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Abstract. One-dimensional mapping has been playing an important
role for nearest neighbor search in high-dimensional space. Two typical
kinds of one-dimensional mapping method, direct projection and distance
computation regarding to reference points, are discussed in this paper.
An optimal combination of one-dimensional mappings is achieved for the
best search performance. Furthermore, we propose a near-optimal par-
tial linear scan algorithm by considering several one-dimensional map-
ping values. During the linear scan, the partial distance to the query
point computed in the 1D space is used as the lower bound to filter
the unqualified data points. A new indexing structure based on clus-
tering with Gaussian Mixture is also designed to facilitate the partial
linear scan, which can reduce both the I/O cost and distance compu-
tations dramatically. Comprehensive experiments are conducted on sev-
eral real-life datasets with different dimensions. The experimental results
show that the proposed indexing structure outperforms the existing well-
known high-dimensional indexing methods.

Keywords: indexing methods, nearest neighbor search, one-dimensional
mapping.

1 Introduction

k-Nearest Neighbor (k-NN) search in high-dimensional space has many applica-
tions such as multimedia retrieval, time-series matching, data mining, and the
like. One serious problem in achieving efficient k-NN search is the notorious
”curse of dimensionality”. The traditional hierarchical indexing structures al-
ways degenerate to visiting the entire dataset when the dimensionality is high,
and are eventually outperformed by linear scan[5]. Therefore, for k-NN queries in
high-dimensional space, linear scan method remains an efficient search strategy
for similarity search [4] [5].

The design of indexing algorithm is also governed by hardware constraints.
For the disk-based indexing structure, I/O operations often dominate the cost
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of query processing because of the relatively low transfer speed between mem-
ory and disk. The linear scan avoids seeking the specified page, and it is much
faster than random access. Furthermore, linear scan methods are a lot easier
to integrate within a database engine or query engine. The typical linear scan
methods are the VA-file approachs [20] [8] and the omni-sequential. However,
these methods usually need to linearly scan the whole dataset, and every point
in the dataset incurs expensive distance computations.

Recently, one-dimensional mapping methods have attracted the attention,
which are widely used for the exact or approximate k-NN search. Two typical
one-dimensional mapping methods in metric space are projection-based tech-
niques and distance-based techniques. For the approximate NN search, both the
Locality Sensitive Hashing (LSH) [10] and NV-tree [14] are based on the con-
cept of projecting data points onto a line and classifying locations along this
line with different symbols. The random projection is applied in LSH methods,
and Principal Component Analysis (PCA) is used in NV-tree. For the exact NN
search, one-dimensional mapping is a good choice for the filter-and-refine strat-
egy, because the 1D mapping values have the lower-bounding property. When
mapping the high-dimensional data to 1D space, only partial data points need
to be accessed during the query. The omni-sequential [9] and iDistance [12] are
two typical methods using distance-based mapping.

When sorting the 1D mapping values, a simple linear scan algorithm using
filter-and-refine model can be presented. During the search, we locate the first
accessed point with its 1D value nearest to the mapping value of the query, and
then perform a two-stage linear scan. Since the 1D mapping value has the lower-
bounding property, only partial data file need to be linearly scanned. We call
this search strategy as ”Partial Linear Scan (PLS)”. The PLS has the advantage
of linear scan, and it also avoids accessing the whole data file.

In this paper, we aim at finding a best mapping scheme to support PLS. Two
kinds of mapping methods were analyzed and compared in this paper. To the
best of our knowledge, the performance of different one-dimensional mappings
is firstly studied in this paper, and our observations will be helpful for the re-
searches and applications in the high-dimensional space. To summarize, we make
the following main contributions:

• We formalize the PLS algorithm with respect to one-dimensional mapping
and discuss its advantages over existing linear scan approaches.

• We identify the parameter that affect the performance of PLS and present
a near-optimal PLS to take both processor and I/O time into account. By
using the variance of 1D mapping values as the parameter, we find the opti-
mal reference point for distance-based mapping and the optimal projection
line for projection-based mapping. Furthermore, an optimal combination of
different 1D mapping values is observed.

• We present PLS-VA, an efficient indexing structure for high-dimensional
datasets. Clustering with Gaussian Mixture is applied in PLS-VA and ex-
periment results on multimedia datasets show it can facilitate the PLS on
the approximate vectors.



Near-Optimal Partial Linear Scan 103

The rest of this paper is organized as follows. In Section 2, we survey the main
current indexing methods. Some observations of our work and the PLS algorithm
are presented in Section 3. Section 4 introduces our PLS-VA indexing structure.
An extensive performance study is reported in Section 5, and finally, we conclude
our paper in Section 6.

2 Related Work

Research on high-dimensional indexing can be divided into exact and approx-
imate retrieval. In the approximate category, Hashing has been demonstrated
to be effective for similarity search. LSH is one typical hashing method [10]. In
Euclidean space, the basic idea is to project data points onto a line and clas-
sify locations along this line with different symbols. Recently, the distance-based
hashing has also been introduced [1]. Several heuristic variants of LSH have
also been suggested. For example, Multi-probe LSH can obtain the same search
quality with much less tables [15], while LSB-tree addresses both the quality and
efficiency of multimedia retrieval [19]. NV-tree is another representative index
for approximate NN search [14]. Using partitioning and projections based on
PCA, NV-tree can give approximate answers with a single random disk read.

For exact k-NN queries in high-dimensional space, there exist mainly three
categories of high-dimensional indexing methods, such as dimensionality reduc-
tion, data approximation and one-dimensional mapping. A well known approach
to improving the indexing performance is Dimensionality Reduction (DR) be-
fore indexing the data in the reduced-dimensionality space [16]. The linear DR
approach first condenses most of information in a dataset to a few dimensions by
applying PCA or other techniques. Two strategies for dimensionality reduction
include Global DR and Local DR [7].

VA-file is the representative high-dimensional index for data approximation,
which suggests accelerating the linear scan by the use of data compression and fil-
tering of the feature vectors [20]. Some extensions of VA-file have been proposed,
such as IQ-tree [3], which achieves better query performance by combining a tree
structure with VA-file. VA+-file improves the approximate ability of VA-file by
transforming the data points in PCA space [8]. The Vector Approximation can
be seen as the scalar quantization. The Hyperplane Bound (HB) method uses
vector quantization to compress data points, and a new filtering algorithm based
on bounding hyperplane has been presented [17].

One-dimensional mapping approaches provide another direction for
high-dimensional indexing. The 1D mapping value has the lower-bounding prop-
erty. Therefore, data points can be cut off based on the 1D values, and the real
nearest neighbors are verified in the set of candidates. The typical example is
iDistance [12]. The dataset is partitioned and a reference point of each partition
is defined. Then data points are mapped to 1D values based on their distance
to the reference point. However, its performance is sensitive to the selection of
reference points and too much random access of data pages is required. Omni-
sequential method chooses some reference points as global ’foci’ and gauges all



104 J. Cui et al.

other data points based on their distances to each focus [9]. During the search,
the distances of the query point to each focus are computed, and the triangular
inequality can be used to reject the impossible point.

3 Optimal One-Dimensional Mapping

3.1 One-Dimensional Data Transformation

The basic idea of one-dimensional mapping is transforming high-dimensional
points into 1D values, which can be used to compute the lower bound of the
distance between points in the original high-dimensional space. Two typical one-
dimensional mapping methods in metric spaces are projection-based techniques
and distance-based techniques with respect to a chosen reference point.

Definition 1 (Projection-based 1D Transformation). Given a point p and
a vector X in the high dimensional space Rd, p can be projected onto X with its
one-dimensional mapping value p ·X.

Definition 2 (Distance-based 1D Transformation). Given a point p and
a reference point o in the high dimensional space Rd, the one-dimensional map-
ping value of p is defined as the distance between p and o, which is denoted as
dist(p, o). For Euclidean distance, dist(p, o) = ||p− o||, where || · || is L2 norm.

Lemma 1. Given two points p and q ∈ Rd, whose 1D mapping values are de-
noted as p1 and q1 respectively, we have dist(p, q) ≥ |p1 − q1|
Proof. There are two cases need to be considered here.
(1) For projection-based transformation, p1 = p ·X and q1 = q ·X . We have

dist(p, q) = ||p− q|| ≥ ||pX − qX || = |p1 − q1|

(2) For distance-based transformation, p1 = dist(p, o) and q1 = dist(q, o). By
considering the triangular inequality, we have

dist(p, q) ≥ |dist(p, o)− dist(q, o)| = |p1 − q1|

3.2 Partial Linear Scan

As proved in the Lemma 1, given two points, their full distance in the original
high dimensional space cannot be smaller than their 1D transformation distance.
Thus, their 1D transformation values (or 1D values, in short) can be used to
compute the lower bound of the full distance. According to this property, a
synchronous bi-directional linear scan algorithm can be designed to perform an
efficient PLS.

Given a collection of data points, they are firstly sorted in ascending order
according to their 1D values. Given a query point q, a distance array kDist [ ] of
size k is employed to store the k-NN distances found so far. During the search,
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Fig. 1. Search Space after 1D transformation

we locate the first point to be accessed as pb whose 1D value p1b is nearest to
q1. A bidirectional scan will be conducted by accessing data points from pb (i.e.,
forward and backward from pb). In practice, the linear scan in the disk always
accesses data pages along one direction. The bidirectional search can be modified
as two search processes with the same direction. The detailed algorithm is shown
in Algorithm 1 and explained below.

Require: Query point q, dataset D
Ensure: kDist []
1: Initialize kDist [] with MAXREAL
2: Locate the first accessed point pb w.r.t q1 in the first stage
3: for i = b to N do
4: Calculate

∣
∣p1i − q1

∣
∣

5: if
∣
∣p1i − q1

∣
∣ > kDist[k] then

6: break //End of the first stage scan
7: else
8: Calculate dist (q, pi) and update kDist []
9: end if
10: end for
11: Locate the first accessed point ps w.r.t q1 and kDist[k] in the second stage
12: for i = s to b− 1 do
13: Calculate

∣
∣p1i − q1

∣
∣

14: if
∣
∣p1i − q1

∣
∣ > kDist[k] then

15: break //End of the second stage scan
16: else
17: Calculate dist (q, pi) and update kDist []
18: end if
19: end for

Algorithm 1. Partial linear scan for exact kNN search

We perform the first stage scan first (Line 3-10). Before computing the full
distance between the query q and the current data point pi, the distance be-
tween q1 and p1i is calculated firstly (Line 4). If

∣
∣p1i − q1

∣
∣ > kDist [k], pi can be

safely pruned without computing its full distance dist (q, pi) of all dimensions.
Furthermore, the linear scan in this direction can be terminated (Line 5-6). If
∣
∣p1i − q1

∣
∣ < kDist [k], the full distance between pi and q is required to be calcu-

lated while kDist [ ] will be updated (Line 8). When the scan in the first stage



106 J. Cui et al.

is terminated, we perform the second stage scan similarly (Line 11-18). The
first accessed point ps at the second stage satisfies

∣
∣p1s−1 − q1

∣
∣ > kDist[k] and

∣
∣p1s − q1

∣
∣ ≤ kDist[k]. Fig. 1 shows data points accessed during the PLS when

performing projection-based and distance-based 1D transformation respectively,
where the k-th NN distance is denoted as r.

3.3 Performance Analysis on One-Dimensional Mappings

In this subsection, we will discuss how to evaluate the performance of different
1D transformation methods and introduce several important observations. The
filtering efficiency is a critical indicator of the PLS performance based on a
certain 1D data transformation. It is formally defined as below.

Definition 3 (Filtering Efficiency, FE). Given a number of N data points
and their 1D transformation, Nf is the number of data points pruned in PLS.
The filtering efficiency (fe) is defined as: fe = Nf/N , where N = |D|.

The best and most widely used approach for data projection is based on PCA.
For any two points p and q in a dataset D ∈ Rd, they can be projected onto
the j-th PC of D, denoted as pj and qj respectively. We give another difinition
according to the PCA.

Definition 4 (Energy Ratio, ER). Let σ2
j denotes the variance along the j-

th PC. The energy ratio of the j-th PC, denoted as er (j), is defined as follows:

er (j) = σ2
j /
∑d

k=1 σ
2
k

Apparently, a larger fe implies a smaller number of data points to be accessed
during the PLS. The er(j) measures the percentage of the variance introduced
by j-th PC over the whole distance variance. It’s difficult to analyze the FE the-
oretically, since datasets have different distributions and different query points
have different query performance. However, several important observations have
been found according to the experiment results. The first group of experiments
are conducted on a widely used real-life dataset, COLHIST1, which contains a
number of 68,040 32-dimensional color histograms. The conclusions and obser-
vations found on the COLHIST dataset are also validated by the experiments
on other datasets such as, the LANDSAT dataset and the SIFT dataset. To get
fairly results, 500 10-NN searches are performed to get the average performance.
We first test the FE and ER along different PCs, which are shown in Fig. 2(a).
We can observe that two curves have similar tendency and a larger ER leads to
a higher FE.

Observation 1. For projection-based 1D data transformation, the ER can re-
flect the FE of the PCs. In result, the first PC is the optimal projection line for
1D data transformation.

1 http://kdd.ics.uci.edu/database/CorelFeatures

http://kdd.ics.uci.edu/database/CorelFeatures
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Fig. 2. Performance Analysis

The Observation 1 can be easily justified. Data variance measures how data
points are spread out along the corresponding direction. As shown in Fig. 1(a),
the shadow area is the search space of the query q. The larger the data variance
is along X , the fewer the data points fall into the shadow area, leading to a
higher FE.

For distance-based 1D transformation, the FE mainly depends on the choice
of reference point. We have shown the strong correlation between the data vari-
ance and the filtering ability. An optimal reference point should be the point
maximizing the variance of the distances from the data points to the reference
point. It is impossible to test the entire space to find the optimal reference point.
Fortunately, PCA can be used to find the direction with largest data variance
for a dataset. The optimal reference point most likely lie on the line identified
by the first PC [18]. We select points along the first PC as the reference points,
and test the corresponding data variances. Fig. 2(b) shows the variances of the
distances w.r.t a reference point when selecting the reference point along the
first PC. The tests on the the other PCs also show the similar tendency.

Observation 2. The largest variance of distances w.r.t the reference point lies
out of one side of the line determined by the first PC. When the reference point
lies very faraway the origin along the first PC, the limit of variance of distances
is equal to the variance of the first PC.

3.4 Combination of Several One-Dimensional Mappings

In this subsection, we will focus on 1D data transformation by utilizing both
project-based and distance-based mapping to achieve a better filtering efficiency.
By taking more information into account, the data points can be better distin-
guished. Two models are studied in our work. In the first model, we consider
both 1D values computed by data projection and the distance to a reference
point. In the second one, we select two reference points to get distances. The
examples of these two advanced 1D transformation models are shown in Fig. 3,
in which only data points labeled with asterisk need to be accessed. We firstly



108 J. Cui et al.
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Fig. 3. Combination of 1D transformation models

test the combined FE of projection and distance by selecting reference point
along the first PC. Fig. 4(a) shows the results.

Observation 3. When combining 1D values achieved by projection-based and
distance-based 1D transformations, the largest FE can be reached when the ref-
erence point lies on the origin and the projection line is along the first PC.

The distance of data points to the origin is the norm. When the reference point
lies far outside of origin, the accessed region using projection and distances will
overlap, and result in almost the same FE as that just using projection.

Now, we will discuss how to get the largest FE when selecting two reference
points. By fixing one reference point on the first PC, we test the combined FE
when selecting the other reference point along the first PC. Three typical points
are chosen as the first reference point to illustrate different curve tendency, whose
1D value on the first PC are 0, 0.5 and 3 respectively. Fig. 4(b) shows the FE
when one reference point is fixed.

When the first reference point lies in the origin (i.e., 0), the largest FE can
be achieved if the second reference point locates very far outside of the origin.
As mentioned above, when the reference point lies very far outside of origin, the
accessed region using distances and projection will fully overlap. Therefore, we
can get the last observation.

Observation 4. When 1D transformation is based on the distance w.r.t two
reference points, its highest FE cannot be greater than the highest FE achieved
by utilizing both projection-based and distance-based 1D transformations.

So far, we can design a near-optimal PLS algorithm to take both processor and
I/O time into accout. Since combination of projection on the first PC and norm
can get better FE, and the variance of first PC is larger than the norm as shown
in Fig. 2(b), we sort data points according to the projections on the first PC,
and the norms of data points are also embedded. This algorithm is not optimal
if just considering I/O cost, since the largest variance of distances is not applied.
When performing k-NN search, the projection values on the first PC are used
for terminating the searching process. And the norms are used to reject more
impossible candidate points. During the high-dimensional distance computation,
the Partial Distortion Search (PDS ) algorithm can be adopted which use the



Near-Optimal Partial Linear Scan 109

−5 0 5
0.55

0.6

0.65

0.7

0.75

0.8

coordinate on the first PC

g

(a) Combining projec-
tion and distance

−5 0 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

coordinate of seconde reference point on the first PC

g

0
0.5
3

(b) Combining two dis-
tances

Fig. 4. Filtering efficiency

projections on the other PCs to reject points. The PDS algorithm was widely
used in the Vector Quantization encoding process [2]. Since most of energy is
condensed to the first several PCs, we can perform PDS algorithm only on the
first several PCs. If data points can not be rejected on these dimensions, we
directly calculate dist (Q,Pi) on all dimensions.

4 PLS-VA

We have discussed how to get the near-optimal query performance when per-
forming PLS. In this section, we aim to build a new indexing structure applying
the PLS. One of the state of the art indices for linear scan is the VA-file ap-
proach. Our new indexing structure is proposed by utilizing VA-file and PLS,
which is so called PLS-VA.

4.1 The Framework of PLS-VA

The proposed indexing structure is specially designed for real-life datasets, in
which PCA is employed to get the projection values on the first PC. To facilitate
the PLS, we aim at getting the better FE by using partition technique. The
similar idea has been presented in iDistance, in which all data points in different
partitions are represented in a single dimensional space. It is also well known
that LDR can outperform GDR since it can find the correlations in the intrinsic
clusters. Several clustering techniques have been investigated, such as K-means
clustering and clustering with Gaussian Mixture [6]. We find that the clustering
with Gaussian Mixture is more suitable for PLS than K-means clustering. Fig.
5 shows an example. Gaussian Mixture is a model-based clustering approach,
which consists in using certain models for clusters and attempting to optimize the
fit between the data and the model. The Gaussian mixture architecture estimates
probalility density fuctions for each class, and then performs classification based
on Bayesian rule.
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(a) K-means partition (b) GMM partition

Fig. 5. Different partitions for building approximate vectors

Obviously, building approximate vectors in several partitions separately can
also improve the approximate ability, and the additional cost is that several code-
books need to be maintained. After performing the clustering, PCA is applied to
each cluster. The approximate vectors belonging to the same cluster are firstly
sorted according to the 1D projection values and then loaded in contiguous data
pages. The bound of projection values of each page can be described using a
two-dimensional array [α, β]. A B+-tree is applied to manage all the arrays in
one cluster, where only two values in one page are indexed as the keys in the
B+-tree.

4.2 Searching in PLS-VA

When performing k-NN search in the PLS-VA, the accessing order of each cluster
is determined by computing the lower bounds between the query point and each
cluster. Each cluster can be denoted as a hyper rectangle or a hyper sphere. The
hyper rectangle can be seen as an MBR (minimum bounding rectangle) used
in the R-tree [11], where the lower bound of distance between q to the MBR
can be easily calculated. The lower bound between q and the sphere can also be
computed, and the maximum value between two lower bounds is chosen as the
real lower bound between q and the cluster.

For the k-NN query in the whole dataset, we use a priority queue to navigate
the clusters accessed in increasing order of their lower bounds to the query point.
If the lower bound of a cluster to the query point is zero, the distance between
the centroid and q can be compared. During the search, if the lower bound of
one cluster to q is larger than the k-th smallest distance found so far, all the
data points in this cluster do not need to be accessed and the search can be
terminated. The k-NN search in PLS-VA includes two phases. The first phase
is to linearly scan the partial approximation file, and the second phase is the
access of exact vectors. The first search phase can guarantee no false dismissals
for the query. However, the search results may contain false positives which have
to be further refined in the second phase. In the first stage, it is noted that we
need to compute lower and upper bounds of distance instead of exact distances.
Therefore, the FE of PLS-VA is lower than the PLS in the exact vectors.
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5 Experiments

In this section, we performed extensive experiments on the high-dimensional
real-life datasets to demonstrate the practical effectiveness of PLS-VA. All ex-
periments were executed on HP workstation xw9300 with AMD Opteron 2.2
GHz CPU, 2GB RAM and 73GB 10Krpm SCSI disk. The data page size used
in the experiments is 4096 Bytes. We use real-life datasets to evaluate the effec-
tiveness of our method. Two datasets which are widely used in high-dimensional
indexing were chosen. The first dataset is COLHIST2, which contains 68,040
32-dimensional color vectors. The other dataset is called Satellite Image Texture
(LANDSAT)3, which contains 275,245 60-dimensional feature vectors extracted
from satellite images.

We use 500 queries to obtain the average results on 10-NN, 20-NN and 50-
NN search. A comprehensive performance study has been conducted on VA,
iDistance, HB, and PLS-VA. The results show the superiority of PLS-VA.

5.1 I/O Cost Model

The search in PLS-VA is comprised two phases. The first phase is to linearly
scan the approximate file, and the second phase is the random access of exact
vectors. We use the random page access as the I/O metric. The total I/O cost of
PLS can be calculated as: IOtotal = IOl + IOr. Suppose there are M clusters,
we need compute the sum of linear I/O cost of M clusters. Accessing of a new
cluster also need additional 2 random page access. The total I/O cost of PLS-VA
can be calculated as: IOtotal = IOl + IOr + 2 ×M . Assuming linear I/O is 10
times faster than random I/O [7] [13], and the post processing of candidate can
be one I/O per exact vectors [20]. However, as observed in [7], this assumption is
overly pessimistic. We, therefore, can assume that the total I/O cost of PLS-VA
is: IOtotal = num l/10 + num r/2 + 2 ×M . Where num l is the total number
of page accessed in the first phase, and num r is the number of exact vector
accessed during the second searching process.

5.2 Performance Study on the Filtering Efficiency

In the first experiment, we study the effect of different clustering methods. The
results of 10-NN queries of PLS algorithm are shown in Fig. 6. We can see
that the clutering with GMM can improve the FE compared with the K-means
clustering. As expected, as the number of cluster increases, PLS incurs larger
FE. While we can choose a large number of clusters to improve the FE, this
will increase the random I/O cost. So a moderate number of clusters is fine. In
our other experiments, we have used 4 as the default number of clusters.

The second experiment studies the FE of different methods. We compare
PLS with two other well known indexing methods using clustering technique,

2 http://kdd.ics.uci.edu/database/CorelFeatures
3 http://vision.ece.ucsb.edu/datasets/

http://kdd.ics.uci.edu/database/CorelFeatures
http://vision.ece.ucsb.edu/datasets/
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iDistance and HB, which will be discussed later in detail. Both iDistance and HB
use the filter-and-refine strategy, and need to select a good number of clusters.
We use 64 partitions for iDistance in two datasets. We also tried the HB for
several numbers of clusters, then use 80 clusters for the COLHIST and 200
clusters for the LANDSAT. We also studied the effect of combination of two
one-dimensional mappings. The results are shown in Fig. 7. The ”PC” denotes
the FE of the first PC, and ”PC+Dist” deontes the FE when combining the first
PC and the norm. The combination of several 1D mapping values can improve
the FE. From the figures, we can see very small difference between ”PC+Dist”
and HB, and HB performs the best for the two datasets.

5.3 Comparative Study of PLS-VA with Other Methods

In this section, we compare PLS-VA with VA-file, iDistance and HB. For VA
and PLS-VA, the average approximate bit length is 6 bits per dimension for the
two datasets. When using PLS algorithm in PLS-VA, the distortion distance on
the first 5 PCs are used to prune data points. iDistance need to select a good
number of reference points to work efficiently. In our comparative studies, we
choose 64 reference points, which was reported to have the best average perfor-
mance. In COLHIST, the first search radius and the increasing step are 0.01, and
in LANDSAT the same parameters are set 0.1. HB uses the separating hyper-
plane boundaries of Voronoi clusters to complement the clustering-based index.
However, the HB suffers a huge number of lower bounds computations, suppose
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Fig. 9. Comparison of I/O cost

there are K clusters, and as many as K (K − 1) /2 lower bounds calculations
are needed during the query. As mentioned above, 80 clusters are applied in
COLHIST and 200 clusters in LANDSAT.

First we present the comparision of CPU response time of different methods.
The results are shown in Fig. 8. The FE of HB and iDistance is larger than
PLS-VA, but PLS-VA has the shortest response time. It has a speedup factor
of more than 2 over iDistance and 6 over VA. The CPU response time of HB
is relative to the number of clusters. HB does not yet provide effective pruning
mechanisms of data points in the candidate cluster. To achieve better FE, more
clusters are needed. It can be seen its CPU time is more than 1 second in the
LANDSAT. PLS-VA is better than iDistance because the combination of several
1D mapping values enables more effective pruning of data points.

We also compared the I/O cost between different methods. The results are
shown in Fig. 9. Both PLS-VA and HB have less random page accesses than VA
and iDistance. The iDistance has the most random page accesses, because iDis-
tance incrementally enlarges the search space to find NNs in different partitions,
and more partitions result in more fragmented pages and lead to more random
page accesses. HB linearly scan the candidate clusters to find NNs, therefore
it has less I/O cost. PLS-VA and HB have similar I/O cost in COLHIST, and
PLS-VA has the least I/O cost in LANDSAT. To summarize, PLS-VA outper-
forms VA and iDistance in both CPU and I/O cost, and PLS-VA has less total
response time than HB.
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6 Conclusions

In this paper, we have studied the performance of different 1D transformation
methods and derived a novel yet more effective model to transform high di-
mensional data points into 1D subspace, in which an efficient PLS can be per-
formed. A novel indexing structure PLS-VA is proposed which partitions the
original data space with GMM and builds approximate vectors on each cluster
separately. The proposed indexing structure can be easily built, and it highly
improves the pruning power of the linear scan on the vector approximate file.
Extensive experiments are conducted on two real-life multimedia datasets. The
results confirm that PLS-VA outperforms existing indexing structures.
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14. Lejsek, H., Ásmundsson, F.H., Jónsson, B.P., Amsaleg, L.: Nv-tree: An efficient
disk-based index for approximate search in very large high-dimensional collections.
IEEE Trans. Pattern Anal. Mach. Intell. 31, 869–883 (2009)

15. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: efficient
indexing for high-dimensional similarity search. In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB 2007, pp. 950–961. VLDB
Endowment (2007)

16. Postma, E.: Dimensionality reduction: A comparative review 10(February), 35 (Oc-
tober 2009)

17. Ramaswamy, S., Rose, K.: Adaptive cluster distance bounding for high-dimensional
indexing. IEEE Trans. on Knowl. and Data Eng. 23(6), 815–830 (2011)

18. Shen, H.T., Ooi, B.C., Huang, Z., Zhou, X.: Towards effective indexing for very
large video sequence database. In: SIGMOD 2005: Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, pp. 730–741. ACM,
New York (2005)

19. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional
nearest neighbor search. In: Proceedings of the 35th SIGMOD International Con-
ference on Management of Data, SIGMOD 2009, pp. 563–576. ACM, New York
(2009)

20. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: VLDB 1998: Proceed-
ings of the 24rd International Conference on Very Large Data Bases, pp. 194–205.
Morgan Kaufmann Publishers Inc., San Francisco (1998)


	Near-Optimal Partial Linear Scan for NearestNeighbor Search in High-Dimensional Space
	Introduction
	Related Work
	Optimal One-Dimensional Mapping
	One-Dimensional Data Transformation
	Partial Linear Scan
	Performance Analysis on One-Dimensional Mappings
	Combination of Several One-Dimensional Mappings

	PLS-VA
	The Framework of PLS-VA
	Searching in PLS-VA

	Experiments
	I/O Cost Model
	Performance Study on the Filtering Efficiency
	Comparative Study of PLS-VA with Other Methods

	Conclusions
	References




