈Space vp = 1

) ∈ LC(S , id, t),
- ∀p ∈ Space (vp ≥ 0) ∈ LC(S , id, t)
- No other constraints are in LC(S , id, t).

The problem of checking the consistency of a SPOT database was addressed in
[50], where it was shown that SPOT database S is consistent iff LC(S , id, t) is
feasible for all 〈id, t〉 pairs. The compatibility and entailment of a SPOT atom can
be checked via the following result shown in [50].

Theorem 1. Given a SPOT database S and a SPOT atom (id,r, t, [�,u]),

i) (id,r, t, [�,u])� S iff LC(S ∪{(id,r, t, [�,u])}, id, t) is feasible.
ii) S |= (id,r, t, [�,u]) iff [�′,u′]⊆ [�,u] where

- �′ = minimize Σp∈rvp subject to LC(S , id, t)
- u′ = maximize Σp∈rvp subject to LC(S , id, t).

Hence, the consistency of a SPOT database, as well as the compatibility and en-
tailment of a SPOT atom, can be checked by a linear programming algorithm. The
complexity of these algorithms was shown to be O(|ID| · |T | · (|Space| · |S |)3).
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An optimized version of these algorithms was proposed in [49], where the num-
ber of variables of LC(·) was drastically reduced by introducing an equivalence
relation on points in Space, giving a partition of Space, P = {P1, . . . ,Pn} so that
all the points in any Pi cannot be distinguished by S id,t . It was proved that con-
sistency, compatibility, and entailment can be checked by considering a version of
LC(·) (namely PLC(·)) where the points in Space are replaced by the partitions in
P , so that the points p ∈ Pi are replaced by a new single variable vPi . As the size
of P is typically very much lower than the number of points in Space, the amount
of time needed for solving PLC(·) is very much smaller than that needed for solv-
ing LC(·) [49] experimentally shows that reduced-size algorithms are much more
efficient than those introduced in [50].

5 Query Processing in SPOT

The most investigated kind of query in SPOT database is selection.

Definition 8 (Selection query). A selection query is an expression of the form
(?id,q,?t, [�,u]) where q is a region of Space, not necessarily rectangular, [�,u] is
a probability interval, ?id is a variable ranging over ids in ID, and ?t is a variable
ranging over time points in T .

Intuitively, a selection query says: “Find all objects id and times t such that the
object id is inside the specified region q at time t with a probability in the [�,u]
interval.” There are two semantics for interpreting this statement, leading to two
types of selection queries.

Definition 9 (Optimistic/Cautious selection). Suppose S is a SPOT database and
(?id,q,?t, [�,u]) is a selection query.
The optimistic answer to (?id,q,?t, [�,u]) is the set

{〈id, t〉 | id ∈ ID ∧ t ∈ T ∧ (id,q, t, [�,u])� S }.

The cautious answer to (?id,q,?t, [�,u]) is the set

{〈id, t〉 | id ∈ ID ∧ t ∈ T ∧ S |= (id,q, t, [�,u])}.

Optimistic selection returns objects and time points that may be in the query region
with probability in the specified interval, whereas cautious selection only returns
those objects and time points that are guaranteed to be in that region with probability
in that interval. Thus, the cautious answer is a subset of the optimistic one.

Example 5. Continuing our running example, one may be interested in knowing the
ids and time points of profiles that were in the room where the fingerprint sensor is
located, with probability greater than 0.75. This can be expressed by the selection
query (?id,q,?t, [0.75,1]), where q is the rectangle defined by constraints 0 ≤ x ≤ 6
and 4 ≤ y ≤ 8 (this query region includes the whole area d, a portion of area b, and
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some other points). The optimistic answer of this query is the set {< id1,1 >,<
id1,2 >,< id1,3 >,< id2,1 >}, whereas the cautious answer only contains the pair
< id1,1 >.

Optimistic and cautious selection can be computed by exploiting the results of The-
orem 1. Specifically, given the selection query Q = (?id,q,?t, [�,u]) over the SPOT
database S , the optimistic answer to Q can be computed by solving, for each pair
〈id, t〉 in S , the linear program LC(S ∪ {(id,q, t, [�,u])}, id, t): if it has a solu-
tion then 〈id, t〉 is in the optimistic answer of Q. The cautious answer to Q can be
computed by solving, for each pair 〈id, t〉 in S , the two optimization problems of
Theorem 1(ii) which return the interval [�′,u′]. Then, checking if [�′,u′] ⊆ [�,u] is
sufficient for deciding if the pair 〈id, t〉 is in the cautious answer of Q. We refer to
these approaches as the naive algorithms for optimistic and cautious selection.

Efficient algorithms for computing optimistic and cautious selection were pro-
posed in [49] and [47], respectively. Both proposed approaches exploit strategies
for pruning the search space of candidate answers of a given query.

Optimistic Selection

An index structure, called SPOT -tree, and algorithms to compute optimistic an-
swers to selection queries using the index were proposed in [49]. Each node of a
SPOT -tree is labeled with a composite SPOT atom, which compactly represents a
set of SPOT atoms (that is, a SPOT database). The relationship between parent and
children nodes of a SPOT -tree is based on logical implication of SPOT databases.
Basically, there is an entailment relationship between each composite atom labeling
a child node and the composite atom labeling its parent node. Hence, the composite
atom labeling the root node of a SPOT -tree is entailed by every composite atom
labeling any node of the tree. Further, composite atoms labeling leaf nodes are en-
tailed by SPOT atoms in the database.

The SPOT -tree reduces the set of < id, t > pairs to be considered as candidates
for the optimistic answer of a selection query — potentially, this set contains all the
< id, t > pairs in the SPOT database. The logical relationship between nodes of a
SPOT -tree entails that, for each child node, the set of SPOT interpretations of its
composite atom is a subset of the set of SPOT interpretations of its parent node
composite atom. As a consequence, given a selection query Q, if the composite
atom labeling the node n is not compatible with Q (this condition can be checked in
constant time due to the structure of composite atoms), then any composite atom of
the subtree rooted in n is not compatible with Q, which in turns means that all the
< id, t > pairs of SPOT -tree rooted in n do not belong to the optimistic answer of
Q, i.e., they can be pruned from the search space.

For < id, t > pairs that cannot be pruned by traversing the SPOT -tree, the naive
algorithm is used for checking whether they are in the optimistic answer. Thus,
for every pair pruned, we save the time needed for solving the linear programming
problem of Theorem 1(i), as confirmed by the experimental study in [49].
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Cautious Selection

In [47] the problem of efficiently computing cautious answers to selection queries
was investigated. The proposed approach is based on geometric considerations
which follow from the fact that both SPOT databases and selection queries de-
fine convex polytopes in the so-called SPOT PFD Space. The relationship between
these polytopes can be used to answer queries. Specifically, it was shown that an
< id, t > pair belongs to the cautious answer of a given selection query iff the poly-
tope defined by the query contains that defined by the SPOT database S id,t .

Approximations of the S id,t polytope by interior and containing regions were in-
troduced, instead of using the original S id,t polytope which would have lead to an
approach as computationally expensive as solving optimization problems of The-
orem 1(ii). Thus, an < id, t > pair is in the cautious answer of a given selection
query if the query polytope contains a region containing the S id,t polytope (this en-
sures that the query polytope contains that defined by S id,t ). Similarly, an < id, t >
pair in not in the cautious answer (i.e., it can be pruned) if the query polytope does
not contain an interior region of the S id,t polytope. Both of these strategies can be
jointly used to prune the search space when answering a query.

Efficient ways of finding interior and containing regions were also proposed.
Containing regions can be obtained by starting from composite atoms introduced
in [49] for defining SPOT -tree nodes. Internal regions can be obtained by follow-
ing an inline or preprocessing approach. The former consist of storing solutions (that
is, internal points of S id,t polytope) of previously asked selection queries and then
building the convex envelopes of found points. The latter approach, which is prefer-
able to inlining when spare resources are available for precomputation, consists of
solving a few optimization problems to find some internal points to be used to con-
struct their convex envelope. As experimentally proved in [47], using either interior
and containing regions yields improvement in terms of the efficiency of cautious
selection.

SPOT Query Algebra

A relational-style algebra for SPOT databases has been proposed in [50]. This al-
gebra contains a version of the selection, union, intersection, difference and join
operators. Specifically, selection considered in [50] is a special case of cautious
selection which returns ids only. Processing such queries by linear programming
algorithms can be avoided if the database is known to satisfy the following disjoint-
ness property: there are no two distinct SPOT atoms in the database referring to the
same object, the same time point and intersecting regions of Space.

Set operations and join in SPOT databases are more complicated and challenging
than selection. We start by discussing the union operator, the simplest one. Union
adds restrictions on the set of SPOT interpretations of the databases involved in the
union operation. The intuition is that adding new information to a SPOT database
reduces the degree of freedom that one has in choosing an interpretation. Formally,
the union of SPOT databases S1 and S2 results in a SPOT database whose set
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of interpretation is I(S1)∩ I(S2). On the contrary, intersection and difference re-
move restrictions on SPOT interpretations of databases involved. Semantically, one
would expect that I(S1 ∩S2) = I(S1)∪ I(S2) and I(S1 −S2) = I(S1)\ I(S2),
where I(S2) = {I | I /∈ I(S2)}. However, such semantics for intersection and differ-
ence cannot be expressed by SPOT databases since disjunction of probability inter-
vals of SPOT atoms would be required. Hence, weaker definitions of intersection
and difference operators returning supersets of the expected sets of interpretations
(defined above) were introduced. Finally, a version of join was introduced that puts
together information from different SPOT atoms having the same < id, t > pair and
satisfying an input function combining atom regions.

Nearest Neighbor Queries

Another kind of query in which SPOT database users may be interested is a nearest
neighbor query, that is finding the nearest expected object neighbor to a given point
of Space at a given time. As an example, a cell phone company may want to know
the nearest cell phone to a given cell tower. Also the nearest neighbor to a given
object, whose position is not known exactly, at a given time may be needed, such as
finding the cell phone nearest to another one at a given time. Dealing with nearest
neighbor queries implicitly requires dealing with the expected distances of objects
from a given point or object at a given time. Here the expression “expected distance”
is used in the strict sense of statistical expected values.

As SPOT databases do not state exactly where objects are at any given time, nor
the exact probability that an object is in a given region of Space at a given time,
minimal expected distance and maximal expected distance between objects were
investigated in [50]. Then, these concepts were used to define two versions of nearest
expected neighbor queries which return the object id whose expected distance from
a given point at a given time is minimum or maximum, respectively. Under the
assumption that the database is disjoint, algorithms for computing expected distance
and nearest neighbor queries were proposed and experimentally validated.

6 Updates in SPOT

As SPOT databases provide information on moving objects, one of the aspect to be
addressed is that information on these objects may continuously change as objects
move. An object may encounter unexpected situations during its move, which may
lead to a revision of estimates of where it may be in the future, as well as a revision
of where it may have been in the past. The problem of revising SPOT data was first
addressed in [48] and then further investigated in [27], where several strategies for
revising SPOT data were proposed.

If the insertion of a SPOT atom a into a SPOT database S leads to no incon-
sistency then the atom can just be added to the database. However, when it leads to
inconsistency, that is I(S ∪{a}) = /0, then many different belief revision operations
are possible. A first revision strategy proposed in [27] consists of finding a maximal
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(w.r.t. either subset inclusion or cardinality) subset S ′ of S such that S ′ ∪ {a} is
consistent.

Example 6. Assume that the SPOT atom a = (id1,e,3, [0.5,1]) providing new fresh
information on the profile id1 recognized at time 3 by the sensor in area e should be
added to the SPOT database Slab of Example 1. It is easy to see that Slab ∪{a}
is not consistent, as id1 cannot stay at the same time in the disjoint areas c and
e with probability in the intervals [0.7,0.8] and [0.5,1], respectively. A maximal
consistent subset revision of Slab is S ′

lab = Slab \ {(id1,c,3, [0.7,0.8])}. As this
revision removes only one atom from the database, it is maximal under both the
subset inclusion and the subset cardinality criterion.

Maximal consistent subset revision works at the tuple level in the sense that the ba-
sic primitive to update the SPOT database is deletion of whole tuples. Strategies
exploiting finer basic primitives such as updates of attribute values of tuples are also
possible. For instance, in the example above, a revision may consist of changing
the value of the temporal component of the tuple (id1,c,3, [0.7,0.8]) in Slab from
3 to 2. Revising strategies consisting of minimally modifying the spatial, temporal,
or object components in S were investigated in [27]. Further, three revision mech-
anisms based on minimally revising the probability intervals in a SPOT database
were addressed. In particular, by changing the relevant atoms’ probability intervals
to [0,1], consistency is restored; however, such a change loses much information and
will usually not be minimal. It turns out that all of above-cited revision mechanisms
lead to computational intractability except the strategy that revises the probabil-
ity bounds. Probability revision can be computed by solving a linear programming
problem similar to LC(S , id, t) (see Definition 7) where, for each SPOT atom ai,
additional variables lowi and upi are used to represent the atom’s modified lower
and upper probability bounds.

Example 7. A probability revision for the SPOT database Slab w.r.t. atom
a = (id1,e,3, [0.5,1]) is obtained by solving the following linear programming
problem which is obtained by considering that S id1,3

lab = {(id1,b,3, [0.6,1]),
(id1,c,3, [0.7,0.8])}:

minimize (0.6− low1)+ (up1 − 1)+ (0.7− low2)+ (up2 − 0.8)
subject to⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

low1 ≤ ∑p∈b vp ≤ up1

0 ≤ low1 ≤ 0.6
1 ≤ up1 ≤ 1
low2 ≤ ∑p∈c vp ≤ up2

0 ≤ low2 ≤ 0.7
0.8 ≤ up2 ≤ 1
0.5 ≤ ∑p∈e vp ≤ 1
∑p∈Space vp = 1
∀p ∈ Space vp ≥ 0

Basically, for each atom ai = (id,ri, t, [�i,ui]) in the database, where id and t are the
object identifier and the time point of the atom added to the database, the modified
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probability interval [lowi,upi] is such that [�i,ui]⊆ [lowi,upi]⊆ [0,1]. The inequal-
ities with variables vp, where p is a point in Space, ensure that there is a PDF
satisfying the revision atom and every atom ai in the database with [�i,ui] replaced
by [lowi,upi]. Finally, the objective function guarantees that the revised probability
bounds are as close as possible to the original ones.

In [48] and [27], the SPOT framework was extended to remove the assumptions
that there are no velocity constraints on moving objects and that all points in S
are reachable from all other points by all objects. A general notion of reachabil-
ity definition was provided to capture the scenario where objects have speed limits
and only some points are reachable by objects depending on both the distance be-
tween the points, the objects’ speed, and possible obstacles in the way. Reachability
constraints require the use of more complex variables in the linear programming
problem of Definition 7. However, in this case the size of the problem increases
quadratically in the size of Space and the maximum time range in S . As exact op-
timizations like that discussed after Theorem 1 do not work in this case due to the
new structure of the linear programming problem, a suite of heuristics was proposed
in [27] in order to speed up the computation of probability revision.

7 Research Questions about SPOT

As sketched in the previous sections we have found SPOT to be a very useful
approach to the study of probabilistic spatiotemporal databases. We believe that
there are interesting research problems within the SPOT framework as well through
various extensions of SPOT . The purpose of this section is to specify and elaborate
on such issues, thereby inviting researchers to do further work in this area. The
topics are mostly independent of each other, although some could be combined.

We present five general topics. The first two are within the present SPOT frame-
work; the other three present extensions to SPOT . First we discuss additional types
of selection queries not considered in our papers. Then we suggest investigating
the handling of aggregates and views. Recalling that SPOT databases use spatial
regions and probability intervals, we suggest an extension to SPOT that allows
for groups of objects and temporal intervals. Another possible extension involves
adding connectives and quantifiers, thereby creating a full SPOT logic. Finally we
suggest combining SPOT with logical terminology involving space and time.

7.1 Additional Selection Queries

As we discussed in Section 4, in our papers we dealt with selection queries of the
form (?id,q,?t, [�,u]) finding pairs of 〈id, time〉 values that provide answers to the
query for a specific region q and probability interval [�,u] using both the optimistic
and cautious semantics. For the purpose of this section we will write such a query as
{〈id, t〉 |(id,qc, t, [�c,uc])} indicating by the use of the subscript c that the region and
probability values are fixed constants. We dealt with this selection query because we
thought it was important, and we devised index structures for its efficient processing.
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We believe that these and other index structures will be useful in answering other
types of selection queries. In this subsection we list some queries with a similar
form.

Let us start with atomic queries. Considering these systematically we start with
one variable queries where the answer will be a set of values. Two of these appear
interesting, namely {〈id〉 | (id,qc, tc, [�c,uc])} and {〈t〉 | (idc,qc, t, [�c,uc])}. These
are just like the queries we considered previously, but simpler, because in the first
case we are considering a single time value and in the second case a single id value.
The other two one variable queries appear less interesting because in the case of
{〈q〉|(idc,q, tc, [�c,uc])} there may be many regions in the answer that are almost the
same; while for {〈[�,u]〉 |(idc,qc, tc, [�,u])} the probability interval [0,1] is always in
the answer. In the latter case we would likely be interested only in the smallest such
probability interval. So, for example, if the answer is [.8,1], that means that idc is in
the region qc at time tc with probability at least .8.

We move on to two variable queries. Altogether there are 6 two variable queries.
The query {〈id, t〉 | (id,qc, t, [�c,uc])} is the one we considered in the previous pa-
pers. As suggested for the one variable queries, asking for a region is less interesting,
but asking for the smallest probability interval may be useful. For example, the query
{〈id, [�,u]〉 | (id,qc, tc, [�,u])} asks for all the objects and their smallest probability
intervals such that the object is in region qc at time tc with that probability interval.
Then, {〈t, [�,u]〉 | (idc,qc, t, [�,u])} is interpreted in a similar way. Among the three
variable queries probably the most interesting one is {〈id, t, [�,u]〉 | (id,qc, t, [�,u])}
which essentially asks for all information about a region, that is, what objects were
in the region at what times with what probability intervals.

Next we consider queries with connectives. Although it is not necessary to
use the same selection queries that we used in the previous papers, we will do
so here. Starting with conjunction, consider the query {〈id, t〉 | (id,qc, t, [�c,uc])∧
(id,qd , t, [�d ,ud])} asking for all 〈id, t〉 pairs such that the object was at that time
both in region qc with probability in the interval [�c,uc] and in the region qd with
probability in the interval [�d ,ud ]. The result will be the intersection
of two answers to two atomic queries. Similarly, the query {〈id, t〉 | (id,qc, t, [�c,uc])
∨ (id,qd , t, [�d ,ud])} gives the union of two atomic queries, and
{〈id, t〉 | ¬(id,qc, t, [�c,uc])} gives the complement of the query answer without
the negation but only if we also switch between optimistic and cautious selec-
tion. Finally, we add quantifiers. We consider only two examples. The query
{〈id〉 | ∃t(id,qc, t, [�c,uc])} gives all objects that were at some time value in the re-
gion qc with the probability in [�c,uc]. The same query with the universal quantifier,
namely {〈id〉 | ∀t(id,qc, t, [�c,uc])} gives all objects that were in the region qc with
probability in [�c,uc] for all time values.

7.2 Aggregates and Views

[57] is the definitive work on aggregates in probabilistic databases. A typical exam-
ple in that paper concerns a day-ahead energy market with probabilities for various
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prices. Basic aggregate queries involve finding the mean or standard deviation over
prices for specified values of other attributes. In the SPOT framework this does not
apply directly as we don’t actually deal with numeric values (although we use in-
tegers for time values). Even so we may want to count the number of objects in a
certain region at a certain time. Here we would compute the expected value based
on the probabilities. The research problem is the application of the algorithms de-
veloped earlier for probabilistic aggregates in the SPOT framework.

Actually, we could add genuine numeric values to SPOT . Consider that there
may be a benefit value given to the presence of an object being in a certain region
at a certain time. This might be helpful, say, in a military operation or in the case of
a taxi service. In this case we would augment the standard 4 columns by adding a
fifth column of numeric values. We could then try to solve the problem of answering
typical aggregate queries in an efficient way.

Views have been found very useful in relational databases. In the SPOT frame-
work the most useful views would be obtained by asking a selection query that
preserves all the attributes, so that the end result is also a SPOT database. Here the
query {〈idc,q, t, [�,u]〉} selects all the SPOT atoms for idc. Thus one user may have
a view with information only about a single object. Standard questions about views
involve answering queries using views and view maintenance. In this simple exam-
ple the view given can answer only queries about one object, idc (it gives the null
result for all other objects). View maintenance may involve atoms not in the view in
case there are obstacles and speed issues concerning the movement of objects that in
previous papers we modeled by using a reachability definition. The challenge here
is to check when this needs to be done and find ways to speed up the process.

7.3 Groups of Objects and Time Intervals

In the SPOT framework some of the atomic values represent a set. In particular, a
region is a set of points in Space; we have dealt mainly with rectangular regions,
but only for ease of implementation. Also, for probabilities we allow probability
intervals. Now we show how to extend SPOT for objects and time intervals.

In the case of objects we may be interested in a group of objects. For example, a
military convoy may consist of multiple vehicles moving together. We can use the
notation (G,q, t, [�,u]) to mean that the group of objects G is in region q at time t
with probability in [�,u]. In such a case, if say G = {id1, id2, id3}, we could have
written this in SPOT as (idi,q, t, [�,u]) for i = 1,2,3, that is, as three SPOT atoms.
But there may be another meaning assigned to the atom (G,q, t, [�,u]): namely, that
some object in G is in the region q at time t with probability interval [�,u]. The latter
is the disjunctive interpretation of G, while the former is the conjunctive interpreta-
tion. The disjunctive interpretation cannot be expressed in SPOT .

In the case of time it would be natural to extend a single time value to a time
interval. Consider the notation (id,q, [t1, t2], [�,u]) to indicate that the object id is
in region q at times between t1 and t2 with probability in [�,u]. Again, there is a
conjunctive and a disjunctive interpretation. In the conjunctive interpretation the
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object is in the region with the given probability interval for all time values between
t1 and t2, while in the disjunctive interpretation it is the case for some time value
between t1 and t2.

The two cases, objects and times, can be combined to obtain the new generalized
atom (G,q, [t1, t2], [�,u]) where there are four possible meanings using the conjunc-
tive and disjunctive interpretations. The research challenge then is to extend the
previous SPOT results to such generalized atoms. This involves answering various
types of queries and doing database updates in the sense of revision. An interesting
question is what data structures will be useful for speeding up processing in these
cases.

7.4 Full SPOT Logic

The SPOT framework allows only atomic formulas, but these formulas have a
strong expressive capability. Still, it is reasonable to consider what can be done
if we allow connectives and quantifiers in the language. Actually, in such a case it
will be useful also to allow both open and half-open probability intervals, so that,
for example, (id,q, t,(�,u]) states that id is in region q at time t with probability
interval greater than � and at most u.

Starting with conjunction we note that a conjunction of SPOT atoms, a1∧. . .∧an

is equivalent to the set {a1, . . . ,an}. There is a difference however in updating a
SPOT database. Recall that in order to retain consistency we introduced several
strategies (see Section 5). Suppose that the conflict of a new atom is with a1 only.
Using maximal consistent set revision with {a1, . . . ,an} we delete a1, but if we have
the conjunction only, we must delete it, thereby losing the information in the other
ai, i = 2, . . . ,n. Even if we apply a different strategy, such as minimizing probability,
the definitions must be rewritten allowing, for example, in a1 ∧ . . .∧ an to change
only one probability interval.

Disjunction presents substantial challenges (but then the same goes for going
from relational to disjunctive databases). It is not clear that we can write a single
linear program where the existence of a solution signifies the consistency of a dis-
junctive database, such as, if the disjunction (id1,q1, t1, [�1,u1])∨(id2,q2, t2, [�2,u2])
is included. Thus it may not be possible to adapt our approach using linear pro-
gramming for this case. So it may be appropriate to limit disjunction in cer-
tain ways. For example, we may allow only one of the values to change, as in
(id1,q, t, [�,u])∨ (id2,q, t, [�,u]) where the identity of the object is known to be
id1 or id2. Actually, this is the same situation that we considered in the pre-
vious subsection where we allowed groups of objects. However, the disjunction
(id,q, t, [�1,u1])∨ (id,q, t, [�2,u2]) assuming that u1 < �2 is not covered there.

Let’s consider negation next. Here is where our extension to half-open inter-
vals becomes useful. Essentially, the negation of an atom in SPOT can be ex-
pressed in the form of a disjunction, as follows: ¬(id,q, t, [�,u]) ≡ (id,q, t, [0, �))∨
(id,q, t,(u,1]), with the appropriate modification in case �= 0 or u= 1. In that sense
negation can be eliminated in full SPOT logic.
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Finally, we take a look at quantifiers. In case Id, Space and Time are finite
and we do not quantify over probabilities, we can rewrite quantified statements
using conjunction and disjunction. For example, if T = {0, . . . ,N}, the statement
∃t(idc,qc, t, [�c,uc]), expressing that the object idc was in region qc at some time
value with probability in the interval [�c,uc] can be written without the existential
quantifier as the disjunction (idc,qc,0, [�c,uc])∨ . . .∨ (idc,qc,N, [�c,uc]). Similarly,
changing the existential quantifier to a universal quantifier results in the disjunction
changed to a conjunction. However, if we choose T to be infinite, then the quantifier
cannot be replaced.

7.5 Adding Spatial and Temporal Concepts

Space and time are essential components in the SPOT framework. However, al-
though SPOT is based on logical formalism, it does not take into account any con-
cepts from the logics that have been developed for space and time. This subsection
discusses some ideas that that could be used to augment the SPOT framework with
spatial and temporal logic concepts.

We refer to the survey paper [32] for logical formalisms concerning spatial con-
cepts. There are formal logical systems for spatial relations between regions such as
part o f and overlap as well as spatial properties of regions such as open, closed,
and connected, as well as operators such as closure and boundary. Thus we propose
that this extension contain the usual SPOT atoms as well as atomic formulas that
represent spatial concepts, and a proper mixture of the two. We assume here that
regions are not restricted to rectangles in Space; in fact Space itself can be any set
of points.

Allowing O to represent the overlap relation, the following three atoms:
(id,q, t, [�,u]); (id,r, t, [�,u]); O(q,r) clearly give more information than just the
first two. We would also like to allow operators inside SPOT atoms; for example
(id,B(q), t, [�,u]), where B stands for boundary, indicates the probability interval for
the object id to be on the boundary of region q at time t. For connectedness, in the
case of moving objects we may wish to define several types, such as a region is car-
connected if one can travel by car from any point to any other point in the region
versus plane-connected where travel is by plane. The research here involves the best
spatial extensions and algorithms to deal with them.

Important issues about temporal logic are well summarized in [26]. As explained
there, temporal logics have temporal operators such as F : “It will at some time be
the case that ... ” and G: “It will always be the case that ... ”. Using such temporal
operators to make general statements we may allow SPOT statements without the
time component to write G(id,q, [.8,1]) to mean that the object id will always be in
the region q with probability at least .8. If time were finite, say T = {0,1, . . . ,N} and
the present time now is known, then we could have written the N − now statements
(id,q,n, [.8,1]) for n= now +1, . . . ,N with the same meaning. However, this cannot
be done with our assumption that T is the set of integers. Also, even with finite time
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we cannot express F(id,q, [.8,1]). So, in general, temporal operators expand the
expressibility of the SPOT framework.

In the previous subsection we considered the addition of quantifiers to SPOT .
Using quantifiers and inequality predicates we can express the temporal operators.
For example, F(id,q, [.8,1]) would be written as ∃t(t > now∧ (id,q, t, [.8,1]); G is
the same but with the universal quantifier. However, quantifiers can cause compli-
cations and if our interest is only in expressing various temporal concepts, it may
be better to use temporal operators. The important issue is the development of data
structures to process such concepts as efficiently as possible. Finally, we mention
the combination of spatial and temporal concepts that might be added to the SPOT
framework for widening its expressibility.
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A Probabilistic Object-Oriented Database 
Model with Fuzzy Measures 

Li Yan and Z. Ma 

Abstract. This chapter concentrates on modeling probabilistic evens with fuzzy 
measures in the object-oriented databases. Instead of crisp probability measures or 
interval probability measures of objects and classes, fuzzy sets are applied  
to represent imprecise probability measures. A probabilistic object-oriented 
database model with fuzzy measures is introduced, which incorporates fuzzy 
probability degrees to handle imprecision and uncertainty. Based on the proposed 
probabilistic object-oriented database model, several major semantic relationships 
of probabilistic objects and probabilistic classes with fuzzy measures are 
investigated in the chapter. 

1 Introduction 

Databases are used to manage an enormous wealth of data from various real-world 
applications. As a result, one of the major areas of database research has been the 
continuous effort to enrich existing database models with a more extensive 
collection of semantic concepts in order to satisfy the requirements in the real-
world applications. Database models have developed from hierarchical and 
network database models to the relational database model. As computer technology 
moves into non-traditional applications (e.g. knowledge-based systems), many 
software engineers feel the limitations of relational databases in data- and 
knowledge-intensive applications. So some non-traditional data models (e.g., the 
object-oriented database model and the object-relational database model) have been 
proposed for databases. 
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While the object-oriented database model provides powerful object-oriented 
modeling capabilities, it suffers from some inadequacy of necessary semantics. In 
real-world applications, information is often imperfect, and human knowledge and 
natural language have a big deal of imprecision and vagueness. Traditional 
database models assume that the models are a correct reflection of the world and 
further assume that the stored data is known, accurate and complete. It is rarely the 
case in real life that all or most of these assumptions are met. One of some 
inadequacy of necessary semantics that traditional database models often suffer 
from can hereby be generalized as the inability to handle imprecise and uncertain 
information. For this reason, imprecise and uncertain data have been introduced 
into databases for imperfect information processing [10, 15, 16, 21]. 

To deal with uncertainty and imprecision, two major foundations have been 
developed, which are probability theory and fuzzy set theory, respectively. Fuzzy 
set theory and probability theory have been applied to extend various database 
models and this has resulted in numerous contributions, mainly with respect to the 
popular relational model. But the fuzzy relational database model [3, 7, 13, 14, 17, 
23, 24, 25, 27] or probabilistic relational database model [6, 8, 12, 22, 32] does not 
satisfy the requirement of modeling complex objects with inherent imprecision 
and uncertainty. The object-oriented database model can represent complex object 
structures without fragmenting the aggregate data and can also depict complex 
relationships among attributes. Recently some efforts have concentrated on the 
fuzzy object-oriented databases [18, 26] and probabilistic object-oriented 
databases [9, 11, 20]. As a result, some related notions (e.g., class, superclass/ 
subclass, inheritance and algebraic operations) have been investigated. While the 
fuzzy object-oriented databases and probabilistic object-oriented databases have 
been developed separately to deal with subjective uncertainty and objective 
uncertainty, respectively, each of these two object-oriented database models 
actually suffers from the inability to simultaneously handle fuzzy and probabilistic 
information. In a real-world application of weather forecast, for example, it is 
common to say “the probability it will be mainly sunny tomorrow is 0.90”. But 
“the probability it will be mainly sunny tomorrow is very high” may be easily 
understood by human beings. Here we have to face a probabilistic event which 
probability is a fuzzy one instead of a crisp one. At this point, the interaction of 
fuzzy set theory and probability theory is needed and they are complementary to 
each other [1]. 

Actually imprecise probability measures have been investigated in literature. In 
[12], imprecise probability measures represented by interval probabilities were 
introduced into the probabilistic relational databases, where two additional 
attributes are needed to represent the minimum and maximum probabilities of 
tuples. Interval probabilities were also applied to extend the object-oriented 
databases in [9]. Also there are some efforts to combine fuzzy set theory and 
probability theory together. In [5], a deductive probabilistic and fuzzy object-
oriented database language was proposed, where a class property can contain 
fuzzy set values, and uncertain class membership and property applicability are 
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measured by lower and upper bounds on probability. Similarly an object base 
model was developed in [4], which incorporates both fuzzy set values and 
probability degrees represented by interval probabilities to cope with imprecision 
and uncertainty. It is shown that in order to model imprecision in probabilistic 
evens in databases, fuzzy sets have been applied to imprecise attribute values. As 
to imprecise probability measures, only interval values have been considered and 
investigated. For descriptions of imprecise information, we know that a fuzzy 
value represented by a fuzzy set contains more informative semantics than an 
interval value. It is a natural way to use fuzzy values to represent probability 
measures which are imperfectly known. 

In this chapter, we concentrate on modeling probabilistic evens with fuzzy 
measures in the object-oriented databases. Instead of crisp probability measures of 
objects in [11] and interval probability measures of objects in [4, 9], we use fuzzy 
sets to represent imprecise probability measures. A probabilistic object-oriented 
database model with fuzzy measures is hence introduced, which incorporates 
fuzzy probability degrees to handle imprecision and uncertainty. Based on the 
proposed probabilistic object-oriented database model, we discuss several major 
semantic relationships between objects, objects and classes as well as classes. 

The remainder of this chapter is organized as follows. Section 2 provides basic 
knowledge concerning object-oriented database model and fuzzy sets. Two major 
concepts are introduced to the probabilistic object-oriented databases in Section 3, 
which are probabilistic objects with fuzzy measures and probabilistic classes with 
fuzzy measures, respectively. Section 4 investigates semantic relationship between 
objects, objects and classes as well as classes in the probabilistic object-oriented 
database model with fuzzy probability measures. A formal probabilistic object-
oriented database model with fuzzy measures is developed in Section 5. Section 6 
concludes this chapter. 

2 Basic Knowledge 

This section provides basic knowledge about object-oriented databases and fuzzy 
set theory.  

2.1 Object-Oriented Databases 

An object-oriented database model (OODM) is based on the notions of object, 
class, attribute and method. An object is an entity of the real world and is 
characterized by a unique object identity (OID). An object has a state (attributes) 
and a behavior (methods) associated with it. Objects sharing a common structure 
and behavior are grouped into the same class. Each object can be an instance of a 
class or several classes. Classes can be organized into hierarchies of the kind 
superclass-subclass. A new class, called subclass, is produced from another class, 
called superclass by means of inheriting all attributes and methods of the 
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superclass, overriding some attributes and methods of the superclass, and defining 
some new attributes and methods. Any object belonging to the subclass must 
belong to the superclass. 

An object-oriented database model is a finite set of class declarations, and each 
class declaration describes a set of objects sharing a collection of features. 
Formally an object-oriented database model is a tuple D = (C, A, R, O, M, S), in 
which C is a finite set of classes, A is a finite set of attributes, R is a finite set of 
relationships, O is a finite set of objects, M is a finite set of methods, and S is a 
finite set of constraints. This paper focuses on the classes, attributes, relationships, 
and objects, yielding a simple object-oriented database model:  D = (C, A, R, O), 
where C = {c1, c2, …, ck}, A = {a1, a2, …, al}, R = {r1, r2, …, rm}, and O = {o1, 
o2, …, on}. Then, we have: 

 R ⊆ C × C is a binary relation that represents subclass-superclass 
relationship. 

 For ci ∈ C (1 ≤ i ≤ k), A (ci) represents a set of attributes of ci. Clearly A (ci) 
⊆ {a1, a2, …, al}, i.e., A (ci) ⊆ A. For aj ∈ A (1 ≤ j ≤ l), aj (ci) denotes the 
attribute aj of ci. In the context of the given ci, aj is used instead of aj (ci). In 
addition, for aj ∈ A (1 ≤ j ≤ l), there exits a domain, denoted by dom (aj). 

 For ci ∈ C (1 ≤ i ≤ k), O (ci) means a set of objects that ci contains. Here, O 
(ci) ⊆ {o1, o2, …, on}, i.e., O (ci) ⊆ O. For op ∈ O (1 ≤ p ≤ n) and aj ∈ A (1 ≤ 
j ≤ l), op (ci) denotes the object op of ci, and op (aj (ci)) denotes the value of 
object op on attribute aj. In the context of the given ci, op is used instead of op 
(ci) and op (aj) is used instead of op (aj (ci)). It is clear that op (aj) ∈ Dom (aj). 

2.2 Fuzzy Sets 

The concept of fuzzy sets was originally introduced by Zadeh [28]. Let U be a 
universe of discourse and F be a fuzzy set in U. A membership function μF: U → 
[0, 1] is defined for F, where μF (u) for each u ∈ U denotes the membership degree 
of u in the fuzzy set F. Thus, the fuzzy set F is described as follows: 

 
F = {(u1, μF (u1)), (u2, μF (u2)), ..., (un, μF (un))} 

 
In fuzzy set F, each element may or may not belong to F and has a membership 
degree to F that needs to be explicitly indicated. So an element in F (say ui) is 
associated with its membership degree (say μF (ui)) and these occur together in the 
form of μF (ui)/ui. When the membership degrees indicate that all elements in F 
belong to F with membership degrees of exactly 1, fuzzy set F reduces to the 
conventional set. 

When the membership degree μF (u) above is explained as a measure of the 
possibility that a variable X has the value u, where X takes on values in U, a fuzzy 
value is described by the possibility distribution πX [30]. 
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πX = {(u1, πX (u1)), (u2, πX (u2)), ..., (un, πX (un))} 
 

Here, πX (ui) (ui ∈ U and 0 ≤ i ≤ n) denotes the possibility that ui is true. Let πX be 
the representation of the possibility distribution for the fuzzy value of a variable X. 
This means that the value of X is fuzzy, and X may take on one of the possible 
values u1, u2, ..., and un, with each possible value (say ui) associated with a 
possibility degree (say πX (ui)). 

The set of the elements in πX which possibilities are non-zero is called the 
support of πX, denoted by 

 

supp (πX) = {u| u ∈ U and πX (u) > 0}. 
 

The extension principle introduced by Zadeh [29] is regarded as one of the most 
basic ideas of fuzzy set theory. By providing a general method, the extension 
principle has been extensively employed to extend nonfuzzy mathematical 
concepts. The idea is to induce a fuzzy set from a number of given fuzzy sets 
using a mapping. Zadeh’s extension principle can also be sometimes referred as 
maximum-minimum principle. Let πA and πB be two fuzzy data based on 
possibility distribution on the universe of discourse U = {u1, u2, …, un}, and πA 
and πB are respectively represented by 

 

πA = {πA (pi)/pi|pi ∈ U ∧ 1 ≤ i ≤ n} and πB = {πB (qj)/qj|qj ∈ U ∧ 1 ≤ j ≤ n}. 
 

Following the Zadeh’s extension principle, the operation with an infix operator 
“θ” on πA and πB can be defined as follows. 

 

πA θ πB = {πA (pi)/pi|ui ∈ U ∧ 1 ≤ i ≤ n} θ {πB (qj)/qj|qj ∈ U ∧ 1 ≤ j ≤ n} = {max 
(min (πA (pi), πB (qj))/pi θ qj)|pi, qj ∈ U ∧ 1 ≤ i, j ≤ n} 

3 Probabilistic Objects and Probabilistic Classes with Fuzzy 
Measures 

The notions of objects and classes are the core of the object-oriented databases. In 
order to model and handle fuzzy and probabilistic information in the object-
oriented databases, objects and classes must be extended. This section introduces 
probabilistic objects with fuzzy measures and probabilistic classes with fuzzy 
measures.  

3.1 Probabilistic Objects with Fuzzy Measures 

Probabilistic information has been introduced into relational databases, in which 
attribute values may be probability distributions [2] or tuples may be associated 
with probability measures [8, 12, 22, 32]. In [8], a crisp probability measure 
associated with a tuple is actually the joint probability of the given realizations of 
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all the attributes taken together. For this purpose, an additional attribute pS is 
introduced to the probabilistic relational scheme, where Dom (pS) = [0, 1]. In 
order to represent imprecise probability measures of tuples, i.e., interval 
probability measures, in [12], two additional attributes LB and UB are introduced 
into the probabilistic relational scheme. These two attributes are used to represent 
the lower boundary and upper boundary of probability measures of tuples. It is 
clear that Dom (LB) = [0, 1] and Dom (UB) = [0, 1]. 

Viewed from the object-oriented paradigm, a complex event in the real world 
traditionally corresponds to an object which describes the status of the event. But a 
complex and stochastic event in the real world may have multiple statuses and 
each status should be described by an object. So a complex and stochastic event in 
the real world may be described by a group of objects in the context of the object-
oriented paradigm, in which each object is associated with a probability measure, 
indicating the probability that this stochastic event in the real world has the status 
described by the object. The objects associated with a stochastic event have the 
same object identifier and represent the complete joint distribution of its attribute 
values, called a virtual object. There is a probabilistic constraint on the objects 
with the same object identifier (i.e., virtual object): the sum of probability 
measures of all objects with the same object identifier is less than or equal to one. 
Formally, let e be a complex and stochastic event, which corresponds to a virtual 
object ov and is described by a group of objects {o1, o2, …, ok}. Here o1, o2, …, ok 
have the same object identifier. Let the probability measure of object oi (1 ≤ i ≤ k) 
be oi (pe). Then we have i = 1, 2, …, k oi (pe) ≤ 1. 

The probability measure associated with an object is a crisp one expressed by a 
precise value when it is definitely known. Also it is possible that the probability 
measure associated with an object is fuzzily known. At this point, the probability 
measure associated with the object is a fuzzy probability measure and is expressed 
by a possibility distribution. Then the above-mentioned probabilistic constraint 
that the sum of probability measures of all objects with the same object identifier 
is less than or equal to one should be adjusted. The new constraint on these objects 
with fuzzy probability measures, called fuzzy probabilistic constraint,  is that, for 
all objects with the same identifier, the sum of their maximum joint probabilities 
must be less than or equal to one. Here, the maximum probability of object oi is 
represented by the maximum of the support of oi (pe). 

Formally let o1, o2, …, ok be the objects with the same identifier, and let oi (pe) 
= {(pi1, πoi (pi1)), (pi2, πoi (pi2)), …, (pim, πoi (pim))} (1 ≤ i ≤ k). Then the fuzzy 
probabilistic constraint on o1, o2, …, ok is represented as follows. 

 

max (supp (o1 (pe))) + max (supp (o2 (pe))) + … + max (supp (ok (pe))) ≤ 1. 

3.2 Probabilistic Classes with Fuzzy Measures 

The objects which have the same properties can be gathered into classes. 
Theoretically, a class can be considered from two different viewpoints: 
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(1) an extensional class, where the class is defined by the list of its object 
instances, and 

(2) an intensional class, where the class is defined by a set of attributes and their 
admissible values. 

In addition, by means of inheritance mechanism in the object-oriented databases, a 
subclass defined from its superclass can be seen as a special case of (b) above. 

A class is a probabilistic one with a fuzzy measure because of the following 
several reasons. First, some virtual objects having similar properties are the 
probabilistic ones with fuzzy measures, and a class defined by these virtual objects 
may be a probabilistic one with fuzzy measures. Second, when a class is 
intensionally defined, there is an attribute which domain may be fuzzy and 
probabilistic, and as a result a probabilistic class with fuzzy measure is formed. 
Third, the subclass produced by a probabilistic class with fuzzy measure by means 
of specialization and the superclass produced by some classes (in which there is at 
least one class which is a probabilistic one with fuzzy measure) by means of 
generalization are also fuzzy. 

A probabilistic class with fuzzy measure contains an additional attribute, which 
values are applied to indicate the possibilities that the corresponding objects 
belong to the given class. Also the possibilities may be imprecise values instead of 
crisp values in [0, 1] and are represented by fuzzy sets. This attribute of the class 
is called fuzzy probabilistic attribute. 

The major difference between the probabilistic classes and crisp classes is that 
the boundaries of the probabilistic classes are uncertain. The uncertainty in the 
class boundaries is caused by the uncertainty of the values in the attribute domain. 
In the probabilistic object-oriented databases, an object belongs to a class with a 
probability represented by a fuzzy set. A class is a subclass of another class with a 
probability represented by a fuzzy set also. 

4 Semantic Relationships of Probabilistic Objects and 
Classes with Fuzzy Measures 

In the object-oriented database model, there are several crucial semantic 
relationships in objects and classes, including object-object relationship, object-
class relationship and class-class relationship. In the probabilistic object-oriented 
databases with fuzzy measures, the evaluations of probabilistic object-object 
relationships, probabilistic object-class relationships and probabilistic inheritance 
hierarchies are the cores of imprecise and uncertain information modeling. In the 
following, we investigate the semantic relationship of object equivalence, the 
object-class relationship and subclass-superclass relationship in the context of the 
probabilistic object-oriented databases with fuzzy measures. 
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4.1 Probabilistic Object Equivalence 

Formally let c be a class of the probabilistic object-oriented database model with 
fuzzy measures. Let c1 contain attributes {a1, a2, …, ak, fpM}, in which fpM is the 
fuzzy probabilistic attribute of c. For two objects o1 and o2 of c, o1 and o2 are 
equivalent each other if and only if o1 (ai) = o2 (ai) (1 ≤ i ≤ k). It is clear that ai 
≠ fpM. Two equivalent objects o1 and o2 is denoted by o1 ≈ o2. 

A virtual object corresponds to a group of objects which have the same object 
identifier. Suppose that o1 and o2 belong to a virtual object. Then o1 and o2 are not 
equivalent objects because at least there exits an attribute (say aj, where 1 ≤ j ≤ k) 
and o1 (aj) ≠ o2 (aj). 

Equivalent objects of a class must be coalesced in the probabilistic object-
oriented database model with fuzzy measures. As a result, a new object is formed, 
which probability with fuzzy measure is generated by coalescing the probabilities 
with fuzzy measures of these equivalent objects. Since the probabilities with fuzzy 
measures of the equivalent objects contain fuzzy as well as probabilistic 
information, the coalescence of the probabilities with fuzzy measures of the 
equivalent objects is calculated using the extension principle [29] according to the 
fuzzy probabilistic constraint. 

For two equivalent objects o1 and o2 of class c1, assume that o1 (fpM) and o2 
(fpM) are probability values represented by fuzzy sets. Let o1 (fpM) = {(f1, μ1 (f1)), 
(f2, μ1 (f2)), …, (fm, μ1 (fm))} and o2 (fpM) = {(g1, μ2 (g1)), (g2, μ2 (g2)), …, (gn, μ2 
(gn))}. We define four coalescence operations, which can be used to define 
projection operation, difference operation, join operation and union operation on 
probabilistic objects with fuzzy measures, respectively. 

 The coalescence-Plus operation. Coalescence-Plus on two equivalent objects 
o1 and o2, denoted ⊕, is defined as o = o1 ⊕ o2, in which o ≈  o1 ≈  o2 and 

 

o (fpM) = {max (mini, j (1, fi + gj), mini, j (μ1 (fi), μ2 (gj)))|1 ≤ i ≤ m, 1 ≤ j ≤ n}. 
 

 The coalescence-Minus operation. The coalescence-Minus on two equivalent 
objects o1 and o2, denoted by Θ, is defined as o = o1 Θ o2, in which o ≈  o1 ≈  
o2 and 

 

o (fpM) = {max (maxi, j (fi – gj, 0), mini, j (μ1 (fi), μ2 (gj)))|1 ≤ i ≤ m, 1 ≤ j ≤ n}. 
 

 The coalescence-Times operation. The coalescence-Times on two equivalent 
objects o1 and o2, denoted by ⊗, is defined as o = o1 ⊗ o2, in which o ≈  o1 ≈  
o2 and 

 

o (fpM) = {max ((fi × gj), mini, j (μ1 (fi), μ2 (gj)))|1 ≤ i ≤ m, 1 ≤ j ≤ n}. 
 

 The coalescence-Max operation. Coalescence-Max on two equivalent objects 
o1 and o2, denoted by , is defined as o = o1  o2, in which o ≈  o1 ≈  o2 and 
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o (fpM) = {max (maxi, j (fi, gj), mini, j (μ1 (fi), μ2 (gj)))|1 ≤ i ≤ m, 1 ≤ j ≤ n}. 
 

Then object o is a probabilistic object with a fuzzy measure o (fpM), which is 
created by coalescing two equivalent objects o1 and o2. In other words, o1 and o2 
are two equivalent objects with degree of o (fpM). 

Example: Suppose we two equivalent objects o1 and o2, where o1 ≈  o2, o1 (fpM) = 
{(0.2, 0.3), (0.3, 0.5)} and o2 (fpM) = {(0.1, 0.4), (0.2, 0.5)}. Applying the 
operations defined above, we have 

 for o = o1 ⊕ o2, o (fpM) = {max ((min (1, 0.2 + 0.1), min (0.3, 0.4)), (min (1, 
0.2 + 0.2), min (0.3, 0.5)), (min (1, 0.3 + 0.1), min (0.5, 0.4)), (min (1, 0.3 + 
0.2), min (0.5, 0.5)))} = {max ((0.3, 0.3), (0.4, 0.3), (0.4, 0.4), (0.5, 0.5))} = 
{(0.3, 0.3), (0.4, 0.4), (0.5, 0.5)}, 

 for o = o1 Θ o2, o (fpM) = {max ((max (0.2 − 0.1, 0), min (0.3, 0.4)), (max 
(0.2 − 0.2, 0), min (0.3, 0.5)), (max (0.3 − 0.1, 0), min (0.5, 0.4)), (max (0.3 
− 0.2, 0), min (0.5, 0.5)))} = {max ((0.1, 0.3), (0.0, 0.3), (0.2, 0.4), (0.1, 
0.5))} = {(0.1, 0.5), (0.2, 0.4)}, 

 for o = o1 ⊗ o2, o (fpM) = {max (((0.2 × 0.1), min (0.3, 0.4)), ((0.2 × 0.2), 
min (0.3, 0.5)), ((0.3 × 0.1), min (0.5, 0.4)), ((0.3 × 0.2), min (0.5, 0.5)))} = 
{max ((0.02, 0.3), (0.04, 0.3), (0.03, 0.4), (0.06, 0.5))} = {(0.02, 0.3), (0.03, 
0.4), (0.04, 0.3), (0.06, 0.5)}, and 

 for o = o1  o2, o (fpM) = {max ((max (0.2, 0.1), min (0.3, 0.4)), (max (0.2, 
0.2), min (0.3, 0.5)), (max (0.3, 0.1), min (0.5, 0.4)), (max (0.3, 0.2), min 
(0.5, 0.5))} = {max ((0.2, 0.3), (0.2, 0.3), (0.3, 0.4), (0.3, 0.5))} = {(0.2, 0.3), 
(0.3, 0.5)}. 

 

For two probabilistic objects with fuzzy measures, they may be semantically 
similar even if they are not equivalent. Here we introduce a notation of semantic 
similarity between two probabilistic objects with fuzzy measures. For two 
probabilistic classes with fuzzy measures, say c1 and c2, let c1 contain attributes 
{a1, a2, …, ak, fpM1} and c2 contain attributes {b1, b2, …, bl, fpM2}, in which fpM1 
and fpM2 are the fuzzy probabilistic attributes of c1 and c2, respectively. Let o1 and 
o2 be objects of class c1 and c2, respectively. Then for o1 with {a1, a2, …, ak} and 
o2 with {b1, b2, …, bl}, the probability that o1 and o2 are semantically similar each 
other is first defined as follows. 
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 means the numbers of attribute value pairs from o1 

and o2 which are equivalent each other. Considering the values of the fuzzy 
probabilistic attributes of o1 and o2, the final probability that o1 and o2 are 
semantically similar each other is defined 
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SS (o1, o2) = min (SS’ (o1, o2), o1 (fpM1), o2 (fpM2)) 
 

The calculation of min (SS’ (o1, o2), o1 (fpM1), o2 (fpM2)) follows the coalescence 
operation of the fuzzy probabilistic attribute values in o1  o2 presented above. 

4.2 Probabilistic Object-Class Relationship 

In the probabilistic object-oriented databases with fuzzy measures, we may have 
crisp classes and crisp objects, and also we may have probabilistic classes and 
probabilistic objects with fuzzy measures. So we can identify four kinds of object-
class relationships, which are 

(a) the object-class relationship between a crisp object and a crisp class, 
(b) the object-class relationship between a crisp object and a probabilistic class 

with fuzzy measure, 
(c) the object-class relationship between a probabilistic object with fuzzy 

measure and a crisp class, and 
(d) the object-class relationship between a probabilistic object with fuzzy 

measure and a probabilistic class with fuzzy measure. 

The object-class relationships in (b), (c) and (d) above are called fuzzy probabilistic 
object-class relationships. Actually the case in (a) can be regarded as a special case 
of fuzzy probabilistic object-class relationships. Estimating the fuzzy probability 
degree of an object to a class is crucial for fuzzy probabilistic object-class 
relationship when classes are instantiated. Without loss of generality, in the 
following we investigate the object-class relationship between a probabilistic object 
with fuzzy measure and a probabilistic class with fuzzy measure. 

In the classical object-oriented databases, an object belongs to a class if each 
attribute value of the object is included in the corresponding attribute domain of 
the class. Similarly, in order to determine if a probabilistic object with fuzzy 
measure belongs to a probabilistic class with fuzzy measure, it is necessary to 
determine if the attribute domain of the class includes the attribute value of the 
object with respect to each common attribute (i.e., non fuzzy probabilistic 
attribute). 

Let c be a probabilistic class with fuzzy measure which contains attributes {a1, 
a2, …, ak, fpM} and let o be an object on attribute set {a1, a2, …, ak, fpM}. In c, 
each attribute ai (1 ≤ i ≤ k) is connected with a domain denoted dom (ai). Then o 
belongs to c, that is, o is an object of c, if and only if o (ai) ∈ dom (ai) (1 ≤ i ≤ k), 
where ai ≠ fpM. The probability that o belongs to c is related to o (fpM), the value 
of o on the fuzzy probabilistic attribute, and the degree that o (fpM) is included in 
dom (fpM), the domain of fpM. The inclusion degree of o (fpM) with respect to 
dom (fpM) is denoted μ (dom (fpM), o (fpM)). Here o (fpM) is a fuzzy value 
representing the probability of o, and dom (fpM) is the domain of attribute fpM. 
The calculation of μ (dom (fpM), o (fpM)) is investigated in [18] and then μ (dom 
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(fpM), o (fpM)) = ID (dom (fpM)), o (fpM))). Finally the probability that o belongs 
to c is defined as follow. 

 
ρc (o) = min (μ (o (fpM), dom (fpM)), o (fpM)) 

 
The calculation of min (μ (o (fpM), dom (fpM)), o (fpM)) follows the coalescence 
operation of the fuzzy probabilistic attribute values in o1  o2 presented above. 

Also it is possible that c is a probabilistic class with fuzzy measure which 
contains attributes {a1, a2, …, ak, fpM1} and o be an object on attribute set {b1, 
b2, …, bl, fpM2}. Then without consideration of the fuzzy probabilistic attribute, 
the probability that o belongs to c is defined as follows. 
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represents the number of attribute values of o which 

are included in the attribute domains of c. Considering the values of the fuzzy 
probabilistic attributes of o, the final degree that o belongs to c is defined as 
follows. 

 
ρc (o) = min (ρ’c (o), μ (o (fpM2), dom (fpM1)), o (fpM2)) 

 
The calculation of min (ρ’c (o), μ (o (fpM2), dom (fpM1)), o (fpM2)) also follows 
the coalescence operation of the fuzzy probabilistic attribute values in o1  o2 
presented above. 

4.3 Probabilistic Subclass-Superclass Relationship 

In the object-oriented databases, a subclass is created from a superclass by means 
of inheriting some attributes and methods of the superclass, overriding some 
attributes and methods of the superclass, and defining some new attributes and 
methods. Then a subclass is the specialization of the superclass and any object 
which belongs to the subclass must belong to the superclass. 

In the probabilistic object-oriented databases with fuzzy measures, classes may 
be probabilistic ones with fuzzy measures. A subclass created from a probabilistic 
class with fuzzy measure must be a probabilistic class with fuzzy measure. Then 
the subclass-superclass relationship is uncertain. In other words, a class is a 
subclass of another class with a probabilistic degree at this point, and the 
probabilistic degree may be imprecise and represented by a fuzzy set. In the 
following, we investigate how to determine if two probabilistic classes with fuzzy 
measures have the subclass-superclass relationship. 
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Viewed from the point of an extensional class, where a class is defined by the 
list of its object instances, a probabilistic class with fuzzy measure, say c1 with 
fuzzy probabilistic attribute fpM1, is a subclass of another probabilistic class with 
fuzzy measure, say c2 with fuzzy probabilistic attribute fpM2 if and only if 

(a) for any object o, o must be an object of c2 if o is an object of c1, and 
(b) for the probability that o is an object of c1 (namely, o (fpM1)) and the 

probability that o is an object of c2 (namely, o (fpM2)), the inclusion degree 
that o (fpM1) is included by o (fpM2) is greater than 0, i.e., μ (o (fpM1), o 
(fpM2)) > 0. 

Then c1 is the subclass of c2 with a probability, which is the minimum in the 
probabilities to which these objects belong to c1. 

It can be seen that we evaluate probabilistic subclass-superclass relationship 
above by using the inclusion of objects to classes. It is clear that such an approach 
cannot be applied if no objects are available. It means that the approach discussed 
above cannot be used to assess if two probabilistic classes with fuzzy measures have 
a subclass-superclass relationship when the classes are intensional classes because 
they are defined by a set of attributes and their admissible values and no objects are 
available for the classes. At this point, it is needed for us to determine how the 
subclass is included by the superclass according to the inclusion of the attribute 
domains in the subclass with respect to the attribute domains in the superclass. 

Formally let c1 and c2 be two probabilistic classes with attributes {a1, a2, …, ak, 
ak+1, …, am, fpM1} and {a1, a2, …, ak, a’k+1, …, a’m, am+1, …, an, fpM2}, 
respectively. In c2, attributes a1, a2, …, and ak are directly inherited from a1, a2, 
…, and ak in c1, attributes a’k+1, …, and a’m are overridden from ak+1, …, and am in 
c1, and attributes am+1, …, and an are unique to c1.An attribute in c1 or c2, say ai, 
has a domain, denoted dom (ai). Let ai be an attribute of c1 and aj be an attribute of 
c2. Then c1 is a subclass of c2 if and only if 

(a) dom (ai) = dom (aj) when 1 ≤ i, j ≤ k and i = j, and 
(b) dom (ai) ⊆ dom (aj) when k + 1 ≤ i, j ≤ m and i = j. 

Considering that c1 and c2 are probabilistic classes with fuzzy measures, the 
subclass-superclass relationship between c1 and c2 is uncertain. The probability 
that c1 is a subclass of c2 should be the inclusion degree of the domain of fuzzy 
probabilistic attribute in c1 (i.e., dom (fpM1)) with respect to the domain of fuzzy 
probabilistic attribute in c2 (i.e., dom (fpM2)).  The probability that c1 is a subclass 
of c2 is denoted μ (c1, c2) and is defined as follows. 

 

μ (c1, c2) = μ (dom (fpM1), dom (fpM2)) 
 

In subclass-superclass hierarchies, it is possible that a class has multiple 
superclasses, called multiple inheritance of class. Suppose that more than one of 
the superclasses have common attributes. At this point, if it is not explicitly 
declared that from which superclass the subclass inherits the attribute, ambiguity 
may arise in multiple inheritance of class. Formally let class c be a subclass of 
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class c1 and class c2. Assume that the attribute ai in c1, denoted by ai (c1), is 
common to the attribute ai in c2, denoted by ai (c2). If dom (ai (c1)) and dom (ai 
(c2)) are identical, there is not a conflict in the multiple inheritance hierarchy and c 
inherits attribute ai directly. If dom (ai (c1)) and dom (ai (c2)) are different, 
however, a conflict in the multiple inheritance hierarchy occurs. At this moment, 
which one of ai (c1)) and ai (c2) is inherited by c is determined by the following: if 
μ (dom (ai (c1)), dom (ai (c2))) > μ (dom (ai (c2)), dom (ai (c1))), then ai (c1) is 
inherited by c, else ai (c2) is inherited by c. 

Note that in the multiple inheritance hierarchy above, the subclass has different 
degrees with respect to different superclasses, not being the same as the situation 
in classical object-oriented database systems. 

5 Formal Probabilistic Object-Oriented Database Model 
with Fuzzy Measures 

Based on the discussion above, we have known that a class in the probabilistic 
object-oriented database model with fuzzy measures may be a probabilistic one 
with fuzzy measure. Accordingly, in the probabilistic object-oriented database 
model with fuzzy measures, an object belongs to a class with a probability 
represented by a fuzzy set, and a class is the subclass of another class with a 
probability represented by a fuzzy set also. In the object-oriented databases, the 
specification of a class includes the definition of ISA relationships, attributes and 
method implementations. In order to specify a probabilistic class with fuzzy 
measure, some additional definitions are needed. In addition to these common 
attributes, a new attribute named fuzzy probabilistic attribute and denoted fpM 
should be added into the class to indicate the probability degree to which an object 
belongs to the class. If the class is a probabilistic subclass, its superclasses and the 
probability degree that the class is the subclass of the superclass should be 
illustrated in the specification of the class.  

Formally, the definition of a probabilistic class with fuzzy measure is shown as 
follows. 

 

CLASS class-name WITH PROBABILITY degree 
INHERITS superclass1 WITH PROBABILITY degree1 
… 
INHERITS superclassk WITH PROBABILITY degreek 
ATTRIBUTES 

Attribute1: DOMAIN dom1: TYPE OF type1 
… 
Attributem: DOMAIN domm: TYPE OF typem 
Fuzzy Probabilistic Attribute: FUZZY DOMAIN: TYPE OF real 

METHODS 
… 

END 
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For each common attribute in the class (i.e., non fuzzy probabilistic attribute), 
it corresponds to a data type, which may be a simple type such as integer, real, 
Boolean and string, or may be a complex type such as set type and object type. For 
fuzzy probabilistic attribute, its data type is a fuzzy type based real, which allows 
the representation of descriptive form of imprecise probabilistic information. Only 
fuzzy probabilistic attribute has fuzzy type and fuzzy probabilistic attribute is 
explicitly indicated in a class definition. In the class definition above, we declare 
only the base type (i.e., real) of fuzzy probabilistic attribute and the fuzzy domain. 
A fuzzy domain is a set of possibility distributions, fuzzy linguistic terms  
or membership functions (each fuzzy term is associated with a membership 
function).  

6 Conclusion 

It is required in modeling real-world problems and constructing intelligent systems 
to integrate different methodologies and techniques, and it has been the quest and 
focus of significant interdisciplinary research efforts. The advantages of such a 
hybrid system are that the strengths of its partners are combined and the 
weaknesses of its partners are complementary one another. The fuzzy probabilistic 
object-oriented database model provides a flexible database model to model 
hybrid imprecise and uncertain information as well as complex objects. In this 
chapter, a probabilistic object-oriented database model is introduced, in which 
possibility distributions arise at the level of objects as probability measures. Such 
an extended object-oriented database model can be applied for modeling 
stochastic events which probabilities are represented by possibility distributions. 
Based on the extended object-oriented database model and the fuzzy probabilistic 
constraint, we discuss several important semantic relationships between object and 
object, object and class, and subclass and superclass. The strategies and 
approaches for merging equivalent objects are discussed. A probabilistic object-
oriented database model with fuzzy measures is proposed in this chapter. 

Hybrid imprecise and uncertain information generally has multiple and 
complicated characteristics. In the fuzzy multidatabase systems, for example, the 
integrated databases are consisted of such tuples that are connected with 
probability measures and which attribute values are fuzzy [19, 31]. In future work, 
we will investigate the object-oriented database model which may contain other 
hybrid imprecise and uncertain information. In particular, we will focus on a fuzzy 
and probabilistic object-oriented database model, in which the attribute values 
may be fuzzy ones instead of crisp ones in this chapter. 
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Probabilistic XML: Models and Complexity

Benny Kimelfeld and Pierre Senellart

Abstract. Uncertainty in data naturally arises in various applications, such as data
integration and Web information extraction. Probabilistic XML is one of the con-
cepts that have been proposed to model and manage various kinds of uncertain data.
In essence, a probabilistic XML document is a compact representation of a proba-
bility distribution over ordinary XML documents. Various models of probabilistic
XML provide different languages, with various degrees of expressiveness, for such
compact representations. Beyond representation, probabilistic XML systems are ex-
pected to support data management in a way that properly reflects the uncertainty.
For instance, query evaluation entails probabilistic inference, and update operations
need to properly change the entire probability space. Efficiently and effectively ac-
complishing data-management tasks in that manner is a major technical challenge.
This chapter reviews the literature on probabilistic XML. Specifically, this chapter
discusses the probabilistic XML models that have been proposed, and the complex-
ity of query evaluation therein. Also discussed are other data-management tasks like
updates and compression, as well as systemic and implementation aspects.

1 Introduction

Data managed by modern database applications are often uncertain. A few ex-
amples are the following. When information from different sources is conflicting,
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inconsistent, or simply presented in incompatible forms, the result of integrating
these sources necessarily involves uncertainty as to which fact is correct or which
is the best mapping to a global schema. When data result from automatic and im-
precise tasks, such as information extraction, data mining, or computer vision, it is
commonly annotated by a score representing the confidence of the system in the
correctness of the data. When data are gathered from sensor networks, they come
with the inherent imprecision in the measurement of sensors. Even when data is gen-
erated by humans, they are not necessarily certain: diagnostics of diseases stored in
a hospital database are affected by the imprecision of human judgment (in addition
to that of the diagnostics themselves). This ubiquity of uncertain data is all the truer
when one deals with the World Wide Web, which is a heterogeneous collection of
data that is constantly updated by individuals and automated processes.

Data uncertainty is often ignored, or modeled in a specific, per-application man-
ner. This may be an unsatisfying solution in the long run, especially when the uncer-
tainty needs to be retained throughout complex and potentially imprecise processing
of the data. As an example, consider sensor data being gathered in a database, mined
to extract interesting patterns, annotated by human experts, then integrated together
with the result of other such analyses, independently made. Each of these steps, from
the initial collection to the final integration, should be aware of the uncertain char-
acter of handled data; furthermore, each of these steps may even introduce further
uncertainty. The goal of uncertain data management is to provide a unifying frame-
work and a unifying system to handle the semantics of uncertainty, in the database
itself. This goal is in line with the motivation behind DBMSs themselves, which
were proposed in the 1970s as a uniform solution to the problem of managing data,
while replacing previous systems that were tied to particular applications (e.g., ac-
counting, cataloging, etc.).

Naturally, there are various ways to model uncertainty. Examples include repre-
sentation of missing information (from SQL NULLs to more elaborate models of
incomplete data [34]), fuzzy logic and fuzzy sets [29], and the Dempster-Shafer
theory [70]. In this chapter, we consider probabilistic models that represent prob-
ability distributions over ordinary databases, and are based on the rich mathemat-
ical formalism of probability theory. Of course, quite a few real-life applications
provide data that are probabilistic in nature. Examples include conditional random
fields [46] (used in information extraction) and statistics-based tasks involved in
natural-language processing [50]. But even when applications do not provide obvi-
ous probabilistic data, they often provide confidence scores that can be mapped to
probability values.

Representing and Querying Probabilistic Databases

A probabilistic database is, conceptually, a probability space over ordinary databases,
each of which is called a possible world [22]. In practice, such a probability space
is obtained by introducing uncertainty about the value (or existence) of individual
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data items. If there are many such uncertain data items, then the number of pos-
sible worlds may be too large to manage or even to store. However, applications
usually make assumptions on the correlation among the uncertain items (e.g., inde-
pendence), and such assumptions typically allow for a substantially smaller (e.g.,
logarithmic-size) representation of the probability space. Hence, from a database
point of view, the goal is to provide a proper language and underlying data model to
specify and represent probabilistic databases in a compact manner (e.g., by building
in the model assumptions of independence).

But a database is not just about storage. A central role of a database is to provide
a clean, easy, and general way of accessing its data (while abstracting away from
the actual implementation). In particular, a database supports a high-level language
like SQL or XQuery. In the context of probabilistic databases, the correspondent
of querying is that of finding events and inferring their probabilities. Hence, we
would like the database not just to “store probabilities,” but to actually understand
their semantics and support inference tasks. The common realization of that [22, 31,
45, 53] is to allow the user to phrase ordinary queries (of the kind she would pose
to an ordinary database), while the database associates each query answer with its
computed probability (i.e., the probability that the answer holds true in a random
possible world).

Finally, another central task of a database is to provide high performance for
the operations it supports (e.g., query evaluation). This aspect is particularly chal-
lenging in the case of a probabilistic database, due to the magnitude of the actual
probability space that such a database can (compactly) represent. As an example,
for query evaluation (under the semantics mentioned in the previous paragraph), the
baseline way of computing the probabilities is through the enumeration of all possi-
ble worlds, which is prohibitively intractable. Hence, we would like the operations
to be performed on the compact representation itself rather than on the possible
worlds. From the theoretical-complexity point of view, we require efficiency to be
under the assumption that the input consists of the database in its compact form;
in particular, “polynomial-time” is in the size of the compact representation, and
not in that of the implied probability space. Not surprisingly, this requirement leads
very quickly to computational hardness [22] (and sometimes even hardness of ap-
proximation [26, 45]). However, as we discuss throughout the chapter, in the case
of probabilistic XML there are a few important settings where querying is tractable.

There is a rich literature on probabilistic relational databases [17, 21, 32, 35, 56,
61, 67]. In contrast, here we discuss probabilistic XML models, which represent
probabilistic spaces over labeled trees. XML is naturally adapted to a number of
applications where data is tree-like, including Web data or natural language parsing,
and we give next specific examples of applications of probabilistic XML models.
Later in this chapter (Section 6.3), we discuss the connection between probabilistic
relational models and probabilistic XML models.
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Probabilistic XML Applications

Following are concrete examples of applications or application areas where proba-
bilistic XML is a natural data model and, moreover, the need to query probabilistic
XML arises.

• XML data integration. Assume that a number of sources on the Web export
XML information in potentially different schemas. To represent the result of the
integration, we need a way to capture the uncertainty in the schema mappings,
in deduplication, or in resolving conflicting information. This uncertainty can be
characterized by probabilistic mappings [26] and probabilistic data integration
rules [38, 39]. The outcome of the integration process can naturally be viewed as
probabilistic XML (which is useful to query, update, and so on).

• Web information extraction. Extracting information from Web data means
detecting, in a Web page, instances of concepts, or relations between
these instances, based on the content or structure of these Web pages. A typical
output is therefore a tree-like document, with local annotations about extracted
information. Current extraction techniques, whether they are unsupervised or rely
on training examples, are by nature imprecise, and several possible annotations
might be produced for the same part of the Web page, with confidence scores.
This is for instance the case with conditional random fields for XML [36] that
produce probabilistic labels for part of the original HTML document; probabilis-
tic XML is a natural way to represent that.

• Natural language parsing. Parsing natural language consists in building syntax
trees out of sentences. This is an uncertain operation, because of the complexity
of the natural language, and its inherent ambiguity. Indeed, some sentences like
“I saw her duck” have several possible syntax trees. A parser will typically rely
on statistics gathered from corpora to assign probabilities to the different possible
parse trees of a sentence [50]. This probability space of parse trees can then be
seen as probabilistic XML data [18].

• Uncertainty in collaborative editing. Consider users collaborating to edit doc-
umentation structured in sections, subsections, paragraphs and so on, as in the
online encyclopedia Wikipedia. In an open environment, some of these contri-
butions may be incorrect, or even spam and vandalism. If we have some way to
estimate the trustworthiness of a contributor, we can represent each individual
edit as an uncertain operation on a probabilistic XML document that represents
the integration of all previous edits [1].

• Probabilistic summaries of XML corpora. Querying and mining a large cor-
pus of XML documents (e.g., the content of the DBLP bibliography) can be
time-consuming. If we are able to summarize this corpus as a compact proba-
bilistic model [6], namely probabilistic XML, we can then use this model to get
(approximations of) the result of querying or mining operations on the original
corpus.
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Organization

The remaining of this chapter is organized as follows. We first introduce the basic
concepts, mainly XML, probabilistic XML, p-documents, and ProTDB as our main
example of a concrete p-document model (Section 2). Next, we talk about querying
probabilistic documents in general, and within ProTDB in particular (Section 3).
We then review and discuss additional models (Section 4) and additional problems
of interest (Section 5). Finally, we discuss practical aspects of probabilistic XML
systems (Section 6) and conclude (Section 7).

As a complement to this chapter, we maintain an updated list of resources (es-
pecially, a hyperlinked bibliography) pertaining to probabilistic XML online at
http://www.probabilistic-xml.org/.

2 Probabilistic XML

In this section, we describe the formal setting of this chapter, and in particular give
the formal definitions of our basic concepts: an (ordinary) XML document, a proba-
bilistic XML space, and the p-document representation of probabilistic XML.

2.1 XML Documents

We assume an infinite set Σ of labels, where a label in Σ can represent an XML tag,
an XML attribute, a textual value embedded within an XML element, or the value
of an attribute. The assumption that Σ is infinite is done for the sake of complexity
analysis. An XML document (or just document for short) is a (finite) directed and
ordered tree, where each node has a label from Σ. The label of a document node v is
denoted by label(v). We denote by DΣ the (infinite) set of all documents.

As an example, the bottom part of Figure 1 shows a document d. In this figure,
as well as in other figures, labels that represent textual values (e.g., “car financing”)
are written in italic font, as opposed to labels that represent tags (e.g., “title”), which
are written in normal font. Note that the direction of edges is not explicitly specified,
and is assumed to be downward. Similarly, order among siblings is assumed to be
left-to-right.

2.2 px-Spaces

A probabilistic XML space, abbreviated px-space, is a probability space over doc-
uments. Although we will briefly discuss continuous px-spaces (Section 4.5), our
focus is mainly on discrete px-spaces. So, unless stated otherwise, we will im-
plicitly assume that a px-space is discrete. Specifically, we view a px-space as a
pair X = (D, p), where D is a finite or countably infinite set of documents, and
p : D → [0,1] is a probability function satisfying ∑d∈D p(d) = 1. The support of a

http://www.probabilistic-xml.org/
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px-space X = (D, p) is the set of documents d ∈ D, such that p(d)> 0. We say that
the px-space X is finite if X has a finite support; otherwise, X is infinite.

When there is no risk of ambiguity, we may abuse our notation and identify a px-
space X by the random variable that gets a document chosen according to the distri-
bution of X . So, for example, if X = (D, p) and d is a document, then Pr(X = d)
(in words, the probability that X is equal to d) is p(d) if d ∈ D, and 0 otherwise.

2.3 p-Documents

A px-space is encoded by means of a compact representation. Later in this chap-
ter, we will discuss the plethora of representation models proposed and studied
in the literature. The basic notion underlying most of those models is that of a p-
document [4, 43].

Formally, a p-document is a tree P that is similar to an XML document, except
that P has a distinguished set of distributional nodes in addition to the ordinary
nodes (that have labels from Σ). The ordinary nodes of P may belong to docu-
ments in the encoded px-space. Distributional nodes, on the other hand, are used
only for defining the probabilistic process that generates random documents (but
they do not actually occur in those documents). As an example, Figure 1 shows a
p-document P , where the distributional nodes are the ones represented by boxes
with rounded corners (and denoted by v1, v2, and so on). The words ind and mux
inside those boxes will be discussed later. Each distributional node specifies a prob-
ability distribution over subsets of its children; later on, we will define several types
of distributional nodes (like ind and mux), where each type defines the way these
distributions are encoded. In the probabilistic process that generates a random doc-
ument, a distributional node randomly chooses a subset of its children according
to the distribution specified for that node. The root and leaves of a p-document are
required to be ordinary nodes.

Next, we describe the px-space (D, p) defined by a p-document P by specifying
a sampling process that generates a random document. Note that such a process well
defines the px-space (D, p) as follows: D consists of all the documents that can be
produced in this process, and p(d) (where d ∈D) is the probability that d is obtained
in this process.

The random document is generated by the p-documentP in two steps. First, each
distributional node of P randomly chooses a subset of its children. Note that the
choices of different nodes are not necessarily probabilistically independent. All the
unchosen children and their descendants (even descendants that have been chosen by
their own parents) are deleted. The second step removes all the distributional nodes.
If an ordinary node u remains, but its parent is removed, then the new parent of u
is the lowest ordinary node v of P , such that v is a proper ancestor of u. Note that
two different applications of the first step may result in the same random document
generated (and for further discussion on that, see [43]).
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Fig. 1 A p-document P in PrXML{ind,mux} (top) and a sample document d of P (bottom)

A Concrete Model: ProTDB

We now construct a concrete model of p-documents, namely, the ProTDB model [53].
For that, we define two types of distributional nodes. Recall that when defining a
type of distributional nodes, we need to specify the encoding and meaning of the
random process in which a distributional node of that type selects children. In Sec-
tion 4, we will define additional types of distributional nodes (hence, additional
concrete models).

A ProTDB document has two types of distributional nodes.

• ind: A distributional node v of type ind specifies for each child w, the probability
of choosing w. This choice is independent of the other choices of children, of
either v or other distributional nodes in the p-document.

• mux: A distributional node v of type mux chooses at most one child w (that is,
different children are mutually exclusive, hence the name mux) with a specified
probability for w. We require the sum of probabilities along the children of v to
be at most 1; the complement of this sum of probabilities is the probability that v
chooses none of its children.

Example 1. The top part of Figure 1 shows a ProTDB p-document P . The type
of each distributional node is written in the corresponding box. For instance, node
v1 is a distributional node of type mux; as shown by the numbers on its outgoing
edges, v1 chooses its left child and right child with probability 0.1 and 0.9, respec-
tively. Note that the mux node v2 chooses none of its children with probability 0.1
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(= 1− 0.4− 0.5). Finally, observe that the ind node v3 makes independent choices
about its two children; for example, it chooses just the left child with probability
0.8× (1− 0.4), both children with probability 0.8× 0.4, and no children at all with
probability (1− 0.8)× (1− 0.4).

In the bottom, Figure 1 shows a sample document d of P . Let us now compute
the probability of d. For d to be produced, the following independent events should
take place:

• v1 chooses its right child. This event occurs with probability 0.9.
• v2 chooses its left child. This event occurs with probability 0.5.
• v3 chooses both of its children. This event occurs with probability 0.8× 0.4 =

0.32.
• v4 chooses its right child. This event occurs with probability 0.5.

Hence, the probability of d is given by

Pr(P = d) = 0.9×0.5×0.32×0.5= 0.072 . ��

We follow the conventional notation [4] that, given k types type1, type2, . . . , typek
of distributional nodes (such as ind, mux, and the types that we define later),
PrXML{type1,type2,...,typek} denotes the model of p-documents that use distributional
nodes only among type1, type2, . . . , typek. Hence, under this notation ProTDB
is the model PrXML{ind,mux} (and for the p-document P of Figure 1 we have
P ∈ PrXML{ind,mux}). Observe that PrXML{ind,mux} strictly contains PrXML{ind},
PrXML{mux} and PrXML{} (which is the set DΣ of ordinary documents).

3 Query Evaluation

In this section, we discuss a central aspect in the management of probabilistic
XML—query evaluation. In general, a query Q maps a document d to a value Q(d)
in some domain domQ; that is, a query is a function Q : DΣ → domQ. As an example,
in the case of a Boolean query, domQ is the set {true, false}; in that case we may
write d |= Q instead of Q(d) = true (and d �|= Q instead of Q(d) = false). In the
case of an aggregate query, domQ is usually the set Q of rational numbers. Later on,
we discuss additional types of queries.

A px-space X and a query Q naturally define a probability distribution over
domQ, where the probability of a value a ∈ domQ is given by Pr(Q(X ) = a). We
usually follow the conventional semantics [22] that, when evaluating Q over X , the
output represents that distribution. For example, if Q is a Boolean query, then the
goal is to compute the number Pr(X |= Q).

3.1 Query Languages

We now describe the languages of queries that capture the focus of this chapter:
tree-pattern queries, monadic second-order queries, and aggregate queries.
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3.1.1 Tree-Pattern Queries

Tree-pattern queries (a.k.a. twig queries [9, 12]), or just tree patterns for short, cor-
respond to the navigational fragment of XPath restricted to child and descendant
edges. Specifically, a tree pattern is a Boolean query that is represented by a tree t
with child and descendant edges. In our figures, child and descendant edges are de-
picted by single and double lines, respectively. Each node of the tree t is labeled
with either a label of Σ or with the special wildcard symbol � (and we assume that
� /∈ Σ). A match of a tree pattern t in a document d is a mapping μ from the nodes of
t to those of d, such that μ maps root to root, child edges to edges, and descendant
edges to paths (with at least one edge); furthermore, μ preserves labels of Σ, that is,
for a node v of t, if label(v) �= � then label(v) = label(μ(v)). Note that a tree pattern
ignores the order among siblings in a document. (Queries that take sibling order into
account will be discussed in the next section.)

Example 2. Four tree patterns, t1, . . . , t4, are shown in Figure 2. Child and descendant
edges are represented by single and double lines, respectively. As in documents
(and p-documents), edges are implicitly directed top down. As specific examples,
let us consider the patterns t1 and t4. The pattern t1 says that some message in the
document has a topic descendant (where this topic can be that of the message or of
a descendant message) with a child finance. The pattern t4 is the same, except that
it also requires the message to have a time child, and the time child to have a child
(any child, as indicated by �) of its own. ��
Tree patterns are often used not just as Boolean queries, but also as queries that
produce tuples of nodes (or tuples of labels). Informally speaking, these tuples are
obtained by projecting the matches to a selected sequence of nodes of the tree pat-
tern. For the sake of simplicity, here we restrict the discussion to the Boolean case.
It is important to note, though, that under the standard notion of query evaluation
for such queries1 [22], evaluating a non-Boolean tree pattern reduces in polynomial
time to evaluating a Boolean one [45].

1 Under this notion, the output consists of every possible result tuple a and its marginal
probability Pr(a ∈ Q(X )).
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3.1.2 Monadic Second-Order Tree Logic (MSO)

A language that is far more expressive than tree patterns is that of Monadic Second-
Order tree logic (MSO). A query in MSO is a Boolean formula over the document
nodes. The vocabulary includes two binary relations over nodes x and y: “x is the
parent of y,” denoted E(x,y), and “x is a following sibling of y,” denoted y < x. For
each label λ ∈Σ, the vocabulary includes also the unary relation “λ is the label of x,”
denoted λ (x). The formula is in first-order logic, extended with quantification over
set variables. This quantification allows, among other things, to express conditions
on the set of all ancestors or descendants of a node, or on that of all nodes following
a given node in document order. For a more formal definition the reader is referred
to the vast literature on MSO for trees (e.g., Neven and Schwentick [52]).

Example 3. For illustration, the following MSO query says that there is a message
with two descendants that are consecutive sibling messages on the topic finance.

∃x,y1,y2[message(x)∧message(y1)∧message(y2)

∧descendant(x,y1)∧descendant(x,y2)∧next-sibling(y1,y2)

∧finance-topic(y1)∧finance-topic(y2)]

In the formula above, descendant(x,y) is phrased in MSO as follows.

∀S[S(x)∧∀z1,z2(S(z1)∧E(z1,z2)→ S(z2))→ S(y)]

Similarly, next-sibling(y1,y2) is given by y1 < y2 ∧ ¬∃z[y1 < z < y2]. Finally,
finance-topic(y) is phrased in MSO as follows.

∃z,w[E(y,z)∧E(z,w)∧ topic(z)∧finance(w)] ��

MSO queries are closely related to the notion of a (bottom-up) nondeterministic
tree automaton (NTA). Specifically, every MSO query can be translated into an
NTA, such that the documents that satisfy the MSO query are precisely those that
are accepted by the NTA; conversely, every NTA can be similarly translated into an
MSO query [23, 52, 62].

3.1.3 Join Queries

Both tree patterns and MSO queries can be extended by adding value joins that test
whether two nodes (for tree patterns), or two first-order variables (for MSO), have
the same label. Value joins are fairly commonly used in XPath2; for instance, they
allow us to dereference identifiers used as foreign keys.

Example 4. The following query in MSO extended with the same-label predicate
tests whether two messages that are descendant of each other have the same topic:

2 The first version of the XPath language only supports a limited form of value joins, but this
restriction is lifted in the latest version.
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∃x1,x2,x3,y1,y2,y3[message(x1)∧message(y1)∧descendant(x1,y1)

∧E(x1,x2)∧ topic(x2)∧E(x2,x3)

∧E(y1,y2)∧ topic(y2)∧E(y2,y3)

∧ same-label(x3,y3)] ��

3.1.4 Aggregate Queries

In this chapter, an aggregate function is a function α that takes as input a set V
of document nodes, and returns as output a numerical (rational) number α(V ) ∈ Q.
Some of the aggregate functions we consider, like sum, need to assume that the
label of a node is a number; to accommodate that, we fix a function num over the
document nodes, such that num(v) = label(v) if label(v) is a number, and otherwise,
we arbitrarily determine num(v) = 0. Specifically, we will discuss the following
aggregate functions.

• Count: count(V )
def
= |V |.

• Count distinct: countd(V )
def
= |{label(v) | v∈V}|; that is, countd(V ) is the number

of distinct labels that occur in V , regardless of the multiplicity of these labels.
• Sum: sum(V )

def
= ∑v∈V num(v).

• Average: avg(V )
def
= sum(V )/|V |; if V is empty, then avg(V ) is undefined.

• Min/max: min(V )
def
= minv∈V num(v), max(V )

def
= maxv∈V num(v).

An aggregate query applies an aggregate function to the set of nodes that is se-
lected by another query (of a different type). Specifically, here we consider aggre-
gate queries that we write as α ◦ t[w], where α is an aggregate function, t is a tree
pattern, and w is a node of t. The evaluation of α ◦ t[w] over a document d results in
the number α(V ), where V is the set of nodes v of d, such that there exists a match μ
of t in d with μ(w) = v; that is:

α ◦ t[w](d)
def
= α ({v | μ(w) = v for some match μ of t in d})

Example 5. Consider the tree pattern t2 of Figure 2, and let w be the wildcard (de-
noted �) node. When applied to the document d of Figure 1, the query count◦ t2[w]
returns 3, which is the number of nodes with a “topic” parent. In contrast, countd◦
t2[w](d) is 2, which is the number of distinct topics (i.e., distinct labels of nodes
with a “topic” parent) in d.

As another example, consider the tree pattern t4 of Figure 2 and, again, let w be
the wildcard node. The query min◦ t4[w] returns the earliest time of a message that
has a descendant message on the topic finance; hence, min◦ t4[w](d) = 18526. ��

3.2 Complexity for ProTDB

Nierman and Jagadish [53] studied the evaluation of (non-Boolean) tree patterns
without projection, and showed computability in polynomial time. Although pro-
jection leads to hardness in the relational probabilistic model [22], Kimelfeld et



50 B. Kimelfeld and P. Senellart

al. [45] showed that tree patterns with projection, and in particular Boolean tree
patterns, can be evaluated in polynomial time in ProTDB [45]. Cohen et al. [20]
extended this result to MSO queries. The main reason behind this tractability is that
it is possible to evaluate queries directly over a ProTDB tree in a bottom-up manner,
making use of the locality of both the p-document and the query. This can be done
using dynamic programming for tree patterns [43], and through the computation of
a product automaton of the query and the p-document in the MSO case [10].

Theorem 1. [20] Let Q be an MSO query (e.g., a tree pattern). The problem “com-
pute Pr(P |= Q) given P ∈ PrXML{ind,mux}” is in polynomial time.

Observe that Theorem 1 is phrased in terms of data complexity [65], which means
that the query is held fixed. As mentioned by Kimelfeld et al. [45], the evaluation of
tree patterns becomes intractable if the query is given as part of the input. Actually,
it was shown [20, 45] that over ProTDB the evaluation of tree patterns, and even
MSO queries, is fixed-parameter tractable (abbr. FPT) [24], which means that only
the coefficients (rather than the degree) of the polynomial depend on the query3

(hence, FPT is stronger than “polynomial data complexity”). Nevertheless, while
for tree patterns this dependence is “merely” exponential, for general MSO queries
this dependence is not any elementary function (unless P �=NP), since that is already
the case when the p-document is ordinary (deterministic) [28, 51].

Tractability (in terms of data complexity) is lost when tree patterns are extended
with (value) joins [5]. This is not surprising, for the following reason. Tree pat-
terns with joins over trees can simulate Conjunctive Queries (CQs) over relations.
Moreover, tree patterns with joins over PrXML{ind} can simulate CQs over “tuple-
independent” probabilistic relations [22]. But the evaluation of CQs over tuple-
independent probabilistic databases can be intractable even for very simple (and
small) CQs [22]. Interestingly, it has been shown that adding any (single) join to
any tree pattern results in a query that is intractable, unless that query is equivalent
to a join-free pattern [42].

Theorem 2. [42] If Q is a tree pattern with a single join predicate, then one of the
following holds.

1. Q is equivalent to a tree pattern (hence, can be evaluated in polynomial time).
2. The problem “compute Pr(P |= Q) given P ∈ PrXML{ind,mux}” is #P-hard.

Recall that #P is the class of functions that count the number of accepting paths
of the input of an NP machine [64]; this class is highly intractable, since using an
oracle to a #P-hard function one can solve in polynomial time every problem in the
polynomial hierarchy [63].

Next, we discuss aggregate queries. Cohen et al. [19] showed that for the ag-
gregate functions count, min, and max, the evaluation of the corresponding aggre-
gate queries is in polynomial time for PrXML{ind,mux}. (That result of Cohen et
al. [19] is actually for a significantly broader class of queries, which they refer to as
“constraints.”) Note that, for these specific functions, the number of possible results

3 For a formal definition of FPT the reader is referred to Flum and Grohe’s book [27].
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(numbers) q is polynomial in the size of the input p-documents; hence the evalu-
ation of an aggregate query Q reduces (in polynomial time) to the evaluation of
Pr(Q(P) = q).

Theorem 3. [19] Let Q be the aggregate query α ◦ t[w]. If α is either count, min

or max, then the problem “compute Pr(Q(P) = q) given P ∈ PrXML{ind,mux} and
q ∈Q” is in polynomial time.

Note that an immediate consequence of Theorem 3 is that we can evaluate, in poly-
nomial time, Boolean queries like count◦ t[w]> q (i.e., where equality is replaced
with a different comparison operator). Unfortunately, this result does not extend to
the aggregate functions countd, sum and avg.

Theorem 4. [5, 19] For each α among countd, sum and avg there is an aggregate
query Q = α ◦ t[w], such that the problem “determine whether Pr(Q(P) = q) > 0
given P ∈ PrXML{ind,mux} and q ∈Q” is NP-complete.

A particularly interesting fact that is shown by Theorems 3 and 4 is that there is an
inherent difference between the complexity of count and countd when it comes to
query evaluation over PrXML{ind,mux}.

4 Additional p-Documents and Extensions

We now discuss additional representation systems for probabilistic XML. Some of
these systems are p-document models with additional kinds of distributional nodes,
and other systems are extensions of the p-document concept. We discuss the expres-
sive power of these representation systems, and the complexity of query answering.

4.1 Long-Distance Dependencies

The mux and ind distributional nodes encode local dependencies between nodes,
in the sense that the presence of a node in the document depends just on the pres-
ence of its parent and (in the case of mux) its siblings. However, it is often desired
to represent long-distance dependencies to capture correlations among nodes of ar-
bitrary locations in the document tree. Towards that, we introduce new kinds of
distributional nodes. Assume a finite set {e1 . . .en} of independent Boolean random
variables (called Boolean events), and a probability Pr(ei) for each of these ei. We
define two new kinds of distributional nodes:

• cie [2, 4]: A distributional node v of type cie specifies for each child w of v a
conjunction of independent events ek or their negation ¬ek (e.g., e2 ∧¬e5 ∧ e6).

• fie [41]: A distributional node v of type fie specifies for each child w of v an
arbitrary propositional formula on the eis (e.g., e2 ∨ (e3 ∧¬e7)).

Recall from Section 2 that, to define the semantics of a type of distributional node,
we need to specify how a random subset of children is chosen by a node of that type.
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Fig. 3 A continuous p-document P ′ in PrXML{cie} with Pr(e1) = 0.1, Pr(e2) = 0.5,
Pr(e3) = 0.8, Pr(e4) = 0.4

For cie and fie, the specification is as follows. At the beginning of the process, we
draw a random truth assignment τ to the events e1, . . . ,en, independently of one an-
other and according to the probabilities Pr(e1), . . . ,Pr(en). Then, each distributional
node selects the children that are annotated by a formula that evaluates to true under
τ . (We then proceed to the second step, as described in Section 2.)

Example 6. An example p-document P ′ of PrXML{cie} is shown in Figure 3. Dis-
regard for now the leaf nodes under “time” nodes (these nodes contain continuous
distributions that will be discussed in Section 4.5). The p-document P ′ is somewhat
similar to P of Figure 1: there is uncertainty in the title of the first message, in its
topic, and in the existence of the two follow-up messages, which are independent
of each other. However, there is also a fundamental difference. The topic of the first
follow-up is correlated with that of the original message: either both are set to “au-
tomotive” or both are set to “finance.” This reflects what a topic extraction system
might do, if it has a global view of the whole discussion. ��
We now look at the relative expressiveness and succinctness of p-documents de-
fined with ind, mux, cie, and fie distributional nodes. In terms of expressiveness,
PrXML{ind,mux}, PrXML{cie}, and PrXML{fie} are all able to represent all finite
probability distributions over documents and are therefore equivalent [4] (as al-
ready noted, this is not the case for PrXML{ind}, PrXML{mux} and, obviously,
PrXML{}). However, in terms of succinctness the picture is different: while there
is a polynomial-time transformation of a PrXML{ind,mux} p-document into an equiv-
alent PrXML{cie} p-document, the converse is not true [44]. Similarly, PrXML{cie}

is a subset of PrXML{fie}, but a transformation from PrXML{fie} into PrXML{cie}
entails an inevitable exponential blowup [41].

The families PrXML{cie} and (a fortiori) PrXML{fie} are thus exponentially more
succinct than ProTDB. However, this succinctness comes at a cost: query eval-
uation is now intractable. More precisely, every (Boolean) tree-pattern query is
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#P-hard over PrXML{cie} (and PrXML{fie}), except for some trivial cases [44, 45].
The situation in PrXML{cie} is essentially the same as that in PrXML{fie}, although a
few specific types of queries are tractable over PrXML{cie} and yet intractable over
PrXML{fie}: projection-free tree patterns with joins [58], and expected values for
some types of aggregate queries [5, 7].

The intractability of querying p-documents with long-distance dependencies dis-
cussed above concerns the computation of the exact probability of a query. It makes
sense to look also at approximation algorithms [45]. The simplest way to approxi-
mate query probability is by Monte-Carlo sampling: pick a random document, eval-
uate the query, and iterate. The approximated probability will then be the ratio of
draws for which the probability evaluated to true. This approach yields a polynomial-
time algorithm for obtaining an additive approximation of the query probability;
that is, a number that is guaranteed, with high confidence, to be in the interval
[p− ε; p+ ε] around the exact probability p. Using other means [37], in the case of
tree patterns over PrXML{cie} it is also possible to obtain a (polynomial-time) mul-
tiplicative approximation (i.e., a number in the interval [(1− ε)p,(1+ ε)p]) [45].

4.2 Conditional Models

As mentioned earlier, a central drawback in the ProTDB model (i.e.,PrXML{ind,mux})
and some other models proposed in the literature (e.g., [33]) is the assumption of
probabilistic independence among probabilistic choices; in turn, this assumption is
the key reason for the tractability of query evaluation [43]. However, even simple ad-
ditional information about the database may give rise to intricate correlations. As a
simple example, consider again the p-document in Figure 1. Even if we do not know
the exact structure of the messages (hence, we use probabilistic rather than determin-
istic XML), it is likely that we know the total number of messages, and precisely
(with no uncertainty involved). This new detail introduces dependency among the
children of v3, since now a random world cannot have too many (or too few) mes-
sages altogether. A more intricate statement can be the fact that at least 90% of the
messages with the topic automotive have one or more automotive follow-ups; note
that this statement implies correlation between the distributional nodes v2 and v4.

To incorporate such additional information, Cohen et al. [19] suggested to specify
constraints in addition to the p-document. They presented a language for specifying
constrains that may involve aggregate functions (e.g., “the total number of messages
is 392,” and “at least 80% of the messages have follow-ups”).4 Formally, a Proba-
bilistic XML Database (PXDB) is a pair (P ,C ), where P is a p-document and
C is a set of constraints. The px-space that is defined by a PXDB (P,C ) is the
sub-space of P conditioned on the satisfaction of each constraint of C (in other
words, we restrict the px-space to the possible worlds that satisfy C , and normalize
the probabilities). Cohen et al. gave polynomial-time algorithms for various central
tasks, such as sampling and querying, where their queries are tree patterns with

4 For the precise specification of this language, see [19].
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some aggregate functions (that include count, and min/max).5 Similar tractability
results have been shown for the case where both constraints and queries are phrased
in MSO [20].

4.3 Recursive Markov Chains

In principle, p-documents provide means of representing arbitrary finite px-spaces.
Some applications, however, require the ability to represent infinite sets of possi-
ble worlds. Consider again the example document of Figure 1; all such documents
describing email discussions conform to the following schema, given as a DTD:

discussion: (message*)
message: (title, time, topic?, follow-ups?)

follow-ups: (message*)

There are infinitely many documents conforming to this DTD, of arbitrarily large
depth and width. In order to represent a discussion in which the number of messages
and the structure of the discussion itself is fully uncertain, we need to be able to
model, in a concise manner, infinite px-spaces.

The formalism of recursive Markov chains [25] is used for describing recursive
probabilistic processes. Alternatives are described using a Markov chain, where
each node in the chain can be a call to another (or the same) chain. This formal-
ism naturally lends itself to the representation of potentially infinite px-spaces, as
shown by Benedikt et al. [10]. In that work, Benedikt et al. study the tractability of
MSO queries over px-spaces represented by recursive Markov chains (and restric-
tions thereof). In particular, recursive Markov chains that are hierarchical (i.e., when
there are no cycles in the call graph) are tractable if we assume that all arithmetic op-
erations have unit cost.6 Hierarchical Markov chains can be seen as a generalization
of p-documents defined with directed acyclic graphs instead of trees, a model intro-
duced in [10, 20]. If we further restrict recursive Markov chains so that no Markov
chain is called at two different positions (they are thus tree-like), we obtain a fully
tractable model that generalizes PrXML{mux,ind} (and even more succinct models,
e.g., PrXML{exp} [44]).

4.4 SCFGs

A Context-Free Grammar (CFG) specifies a process of producing parse trees for
strings in a nondeterministic manner; indeed, a specific string may have multiple
(even infinitely many) parse trees, since multiple production rules can be specified
for a nonterminal. A stochastic (or probabilistic) Context-Free Grammar (SCFG) is
similar to a CFG, except that the rules are augmented with probabilities; that is, the

5 This language allows for nesting of queries, and the reader is referred to [19] for the exact
details.

6 Without this assumption, we lose tractability because the exact probability of a query may
require exponentially many bits in the size of the representation.
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production of a nonterminal becomes a probabilistic, rather than a nondeterministic,
process.

When given a string, an SCFG implies a probability space over the possible parse
trees of the string (where the probability of a parse tree corresponds to the confi-
dence of the SCFG in that tree). Since this space comprises of labeled trees, we can
view it as a (possibly infinite) px-space, on which we can evaluate XML queries
(e.g., “find each noun phrase that forms an object for the verb likes”). Cohen and
Kimelfeld [18] studied the problem of evaluating a tree-pattern query over the px-
space that is represented by an SCFG and a string. In particular, they showed that
this task is tractable for the class of weakly linear SCFGs (that generalizes popular
normal forms like linear SCFGs, and Chomsky or Greibach normal forms). It fol-
lows from known results [25] that, in the general case, query probabilities do not
have a polynomial-size bit representation, and can even be irrational.

4.5 Continuous Distributions

So far, all probabilistic XML models we have considered represent discrete proba-
bility distributions, where the uncertainty is either in the structure of the document
or in the choice of a value from a finite collection of options. But some sources
of uncertainty, such as the imprecision in sensor measurements, are essentially con-
tinuous. So, following [5, 7] we introduce the possibility of labeling leaves of p-
documents with not only constant values, but continuous probability distributions
of values (as usual, represented in some compact manner). For example, we might
say that a given leaf represents a uniform distribution between two constants.

Example 7. Consider again the p-document P ′ of Figure 3. Two of the “time” nodes
have for leaf a continuous distribution. The first one, U(18000,19000) represents a
uniform distribution in the interval [18000;19000], which is adapted to the case
when nothing else is known about the timestamp, perhaps because of a coarse gran-
ularity in the way the message metadata was displayed. The second distribution,
N(35400,100) is a Gaussian centered around 35400 and with a standard deviation
of 100. Such a timestamp might arise from a known imprecision in the date of the
computer system that produced the timestamp. One can check that the document d
of Figure 1 is one of the possible worlds represented by P ′ (but of course, it has a
zero probability due to the continuous distributions). ��
Observe that we cannot use our current formalism of a px-space to define the se-
mantics of a p-document with continuous values, since our px-space is discrete, and
in particular, is defined by means of a probability of each possible world. Neverthe-
less, px-spaces can be properly extended to a continuous version by constructing
a σ -algebra of sets of possible worlds, and define a probability measure over this
σ -algebra, as done by Abiteboul et al. [7]. When this is done, we can investigate
the complexity of query evaluation, as usual. Tree patterns are not of much inter-
est in this case, because if a query node is matched against a node with continuous
distribution, the probability of this match is usually zero. But of course, aggregate
queries make sense. As shown by Abiteboul et al. [7], the tractability of aggregate
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queries with functions such as count, min, or max extends from (discrete) ProTDB
to the continuous case, as long as the class of probability distributions present in
the p-document can be efficiently convoluted, summed, integrated, and multiplied.
This is for instance the case of distributions defined by piecewise polynomials, a
generalization of uniform distributions.

5 Other Problems of Interest

In the previous sections, we discussed the task of query evaluation over different
models of probabilistic XML. Here, we discuss additional tasks. Specifically, we
address updating and typing, which are classical XML operations. We also dis-
cuss compression—the problem of finding a representation of a smaller size, and
top-k querying—retrieving the most probable answers to a tree-pattern or a keyword-
search query. Finally, we list additional tasks that are mostly left as open problems.

5.1 Updates

In update languages like XUpdate or the XQuery Update Facility, the specification
of update operations entail locator queries that indicate, as XPath or XQuery ex-
pressions, the locations where data are to be inserted, modified, or deleted. An ele-
mentary probabilistic update operation can thus be defined as consisting of a locator
query, a specification of the operation to be performed at matched locations (e.g., a
tree to be inserted), and a probability that the update should be performed (provided
that the locator query matches); such an operation has been studied by Abiteboul
et al. [4]. The semantics of updates is defined as for queries: the result of an up-
date on a probabilistic database should be a representation of a probabilistic space
obtained from the original probabilistic space by applying the update on every possi-
ble world. Again, we want to avoid the exponential enumeration of possible worlds
and perform the update directly on the original probabilistic document. Updates are
of particular interest since they can be seen as a fundamental mechanism for con-
structing a probabilistic XML document: a sequence of uncertain update operations
applied to a deterministic XML document [1].

Limiting our study to ProTDB and models with long-distance dependencies,
we observe the following tradeoff on update tractability [41], in terms of data
complexity:

• The result of an update operation is computable in polynomial time over ProTDB
for a restricted set of non-branching tree pattern queries (specifically, those with-
out descendant edges or those whose locator query returns the node at the bottom
of the tree pattern).

• In general, computing the result of an update operation over ProTDB is in-
tractable.

• The result of an update operation is computable in polynomial time over the
family PrXML{fie}, for updates defined by tree-pattern queries with joins.
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The reason for the tractability of updates in PrXML{fie} (while querying operations
are hard) is that updates do not entail computation of probabilities; we just manipu-
late event formulas without computing their probabilities.

Updating probabilistic XML documents highlights the following issue in mod-
els different from ProTDB and PrXML{fie}: the model may lack the property of
being a strong representation system [3] for the query language used in locator
queries; this means that it is impossible to represent the output of a query (or the
result of an update based on this query language) in the model. This is the case for
ProTDB extended with continuous value distributions, and the language of aggre-
gate tree-pattern queries (or even tree-pattern queries with inequalities). To be able
to apply updates on such probabilistic models, the challenge is to define generaliza-
tions of these models (and of the corresponding querying techniques) that are strong
representation systems.

5.2 Typing

Typing an XML document, that is, testing whether the document is valid against a
schema defined in some schema language (e.g., DTD), is another fundamental data-
management problem in XML. Similarly to Boolean querying, typing a probabilistic
XML document should return a probability, namely, the probability that a random
document is valid. As shown by Cohen et al. [20], when the schema can be defined
by a deterministic bottom-up tree automaton (which is the case for DTDs, disre-
garding for now keys and foreign keys), computing the probability that a ProTDB
p-document is valid is in polynomial time in the size of both the p-document and the
schema. Essentially, this computation is done by running the automaton over the p-
document, maintaining on the way some data structures that allow us to compute the
probability that a node has type q given the corresponding probabilities of its chil-
dren. This result can be generalized in a number of ways. First, tractability extends
to computing the probability of a fixed query (say, a tree pattern) in the probabilis-
tic space that is restricted to only those worlds that are valid against a schema [20].
Second, the data model can be generalized to recursive Markov chains, and we ba-
sically have tractability in the same classes of recursive Markov chains where MSO
query answering is tractable [10]. Third, adding constraints (such as keys and for-
eign keys) renders typing intractable, though it is still tractable to test whether the
probability of being valid against a schema with constraints is exactly one [20].

5.3 Compression

A fundamental advantage of using probabilistic XML models, such as ProTDB, is
their potential compactness in representing probabilistic spaces. Depending on the
application, obtaining such a compact model might not be straightforward. The di-
rect translation of a set of possible worlds with probabilities into a PrXML{mux,ind}

document, for instance, simply enumerates all possible worlds as children of a mux
node and has the same size as the original space. The compression or simplification
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problem [39] is to obtain, given a probabilistic XML document, another more com-
pact document that defines the same px-space.

In ProTDB, a basic operation that can be used to simplify a p-document is
to push distributional nodes down the tree whenever possible, merging ordinary
nodes in the process [66]. Another direction is to apply regular XML compression
techniques [13] to compress the probabilistic tree into a probabilistic DAG while
retaining querying tractability (assuming unit-cost arithmetics), as discussed in
Section 4.3. Veldman et al. [66] explored the combination of probabilistic XML
simplification techniques with ordinary XML compression, demonstrating gain in
the size of the representation.

5.4 Top-k Queries

Chang et al. [16] studied the problem of finding, in a probabilistic XML document,
the top-k query answers, that is, the k answers with the highest probabilities (where
k is a specified natural number). Their model of probabilistic XML is ProTDB, and
as queries they considered projection-free path patterns. Another type of a top-k
query arises in keyword search. Information retrieval by keyword search on proba-
bilistic XML has been studied by Li et al. [47]. Specifically, they perform keyword
search in the ProTDB model by adopting the notion of Smallest Lower Common An-
cestor (SLCA) [69], which defines when an XML node constitutes an answer for a
keyword-search query. More particularly, the problem they explore is that of finding
the k nodes with the highest probabilities of being SLCAs in a random world.

5.5 Open Problems

We now discuss important open problems around management operations on prob-
abilistic XML. Despite the existence of techniques for compressing ProTDB doc-
uments [66], we lack a good understanding on when compression is possible and
whether it is possible to obtain an optimal representation (with respect to compact-
ness) of a px-space, in ProTDB and other models. A fundamental problem related
to this one concerns equivalence of probabilistic XML documents: decide whether
two representations define the same px-space [39]. As shown in [57], this problem
admits a randomized polynomial-time decision procedure for PrXML{cie} when p-
documents are shallow, giving some hope of obtaining a more systematic procedure
for minimizing the size of a p-document. Nevertheless, the exact complexities of the
equivalence problem, of testing optimality, and of minimization itself, remain open
problems.

Compressing a discrete px-space into a compact p-document is somewhat akin
to the problem of XML schema inference from XML data [11]: in both cases, the
goal is to obtain a compact model of a set of documents. There are two differences,
however. First, an XML schema represents a set of XML documents, while a p-
document represents a probabilistic distribution thereof. Second, it is assumed that
XML schema inference generalizes the observation of the example documents and
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that some documents valid against the schema are not present in the original collec-
tion, while compression preserves the px-space. Relaxing this last assumption leads
to the problem of probabilistic schema inference, that is, learning a probabilistic
model, with potential generalization, for a corpus of XML documents. A first work
in this direction is by Abiteboul et al. [6], where the skeleton of the schema is given,
and probabilities are learned to optimize the likelihood of the corpus. Adapting XML
schema inference techniques to directly generate probabilistic models would allow
us to generalize any collection of XML documents as a probabilistic XML document.

The focus of most of the literature on probabilistic XML is on modeling and
querying, while only little exploration has been done on other aspects of probabilis-
tic XML management. One of the important aspects that deserve further exploration
is that of mining, namely, discovering important patterns and trends (e.g., frequent
items, correlations, summaries of data values, etc.) in probabilistic XML documents.
Kharlamov and Senellart [40] discuss how some mining tasks can be answered us-
ing techniques of probabilistic XML querying. Nevertheless, it is to be explored
whether other techniques (e.g., based on ordinary frequent itemset discovery) can
provide more effective mining.

6 Practical Aspects

In this section, we discuss some practical aspects of probabilistic XML manage-
ment. We first consider system architecture and indexing, and then elaborate on
the practical challenges that remain to be tackled towards a full-fledged database-
management system for probabilistic XML. (To the best of our knowledge, up to
now only prototypical systems have been developed.)

6.1 System Architecture

The first question is that of the general architecture of a probabilistic XML system:
should it be (a) built on top of a probabilistic relational database system, (b) based
on a query-evaluation engine for ordinary XML, or (c) engineered from scratch to
easily accommodate the existing algorithmic approaches for probabilistic XML?
We overview these three approaches, pointing to preliminary work, and noting
advantages and shortcomings of each.

Over a Probabilistic Relational Engine

Much effort has been put on building efficient systems for managing probabilis-
tic relational data. These systems include Trio [67], MayBMS [32] and its query
evaluator SPROUT [54] (in turn, these systems are usually built on top of an ordi-
nary relational database engine). Leveraging these efforts to the probabilistic XML
case makes sense, and basically amounts to encoding probabilistic XML data into
probabilistic tables, and tree-pattern queries into conjunctive queries. This direc-
tion is explored by Hollander and van Keulen [31] with Trio, where feasibility is
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demonstrated for different kinds of XML-to-relation encodings. However, the rela-
tional queries that result from those encodings are of a specific form (e.g., inequali-
ties are used to encode descendant queries) for which optimizations are not always
available to the probabilistic relational engine.

Over of an XML Query Engine

Alternatively, it is possible to rely on native XML database systems (such as eXist7

or MonetDB/XQuery8) to evaluate queries over probabilistic XML documents, del-
egating components such as indexing of document structure and query optimization
to the underlying XML database engine. It requires either to modify the internals
of the XML query evaluation engine to deal with probabilities, or to be able to
rewrite queries over probabilistic XML documents as queries over ordinary doc-
uments. The latter approach is demonstrated by Senellart and Souihli [59]; there,
tree-pattern queries with joins over p-documents of PrXML{cie} are rewritten into
XQuery queries that retrieve each query match, along with a propositional for-
mula that represents the probability of the match. All XML processing is therefore
handed out to the XQuery query engine, and the problem is reduced to probability
evaluation of propositional formulas.

Independent Implementation

The previous two architectures do not make use of the specificities of probabilis-
tic XML, and in particular, of the techniques that have been developed for query-
ing probabilistic XML. An alternative is thus to design a probabilistic XML system
around one or more of these techniques (e.g., bottom-up dynamic programming [43]),
and thereby utilize the known algorithms at query time [44]. The downside of this
approach is that existing algorithms are main-memory intensive. Furthermore, the
implemented system is typically applicable to only a limited probabilistic model
(e.g., [44] supports just ProTDB documents, though it should be possible to use a
similar bottom-up approach for hierarchical Markov chains [10] and to support con-
tinuous distributions [7]), and to a limited class of queries (e.g., [44] supports just
tree patterns, but it should also be possible to extend it to MSO by combining the
algorithm of [20] and a toolkit such as Mona [30] for converting queries into tree
automata).

6.2 Indexing

We now consider indexing as a mean of enhancing the efficiency of query evaluation
over probabilistic XML. When a probabilistic XML system is implemented on top
of an XML database system, we can rely on this system to properly index the tree
structure and content. Still remaining is the question of how to provide efficient
access to the probabilistic annotations.

7 http://exist.sourceforge.net/
8 http://monetdb.project.cwi.nl/monetdb/XQuery/

http://exist.sourceforge.net/
http://monetdb.project.cwi.nl/monetdb/XQuery/
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The PEPX system [48] proposes to index ProTDB documents in the following
manner: instead of storing with each child of a mux or ind node the probability
of being selected by its parent, store the marginal probability that the child exists.
Coupled with indexing of the tree structure, it allows much more efficient processing
of simple queries, since a single access suffices to retrieve the probability of a node,
and accessing all ancestors of this node is not required. This approach has also been
taken by Li et al. [49] who adapted the TwigStack algorithm [12] to the evaluation
of projection-free patterns in a ProTDB document.

This is certainly not the last word on probabilistic XML indexing, though. An
interesting direction would be to combine structure-based indexing with probability-
based indexing. Conceivably, such an approach has the potential of enhancing the
efficiency of finding the most probable answers [16] or answers with a probability
above a specified threshold [43].

6.3 Remaining Challenges

We now highlight some of the challenges that remain on the way to implementing a
full-fledged system for managing probabilistic XML.

We first discuss the choice of method for query evaluation. Depending on the
data model in use, and depending on the query language, we have a variety of tech-
niques, exact or approximate: bottom-up algorithm in the absence of long-distance
correlations [43], naı̈ve enumeration of all possible worlds, Monte-Carlo sampling,
relative approximation [44], and so on. Each of these has specific particularities in
terms of the range of query and data it can be applied to, its evaluation cost, and
its approximation guarantee. Hence, it is likely that some methods are suitable in
some cases and other methods are suitable in other cases. A system should have a
wealth of evaluation techniques and algorithms, and should be able to make proper
decisions on which technique to use for providing a quick and accurate result. For
example, the system may be given precision boundaries, and it should then select the
most efficient approximation that guarantees these boundaries. Alternatively, given
a time budget, a system should be able to select an exact or approximation tech-
nique (as precise as possible) for performing query evaluation within that budget.
This process can be carried out at the level of the whole query, or at the level of
each sub-query. For instance, in some cases it may be beneficial to combine proba-
bilities that are computed (for different parts of the query and/or the document) by
deploying different techniques. This suggests relying on cost-based, optimizer-like,
query planning where each implementation of a (sub-)query evaluation is associated
with an estimated cost, of both time and approximation. First steps are highlighted
in [60].

There is also a need for a deeper understanding of the connection between prob-
abilistic XML and probabilistic relational data. This is obviously critical if one is to
implement a probabilistic XML system on top of a probabilistic relational database;
but, it is important in other architectures as well, for identifying techniques in the re-
lational setting that carry over to the XML setting. The connection is not so straight-
forward. It is of course easy to encode trees into relations or relations into trees, but
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in both cases the encoding has special shapes: relations encoding trees are tree-like
(with treewidth [55] one) and relations encoded as trees are shallow and have repet-
itive structure. Typical query languages are different, too: tree-pattern queries or
MSO on one side, conjunctive queries or the relational algebra on the other. When
trees are encoded into relations, tree-pattern queries become a particular kind of
conjunctive queries, involving hierarchically structured self joins, a class for which
it is not always possible to obtain efficient query plans over arbitrary databases [61].
Some results from the probabilistic XML setting (such as the bottom-up evaluation
algorithm for ProTDB) have no clear counterpart in the relational world, and vice
versa. A unifying view of both models would help in building systems for managing
both probabilistic relational and XML data.

The last challenge we highlight is that of optimizing query evaluation by reusing
computed answers of previous queries. This can be seen as a case of query answer-
ing using views, a problem that has been extensively studied in the deterministic
XML setting [8, 15, 68]. There is little known on whether and how (materialized)
views can be used for query answering in the probabilistic XML setting, though
Cautis and Kharlamov [14] have made a preliminary study of the problem in the
setting of ProTDB, where they show that the major challenge is not retrieving query
answers, but computing their probabilities.

7 Conclusions

We reviewed the literature on probabilistic XML models, which are essentially rep-
resentation systems for compactly encoding probability distributions over labeled
trees. A variety of such representation systems have been proposed, and each pro-
vides a different trade-off between expressiveness and compactness on the one hand,
and management complexity on the other hand. Specifically, ProTDB [53] and some
of its extensions (e.g., ProTDB augmented with constraints or continuous distri-
butions, and tree-like Markov chains) feature polynomial-time querying for a rich
query language (MSO, or aggregate queries defined by tree-patterns). In contrast,
query evaluation is intractable in other models such as PrXML{fie} (that allows for
correlation among arbitrary sets of nodes) or arbitrary recursive Markov chains (that
can represent spaces of unbounded tree height or tree width).

We mentioned various open problems throughout this chapter. Two of these de-
serve particular emphasis. First, the connection to probabilistic relational models
needs better understanding, from both the theoretical viewpoint (e.g., what makes
tree-pattern queries over ProTDB tractable, when they are encoded into relations?)
and the practical viewpoint (e.g., can we build on a system such as Trio [67] or
MayBMS [32] to effectively manage probabilistic XML data?). Second, further ef-
fort should be made to realize and demonstrate the ideal of using probabilistic XML
databases, or probabilistic databases in general, to answer data needs of applica-
tions (rather than devising per-application solutions); we discussed some of the wide
range of candidate applications in the introduction. We believe that the research
of recent years, which is highly driven by the notable popularity of probabilistic
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databases in the database-research community, constitutes a significant progress
towards this ideal, by significantly improving our understanding of probabilistic
(XML) databases, by developing a plethora of algorithmic techniques, and by build-
ing prototype implementations thereof.
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Uncertain Data: Representations, Query Processing, 
and Applications 

Tingjian Ge, Alex Dekhtyar, and Judy Goldsmith* 

Abstract. Uncertain data is common in many emerging applications.  In this chap-
ter, we start by surveying a few applications in sensor networks, ubiquitous com-
puting, and scientific databases that require managing uncertain and probabilistic 
data.  We then present two approaches to meeting this requirement. In the first 
approach, we propose a rich treatment of probability distributions in the system, in 
particular the SPO framework and the SP-algebra. In the second approach, we stay 
closer to a traditional DBMS, extended with tuple probabilities or attribute proba-
bility distributions, and study the semantics and efficient processing of queries. 

1    Probabilistic Databases and Their Applications 

There is a wide range of emerging applications that produce uncertain data and 
demand new techniques to manage such data. The mature, industry-standard  
relational database management systems have a history of about 40 years, but they 
do not have the capability of managing uncertain or probabilistic data. The appli-
cations that are discussed in this chapter are mainly in the areas of sensor net-
works, ubiquitous computing, bioinformatics and scientific databases. There are 
many applications (often related to the Internet) that also fall in this domain, such 
as information extraction and information integration. 

In this section, we present several applications where large collections of prob-
abilistic data are acquired, stored, and used.  We divide those applications into two 
categories: sensor networks and ubiquitous computing, and scientific databases. 
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Within sensor networks, we consider a person-based application, namely monitor-
ing of individual soldiers’ physical status in the field, and the larger-grained  
examples of monitoring and controlling traffic in a large city, and monitoring and 
controlling power use in a house or community.  Within scientific databases, we 
look at storing and managing astronomical data, microarrays, and proteomics. 
These are meant to be illustrative examples of a few hot research areas that depend 
on intelligent handling of probabilistic data, not a comprehensive catalogue of 
probabilistic database applications. 

1.1    Sensor Networks and Ubiquitous Computing 

Sensor networks and ubiquitous computing are major trends in modern compu-
ting. For example, many smartphones provide location estimates using a variety of 
sensors, such as GPS, WiFi, and/or cellular triangulation.  However, the correct-
ness of the triangulation depends on the proximity of cell towers, and on the local 
interference. It is thus important to handle any new data management issues that 
arise from uncertain data. Let us look at some concrete application scenarios. 

Soldier Physiologic Status Monitoring 

In the Soldier Physiologic Status Monitoring application (Tatbul et al. 2004), sen-
sors are embedded in a “smart uniform” that monitors key biological parameters to 
determine the physiological status of a soldier. Under the harsh environment of the 
battlefield, it is crucial that sufficient medical resources reach wounded soldiers in 
a timely manner. Sensors in a smart uniform monitor thermal signals, hydration 
levels, cognitive and life signs, and wound levels. 

There are a few ways the soldier’s physiological states can be estimated with 
different sensors and with different confidence. An algorithm computes an overall 
score indicating how much medical attention the soldier needs and how urgent his 
or her condition is. 

 

 

Fig. 1 A table generated by sensors monitoring soldiers’ needs for medical attention. The 
Conf. (confidence) attribute is the probability of existence of the tuple. 

In a central database, as shown in Figure 1, a table records the information sent 
out by the sensors in the soldiers’ uniforms. Each tuple in the table is one estimate 
with its related confidence. Sensors might be broken in harsh environments. For 
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high availability, there can be two sets of sensors in a soldier’s uniform in case 
one of them breaks down or loses precision. When each sends out an estimate at 
about the same time and they are inconsistent, at most one of them can be correct 
(together they form a discrete distribution with the confidence indicating the 
weight of each). These estimates may differ considerably due to variations in sen-
sors, possible lost network messages, and different estimation algorithms. 

Dynamic Traffic Routing 

A few projects in both academia and industry (e.g., the CarTel project at MIT1 and 
a product at INRIX2) provide traffic-aware routing and traffic mitigation. The idea 
is that various sensing devices are embedded in the cars that travel on roads and 
highways in urban areas.  Some of the sensors measure the location of the cars 
(e.g., GPS or WiFi (Thiagarajan  et al. 2009)), while others estimate travel delays.  
A large number of sensors from many cars continuously send data to a server. 

The server uses this data to give real-time route planning decisions to drivers 
(e.g., what is the quickest way to travel from A to B right now?). Compared to al-
ternatives such as using a standard online map, the dynamic routing also considers 
real-time factors such as road accidents and rush-hour traffic. 

Such a system uses the travel delays reported in a recent time window to infer 
the probability distribution of current delay at a road. Due to random factors, the 
best we can get is a distribution. Similar to Figure 1, a central database contains a 
relational table with a number of attributes such as road_ID, road_length, date, 
time, speed_limit, and current_delay. Here, the current_delay attribute of a road 
can be modeled as a probability distribution, which is learned from a set of delay 
readings sent out from that road. To answer a routing query as given above, the 
system may need to run a shortest path algorithm over road delays that are proba-
bility distributions. 

Smart Energy Grids 

There is increased interest in monitoring, predicting, and even generating energy 
from multiple sources.  Consider a system that integrates gas, coal, nuclear power, 
solar, hydro, and wind power, that has chips on all electric devices that communi-
cate with central power company servers, local servers, and weather stations.  
Power-intensive tasks, from washing machines to automated factories, could be 
set to run when the solar cells are likely to be charged, the windmills are likely to 
be active, or the demand for heating or air conditioning is expected to be low.   
South Korea is testing such a system (McDonald, 2011), as are other countries.   
Power agents are being developed in situ, and in the context of a Trading Agents 
Competition (Block et al. 2010).  

A power agent needs to be able to reason about likely weather conditions and 
power demands over the immediate and near future.  It needs to condition such 
reasoning on location, time of year, and recent power demands, and to know about 
the tasks it is assigned to schedule. 
                                                           
1  http://cartel.csail.mit.edu/doku.php 
2  http://www.inrix.com/ 
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1.2    Scientific Databases 

Scientific observations are fundamentally uncertain. No measurement is exact. 
When a quantity is observed and measured, the outcome depends on the measur-
ing system, the experimental procedure, the skill of the person conducting the ex-
periment, the environment, and other effects. Even if the quantity were to be 
measured several times, in the same way and in the same circumstances, a differ-
ent measured value would in general be obtained each time, assuming that the 
measuring system has sufficient resolution to distinguish between the values. 

Furthermore, as observed by domain scientists (e.g., (Burton et al. 2009)), due 
to unknown complex factors, contemporary scientific problems (e.g., associations 
of genetic variants and chronic diseases) often demand vast sample sizes and it is 
much needed to synthesize data across many studies and to undertake a pooled 
analysis. Below, we will look at a few concrete examples. 

Astronomy 

In astronomy, observations of the objects and phenomena in the sky are typically 
associated with “error bars” that indicate the estimated Gaussian distributions for 
the values being observed. Let us look at one of the most popular astronomical 
dataset, the Sloan Digital Sky Survey (SDSS). SDSS is one of the most ambitious 
and influential surveys in the history of astronomy3. It covers more than a quarter 
of the sky and contains more than 930,000 galaxies and more than 120,000       
quasars. 

 

Fig. 2 Fold differences of two function groups of genes (among many) as measured by a 
microarray experiment (Komatsu, et al. 2006) 

In the SDSS dataset, objects can have positional attributes:  right ascension (ra) 
and declination (dec) in the J2000 coordinate system. Besides these two attributes, 
there are another two attributes, ra_error and dec_error, which are error bars. 
They indicate that the right ascension (declination, respectively) attribute is a ran-
dom variable that has a Gaussian distribution with a standard deviation ra_error 
(dec_error, respectively) and a mean ra (dec, respectively). 

                                                           
3  http://www.sdss.org/ 
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Microarrays 

DNA microarray analysis has been one of the most widely used sources of ge-
nome-scale data in the life sciences. Microarray expression studies are producing 
massive quantities of gene expression and other functional genomics data, which 
promise to provide key insights into gene function and interactions within and 
across metabolic pathways. 

Figure 2 shows a snippet of the result from a microarray experiment performed 
by a research group (Komatsu, et al. 2006). It shows the fold differences of genes 
under two function groups. Here, a fold difference value indicates the difference 
between the gene’s expressed strength in a tissue sample (e.g., cancer cells) and 
that in a normal tissue being compared with. A positive (negative, resp.) value 
indicates that the gene is expressed more strongly (more weakly, resp.) in the tis-
sue sample. Thus, scientists are interested in finding genes with large absolute fold 
differences, which are characteristic of the disease/tissue being studied. The ± 
range value (e.g., 3.73 in the first gene) is the standard deviation over a few re-
peated runs, each of which is called a replicate. We can see that the variance can 
be quite significant. Figure 2 only shows selected genes from two function groups 
among many. 

 

 

Fig. 3 Sample output from the Mascot software that displays the proteins found in a sam-
ple. The scores indicate the confidence of the detections. 

Proteomics 

Proteomics is the large-scale study of proteins, particularly their structures and 
functions. Mass spectrometry has become a powerful tool in protein analysis and 
the key technology in proteomics (Mann et al. 2001). Proteomics experimental    
results contain information such as what proteins are in a tissue (either with a   
certain disease or normal), and their abundance, etc. Due to the many technical 
constraints in mass spectrometry (Mann et al. 2001), the experimental results have 
significant uncertainty. 

Figure 3 shows a piece of the sample output from the widely used Mascot soft-
ware4 using Peptide Mass Fingerprint. Each possible protein is associated with a 
score, indicating the confidence of the detection. This can become more compli-
cated when a tissue sample contains multiple proteins. A scientist would be        

                                                           
4  http://www.matrixscience.com/ 

PML_HUMAN    Mass: 97455    Score: 194 Expect: 1e-14  Matches: 15
Probable transcription factor PML (Tripartite motif-containing protein 19) (RING finger protein 71)

MURC_IDILO    Mass: 52994    Score: 51 Expect: 2  Matches: 5
UDP-N-acetylmuramate--L-alanine ligase (EC 6.3.2.8) (UDP-N-acetylmuramoyl-L-alanine synthetase) – I

DPO1_RICHE    Mass: 104386   Score: 50 Expect: 2.8  Matches: 6
DNA polymerase I (EC 2.7.7.7) (POL I) - Rickettsia helvetica

:
:
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interested in knowing the abundance of a protein in a tissue, etc. Such information 
is often compared between a tissue sample (e.g., cancer cells) and a control (i.e., 
normal cells). 

We have seen motivating applications in domains that require data management 
systems to handle uncertain and probabilistic data. In the rest of this chapter, we 
focus on two approaches of probabilistic databases. In the first approach (Section 
2), we propose a rich treatment of probability distributions as data, in particular 
the SPO framework and the SP-algebra. In the second approach (Sections 3 and 
4), we stay closer to a traditional DBMS, extend it with tuple probabilities or 
attribute probability distributions, and then study the semantics and efficient 
processing of queries in this model. 

2    Semistructured Probabilistic Database Management Systems 

One of the most common data structures for probabilistic reasoning is the Baye-
sian network, or Bayes net (Pearl 1988).  A Bayes net is a directed acyclic graph, 
where nodes represent random variables and edges represent dependencies; each 
node has a probability table for the associated variable, conditioned on the values 
of its parents in the graph. 
 
Example. Consider the Soldier Physiologic Status Monitoring application dis-
cussed in Section 1.1. Let us assume that a soldier has three sensors that, at set 
time intervals, send information about his/her body temperature, oxygen levels 
and pulse back to the home base server. Based on information supplied by the 
three sensors, which we refer to as T (temperature), O (oxygen) and P (pulse),  
the monitors (human or automatic) at the home base make decisions concerning 
the current state of the soldier.  In this simplified scenario, suppose there are four 
states that a soldier can be in: N(ormal), W(eak), A(gitated) or S(ick).  The re-
ports of each of the three sensors are discretized into two values: H(igh)  and 
N(ormal), with specific values of body temperature (e.g., 101F), blood oxygen 
levels (e.g., 90%) and pulse (e.g, 84) serving as the boundary values between 
them.  The current state of the soldier is determined based on the information ob-
tained from these three sensors. This can be represented graphically in the form of 
a Bayes net shown in Figure 4. 

To complete the Bayes net, we supply the conditional probability distribution 
for the random variable C(ondition) based on the value of random variables 
T(emperature), O(xygen) and P(ulse), and provide marginal probability distri-
butions for the other three random variables. Table 1 shows the former, while Ta-
ble 2 shows a joint probability distribution of T, O and P. 

A software application for tracking the medical conditions of military personnel 
might have to operate with different conditional probability tables and different 
marginal probability distributions based on a variety of factors. For example, the 
distributions shown in Tables 1 and 2 may be based on performance of Army per-
sonnel in temperate, forest-covered hilly environment. A different set of probabili-
ty distributions might cover mountainous or desert terrain and be constructed for  
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Fig. 4 A Bayes net for determining the physiological condition of a soldier in the field 

other branches of the military (e.g., the Marine Corps) or specific military units. 
From joint probability distributions such as the one in Table 2, one can derive 
marginal probability distributions for subsets of parameters (e.g., Table 3 shows 
marginal probability distributions for (a) a pair of parameters T and P and (b) sin-
gle parameter O) and can obtain conditional probability distributions (Table 3 (c) 
shows the distribution of T and O for personnel with high pulse rates). 

Table 1 Conditional probability distribution for the Bayes net for determining the physio-
logical condition of a soldier 

T O P Condition 
Normal Weak Agitated Sick 

High Normal High 0.05 0.1 0.3 0.55 
High Normal Normal 0.2 0.1 0.15 0.65 
High Low High 0.05 0.05 0.1 0.8 
High Low Normal 0.2 0.1 0.05 0.8 

Normal Normal High 0.3 0.05 0.55 0.1 
Normal Normal Normal 0.8 0.05 0.1 0.05 
Normal Low High 0.2 0.2 0.45 0.15 
Normal Low Normal 0.3 0.4 0.05 0.25 

 
For decision-support software designed to work with this data, a data management 

mechanism is needed to deal with all such probability distributions. This is the under-
lying idea behind the Semistructured Probabilistic Objects (SPO) framework (Zhao et 
al. 2005).  In this framework, diverse probability distributions, such as the ones de-
picted in Tables 1, 2, and 3 are stored as first-class database objects. A rich query    
algebra (the SP-algebra) is able to manipulate and retrieve the objects. The algebra 
incorporates traditional relational algebra operations of selection, projection, and  
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Cartesian product and join.  It modifies their semantics to perform appropriate com-
putations on the probability distributions, and adds a conditionalization operation that 
is unique to working with probability distributions. An SQL-style query language 
(SPOQL) has been implemented as a convenient syntax for querying databases of 
SPOs (Dekhtyar et al. 2006), though other implementations are certainly possible. 

In what follows, we define the SPO framework formally, introduce the SP-
algebra and discuss the semantics of its operations, and establish some key facts 
about the SP-algebra.  

The SPO framework was originally introduced (Dekhtyar et al. 2001, Zhao et 
al. 2005) for exact (or “point”) probabilities, i.e., for situations where the exact 
probabilities are known. However, it was observed that in many decision support 
applications, exact probabilities were not known.  Rather, the probabilities of vari-
ous situations/events were known to fall into probability intervals. The SPO 
framework was adapted to address such situations as well (Zhao et al.  2004). The 
notion of an Interval Semistructured Probabilistic Object (ISPO) is not too  differ-
ent than the notion of a SPO, but the Interval SP-algebra is significantly more 
complex (Zhao et. al 2003). We discuss this notion briefly at the end of Section 2. 

Table 2 Joint marginal probability distribution of temperature, blood oxygen levels and 
pulse rate for the Bayes net for determining the physiological condition of a soldier. 

T O P Prob 
High Normal High 0.02 
High Normal Normal 0.01 
High Low High 0.03 
High Low Normal 0.04 

Normal Normal High 0.25 
Normal Normal Normal 0.4 
Normal Low High 0.2 
Normal Low Normal 0.05 

Table 3 Probability distributions computable in the physiological condition monitoring 
scenario 

(a)                                      (b)                                         (c) 

     T P Prob 

High High 0.05 

High Normal 0.05 

Normal High 0.45 

Normal Normal 0.45 

 
  

O Prob 

Normal 0.68 

Low 0.32 

  

  

  

 

  

T O Prob 

High Normal 0.44 

High Low 0.06 

Normal Normal 0.5 

Normal Low 0.4 

Prob(T,O|P=high) 

 

 

The term “semistructured” in the name of the framework was chosen for two 
reasons. The probability distributions stored in a single “relation” inside a Semi-
structured Probabilistic Database can have diverse structures and contain different 
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“attributes”. In addition to that, originally, XML was chosen as the representation 
syntax for SP objects (Dekhtyar et al. 2001). As XML representation is essentially 
syntactical in nature, we omit it from this narrative, and instead, concentrate on the 
semantics of the proposed frameworks. 

2.1    Semistructured Probabilistic Objects 

Consider a universe V of discrete random variables {v'1,… ,v'’q}.  With each random 
variable v ∈ V we associate dom(v), a finite set of its possible values. Given a set 
V={v1,…,vq}⊆ V,  dom(V) denotes dom(v1)x … x  dom(vq). 

Let R=(A1,… ,An) be a collection of regular relational attributes. For A∈R, let 
dom(A) denote the domain of A. We define a semistructured schema R* over R as a 
multiset of attributes from R. For example, if  R = {Terrain, MilitaryBranch, 
Conditions} the following are valid semistructured schemas over R: R*

1 = {Ter-
rain, MilitaryBranch};  R*

2 = {Terrain, Conditions, Conditions}; R*
3 = {Ter-

rain, Terrain, Terrain}. 
Let P denote a probability space used in the framework to represent probabilities 

of different events. We present the framework over two different probability spac-
es. The first probability space Ppoint=[0,1], is the unit interval. Values from this  
interval are called exact or point probabilities. The Semistructured Probabilistic 
Object (SPO) framework introduced below uses this probability space.  Another 
possibility, leading to an extended SPO framework (Zhao et al. 2004), is based on 
the probability space Pint=C[0,1]: the set of all subintervals of the unit interval. A 
probability value from this space is called an interval probability. The general defi-
nition of a Semistructured Probabilistic Object given below applies for any probabil-
ity space, however, the query algebra for each of the two frameworks is substantially 
different. We describe the query algebra, the SP-algebra, over the point probability 
space  Ppoin in Section 2.2, and briefly discuss the query algebra (Extended  
SP-algebra) for the interval probability space Pint  at the end of Section 2. 
 
Definition 1. (Zhao et al. 2005)   A Semistructured Probabilistic Object (SPO)} S 
is a tuple S = (T, V, P, C, ω) where 
 

• T is a relational tuple over some semistructured schema R* over R. We refer to 
T as the context of S. 

• V={v1,… ,vq} ⊆ V is a set of random variables. We require that V ≠ ∅, where 
V is called the set of participating random variables. 

• P: dom(V)→ P is the probability table of S. Note that P need not be complete, 
but it must be consistent with respect to P5. 

                                                           
5  Consistency criteria are probability-space dependent. For Ppoint, the consistency criterion 

is that the sum of all probability values is less than or equal to 1. For Pint the consistency 
criterion is essentially equivalent to a requirement that the sum of lower bounds of each 
probability interval is less than or equal to 1. 
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• C = {(u1,X1),…,(us,Xs)}, where U = {u1,…,us} ⊂ V and Xi ⊆ dom(ui), 1≤ i ≤ n, 
such that V ∩ U = ∅ . We refer to C as the conditional of S.  

• ω, called a path, is an expression of the probabilistic query algebra over P. 
We define two different query algebras below. 

An explanation of this definition is in order.  For the SPO data model to possess 
the ability to store all the probability distributions described in Tables 1, 2, and 3 
a--c, the following information needs to be stored in a single object. 

1. Participating random variables. These variables determine the probability 
distribution described in an SPO. 

2. Probability Table. If only one random variable participates, it is a simple 
probability distribution table; otherwise the distribution will be joint.  Proba-
bility table may be complete, when the information about the probability of 
every instance is supplied, or incomplete. In either case, it must be consistent, 
i.e., truly represent a probability distribution. It is convenient to visualize the 
probability table P as a table of rows of the form (x,α), where x ∈ dom(V) and 
α = Prob(x) ∈ P. Thus, we speak about rows and columns of the probability 
table when that makes explanations more convenient. 

3. Conditional. A probability table may represent a distribution, conditioned by 
some prior information. The conditional part of its SPO stores the prior in-
formation in one of two forms: “random variable u has value x” 
or “the value of random variable u is restricted to a 
subset X of its values”. In our definition, this is represented as a 
pair (u,X). When X is a singleton set, we get the first type of the condition. 

4. Context provides supporting information for a probability distribution, in-
formation about the known values of certain parameters, which are not consi-
dered to be random variables by the application. 

5. Path. Participating variables, probability table, conditional and context com-
bined form the content of an SPO. Path, the fifth component, documents the 
object’s history in the database in which it is stored. Objects inserted into the 
database receive unique object identifiers (OIDs) upon insertion. When a new 
SPO is constructed out of one or more existing SPOs as a result of a query al-
gebra expression, the path of the new object will contain that expression. 

2.2    The SP-algebra for Point Probabilities 

Let us fix the universe of random variables V, the universe of context attributes R 
and set the probability space P=Ppoint= [0,1]. A finite collection SP = { S1,… ,Sn} 
of semistructured probabilistic objects over V, R and P is called a semistructured 
probabilistic relation (SP-relation). A finite collection D = {SP1,…,SPr} is called 
a semistructured probabilistic database (SP-database). 
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One important difference between semistructured probabilistic databases and  
traditional relational or relational probabilistic databases is that each table in a  
relational database has a specified schema, whereas all SP-relations are “schema-
less”: any collection of SPOs can form an SP-relation. This means that the divi-
sion of a semistructured probabilistic database into relations is a matter of the  
logic of a particular application. For example, if the SP-database is built from the  
information supplied by three different experts, this information can be arranged 
into three semistructured probabilistic relations according to the origin of each  
object inserted in the database. Alternatively, the information can be arranged in 
SP-relations by the date it was obtained. 

Manipulation of SPOs stored in SP-databases is done by the means of a query 
algebra, called the semistructured probabilistic algebra (SP-algebra). The SP-
algebra contains three standard set operations: union, intersection and difference; 
it extends the definitions of standard relational operations selection, projection, 
Cartesian product, and join to account for the appropriate management and main-
tenance of probabilistic information within SPOs; in addition, it contains a new 
operation, conditionalization. The latter operation is specific to the probabilistic 
databases and results in the construction of SPOs that represent conditional proba-
bility distributions of the input SPOs. 

Before proceeding with the description of individual operations, we define the 
equality and equivalence of SPOs. Two SPOs S and S’ are equal if all their com-
ponents are equal. Two SPOs are equivalent if their set of participating random 
variables, probability table, context and conditional are the same. Notice that in 
the case of equivalence, paths of two SPOs may be different.  More formally, 
 
Definition 2. (Zhao et al. 2005)    Let S =(T,V,P,C,ω) and S' =(T',V',P',C',ω') be 
two SPOs. S is equivalent to S', denoted S≡ S, iff T =T, V = V', P = P' and C = C'. 
 
Set Operations. Semistructured Probabilistic relations are sets of SPOs. There-
fore, the definitions of union, intersection and difference of SP-relations are 
straightforward. 
 
Definition 3. (Zhao et al. 2005)   Let SP  and SP’  be two SP-relations.  
 

• Union: SP ∪ SP' = { S | S ∈ SP or S ∈ SP'}. 
 

• Intersection: SP ∩ SP' = { S | S ∈ SP  and  S ∈ SP'}. 
 

• Difference: SP – SP' = { S | S ∈ SP and  S ∉ SP'}. 
 

We note two features of the set operations in the SP-algebra. Classical relational 
algebra has a restriction on the applicability of the set operations: they are defined 
only on pairs of relations with matching schemas. Because SP-relations are    
schema-less and represent logical rather than syntactic groupings of probability 
distributions in an SP-database, set operations are applicable to any pair of        
SP-relations. 
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Selection. Given an SPO S =(T,V,P,C,ω), a selection query may be issued to any 
of its components except the path. Each part requires its own language of selection 
conditions. Selection on context, participating random variables and conditionals, 
when applied to an SPO, result in the SPO being selected or not in its entirety, as 
is the case with selection in relational algebra. Selection on probability table on 
the other hand, transforms the SPO by including in the selected object only the 
probability table rows that match the selection condition. For any selection opera-
tion, the path expression of the result is updated to include the selection operation. 
We illustrate different types of selections in the following example. 
 

Example 1. Consider the military personnel monitoring application described in 
the example above. Suppose that the application database stores multiple probabil-
ity distributions to be used for decision support. A human analyst working with 
the system may, at different times, want to see and/or use the results of the follow-
ing information requests. 
 

• “Find all probability distributions for members of 
the Marine Corps.”}  This is an example of selection based on con-
text. 

• “Find all probability distributions that involve 
body temperature and oxygen level observations.” Body 
temperature and oxygen level are two of the random variables in the applica-
tion domain. This is an example of selection on participating random variable. 

• “Find all probability distributions for servicemen 
with low oxygen levels”.  Here, the analyst wants to find what is 
known about the probabilities of other random variables in the domain, when 
the oxygen level (a random variable in the domain) is known to be low.  This 
is selection on conditional. 

• “What information is available about the probability 
of having low oxygen level and high body tempera-
ture?”  In each SPO which contains Temperature and Oxygen variables, 
we are interested in the row(s)6 of the probability table which has/have values 
Temperature = high and Oxygen = low. This is an example of selection on 
probability table. 

• “What outcomes have probability over 0.4?” This is an 
example of selection on probabilities.  This information need should result in 
only the SPOs that have probability table rows with probability values of 
above 0.4 returned, and only those rows should be shown to the analyst. 

 

Selection on Context, Participating Variables or Conditionals. We first define 
the three selection operations that do not alter the content of the selected objects. 
We start by defining the acceptable languages for selection conditions for the three 

                                                           
6  If other random variables are also present in the SPO in question, there will be more than 

one row matching this condition. 
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types of selects. Recall that the universe R of context attributes consists of a finite 
set of attributes A1,…, An with domains dom(A1),… ,dom(An).  With each attribute 
A ∈ R we associate a set Predicates(A) of allowed predicates. We assume that 
equality and inequality are allowed for all A ∈ R. 

Definition 4. (Zhao et al. 2005)   An  atomic context selection condition is an ex-
pression c of the form A •  x  (or •(A,x)), where A ∈ R,  x ∈ dom(A) and • ∈ Pre-
dicates(A). 

An atomic participation selection condition is an expression c of the form v ∈ V, 
where v ∈ V is a random variable.7 

An atomic conditional selection condition is one of the following expressions: 
u ={x1,…, xh} or u ∋ x where u ∈ V is a random variable  and x, x1,…,xh ∈ dom(u). 

Complex selection conditions can be formed as Boolean combinations of atom-
ic selection conditions. 

Definition 5. (Zhao et al. 2005)    Let S=(T,V,P,C,ω) be an SPO and let c = A•x be 
an atomic context selection condition. Let ω' = σc(ω) and let S' = (T,V,P,C,ω'). 
Then σc(S) ={S'} iff: 

1. A ∈ S.T; 
2. For some instance A* of A in S.T,   S.T.A*• x is true. 

Otherwise, σc(S) = ∅. 

Definition 6. (Zhao et al. 2005)   Let S=(T,V,P,C,ω) be an SPO and let c = v ∈ V 
be an atomic participation selection condition. Let ω' = σc(ω) and let S' = 
(T,V,P,C,ω'). Then σc(S) ={S'} if v ∈ S.V; otherwise σc(S) = ∅. 

Definition 7. (Zhao et al. 2005)    Let S=(T,V,P,C,ω) be an SPO. Let ω' = σc(ω) 
and let S' = (T,V,P,C,ω'). 

1. Let c =  u ={x1,… ,xh} be an atomic conditional selection condition. Then 
σc(S) ={S'}  if  S.C ∋  (u, X) and X = {x1,…,xh}; otherwise σc(S) = ∅. 

2. Let c = u ∋ x be an atomic conditional selection condition. Then σc(S) ={S'}  
if S.C ∋ (u, X) and x ∈ X; otherwise σc(S) = ∅.  

The semantics of atomic selection conditions can be extended to their Boolean 
combinations in a straightforward manner.  

σc ∧ c'(S) ::= σc(σc’(S)); 
σc ∨ c'(S) ::= σc(S)∪ σc’(S), 

except for the path component, which will become, respectively, σc ∧ c'(S) (σc ∨ 

c'(S)). 
                                                           
7  Note that “∈ V” is syntactic sugar here. Instances of such conditions have the form  

Oxygen ∈ V, Condition ∈ V and so on. 
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The interpretation of negation in the context selection condition requires some 

additional explanation. In order for a selection condition of the form  ¬(A•x) to 
succeed on some SPO S=(T,V,P,C,ω), attribute A must be present in S.T.  If A is 
not in S.T, then σ¬(A•x)(S) = ∅. Therefore, the statement S ∈ σc(S) ∨ S∈ σ¬c (S) is 
not necessarily true. This also applies to conditional selection conditions. 
 
Selection on Probability Table.  The two remaining types of selection operations 
are more complex than the three described above. Here, the result of each opera-
tion applied to an SPO can be a non-empty part of the original SPO. In particular, 
these operations preserve the context, participating random variables and condi-
tionals in an SPO, but may return only a subset of the rows of the probability ta-
ble. In these operations, the selection condition will indicate which rows from the 
probability table are to be included and which are to be omitted. In a sense, these 
operations treat the probability table of an SPO as a relational table, and perform 
selections from it. 

Definition 8. (Zhao et al. 2005)   An atomic probability table selection condition 
is an expression of the form v = x where v ∈ V and x ∈ dom(v). Probability table 
selection conditions are Boolean combinations of atomic probability table selec-
tion conditions. 

Definition 9. (Zhao et al. 2005)   Let S = (T,V,P,C,ω) be an SPO, V = { v1,…,vk} 
and let c = v = x be an atomic probabilistic table selection condition. Let ω' = σ-
c(ω).  If v ∈ V, then (assuming v = vi for some 1≤ i ≤k) the result of selection from 
S on c, σc(S), is a semistructured probabilistic object  S' = ( T,V,P',C,ω'), where 
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Definition 10. An atomic probabilistic selection condition is an expression of the 
form P • α, where α ∈ [0,1] and • ∈ {=,  ≠,  ≤, ≥, <, > }. Probabilistic selection 
conditions are Boolean combinations of atomic probabilistic selection conditions. 

Definition 11. Let S=(T,V,P,C,ω) be an SPO and let c=  P•α be an atomic proba-
bilistic selection condition. Let x ∈ dom(V). The result of selection from S on c is 
defined as follows:  σc(S) = (T,V,P',C,ω'), where ω' = σc(ω) and 
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Different selection operations commute, as shown in the following theorem.  

Theorem 1. (Zhao et al. 2005)  Let c and c' be two (arbitrary) selection conditions 
and let SP be a semistructured probabilistic relation. Then σc(σc’(SP)) ≡ 
σc’(σc(SP)). 
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Projection. SPOs are complex objects consisting of four different components. 
Traditionally, projection in relational algebra is a simplification operation that 
removes attributes. With SPOs, there are three types of simplifications that can be 
performed: removal of context, removal of conditionals and removal of participat-
ing random variables. All three projection operations are introduced below. 

Definition 12. (Zhao et al. 2005)   Let S =(T,V,P,C,ω) be an SPO and let L⊆ R be 
a set of context attributes. The projection of S onto L, denoted πL(S,), is an SPO S' 
= (T',V,P,C,ω'), where T' ={(A,x)| (A,x) ∈ T, A ∈ L} (i.e., T' contains all entries 
from T for attributes from the list L only), and  ω' = πL(ω). 

Definition 13. (Zhao et al. 2005)   Let S=(T,V,P,C,ω) be an SPO and let F⊆V be a 
set of random variables. The projection of the conditional part of S onto F, de-
noted πc:F(S), is an SPO S' = (T,V,P,C',ω') where C' = {(u,X)| (u,X)∈T.C, u∈ F} 
and ω' = πc:F(ω). 

We note that since both the context and the conditional part of an SPO can be 
empty, projections π∅(S) (i.e., removal of all context information for an SPO) and 
πc:∅(S)  (clearing of the list of conditionals) are valid and will yield proper results. 
A somewhat more complicated and delicate operation is the projection on the set 
of participating random variables.  A removal of a random variable from the 
SPO's participant set entails that all information related to this random variable 
has to be removed from the probability table as well. This essentially corresponds 
to removal of a random variable from consideration in a joint probability distribu-
tion, which is usually called marginalization. The result of this operation is a new 
marginal probability distribution that needs to be stored in the probability table 
component of the resulting SPO. 

This computation is performed in two steps. First, the columns for random va-
riables that are to be projected out are removed from the probability table. In the 
remainder of the table, there can now exist duplicate rows whose values for all the 
fields except the probability coincide. All duplicate rows of the same type are then 
collapsed (coalesced) into one, with the new probability value computed as the 
sum of the values in the constituent rows. The formal definition of this procedure 
is given below. 

Definition 14. (Zhao et al. 2005)    Let S =(T,V,P,C,ω) be an SPO,  V = {v1,…, 
vq}, q>=1, and let L⊆ R be a non-empty set of random variables.  If L∩ S.V = ∅, 
then the projection of S on L, denoted πL(S), is an empty set.  If If L∩ S.V ≠ ∅, 
then πL(S) ={S’} where  S' = (T, L, P',C,ω') and where P': dom(L)→[0,1] and for 
each x ∈ dom(L), 

P' x ( )= P x ,y ( )
y ∈dom(V −L );P(x ,y ) is defined

 . 

Notice that projection on the participating random variables is allowed only if the 
S.V is not a singleton and if at least one random variable remains in the resulting 
set. 
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Conditionalization. Conditionalization is an operation specific to probabilistic 
algebras. Dey and Sarkar (Dey and Sarkar 1996) were the first to consider this 
operation in the context of probabilistic databases. Similarly to the variable projec-
tion operation, conditionalization reduces the probability distribution table. The 
difference is that the result of conditionalization is a conditional probability dis-
tribution. Given a joint probability distribution, conditionalization answers the 
general query of the form, “What is the probability distribution 
of the remaining random variables if the value of some 
random variable v in the distribution is restricted to 
subset X of its values?” 

Informally, the conditionalization operation proceeds on a given SPO as follows.  
The input to the operation is one participating random variable of the SPO, v, 

and a subset of its domain X ⊆ dom(v). The first step of the operation consists of 
removal from the probability table of the SPO all rows whose v values are not 
from the set X. Then the v column is removed from the table. The remaining rows 
are coalesced (if needed) in the same manner as in the projection operation and 
afterwards, the probability values are normalized. Finally, (v,X) is added to the set 
of conditionals of the resulting SPO. 

The formal definition of conditionalization is given below. Note that if the origi-
nal table is incomplete, there is no meaningful way to normalize the probability dis-
tribution. The operation can still be performed, but the results may be meaningless. 
Thus, we restrict this operation to situations where normalization is well defined.  

Definition 15. (Zhao et al. 2005)   An SPO S=(T, V,P,C,ω) is conditionalization-
compatible with an atomic conditional selection condition v ={x1,… ,xh} iff (a) v ∈ 
S.V and (b) the restriction of S.P on { x1,… ,xh} for variable v  is a complete function.  

Definition 16. (Zhao et al. 2005)    Let SPO S=(T, V,P,C,ω) be an SPO which is 
conditionalization-compatible with an atomic conditional selection condition  c =  
v ={x1,… ,xh}. The result of conditionalization of S by c, denoted μc(S), is defined 
as follows: μc(S) = (T,V',P',C',ω), where 

• V' = V -{v}; 
• C' = C ∪ {(v,{x1,… ,xh)}; 
• P':V' →[0,1] is defined as follows.  

Let 

N = P(x, y ).
x ∈ xi ,...,xh{ }


y ∈dom( ′ V )

  

Then, for any y ∈ dom(V’), P’ is defined as follows:  
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• ω' = μc(ω). 
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Cartesian Product and Join. Sometimes an SP-database has only simple proba-
bility distributions for some random variables. In order to get a joint probability 
distribution, either a Cartesian product or a join operation can to be performed on 
the SPOs storing these distributions. Intuitively, both a Cartesian product and a 
join of two probabilistic distributions compute the joint probability distribution of 
random variables involved in both original distributions.  The difference between 
them lies in the operation applicability. The Cartesian product can be computed 
only for a pair of SPOs with disjoint participating random variables. The join  
operation is applicable to two SPOs that share common participating random  
variables. 

When a joint probability distribution is computed from individual (marginal) 
probability distributions, knowledge of the relationship between the random va-
riables in the two marginal distributions is necessary to correctly compute the joint 
probability distribution. In this narrative, we restrict ourselves to the case when 
random variables from the two distributions are conditionally independent.  This 
restriction allows us to represent the result as a joint probability distribution which 
can be explicitly computed: the joint probability is the product the marginal prob-
abilities.  Other assumptions that allow for direct computation of joint probability 
distributions are discussed elsewhere (Zhao et al. 2006). 

Two SPOs are compatible for Cartesian product if their participating variables 
are disjoint, but their conditionals coincide.  

Definition 17. (Zhao et al. 2005) Two SPOs S = (T,V,P,C,ω) and S' 
=(T',V',P',C',ω') are Cartesian product-compatible (cp-compatible) if and only if 
(a) V∩ V' = ∅ and (b) C = C'. 

We can now define the Cartesian product. 

Definition 18. (Zhao et al. 2005)  Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be 
two cp-compatible SPOs.  The result of their Cartesian product (under assumption 
of independence), denoted S x S', is: S x S' = S'' = (T'',V'',P'',C'',ω''),  where 

• T''  = T ∪ T'; 
• V'' = V ∪ V'; 
• P'': dom(V'')→ [0,1] is defined as follows.  For all z ∈ dom(V''), where 

( )yxz ,= ,  x ∈ dom(V), y ∈ dom(V'):    ( ) )()( yPxPzP ⋅=′′ ; 

• C'' = C =C'; 
• ω'' = ω x ω’. 

The join operation extends the Cartesian product operation to the situation, where 
two SPOs being combined share random variables.  If we have two probability 
distributions Prob(X,Y) and Prob(Y,Z), then a joint probability distribution 
Prob(X,Y,Z) can be represented as Prob(X,Y,Z) = Prob(X,Y)*Prob(Z|Y) = 
Prob(X|Y) * Prob(Y,Z).  The two representations of the joint probability distribu-
tion (one, conditioning Z on Y and another, conditioning X on Y) are equal if  
the probability distributions are drawn from one known underlying universal 
probability distribution on V. However, the SPO framework can store, in the same 
database, information from multiple universal distributions (e.g., distinguished by 
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the context settings of the SPOs). Thus, Prob(X,Y)*Prob(Z|Y) = Prob(X|Y)* 
Prob(Y,Z) is not necessarily always true. To make sure that SPOs can be joined 
efficiently, we consider two separate join operations, one using the 
Prob(X,Y)*Prob(Z|Y) representation, and the other using the Prob(X|Y)* 
Prob(Y,Z). These operations are known as left join and right join.  

Definition 19. (Zhao et al. 2005) Two SPOs S = (T,V,P,C,ω) and S' 
=(T',V',P',C',ω') are join-compatible if and only if (a) V ∪ V' ≠ ∅ and (b) C = C'. 

Given two join-compatible SPOs S and S', we can break the set V ∪ V' into three 
non-empty disjoint parts: V1 = V – V’, V2= V' – V and Vc = V∩ V'. The informa-
tion about the probability distribution of random variables in Vc can be found in 
both S and S'. The join operation must take this into consideration when the joint 
probability distribution for variables in V∪ V' is computed. The key to computing 
the joint distribution correctly is the following statement. 

Lemma 1. Let x∈ dom(V1), y∈ dom(Vc), z∈ dom(V2), and let V1, Vc and V2 all be 
disjoint. Under the assumption of independence between variables in V1 and V2 the 
following holds: 

).|(*),()|(*),Pr()Pr(/),Pr(*),Pr(),,Pr( yxPyzPyzPyxyzyyxzyx ===
 

We can now define the join operations. We want the join of S and S' to contain the 
joint probability distribution of the set V1∪ Vc ∪ V2. Since Pr(y) could be obtained 
either from S or from S', there exist  two families of join operations, called 
left join and right join, with the following definitions. 
 

Definition 20. (Zhao et al. 2005)   Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be 
two join-compatible SPOs. Let V = V1∪Vc  and V' = V'∪ Vc, and  Vc = V∪ V'. 
We define the operations of left join of S and S', denoted S < S', and right join of 
S and S', denoted S   >  S', as follows: 
 

• S < S' :: =    S'' = (T'',V'',P'',C'',ω''); 
• S  > S' :: = S''' = (T'', V'', P''',C'',ω’’’), where 

1. T''  = T ∪ T'; 
2. V'' = V1 ∪ Vc  ∪   V2; 
3.  P''': dom(V'')→  [0,1] is computed as follows. 

 

For all w ∈ dom(V''); ( )zyxw ,,=  ; x ∈ dom(V1), y ∈ dom(Vc), z ∈ 
dom(V2): 
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• C'' = C =C'. 
• ω'' = ω < ω';  ω''' = ω  >  ω'. 
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Two join-compatible SPOs are join-consistent if probability distributions on the 
set of shared participating variables are identical for both SPOs. 

Definition 21. (Zhao et al. 2005)  Let Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') 
be two join-compatible SPOs with V∩ V' = Vc. Then, S and S' are join-consistent 

if and only if ( )xPyP ′=)(  for any y ∈ dom(Vc). 

SP-algebra operations can be extended to a semistructured probabilistic relation, 
as described in the following proposition. 

Proposition 1. (Zhao et al. 2005)    Any SP-algebra operation on a semistructured 
probabilistic relation is equivalent to the union of the SP-algebra operation on 
each SPO in the SP-relation: 

• Let SP be a semistructured probabilistic relation and γ be one of the three 
unary SP-algebra operators. Then γ(SP) = S∈SP γ(S). 

• Let SP1 and SP2 be two semistructured probabilistic relations and ⊕ be one of 
the binary SP-algebra operators. Then: 

'
21 '

21 SSSPSP
SPSSPS

⊕=⊕
∈∈
 . 

Semantics of the SP-algebra Operations. The problem of determining the mean-
ing of the results of the operations of the SP-algebra is complicated by the fact that 
at any moment, SP-databases can contain SPOs of two types. In the SPOs of the 
first type, the probabilities of all rows are exact, while in the SPOs of the second 
type, the probabilities of some rows may represent the lower bounds on the proba-
bility of those instances. We proceed by defining the two types of SPOs formally, 
discussing their properties and the effects that different SP-algebra operations 
have on the SPOs in light of this. 

Definition 22. (Zhao et al. 2005)   An SPO S =(T,V,P,C,ω) is a Type I SPO iff 
x∈dom(V)P(x) =1 . Otherwise, S is a Type II SPO. 

When S is a Type I SPO, its probability table is complete: the probabilities of all 
rows add up to exactly 1. The probability table may contain a row for every in-
stance x ∈ dom(V), or it may omit some of the instances. However, because the 
probabilities of the rows present in the table add up to 1, we know that the proba-
bilities of all omitted rows are 0, and these can be added to the probability table of 
S. Basically, when S is a Type I SPO, we are guaranteed that for all x ∈ dom(V) 
P(x) is the exact point probability of instance x. 

The nature of Type II SPOs is somewhat more complex. If the sum of probabilities 
in all rows of the probability table is less than 1, then that the probability table is 
missing some information. This can either be missing instances: some x ∈ dom(V)  
has a non-zero probability but is not included in the probability table of S, or underes-
timation: all possible instances are present, but the probabilities add up to less than 1, 
which means that information about the probabilities of some (or all) instances is 
only a lower bound on the true probability of the instance in the distribution. 
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It is important to note here that SP-algebra operations allow for Type II SPOs 

to occur in the SP-database, even if all original SPOs in the database were Type I.   
The difference in the meaning of probability values for Type I and Type II SPOs 
causes us to apply extra caution when interpreting the results of SP-algebra opera-
tions. In particular, when considering a specific SP-algebra operation applied to an 
SPO or a pair of SPOs, it is important for us to know the type of the input objects 
and be able to determine the type of the result. The following proposition identi-
fies the set of “safe” operations in SP-algebra: operations that, given Type I SPOs, 
are guaranteed to produce Type I results. 

Proposition 2. (Zhao et al. 2005)   Let S and S' be two Type I SPOs. Then, the 
following SPOs are also Type I: 

1. σc(S), where c is a selection condition on context, participating random va-
riables or conditional. 

2. πL(S), πc:F (S) and πF(S), where L is a list of context attribute names and F ⊆ 
V. 

3. μc(S), where c is a conditional selection condition. 
4. S x S'. 
5. S <  S' and S >  S'. 

Two operations missing from the list in Proposition 4 are selection on probabili-
ties and selection on probability table. These operations can take as input Type I 
SPOs and produce Type II SPOs, because both operations can return incomplete 
probability tables. The following statements specify the semantics of the SP-
algebra operations producing Type I results. 

Theorem 2. (Zhao et al. 2005)    Let S = (T,V,P,C,ω) be a Type I SPO and let ∅ ≠ 
L ⊆ V. Let S'= (T, L,P',C,ω') = πL(S). Then S’.P' contains the correct marginal 
probability distribution of random variables in L given the probability distribution 
S.P. 

Theorem 3. (Zhao et al. 2005)    Let S = (T,V,P,C,ω) be a Type I SPO and let c be 
a conditional selection condition involving variable v ∈ S.V. Let S' = (T,V-
{v},P',C',ω') = μc(S). Then S’.P' contains the correct conditional probability dis-
tribution of random variables S.V-{v} from the distribution S.P given condition c 
on v. 

Theorem 4. (Zhao et al. 2005)  Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be 
two cp-compatible SPOs and let S'' = (T'',V'',P'',C,ω'') = S x S'. Then S’’.P'’ is the 
correct joint probability distribution of random variables in S.V and S’.V' under the 
assumption of independence between them. 

Theorem 5. (Zhao et al. 2005) Let S = (T,V,P,C,ω) and S' =(T',V',P',C',ω') be two 
join-compatible SPOs and let S'' = (T'',V'',P'',C,ω'') = S< S'  and S’’’= 
(T’’’,V’’’,P’’’,C,ω’’’) = S > S’. Then S’’.P'' and S’’’.P''' are the correct joint 
probability distributions of random variables in S.V and S’.V' under the assumption 
of independence between them. 
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Theorem 6. (Zhao et al. 2005)   Let S and S' be two join-compatible SPOs. The 
left join S < S' and the right join S > S'$ are equivalent if and only if  S and S’ 
are join-consistent. 

2.3. Extensions of the SPO Framework 

Interval SPO Model. As mentioned above, the probability space  Ppoint=[0,1], is 
not the only way to represent probabilistic information in the SPO framework. 
Probability intervals have been, for some time, considered the next natural  
extension of the notion of probability (Walley 1991, de Campos et al. 1994, 
Weichselberger 2000,  Ng and Subrahmanian 1992).  Because the definition of an 
SPO factors out the probability space, a valid Semistructured Probability Object 
may use probability intervals rather than point probabilities in its probability table.  
Such SPOs were introduced in a somewhat tongue-in-cheek manner (Goldsmith et 
al. 2003) as the means of representing results of political surveys.  While the data 
representation format does not change much, the same cannot be said about the 
semantics of the SPOs and, consequently, the query algebra.  An interval probabil-
ity distribution is modeled using Nilsson's (Nilsson 1986) possible worlds seman-
tics, (Weichselberger 2000, de Campos et al. 1994): a true probability distribution 
assigns point probabilities to all rows in the probability table, but is unknown. 
Probability intervals represent a set of linear constraints on the point probabilities.  
An interval probability distribution will satisfy some (possibly none) point proba-
bility distributions, termed p-interpretations (Ng and Subrahmanian 1992, Zhao et 
al. 2004), each of which is considered equally likely to be the true one. 

The query algebra operations were extended to preserve the mapping between in-
terval probability distributions and the sets of satisfying p-interpretations (Zhao et al. 
2004, Zhao et al. 2003).  The semantics of extended (interval) SP-algebra operations 
that do not alter probabilities, set operations and various selection operations, does 
not change much from the SP-algebra case.  On the other hand, projection, Cartesian 
product, join, and, especially, conditionalization, operations that modify probabili-
ties, become much more involved.  With the exception of conditionalization, ex-
tended SP-algebra versions of all operations preserve the possible worlds semantics: 
i.e., we prove that a p-interpretation satisfies the interval probability distribution 
obtained in the result of an extended SP-algebra operation if and only if it be con-
structed from some p-interpretation (or a pair of p-interpretations) by applying an 
SP-algebra analog of the operation to it/them (Zhao et al. 2004). 

For the conditionalization operation, the interval distribution obtained as result 
of the extended operation is guaranteed to be tight, i.e., some p-interpretations 
satisfying the original interval probability distribution get transformed by a condi-
tionalization operation in a way that matches all interval boundaries. However, the 
resulting interval probability distribution can have satisfying p-interpretations that 
cannot be obtained from any p-interpretation satisfying the original (pre-
conditionalization) interval probability.  This is an instance of a general result, due 
to Jaffray (1992), concerning computing conditional imprecise probabilities. It 
represents an essential structural shortcoming of the interval probability models in 
general, and the extended SPO framework in particular. 

 



88 T. Ge, A. Dekhtyar, and J. Goldsmith 
 

SPDBMS. The SPO framework was implemented by Zhao (Zhao et al. 2005) us-
ing transformation of SP-relations in collections of relational tables on top of a 
relational DBMS. The Semistructured Probabilistic DBMS (SPDBMS for short) 
supports basic data manipulation (insert, delete, update an SPO) and provides full 
support for the SP-algebra.  Because collections of SPOs are inherently semistruc-
tured, the translation of SPOs into relational tables is rather cumbersome. More 
recently, SPDBMS was re-implemented using the native XML DBMS eXist 
(Rosson 2008). This avoided the data translation step. Query algebra operations 
were implemented using XQuery, and XQuery's user-defined functions. Most of 
the operations behaved efficiently. However, due to the specifics of eXist’s inter-
nal architecture,8 processing Cartesian products and joins was unreasonably slow. 

SPOQL. The SP-algebra provides a functional query language for querying SP-
databases. Direct SP-algebra syntax was implemented in both versions of 
SPDBMS and used as the query language. In addition to the SP-algebra, a declara-
tive query language for SP-databases, called SPOQL, was introduced and imple-
mented as part of the RDBMS-based SPDBMS (Dekhtyar et al. 2006).  

3    Modeling Uncertain Data 

In this section, we consider databases that treat data as uncertain, rather than stor-
ing and managing uncertainty in terms of probability distributions. We model data 
uncertainty in three ways: (1) tuple uncertainty, (2) attribute uncertainty, and (3) 
sub-attribute uncertainty. 

In tuple uncertainty, a probability number (sometimes called confidence) is as-
sociated with each tuple.  An example is shown in Figure 5(a), which is similar to 
Figure 1, except that we have mutual exclusion correlations among tuples.  Recall 
that it is from an application in which various sensors are embedded in the uni-
forms of soldiers in a battle field.  The sensors send out detections of the medical 
conditions of the soldier that wears the uniform.  The second to last column is a 
score that indicates how much medical attention this soldier needs.  The higher the 
score, the more urgent it is to send medical resources to this soldier.  The last col-
umn (Conf.) is the probability that the tuple exists in the table. 

We may specify mutual exclusion rules, which indicate that at most one of a set 
of tuples can exist in the table.  In this way, we can encode a discrete PMF (prob-
ability mass function) by a set of mutually exclusive tuples.  In more detail, for a 
PMF , , , , … , , ,  to  are values in a set of mutually ex-
clusive tuples and  to  are their probabilities.  The sum of the probabilities is 
no more than 1.  If the sum is less than 1, then with remaining probability, none of 
the mutually exclusive tuples exist in the table.  In the example in Figure 4(a), the 
three highlighted tuples (T2, T4, and T7) are mutually exclusive.  They are detec-
tions of the same soldier (same Soldier ID) at around the same time, and hence at  
 

                                                           
8  The version of eXist used by Rosson (Rosson 2008) loaded user-defined functions and 

reinterpreted them each time they were invoked, which affected  the join and Cartesian 
product operations . 
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Fig. 5 Illustrating two kinds of uncertain data: tuple uncertainty (a) and attribute uncertainty 
(b). The last column of (a) (Conf., i.e., confidence) indicates the probability that the tuple 
exists in the table.  The highlighted tuples are mutually exclusive (i.e., at most one of them 
can be true). 

most one of them can have the correct score. The tuple uncertainty model can be 
considered as a generalization of the data model without uncertainty, in which 
each tuple has probability one, and there are no mutual exclusion rules. 

The second type of uncertainty is called attribute uncertainty.  In this case, an 
attribute is uncertain and we model each value of the attribute as a probabilistic 
distribution.  In the example of Figure 5(b), the measurements of the Speed 
attribute can have errors and we model each speed value by a normal distribution.  
This is in contrast with the traditional deterministic model in which each value of 
an attribute is a fixed scalar value.  Attribute uncertainty may also be considered 
as a generalization of the data model without uncertainty, in which each value in 
an attribute is some value with probability one (i.e., a discrete distribution). 

Not only do the two kinds of uncertainty exist in the source data, but they also 
exist in the query result.  Let us look at an example. We take a simple table that 
has attribute uncertainty as shown in Figure 5(b).  We then issue a query as in 
Figure 6(a).  What would the result be?  Each of the three tuples has a non-zero 
probability to satisfy the predicate “Speed > 78”.  For example, the first tuple’s 
Speed attribute has a normal distribution with mean 90 and variance 20, and thus 
has a high probability (say, 0.95) of satisfying the predicate.  The second tuple, on 
the other hand, has a normal distribution with a low mean (62) and has a tiny 
probability (say, 0.001) of satisfying the predicate.  Thus, we have tuple uncertain-
ty in the query result (last column in Figure 6(a)). 

What about the selected “Speed” attribute in the result set?  We know that only 
if the Speed is above 78 should the tuple be in the result at all.  Hence, we can rea-
son that the Speed attribute in the result should not be in its original form, but ra-
ther, a conditional distribution (conditioned on the predicate being true) based on 
the original distribution.  We illustrate this in Figure 6(b), which shows the exam-
ple for the first result tuple.  We cut off the original distribution Normal (90, 20) at 
the value 78, and only take the right side of the curve.  Then, we need to normalize 
it (by multiplying by a constant factor) so that the function still integrates to 1, as a  
 

 

Object ID Speed

28 Normal (90, 20)

11 Normal (62, 15)

72 Normal (78, 10)

distribution

Tuple 
ID

Soldier 
ID

Time Location 
(x, y)

Score for 
Medical 
Needs

Conf.

T1 1 10:50 (10, 20) 49 0.4

T2 2 10:49 (10, 19) 60 0.4

T3 3 10:51 (9, 25) 110 0.4

T4 2 10:50 (10, 19) 80 0.3

T5 4 10:49 (12, 7) 56 1.0

T6 3 10:50 (9, 25) 58 0.5

T7 2 10:50 (11, 19) 125 0.3

Tuple Uncertainty Attribute Uncertainty

(a) (b)
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                    (a)                                                            (b) 

Fig. 6 Illustrating tuple uncertainty and attribute uncertainty in a query result.  We issue the 
query in (a) to the uncertain table in Fig. 4(b).  Each of the three tuples has a non-zero 
probability to be in the result---this is tuple uncertainty (last column in (a)).  The “Speed” in 
the result has attribute uncertainty – a conditional distribution shown in (b). 

probability density function. We can see that the Speed attribute in the result is 
still distributions, and we have attribute uncertainty in the result. 

In addition, we may have sub-attribute uncertainty for some data types. For  
instance, a text string attribute can have uncertain “characters” within it. As for-
malized by Jestes et al. (2010), a probabilistic string can have two models: the 
string-level model and the character-level model, which we define next. 

Definition 23 (string-level and character-level models) (Jestes et al. 2010).  Let Σ be an alphabet. A probabilistic string in the string-level model is represented as , , , , … , , , where Σ , 0, 1 , and ∑ 1. 
A character-level probabilistic string is 1 2 … , where each charac-
ter , , … , , , Σ, 0, 1 , and ∑ 1. That 
is, a string consists of independently distributed characters, some of which can be 
deterministic (i.e., 1). 

While a string-level probabilistic string follows the aforementioned attribute un-
certainty (i.e., an attribute with a discrete distribution), a character-level model has 
distributions (of characters) embedded inside a string attribute, which is why it is 
termed sub-attribute uncertainty. Sub-attribute uncertainty has the finest granulari-
ty among the uncertainty models. Indeed, as shown by Ge and Li (2011), an index 
(for substring search) will point to uncertain character positions inside a string 
attribute, which can potentially be very long (e.g., millions, as in DNA strings). 

4    Query Processing for Uncertain Data 

We describe an algorithm that we devised to answer an arbitrary query on uncer-
tain data (Ge and Zdonik 2008). The algorithm is called Statistical sampling for 
Equidepth Result distribution with Provable error-bounds, or SERP. SERP is  
essentially a Monte Carlo randomized algorithm. 

SELECT ObjectID, Speed FROM table
WHERE Speed > 78

Result?

Object 
ID

Speed Prob.

28 ? 0.95

11 ? 0.001

72 ? 0.5

tuple uncertaintyattribute uncertainty

78 original distribution

conditional distribution 
after normalization
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4.1    The SERP Algorithm 

The basic idea of a Monte Carlo algorithm for processing uncertain data is that we 
sample input data, run a query over the samples using a conventional query  
engine, and then learn a probability distribution for each random variable in the 
output, which includes any probabilistic field in a result tuple and a result tuple’s 
existence probability in the result set. 

The SERP algorithm uses a simple and consistent representation for both input 
data to queries and output query results, namely equidepth histograms. We con-
sider probabilistic fields having continuous distributions. We can partition the 
domain of a probability density function (PDF)  into  intervals such that for 

each interval , it holds that . Thus, a distribution is “described” 

by  contiguous intervals and can be succinctly represented as 1 values indi-
cating the boundaries of the  intervals: , , … , , where ,  is the ith 
interval. We assume a uniform distribution within an interval. 

This is reminiscent of equidepth histograms widely used in query optimizers, 
and reflects the idea that the exact distribution of “high density areas” is more 
important and should be given higher “resolution”. However, note the important 
difference that each bucket of an equidepth histogram contains a number of actual 
column values, whereas an equidepth distribution specifies the PDF of one 
attribute field. This representation is quite compact, only needing k + 1 values to 
describe a distribution. 

Sampling from such a histogram representation is very simple: first pick one of 
the  intervals uniformly at random, and then pick a value from that interval un-
iformly at random. This sampling procedure will be used in the SERP algorithm. We 
consider the query execution as a black box that takes  input random variables (in 
general) and produce a number of output random variables. The  input random 
variables are either binary random variables indicating input tuple probability or 
probabilistic fields in the form of equidepth histograms as described above. Without 
loss of generality, we only need to consider how we obtain the distribution of one of 
the output probabilistic fields. Other fields are obtained in the same way. For exam-
ple, for SUM or AVG, the inputs are the  uncertain fields in  tuples and the output 
is the result. The SERP algorithm (Ge and Zdonik 2008) is shown below. 

Algorithm SERP , … ,  

Input: , … , : probabilistic fields in equidepth histogram distributions 
Output: the distribution of one output field 

// Do the main loop of the algorithm. 
// k is the number of intervals in a distribution,  is to be determined later 

1: for each 1, … ,  do 
2:         Sample each input , … ,  and get , … ,  
3:         Run the query over , … ,  and let the output be  
4: end for 

// Get the output distribution 
5: Sort the output values as , … ,  where  



92 T. Ge, A. Dekhtyar, and J. Goldsmith 
 

6: Get  contiguous intervals, each containing  output values; the first interval 
contains , … , , the second contains , … , , and so on. More pre-

cisely, let , … ,  be the interval boundaries, where  (11), 2 , and 2 . 
7: Return the  contiguous intervals above as the result distribution. 

 
In the algorithm,  is a parameter that balances accuracy with performance, as 

we will investigate in the analysis. Note that we model all inputs as uncertain. In 
reality, some input values can be certain. It is straightforward to extend the algo-
rithm to the mixed case. Also note that from one execution on the  samples to the 
next, to be more efficient, we can share the query plan (i.e., the query is compiled 
only once, and executed many times for each loop). Further, among different  
executions, sub-results of parts of the query plan that only refer to data without 
uncertainty can be shared. Another key optimization is on I/O cost. The database 
engine can pay the I/O cost only once, and incrementally carry out the multiple 
rounds of computation in parallel. It is easy to see that SERP is scalable. The cost 
is no more than a constant factor of that of the same operation on data without 
uncertainty, regardless of the number of tuples. Additionally, SERP works even if 
there is correlation between different inputs. We just need to carry out the sam-
pling from the joint distribution. 

4.2    Analysis of SERP 

We measure the distance between the result distribution computed by some algorithm 
and an “ideal” one based on the same input distributions, but given as much compu-
ting resources as needed. We use a well-known distance metric: variation distance. 

Definition 24 (variation distance) (Mitzenmacher and Upfal 2005). The varia-
tion distance between two distributions  and  (each being a discrete probabil-
ity distribution) on a countable state space  is given by ,∑ | |. 
We first give some insights on the variation distance metric, as we will be using it 
for analysis. 

Lemma 2 (Mitzenmacher and Upfal 2005).  Consider two distributions  and 
. For a state  in the state space , if , then we say  overflows 

at x (relative to ) by the amount . Likewise, if , 
then we say  underflows at x (relative to ) by an amount of . 
We denote the total amount that  overflows (and underflows, respectively) as 

 (and , respectively). Then, , . 

We are now ready to present a novel proof that SERP has a nice bound on the var-
iation distance between its result distribution and the ideal one, even though we do 
not know the exact form of the ideal result distribution, nor do we make any as-
sumption on how to obtain it. 
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Theorem 7 (Ge and Zdonik 2008).  In the SERP algorithm, let  and  be para-
meters as described in the algorithm. Then, with probability at least 1 ·

, the variation distance between the result distri-

bution and the ideal one is no more than  0 0.5 . 

Proof.  Consider any one interval  of the ideal distribution. Define  random 
variables  1  as follows: 1,       3  0,       3  . 

Because  is an interval of the ideal distribution, from the definition of the equi-

depth partition, we have Pr 1 , and hence . We define a ran-

dom variable ∑ , indicating the number of output ’s that fall in . From 

the linearity of expectation, we have · . As  is the sum of inde-
pendent 0/1 random variables, we can apply Chernoff bounds that for any 0 0.5, we have Pr 1 2  and Pr1 2 . Then from the union bound, Pr 1 2   1 2 . 

Now consider all  intervals and apply the union bound again: Pr  . | | 2 · . 

Hence, Pr , | | 2 1 · . 

Thus, with probability at least 1 · , all inter-

vals contain sample result points whose number differs from the expected value by 

no more than 2 . As each such point carries weight  into the probability, and 

there are either no more than  overflow intervals (holding more than  points) or 

no more than  underflow intervals, from Lemma 2, we get that the variation dis-

tance is no more than 2 · · .                                                                     □ 

To get a numerical sense about the bound, we take 5, 0.2, and 60. 
Then from Theorem 7, using 300 sample points (rounds), with probability at least 
0.91, the variation distance between the result of the SERP algorithm and the ideal 
distribution is no more than 0.2. This is a (rather conservative) theoretical guaran-
tee, and our experiments (Ge and Zdonik 2008) showed that, in practice, one can 
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obtain a small variation distance with significantly fewer rounds. On the other 
hand, theoretical guarantees are important as they hold for any dataset while the 
result of a particular experiment depends on its data. 

4.3    Join Query Semantics 

We now focus on an important kind of query, namely join queries, on uncertain 
attributes. We show that there are two useful types of join operations specific to 
uncertain attributes: value join (v-join) and distribution join (d-join) (Ge 2011). V-
join is a natural extension of the join operation on deterministic data. Let us first 
look at an example. 

 

 

Fig. 7 Illustrating v-join between two uncertain attributes 

Example 2 (v-join). In Figure 7, we would like to examine the temperature 
attributes in table R and in table S, and find pairs that are very close. Note that 
both temperature attributes are uncertain and contain distributions, which appear 
in various forms. For instance, N(78, 5) denotes a normal distribution with mean 
78 and variance 5, while U(70, 75) is a uniform distribution in the range [70, 75] 
and “hist(…)” indicates a histogram representation whose details we omit for 
clarity. The query is: 

SELECT R.ID, S.ID FROM R, S 
WHERE 

1.0, 0.8
. .R temperature S temperature=  

This is called probabilistic threshold join query in previous work (Cheng et al. 
2006). The interpretation of the join predicate is that with probability at least 0.8, 
the difference between the two join attributes is no more than 1.0 degree, i.e., 
|R.temperature – S.temperature | ≤ 1.0. 

For uncertain attributes (either numerical or categorical), there is a special kind of 
join, which we call d-join. The idea of d-join is to treat probability distributions as 
“objects” and the join operation is based on the similarity of two distributions. We 
now look at some examples. 

Example 3 (sensor fusion). For high availability, five sensors redundantly meas-
ure the same environmental physical property (e.g., temperature) in a sensor net-
work deployment on Great Duck Island (off the coast of Maine) (Szewczyk et al. 

Table R

ID Temperature

1

2
3

… …

N (78, 5)

U (70, 75)
N (86, 10)

Table S

ID Temperature

1

2
3

… …

N (85, 6)

U (92, 94)
N (77, 8)

4 hist(…)

Table R

ID Temperature

1

2
3

… …

N (78, 5)

U (70, 75)
N (86, 10)

Table S

ID Temperature

1

2
3

… …

N (85, 6)

U (92, 94)
N (77, 8)

4 hist(…)
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2004). Due to the harsh environment and the unreliable nature of the sensors, the 
readings can have large errors. A central database system performs a sensor fu-
sion and uses machine learning techniques (e.g., kernel methods) (Bishop 2007) 
to obtain a temperature distribution from the five sensors. We record the tempera-
ture distributions at various times within two months in two tables (one for each 
month). We want to query for two time instances (one from each month) that have 
close temperatures. 

Example 4 (data integration). Consider data integration from several sources. 
We need to perform schema matching and record linkage to combine different 
versions of the same data entity. However, due to schema and format inconsisten-
cies, a data entity can have a lot of uncertainty. In the integrated database, we 
model the uncertainty with distributions (for either numerical or categorical val-
ues) (Dong et al. 2009). If two entities have similar distributions, then they are 
likely to be close. It is useful to find out this information. 

Example 5 (prediction queries). We use different statistical models to predict the 
stock prices of a large number of companies one week from now (Brockwell and 
Davis 2002). Different models gave different results and again, by using tech-
niques such as kernel methods (Bishop 2007), we can get a distribution of the 
predicted price of each company, which is stored in relational tables. The query is 
to ask for pairs of two companies that are likely to have very close stock prices at 
that time. 

In all these three examples, if we were to use v-join, even if two distributions are 
exactly the same, the probability that the join predicate is satisfied might still be 
insignificant. Here is a simple example. Suppose in Example 3, the five sensors 
give readings that are quite different (the difference is more than the v-join value 
difference parameter ε). Thus, the integrated temperature distribution has approx-
imately five buckets, each with the same probability (1/5). Even if we were to do a 
v-join on two identical distributions as such, the probability that they are within ε 
apart would be only about ∑  (i.e., when both random variables fall 

into the same bucket). The observation here is that whether v-join is satisfied or 
not heavily depends on the “width” of the two distributions (i.e., the uncertainty, 
or, the entropy). V-join does not compare the two distributions themselves: two 
identical distributions may still fail to match. However, in all these examples, the 
fact that two distributions are close is also useful: it tends to indicate a special 
relationship of the two tuple entities that are being joined; i.e., their uncertain 
attributes are likely to be close in spite of the uncertainty. Essentially, we treat 
probability distributions themselves as objects and we are joining such objects. 
We are now ready to formalize v-joins and d-joins. 

Definition 25 (domain partition scheme) (Ge 2011). The domain partition 
scheme for an uncertain attribute is a many-to-one mapping of values in the do-
main of the uncertain attribute to a countable number of states. 
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Example 6 (domain partition scheme). If the domain of an uncertain attribute is 
all positive real numbers, then one possible domain partition scheme is based on a 
parameter step: we map all attribute values in the interval (0, step] to state 1, all 
values in (step, 2×step] to state 2, and so on. 

Consider two relations R and S that have uncertain attributes R.A and S.B. In R, 
each record’s A attribute is a probability distribution, rather than a single value, as 
in deterministic databases. The distribution can be encoded in various ways, in-
cluding well-known distributions (e.g., a normal distribution) and histograms. The 
same is true for S.B. 

We denote a join operation between R and S on attributes R.A and S.B as , , , where  and  are optional parameters. There are two types of join: 
value join (v-join) and distribution join (d-join). A v-join has a join predicate that 
is an (approximate) equality or an inequality with some probability threshold. For 
example, a v-join predicate can be 

,
. .

p
R A S B

ε
= , which means Pr(|R.A − S.B| < ε) ≥ 

p. This is a probabilistic version of a band join (DeWitt et al. 1991); for determi-
nistic data, when the predicate is |R.A − S.B| < ε, it is a band-join. Another exam-
ple is . .

p
R A S B< , which means Pr(R.A < S.B) ≥ p (ε is not present here). ε usually 

denotes a small value and p is a probability threshold. Note that, when it is clear 
from the context, we often use R.A to denote the random variable that represents 
the A attribute of a tuple in R, and likewise for S.B.  A d-join predicate is denoted 
as . ~ .R A S B

ε
. It is equivalent to VD(R.A, S.B) ≤ ε, where VD(R.A, S.B) denotes the 

variation distance (Definition 24) between a distribution in R.A and a distribution 
in S.B, and R.A and S.B have a common set of states resulting from their domain 
partition schemes (Definition 25). 

4.4    Efficiently Processing V-joins 

4.4.1  Using the First Two Moments 

Our query processing techniques for v-join are based on probability theory. Spe-
cifically, the kth moment of a random variable X is defined as E[Xk]. The moments 
are a concise way to describe the nature of the distribution of a random variable. 
The first moment is the expectation of the random variable while the first two 
moments determine the variance of the random variable: Var[X] = E[X2] − (E[X])2. 
In fact, all moments of a variable together uniquely define its distribution (Mit-
zenmacher and Upfal 2005).  Simply computing and storing the first two moments 
(or equivalently, the expectation and variance) of a random variable (in our con-
text, an uncertain attribute of a record is a random variable) incurs little overhead 
but, as we show, is very useful in making quick decisions during v-join in order to 
improve the speed. In some well-known distributions, such as Gaussian, the ex-
pectation and variance come for free, since they are part of the description of the 
distribution. 
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Probabilistic Band Join. Perhaps the most often used v-join is the probabilistic 
band join; i.e., when the join predicate is 

,
. .

p
R A S B

ε
= . The basic method for eva-

luating this predicate is by computing a double integral of the form 

, where x is a random variable in R.A, y is a random 
variable in S.B and f1(x) and f2(y) are the density functions of x and y, respectively. 
The result p’ is the probability that R.A and S.B (of two tuples) are at most ε apart. 
Note that the v-join predicate is satisfied if and only if p’ ≥ p. 

The problem with the above solution is that it is very CPU expensive. There-
fore, we wish to use probability bounds to improve the speed of evaluating such a 
predicate. Define a random variable X = R.A – S.B. Then the predicate is equiva-
lent to: 

                                       Pr | | .                                                (1) 

Let E(X) = E(R.A) – E(S.B) = λ. Then we have the following three cases, as shown 
in Figure 8. 

 

Fig. 8 Illustrating the three cases of  

Case (a): λ > ε.  We would like to know if (1) must be false, in which case we can 
exclude the tuple pair. From the Cantelli's inequality (Grimmett and Stirzaker  
2001), we have: Pr | | Pr Pr . 

If , then condition (1) must be false. 

Case (b): λ < -ε.  Similar to case (a), we would like to use Cantelli’s inequality to 
see if we can determine that (1) must be false and rule out the tuple pair: Pr | | Pr Pr . 

If , then condition (1) must be false. 

Case (c): - ε < λ < ε.  In contrast to the previous two cases, we would like to see if 
(1) must be true and hence the tuple pair satisfies the v-join condition. From Can-
telli’s inequality, we have: Pr Pr , Pr Pr , Pr | | 1 Pr   1 . 

0 ε-ε λ = E(X) = E(A) – E(B)

case (a)case (b) case (c)

0 ε-ε λ = E(X) = E(A) – E(B)

case (a)case (b) case (c)
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The last inequality is due to the union bound. Thus, if 1
, then condition (1) must be true. 

Now suppose we are only given the moments of the two fields being joined. For 
clarity, we write A for R.A and B for S.B. For the above methods to work, we need 
to express λ and Var(X) using the moments of A and B. From the linearity of ex-
pectation, λ = E(X) = E(A) – E(B). With the typical assumption that A and B are 
independent, we have Var(X) = Var(A) + Var(B) = E(A2) – E2(A) + E(B2) – E2(B). 

Therefore, only using the first two moments of A and B, we can quickly ex-
clude the (A, B) pair from the join result (Cases a and b) or include it in the result 
(Case c) if the conditions in those cases are met. If the pair is neither excluded nor 
included, we need to resort to the “old-fashioned” way of computing the actual 
probability that |A – B| < ε by a double integral (or summation if they are discrete) 
as in (1) to see if it is greater than p. We can save a great deal of computational 
cost by using moments and probabilistic bounds to make quick judgments. 

Other Inequality V-joins. Thus far we have only considered probabilistic band 
join; we now turn to other inequality v-joins. We only demonstrate . .

p
R A S B< ; we 

can apply similar techniques to other inequalities. Again we define a random vari-
able X = R.A – S.B. Let E(X) = λ. We now examine two cases: 

Case (a): λ < 0.  Then, Pr . . Pr 0 Pr . 

If 1 , it must be true that Pr . .  and the predicate is 

satisfied. 

Case (b): λ ≥ 0.  Then we see if we can exclude the tuple pair: Pr . . Pr 0 Pr . 

If , it must be true that Pr . .  and the tuple pair is ex-

cluded from the result. Details such as obtaining λ and Var(X) from the moments 
of R.A and S.B are the same as in the discussions for probabilistic band join. 

We also devise indexing techniques for v-join queries. For additional details, we 
refer the reader to Ge (2011). 

4.5    Efficiently Processing D-joins 

4.5.1    The Condensed D-join Algorithm 

In this section, we examine how we can process d-join queries efficiently. We can 
perform a d-join on two uncertain attributes if their domain partition schemes (Defi-
nition 3) result in a common set of states. Let the size of the state space S resulting 



Uncertain Data: Representations, Query Processing, and Applications 99
 

from the domain partition schemes be n. Then the “features” of an uncertain distri-
bution with respect to S can be described as (p1, p2,…, pn), meaning that the uncer-
tain field has probability pi of being in state si. By taking this vector, we can map an 
uncertain distribution to a point in the n-dimensional space. It is then easy to verify 
that the variation distance between two distributions exactly maps to half of the L1 
distance between the two corresponding points in the n-dimensional space. 

This discussion leads us to the direction that a d-join can be reduced to a simi-
larity join, which is well studied in the database literature (e.g., Koudas and Sev-
cik 2000). There are many competing algorithms that can do similarity join. How-
ever, there is a common phenomenon among the algorithms: due to the “curse of 
dimensionality”: as dimensionality increases, performance deteriorates significant-
ly. For example, as shown in Koudas and Sevcik’s Figure 17 (2000), the response 
time grows 17fold as the dimensionality increases from 3 to 20 with the same 
number of data points for both algorithms, as shown by Koudas and Sevcik 
(2000). We therefore propose an algorithm called condensed d-join, as shown be-
low. The algorithm starts by reducing the dimensionality by a procedure called a 
condensation scheme, as we now define. 

Definition 26 (condensation scheme) (Ge 2011).  A condensation scheme for an 
uncertain attribute is an onto function f: S → S’, where S is the original state space 
determined by the domain partition scheme of the attribute and S’ is a state space 
with a smaller cardinality, i.e., |S’ | < | S |. The space S’ is called the condensed 
state space. 

Algorithm CONDENSED-D-JOIN . , . ,  

      Input: Two uncertain attributes R.A and S.B whose domain partition schemes 
have the same states; and value ε. 
     Output: Pairs of R.A and S.B that satisfy . ~ .R A S B

ε
. 

1: Precomputation step: Determine the best condensation scheme for either R.A 
or S.B using the algorithm in Section 4.5.2. 

2: In the condensed state space determined in line 1, we get the new distribu-
tions for all fields in R.A and S.B. If a new state is the merge of a number of 
previous states, then its probability is the sum of the probabilities of the origi-
nal states. 

3: Phase 1: Use any existing similarity join algorithm to compute the join result 
based on the smaller state space, using the L1 distance metric and the distance 
parameter 2ε. 

4: Phase 2: Among the qualified tuple pairs selected in line 3, further refine the 
selections by computing the variation distance (VD) over the original state 
space. 

 
Line 1 of the algorithm is to determine the optimal condensation scheme ac-

cording to any one side of the join and is typically pre-computed. The condensa-
tion algorithm combines a number of neighboring states into one and sums up 
their probabilities. We thus get the new probability distributions in line 2. Phase 1 
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of the condensed d-join is performed in line 3, where we essentially reduce the d-
join problem to the similarity join of multidimensional points (with the parameter 
value 2ε). Because of the reduced dimensionality, it is much faster. Over the quali-
fied tuple pairs, we perform the second phase, which is a post-processing as 
shown in line 4. The goal of the two phase approach is to avoid the slow perfor-
mance caused by high dimensionality. The quality of the condensation scheme is 
of a critical role here since it impacts the number of false positives that must be 
filtered out in the post-processing phase. We study the optimal condensation 
scheme in detail in Section 4.5.2. 

We show the correctness of the CONDENSED-D-JOIN algorithm. 

Lemma 3 (Ge 2011). Over the original state space determined by the domain 
partition scheme, let distribution D1 come from R.A and D2 come from S.B. After 
the condensation, let the distributions (in step 2) be D1’ and D2’. Then VD(D1’, 
D2’) ≤ VD(D1, D2). 

Proof. Suppose the condensation scheme merges k states s1, s2, …, sk into a single 
state s’. Let D1 have probabilities p11, p12, …, p1k and D2 have probabilities p21, 
p22, …, p2k in those states, respectively. Then step (2) of the algorithm indicates 
that D1’ has probability p1’ = p11+ p12+ …+ p1k in state s’ while D2’ has probability 
p2’ = p21+ p22+ …+ p2k in state s’. It holds that: 

                    | p1’− p2’| = |(p11− p21) + (p12− p22) +…+ (p1k− p2k)| 
                                     ≤ | p11− p21| + | p12− p22| +…+ | p1k− p2k |. 

Thus, iterating this over all states of D1’ and D2’, summing up the inequalities as 
produced above, and finally dividing both sides of the resulting inequality by 2, 
we get VD(D1’, D2’) ≤ VD(D1, D2), which directly follows from the definition of 
VD.                                                                                                                            

Theorem 8 (Ge 2011).  The CONDENSED-D-JOIN algorithm gives the correct 
result. 

Proof.  From Lemma 3, we know that if, in the original state space, the VD between 
two distributions is less than ε, then it must also be true after the condensation. Thus, 
phase 1 of the d-join (step 3) will not miss any result tuples that should be returned. 
Finally, the second phase of the algorithm filters out all false positives.                  

4.5.2    The Optimal Condensation Scheme 

Consider an uncertain attribute and a condensation scheme that reduces the num-
ber of its states from n to k (k < n). The question now is how we should merge the 
states in the original state space S. Let us look at a motivating example. Figure 
9(a) shows the distributions of an uncertain attribute. The solid vertical lines de-
scribe the domain partition scheme: an interval between two neighboring lines is a 
state. Suppose the (blue) dotted lines indicate a potential condensation scheme: 
there are three condensed states: the interval [v1, v2) is the first condensed state, 
[v2, v3) is the second, and [v3, v4] is the third. It appears to be a fair condensation 
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scheme as each condensed state contains about the same number of the original 
states. However, let us suppose that 1000 distributions fall in the middle range, 
i.e., between v2 and v3, while there is only one distribution in the first and third 
condensed states, respectively. 

 

   
                        (a)                                                    (b)                                (c) 

Fig. 9 (a) The necessity of a good condensation scheme, (b & c) illustrating the concept of 
“minimum disturbance” of a condensation scheme as measured by variation distance 

Then this condensation scheme loses a lot of information: all of the 1000 distri-
butions have the same distribution (0, 1, 0) in the condensed state space (each 
number is the probability of one state). In other words, it is not discriminative. In 
the condensed space, if one of the 1000 distributions matches with a distribution 
in another column for d-join, so will all other 999 distributions. We therefore need 
a principled algorithm to make the condensation scheme more discriminative. 

But how to make it discriminative? The idea is to make the new distributions 
after applying the condensation scheme as faithfully as possible to the original 
ones. The faithfulness is again measured by variation distance. Clearly condensa-
tion would lose some information about the distributions. Thus, we would prefer a 
scheme that would result in new distributions that have the minimum distance 
from the original ones, which we call minimum disturbance. It is quantified by the 
sum of the variation distances between each new distribution and its original one, 
in the original state space. Since a new distribution can be considered as a lossy 
compression of the original one, when we convert the new distribution back to its 
original state space, we simply divide the probability of a condensed state by the 
number of the original states that map to it. This is because we do not distinguish 
between those states in the condensed space. 

Therefore, when computing the variation distance between an original distribu-
tion and the new one, we compare the probabilities of the original states with their 
averages in each group, where each group corresponds to a condensed state. We 
illustrate this in Figure 9(b). In Figure 9(c), the original distribution is mapped to a 
point d1 in the multi-dimensional space. For d-join we need to compute the dis-
tance between d1 and a point d2 that represents a distribution in another column. 
The condensation step brings d1 to another point d1’. The point d1’ corresponds to 
the conversion of the new distribution back to its original state space, which we 
describe in the previous paragraph. Even though d2’s position is not known a pri-
ori, by minimizing the distance between d1 and d1’, the distance between d1 and d2 
is optimally approximated by the distance between d1’ and d2. Moreover, this  
optimization problem is over all distributions in an uncertain column. 
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We first formalize the problem (Ge 2011). An uncertain column has N proba-

bility distributions. The column follows a domain partition scheme that consists of 
n states in some serial order (e.g., n small buckets in value order). The goal of our 
condensation scheme is to merge some neighboring states in order to reduce them 
to k states (k < n). The scheme is chosen in such a way that the variation distance 
between the new distribution and the original one, summing over all records of the 
column, is minimized. 

Let us denote the optimal (i.e., minimum) sum value (over the whole column) 
of the variation distances between the new distributions and the original ones as 
D(k, n), where k is the target number of condensed states and n is the original 
number of states. We then have the following recursion: 

                     ( )

1

( , ) min [ ( 1, 1) ( , ) ]
N

r

k i n
r

D k n D k i C i n
≤ ≤ =

= − − +                                  (2) 

where C(r)(i, n) is the “cost” of merging states from i to n into a single new state 
for the distribution in record r. This cost is just the part of the variation distance 
between the two distributions at states from i to n. More precisely (recall Figure 8 
b & c), 

                    ( ) ( ) ( ) ( ) ( )1 1
( , ) | |,

2 1

n n
r r r r r

j i i j
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Here pj
(r) is the probability of the jth state in the rth distribution. We also note the 

boundary condition that 

                           ( )

1

(1, ) (1, ), 1 1
N

r

r

D i C i for i n k
=

= ≤ ≤ − +
.

                                   (4) 

We then can have an efficient dynamic programming algorithm for this problem, 
as illustrated in Figure 10(a). The figure shows a “D table” for values of the D 
function in Equation (1). The row numbers of the D table (1 to k) are the first pa-
rameter of the function while the column numbers (1 to n) are the second parame-
ter. Our target value is D(k, n), which is indicated by the red “?” at the bottom 
right corner of the D table. From the recursion in Equation (1), the target value can 
be obtained from the values in the row above, assuming we already have all the C 
values. The whole process can be recursively applied for each cell in the table. We 
therefore have a top-down procedure to fill in the shaded region in Figure 10(a) 
row by row, starting from the boundary condition as described in Equation (4). 

In the above algorithm, we assume that we have all the C values. We now de-
scribe how to obtain them. We simply do a scan of the whole uncertain column 
and compute the aggregation of the C values as described in Equation (3). Figure 
10(b) illustrates the C table. It is not hard to verify from Equations (2) and (4) that 
we only need to fill in the shaded region of the C table (C is a two-dimensional 
array). As we scan the column and get each distribution, we obtain the C values of 
the shaded region using Equation (3). Because in Equations (2) and (4) we require 
a sum of the C values over all distributions, we do the aggregation (sum) for each 
cell of the shaded region of the C table as we scan each distribution of the column  
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        (a)                                                 (b) 

Fig. 10 A dynamic programming algorithm to get the D function (a) and a column scan to 
obtain the aggregated C values (b) 

one by one. Eventually, when we finish scanning the uncertain column, each cell 
of the C table contains a sum value.  Combining the above two algorithms (i.e., 
getting the C table followed by getting the D table), we have an efficient method 
to obtain the optimal condensation scheme. 

5    Related Work 

There has been substantial work on managing uncertain data and information in 
recent years due to the rise of new applications that demand this capability. 

Nilsson's seminal paper on probabilistic logic (Nilsson 1986) introduced the  
notion of reasoning with probabilities to the field of artificial intelligence. The 
possible worlds semantics proposed by Nilsson has become a de facto standard for 
interpreting statements about probabilities both in the field of AI and, a bit later, in 
the field of databases. The key idea expressed by Nilsson is that in a world with 
multiple discrete random variables with finite domains, each random variable 
must take an exact value, and the uncertainty essentially expresses the lack of in-
formation an observer has. Each assignment of values to all random variables in 
the model (universe) is known as a possible world. If a probability is associated 
with each possible world, then a probability of a random variable taking a specific 
value is computed as the sum of probabilities of all possible worlds in which this 
assignment occurs. 

The first work on probabilistic databases did not directly use the possible world 
semantics. However, the proposed frameworks were consistent with it. Cavallo 
and Pittarelli (1987) were perhaps the first who studied probabilistic data in the 
context of databases. They proposed a framework in which a probabilistic relation 
represented a single probability distribution.  Tuples in such relations represented 
the probabilities of specific outcomes.  Cavallo and Pittarelli defined two query 
algebra operations for working with such data: join, which produced a joint  
probability distribution for a pair of probabilistic relations, and selection, which 
returned the probabilities of specific outcomes. 

Most of the work that followed the work of Cavllo and Pittarelli (1987), however, 
adopted a different view about what should be represented by a probabilistic relational 
table. Just as individual tuples in classical relational tables represent independent 
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statements of fact, in these approaches each tuple in a probabilistic table represents a 
single probability distribution. The first to propose this approach in early 1990s were 
Barbara, Garcia-Molina and Porter (1992). In their framework a relation had a set of 
certain attributes that jointly formed a primary key, and a collection of uncertain 
attributes, over which a probability distribution was defined. Dey and Sarkar (1996) 
built a 1-NF representation of the probabilistic relations of Barbara et al. (1992) and 
described an extensive query algebra, which included such probabilistic database-
specific operations as data compaction/ coalescence and conditionalization operations. 
The former, given two or more probability distributions for the same event, produces a 
consensus probability distribution. The latter computes the conditional probability 
distribution conditioned on a specific value of one or more of the uncertain attributes.   

Zimanyi explicitly introduced possible worlds semantics of Nilsson to probabil-
istic databases (Zimanyi 1997). His framework uses the language of first-order 
probabilistic logic introduced by Halpern (1990). Zimanyi treats each probabilistic 
relation as a formula in the first-order probabilistic logic. He then defines full 
query algebra on by specifying how the formulas describing the probabilistic rela-
tions change when the operation is performed.  While this approach is not very 
practical, it provides a clear semantics for query algebra operations. 

In the mid- to late 1990s, a number of research groups extended probabilistic 
relational database frameworks. The work on the Semistructured Probabilistic 
Databases model (SPO) described in this chapter takes its roots from two such 
directions. The first is the work of Kornatzky and Shimony who proposed the first 
object-oriented probabilistic database framework (Kornatzky and Shimony 1994). 
This was, to our knowledge, the first extension of the work on probabilistic data-
bases that extended beyond relational database model. In the framework of Kor-
natzky and Shimony, uncertainty was associated not just with the specific values 
of attributes, but also with the hierarchical structure of the objects themselves. 

The second precursor to the work on the SPO model was ProbView, a relation-
al probabilistic database management system which was the first framework to 
introduce interval probabilities to represent uncertainty in data. (Lakshmanan et 
al. 1997). ProvView stored the data in a compact, non-1-NF form, similar to the 
approach of Barbara et al. (1992). The semantics of the data though was defined 
using the 1-NF annotated probabilistic relations similar to those considered by 
Dey and Sarkar (1996). The query algebra operated on the annotated relations, so 
to answer a query ProbView translated the data into annotated form and performed 
the requisite operations.  

In late 1990s, research on specific types of uncertainty in data appeared. Dyreson 
and Snodgrass (1998) considered temporal indeterminancy and introduced a proba-
bilistic temporal database framework.  Dekhtyar, Ross and Subrahmanian (2001) 
adopted and improved the ProbView approach to  management of probabilities in 
temporal databases. 

The SPO model (Dekhtyar et al. 2001, Zhao et al. 2005) came out of the obser-
vations that most of the probabilistic database frameworks at the time were not  
designed to store arbitrary probability distributions of multiple discrete random 
variables (with finite domains).  A semistructured probabilistic object can store 
any probability distribution regardless of how many and which random variables 



Uncertain Data: Representations, Query Processing, and Applications 105
 

are in it, what meta-data about the variables is present and known, and whether the 
probability distribution is conditional. The SPO framework was further relaxed by 
introducing interval probabilities to represent uncertainty (Goldsmith et al. 2003, 
Zhao et al. 2003, Zhao et al. 2004). 

In parallel with our work on the SPO model, a number of alternative frameworks 
for management of uncertainty using semistructured data models and XML 
emerged. Hung et al. (Hung et al. 2003, Hung et al. 2003A) proposed Probabilistic 
XML framework (PIXML) to encode information about probability distribution.  
Nierman and Jagadish (2002) introduced ProTDB framework for the same purpose. 

Some work addresses imprecise and uncertain data in sensor networks (Cheng 
et al. 2003, Deshpande et al. 2004, Tran et al. 2010, among others). The work pre-
sented in Sections 3 and 4 differs from the sensor network-based work in that we 
can process arbitrary query types based on the possible world semantics, but are 
not restricted to specific query operators. Note, however, that some of these ap-
proaches were shown to be more efficient (Tran et al. 2010). Independently, the 
MCDB project at University of Florida and IBM (Jampani et al. 2008) also em-
ployed Monte Carlo query processing for uncertain data, and focused on efficient 
integration of their techniques into a system. Previous work that is based on tuple 
uncertainty includes that by Dalvi and Suciu (2004) and by Benjelloun et al. 
(2006). In this chapter, our proposed techniques focus on attribute uncertainty, 
which is common in a number of application domains that we present. 

Cheng et al. (2006) proposed probabilistic threshold join, which is similar to 
our v-join semantics. However, their query processing is based on x-bounds, 
which are a number of bounds for some data structure (e.g., each data page), un-
like our dynamic filtering bounds using probability theory. In addition, we study 
indexing for efficient joins and a second type of semantics, d-join, which is useful 
for different applications. 

Similarity join on data points in multidimensional space is well studied (e.g., 
Koudas and Sevcik 2000). The connection between this line of work and our work 
on d-join is due to the fact that we can reduce a d-join to a similarity join. Howev-
er, when the dimensionality is high, with any existing technique, there is invaria-
bly a significant performance penalty. Our design of the condensed d-join and the 
optimal condensation scheme are a novel contribution.  Dimensionality reduction 
is also studied for indexing time series databases (e.g., Keogh et al. 2001).  How-
ever, a salient difference in discrete probability distributions than time series fea-
tures is the constraint that probability values are between 0 and 1 and sum to 1.  
We take advantage of this and devise a simple, efficient, and optimal condensation 
algorithm.  Finally, band-join on deterministic data was studied by DeWitt et al. 
(1991). V-join can deal with a variant of band-join on uncertain data, where the 
old techniques cannot be applied. 

6    Conclusions 

We have introduced several approaches to computation with probabilities, and 
given introductions to databases to support these approaches. The first approach, 
the Semistructured Probabilistic Objects framework, treats joint and conditional 
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probability distributions as fundamental data objects.  This supports reasoning 
with Bayesian networks, hidden Markov models (HMMs), and other probabilistic 
graphical models. We have discussed the queries possible with standard probabili-
ty distributions, and mentioned some of the issues that arise when probability in-
tervals are used. We also mention two implementations of the SPDBMS. The 
second approach, the tuple and attribute uncertainty framework, takes a data-
centric approach and more tightly couples probability distributions with “data” 
itself. That is, either entities (tuples) or their properties (attributes) are extended 
with probabilities. We have discussed the semantics of general SQL queries, in-
cluding joins, in this framework, and proposed some efficient query processing 
techniques. 

We have presented a number of application scenarios in which significant  
uncertainty is present, and in which each of our approaches would be useful. We 
believe that a broad range of applications, albeit all containing uncertain informa-
tion, would require database techniques tailored to their specific requirements. 

As future work, it would be interesting to seamlessly integrate our approaches 
and produce an even more powerful system that can meet the diverse needs of 
modern applications. 
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A Theoretically-Sound Approach for OLAPing 
Uncertain and Imprecise Multidimensional Data 
Streams 

Alfredo Cuzzocrea* 

Abstract. In this chapter, we introduce a novel approach for tackling the problem 
of OLAPing uncertain and imprecise multidimensional data streams via novel 
theoretical tools that exploit probability, possible-worlds and probabilistic-
estimators theories. The result constitutes a fundamental study for this exciting 
scientific field that, behind to elegant theories, is relevant for a plethora of modern 
data stream applications and systems that are more and more characterized by the 
presence of uncertainty and imprecision. 

1    Introduction 

Uncertain and imprecise data streams arise in a plethora of actual application scenarios 
ranging from environmental sensor networks to logistic networks and telecommunica-
tion systems, and so forth. Recently, research has devote a great deal of attention to this 
problem [9,21,2,10,28,23]. Consider, for instance, the simplest case of a sensor net-
work monitoring the temperature of a given geographic area . Here, being  moni-
toring a natural, real-life measure, it is likely to retrieve an estimate of , denoted by , 
with a given confidence interval, denoted by , such that , 
having a certain probability , such that 0 1, rather than to obtain the exact 
value of , denoted by  . The semantics of this confidence-interval-based model 
states that the (estimated) value of , , ranges between  and  with probabili-
ty . Also, a law describing the probability distribution according to which possible 
values of  vary over the interval   is assumed. Without loss of generality, 
the normal distribution is very often taken as reference. The normal distribution states 
that (possible) values in   have all the same probability to be the exact 
value of , , effectively. Despite the popularity of the normal distribution, the confi-
dence-interval-based model above is prone to incorporate any other kind of probability 
distribution [25]. 
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While some recent papers have tackled the problem of efficiently representing, 
querying and mining uncertain and imprecise data streams [9,21,2,10,28,23], to 
the best of our knowledge, there not exist papers dealing with the problem of effi-
ciently OLAPing [16] uncertain and imprecise multidimensional data streams, 
with explicit emphasis over multidimensionality of data. In order to fulfill this 
relevant gap, in this chapter we first introduce the problem of estimating OLAP 
queries over uncertain and imprecise multidimensional data streams, which can 
be reasonably considered as the first research attempt towards the definition of 
OLAP tools over uncertain and imprecise multidimensional data streams exposing 
complete OLAP functionalities, such as on-the-fly data summarization, indexing, 
and OLAM [17] primitives. 

OLAP tools over multidimensional data streams have been recently regarded as 
one of the most attractive application scenarios for next-generation complex data 
stream management systems [3], due to specific characteristics of streaming data 
that are inherently multidimensional, multi-level and multi-granularity in nature 
[11,6,8,18]. From this breaking evidence, it has been widely recognized a natural 
inadequateness of conventional data stream mining tools [15] that do not adhere to 
a multidimensional and multi-resolution vision of data, which makes such tools 
not able of capturing the singular characteristics of streaming data above. In order 
to overcome this so-relevant limitation, several studies have proposed to apply 
“re-visited” versions of the traditional OLAP model to the peculiarities of data 
streams [3], by also integrating novel computational paradigms such as intelligent 
techniques [18], or data compression [11]. Unfortunately, these proposals do not 
consider the relevant problem of dealing with uncertainty and imprecision of data 
streams, which is instead investigated in this chapter. 

According to motivations above, in this chapter we introduce the problem of 
answering OLAP queries over uncertain and imprecise multidimensional data 
streams, and propose a framework able of efficiently and effectively providing 
theoretically-founded estimates to such class of queries. 

Figure 1 shows the reference application scenario of our research. In this scena-
rio, a set of multiple data stream sources produce a set of multiple uncertain and 
imprecise multidimensional data streams. The final goal is that of supporting on-
the-fly OLAP query evaluation over (uncertain and imprecise) multidimensional 
data stream readings in order to provide a continuous answer [4] to a fixed OLAP 
query for consumer data-stream-intensive applications and systems. Usually, data 
stream management systems make use of buffering techniques for query efficiency 
purposes [1], as consumer applications are very often interested in retrieving an 
OLAP aggregation (i.e., the result of an OLAP query) computed over a limited set 
of recent data stream readings [11] rather than querying the “history” of know-
ledge kept in data stream readings. This query model is also referred in literature 
as window-based data stream query model [1]. The solution consists in making 
use of a buffer storing an appropriately-selected collection of data stream readings 
(e.g., the last , with 0). The problem of meaningfully determining the size 
of the buffer, denoted by , is relevant in data stream research [1]. 
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Typical OLAP aggregations of interest for consumer applications are: (i) SUM, 
which retrieves the summation of data stream readings stored in the buffer; (ii) 
COUNT, which retrieves the count of data stream readings stored in the buffer. 
On top of these baseline aggregations, complex OLAP aggregations can be de-
vised [14]. 

 

Fig. 1 OLAPing uncertain and imprecise multidimensional data streams 

The solution to the problem of OLAPing uncertain and imprecise multidimen-
sional data streams proposed in our research builds on some previous results that 
have been provided by recent research efforts. Particularly, [5], which focuses on 
static data, introduces a nice Probability Distribution Function (PDF) [25]-based 
model that allows us to capture the uncertainty of OLAP measures, whereas the 
imprecision of OLAP data with respect to OLAP hierarchies available in the mul-
tidimensional data stream model is meaningfully captured by means of the so-
called possible-world semantics [5]. This semantics allows us to evaluate OLAP 
queries over uncertain and imprecise static data, while also ensuring some well-
founded theoretical properties, namely consistency, faithfulness and correlation-
preservation [5]. Similarly to the PDF-based model, the possible-world semantics 
is also exploited in our research, and specialized to the more challenging issue of 
dealing with uncertain and imprecise multidimensional data streams. 

Summarizing, in this chapter we make the following three important contribu-
tions: (1) we introduce a framework for supporting effective OLAP aggregations 
over uncertain and imprecise multidimensional data streams; (2) we provide an 
innovative possible-world semantics for OLAP aggregations over uncertain and 
imprecise multidimensional data streams; (3) we propose an innovative approach 
for providing theoretically-founded estimates to OLAP queries over uncertain and 
imprecise multidimensional data streams, via the probabilistic estimators theory. 

2    Modeling Uncertain and Imprecise Multidimensional Data 
Streams. 

In this Section, we formally provide our proposed data model for uncertain and 
imprecise multidimensional data streams. This model relies-on and extends the 
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research proposed in [5], which focuses on OLAP over static data. As highlighted 
in Section 1, [5] introduces a nice data model and a theoretically-sound possible-
world semantics for OLAP over uncertain and imprecise static data, like those one 
can find in probabilistic relational database systems [13]. Particularly, [5] states 
that two specific occurrences of data ambiguity can arise in a typical OLAP scena-
rio over static data: (i) uncertainty of (OLAP) measures, and (ii) imprecision of 
dimensional members of (OLAP) hierarchies. 

We first introduce both these cases of data ambiguity in the particular context 
of dealing with multidimensional data streams by means of a meaningful example, 
and then formal definitions are provided. 

Consider a large retail company selling computer components in USA through-
out several branches located in different USA states. First, note that, due to the 
networked structure of the company, sale data sent by different branches to the 
company head-office periodically can be reasonable assumed as streaming data. 
Also, these data are clearly multi-dimensional in nature, according to several 
attributes that functionally model typical sale facts. Some example attributes are 
the following: (i) Store, which models the store where the sale has been per-
formed; (ii) Time, which captures the time when the sale has been performed, (iii) 
Product, which models the sold product, (iv) Customer, which captures the     
customer that purchased the product. These attributes play the role of OLAP di-
mensions for the multidimensional data stream model. In addition to this, OLAP 
hierarchies are associated to these dimensions. An OLAP hierarchy describes the 
hierarchical relationship among dimensional members of the model [16]. Dimen-
sional members are defined on top of functional attributes of the target OLAP 
analysis. For instance, consider the dimension Store of the running example. Here, 
a possible hierarchy associated to Store could be: State → City → Store. Possible 
instances of this hierarchy could be: (i) California → Los Angeles → Computer 
Parts; (ii) California → San Francisco → PC Components. 

The main company could be interested in performing on-the-fly OLAP analysis 
of sales across the different branches. As a consequence, attribute Sale, which 
records the sale of a product p to a customer c performed in a certain store s dur-
ing a certain day d, could be the OLAP measure of interest for the target analysis. 
Under a broader vision, performing OLAP analysis can be reasonably intended as 
executing a set of meaningful OLAP queries over multidimensional data streams. 
Therefore, goals of our research perfectly marry with the general requirement of 
achieving the definition of OLAP tools over uncertain and imprecise multidimen-
sional data streams. 

Due to data ambiguity, uncertainty of the measure Sale derives from the fact 
that data stream readings do not record the exact value of the sale . , 50$ , but 
rather they record a confidence interval within which the possible value ranges . , 45,55 $  with a certain probability , such that 0 1 . 

Due to data ambiguity, imprecision of OLAP data is derives from the fact that 
data stream readings can record any of the dimensional members of the available 
hierarchies, at any hierarchical level, instead than leaf-level dimensional members 
always (as happens in the presence of precise OLAP data). Intuitively enough, 
data stream readings recording values at the leaf level of the whole OLAP       
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hierarchy are defined as precise readings (i.e., the related OLAP level is univocal-
ly determined), whereas data stream readings recording values at any non-leaf 
level of the whole OLAP hierarchy are defined as imprecise readings (i.e., the 
related OLAP level is not univocally determined). For instance, in our running 
example target data stream readings could record the dimensional member Cali-
fornia, so that it is not possible to precisely individuate the store where the related 
sale has been performed effectively. To give an example, focus the attention on 
the hierarchy instances above. The store could both be Computer Parts, or PC 
Components, alternatively. This is a source of imprecision when dealing with data 
stream readings produced by the target sources. 

Inspired by [5], in our research we formally define an uncertain and               
imprecise N-dimensional data stream  as the tuple:  , , , , ,  , , , , , , … , , ,  such that: 

•  is the (absolute) identifier of ; 
• ,  is the lower bound of the confidence interval associated to the possible 

value of ; 
• ,  is the upper bound of the confidence interval associated to the possible 

value of , such that  , , ; 
•  is the probability that the value of  ranges over the interval , , , ; 
•  is the timestamp in which  is recorded; 
• , , , , , … , , , , with   0,1, … 1  and , is a set of di-

mensional members associated to s, each one belonging to a certain OLAP hie-
rarchy of the underlying N-dimensional data stream model. 

Given a data stream , , , , , , , … denotes a(n) (unbounded) sequence of 
data stream readings (of ) , , such that  ∞. 

Given a data stream model schema s like in the definition above, each data 
stream ,  can be reasonably intended as an instance of , i.e. a possible realiza-
tion of . 

Given a data stream  and a buffer  having size 0, , , , , , , … ,   denotes a B-bounded sequence of data stream 
readings (of ) ,  stored within , such that | | . 

It should be noted that, as highlighted in Section 1, many of today data stream 
management systems make use of buffers for query optimization purposes (e.g., 
[1]). 

The information content of probabilistic measures of  can be nicely de-
scribed by a discrete PDF , defined as follows:  ∑ , , , , , , ,                           (1) 

wherein: (i) , , , , ,  denotes the confidence interval associated to the 
reading ,  (of ); (ii) , is the probability that the value of ,  ranges over the 
interval , , , , , ; (iii) δ(•) denotes the Dirac impulse [25]. 
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Fig. 2 A-5 bounded PDF for the OLAP measure Sale of the running example 

To give an example, Figure 2 shows a 5-bounded PDF associated to the OLAP 
measure Sale of the running example. Here, ]2[B

sP  models the fact that the meas-

ure value ranges over the interval 25,30 $ with probability 0,5, whereas 
]4[B

sP  models the fact that the measure value ranges over the interval 45,50 $ 

with probability  0,1. 

3    Possible World Semantics for OLAPing Uncertain and 
Imprecise Multidimensional Data Streams 

In this Section, we first review the possible-world semantics introduced in [5] for 
the case of OLAP over uncertain and imprecise static data, and then adapt this 
semantics to the more challenging case of streaming data. As mentioned in Sec-
tion 1, we exploit such a possible-world semantics during OLAP query evaluation 
over uncertain and imprecise multidimensional data streams. 

We review the possible-world semantics [5] via considering again our running 
example on the large retail company selling computer components in USA, intro-
duced in Section 2. Figure 3 shows a two-dimensional OLAP view on multidi-
mensional data streams generated by the different branches of the company. This 
view is exploited by the main company with the aim of making (on-the-fly) OLAP 
analysis of data streams via a set of OLAP queries posed against the view (see 
Section2 ). Particularly, the target OLAP view is built by simultaneously combin-
ing the dimensions Store and Product available in the whole multidimensional 
model of the case study, enriched by the respective hierarchies. A two-
dimensional OLAP query posed against the view originates a continuous answer 
over multidimensional data streams (see Section 1). 

For the sake of simplicity, for each hierarchy defined on the dimensions Store 
and Product, respectively, dimensional members of the leaf level are represented 
by white circles (see Figure 3), and the name of the corresponding dimensional 
attributes is not shown. Grey circles in Figure 3 represent instead data stream read-
ings that populate the view. Recall that data stream readings arrive at different 
rates and arrival times, so that our running example is considering a snapshot of 
the OLAP view over multidimensional data streams at a certain time . 
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Fig. 3 The two dimensional OLAP view over uncertain and imprecise multidimensional 
data streams of the running example 

Due to imprecision of OLAP hierarchies, data stream readings can record val-
ues at any level of OLAP hierarchies associated to the dimensions of the view (see 
Section 2). For instance, reading , 6789, 30,46 , 0.7, 177, ,  with 
identifier , 6789, which has been originated at timestamp , 177, mod-
els a sale fact whose value ranges over the interval 30,46 $ with probability , 0,7. This fact is related to the sale of the monitor  performed in the store 
Si. Therefore, this is a precise data stream reading (see Section 2). Similarly, data 
stream reading , 6795, 38,52 , 0.3, 188, ,  is precise as well. 

Consider instead data stream reading , 6801, 75,94 , 0.9, 196,, . At timestamp , 196, this reading records a sale fact whose val-
ue ranges over the interval 75,94 $ with probability , 0,9. This fact is re-
lated to the sale of one product belonging to the (OLAP) group Laptop performed 
in one store located in Los Angeles. Therefore, this is an imprecise data stream 
reading (see Section 2) that introduces ambiguity in the target OLAP view. 

“How to solve the ambiguity of reading , ?” is a critical question in order to 
effectively estimate OLAP queries over uncertain and imprecise multidimensional 
data streams. To answer this question, first consider that reading ,  can be related 
to any of the possible OLAP measures of the two-dimensional view contained 
within the two-dimensional range California, Laptop except the measures origi-
nated by precise data stream readings (i.e., the grey circles in Figure 3). In fact, the 
two-dimensional range California, Laptop stores measures related to sales of 
products belonging to the group Laptop performed in stores located in California. 

[5] solves the problem above in the case of OLAP over uncertain and imprecise 
static data. First, explicitly note that in our running example the OLAP view at 
time  can be clearly considered as storing static data, i.e. data stream readings 
collected within the view until . Therefore, in the following we refer to the latter 
static (sub-)case to review possible-world semantics introduced in [5]. According 
to [5], the ambiguity of  ,  can be solved by admitting the existence of a number 
of different possible worlds  built on top of the OLAP view, such that, in each 
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possible world , ,   is alternatively one of the measures of the two-dimensional 
view contained within California, Laptop that do not store a precise value. Since 13 measures stored in California, Laptop are precise, the number of possible 
worlds for the running example 8 8 13 64 13 51 . As stated in [5], 
the number of possible worlds over static OLAP data can become exponential. To 
become convinced of this, consider that: (i) our running example focuses on a 
simple two-dimensional OLAP view, whereas real-life corporate data cubes ex-
pose very high degrees of dimensionality [24]; (ii) the number of possible worlds 
has also a combinatory dependence on the depth of OLAP levels to which the 
imprecise value is referred to – our running example focuses on OLAP hierarchies 
having depth equal to 2, whereas real-life corporate data cubes are characterized 
by OLAP hierarchies having depths much higher than 2 [7]. In more detail, for  
imprecise measures over a domain having  precise measures, we can have ∏  possible worlds [5]. Also, a weight  is associated to each possible world 
Di, in order to capture the likelihood of Di of being the “true” world among the 
possible ones [5]. 

A critical aspect discussed in [5] is represented by the so-called allocation poli-
cies, which determine how to compute the probability to be assigned to an impre-
cise measure. This probability captures the likelihood of an imprecise measure of 
being one of the measures at the leaf-level aggregation of the target OLAP view. 
In this respect, several alternatives are proposed in [5]. As it will be clear through-
out the chapter, similarly to the case of static data, computing probabilities of 
imprecise measures play a central role even in OLAP over uncertain and imprecise 
data, as, in turn, this heavily influences the query evaluation phase. 

A first result of our research consists in stating that while the general possible-
world semantics introduced in [5] is sound for uncertain and imprecise static data, 
it cannot be applied to the context of uncertain and imprecise multidimensional 
data streams. This mainly because, in the case of static data, the entire probabilis-
tic database is already available so that the probabilistic OLAP framework can 
easily compute the universe of possible worlds. At a more practical level, this 
means that the overall space of possible worlds, although very large, can be 
somewhat reduced (e.g., in an asymptotic fashion). Obviously, this is not feasible 
in a data stream environment, where data stream readings arrive continuously, 
even at different rates, so that we cannot exploit the entire probabilistic reading 
repository in order to easily compute the universe of possible worlds. This makes 
the problem of dealing with the uncertainty and imprecision of multidimensional 
data streams much harder than the analogous static case. 

4    A Data Driven Approach for Computing the Probabilities  
of Imprecise Multidimensional Data Streams Readings 

In Section 3, we have clearly highlighted that computing the probabilities of im-
precise multidimensional data stream readings is the basic issue to be faced-off in 
order to achieve the definition of a possible-world semantics for OLAP over un-
certain and imprecise multidimensional data streams. Moreover, in Section 3 it has 
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been put in emphasis that the approach proposed in [5] is not feasible for the case 
of streaming data. 

Inspired by these main motivations, we propose an innovative approach to 
solve the relevant problem above, which is based on the well-known evidence 
stating that OLAP data (static data as well as streaming data) are usually clus-
tered and (highly) correlated in nature [11,6,8,18] On the basis of this evidence, 
the main idea of the approach we propose consists in computing the probability of 
the confidence interval of an imprecise multidimensional data stream reading to 
be “close” to confidence intervals of its neighboring precise multidimensional 
data stream readings, fixed the multidimensional range of the imprecise multidi-
mensional data stream reading, at a certain OLAP hierarchical level, as the refer-
ence neighborhood. 

Consider a multidimensional OLAP view  over the target multidimensional data 
streams. Let  be the schema of the view  defined as the 
tuple:  , , , … , such that  is the measure of interest and  , , …  the set of dimensions. Let  , , …  be the set of hie-
rarchies of , such that  is the hierarchy associated to the dimension . Also, let 

 denotes the leaf level of dimensional members of the hierarchy . 
Consider the imprecise multidimensional data stream reading populating V, , ,  , , , , , , , , ,  , , , , , , … , , , , such that: (i)   0,1, … 1 , (ii) , (iii) for each , ,  in , , , , . 

We denote as , , , , , , … , , ,  the multidimensional range associated to 
rs,l, and as , , …  the base multidimensional range of the view V, which 
is obtained by combining all the dimensions of  at the leaf levels of their respec-
tive hierarchies. Since , ,  for each , ,  in , , , , , , , , … , , ,  is contained by , , … , or, alternatively, , , , , , , … , , ,  is a proper sub-set of , , … , i.e. , , , , , , … , , , , , … . For the sake of simplicity, in the 

reminder we denote as , , , , , , … , ,  the projection of , , , , , , … , , ,  over d0, d1, …, dN-1, such that is the depth of the 
whole OLAP hierarchy of  (i.e., the depth of the OLAP level of , , … ). It should be noted that , , , , , , … , ,  contains pre-
cise multidimensional data stream readings of the view , being the latter defined 
at the leaf levels of hierarchies of the dimensions of . 

Let ,  denotes the possible-world probability to be assigned to the imprecise 
multidimensional data stream reading , . First, note that, since we deal with un-
certain and imprecise data streams, , can be computed in terms of a fraction of 

the probability ,  associated to , , i.e. ,  , , with 0. , captures the 

likelihood of ,  of being a precise reading within , , , , , , … , , , . 

Before introducing our approach for computing , , the definition of neigh-
borhood for an imprecise reading , , denoted by , , is necessary. Let ,  be 
an imprecise reading, the multidimensional range associated to rs,l, and Δ a posi-
tive integer parameter (i.e., ∆ 0). Since , , , , , , … , , ,  is an             
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-dimensional domain, ,  can be represented as an n-dimensional object in an  -
dimensional space, as follows: , , , , , , , … , , , . Let ,  denotes the 

projection of ,  over , , , , , , … , , . The Δ-based neighborhood of ,  

in , , , , , , … , , , denoted by ∆ , , ,…, , , , , is defined as the 

set of precise readings contained in , , , , , , … , ,  whose Euclidean 

distance from ,  is lower or equal to ∆ . Formally: 

∆ , , ,…, , , ,
,    | ,  , , , … , , ,    ,  ∏ ,   , , ,…, , ,∑ ,  , ∆     (2) 

such that ∏  denotes the projection operator of a multidimensional point p 
over a multidimensional domain . 

Following definition (2), we slightly modify the concept of possible-world 
probability , , and introduce a variant that takes into account the ∆-based 
neighborhood of , , thus achieving the definition of the so-called ∆-based possi-
ble-world probability, denoted by ∆ , . Obviously, when ∆ 1, then ,   ∆ , . 

From Section 3, recall that a combinatory dependence between the depth of the 
OLAP hierarchical level of the multidimensional range , , , , , , … , , ,  
associated to ,  and computing , ,  exists. We initially ignore this dependence 
and provide our proposed solution for computing , ,  for the simplest case in 
which the multidimensional model of the view  is characterized by two (OLAP) 
levels only. This means that , , , , , , … , , ,  is directly contained 
by , , … . Let  denotes the depth of the OLAP level of , , , , , , … , , ,  and  the depth of the OLAP level of , , … , respectively. In other words, the property above is described by 
the following constraint:  1. After describing the proposed solution for 
the baseline case  1., we generalize this solution for OLAP views ex-
posing an arbitrary number of (OLAP) levels. 

Given an imprecise reading ,  with multidimensional range , , , , , , … , , ,  and a precise reading ,  contained 

in , , , , , , … , , , , we define the probabilistic confidence interval dis-

tance ( ) of , with respect to , , denoted by , , , , as follows: 

, , , | , , , , || , , , , | ,                              (3) 

Intuitively enough, , , ,  is a probabilistic factor modeling how much 
the confidence interval of ,  is “distant” from the confidence interval of , . It 

should be noted that the more the quantity 
| , , , , || , , , , |  is low the more the 
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absolute distance between the confidence interval of ,  and the confidence inter-
val of ,  is low. Also, since the confidence interval , , , , ,  of ,  is a 
probabilistic estimate itself, such that ,  is the probability associated to it, the 

quantity 
| , , , , || , , , , |  must be multiplied by , . This determines definition 

(3), and allows us to capture the “reliability” of , , ,  in modeling the 
probabilistic distance between the confidence interval of , , , , , , ,  and 
the confidence interval of , , , , , , , . Linearly, a low absolute distance 
involves in a low probabilistic distance, and vice-versa. 

Given an imprecise reading ,  with multidimensional range , , , , , , … , , ,  and its ∆-based neighborhood 

in , , , , , , … , , , , ∆ , , ,…, , , , , we define the Δ-based 

neighborhood probabilistic confidence interval distance ∆  of ,  with 
respect to  ∆ , , ,…, , , , , denoted by ∆ , , , , , , , , … , , , , as follows: ∆ , , , , , , , , … , , ,∑ , , ,, ∆ , , ,…, , , ,

∆ , , ,…, , , ,
                          (4) 

such that ∆ , , ,…, , , ,  is an aggregate function that re-

turns the number of precise readings in , , , , , , … , , , . 

Intuitively enough, ∆ , , , , , , , , … , , ,  is a probabilistic 

factor modeling how much the confidence interval of ,  is “distant” from confi-
dence intervals of precise readings in the ∆-based neighborhood ∆ , , ,…, , , ,  (of , ). 

Upon the theoretical framework above, given an imprecise reading rs,l with 
multidimensional range , , , , , , … , , , , the Δ-based possible-world 

probability of , ,  ∆ , , is obtained as follows:  ∆ ,  ,∆ , , , , , , , ,…, , , ∑ , , ,…, , ,  ∆ ,,               (5) 

Intuitively enough,  ∆ ,  is obtained in terms of a fraction of the probability ,  
associated to rs,l, where the denominator is represented by the probabilistic factor 
ΔNPCID that globally takes into account the “distance” of the confidence interval 
of rs,l from confidence intervals of their neighboring precise readings in ∆ , , ,…, , , , . Also,  ∆ ,  is normalized with respect to all the other 
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possible-world probabilities of imprecise readings in ∆ , , ,…, , , , , in 

order to achieve a full probabilistic interpretation of the introduced theoretical 
setting. 

When ∆ 1, we revise definition (5) as follows:  ,  ,∆ , , , , , , , ,…, , , |∆ ∑ , , ,…, , ,  ,,               (6) 

Now focus the attention on the extended model for computing the possible-world 
probability of a given imprecise multidimensional data stream reading ,  in the 
case that the multidimensional range , , , , , , … , , ,  associated to ,  
is defined via combining n dimensions of the multidimensional model of  at 
arbitrary levels of their respective hierarchies, among those available in the OLAP 
hierarchy of . For the sake of simplicity, assume that depths of these levels are 
equal for all the n hierarchies of . Let  denote this common depth, and PM the 
depth of , , …  in the OLAP hierarchy of , respectively. Therefore, 

 levels exist between , , , , , , … , , ,  and , , …  in 
the OLAP hierarchy of . 

In order to compute the possible-world probability of , ,  , , we simply ite-
rate the baseline method given for a singleton pair of multidimensional ranges, i.e. , , , , , , … , , ,  and , , …  of the previous case (where  
and  satisfy the constraint 1), for each pair of multidimensional 
ranges defined at two consecutive levels of the OLAP hierarchy of  between  
and . In more detail, we pick pairs of multidimensional ranges across the OLAP 
hierarchy of , starting from , , , , , , … , , ,  at level  and until , , …  at level  is reached. Each pair of multidimensional ranges is 
constituted by the actual multidimensional range at level , , , , , , , … , , , , and its projection over the multidimensional range at 

the underlying level , , , , , , , … , , , . Therefore, for each pair of 

multidimensional ranges , , , , , , … , , ,  and , , , , , , … , , , , a possible-world probability , ,  is obtained. The 

final possible-world probability associated to , , , , is obtained by multiplying 
all these probabilities, as follows: 

, ∏ ,    ,                                                  (7) 

Finally, it should be noted that our proposed approach for computing possible-
world probabilities for imprecise multidimensional data stream readings above is 
completely suitable to deal with (tight) computational requirements posed by 
processing multidimensional data streams efficiently. In fact, computing these 
probabilities introduces low computational overheads, as, contrary to the baseline 
static case [5], a reduced number of precise multidimensional data stream readings 
only must be accessed to this end. According to the well-known general locality 
principle, these precise readings are supposed to be stored in the actual buffer used 
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to answer OLAP queries over multidimensional data streams (see Section 1). Al-
so, a significant difference between the possible-world semantics introduced by 
[5] for the case of OLAP over uncertain and imprecise static data and our re-
visited model for the more challenging case of OLAP over uncertain and impre-
cise multidimensional data streams can be recognized. In [5], being the entire 
probabilistic database already available, the whole universe of possible worlds can 
be computed, by also exploiting somewhat asymptotic approximation. The same 
cannot be for the research context we investigate, as the solution [5] for the static 
case would introduce a combinatorial explosion in the dynamic case as, for each 
new multidimensional data stream reading arrival, the universe of possible worlds 
should be (re-)computed. Then, after each arrival this huge collection of possible 
worlds should be summarized. Computational overheads introduced by the latter 
solution would make the method [5] not suitable to be integrated within the core 
layer of OLAP tools over uncertain and imprecise multidimensional data streams. 
Contrary to this, our proposed solution exploits a data-driven approach that, while 
being still sound and compliant with the fundamental possible-world semantics, it 
locally computes a unique possible world for each new multidimensional data 
stream reading arrival, thanks to nice abstractions are founded on the clustered and 
highly-correlated nature of OLAP data, and the innovative multidimensional 
neighborhood concept. This contributes to significantly tame the computational 
overheads introduced by our proposed solution, which is thus perfectly prone to be 
integrated within the core layer of OLAP tools over uncertain and imprecise mul-
tidimensional data streams. 

5    Background: Probabilistic Estimators for Database 
Management 

In this Section, we provide the background knowledge on probabilistic estimators 
[25], which we exploit in our framework in order to provide accurate estimates to 
OLAP queries over uncertain and imprecise multidimensional data streams. 

Probabilistic estimators constitutes a well-known theory in the context of theo-
retical statistics [25]. Basically, given a parameter  to be measured, probabilistic 
estimators deal with the issue of providing an accurate estimate of , , supposed 
that the exact value of , ̂, cannot be retrieved with sufficient precision or, at the 
same, it is not possible at all to retrieve ̂ . To give an example,  could be an 
attribute of a relational table  stored in a probabilistic database  , and the 
measure could be the answer to a conventional SQL query  involving . Since 
attribute values in  are probabilistic in nature, the set of exact tuples representing 
the answer to  cannot be retrieved so that the alternative strategy is represented 
by obtaining reliable estimates on the values of these tuples. This simple yet effec-
tive theory has been widely used in database research, and particularly in the con-
text of a plethora of applications ranging from estimate-based query answering 
techniques over probabilistic databases [26] and data streams [9,21] to approx-
imate query answering techniques over large databases [19] and data cubes 
[12,22], and so forth. 
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In order to build a reliable probabilistic estimator over , a random variable  
must be introduced. The domain of , denoted by , is composed by a finite 
set of (probabilistic) events, whereas the co-domain of , denoted by , 
represents a possible value of the observed parameter p related to the (probabilis-
tic) occurrence of a certain event , i.e. , or, similarly, an instance of 

, to which a certain probability  is associated. Upon the random variable , a 
probabilistic estimator for the parameter , denoted by , is introduced, and 
exploited to retrieve an estimate over p as related to the occurrence of a certain 
event , i.e. . The way of defining the random variable  determines 
the class of the probabilistic estimator . According to this general theoreti-
cal framework, a wide family of probabilistic estimators, each one meant for a 
particular application domain, exists in literature [25]. 

For instance, the Hoeffding-based estimator [19], denoted by , has been 
extensively used in past research efforts with the goal of providing approximate 
answers (based on accurate estimates) to queries over large databases [19] and 
data cubes [12,22].  is based on the well-known Hoeffding’s inequality 
[20], which asserts the following. Given (i) a set of  independent random va-
riables , , , , … , , (ii) a scalar 0 bounding random variables 
in , i.e. 0 ,  for each   0, 1, … , 1 , for each 0 the follow-
ing inequality holds: | μ | 1 2                                        (8) 

wherein  is the sample mean of , and μp is the average value of the observed 
instance of , denoted by , , … , . The 
Hoeffding-based estimator belongs to the wide family of , -based probabilistic 
estimators, which assert to produce an estimate  of a random variable  with 
probability | | 1 , such that 0 and 0 are arbitrarily 
small. 

Hoeffding’s inequality (8) allows us to obtain an accurate estimate  
on the average value of the observed instance of , ,, … , , whose estimate error is even probabilistically bounded 
by (8). This gives us a reliable solution to obtain a probabilistically bounded ap-
proximate answer to AVG-based queries over the instance of , , , … , . 

6    Supporting OLAP Query Evaluation Over Uncertain  
and Imprecise Multidimensional Data Stream via Reliable 
Probabilistic Estimators 

In this Section, we provide definition and fundamental features of our proposed 
innovative , -based probabilistic estimator [25] that retrieves estimates to 
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OLAP queries via appropriate statistics extracted from PDF describing the uncer-
tain and imprecise multidimensional data stream readings. 

Given a set of multiple uncertain and imprecise multidimensional data stream 
readings populating the reference -dimensional OLAP view and a fixed input 
OLAP query  over , our final goal is to provide an accurate estimate to ,   . can be modeled by the following tuple: , , , … , , such 
that (i)  is an SQL aggregate operator (e.g., , , etc), and (ii)  is a 
dimensional range over the -dimensional model of , where   0,1, … ,1 and . 

The OLAP query definition above can be slightly modified in order to achieve 
the definition of a continuous OLAP query over , denoted as , , such 
that  is a conventional OLAP query over  (defined like in the previous case) 
and  is a timestamp in which the fixed query  is evaluated against . By iterat-
ing the query task above for a set of timestamps , , … ,  , we fi-

nally obtain a set of queries , , … ,  and a set of estimates , , … , , such that   is the estimate to the query ,  at timestamp  represents the continuous answer to the 
continuous query . 

For the sake of simplicity, in the following we focus the attention on the base-
line problem of providing the accurate estimate  , due to the fact that providing 
the continuous answer   to the continuous query  can be straightfor-
wardly obtained via simply iterating the baseline solution. 

From Section 1, recall that, similarly to state-of-the-art data stream query 
processing techniques, in our framework we make use of a buffer  of size  to 
query efficiency purposes. Therefore, in our reference application scenario (see 
Section 1), consumer applications are interested in executing OLAP queries over 
the collection of data stream readings stored within . 

Due to uncertainty an imprecision of multidimensional data stream readings, a 
probabilistic estimator  must be introduced in order to provide an accurate 
estimate to , . To this end, our general approach consists in providing  in 
terms of some statistics extracted from an appropriate PDF describing uncertain 
and imprecise multidimensional data stream readings [9,21]. Thanks to the     
probabilistic data stream model introduced in Section 2 and the possible-world 
semantics for OLAP over uncertain and imprecise multidimensional data streams 
introduced in Section 4, we achieve the definition of a reliable , based 
probabilistic estimator over uncertain and imprecise multidimensional data 
streams, denoted by , . Therefore, since the theory for probabilistic 
estimators is already available and it can be directly exploited within our proposed 
framework for OLAP over uncertain and imprecise multidimensional data 
streams, the most important research contribution we provide in this respect is 
represented by the methodology for building the appropriate PDF describing un-
certain and imprecise multidimensional data stream readings. We next discuss 
this aspect, which plays a critical role in our research. 
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First, note that, in classical probabilistic estimators like the Hoeffding-based 
one, the PDF describing the set of target random variables , denoted by , is 
not available. In fact, the underlying goal of the Hoeffding’s inequality consists in 
“re-constructing” this unknown PDF in order to retrieve probabilistic bounds over 
estimates of observed parameters. Now focus the attention on probabilistic proper-
ties of our proposed framework for OLAP over uncertain and imprecise multidi-
mensional data streams. For each precise data stream reading ,  thanks to our 
probabilistic data stream model (see Section 2), the B-bounded discrete PDF de-
scribing the variation of possible values of ,  in terms of confidence intervals, , , is available. For each imprecise data stream reading , , thanks to our possi-
ble-world semantics for OLAP over uncertain and imprecise data stream (see Sec-
tion 4), a -bounded discrete PDF accomplishing the same task illustrated for the 
case of precise data stream readings, , , can be computed. This allows us to 
achieve a unifying approach for treating both precise and imprecise data stream 
readings, respectively. Therefore, for the sake of simplicity, in the remainder of 
this chapter we simple refer to multidimensional data stream readings ,  (for both 
precise and imprecise instances) and related PDF, , . 

The nice unifying PDF-based probabilistic data model above allows us to di-
rectly retrieve an accurate estimate  to an input OLAP query  over the multi-
dimensional view  via appropriate statistics extracted from the PDF describing 
the involved uncertain and imprecise multidimensional data stream readings. This 
is a significant contribution over the methodology proposed in [5], which is tai-
lored to static OLAP data only. 

For the sake of simplicity, consider SUM-based OLAP queries over uncertain 
and imprecise multidimensional data streams as the reference class of queries we 
deal with. Note that other kinds of OLAP queries (such asCOUNT-based, AVG-
based etc) can be easily obtained on top of SUM-based ones. 

Given a SUM-based OLAP query , , , … ,  over the -
dimensional OLAP view  populated by precise and imprecise multidimensional 
data stream readings, our approach for providing a theoretically-founded estimate 
to , , is based on the following 3-step methodology: 

1. On the basis of the multidimensional selectivity of , obtained by combining 
the dimensional ranges , , … ,  into the multidimensional range , , … , , retrieve the set of  PDF associated to data stream read-

ings of V involved by , denoted by , , , , , , … , , ,  – this can 

be simply performed via checking, for each reading , , if all its dimensional 
members , , , , , , … , , ,  (see Section 2) are contained within , , … , , i.e. , ,    , , … ,  for each 

in 0,1, … , 1 . 
2. From the set of PDF , compute the joint PDF [25], denoted by  – intui-

tively enough,  models the joint contribution of all the PDF associated to da-
ta stream readings involved by . 
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, k  13, 18 , 0.68   0   22, 26 , 0.85   1  28, 31 , 0.94   2   37, 44 , 0.18   3  50, 57 , 0.04   4  

whereas ,  is defined as follows: 

, k  9, 15 , 0.26   0   25, 32 , 0.33   1   41, 55 , 0.59   2  61, 78 , 0.68   3   81, 88 , 0.75   4  

On the basis of the above-described approach, the joint PDF computed from ,  

and , , , , which is shown in Figure 5, is obtained as follows: 

,  22, 33 , 0.16   0   47, 58 , 0.27   1   69, 86 , 0.64   2  98, 122 , 0.11   3   131, 145 , 0.03   4  

Step 3 retrieves an accurate estimate to , , by means of the multidimensional 
integral (9), which models a conceptual formula showing how  can be retrieved, 
at a theoretical level, in the continuous domain. Recall that we handle -based 
OLAP queries over uncertain and imprecise multidimensional data stream read-
ings, so that the integral operator (9) well-defines  as the summation of partial 
contributions over the continuous domain. Since we focus on discrete PDF (see 
Section 2), (9) is then specialized for the discrete domain, as follows: ∑ , , … ,, ,…,, ,…, , ,      (10) 

such that (i) , , … ,  denotes an m-dimensional point, (ii)  the h-th 
dimensional member of the dimensional range , and (iii) | | the cardinality    
of . 

Furthermore, since (i)  globally models the joint contribution of all the PDF 
associated to data stream readings of  involved by , and (ii) the multidimen-
sional selection performed at step 1 of our OLAP query estimation technique se-
lects only the set of  PDF associated to the involved readings, we can break the 
dependency of  from the -dimensional component exposed in (10), and re-
trieve  by means of computing appropriate statistics over . From the literature, 
relevant moments [25] of , i.e. mean, denoted by , and variance, denoted 
by , play the role of most appropriate statistics in this respect. In fact, ac-
cording to several studies [9,21], these moments well-summarize the statistical 
content of , and are well-suited for OLAP queries over the involved (uncertain 
and imprecise) readings. For instance, the estimate to a -based OLAP query 
can be obtained as follows: , where  denotes the buffer size (see 
Section 1), the mean of . 

Given a discrete PDF with  samples, the mean of  is defined 
as follows [25]: 
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 ∑                                           (11) 

whereas the variance of  is defined as follows [25]: μ ∑ μ                      (12) 

To give an example, consider the joint PDF ,  of Figure 5. Here: 22  0.16, 33  0.16   47  0.27, 58  0.27   69  0.64, 86  0.64   98  0.11, 122  0.11   131  0.03, 145  0.03 3.52, 5.28   12.69, 15.66   44.16, 55.04 10.78, 13.42   3.93, 4.35   75.08, 93.75
 (13) 

and: 

 
22 –  75.08   0.16, 33 –  93.75   0.16 47 –  75.08   0.27, 58 –  93.75   0.27 69 –  75.08   0.64, 86 –  93.75   0.64 98 –  75.08   0.11, 122 –  93.75   0.11 131 –  75.08   0.03, 145 –  93.75   0.03 450.80, 590.49   212.88, 345.08   23.66, 38.44 57.78, 87.79   98.80, 78.80   843.92, 1140.60

 (14) 

 

Fig. 5 The bounded joint PDF computed from the two PDF of Figure 4 

Thanks to the statistical framework above, we are able of providing confidence 
intervals for both mean of ,  (i.e., 75.08,93.75 ), and variance of , 

 (i.e., 843.92, 1140.60 ), respectively. 
How to compute the parameters ε and δ of the probabilistic estimator ,

 for statistics and ? Since  is a joint PDF obtained from a set 
of PDF, it can be supposed that  follows a quasi-Gaussian distribution [25] (see 
Figure 6). Therefore, we can exploit numerical methods to compute both parame-
ters  and . For each probability 1  ,which is equal to the area of the 
Gaussian bell, fixed the confidence interval ,  of an estimate , we 
can retrieve the corresponding value of the parameter ε, such that1 .  is recognized as the accuracy of the probabilistic estimator ε, δ-   for that estimate  [25]. 
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Fig. 6 The quasi-Gaussian Distribuition built on top of the 5-bounded joint PDF of figure 5 

7    Conclusions and Future Work 

In this chapter, we have proposed a novel framework for estimating OLAP queries 
over uncertain and imprecise multidimensional data streams. The proposed 
framework introduces some relevant research contributions, and the suitability of 
the framework in the context of modern data stream applications and systems, 
which are more and more characterized by the presence of uncertainty and impre-
cision, has been demonstrated throughout several reliable study cases. 

Future work is mainly oriented towards making our proposed framework robust 
with respect to complex OLAP aggregations over uncertain and imprecise multi-
dimensional data streams, according to research directions described in [14], and 
beyond simple SQL-based OLAP aggregations (e.g., SUM, COUNT etc) like 
those investigated in this chapter. 
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Tractable Probabilistic Description Logic
Programs

Thomas Lukasiewicz and Gerardo I. Simari

Abstract. We propose tractable probabilistic description logic programs (dl-pro-
grams) for the Semantic Web, which combine tractable description logics (DLs),
normal programs under the answer set and the well-founded semantics, and prob-
abilities. In detail, we first provide novel reductions of tight query processing and
of deciding consistency in probabilistic dl-programs under the answer set semantics
to the answer set semantics of the underlying normal dl-programs. Based on these
reductions, we then introduce a novel well-founded semantics for probabilistic dl-
programs, called the total well-founded semantics. Contrary to the previous answer
set and well-founded semantics, it is defined for all probabilistic dl-programs and
all probabilistic queries. Furthermore, tight (resp., tight literal) query processing
under the total well-founded semantics coincides with (resp., approximates) tight
(resp., tight literal) query processing under the previous well-founded (resp., an-
swer set) semantics in all cases where the latter is defined. We then present an
anytime algorithm for tight query processing in probabilistic dl-programs under
the total well-founded semantics. We also show that tight literal query processing
in probabilistic dl-programs under the total well-founded semantics can be done
in polynomial time in the data complexity and is complete for EXP in the com-
bined complexity. Finally, we describe an application of probabilistic dl-programs
in probabilistic data integration for the Semantic Web.

1 Introduction

During recent years, formalisms for dealing with probabilistic uncertainty have
started to play an important role in research related to the Web and the Semantic
Web, which is an extension of the current Web by standards and technologies that
help machines to understand the information on the Web so that they can support
richer discovery, data integration, navigation, and automation of tasks [8, 7]. As
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an example of the role of uncertainty in today’s Web, note that the order in which
Google returns the answers to a Web search query is computed by using proba-
bilistic techniques. Besides Web search and information retrieval, other important
Web and Semantic Web applications of formalisms for dealing with probabilistic
uncertainty are especially data integration [85] and ontology mapping [67].

The Semantic Web consists of several hierarchical layers, as shown in Fig. 1,
where the Ontology layer, in the form of the OWL Web Ontology Language [86, 38,
87], is currently the highest layer of sufficient maturity. OWL consists of three in-
creasingly expressive sublanguages, namely, OWL Lite, OWL DL, and OWL Full,
where OWL Lite and OWL DL are essentially very expressive description log-
ics (DLs) with an RDF syntax [38]. As shown in [37], ontology entailment in
OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the DL
SH IF (D) (resp., SH OIN (D)). As a next step in the development of the
Semantic Web, one currently aims especially at sophisticated reasoning capabili-
ties for the Rules, Logic, and Proof layers of the Semantic Web.

In particular, there is a large body of work on integrating rules and ontologies,
which is a key requirement of the layered architecture of the Semantic Web. One
type of integration is to build rules on top of ontologies, i.e., for rule-based systems
that use vocabulary from ontology knowledge bases. Another form of integration is
to build ontologies on top of rules, where ontological definitions are supplemented
by rules or imported from rules. Both types of integration have been realized in
recent hybrid integrations of rules and ontologies, called description logic programs
(or dl-programs), which are of the form KB=(L,P), where L is a DL knowledge
base, and P is a finite set of rules involving queries to L in a loose coupling [25, 26].

Other research efforts are directed towards formalisms for uncertainty reason-
ing in the Semantic Web: An important recent forum for uncertainty in the Seman-
tic Web is the annual Workshop on Uncertainty Reasoning for the Semantic Web
(URSW) at the International Semantic Web Conference (ISWC); there was also a
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W3C Incubator Group on Uncertainty Reasoning for the World Wide Web. There
are especially extensions of DLs [31], ontology languages [15, 83], and dl-programs
[53] by probabilistic uncertainty (to encode ambiguous information, such as “John is
a student (resp., teacher) with the probability 0.7 (resp., 0.3)”, which is very different
from vague/fuzzy information, such as “John is tall with the degree of truth 0.7”).

In particular, the probabilistic dl-programs in [53] are one of the most promis-
ing approaches to uncertainty reasoning for the Semantic Web, since they faith-
fully generalize two well-established logic programming and uncertainty formalisms,
namely, answer set programming and Bayesian networks, respectively. They also
generalize Poole’s independent choice logic (ICL) [70], which is a powerful rep-
resentation and reasoning formalism for single- and also multi-agent systems. The
ICL combines logic and probability, and generalizes many important uncertainty for-
malisms, in particular, influence diagrams, Bayesian networks, Pearl’s causal models,
Markov decision processes, and normal form games. Moreover, it allows for natural
notions of causes and explanations as in Pearl’s causal models [27]. It is also closely
related to other approaches to probabilistic logic programming, such as P-log [5] and
Bayesian logic programs [42].

Since the Web contains a huge amount of data, as an important feature, Web and
Semantic Web formalisms should allow for efficient algorithms. However, no such
algorithms were known so far for the probabilistic dl-programs in [53]. In this work,
we aim at filling this gap. We propose an approach to probabilistic dl-programs that
is defined on top of tractable DLs (rather than SH IF (D) and SH OIN (D) as
in [53]), and show that this approach allows for tight query processing with polyno-
mial data complexity. In the course of this, we also provide some other new results
around probabilistic dl-programs, which are briefly summarized as follows:

• We provide novel reductions of deciding consistency and of tight query process-
ing in probabilistic dl-programs under the answer set semantics to computing the
answer sets of the underlying normal dl-programs. These reductions significantly
simplify previous reductions proposed in [53], which additionally require to de-
cide the solvability of a (in general quite large) system of linear inequalities and
to solve two linear optimization problems relative to them, respectively.

• We define a novel well-founded semantics of probabilistic dl-programs, called
the total well-founded semantics, since it defines tight answers for all proba-
bilistic queries. This is in contrast to the previous well-founded semantics of
probabilistic dl-programs in [53], which defines tight answers only for a quite
restricted class of probabilistic queries. The total well-founded semantics is also
defined for all probabilistic dl-programs, contrary to the answer set semantics,
which is only defined for consistent probabilistic dl-programs.

• As for other nice semantic features of the total well-founded semantics, the tight
answers under the total well-founded semantics coincide with the tight answers
under the well-founded semantics of [53], if the latter are defined. For literal
queries, the tight answers under the total well-founded semantics approximate
the tight answers under the answer set semantics, if the latter are defined.
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• We provide an anytime algorithm for tight query processing in probabilistic dl-
programs under the total well-founded semantics, along with a precise charac-
terization of its anytime error. Furthermore, we show that tight query processing
under the total well-founded semantics can be done in polynomial time in the
data complexity and is complete for EXP in the combined complexity.

• We describe an application of probabilistic dl-programs in probabilistic data inte-
gration for the Semantic Web, where probabilistic dl-programs allow for dealing
with probabilistic uncertainty and inconsistencies. We especially discuss differ-
ent types of probabilistic data integration that can be realized with our approach.

The rest of this paper is organized as follows. In Sections 2 and 3, we recall tract-
able DLs and dl-programs under the answer set and the well-founded semantics,
respectively. Section 4 recalls probabilistic dl-programs. In Section 5, we provide
a new reduction of tight query processing in probabilistic dl-programs under the
answer set semantics to the answer set semantics of normal dl-programs. Section 6
introduces the total well-founded semantics of probabilistic dl-programs. In Sec-
tion 7, we provide an anytime algorithm for tight query processing in probabilistic
dl-programs under the total well-founded semantics, as well as tractability and com-
plexity results. Section 8 describes an application of probabilistic dl-programs in
probabilistic data integration for the Semantic Web. In Section 9, we discuss related
work. Section 10 summarizes our results, and gives an outlook on future research.

2 Description Logics

The probabilistic dl-programs of this paper assume that the underlying description
logic (DL) allows for decidable conjunctive query processing. The tractability and
complexity results (see Section 7.2) also assume that the underlying DL allows
for conjunctive query processing in polynomial data complexity. We use DL-Lite
here, but the tractability and complexity results also hold for the variants of DL-Lite
in [11, 68]. We now recall the syntax and the semantics of DL-Lite. Intuitively, DLs
model a domain of interest in terms of concepts and roles, which represent classes
of individuals and binary relations between classes of individuals, respectively.

2.1 Syntax

We first define concepts and axioms, and then knowledge bases and conjunctive
queries in DL-Lite. We assume pairwise disjoint sets A, R, and I of atomic concepts,
(atomic) roles, and individuals, respectively. We use R− to denote the set of all
inverses R− of roles R∈R. A basic concept B is either an atomic concept A∈A or
an existential role restriction ∃R, where R∈R∪R−. An axiom is either:

• A concept inclusion axiom B�C, where B is a basic concept, and C is either a
basic concept B′ or its negation ¬B′ (called concept),

• a concept membership axiom B(x), where B is a basic concept and x∈ I,
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• a role membership axiom R(x,y), where R∈R and x,y∈ I,
• a functionality axiom (funct R), where R∈R∪R−.

Given the basic definitions above, a (DL) knowledge base L is a finite set of axioms;
a conjunctive query over L is of the form

Q(x)=∃y(conj(x,y)), (1)

where x and y are tuples of distinct variables, and conj(x,y) is a conjunction of
assertions B(z) and R(z1,z2), where B and R are basic concepts and roles from R,
respectively, and z, z1, and z2 are individuals from I or variables in x or y.

Example 1. An online store (such as amazon.com) may use a DL knowledge base to
classify and characterize its products. For example, suppose that (1) textbooks are
books, (2) personal computers and cameras are electronic products, (3) books and
electronic products are products, (4) every product has at least one related product,
(5) only products are related to each other, (6) tb ai and tb lp are textbooks, which
are related to each other, (7) pc ibm and pc hp are personal computers, which are
related to each other, and (8) ibm and hp are providers for pc ibm and pc hp, respec-
tively. This knowledge is expressed by the following DL-Lite knowledge base L:

(1) Textbook � Book;
(2) PC�Camera � Electronics;
(3) Book�Electronics � Product;
(4) Product � ∃related;
(5) related� related− � Product;
(6) Textbook(tb ai) Textbook(tb lp); related(tb ai, tb lp);
(7) PC(pc ibm); PC(pc hp); related(pc ibm,pc hp);
(8) provides(ibm,pc ibm); provides(hp,pc hp).

2.2 Semantics

The semantics of DL-Lite is defined as usual in first-order logics. An interpretation
I =(ΔI , ·I ) consists of a nonempty domain ΔI and a mapping ·I that assigns to
each A∈A a subset of ΔI , to each o∈ I an element of ΔI (such that o1 �=o2 implies
oI

1 �=oI
2 , commonly referred to as the unique name assumption), and to each R∈R

a subset of ΔI ×ΔI . We extend ·I to all concepts and roles as follows:

• (¬B)I = ΔI \BI , for all basic concepts B;
• (∃R)I = {x | ∃y : (x,y) ∈ RI }, for all roles R∈R∪R−;
• (R−)I = {(y,x) | (x,y) ∈ RI }, for all atomic roles R∈R.

Next, we define the satisfaction of an axiom F by I , denoted I |=F , as usual:

• I |=B�C iff BI ⊆CI , for all basic concepts B and concepts C;
• I |=B(a) iff aI ∈BI , for all basic concepts B;
• I |=R(a,b) iff (aI ,bI )∈RI , for all atomic roles R∈R;
• I |=(funct R) iff (x,y) ∈ RI ∧ (x,z) ∈ RI ⇒ y = z, for all roles R∈R∪R−.
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An interpretation I satisfies the axiom F , or I is a model of F , iff I |=F . Fur-
thermore, I satisfies a knowledge base L, or I is a model of L, denoted I |=L,
iff I |=F for all F ∈L. We say that L is satisfiable (resp., unsatisfiable) iff L has
a (resp., no) model. An axiom F is a logical consequence of L, denoted L |=F , iff
every model of L satisfies F . A negated axiom ¬F is a logical consequence of L,
denoted L |=¬F , iff every model of L does not satisfy F .

A tuple c of individuals from I is an answer for a conjunctive query Q(x) =
∃y(conj(x,y)) to a knowledge base L iff for every model I =(ΔI , ·I ) of L, there
exists a tuple o of elements from ΔI such that all assertions in conj(c,o) are satisfied
in I . In DL-Lite, computing all such answers has a polynomial data complexity.

3 Description Logic Programs

We adopt the description logic programs (or dl-programs) of [25, 26], which consist
of a DL knowledge base L and a generalized normal program P, which may contain
queries to L (called dl-queries). Note that these dl-programs can be extended by
queries to other formalisms, such as RDF theories [24]. We first define the syntax of
dl-programs and then their answer set and their well-founded semantics. Note that in
contrast to [25, 26], we assume here that dl-queries may be conjunctive queries to L.

3.1 Syntax

We assume a function-free first-order vocabulary Φ with finite nonempty sets of
constant and predicate symbols Φc and Φp, respectively, and a set of variables X .
We make the following assumptions:

• Φc is a subset of I (since the constants in Φc may occur in concept and role
assertions of dl-queries); and

• Φ and A (resp., R) have no unary (resp., binary) predicate symbols in common
(and thus dl-queries are the only interface between L and P).

A term is a constant symbol from Φ or a variable from X . If p is a predicate symbol
of arity k�0 from Φ , and t1, . . . , tk are terms, then p(t1, . . . , tk) is an atom. A literal
is an atom a or a default-negated atom nota. A (normal) rule r is of the form

a ← b1, . . . ,bk,not bk+1, . . . ,not bm , (2)

where a,b1, . . . ,bm are atoms and m�k�0. We call a the head of r, denoted H(r),
while the conjunction b1, . . . ,bk,not bk+1, . . . ,not bm is the body of r; its positive
(resp., negative) part is b1, . . . ,bk (resp., not bk+1, . . . ,not bm). We define B(r) as the
union of B+(r)={b1, . . . ,bk} and B−(r)={bk+1, . . . ,bm}. A (normal) program P is
a finite set of (normal) rules. We say P is positive iff it is “not”-free.

A dl-query Q(t) is a conjunctive query of the form (1). A dl-atom has the form

DL[S1 � p1, . . . ,Sm � pm;Q(t)] ,

where each Si is a concept or role, pi is a unary resp. binary predicate symbol, Q(t)
is a dl-query, and m�0. We call p1, . . . , pm its input predicate symbols. Intuitively,
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� increases Si by the extension of pi. A (normal) dl-rule r is of the form (2), where
any b∈B(r) may be a dl-atom. A (normal) dl-program KB=(L,P) consists of a
DL knowledge base L and a finite set of (normal) dl-rules P. We say KB=(L,P)
is positive iff P is positive. Ground terms, atoms, literals, etc., are defined as
usual. We denote by ground(P) the set of all ground instances of dl-rules in P
relative to Φc.

Example 2. Consider the dl-program KB=(L,P), where L is the DL knowledge base
from Example 1, and P is the following set of dl-rules:

(1) pc(pc 1); pc(pc 2); pc(pc 3);
(2) brand new(pc 1); brand new(pc 2);
(3) vendor(dell,pc 1); vendor(dell,pc 2); vendor(dell,pc 3);
(4) avoid(X)← DL[PC�pc;PC](X),not offer(X);
(5) offer(X)← DL[PC�pc;Electronics](X),not brand new(X);
(6) provider(V )← vendor(V,X),DL[PC�pc;Product](X);
(7) provider(V )← DL[provides](V,X),DL[PC�pc;Product](X);
(8) similar(X ,Y )← DL[related](X ,Y );
(9) similar(X ,Y )← pc(X), pc(Y ), X �= Y ;
(10) similar(X ,Z)← similar(X ,Y ),similar(Y,Z), X �= Z;
(11) buyPC(X)← DL[PC�pc;PC](X),not avoid(X),not exclude(X);
(12) exclude(X)← DL[PC�pc;PC](X),buyPC(Y ),similar(X ,Y ).

The above dl-rules express that (1) pc 1, pc 2, and pc 3 are additional personal
computers, (2) pc 1 and pc 2 are brand new, (3) dell is the vendor of pc 1, pc 2,
and pc 3, (4) a customer avoids all PCs that are not on offer, (5) all electronic prod-
ucts that are not brand new are on offer, (6) every vendor of a product is a provider,
(7) every entity providing a product is a provider, (8) all related products are similar,
(9) all PCs are similar to each other (but a PC is not similar to itself), (10) the bi-
nary similarity relation on products is transitively closed, and (11), (12) a customer
buys a PC if he does not avoid it and has not decided to buy a similar one already.

3.2 Answer Set Semantics

The Herbrand base HBΦ is the set of all ground atoms constructed from constant
and predicate symbols in Φ . An interpretation I is any I⊆HBΦ . We say I is a
model of a∈HBΦ under a DL knowledge base L, denoted I |=L a, iff a∈ I. We say I
is a model of a ground dl-atom a=DL[S1 � p1, . . . , Sm � pm;Q(c)] under L, de-
noted I |=L a, iff L∪⋃m

i=1 Ai(I) |=Q(c), where Ai(I)={Si(e) | pi(e)∈I}. We say I
is a model of a ground dl-rule r iff I |=L H(r) whenever I |=L B(r), i.e., I |=L a for
all a∈B+(r) and I �|=L a for all a∈B−(r). We say I is a model of a dl-program
KB=(L,P), denoted I |=KB, iff I |=L r for all r∈ground(P).

Like ordinary positive programs, each positive dl-program KB has a unique least
model, denoted MKB, which naturally characterizes its semantics. The answer set
semantics of general dl-programs is then defined by a reduction to the least model
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semantics of positive ones, using a reduct that generalizes the ordinary Gelfond-
Lifschitz reduct [30] and removes all default-negated atoms in dl-rules: For dl-
programs KB = (L,P), the dl-reduct of P relative to L and an interpretation I⊆HBΦ ,
denoted PI

L, is the set of all dl-rules obtained from ground(P) by:

• deleting each dl-rule r such that I |=L a for some a∈B−(r), and
• deleting from each remaining dl-rule r the negative body.

An answer set of KB is an interpretation I⊆HBΦ such that I is the unique least
model of (L,PI

L). A dl-program is consistent iff it has an answer set.

Example 3. Consider the dl-program KB = (L,P) from Example 2, which in turn
relies on the DL-Lite knowledge base L from Example 1. Intuitively, any answer set
of KB contains the atoms offer(pc3), offer(pc ibm), and offer(pc hp) (since none
of these PCs is brand new), avoid(pc1) and avoid(pc2) (since they are not on offer),
provider(dell), and a set of atoms for similar consisting of all possible irreflexive
pairs of objects in the set {pc 1,pc 2,pc 3,pc ibm,pc hp}.

On the other hand, all answer sets will differ with respect to the buyPC atom.
Rule (11) in Example 2 states that buyPC(X) is true only if X corresponds to a PC
(via the query to the DL-Lite knowledge base, augmented with the pc predicate),
there is no avoid(X) atom in the answer set, and there is no other buyPC(Y ) atom
in the knowledge base, where Y is similar to X . Therefore, there will be three an-
swer sets, each containing one of buyPC(pc3), buyPC(pc ibm), and buyPC(pc hp),
as well as exclude(X) atoms for the other two objects.

The answer set semantics of dl-programs has several nice features. In particular, for
dl-programs KB=(L,P) without dl-atoms, it coincides with the ordinary answer set
semantics of P. Answer sets of a general dl-program KB are also minimal models
of KB. Furthermore, positive and locally stratified dl-programs have exactly one
answer set, which coincides with their canonical minimal model.

3.3 Well-Founded Semantics

Rather than associating with every dl-program a (possibly empty) set of two-
valued interpretations, the well-founded semantics associates with every dl-program
a unique three-valued interpretation.

A (classical) literal is either an atom a or its negation ¬a. For sets S⊆HBΦ ,
we define ¬S={¬a |a∈S}. We define LitΦ =HBΦ ∪¬HBΦ . A set of ground classi-
cal literals S⊆LitΦ is consistent iff S∩{a,¬a}= /0 for all a∈HBΦ . A three-valued
interpretation is any consistent I⊆LitΦ . We define the well-founded semantics of
dl-programs KB=(L,P) via a generalization of the operator γ2 for ordinary nor-
mal programs. We define the operator γKB as follows. For every I⊆HBΦ , we define
γKB(I) as the least model of the positive dl-program KBI =(L,PI

L). The operator γKB

is anti-monotonic, and thus the operator γ2
KB (defined by γ2

KB(I)=γKB(γKB(I)), for
every I⊆HBΦ ) is monotonic and has a least and a greatest fixpoint, denoted lfp(γ2

KB)
and gfp(γ2

KB), respectively. Then, the well-founded semantics of the dl-program KB,
denoted WFS(KB), is defined as lfp(γ2

KB)∪¬(HBΦ −gfp(γ2
KB)).
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Example 4. Consider once again the dl-program KB=(L,P) from Example 2, where
L is as in Example 1. The well-founded semantics of KB contains all the atoms in
all answer sets in Example 3, but no atoms among buyPC(pc3), buyPC(pc ibm),
buyPC(pc hp), exclude(pc3), exclude(pc ibm), and exclude(pc hp) (and their nega-
tions); such atoms are thus undefined under the well-founded semantics of KB.

As an important property, the well-founded semantics for dl-programs approximates
their answer set semantics. That is, for all consistent dl-programs KB and literals
�∈LitΦ , every �∈WFS(KB) is true in every answer set of KB.

4 Probabilistic Description Logic Programs

In this section, we recall probabilistic dl-programs from [53], which are defined as a
combination of dl-programs with Poole’s independent choice logic (ICL)[70]. The
ICL is based on ordinary acyclic logic programs under different “choices”, where
every choice along with an acyclic logic program produces a first-order model, and
one then obtains a probability distribution over the set of all first-order models by
placing a probability distribution over the different choices. Informally, differently
from the ICL, probabilistic dl-programs consist of a dl-program (L,P) and a proba-
bility distribution μ over a set of total choices B. Every total choice B along with the
dl-program (L,P) then defines a set of Herbrand interpretations of which the proba-
bilities sum up to μ(B). We now first define the syntax of probabilistic dl-programs
and probabilistic queries, and then their answer set semantics.

4.1 Syntax

We now define the syntax of probabilistic dl-programs and probabilistic queries
addressed to them. We first define choice spaces and probabilities on choice spaces.

We assume a function-free first-order vocabulary Φ with nonempty finite sets of
constant and predicate symbols, and a set of variables X , as above for dl-programs.
We use HBΦ (resp., HUΦ ) to denote the Herbrand base (resp., universe) over Φ . In
the sequel, we assume that HBΦ is nonempty. An event α is any Boolean combina-
tion of atoms (i.e., constructed from atoms via the Boolean operators “∧” and “¬”).
A conditional event is of the form β |α , where α and β are events. Ground terms,
ground events, and substitutions are defined as usual.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ . Any
A∈C is called an alternative of C, and any element a∈A is called an atomic choice
of C. Intuitively, every alternative A∈C represents a random variable and every
atomic choice a∈A one of its possible values. A total choice of C is a set B⊆HBΦ
such that |B∩A|=1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B
of C represents an assignment of values to all the random variables. A probability μ
on a choice space C is a probability function on the set of all total choices of C.
Intuitively, every probability μ is a probability distribution over the set of all variable
assignments. Since C and all its alternatives are finite, μ can be defined by

• a mapping μ :
⋃

C→ [0,1] such that ∑a∈A μ(a)=1 for all A∈C, and
• μ(B) = Πb∈Bμ(b) for all total choices B of C.
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Intuitively, the first condition defines a probability over the values of each random
variable of C, and the second assumes independence between the random variables.

A probabilistic dl-program KB=(L,P,C,μ) consists of

• a dl-program (L,P),
• a choice space C such that (i)

⋃
C⊆HBΦ and (ii) no atomic choice in C coincides

with the head of any r∈ground(P), and
• a probability μ on C.

Intuitively, since the total choices of C select subsets of P, and μ is a probability
distribution on the total choices of C, every probabilistic dl-program is the com-
pact encoding of a probability distribution on a finite set of normal dl-programs.
Observe here that P is fully general and not necessarily stratified or acyclic. A prob-
abilistic query has the form

∃(β |α)[r,s] ,

where β |α is a conditional event, and r and s are variables.

Example 5. Consider the probabilistic dl-program KB=(L,P,C,μ), where L and P
are as in Examples 1 and 2, except that the dl-rules (4), (5), and (11) are replaced by
the dl-rules (4′), (5′), and (11′), respectively, and the dl-rule (13) is added:

(4′) avoid(X)← DL[PC�pc;Electronics](X),not offer(X),avoid pos;
(5′) offer(X)← DL[PC�pc;Electronics](X),not brand new(X),offer pos;
(11′) buyPC(X)←DL[PC�pc;PC](X),not avoid(X),not exclude(X),one buy pos;
(13) buyAccessory(X)← DL[Electronics](X),not avoid(X),buyPC(Y ),

not DL[PC�pc;PC](X),acc buy pos.

Let C be defined as

{{avoid pos,avoid neg} ,{offer pos,offer neg},
{one buy pos,one buy neg}, {acc buy pos,acc buy neg}},

and let μ be given as follows:

• μ(avoid pos) = 0.7, μ(avoid neg) = 0.3,
• μ(offer pos) = 0.7, μ(offer neg) = 0.3,
• μ(one buy pos) = 0.95, μ(one buy neg) = 0.05,
• μ(acc buy pos) = 0.8, μ(acc buy neg) = 0.2.

The new dl-rules (4′) and (5′) express that the original dl-rules (4) and (5) now only
hold with probability 0.7. Furthermore, (11′) expresses that a customer buys a single
PC with probability 0.95, while rule (13) states that a customer buying a PC may
choose to also buy a non-PC electronics item as an accessory with probability 0.8.

In a probabilistic query, one may ask for the tight probability bounds that a cus-
tomer buys a webcam w, if (i) PC p is bought, (ii) p is on offer, and (iii) w is not on
offer; the result to this query may, for instance, help to decide whether it is useful to
automatically show a product w to a customer buying the product p):

∃(buyAccessory(w) |¬offer(w)∧buyPC(p)∧offer(p))[R,S] .
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4.2 Answer Set Semantics

We next define an answer set semantics of probabilistic dl-programs, the consistency
of such programs, and tight answers to probabilistic queries.

Given a probabilistic dl-program KB=(L,P,C,μ), a probabilistic interpreta-
tion Pr is a probability function on the set of all I⊆HBΦ . We say that Pr is an
answer set of KB iff the following two conditions hold:

• every interpretation I⊆HBΦ with Pr(I)>0 is an answer set of the dl-program
(L,P∪{p ← | p∈B}) for some total choice B of C (which implies B⊆ I), and

• Pr
(∧

p∈B p
)
=μ(B) for every total choice B of C.

Informally, these conditions state that Pr is an answer set of KB=(L,P,C,μ) iff
(i) every interpretation I⊆HBΦ of positive probability under Pr is an answer set of
the dl-program (L,P) under some total choice B of C, and (ii) Pr coincides with μ
on the total choices B of C. We say KB is consistent iff it has an answer set Pr.

Given a ground event α , the probability of α in a probabilistic interpretation Pr,
denoted Pr(α), is the sum of all Pr(I) such that I⊆HBΦ and I |=α . We say that
(β |α)[l,u] (where l,u∈ [0,1]) is a tight consequence of a consistent probabilistic
dl-program KB under the answer set semantics iff l (resp., u) is the infimum (resp.,
supremum) of Pr(α ∧β )/Pr(α) subject to all answer sets Pr of KB with Pr(α)>0
(note that this infimum (resp., supremum) is naturally defined as 1 (resp., 0) iff no
such Pr exists). The tight answer for a probabilistic query Q=∃(β |α)[r,s] to KB
under the answer set semantics is the set of all ground substitutions θ (for the vari-
ables in Q) such that (β |α)[r,s]θ is a tight consequence of KB under the answer set
semantics. For ease of presentation, since the tight answers for probabilistic queries
of the form Q=∃(β |α)[r,s] with non-ground β |α can be reduced to the tight an-
swers for probabilistic queries Q=∃(β |α)[r,s] with ground β |α , we consider only
the latter type of probabilistic queries from now on.

5 Novel Answer Set Characterizations

In this section, we give novel characterizations of (i) the consistency of probabilistic
dl-programs and (ii) tight query processing in consistent probabilistic dl-programs
under the answer set semantics in terms of the answer sets of normal dl-programs.

As shown in [53], a probabilistic dl-program KB=(L,P,C,μ) is consistent iff the
system of linear constraints LC� (see Fig. 2) over yr (r∈R) is solvable. Here, R is
the union of all sets of answer sets of (L,P∪{p ← | p∈B}) for all total choices B
of C. Observe, however, that LC� is defined over a set of variables R that corre-
sponds to the set of all answer sets of the underlying normal dl-programs, and thus R
is in general quite large.

Example 6. Consider the probabilistic dl-program KB = (L,P,C,μ), where L and P
are as in Examples 1 and 2, except that the dl-rules (4) and (11) are replaced by the
following dl-rules (4′) and (11′), respectively:

(4′) avoid(X)← DL[PC�pc;PC](X),not offer(X),avoid pos;
(11′) buyPC(X)←DL[PC�pc;PC](X),not avoid(X),not exclude(X),buy pos.
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∑
r∈R,r �|=∧

B
−μ(B)yr + ∑

r∈R,r|=∧
B
(1− μ(B))yr = 0 (for all total choices B of C)

∑
r∈R,r|=α

yr = 1

yr � 0 (for all r∈R)

Fig. 2 System of linear constraints LCα

The choice space C is defined as

{{avoid pos,avoid neg},{buy pos,buy neg}},

and μ is given as follows:

• μ(avoid pos) = 0.5, μ(avoid neg) = 0.5,
• μ(buy pos) = 0.8, μ(buy neg) = 0.2.

We then obtain four total choices:

{avoid pos,buy pos}, {avoid pos,buy neg},
{avoid neg,buy pos}, {avoid neg,buy neg}.

The set of linear constraints LC� for KB then comprises four constraints corre-
sponding to each of the total choices, one constraint corresponding to the sum to 1,
and one constraint for each variable, expressing its non-negativeness. There is one
variable for each possible answer set given all possible total choices. Intuitively, we
can see that multiple answer sets can arise only if buy pos is true. The case where
avoid pos is also true was investigated in Example 3, where we saw that there are
three answer sets in this situation. The remaining case corresponds to avoid neg be-
ing true; here, rule (4′) no longer applies, and therefore rule (11′)’s not avoid(X)
atom will hold for all answers to the query in the dl-atom DL[PC � pc;PC](X),
which contains five objects: pc1, pc2, pc3, pc hp, and pc ibm. Therefore, we have
five more answer sets in this case, and thus a total of 10 variables in LC�.

The following theorem shows that the consistency of probabilistic dl-programs can
be expressed in terms of answer sets of normal dl-programs only, without having to
additionally decide whether or not a system of linear constraints is solvable.

Theorem 1 (Consistency). Let KB = (L,P,C,μ) be a probabilistic dl-program.
Then, KB is consistent iff, for every total choice B of C such that μ(B)>0, the
dl-program (L,P∪{p ←| p∈B}) is consistent.

Similarly, as shown in [53], computing tight answers for probabilistic queries can be
reduced to computing all answer sets of normal dl-programs and solving two linear
optimization problems. More specifically, let KB=(L,P,C,μ) be a consistent prob-
abilistic dl-program, and let Q=∃(β |α)[r,s] be a probabilistic query with ground
β |α . Then, the tight answer for Q to KB is given by θ ={r/l, s/u}, where l (resp.,
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u) is the optimal value of the subsequent linear program (3) over yr (r∈R), if (3)
has a solution, and it is given by θ ={r/1, s/0}, if (3) has no solution.

min (resp., max) ∑r∈R,r |=α∧β yr subject to LCα (see Fig. 2). (3)

But the linear program (3) is defined over the same (generally quite large) set of
variables as the system of linear constraints LC� above. The following theorem
shows that the tight answers can also be expressed in terms of answer sets of normal
dl-programs only, without additionally solving two linear optimization problems.

Theorem 2 (Tight Query Processing). Let KB=(L,P,C,μ) be a consistent prob-
abilistic dl-program, and let Q=∃(β |α)[r,s] be a probabilistic query with ground
β |α . Let a (resp., b) be the sum of all μ(B) such that (i) B is a total choice of C and
(ii) α ∧β is true in every (resp., some) answer set of (L,P∪{p ← | p∈B}). Let c
(resp., d) be the sum of all μ(B) such that (i) B is a total choice of C and (ii) α ∧¬β
is true in every (resp., some) answer set of (L,P∪{p ← | p∈B}). Then, the tight
answer θ for Q to KB under the answer set semantics is given as follows:

θ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{r/1, s/0} if b=0 and d=0;

{r/0, s/0} if b=0 and d �=0;

{r/1, s/1} if b �=0 and d=0;
{

r/ a
a+d , s/ b

b+c

}
otherwise.

6 Total Well-Founded Semantics

In this section, we define a novel well-founded semantics for probabilistic dl-pro-
grams, called the total well-founded semantics, since it is defined for all probabilistic
queries to probabilistic dl-programs, as opposed to the well-founded semantics of
[53], which is only defined for a very limited class of probabilistic queries. Further-
more, the total well-founded semantics is defined for all probabilistic dl-programs,
as opposed to the answer set semantics, which is only defined for consistent ones.

More concretely, given a probabilistic dl-program KB=(L,P,C,μ) and a prob-
abilistic query Q=∃(β |α)[r,s] with ground β |α , the tight answer θ for Q to KB
under the well-founded semantics of [53] exists iff both ground events α ∧β and
α are defined in every S=WFS(L,P∪{p ←| p∈B}) such that B is a total choice
of C. Here, a ground event φ is defined in S iff either I |=φ for every interpretation
I⊆HBΦ such that (i) S∩HBΦ ⊆ I and (ii) ¬S∩ I = /0, or I �|=φ for every interpre-
tation I⊆HBΦ such that (i) S∩HBΦ ⊆ I and (ii) ¬S∩ I = /0. If α is false in every
WFS(L,P ∪ {p ←| p∈B}) such that B is a total choice of C, then the tight an-
swer is defined as θ ={r/1, s/0}; otherwise, the tight answer (if it exists) is defined
as θ ={r/ u

v , s/ u
v}, where u (resp., v) is the sum of all μ(B) such that:

• B is a total choice of C, and
• α ∧β (resp., α) is true in WFS(L,P∪{p ← | p∈B}).



144 T. Lukasiewicz and G.I. Simari

We define the total well-founded semantics as follows, taking inspiration from the
novel answer set characterization of tight answers in the previous section.

Definition 1 (Total Well-Founded Semantics). Let KB=(L,P,C,μ) be a proba-
bilistic dl-program, and let Q=∃(β |α)[r,s] be a probabilistic query with ground
β |α . Let a (resp., b−) be the sum of all μ(B) such that (i) B is a total choice of C
and (ii) α∧β is true (resp., false) in WFS(L,P∪{p ←| p∈B}). Let c (resp., d−) be
the sum of all μ(B) such that (i) B is a total choice of C and (ii) α∧¬β is true (resp.,
false) in WFS(L, P∪{p ←| p∈B}). Let b=1−b− and d=1−d−. Then, the tight
answer θ for Q to KB under the total well-founded semantics (denoted TWFS(KB))
is defined as follows:

θ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{r/1, s/0} if b=0 and d=0;

{r/0, s/0} if b=0 and d �=0;

{r/1, s/1} if b �=0 and d=0;

{r/ a
a+d , s/ b

b+c} otherwise.

The following theorem shows that for probabilistic queries Q=∃(�)[r,s], where � is
a ground literal, the tight answers under the total well-founded semantics approxi-
mate the tight answers under the answer set semantics (if they exist). This is a nice
semantic feature of the total well-founded semantics. It allows for an efficient ap-
proximation of tight answers to such queries under the answer set semantics by the
bottom-up fixpoint iteration of the well-founded semantics of normal dl-programs.

Theorem 3. Let KB=(L,P,C,μ) be a consistent probabilistic dl-program, and
let Q=∃(�)[r,s] be a probabilistic query with ground literal �. Let θ ={r/l, s/u}
(resp., θ ′={r/l′, s/u′}) be the tight answer for Q to KB under the total well-founded
semantics (resp., answer set semantics). Then, [l′,u′]⊆ [l,u].

The next theorem shows that the total well-founded semantics generalizes the well-
founded semantics of [53], i.e., the tight answers under the former coincide with the
tight answers under the latter, if the tight answers under the latter exist.

Theorem 4. Let KB=(L,P,C,μ) be a probabilistic dl-program, and let Q=∃(β |
α)[r,s] be a probabilistic query with ground β |α . Then, the tight answer for Q
to KB under the total well-founded semantics coincides with the tight answer for Q
to KB under the well-founded semantics of [53] (if it exists).

7 Algorithms and Complexity

In this section, we provide an anytime algorithm for tight query processing in prob-
abilistic dl-programs under the total well-founded semantics, and conclude with
tractability and complexity results.
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7.1 An Anytime Algorithm for Tight Query Processing

By Definition 1, computing the tight answer for a probabilistic query to a probabilis-
tic dl-program KB=(L,P,C,μ) under TWFS(KB) can be reduced to computing the
well-founded models of all normal dl-programs (L,P∪{p ←| p∈B}) such that B is
a total choice of C. Here, the number of all total choices B is generally a non-neg-
lectable source of complexity. We thus propose:

• to compute the tight answer only up to an error within a given threshold ε∈ [0,1],
• to process the B’s along decreasing probabilities μ(B), and
• to eventually stop the computation after a given time interval.

Given a (not necessarily consistent) probabilistic dl-program KB=(L,P,C,μ), a pro-
babilistic query Q = ∃(β |α)[r,s] with ground β |α , and an error threshold ε ∈
[0,1], algorithm tight answer (see Fig. 3) computes some θ ={r/l′, s/u′} such
that |l − l′|+ |u− u′|�ε , where {r/l, s/u} is the tight answer for Q to KB under
TWFS(KB). More concretely, it computes the bounds l′ and u′ by first initializing
the variables a, b, c, and d (which play the same role as in Definition 1). It then com-
putes the well-founded semantics S of the normal dl-program (L,P∪{p ←| p∈Bi})
for every total choice Bi of C, checks whether α∧β and α∧¬β are true or false in S,
and updates a, b, c, and d accordingly. If the possible error in the bounds falls be-
low ε , then it stops and returns the bounds computed so far. Thus, in the special case
where ε =0, the algorithm computes in particular the tight answer for Q to KB under
TWFS(KB). The following theorem shows that algorithm tight answer is sound.

Theorem 5. Let KB be a probabilistic dl-program, let Q = ∃(β |α)[r,s] be a proba-
bilistic query with ground β |α , and let θ ={r/l, s/u} be the tight answer for Q to
KB under TWFS(KB). Let θ ′={r/l′, s/u′} be the output computed by tight answer
for the error threshold ε ∈ [0,1]. Then, |l − l′|+ |u− u′|�ε .

Algorithm tight answer is actually an anytime algorithm, since we can always inter-
rupt it, and return the bounds computed thus far. The following theorem shows that
these bounds deviate from the tight bounds with an exactly measurable error (note
that the possible error is also decreasing along the iterations of the while-loop). For
this reason, algorithm tight answer also iterates through the total choices Bi of C
in a way such that the probabilities μ(Bi) are decreasing, so that the error in the
computed bounds is very likely to be low already after few iteration steps.

Theorem 6. Let KB be a probabilistic dl-program, let Q = ∃(β |α)[r,s] be a proba-
bilistic query with ground β |α , let ε∈ [0,1] be an error threshold, and let θ ={r/l,
s/u} be the tight answer for Q to KB under TWFS(KB). Suppose we run tight an-
swer on KB, Q, and ε , and we interrupt it after line (9). Let the returned θ ′={r/l′,
s/u′} be as specified in lines (11) to (14). Then, if v=0, then θ =θ ′. Otherwise,

|l− l′|+ |u− u′|� v
a+ d

+
v

b+ c
.

The algorithm is based on two finite fixpoint iterations for computing the well-
founded semantics of normal dl-programs, which are in turn based on a finite fixpoint
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Algorithm tight answer

Input: probabilistic dl-program KB=(L,P,C,μ), probabilistic query
Q=∃(β |α)[r,s] with ground β |α , and error threshold ε ∈ [0,1].

Output: θ ={r/l′, s/u′} such that |l − l′|+ |u− u′|�ε , where {r/l, s/u} is the
tight answer for Q to KB under the total well-founded semantics.

Notation: B1, . . . ,Bk is a sequence of all total choices B of C with
μ(B1)� · · ·�μ(Bk).

1. a := 0; b := 1; c := 0; d := 1; v := 1; i := 1;
2. while i�k and v>0 and v

a+d +
v

b+c >ε do begin
3. S := WFS(L,P∪{p ← | p∈Bi});
4. if α ∧β is true in S then a := a+ μ(Bi)
5. else if α ∧β is false in S then b := b− μ(Bi);
6. if α ∧¬β is true in S then c := c+ μ(Bi)
7. else if α ∧¬β is false in S then d := d− μ(Bi);
8. v := v− μ(Bi);
9. i := i+ 1

10. end;
11. if b = 0 and d = 0 then return θ ={r/1, s/0}
12. else if b = 0 and d �= 0 then return θ ={r/0, s/0}
13. else if b �= 0 and d = 0 then return θ ={r/1, s/1}
14. else return θ ={r/ a

a+d , s/ b
b+c}.

Fig. 3 Algorithm tight answer

iteration for computing the least model of positive dl-programs. More specifically,
to compute the well-founded semantics of KB, i.e.,

WFS(KB) = lfp(γ2
KB)∪¬(HBΦ −gfp(γ2

KB)),

we compute lfp(γ2
KB) and gfp(γ2

KB) as the limits of the two finite fixpoint iterations

U0 = /0, and Ui+1 = γ2
KB(Ui), for i � 0, and

O0 = HBΦ , and Oi+1 = γ2
KB(Oi), for i � 0,

respectively. Here, the operator γKB, which is defined by γKB(I)=MKBI (with KBI =
(L,PI

L)) for all I⊆HBΦ , is computed as the limit of the finite fixpoint iteration

S0 = /0, and Si+1 = TKBI (Si), for i � 0,

since γKB(I)= lfp(TKBI ) for all I⊆HBΦ , where TKBI is the immediate consequence
operator for positive dl-programs, which is defined as follows for every J⊆HBΦ :

TKBI (J) = {H(r) | r∈ground(PI
L), J |=L � for all �∈B(r)} .

All the above three fixpoint iterations are finite, since HBΦ is finite.
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7.2 Complexity

The following theorem shows that tight query processing in probabilistic dl-pro-
grams KB=(L,P,C,μ) in DL-Lite (i.e., L is in DL-Lite) under TWFS(KB) can be
done in polynomial time in the data complexity. This follows from Theorem 5 and
the polynomial data complexity of (a) computing the well-founded semantics of a
normal dl-program (see above) and of (b) conjunctive query processing in DL-Lite.
Here, |C| is bounded by a constant, since C and μ define the probabilistic informa-
tion of P, which is fixed as a part of the program in P, while the ordinary facts in P
(along with the concept and role membership axioms in L) are the variable input.

Theorem 7. Given a probabilistic dl-program KB in DL-Lite and a probabilistic
query Q=∃(�)[r,s] with ground literal �, the tight answer θ ={r/l, s/u} for Q to
KB under TWFS(KB) can be computed in polynomial time in the data complexity.

The next theorem shows that computing tight answers is EXP-complete in the com-
bined complexity. The lower bound follows from the EXP-hardness of Datalog in
the combined complexity, and the upper bound follows from Theorem 5.

Theorem 8. Given a probabilistic dl-program KB in DL-Lite and a probabilistic
query Q=∃(β |α)[r,s] with ground β |α , computing the tight answer θ ={r/l, s/u}
for Q to KB under TWFS(KB) is EXP-complete in the combined complexity.

8 Probabilistic Data Integration

Integrating data from different sources is a crucial issue in the Semantic Web. In this
section, we show how probabilistic dl-programs can be employed as a formalism for
data integration in the Semantic Web. We first give some general definitions.

A data integration system (in its most general form, see [47]) I=(G,S,M) con-
sists of the following components:

• a global (or mediated) schema G, which represents the domain of interest,
• a source schema S, which represents the data sources of the system, and
• a mapping M, which relates the source schema and the global schema.

Here, G is purely virtual, while the data are stored in S. The mapping M can be
specified in different ways, which is a crucial aspect in a data integration system.
In particular, when every data structure in G is defined through a view over S, the
mapping is said to be GAV (global-as-view), while when every data structure in S
is defined through a view over G the mapping is LAV (local-as-view). A mixed
approach, called GLAV [28, 12], associates views over G to views over S.

8.1 Modeling Data Integration Systems

In our framework, we assume that the global schema G, the source schema S, and
the mapping M are each encoded by a probabilistic dl-program. More formally, we
partition the vocabulary Φ into the sets ΦG, ΦS, and Φc such that:
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• the symbols in ΦG are of arity at least 1 and represent the global predicates,
• the symbols in ΦS are of arity at least 1 and represent source predicates, and
• the symbols in Φc are constants.

Let AG and RG be disjoint denumerable sets of atomic concepts and abstract roles,
respectively, for the global schema, and let AS and RS (disjoint from AG and RG)
be similar sets for the source schema. We also assume a denumerable set of indi-
viduals I that is disjoint from the set of all concepts and roles and a superset of Φc.
A probabilistic data integration system PI = (KBG,KBS,KBM) consists of a prob-
abilistic dl-program KBG=(LG,PG,CG,μG) for the global schema, a probabilistic
dl-program KBS=(LS,PS,CS,μS) for the source schema, and a probabilistic dl-pro-
gram KBM =( /0,PM,CM,μM) for the mapping:

• KBG (resp., KBS) is defined over the predicates, constants, concepts, roles, and
individuals of the global (resp., source) schema, and it encodes ontological, rule-
based, and probabilistic relationships in the global (resp., source) schema.

• KBM is defined over the predicates, constants, concepts, roles, and individuals of
the global and the source schema, and it encodes a probabilistic mapping between
the predicates, concepts, and roles of the source and those of the global schema.

Our probabilistic dl-rules permit a specification of the mapping that can freely use
global and source predicates together in rules, thus having a formalism that general-
izes LAV and GAV in some way. Moreover, with a simple technicality, we are able
to partly model GLAV systems. In GLAV data integration systems, the mapping is
specified by means of rules of the form ψ ← ϕ , where ψ is a conjunction of atoms
of G, and ϕ is a conjunction of atoms of S. We introduce an auxiliary atom α that
contains all the variables of ψ ; moreover, let ψ = β1∧ . . .∧βm. We model the GLAV
mapping rule with the following rules:

β1 ← α;
...

βm ← α;
α ← ϕ .

What our framework does not allow is having rules that are unsafe, i.e., having
existentially-quantified variables in their head.

Note also that correct and tight answers to probabilistic queries on the global
schema are formally defined relative to the probabilistic dl-program KB=(L,P,C,μ),
where L=LG∪LS, P=PG∪PS∪PM, C=CG∪CS ∪CM , and μ =μG ·μS ·μM . Infor-
mally, KB is the result of merging KBG, KBS, and KBM . In a similar way, the prob-
abilistic dl-program KBS of the source schema S can be defined by merging the
probabilistic dl-programs KBS1 , . . . ,KBS1 of n�1 source schemas S1, . . . ,Sn.

The fact that the mapping is probabilistic allows for a high flexibility in the treat-
ment of the uncertainty that is present when pieces of data come from heterogeneous
sources whose content may be inconsistent and/or redundant relative to the global
schema G, which in general incorporates constraints. Some different types of prob-
abilistic mappings that can be modeled in our framework are summarized below.
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8.2 Types of Probabilistic Mappings

In addition to expressing probabilistic knowledge about the global schema and about
the source schema, the probabilities in probabilistic dl-programs can especially be
used for specifying the probabilistic mapping in the data integration process. We
distinguish three different types of probabilistic mappings, depending on whether
the probabilities are used as trust, error, or mapping probabilities.

The simplest way of probabilistically integrating several data sources is to weight
each data source with a trust probability (which all sum up to 1). This is especially
useful when several redundant data sources are to be integrated. In such a case,
pieces of data from different data sources may easily be inconsistent with each other.

Example 7. Suppose that we want to obtain a weather forecast for a certain place
by integrating the potentially different weather forecasts of several weather forecast
institutes. For ease of presentation, suppose that we only have three weather forecast
institutes A, B, and C. In general, one trusts certain weather forecast institutes more
than others. In our case, we suppose that our trust in the institutes A, B, and C is
expressed by the trust probabilities 0.6, 0.3, and 0.1, respectively. That is, we trust
most in A, medium in B, and less in C. In general, the different institutes do not
use the same data structure to represent their weather forecast data. For example,
institute A may use a single relation

forecast(place,date,weather, temperature,wind)

to store all the data, while B may have one relation

forecast place(date,weather, temperature,wind)

for each place, and C may use several different relations

forecast weather(place,date,weather),
forecast temperature(place,date, temperature),
forecast wind(place,date,wind).

Suppose the global schema G has the relation

forecast rome global(date,weather, temperature,wind),

which may for instance be posted on the Web by the tourist information of the city
of Rome. The probabilistic mapping of the source schemas of A, B, and C to the
global schema G can then be specified by the following KBM =( /0,PM,CM,μM):

PM = {forecast rome global(D,W,T,M)← forecast(rome,D,W,T,M), instA;

forecast rome global(D,W,T,M)← forecast rome(D,W,T,M), instB;

forecast rome global(D,W,T,M)← forecast weather(rome,D,W ),

forecast temperature(rome,D,T ), forecast wind(rome,D,M), instC} ;

CM = {{instA, instB, instC}} ;

μM : instA, instB, instC �→ 0.6, 0.3, 0.1 .
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The mapping assertions state that the first, second, and third rule above hold with
the probabilities 0.6, 0.3, and 0.1, respectively. This is motivated by the fact that
three institutes may generally provide conflicting weather forecasts, and our trust
in A, B, and C are given by the trust probabilities 0.6, 0.3, and 0.1, respectively.

A more complex way of probabilistically integrating several data sources is to asso-
ciate each data source (or each derivation) with an error probability.

Example 8. Suppose that we want to integrate the data provided by the different
sensors in a sensor network. For example, assume a sensor network measuring the
concentration of ozone in several different positions of a certain town, which may
for instance be the basis for the common hall to reduce or forbid individual traf-
fic. Suppose that each sensor i∈{1, . . . ,n} with n�1 is associated with its position
through sensor(i,position) and provides its measurement data in a single relation
readingi(date, time, type,result). Each such reading may be erroneous with the prob-
ability ei. That is, any tuple returned (resp., not returned) by a sensor i∈{1, . . . ,n}
may not hold (resp., may hold) with probability ei. Let the global schema contain
a single relation reading(position,date, time, type,result). Then, the probabilistic
mapping of the source schemas of the sensors i∈{1, . . . ,n} to the global schema G
can be specified by the following probabilistic dl-program KBM =( /0,PM,CM,μM):

PM = {auxi(P,D,T,K,R)← readingi(D,T,K,R), sensor(i,P) | i∈{1, . . . ,n}} ∪
{reading(P,D,T,K,R)← auxi(P,D,T,K,R), not errori | i∈{1, . . . ,n}} ∪
{reading(P,D,T,K,R)← notauxi(P,D,T,K,R), errori | i∈{1, . . . ,n}} ;

CM = {{errori,not errori}| i∈{1, . . . ,n}} ;

μM : error1,not error1, . . . ,errorn,not errorn �→ e1, 1−e1, . . . , en, 1−en .

Note that if there are two sensors j and k for the same position, and they both
return the same tuple as a reading, then this reading is correct with the probability
1−e jek (since it may be erroneous with the probability e jek). Note also that this
modeling assumes that the errors of the sensors are independent from each other,
which can be achieved by eventually unifying atomic choices. For example, if the
sensor j depends on the sensor k, then j is erroneous when k is erroneous, and thus
the atomic choices {error j,not error j} and {errork,not errork} are merged into the
new atomic choice {error jerrork, not error jerrork, not error jnot errork}.

When integrating several data sources, it may be the case that the relationships be-
tween the source schema and the global schema are purely probabilistic.

Example 9. Suppose that we want to integrate the schemas of two libraries, and
that the global schema contains the predicate symbol logic programming, while the
source schemas contain only the concepts rule-based systems and deductive data-
bases in their ontologies. These three concepts are overlapping to some extent, but
they do not exactly coincide. For example, a randomly chosen book from rule-
based systems (resp., deductive databases) may belong to logic programming with
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the probability 0.7 (resp., 0.8). The probabilistic mapping from the source schemas
to the global schema can then be expressed by the following KBM =( /0,PM,CM ,μM):

PM = {logic programming(X)← DL[rule-based systems(X)], choice1 ;

logic programming(X)← DL[deductive databases(X)], choice2} ;

CM = {{choice1,not choice1},{choice2,not choice2}} ;

μM : choice1,not choice1,choice2,not choice2 �→ 0.7, 0.3, 0.8, 0.2 .

8.3 Deterministic Mappings on Probabilistic Data

Finally, we briefly describe an approach to use probabilistic dl-programs to model
probabilistic data, such as those in [17].

Example 10. Suppose that the weather in Oxford can be sunny, cloudy, or rainy with
probabilities 0.2, 0.45, and 0.35, respectively, and similar probabilities are assigned
for other cities. This setting is analogous to the “classical” one of probabilistic data,
where there is a probability distribution over ground facts. In such a case, the choice
space is C={{weather(oxford, sunny), weather(oxford, cloudy), weather(oxford,
rainy)}, . . .}, and the probability is μ : weather(oxford, sunny), weather(oxford,
cloudy), weather(oxford, rainy) �→ 0.2,0.45,0.35. A mapping rule such as

candidate destination(L)← weather(L,sunny)

can now express the fact that a destination is a candidate for a day-trip if it has sunny
weather. While the mapping is purely deterministic, the probability distributions on
the sets of atomic choices of the choice space enforce, by virtue of the mapping, a
probability distribution on the ground facts of the global schema. Our framework is
able to capture this situation, allowing for query answering over uncertain data.

9 Related Work

In this section, we discuss more closely related work on (a) the combination of logic
programs, DLs, and probabilistic uncertainty, (b) the combination of logic programs
and probabilistic uncertainty, (c) the combination of logic programs and DLs, and
(d) the combination of DLs (or ontology languages) and probabilistic uncertainty.
Note that more detailed overviews on uncertainty reasoning for the Semantic Web,
which covers (a), (c), and (d), are given in [59, 56].

9.1 Probabilistic Description Logic Programs

To our knowledge, the work of [53] was the first one combining (normal) dl-pro-
grams (under the loose integration) with probabilistic uncertainty. Instead of be-
ing based on the loosely integrated normal dl-programs KB=(L,P) of [25, 26],
probabilistic dl-programs can also be developed as a generalization of the tightly
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integrated ones in [50] (see [14, 57]). Rather than having dl-queries to L in rule
bodies in P (which also allow for passing facts as dl-query arguments from P to
L) and assuming that Φ and A (resp., R) have no unary (resp., binary) predicate
symbols in common (and so that dl-queries are the only interface between L and P),
the tightly integrated normal dl-programs of [50] have no dl-queries, but Φ and A
(resp., R) may very well have unary (resp., binary) predicate symbols in common,
and so the integration between L and P is of a much tighter nature. Nearly all the
results of this paper carry over to such tightly integrated probabilistic dl-programs.
As an important feature for the Semantic Web, they also allow for expressing in P
probabilistic relations between the concepts and roles in L, since we can freely use
concepts and roles from L as unary resp. binary predicate symbols in P.

The (loosely coupled) probabilistic fuzzy dl-programs in [58] combine fuzzy
DLs, fuzzy logic programs (with stratified default-negation), and probabilistic un-
certainty in a uniform framework for the Semantic Web. Intuitively, they allow for
defining several rankings on ground atoms using fuzzy vagueness, and then for
merging these rankings using probabilistic uncertainty (by associating with each
ranking a probabilistic weight and building the weighted sum of all rankings). Less
closely related, since they deal with fuzzy vagueness alone, rather than probabilistic
ambiguity and imprecision, are the loosely and tightly coupled fuzzy dl-programs
that have been introduced in [52] and [60], respectively, and extended by a top-k re-
trieval technique in [61]. Related works by Straccia combine (positive) dl-programs
with lattice-based uncertainty [81] and with fuzzy vagueness [78].

9.2 Probabilistic Logic Programs

Ng and Subrahmanian [63, 62] proposed the first approach to probabilistic logic
programs that addresses the problem of combining logic programs [49] with prob-
ability theory by adopting semantics in the style of Nilsson [65] and Halpern [35]
for probabilistic logic. All semantics proposed for quantitative logic programming
prior to this work had been non-probabilistic, of which [84] and [75] are examples;
on the other hand, this approach aims at developing a probabilistic model theory and
fixpoint theory. The general form of rules in their formalism is:

F0 : μ0 ← F1 : μ1 ∧ . . .∧Fn : μn ,

where the Fi’s are basic formulas (conjunctions or disjunctions of atoms) and
the μi’s are probabilistic annotations in the form of intervals that may contain ex-
pressions with variables. In [62], heads of rules are restricted to annotated atoms,
where negation is still supported via [0,0] annotations, but conditional probabilities
are not expressible. The formalism is a general framework for expressing probabilis-
tic information, and the authors study its semantics and relationship with probability
theory, model theory, fixpoint theory, and proof theory. They also develop a proce-
dure for answering queries about probabilities of events, which is different from
query processing in classical logic programming, since most general unifiers are not
always unique, and thus maximally general unifiers must be computed.
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Other approaches to probabilistic logic programs have especially been proposed
by Ngo and Haddawy [64], Lukasiewicz [54], Lukasiewicz and Kern-Isberner [41],
Lakshmanan and Shiri [46], Dekhtyar and Subrahmanian [21], and Damasio et
al. [19]. Ngo and Haddawy [64] present a model theory, fixpoint theory, and
proof procedure for conditional probabilistic logic programming. Lukasiewicz [54]
presents a conditional semantics for probabilistic logic programs where each rule is
interpreted as specifying the conditional probability of the rule head, given the body.
In closely related work, Lukasiewicz and Kern-Isberner [41] combine probabilistic
logic programs (also adopting an explicit treatment of conditional probabilities) with
maximum entropy, in relation to Nilsson’s proposal for probabilistic logic [65]. Lak-
shmanan and Shiri [46] developed a semantics for logic programs in which differ-
ent general axiomatic methods are given to compute probabilities of conjunctions
and disjunctions, and these are used to define a semantics for probabilistic logic
programs. In [21], Dekhtyar and Subrahmanian consider different conjunction and
disjunction strategies, originally introduced by Lakshmanan et al. [45], and allow
an explicit syntax in probabilistic logic programs so that users are able to express
their knowledge of a dependency. Damasio et al. [19] present a well-founded se-
mantics for annotated logic programs and show how to compute it.

Although there is a rich body of work on probabilistic logic programs, most such
works to date have only addressed the problem of checking whether a given formula
of the form F : [�,u] is entailed by a probabilistic logic program [63, 62] or is true
in a specific model (e.g., the well-founded model [19]). This usually boils down to
finding out if all interpretations that satisfy the probabilistic logic program assign a
probability between � and u to F . An interesting extension of the concept of prob-
abilistic entailment is proposed in [88], where the authors propose to go one step
further and check to what degree of satisfaction the query is entailed by the pro-
gram, similar to the novel approach of Bröcheler et al. [10], who propose to answer
entailment queries with histograms indicating how the density of solutions are dis-
tributed in the probabilistic interval. In contrast, other works have recently focused
on finding most probable worlds [43, 77], and answering abductive queries [76].

9.3 Description Logic Programs

Related work on the combination of logic programs and DLs can be divided into
the following categories: (a) hybrid approaches using DLs as input to logic pro-
grams, (b) approaches reducing DLs to logic programs, (c) combinations of DLs
with default and defeasible logic, and (d) approaches to rule-based well-founded
reasoning in the Semantic Web. Below we give some representatives for these cate-
gories; further works and details are given in [25, 26, 50].

The works by Donini et al. [23], Levy and Rousset [48], and Rosati [73, 74] are
representatives of hybrid approaches using DLs as input. Donini et al. [23] introduce
a combination of (disjunction-, negation-, and function-free) Datalog with the DL
ALC . An integrated knowledge base consists of a structural component in ALC
and a relational component in Datalog, where the integration of both components lies
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in using concepts from the structural component as constraints in rule bodies of the
relational component. The closely related work by Levy and Rousset [48] presents
a combination of Horn rules with the DL ALC . In contrast to Donini et al. [23],
Levy and Rousset also allow for roles as constraints in rule bodies, and do not require
the safety condition that variables in constraints in the body of a rule r must also
appear in ordinary atoms in the body of r. Finally, Rosati [73] presents a combina-
tion of disjunctive Datalog (with classical and default negation, but without function
symbols) with ALC , which is based on a generalized answer set semantics. Some
approaches reducing DL reasoning to logic programming are the works by Van Bel-
leghem et al. [6], Alsaç and Baral [1], Swift [82], Grosof et al. [34], and Hufstadt
et al. [39]. Early work on dealing with default information in DLs is the approach
due to Baader and Hollunder [4], where Reiter’s default logic is adapted to termi-
nological knowledge bases. Antoniou [2] combines defeasible reasoning with DLs
for the Semantic Web. In [3], Antoniou and Wagner summarize defeasible and strict
reasoning in a single rule formalism. An important approach to rule-based reasoning
under the well-founded semantics for the Semantic Web is due to Damasio [18]. He
aims at Prolog tools for implementing different semantics for RuleML [9]. So far,
an XML parser library as well as a RuleML compiler have been developed, with
routines to convert RuleML rule bases to Prolog and vice versa. The compiler sup-
ports paraconsistent well-founded semantics with explicit negation; it is planned to
be extended to use XSB [71].

9.4 Probabilistic Description Logics and Ontology Languages

Probabilistic generalizations of the expressive DLs SH OQ(D), SH IF (D), and
SH OIN (D) behind DAML+OIL, OWL Lite, and OWL DL, respectively, have
been proposed by Giugno and Lukasiewicz [31] and Lukasiewicz [51]. They are
based on lexicographic probabilistic reasoning. A companion paper [20] combines
DL-Lite with Bayesian networks. In earlier works, Heinsohn [36] and Jaeger [40]
present probabilistic extensions to the DL ALC , which are essentially based on
probabilistic reasoning in probabilistic logics. Koller et al. [44] present a probabilis-
tic generalization of the CLASSIC DL, which uses Bayesian networks as underlying
probabilistic reasoning formalism. Recently, an extension to the Datalog± family
of ontology languages [13] has been developed in [32, 33] to add the capability of
representing probabilistic uncertainty by means of an integration between Datalog±
ontologies and Markov logic networks [72], focusing on scalability towards appli-
cations in data extraction and reasoning in the Web. Note that fuzzy DLs, such as
the ones by Straccia [79, 80] are less closely related to probabilistic DLs, since they
deal with fuzzy vagueness, rather than probabilistic ambiguity and imprecision.

Especially the works by Costa [16], Pool and Aikin [69], and Ding and Peng [22]
present probabilistic generalizations of the Web ontology language OWL. In par-
ticular, Costa’s work [16] is semantically based on multi-entity Bayesian net-
works, while [22] has a semantics in standard Bayesian networks. In closely related
work, Fukushige [29] proposes a basic framework for representing probabilistic
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relationships in RDF. Finally, Nottelmann and Fuhr [66] present pDAML+OIL,
which is a probabilistic generalization of the Web ontology language DAML+OIL,
along with a mapping to stratified probabilistic Datalog.

10 Conclusion

We have proposed tractable probabilistic dl-programs for the Semantic Web, which
combine tractable DLs, normal programs under the answer set and the well-founded
semantics, and probabilities. We have given novel reductions of tight query process-
ing and deciding consistency in probabilistic dl-programs under the answer set se-
mantics to the answer set semantics of the underlying normal dl-programs. Based
on them, we have then introduced the total well-founded semantics for probabilis-
tic dl-programs. Contrary to the previous answer set and well-founded semantics,
it is defined for all probabilistic dl-programs and queries. Furthermore, tight (resp.,
tight literal) query processing under the total well-founded semantics coincides with
(resp., approximates) tight (resp., tight literal) query processing under the previous
well-founded (resp., answer set) semantics in all cases where the latter is defined.
We have then presented an anytime algorithm for tight query processing in prob-
abilistic dl-programs under the total well-founded semantics. Note that the novel
reductions, the total well-founded semantics, and the anytime algorithm are not lim-
ited to DL-Lite as underlying DL; they hold for all probabilistic dl-programs on top
of DLs with decidable conjunctive query processing. We have also shown that tight
query processing in probabilistic dl-programs under the total well-founded seman-
tics is possible in polynomial time in the data complexity and is complete for EXP in
the combined complexity. Finally, we have described an application of probabilistic
dl-programs in probabilistic data integration for the Semantic Web.

An interesting topic for future research is to investigate whether one can also de-
velop an efficient top-k query technique for the presented probabilistic dl-programs:
Rather than computing the tight probability interval for a given ground literal, such a
technique returns k most probable ground instances of a given non-ground formula.
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1. Alsaç, G., Baral, C.: Reasoning in description logics using declarative logic program-
ming. Technical report, Arizona State University (2001)

2. Antoniou, G.: Nonmonotonic Rule Systems on Top of Ontology Layers. In: Horrocks,
I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 394–398. Springer, Heidelberg
(2002)



156 T. Lukasiewicz and G.I. Simari

3. Antoniou, G., Wagner, G.: Rules and Defeasible Reasoning on the Semantic Web. In:
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