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Abstract. Frequent pattern mining is commonly used in many real-life
applications. Since its introduction, the mining of frequent patterns from
precise data has drawn attention of many researchers. In recent years,
more attention has been drawn on mining from uncertain data. Items
in each transaction of these uncertain data are usually associated with
existential probabilities, which express the likelihood of these items to
be present in the transaction. When compared with mining from precise
data, the search/solution space for mining from uncertain data is much
larger due to presence of the existential probabilities. Moreover, we are
living in the era of Big Data. In this paper, we propose a tree-based
algorithm that uses MapReduce to mine frequent patterns from Big un-
certain data. In addition, we also propose some enhancements to further
improve its performance. Experimental results show the effectiveness of
our algorithm and its enhancements in mining frequent patterns from
uncertain data with MapReduce for Big Data analytics.

1 Introduction

Frequent pattern mining aims to discover implicit, previously unknown, and
potentially useful knowledge—in the form of frequently occurring patterns—from
large amounts of data. Since its introduction [2], the research problem of mining
frequent patterns has drawn attention of many researchers. Over the past two
decades, numerous methods have been proposed to mine and visualize frequent
patterns [8, 20] as well as other related patterns [10, 14, 18, 24]. Examples of
these methods include the classical Apriori algorithm [3] and the tree-based FP-
growth algorithm [9]. Both algorithms mine frequent patterns from transaction
databases of precise data.

However, there are situations in which users are uncertain about the presence
or absence of some items or events [13, 15]. For example, a physician may highly
suspect (but cannot guarantee) that a patient suffers from some specific diseases.
The uncertainty of such suspicion can be expressed in terms of existential prob-
ability. As a concrete example, a physician may suspect that a patient has (i) a
75% likelihood of suffering from a flu and (ii) a 33 1

3% likelihood of suffering from
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a cold (regardless of having or not having the flu). Here, in this uncertain dataset
of patient records, each transaction represents a patient’s visit to a physician’s
office. Note that a patient may suffer from multiple diseases at the same time
(i.e., multiple items may appear together in the same transaction). Each item
(representing a potential disease) in the transaction is associated with an exis-
tential probability expressing the likelihood of a patient having that disease in
that visit. With this notion, each item in a transaction in traditional databases
of precise data can be viewed as an item with a 100% likelihood of being present
in the transaction.

Other examples of uncertain data include datasets of satellite images, where
each item in a transaction expresses the likelihood of the presence of an object
captured in an image. As the third example, each transaction in a dataset for an
election expresses the likelihood of a collection of candidates chosen by (the se-
cret ballot of) a voter. These are just a few examples of many real-life situations
in which data are uncertain. Hence, efficient algorithms for mining uncertain
data are in demand. Over the past few years, a few algorithms [1, 15–17] have
been proposed to mine frequent patterns serially from static datasets of uncer-
tain data. Note that the presence of existential probabilities in these uncertain
datasets leads to a huge number of possible worlds [13] when using probabilistic-
based mining of frequent patterns. In other words, the search space for frequent
pattern mining from uncertain data can be much larger than that from precise
data.

The situation has been worsen as we have moved into the era of Big Data [23].
When mining from vast amounts of Big Data, more efficient approaches (besides
serial approach) are needed. To handle Big Data, some researchers proposed
the use of MapReduce, which mines the search space with distributed or parallel
computing. However, earlier works on MapReduce focused on data processing [7]
or data mining tasks other than frequent pattern mining (e.g., clustering [5],
outlier detection [11], structure mining [27]). Although two recent works [21, 25]
were proposed to mine frequent patterns, both of them mine precise data (instead
of uncertain data).

Hence, some natural questions to ask are: Can we use MapReduce to mine un-
certain data? Can we use MapReduce to perform tree-based mining of uncertain
data? How can we further speed up the mining process? In response to these
questions, we propose a tree-based algorithm called MR-growth, which uses
MapReduce to mine frequent patterns from uncertain data in a pattern-growth
fashion for Big Data analytics. Moreover, our additional key contributions of this
paper include the three enhancements to the MR-growth algorithm.

This paper is organized as follows. The next section gives background and
related work. In Section 3, we propose our MR-growth algorithm for mining fre-
quent patterns from uncertain data using MapReduce. Section 4 discusses three
enhancements to our MR-growth algorithm. Evaluation results and conclusions
are presented in Sections 5 and 6, respectively.
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2 Background and Related Work

In this section, we provide background on frequent pattern mining from uncertain
data and on MapReduce. We also discuss some related works.

2.1 Mining Frequent Patterns from Uncertain Data

When using probabilistic-based mining [6, 15, 19] with the “possible world” in-
terpretation [13], a pattern is considered frequent if its expected support is no
less than the user-specified minsup threshold. When items within a pattern X
are independent, the expected support of X in the databaseDB can be computed
by summing (over all transactions t1, . . . , t|DB|) the product (of existential prob-
abilities within X):

expSup(X) =

|DB|∑

i=1

(
∏

x∈X

P (x, ti)

)
, (1)

where P (x, ti) is an existential probability of item x in transaction ti. With
this definition of expected support, the existing tree-based UF-growth algorithm
mines frequent pattern from uncertain data as follows. The algorithm first scans
the dataset once to compute the expected support of all domain items (i.e.,
singleton itemsets). Infrequent items are pruned as their extensions/supersets
are guaranteed to be infrequent. The algorithm then scans the dataset the sec-
ond time to insert all transactions (with only frequent items) into an UF-tree.
Each node in the UF-tree captures (i) an item x, (ii) its existential probability
P (x, ti), and (iii) its occurrence count. At each step during the mining process,
the frequent patterns are expanded recursively.

2.2 The MapReduce Programming Model

MapReduce [7] is a high-level programming model for processing vast amounts of
data. Usually, MapReduce uses parallel and distributed computing on clusters or
grids of nodes (i.e., computers). The ideas behind MapReduce can be described
as follows. As implied by its name, MapReduce involves two key functions: “map”
and “reduce”. The input data are read, divided into several partitions (sub-
problems), and assigned to different processors. Each processor executes the
map function on each partition (subproblem). The map function takes a pair
of 〈key, value〉 data and returns a list of 〈key, value〉 pairs as an intermediate
result:

map: 〈key1, value1〉 �→ list of 〈key2, value2〉,
where (i) key1 & key2 are keys in the same or different domains, and (ii) value1 &
value2 are the corresponding values in some domains. Afterwards, these pairs are
shuffled and sorted. Each processor then executes the reduce function on (i) a
single key value from this intermediate result together with (ii) the list of all
values that appear with this key in the intermediate result. The reduce function
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“reduces”—by combining, aggregating, summarizing, filtering, or transforming—
the list of values associated with a given key (for all k keys) and returns a list
of k values:

reduce: 〈key2, list of value2〉 �→ list of value3,

or returns a single (aggregated or summarized) value:

reduce: 〈key2, list of value2〉 �→ value3,

where (i) key2 is a key in some domains, and (ii) value2 & value3 are the
corresponding values in some domains. Examples of MapReduce applications
include the construction of an inverted index as well as the word counting of a
document.

2.3 Related Work

Earlier works on MapReduce focused either on data processing [7] or on some
data mining tasks other than frequent pattern mining (e.g., outlier detection [11],
structure mining [27]). Recently, Lin et al. [21] proposed three Apriori-based al-
gorithms called SPC, FPC and DPC to mine frequent patterns from precise data.
Among them, SPC uses single-pass count to find frequent k-itemsets at the k-th
pass of the database scan (for k ≥ 1). FPC uses fixed-passes combined-counting
to find all k-, (k + 1)-, ..., (k +m)-itemsets in the same pass of database scan.
On the one hand, this fix-passes technique fixes the number of required passes
from K (where K is the maximum cardinality of all frequent itemsets that can
be mined from the precise data) to a user-specified constant. On the other hand,
due to combined-counting, the number of generated candidates is higher than
that of SPC. In contrast, DPC uses dynamic-passes combined-counting, which
takes the benefits of both SPC and FPC by taking into account the workloads
of nodes when mining frequent itemsets with MapReduce. Like these three al-
gorithms, our proposed MR-growth algorithm also uses MapReduce. However,
unlike these three algorithms (which mine frequent itemsets from precise data
using the Apriori-based approach), our proposed MR-growth algorithm mine fre-
quent itemsets from uncertain data using a tree-based approach. Note that the
search/solution space for frequent pattern mining from uncertain data is much
larger than frequent pattern mining from precise data due to presence of the
existential probabilities.

Riondato et al. [25] proposed a parallel randomized algorithm called PARMA
for mining approximations to the top-k frequent itemsets and association rules
from precise data using MapReduce. Although PARMA and our MR-growth
algorithm both use MapReduce, one key difference between the two algorithms is
that we aim to mine truly frequent (instead of approximately frequent) itemsets.
Another key difference is that we mine from uncertain data (instead of precise
data).
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3 Our MR-Growth Algorithm for Mining Frequent
Patterns from Uncertain Data with MapReduce

In this section, we propose our MR-growth algorithm, which uses MapReduce
to mine frequent patterns from huge amounts of uncertain data in a tree-based
pattern-growth fashion. The algorithm can be divided into multiple stages.

First, MR-growth reads a huge dataset of uncertain data. As each item in the
dataset is associated with an existential probability, MR-growth aims to com-
pute the expected support of all domain items (i.e., singleton itemsets) by using
MapReduce. The expected support of any itemset can be computed by using
Equation (1). Moreover, when computing singleton itemsets, such an equation
can be simplified to become the following:

expSup({x}) =
|DB|∑

i=1

P (x, ti), (2)

where P (x, ti) is an existential probability of item x in transaction ti. Specifically,
MR-growth divides the uncertain dataset into several partitions and assigns
them to different processors. During the mapping phase of this stage, the mapper
function receives 〈transaction ID, content of that transaction〉 as input. For every
transaction ti, the mapper function emits a 〈key, value〉 pair for each item x ∈ ti.

What should be the emitted pair? A naive attempt is to emit 〈x, 1〉 for each
occurrence of x ∈ ti. It would work well when mining precise data because each
occurrence of x leads to an actual support of 1. In other words, occurrence of
x is the same as the actual support of x when mining precise data. However,
this is not the case when mining uncertain data. The occurrence of x can be
different from the expected support of x when mining uncertain data. For in-
stance, consider an item a with existential probability of 0.9 that appears only
in transaction t1. Its expected support may be higher than item b that appears
seven times but with an existential probability of 0.1 in each appearance. Then,
expSup({a}) = 0.9 > 0.7 = expSup({b}). Hence, instead of emitting 〈x, 1〉 for
each occurrence of x ∈ ti, MR-growth emits 〈x, P (x, ti)〉 for each occurrence of
x ∈ ti. In other words, the mapper function can be specified as follows:

For each transaction ti ∈ partition of the uncertain dataset do
for each item x ∈ ti do

emit 〈x, P (x, ti)〉.
This results in a list of 〈x, P (x, ti)〉 pairs for many different x and P (x, ti). Af-
terwards, these pairs are shuffled and sorted. Each processor then executes the
reduce function on the shuffled and sorted pairs to obtain the expected support
of x. In other words, the reducer function can be specified as follows:

Set expSup(x) = 0;
For each x ∈ 〈x, list of P (x, ti)〉 do

for each P (x, ti) ∈ 〈x, list of P (x, ti)〉 do
expSup(x) = expSup(x) + P (x, ti).

emit 〈x, expSup(x)〉.
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Table 1. A sample transaction dataset of uncertain data

TID Itemsets

t1 {a:0.5, b:0.5, c:1.0, d:1.0, u:0.5}
t2 {a:0.5, b:0.5, p:0.5}

Example 1. Let us consider an uncertain dataset as shown in Table 1 with
minsup=1.0 For the first transaction t1, the mapper function outputs 〈a, 0.5〉,
〈b, 0.5〉, 〈c, 1.0〉, 〈d, 1.0〉, 〈u, 0.5〉. Similarly, for the second transaction t2, the map-
per function outputs 〈a, 0.5〉, 〈b, 0.5〉, 〈p, 0.5〉. These pairs are then shuffled and
sorted. Afterwards, the reducer reads 〈a, [0.5, 0.5]〉, 〈b, [0.5, 0.5]〉, 〈c, [1.0]〉,
〈d, [1.0]〉, 〈p, [0.5]〉, 〈u, [0.5]〉 and outputs 〈a, 1.0〉, 〈b, 1.0〉, 〈c, 1.0〉, 〈d, 1.0〉, 〈p, 0.5〉,
〈u, 0.5〉 (i.e., items and their corresponding expected support). �	
Next, MR-growth reads the singleton items and their associated existential sup-
ports, and prunes the infrequent items. Then, it splits the list containing fre-
quent singletons into distinct groups and assigns a unique ID to each group.
The new list containing group-to-singleton mappings is called a group list (G-
list). To summarize, this stage identifies which conditional trees should be mined
together on one computing node.

Example 2. Let us continue with our example. At this stage, MR-growth prunes
items u and p because their existential support equals to 0.5 < 1.0=minsup.
Given that we want to split the remaining (frequent) items a, b, c and d into
two groups (the number of items which are mapped to a given group can be
determined automatically depending on the number of computing nodes), this
stage yields 〈Group1: a, b〉 and 〈Group2: c, d〉. �	
The next stage is an important and computationally intensive stage. Here, MR-
growth identifies all group-dependent transactions. First, on each machine ex-
ecuting the mapper functions, MR-growth loads the G-list into main memory,
and creates a reverse map that maps singletons to their corresponding group ID.
Then, each mapper receives 〈key = groupID, value = DB(groupID)〉 as input.
For every transaction ti inDB(groupID), MR-growth substitutes all transaction
items with their corresponding group IDs from the reverse map, creating a new
list I of the same size as the transaction size. For each groupID in I, MR-growth
locates the rightmost appearance L of groupID in I, and emits a new (truncated)
transaction, in the form of 〈key′ = groupID, value′ = ti[1]ti[2] . . . ti[L]〉.

Afterwards, MR-growth receives group-dependent transactions in the form of
〈key = groupID, value = {t1 . . . tn}〉 and inserts them into a tree, creating
a compressed tree-based representation of these group-dependent transactions.
MR-growth then collects the group-dependent UF-trees and merges them into
one single tree, from which frequent patterns can be mined.

Example 3. Let us continue with our example. After replacing the transaction
items with their corresponding group IDs, we get the two lists as summarized in
Table 2.
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Table 2. Group lists

Group List groupIDs

1 〈1, 1, 2, 2〉
2 〈1, 1〉

For the first transaction t1, the rightmost appearance of groupID 1 is 2 (in-
dicating the appearance of a, b ends in the 2nd position of transaction t1). So,
〈1, [a:0.5, b:0.5]〉 is emitted. Similarly, the rightmost appearance of groupID 2 is
4 (indicating the appearance of c, d ends in the 4th position of transaction t1).
So, 〈2, [a:0.5, b:0.5, c:1.0, d:1.0]〉 is emitted. In a similar fashion, for the second
transaction t2, the rightmost appearance of groupID 1 is 2 (indicating the ap-
pearance of a, b ends in the 2nd position of transaction t2). So, 〈1, [a:0.5, b:0.5]〉
is emitted.

MR-growth then merges both group-dependent transactions in the UF-tree.
Notice that we can merge the two received group-dependent transactions into
one branch of the UF-tree for Group1: (a:0.5):2 and (b:0.5):2 when using the
(item:probability):count notation. For Group2, MR-growth receives 〈2, [a:0.5,
b:0.5, c:1.0, d:1.0]〉 as input and inserts the single group-dependent transaction
into a new UF-tree. To summarize, the algorithm emits 〈1, [(a:0.5):2, (b:0.5):2]〉
and 〈2, [(a:0.5):1,(b:0.5):1,(c:1.0):1,(d:1.0):1]〉.

Afterwards, for Group1, the reducer function receives one UF-tree in the 〈1,
[(a:0.5):2,(b:0.5):2]〉 format, mines patterns having items a and b from that tree,
but it does not discover any frequent patterns. Similarly, for Group2, the reducer
function receives 〈2, [(a:0.5):1, (b:0.5):1, (c:1.0):1, (d:1.0):1]〉 as input, mines that
tree for patterns having items c and d, and emits 〈{c, d}:1.0〉 as the only frequent
pattern. �	

4 Enhancements to MR-Growth

While our proposed MR-growth algorithm efficiently mines frequent patterns
from uncertain data, we propose three enhancements in this section to further
speed up the mining process.

4.1 Enhancement #1: Multi-core Processors in the ForkJoin
Framework

To increase the mining speed, we exploit machines having multi-core processors
by using the ForkJoin framework [12]. The main goal of the ForkJoin framework
is to split computationally intensive tasks into multiple pieces, which can then
be performed in parallel, to minimize the execution time of the algorithm. Un-
like MapReduce (in which the developer does not need to explicitly control the
work distribution process), ForkJoin requires the developer to explicitly control
the work distribution process. In the Java programming language, the ForkJoin
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framework also uses the concept of work stealing, where the thread (which com-
pletes the work assigned to it) can steal tasks from other threads and assign the
tasks to idle threads as efficiently as possible.

Each thread maintains a task queue and repeatedly takes the next available
task from the head of its queue until the task queue becomes empty. Each time
when a thread does not have any pending work to complete (i.e., its queue is
empty), the thread becomes a thief. It selects a different thread at random, and
tries to steal a task from the tail of the queue of the chosen thread. Once the
task is completed, this process is repeated (i.e., steal a task from the tail of the
queue of some random thread, which can be the previously selected one).

To summarize, we enhance our MR-growth algorithm by taking the following
steps:

1. detect the number Ncores of processing cores on a multi-core processor;
2. divide the list of group-dependent items Gi into approximately equal parts

such that each thread (running on a different processing core) is responsible

for mining |Gi|
Ncores

items, and insert these items into the queue of each thread;
3. when any given thread finishes constructing and mining conditional trees for

all its assigned singletons, the algorithm attempts to steal a singleton from
the queue of a random thread.

This enhancement is particularly beneficial in MapReduce infrastructures hav-
ing a limited number of computing nodes. Each group ID is mapped to many
singleton items. Hence, each computing node is responsible for the construction
and the mining of conditional trees for a number of domain items (i.e., singleton
itemsets).

4.2 Enhancement #2: Efficient Conditional Tree Construction

In this section, we discuss the next enhancement, which allows us to construct
conditional trees without constructing projected trees first. Recall that to con-
struct a conditional tree, the MR-growth algorithm first constructs a projected
tree and then prunes the locally-infrequent nodes from it to create a conditional
tree.

Our enhancement for conditional tree construction to our proposed MR-
growth algorithm can be described as follows. The conditional tree is constructed
using two traversals of the main tree. The first bottom-up traversal accumulates
the counts of all encountered items on the path, flagging all visited nodes. Then,
by traversing the same path again but top-down—which can be accomplished by
recursively visiting only the flagged child nodes, the second scan traverses the
main tree in a depth-first manner to build a conditional tree. Specifically, the
algorithm performs the following steps:

1. For each item x in the header table, traverse the tree bottom-up and count
the occurrence of each encountered item on the tree path;

2. If the parent node of the current node has more than one child, flag the
current node with item x (i.e., childNode.flag=x);
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Table 3. A sample transaction database of precise data

TID Itemsets (Ordered) Frequent Itemsets

t1 {a, b, c, d, u} {a, b, c, d}
t2 {a, b, p} {a, b}
t3 {a, j, b, c, i, d} {a, b, c, d}
t4 {g, a, n, b} {a, b}
t5 {l, a, b,m, c} {a, b, c}
t6 {a, c, q, t, u, g, w, d} {a, c, q, t, u, w, d}
t7 {h, a, q, t, u, w} {a, q, t, u, w}
t8 {b, c, q, u, t, w, k} {b, c, q, t, u, w}

3. Determine which items are locally frequent, and insert them into the new
header table, which will be associated with the conditional tree;

4. Traverse the tree again in a top-down fashion. When a node with multiple
children is encountered, visit each of the children and flag it with item x;

5. For each visited node, check if it is frequent. Add the frequent nodes to the
new conditional tree; and

6. Stop traversing the current branch if all children of the current node are
guaranteed to be infrequent.

Example 4. Let us consider the dataset shown in Table 3. Without loss of gener-
ality, when building the {d}-conditional tree, MR-growth with Enhancement #2
first traverses each {d}-link (circled nodes denote {d}-link nodes) bottom-up.
Then, it accumulates the count of the encountered items in the header table.
For nodes having multiple children, it flags each child node with {d}. Fig. 1
demonstrates the process of building a {d}-conditional tree. Nodes visited dur-
ing the first traversal are surrounded by squares, and nodes visited during the
second traversal are bolded. During the second traversal, we can stop the traver-
sal of both branches early (e.g., after visiting a node with item c) because, thanks
to the information collected during the first traversal of the tree, we know that
any items after item c in any path are guaranteed to be infrequent.

Using the tree in Fig. 1, let us compute the amount of allocated memory and
calculate the number of visited node required by the original version of MR-
growth vs. the version enhanced by this efficient conditional tree construction.
During the first bottom-up traversal, MR-growth (w/ Enhancement #2) visited
9 nodes in the main tree and did not allocate any new nodes. Then, MR-growth
(w/ Enhancement #2) traversed the tree once again in the top-down fashion. It
visited 4 nodes in the main tree and allocated 2 nodes for the new conditional
tree. To summarize, MR-growth (w/ Enhancement #2) traversed 13 nodes and
allocated 2 new nodes; it did not perform any memory deallocations. In contrast,
the original version of MR-growth visited 9 nodes (in the main tree) + 8 nodes
(in the projected tree) = 17 nodes as well as allocated 9 new nodes for the
projected tree, 7 of which needed to be deallocated in the conditional tree. �	
As observed from the above example, the benefits of employing Enhancement #2
include the following:



Mining Frequent Patterns from Uncertain Data with MapReduce 449

Fig. 1. The efficient construction of a {p}-conditional tree

1. its efficient tree node allocation, which avoids the need of (i) allocating mem-
ory for infrequent nodes in a projected tree and (ii) freeing it when pruning
a projected tree or a conditional tree;

2. its efficient tree traversal, which visits all of the tree nodes only twice in the
worst case.

4.3 Enhancement #3: Sampling

Sampling is a commonly used technique in many data mining tasks, especially
when trying to find an approximate solution (instead of an accurate one). It was
observed [26] that the UF-tree is usually bigger than the FP-tree because the
former captures both items and their existential probabilities from the uncertain
datasets whereas the latter captures only the items from the precise databases.
As the tree gets bigger, it takes longer to build and traverse. Consequently,
mining with UF-trees usually takes longer than mining with FP-trees.

The idea of our Enhancement #3 is that, instead of building a UF-tree during
the mining process, we adopt the Concatenating Sample method [4]. For every
〈x, P (x, ti)〉-pair in each transaction ti, we generate a random real number r
in the range (0,1]. If r is ≥ P (x, ti), then we include x in the current sample.
Otherwise (i.e., when r < P (x, ti), we omit x from the current sample. At the end
of this sampling process, we obtain a “possible” world instance for the uncertain
dataset. For example, t1 = {a, b, d} and t2 = {b, p} can be one such “possible”
world instance. We can then mine frequent patterns from such an instance in
the same way that we mine frequent patterns from precise data (e.g., using
FP-growth [9]).

As one sample is subject to bias, we repeat the above process to obtain a
few samples and mine frequent patterns from each of these samples. Given these
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samples, we apply the enhanced version of MR-growth to mine frequent pat-
terns. As we are dealing with “possible” world instances in the same way that
we mine precise data, we need to modify the mapper and reducer function for
this enhancement. For example, instead of letting mapper emit 〈x, P (x, ti)〉, we
modify the mapper to emit 〈x, 1〉.

As this mining process gives an approximate solution, a post-processing step
(which requires one more—i.e., the third—scan of the dataset). So, we also need
to modify the reducers to execute this post-processing step.

5 Experimental Results

In this section, we evaluate our proposed MR-growth algorithm and its enhance-
ments. Experiments were run using either a single machine or the Amazon EC2
cluster. Specifically, some experiments were executed on a machine with an In-
tel Core i7 4-core processor (1.73 GHz) and 8 GB of main memory, running
a 64-bit Windows 7 operation system. All versions of the algorithm were im-
plemented in the Java programming language. The stock version of Apache
Hadoop 0.20.0 was used. As for the datasets for experiments, we used those
benchmarks (e.g., accidents, connect4 and mushroom) from the UCI Machine
Learning Repository (http://mlearn.ics.uci.edu/MLRepository.html) and
the FIMI repository (http://fimi.ua.ac.be). Some other experiments were
run on the Amazon EC2 cluster—specifically, 11 m2.xlarge computing nodes
(http://aws.amazon.com/ec2). As Calders et al. [4] suggested that two sam-
ples per transaction were sufficient to approximate (i.e., with less than 0.02%
error) the expected supports of the mined patterns for most datasets, we also
used two samples per transaction in the experiments.

In addition to the above real-life benchmark datasets, we also generated three
new synthetic datasets using the IBM Quest Dataset Generator [3] for our evalu-
ations. The generated data ranges from 2M to 5M transactions with an average
transaction length of 10 items from a domain of 1K items. As these datasets
originally contained only precise data, we assigned to each item contained in
every transaction an existential probability from the range (0,1].

5.1 Evaluation of MR-Growth

In this experiment, we executed our MR-growth algorithm in the MapReduce
environment with 11 nodes. Fig. 2(a) shows that, while the sequential version
of the UF-growth algorithm took more than 120,000 seconds to execute, its
corresponding version required less than 20,000 seconds in the MapReduce en-
vironment.

Observed from Fig. 2(b), when the total execution time of the MR-growth al-
gorithm was low, speedup of 7 to 8 times over its sequential version was achieved.
When we increased the dataset size, the algorithm achieved a speedup of approx-
imately 8.5 times on 11 nodes.

In terms of accuracy, as an exact algorithm, our MR-growth algorithm found
the same sets of truly frequent patterns as those returned by UF-growth [15].
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(a) Runtime (b) Speedup

Fig. 2. UF-growth vs. MR-growth

5.2 Evaluation of Enhancement #1: MR-Growth with ForkJoin

This experiment demonstrates the effect of employing multiple threads for min-
ing frequent patterns with our MR-growth algorithm. As the tests were executed
on a 4-core machine, we varied the number of threads from 1 to 4.

For the accidents dataset, Fig. 3(a) shows that, when the execution time was
short, the algorithm took longer on multiple threads than on a single thread. The
reason is that, as there is not enough work to do in the parallel, the algorithm
cannot take advantage of multiple cores. When the algorithm executed for a
longer period of time (e.g., more than 100 seconds), sub-linear speedup was
achieved as shown in Fig. 3(b). Fig. 3 also shows the experimental results for
other datasets (e.g., connect4 and mushroom).

As this enhancement aims to speed up the mining process, it does not change
the accuracy of the mining results.

5.3 Evaluation of Enhancement #2: Efficient Conditional Tree
Construction

In this experiment, we compared the execution time of the original version of
MR-growth with the version enhanced with the efficient conditional tree con-
struction as discussed in Section 4.2.

Fig. 4 shows that, for small minsup values, both versions yielded the final
result in less than 200 seconds for the accidents dataset. The performance dif-
ferences became apparent only when minsup was lowered to 30%. As for the
connect4 and mushroom datasets, the enhanced version of the MR-growth al-
gorithm outperformed the original version. Fig. 4 also highlights that the en-
hanced MR-growth algorithm performed better (e.g., the difference were more
than 300 seconds in some cases).

In terms of accuracy, frequent patterns mined by MR-growth with Enhance-
ment #2 were identical to those mined by MR-growth without this enhancement.

5.4 Evaluation of Enhancement #3: MR-Growth with Sampling

We evaluated Enhancement #3 by comparing the execution times of the orig-
inal version of MR-growth with the version enhanced with sampling. Fig. 5(a)
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(a) Runtime (b) Speedup

Fig. 3. MR-growth with ForkJoin

illustrates that MR-growth (w/ sampling) consistently yielded the final result
quicker than the original version of MR-growth.

Moreover, to test the capacity of the MR-growth algorithm to further offload
work to different processor cores by using the ForkJoin framework (Enhance-
ment #1), we compared the execution times of MR-growth with one thread
on ForkJoin vs. MR-growth with two threads on ForkJoin. We observed from
Fig. 5(b) that, while the execution time of MR-growth on two threads was lower,
the overall benefits of distributing work to multiple threads was not too signifi-
cant. This behaviour is expected because Amazon uses virtualization to expose
virtual processing cores on shared hardware resources, which degrades potential
speedup. Significant performance improvements could be observed in MapRe-
duce environments built from high-performance machines [22].

As MR-growth with Enhancement #3 approximated expected supports, the
mined frequent patterns were not identical to those mined by MR-growth with-
out this enhancement. However, the differences were not too significant. In other
words, the algorithm produced an acceptable approximation to truly frequent
patterns.
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Fig. 4. MR-growth (without vs. with Efficient Conditional Tree Construction)

(a) MR-growth: With Enhancement #3 (b) With Enhancements #1 & #3

Fig. 5. MR-growth with Sampling (Enhancement #3) + 1 or 2 threads in ForkJoun
(Enhancement #1)

6 Conclusions

There are many real-life situations in which we observe uncertain data (e.g., in
temperature and wind speed readings, patient diagnosis, and satellite imaging).
Given the probabilistic nature of these data, it may take a long time and more
resources to mine frequent patterns from uncertain data. Currently, many state-
of-the-art algorithms for mining frequent patterns from uncertain data may not
provide superb performance because most of them are not crafted to execute in
parallel. In this paper, we introduced our MR-growth algorithm, which provides
the possibility to construct and mine smaller-sized UF-trees on distributed ma-
chines. Our experimental results demonstrate the effectiveness of employing the
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MapReduce programming model for mining frequent patterns from uncertain
data for Big data analytics. Moreover, the use of MapReduce yields significant
speedups to our MR-growth algorithm. As for the use of the ForkJoin frame-
work, it is beneficial for networks where computing nodes contain multi-core
processors. As ongoing and future work, we plan to conduct more extensive ex-
periments (e.g., evaluate the effect of the number of nodes in the MapReduce
environment on the runtime). We also target at finding a framework, possibly
an extension of MapReduce, which would allow us to recursively build sub-trees
and schedule their mining on available computation resources.
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and University of Manitoba.
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2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD 1993, pp. 207–216 (1993)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB
1994, pp. 487–499 (1994)

4. Calders, T., Garboni, C., Goethals, B.: Efficient pattern mining of uncertain data
with sampling. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD
2010, Part I. LNCS (LNAI), vol. 6118, pp. 480–487. Springer, Heidelberg (2010)

5. Cordeiro, R.L.F., Traina Jr., C., Traina, A.J.M., López, J., Kang, U., Faloutsos,
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