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Preface

It is our great pleasure to present to you the proceedings of the 18th International
Conference on Database Systems for Advanced Applications (DASFAA 2013),
which was held in Wuhan, China, in April 2013. DASFAA is a well-established
international conference series that provides a forum for technical presentations
and discussions among researchers, developers, and users from academia, busi-
ness, and industry in the general areas of database systems, Web information
systems, and their applications.

The call for papers attracted 208 submissions of research papers from 28
countries (based on the affiliation of the first author). After a comprehensive re-
view process, the Program Committee selected 51 regular research papers and 10
short research papers for presentation. The acceptance rate for regular research
papers is less than 25%. The conference program also included the presenta-
tions of three industrial papers selected by the Industrial Committee chaired by
Haixun Wang and Haruo Yokota, and nine demo presentations selected from 19
submissions by the Demo Committee chaired by Hong Gao and Jianliang Xu.

The proceedings also include the extended abstracts of the two invited keynote
lectures by internationally known researchers, Katsumi Tanaka (Kyoto Univer-
sity, Japan) and Peter M.G. Apers (University of Twente, The Netherlands),
whose topics are on “Can We Predict User Intents from Queries? Intent Dis-
covery for Web Search” and “Data Overload: What Can We Do?”, respectively.
In addition, an invited paper contributed by the authors of the DASFAA 10-
year Best Paper Award winner for the year 2013, Chen Li, Sharad Mehrotra,
and Liang Jin, is included. The title of this paper is “Record Linkage: A 10-
Year Retrospective.” The Tutorial Chairs, Jian Pei and Ge Yu, organized four
tutorials given by leading experts on a wide range of topics. The titles and
speakers of these tutorials are “Behavior-Driven Social Network Mining and
Analysis” by Ee-Peng Lim, Feida Zhu, and Freddy Chua, “Understanding Short
Texts” by Haixun Wang, “Managing the Wisdom of Crowds on Social Media Ser-
vices” by Lei Chen, and “Ranking Multi-valued Objects in a Multi-dimensional
Space” by Wenjie Zhang, Ying Zhang, and Xuemin Lin. The Panel Chairs, Aoy-
ing Zhou and Jeffrey Xu Yu, organized a stimulating panel on big data research.
The panel was chaired by Xiaoyang Sean Wang. This rich and attractive confer-
ence program of DASFAA 2013 is published in two volumes of Springer’s Lecture
Notes in Computer Science series.

Beyond the main conference, Bonghee Hong, Xiaofeng Meng, and Lei
Chen, who chaired the Workshop Committee, put together three exciting work-
shops (International DASFAA Workshop on Big Data Management and An-
alytics, International Workshop on Social Networks and Social Web Mining,
and International Workshop on Semantic Computing and Personalization). The
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workshop papers are included in a separate volume of proceedings also published
by Springer in its Lecture Notes in Computer Science series.

DASFAA 2013 was primarily sponsored and hosted by Wuhan University of
China. It also received sponsorship from the National Natural Science Founda-
tion of China (NSFC), the Database Society of the China Computer Federation
(CCF DBS), and the State Key Laboratory of Software Engineering of China
(SKLSE). We are grateful to these sponsors for their support and contribution,
which were essential in making DASFAA 2013 successful.

The conference would not have been possible without the support and hard
work of many colleagues. We would like to express our gratitude to Honorary
Conference Chairs, Lizhu Zhou and Yanxiang He, for their valuable advice on
all aspects of organizing the conference. Our special thanks also go to the DAS-
FAA Steering Committee for their leadership and encouragement. We are also
grateful to the following individuals for their contributions to making the con-
ference a success: the General Co-chairs, Jianzhong Li, Zhiyong Peng and Qing
Li, Publicity Co-chairs, Jun Yang, Xiaoyong Du and Satoshi Oyama, Local Ar-
rangements Committee Chair, Tieyun Qian, Finance Co-chair, Howard Leung
and Liwei Wang, Web Chair, Liang Hong, Best Paper Committee Co-chairs,
Changjie Tang, Hiroyuki Kitagawa and Sang-goo Lee, Registration Chair, Yun-
wei Peng, Steering Committee Liaison, Rao Kotagiri, APWEB Liaison, Xueming
Lin, WAIM Liaison, Guoren Wang, WISE Liaison, Yanchun Zhang, and CCF
DBS Liaison, Zhanhuai Li.

Our heartfelt thanks go to all the Program Committee members and external
reviewers for reviewing all submitted manuscripts carefully and timely. We also
thank all authors for submitting their papers to this conference. Finally, we thank
all other individuals and volunteers who helped make the conference program
attractive and the conference successful.

April 2013 Weiyi Meng
Ling Feng

Stéphane Bressan
Werner Winiwarter

Wei Song
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Data Overload: What Can We Do?
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ICT is changing the world. It is changing both individuals and our society. One
very intriguing change is that everybody has become both a consumer and a
producer.

Before, the production of books and music went through a whole procedure to
guarantee quality. Nowadays everyone is putting Youtube videos on the internet,
regardless of the quality.

People no longer accept to pay perceived high prices. Many companies and
organizations have to rethink their business model. All traditional institutions
have to rethink what their added value is.

Also the way we behave is changing. Many people no longer read a book or
watch a movie without continuously checking their mail or social media.

Furthermore, Google gives us the feeling that we have access to all the infor-
mation in the world, resulting in delaying decisions because obtaining more data
may lead to perceived better decisions.

All this results in a number of issues that require attention:

– the amount of data is increasing at a tremendous speed, making us actually
close to blind;

– the average quality of the data is going down, many data is contradicting
each other, can we still trust the data on the internet?

– is it possible to extract reliable knowledge from the Internet.

During the presentation we will discuss a couple of research projects from our
group. The research goal of the group is to design algorithms give to provide
high quality and highly relevant information along the following lines:

Filtering or searching in a decentralized way and for specific groups. The idea
is to involve producers of data in the search. The challenge is to achieve high
quality results do in a time-efficient way. Furthermore, children search in a
complete different way than adults.

Disclosing semi-structered data, for example from the Deep Web or from logs.
Many reliable data sources are hidden in databases hidden behind web ser-
vices. The challenge is to include these in a simple and uniform way.

Providing transparency by keeping track of how the data presented is ob-
tained. More and more decisions are taken based on data of which the way it
is obtained is not clear. Data provenance keeps track on how data is obtained.
The challenge is to do this in a memory-efficient way.

Extracting knowledge from large data sets from various sources. The chal-
lenges are to link data from different sources based on content, location, time
etc and to do it in a time-efficient way.
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Can We Predict User Intents from Queries? 

- Intent Discovery for Web Search - 
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Abstract. Although Web search engine technologies have made a great 
progress in recent years, they are still suffering from the low search perfor-
mance (precision and recall) because of the following reasons:  

(1) Queries for search engines are mostly limited to keywords or short natu-
ral language sentences, and  

(2) Most search engines use traditional “keyword-in-document” information 
retrieval models.  

Obviously, a user’s search intent is not easily expressed by a set of keyword 
terms. A same keyword-query is formulated and executed by many users, but 
its search intents (e.g. what information are the “really relevant” answers for the 
users) are different from users. Also, the traditional “keyword-in-document” IR 
model assumes that query keywords (and/or related keywords) are contained in 
the target documents (Web pages). For example, it makes difficult to search for 
documents (Web pages) whose reputation are specified in user queries.  

Search intent discovery is a hot research area in Web search, such as search 
query classification (informational, navigational and transactional queries), 
search result diversification, and query recommendation.  

In this talk, after a brief survey on the research of search intent discovery 
and query type classification, we introduce a new framework on search intent 
discovery and intent-based Web search.  In our framework, search-intents are 
roughly classified into four types: (1) content-related intents (topic-relevance, 
diversity, comprehensibility, concreteness etc.), (2) task-related intents (search 
for doing some actions), (3) “social” intents (popularity, typicality, novel-
ty/unexpectedness etc.), and (4) aggregation-based intents (such as retrieving 
the most expensive Kyoto foods).  

Then, we survey our research activities to discover "search-intent types" for 
user search queries. The proposing methods are based on the usages of ontolog-
ical knowledge, user behavior data analysis, knowledge extracted from CQA 
corpus & ads, and “relevance” feedback by intent-based page features. 

Keywords: Web search and mining, intent discovery, social data, user behavior 
analysis. 



Record Linkage: A 10-Year Retrospective

Chen Li1, Sharad Mehrotra1, and Liang Jin2

1 Department of Computer Science, UC Irvine, CA 92697
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Abstract. We describe how we wrote the DASFAA 2003 paper titled
”Efficient Record Linkage in Large Data Sets” that received the DAS-
FAA 2013 ten-year best paper award, and the followup research after the
paper.

Keywords: Record Linkage, Approximate String Search, Flamingo
Package.

1 Paper Background

In a nutshell, our DASFAA 2003 [JLM03] paper was a successful collaboration
of two faculty with different research interests to work together on an interesting
problem, with the contribution of a first-year PhD student at UC Irvine.

Chen’s Research: In October 2001, after graduating from Stanford University,
Chen Li joined the faculty of Computer Science at UC Irvine as an assistant
professor. To help setup his research agenda as a junior faculty, he started to
talk to people at the UC Irvine medical school to get some sense about their
data management problems. One of the problems they mentioned was how to link
patient records from different information sources that can represent the same
real-world person. In particular, each year they obtained records about patients
from different databases, and had to link these records with their existing records
in a database in order to do additional analysis. Due to the complexity of the
problem, these doctors hired contractors to do this linkage, thus had to spend
a significant amount of resources. An efficient and effective solution will be very
appealing to these practitioners.

Chen’s previous research was in the field of data integration, i.e., integrating
information from heterogeneous sources. He worked on topics related to dealing
with limited query capabilities of sources and answering queries using views.
Given the connection between data integration and record linkage, he decided
to get deeper into this research area, and quickly realized that the problem was
much more complicated than it looked. There are many technical challenges
related to accuracy and efficiency. For instance, what is a good function to mea-
sure the similarity between two records? How to use domain-specific knowledge
to increase the confidence of matching? How to efficiently identify candidate
pairs of records, especially when the data set is large? Among these challenges,
he decided to work on the issues related to efficiency. He also started a research
project called Flamingo (http://flamingo.ics.uci.edu/) to study problems.

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 3–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



4 C. Li, S. Mehrotra, and L. Jin

Sharad’s Research: At the time, one of the areas in which Sharad was working
on was content-based multimedia retrieval. He, along with his students, had engi-
neered a Multimedia Analysis and Retrieval System (MARS) which was amongst
the first systems to explore relevance feedback and query refinement in multi-
media search. A major contribution of MARS was scalable multidimensional
indexing and support for similarity queries. This included data structures such
as hybrid tree for scalable range and KNN queries over highly multidimensional
spaces, mechanisms to map multimedia objects (e.g., time series) with domain
specific distance measures into multidimensional spaces which preserved the orig-
inal distance metric, and methods for dimensionality reduction, etc. This prior
research proved vital for coming up with the approach to address efficient record
linkage.

At the time the dominant record linkage approach, that overcame the quadratic
nature of the problem, was merge/purge. Merge/purge exploited the fact that of-
ten one can identify a set of keys such that if data is sorted based on the keys, dupli-
cate records would be close in the sort order for at least one such key. Merge/purge
effectively reduced the record linkage to that of sorting which could be imple-
mented much more efficiently. Nonetheless, the approach had limitation – how
should such keys be identified, how should the appropriate window size for merge
be chosen? Sharad’s prior work on distance preserving dimensionality reduction
provided a useful clue to overcome the challenges of designing a scalable record
linkage solution: one could map records to a multidimensional space in ways that
the mapped points will preserve the distance based on the domain-specific mea-
sures (such as edit distance). If we could do such a mapping, multidimensional
indexing and similarity joins could be used to realize record linkage.

The Coming Together: Chen and Sharad started collaborating on the problem
with the help of Liang Jin, who was a new student who had joined the PhD
program in the same year. The three authors started technical discussions on
this topic. We decided to formulate the problem as finding pairs of records from
a large data set that are similar enough, where we use common functions such
as edit distance and Jaccard. One technical difficulty is that strings using these
functions do not have a total order. Instead, they are in a metric space. Given our
previous knowledge in multi-dimensional indexing and embedding techniques,
we came out with of idea of trying the technique called “FastMap” by Christos
Faloutsos and King-Ip Lin. This technique maps objects in a metric space to
a high-dimensional Euclidean space while preserving their pairwise distances
as much as possible. Since string similarity functions we considered are metric
spaces, we can first use this technique to embed the strings into a Euclidean
space, then use existing high-dimensional indexes such as R-tree or hybrid tree
to do similarity queries.

After identifying the direction, the next question was whether this embed-
ding method can preserve pairwise string similarity well. The first experimental
results, as shown in Figure 4 in the original paper, showed a very promising
evidence. In particular, most similar pairs of strings are still very similar to
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each other in the new Euclidean space, most dissimilar strings are different from
each other in the new space, and we can find a good distance threshold to
separate these two classes of string pairs. We further studied how to use a multi-
dimensional structure (R-tree in particular) to index the mapped objects, and use
the structure to answer queries. We also studied how to deal with the case where
the records have multiple attributes, and how to efficiently answer a similarity
query with multiple attributes.

2 Followup Work on Approximate String Queries

The DASFAA 2003 paper was Chen’s first work in the field of data cleaning.
Ever since then he led a research team to study various problems in the context
of the Flamingo project. The following are some of the techniques developed in
the project:

– How to improve nearest-neighbor search using histograms [JKL04].
– How to support approximate queries with predicates of both numerical con-

ditions and string conditions [JKLT05].
– How to estimate the selectivity of fuzzy string predicates [JL05, JLV08].
– How to relax SQL queries with join and selection conditions [KLTV06].
– How to improve the performance of approximate string queries using grams

with variable lengths [LWY07, YWL08].
– How to use inverted lists and filtering techniques to do approximate string

queries [LLL08].
– How to do compression of inverted lists in approximate string search [BJLL09].
– How to do efficient top-k queries in approximate string search [VL09].
– How to do spatial approximate string queries [AL10, ABL10]
– How to use disk-based indexing to do approximate string queries [BLC11].
– How to do approximate string joins using Hadoop [VCL10].
– How to do interactive fuzzy search [JLLF09].

Realizing the importance of making research techniques available by releasing
their source code, Chen led the team to start building a C++ package that
included the techniques published in these paper. The first technique included
in the package was the StringMap algorithm described in the DASFAA 2003
paper [JLM03]. Over the next eight years, the package had gradually become
more stable and powerful, thanks to the feedback from many colleagues and
users.

In addition, Chen started working on the area of doing powerful search by
supporting instant fuzzy search, in the context of the ipubmed project1. He also
started a company called SRCH2 (http://www.srch2.com) to commercialize the
research results. He wrote an article at the ACM SIGMOD BLOG2 to describe
the experiences of research commercialization. SRCH2 has developed a search

1 http://ipubmed.ics.uci.edu
2 http://wp.sigmod.org/?page_id=52

http://ipubmed.ics.uci.edu
http://wp.sigmod.org/?page_id=52
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engine (built from the ground up in C++) targeting enterprises that want to
enable a Google-like search interface for their customers. It offers a solution
similar to Lucene and Sphinx Search, but with more powerful features such as
instant search, error correction, geo support, real-time updates, and customizable
ranking. Currently its first products are developed and it has paying customers.

3 Followup Work on Overcoming the Quality Curse in
Data Cleaning

Following the work described in our DASFAA 2003 paper, our exploration on
data cleaning shifted to addressing the data quality challenge at a deeper level3.
At the time, most conventional record linkage techniques were based on com-
paring similarity between records , which, in turn, was computed using a com-
bination of similarities at the level of individual attributes/features. Attribute
similarities were domain-specific based on edit distances, Jaro metric, N-gram
based distances, cosine similarity, or special techniques suited for comparing
names, etc. Often, techniques such as agglomerative merging, partitioning, rela-
tional clustering were applied as a post-processing step after computing similari-
ties in order to finally group the same records. While data management research
primarily focused on techniques to overcome the quadratic complexity of com-
paring records (e.g., the merge/purge, and our DASFAA paper being examples),
the related machine learning research focused on techniques to learn similarity
functions at the attribute level, at the record level, and on building appropriate
classifiers to determine if indeed two records were identical. Multiple propos-
als included use of EM algorithm [Winkler 99], decision trees, hidden markov
models, support vector machines, conditional random fields, etc.

One of our observations, at the time, was that such similarity-based com-
putations exhibit fundamental limitations. Let us illustrate this in the context
of the related problem of entity resolution where the goal is to determine if
two references to entities co-refer; that is, they refer to the same real-world en-
tity. Consider for instance, the following two text segments: “Photo collection of
Michael Carey from Beijing China 2007 Sigmod trip” and “Mike Carey, research
interests: data management, Professor UC Irvine” – these two entities could be
records in two different databases being merged and the corresponding record
linkage problem being whether the two entities refer to the same person. If we
simply use feature based matching (features being concepts /words in the vicin-
ity of the reference), we would never be able to reconcile the two references to be
the same person, which, in this example, is indeed the case. Approaches based
on feature-matching could also make the reverse mistake by wrongfully merging
records corresponding to different entities. To see this, consider another two text
segments: “S. Mehrotra has joined the faculty of Univ. of Illinois. He received
his PhD from UT, Austin, and a bachelors from India” and “S. Mehrotra, Ph.D.

3 The work described in this section is a result of a decade long collaboration between
one of the authors with Dmitri Kalashnikov.
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(A1, ‘DaveWhite′, ‘Intel′)
(A2, ‘DonWhite′, ‘CMU ′)
(A3, SusanGrey′, ‘MIT ′)
(A4, ‘JohnBlack′, ‘MIT ′)
(A5, ‘JoeBrown′, unknown)
(A6, ‘LizP ink′, unknown)

Fig. 1. Author records

(P1, ‘Databases . . .′ , ‘JohnBlack′, ‘DonWhite′)
(P2, ‘Multimedia . . .′ , ‘SueGrey′, ‘D. White′)
(P3, ‘T itle3 . . .

′ , ‘DaveWhite′)
(P4, ‘T itle5 . . .

′ , ‘DonWhite′, ‘JoeBrown′)
(P5, ‘T itle6 . . .

′ , ‘JoeBrown′, ‘LizP ink′)
(P6, ‘T itle7 . . .

′ , ‘LizP ink′, ‘D. White′)

Fig. 2. Publication records

from University of Illinois is visiting UT Austin to give a talk on prefetching on
multiprocessor machines. He received his bachelors from India”4. While reading
the two segments, we can straightaway tell that the references belong to two dif-
ferent individuals, if an automated technique based on feature-based similarity
were to be used (where features correspond to say words in the neighborhood
of the entity reference), the system may mistakenly decide that these are in-
deed the same person. While one could argue that we can overcome the problem
by extracting semantically meaningful features (e.g., using NLP), the point is
not whether we can design mechanisms suited for this instance. Rather, it is to
highlight that similarity-based methods that just compare the records based on
features can make mistakes both by wrongly merging records/entities that are
distinct and also by splitting the same entity into different group.

Deep Dive into Data. Amongst the first methods we tried to overcome the
quality-challenge of traditional similarity based methods was to explore “addi-
tional semantic information hidden in the data in the form of relationships. This
led us to an approach we named Relationship Based Data Cleaning (RelDC).
Let us illustrate RelDC using an example from the publication domain. Consider
a set of author and publication records shown in Figures 1 and 2 above.

Our goal is to match the authors in the publication table to the right author
in the author table. Existing feature based similarity methods would allow us to
identify that Sue Grey in paper P2 corresponds to author A3. But what about
D. White in P2 and in P6 - they could match either A1 (Dave White) or A2

(Don White)? If we look more closely at data, we discover that Don White has
co-authored a paper (P1) with John Black who is at MIT, while the author
Dave White does not have any co-authored papers with authors at MIT. We
can use this observation to disambiguate between the two authors. In particular,
since the co-author of D. White in P2 is Susan Grey of MIT, there is a higher
likelihood that the author D. White in P2 is Don White. The reason is that the
data suggests a connection between author Don White with MIT and an absence
of it between Dave White and MIT. Second, we observe that author Don White
has co-authored a paper (P4) with Joe Brown who in turn has co-authored a
paper with Liz Pink. In contrast, author Dave White has not co-authored any
papers with either Liz Pink or Joe Brown. Since Liz Pink is a co-author of P6,

4 There were indeed two different S. Mehrotra at Illinois at the same time, one, who
is a co-author of this paper, who was a professor and the other a Ph.D. student
specializing in architecture.
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there is a higher likelihood that D. White in P6 refers to author Don White
compared to author Dave White.

RelDC captured the above intuition that relationships help disambiguate ref-
erences into a general principle by modeling the database as a graph wherein
entities corresponded to nodes and edges to relationships between the nodes.
The main hypothesis of RelDC was that if we model the data as an instanti-
ated ER graph, the nodes in the graph that are more connected (and hence
have stronger relationships) are more likely to co-refer to the same real-world
entity. The hypothesis captured the intuition that existing relationships (e.g., if
two individuals have co-authored a paper) promotes new additional relationships
(e.g., they may co-author again) and such a relationship analysis can be used as
evidence to disambiguate.

Of course, the devil was in the detail. How do we measure strength of connec-
tivity amongst nodes in a graph? Not all relationships are equally important evi-
dences for disambiguation, how do we discover relative importance automatically?
How do we self-tune the approach? Can we design a general purpose approach
that exploits relationships for disambiguation which is domain-independent? How
do we integrate such relationship evidences with other evidences such as feature-
based similarity? Are there specific domains where relationships work better for
disambiguation compared to others? How do we make such analysis efficient given
the (potentially) large size of the data.

Stella Chen’s Ph.D. thesis and work in [NTKM13, NTKM12, NTKMY12] and
[NTCKM09, KCMNT08, KNTM08, NTKM07, KCNT+09] explored the above
challenges building a general purpose data cleaning framework (which we called
Graph Disambiguation Framework (GDF) that exploited relationship analysis.
Her experimental results showed significant improvements in performance on a
variety of benchmark problems.

Looking Outside the Box. The second approach we explored to address the
quality-curse was to look outside the box for evidences to merge (or split) records.
We were by no means the first to explore such an idea, there was already research
on using focused crawling, ontologies, Wikipedia, taxonomies as external data
sources to help reconcile records in a database. But to the best of our knowledge,
we were the first to exploit search engine statistics (learnt through web queries)
to learn correlations amongst entities which significantly helped in the disam-
biguation decisions. The basic intuition was straightforward and let us illustrate
it in the context of a people search task on the internet.

People Search Challenge: Imagine a search engine that allows users to specify
names of individuals as queries and clusters the results based on entities. Such a
system can support an interface wherein information about different namesakes
can be shown to the user enabling the user to choose which particular entity
he/she meant to retrieve information about. There are significant advantages
of such a technology, e.g., imagine searching for Bill Clinton, no not the ex-
president, but perhaps an old acquaintance who happens to share his name with
the president (a famous person). It is very difficult to search for such individuals
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using toady’s search technology since most results obtained would belong the
president. Instead, a clustered result would group all web pages of the president
together into a single entry enabling information about other entities to be visible
on the first page. The challenge in building such a technology is disambiguating
references on web pages to decide which Bill Clinton it corresponds to. We refer
to this as the People search challenge.

Now let us illustrate how correlations learnt from web search engine statistics
can help disambiguate references on the web page. Imagine a query looking
for Jeff Ullman on the web. Consider two returned pages: one page contains
concepts/entities such as Jennifer Widom, data management, recursive queries
and another which refers to entities such as Renee Miller and VLDB 2007. At
first sight, the entities occurring on the two pages are distinct and do not offer
evidence that the two pages refer to the same Jeff Ullman. However, statistics
about the number of pages in which entities Jennifer Widom and VLDB 2007
both co-occur and likewise Data management and Renee Miller co-occur can
provide strong evidence that quite likely the two Jeff Ullman references are to
the same person. The challenge, of course, include

– What type of queries should be submitted to the search engine to learn
information about interrelationships amongst the contextual entities on the
web pages returned as part of the original people search query?

– How should such statistics be used as evidence and how should such evidence
be combined with other features to make robust decisions?

– How do we handle situations when the web page contains very little con-
textual information causing it not to cluster with other pages – this is a
common phenomena in people search.

– Querying search engine statistics on the web is extremely time consuming
which is further complicated with API restrictions imposed by most search
engines. What techniques can be used to limit the number of queries so that
execution time can be controlled?

– Response time of search engines are outside the control of end-users, thereby
making the approach vulnerable to the vagaries of the search engine. What
can be done to support some degree of predictability to the amount f time
the approach takes?

Rabia Nuray’s Ph.D. dissertation [KMC05, CKM05, KM06, CKM07, CKM09]
addressed the above challenges in a sequence of papers culminating in a people
search engine prototype which we refer to as Web-people search engine (WEST)
which added a layer of disambiguation atop results of a search engine such as
google. The WEST system turned out to be a useful experience, if for no other
reason, but as a source of entertainment to our visitors at UCI when they would
play with the system to see if it could enable them to find web pages of acquain-
tances who might not necessarily have a significant web presence, or to check if
WEST would cluster all the right pages for friends/colleagues they knew well.
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4 What’s Next?

The paper, so far, has described how we came up with the DASFAA 2003 pa-
per and provided an overview of our related work since then. We conclude the
paper with our view of where the area of data quality is headed. First, we note
that the area of record linkage (and data quality in general) has continued to
receive a large amount of research attention over the past decade resulting in a
large number of new innovative ideas and techniques which address the prob-
lem from variety of perspectives from techniques to exploring additional sources
and types of information to achieve high quality – e.g., analyzing relationships,
domain constraints, ontologies, encyclopedia, general external datasets, issuing
web queries, and so forth. Equally active has been approaches to gain efficiency
as exemplified by approaches such as Stanford’s Swoosh project.

In our view, however, significant challenges lie ahead and the coming years
are going to witness a whole set of new technologies related to the area. To
highlight one such new challenge, we note that data cleaning technologies, tra-
ditionally designed to improve quality of data in back-end data warehouses, are
now fast emerging as a vital and important component of real-time information
access. As the Web evolves towards supporting interactive analytics and basic
search migrates from simple keyword retrieval to retrieval based on semantically
richer concepts (e.g., entities) extracted from web pages, the need for on-the-fly
cleaning techniques that can help alleviate data quality challenges (e.g., errors,
ambiguities, incompleteness, etc.) in such automatically generated content is
rapidly increasing. While efficiency has always been an important component
of data cleaning research, we also need finer (more aggressive) control over how
data is cleaned and what the costs of cleaning are. Furthermore, since in such
applications, data cleaning is embedded in the information access/processing
pipelines, the result of cleaning need to be conveyed in the form comprehensible
to end recipient (viz., individual users/analysis code).
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Abstract. This paper addresses the problem of finding rising stars in academic 
social networks. Rising stars are the authors which have low research profile in 
the beginning of their career but may become prominent contributors in the fu-
ture. An effort for finding rising stars named PubRank is proposed, which con-
siders mutual influence and static ranking of conferences or journals. In this 
work an improvement of PubRank is proposed by considering authors’ contri-
bution based mutual influence and dynamic publication venue scores. Experi-
mental results show that proposed enhancements are useful and better rising 
stars are found by our proposed methods in terms of average citations based 
performance evaluation. Effect of parameter alpha and damping factor is also 
studied in detail.  

Keywords: Rising stars, author contribution, dynamic publication venue score, 
PageRank, Academic Social Networks. 

1 Introduction 

Academic social networks are made up of co-author and citation based relationships 
between authors and research papers, respectively. Co-author means the authors writ-
ing paper together and citation based relationships occur when one paper cites other 
papers or is cited by other papers. Academic social network analysis has many inter-
esting research tasks such as expert finding [7], author interest finding [6] citation 
recommendations [8] name disambiguation [17] and rising star finding [20]. This 
work is focused on finding rising stars. The motivation is to find new born researchers 
with abilities to become stars or experts in future. All those persons, who may not be 
at the top at the moment or are not experienced, but are capable to be at the top posi-
tion in their respective fields in near future, are referred to as Rising Stars. Finding 
rising stars is very useful for appointing young faculty members to increase research 
productivity of department, finding reviewers for conferences and journals which can 
provide reviews on time and making them members of different academic committees 
to get benefit from their dynamic and energetic behavior. 

An effort made for finding rising stars considers mutual influence and static (a 
ranking list of publication venues) importance named PubRank [20]. The idea was if a 
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junior author influences/collaborates with a well known researcher and the publication 
venue is of high rank (1,2,3 where 1 is higher level, 2 is normal level and 3 is low 
level) he has bright chances to become a star in future. There were two major prob-
lems with the existing method (1) the authors did not consider the author contribution 
oriented mutual influence in PubRank which is very important when one wants to 
calculate the influence of one author on another. Here, contribution means the order in 
which the authors appears in the paper such as first author, second author and so on, 
with first author is usually considered the main contributor of that work. The junior 
author who influences/collaborates with well known researchers as main contributor 
of work has more chances than that of a junior author simply influen-
cing/collaborating with well known researchers and (2) using static rankings is not 
practical as quality of work published in publication venues changes every year so as 
the ranking of publication venues and old static ranking lists available on the web 
does not provide latest rankings of publication venues. Due to aforementioned reasons 
we are motivated to propose StarRank algorithm which overcomes the limitations of 
PubRank in easy way. Our proposed method considers author contribution based mu-
tual influence of authors on each other’s in terms of order in which authors appears in 
the paper as well as latest (dynamic) scores of rankings for publication venues which 
is calculated using entropy. Our intuition to use entropy is based on the fact that the 
venues which are stricter in accepting papers to their areas of research are of higher 
level and has less entropy as compared to the venues which are not very strict in ac-
cepting papers to their areas of research and has higher entropy. Here one thing needs 
to be made clear that usage of entropy for scoring publication venues is workable for 
conferences/journals but not for workshops as they accept topic specific papers but 
they do not need to be of high quality because they are not finished or top level papers 
mostly.  

Our hypothesis is supported with the detailed experimentation which shows that 
our proposed StarRank outperformed existing method clearly for rising star finding 
task. The effect of algorithm parameters is also studied in details to find their suitable 
values for rising star finding task.     

The major contributions of this work are (1) contribution oriented co-author weight 
(2) entropy based dynamic publication venue score (3) unification of contribution 
oriented weight and dynamic publication venue score (4) and experimental evaluation 
of our proposed method on the real world dataset of DBLP.  

The rest of the work is arranged as follows. Section 2 provides the literature review 
of tasks performed in academic social networks followed by the applications of page 
rank in these networks. Section 3 provides the existing method with the detailed ap-
proach proposed by us for finding rising stars. Section 4 provides dataset description, 
performance evaluation procedure, parameter settings with results and discussions in 
different scenarios and section 5 finally provides the concluding remarks. 

Several concepts are used interchangeably in this paper such as academic social 
networks and co-author networks, conferences/journals and publication venues, pa-
pers, research papers and publications etc. 
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2 Related Work 

2.1 Tasks in Academic Social Networks 

Author interest finding focuses on who have interest in writing on some topics [6]. 
Authors based on their areas of research chose one or more topics to work on. Expert 
finding addresses the task of finding authors which are well known in their area of 
research [7]. Online publication databases like DBLP and CiteSeer provide very use-
ful information in which names are inconsistent, which is called named entity disam-
biguation task. Name entity disambiguation task have two major challenges which are 
(1) name sharing and (2) name variation [17]. 

Finding Association aims at discovering the relationships between nodes or 
people in social networks. Email networks also provide associations between the 
senders and receivers in several ways [1].With the emergence and rapid explosion 
of social applications and media, such as instant messaging (e.g. MSN, Yahoo, 
Skype) and blogs (e.g., Blogger, Live Journal) finding and quantifying the social 
influence of actors on each other is significant [18].The research has become too 
much planned and sophisticated these days. There are several challenging factors 
need to be considered, e.g. how to find that if someone is expert of a topic either he 
can be good advisor or not? [19].  

The competition between researchers has become very challenging these days so 
they want paper writing a quick process, so finding accurate citations quickly is im-
portant [8]. Community mining in co-author networks is important problem, where 
authors are connected to each other by co-authorships or paper citations and thus can 
be modeled as interaction graphs by considering semantics-based generalized topic 
models [9]. 

2.2 Applications of Page Rank 

PageRank is a very useful algorithm for ranking pages or important entity finding in 
graphs. TextRank [15] was proposed for extracting keywords, key phrases and sen-
tences from the documents and comparable results with supervised learning algo-
rithms are achieved. A weighted directed model AuthorRank for co-authors network 
is proposed by Xiaoming et al., [13]. The importance of an individual author and its 
popularity is weighted through prestige. People tag resources in the web according to 
their understanding of those resources results in developing social tagging systems 
which have emerged quickly on the web. FolkRank [11] algorithm is proposed to rank 
users, tags and resources on the basis of undirected links between them. An important 
area of research in Bioinformatics is biological network analysis. Personalized Page-
Rank [12] is proposed to find important proteins in protein networks. Finding rising 
star is investigated through mutual influence and static ranking of confe-
rences/journals. Mutual influence did not consider author contributions and static 
rankings usage is not correct as rankings of conferences/journals keeps on changing 
so are dynamic, which motivated us to propose StarRank [20]. 
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3 Finding Rising Stars 

In this section, before describing our (1) author contribution based, (2) dynamic pub-
lication quality based, and (3) composite StarRank approaches, we briefly introduce 
related existing approach PubRank [20] for rising star finding. 

3.1 PubRank 

PubRank method [20] was proposed to find rinsing stars from academic social net-
works. It can be used to find authors which can be future experts. They considered 
two main points (1) Mutual influence among the researchers in term of co-authorships 
and (2) track record of researcher’s publications in terms of publishing in different 
level of publication venues.  

Firstly, a graph is considered in which nodes describe authors and edges describe 
co-author relationships for calculating mutual influence. The main idea was that if a 
junior researcher can collaborate with expert senior researchers or can be able to in-
fluence their work he has bright chances to be a future expert. A novel link weighting 
strategy is proposed. When authors ( , ) are co-author in any article to calculate 
the weight of author they put the weight = ( , ) as fraction of  author 
which is co-author with . Moreover, the weight of  = (  , ) is fraction of . 
This weighting strategy is based on the intuition that a junior researcher will influence 
its senior researcher less and senior will influence more as he has more publications, 
which reduces the junior researcher fraction of co-authored work. The following ex-
ample explains how the influence is calculated.  

Suppose we have two authors K with 4 papers and L with 3 papers. If they have 
co-authored two papers with each other, the weight with which they influence each 
other is calculated as: , , 0.4 , , , 0.66  (2)

Here, PAl and PAk are the total number of papers written by authors L and K. (Al,Ak) is 
the number of co-authored papers between authors L and K. The weight W(Al,Ak) with 
which author Al influences author Ak is less as compared to the weight W(Ak ,Al) with 
which author Ak influences author Al. As the number of papers written by author Ak are 
5 which are more in number as compared to Al, So, Ak is a senior and influences Al 
more.   

Secondly, prestige of publication venue is considered for calculating the track 
record of researcher’s publications. The reputation of a researchers work can by 
judged by number of citations his papers have which is biased towards earlier publica-
tions as publication needs time to be cited by other papers. Rising starts cannot have 
many highly cited papers. So the publication venue levels in which they have pub-
lished the papers are considered. The main idea behind this intuition is that if a re-
searcher is publishing in high level venues in the beginning of his career he has bright 
chances to be an expert in future. A static ranking scheme available on web [14] is 
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used with following ranks. Rank 1 (premium), Rank 2 (leading), Rank 3 (reputable) 
and Rank 4 (unranked). The publication quality score for each researcher is calculated 
by using the following equation.  λ | |   (3)

where, λ  is publication quality score of author  all publications the larger the 
better,  is ith publication, r (pub) is publication rank of the paper and ∝ value is 
between (o<∝<1) which is damping factor so low rank publications can have low 
scores. 

Finally, mutual influence among the researchers and track record of researcher’s 
publications is hybridized in PubRank as follows.   ∑ ,∑ ,| || |   (4)

where, n is total number of scientist, ,  is weight for authors influencing 
author Ai,  is publication quality score of author and  is the 
PubRank of authors linking to author .  

3.2 StarRank 

In this section, StarRank is proposed by us to find rinsing stars. Based on the intuition 
of Sekercioglu [5] of quantifying coauthor contribution in a research paper we pro-
posed author contribution based mutual influence calculation method among the re-
searchers. We also proposed a dynamic way of calculating the scores for publication 
venues in comparison to simply using a static list(s), which provided out dated rank-
ing [20]. Finally both are combined to propose Composite StarRank. 

3.2.1    Author Contribution Based StarRank (AC StarRank) 
A graph is considered in which nodes describe authors and edges describe co-author 
relationships for calculating mutual influence in PubRank [20]. In addition to this 
information the order in which authors are appeared in the papers is also considered 
with first author as maximum contributor. Less contributed author score would be less 
and more contributed author score should be more based as discussed by Sekercioglu 
[5]. When a paper has more than one co-author in that case equal contribution score 
given to all of them is unfair. We have proposed a novel link weighting strategy based 
on author order based contributions. For example, a paper has 4 authors and if an 
author appears at number one, he will have more contribution as compared to author 
appeared at number four. The main idea is that if a junior researcher can collaborate 
with senior researchers and can influence their work as a main contributor such as by 
appearing at number one or two in the paper he has bright chances to become future 
expert.  
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Suppose we have four authors K, L, M, N; K with 4 papers, L with 3 papers, M 
with 4 and N with 3 papers with each other. The order in which they appear in the 
paper is given in the following. The author K and L co-authored and M and N co-
authored the papers with each other highlighted as bold face letters in the following 
table. 

Table 1. Authors with their papers and order of appearance 

Authors Paper No (order of appearance) 

K 1(1), 2(3), 3(2), 4(1) 

L 1(2), 2(2), 3(1) 

M 1(1), 2(3), 3(2), 4(1) 

N 1(3), 2(4), 3(4) 

One can see that L is junior researcher in co-authorship of K and L as L has 3 pa-
pers and K has 4 papers and N is junior researcher in co-authorship of M and N as N 
has 3 papers and M has 4 papers. In this co-authorship scenario L has 1 paper as first 
author and 2 papers as second author while N has 1 paper as third author and 2 papers 
as fourth author.  

 , ∑ ∑∑ . . .. . 0.823   

 , ∑ ∑∑ . . .. . 0.67   

(5)

 
Here, ∑ and ∑ is the total contribution of author K and M in all papers 
written by them. ∑ ∑  is the authors L and K contributions of co-authored 
papers. For example, author L has co-author paper 1 with author K as second author 
2(2) so its contribution is ½ =0.5, which we get from 1/R where R is the rank of au-
thor [5] in the co-authored papers. 

The author contribution weight ,  with which author  influences  
is 0.823 which the contribution weight ,  with author  influences  
is 0.67 which is less, as in the co-authored papers L is at number 2, while N is number 
three in one paper and number four in other paper. They both (L, N) have same num-
ber of papers and co-authored papers as well as their seniors have same number of 
papers but L was able to more influence his senior researcher due to more contribu-
tion in the work he has co-authored.    

3.2.2    Dynamic Publication Venue Based StarRank (DPV StarRank) 
In this section dynamic publication venue based StarRank score is calculated using 
entropy. We have calculated entropy of publication venue. The entropy is a measure 
of disorder in Physics and less disorder means the systems is better. The same phe-
nomenon is workable here in this work as high level venues has low entropy while the  
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non high level venues will have higher entropy. Here, it is necessary to mention that 
using entropy enables us to calculate venues influence for the existing and new com-
ing venues.  

In case we use existing online list of venues levels there can be different problems. 
Such as (1) the list may not or usually do not contains all venues and (2) new coming 
venues will be added later or may be missed on some occasions. Entropy of venues is 
calculated by using the following standard equation in which  is the probability of 

 in a venue v. The title words of papers published in a venue are used for calcu-
lating the entropy of venues. The lesser the entropy is better as it corroborates that the 
venue has less disorder due to only accepting papers on its specific areas mentioned in 
call for paper page.  

  _ ∑   (6)
 

The publication quality score for each researcher is calculated by using the following 
equation.  

 λ | | E V   (7)

 
where, λ  is publication quality score of author  all publications the larger the 
better,entropy of venue is publication rank of the paper and ∝ value is between 
(o<∝<1) which is damping factor so low rank publications can have low scores. 

3.2.3    Composite StarRank 
In this section composite StarRank method is provided which calculates the rank of 
author according to author contribution based mutual influence and dynamic publica-
tion venue based scores.  
 ∑ ,∑ ,| || |          (8) 

 
where,  is hybridized score for authors with the higher the score the 
author is considered rising star. 

4 Experiments 

4.1 Dataset 

The dataset is taken from Digital Bibliography and Library Project DBLP [21]. The 
data of 1996-2000 is used to predict rising stars. The title of paper, author name and 
conference/journal where papers have been published are considered as data va-
riables. Stop words are removed and lower casing is performed as standard text pre-
processing steps. 
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4.2 Performance Measurement 

The ground truth ranking of rising stars is not available. The authors ranked top using 
StarRank and their standings are checked later in 2012 to verify if they have realized 
their predicted potentials or not for the performance evaluation of our proposed me-
thods. The number of papers and citations of papers are averaged for top ranked au-
thors for all methods using arnetminer [2]. If an author have high number citations for 
his papers he is usually considered better, while high number of papers can be useful 
but results and discussions explains that even an author A having less number of pa-
pers than author B can have more number of citations due to the high quality of his 
work. PubRank [20] which determines the rising stars from academic social network 
is used as existing method.  

4.3 Parameter Settings 

The value of alpha used in our experiments is 0.5 and damping factor value is 0.85. 
The detailed study of selecting these values for finding rising stars is provided in the 
sections 4.4.3 and 4.4.4. 

4.4 Results and Discussions 

4.4.1    Rising Stars 
Top ten rising stars found using composite StarRank are shown in Table 2. We have 
visited their web pages by searching their names in Google. One can see that all of 
them received at least 3937 or higher number of citations for their published papers. 
All the top ranked authors are working on key posts now in famous IT companies as 
well as top ranked universities. 

Table 2. Top Ten Predicted Rising Stars from StarRank 

Author Position Citation 
Wei Ying Ma Principal Researcher, Research Area Manager, Microsoft Research Asia 14355
Philip S. yu Professor and Wexler Chair in Information Technology, Department of Computer Science, University of

Illinois Chicago 
28429

Jiawei Han Professor, Department of Computer Science, University of Illinois at Urbana-Champaign 46654
Zheng Chen Senior Researcher , Microsoft Research Asia 3937
Divesh Srivastava AT&T Labs, Inc. 11520
Wei Wang Professor, University of North Carolina at Chapel Hill 9873
Hsinchun Chen Professor and Director, Management Information Systems Department Eller College of Management The

University of Arizona 
8161

Erik d. Demaine Associate Professor, Massachusetts Inst. Tech., Lab. for Computer Science 7361
Bertram  
ludaumlscher 

Professor of Computer Science, Computer Science Department Stanford University 29544

Lee Tan Provost's Chair Professor, School of Computing 6824

4.4.2 Comparative Study 
Top ten authors are found for all the methods. The average papers and citations of top 
ten authors are shown in Figure 1. For PubRank [20] the average number of papers 
and citations for top ten authors are 353.2 and 546.5 which are less in number as 
compared to our proposed three methods except for average number of papers of top  
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ten authors for DPV StarRank which is not important. One can see that even the aver-
age number of papers for DPV StarRank is less as compared to existing PubRank [20] 
and one of our proposed method AC StarRank but DPV StarRank has more number 
of citations for top ten authors which is usually used criterion for evaluating the quali-
ty of research work published. This shows that even papers are less in number but if 
they are published in high level venues they are cited more which shows their popu-
larity. It is clear from the Figure 1 that our proposed methods outperformed existing 
PubRank method in terms of average citation count for top ten authors.  

 

Fig. 1. Overall performance comparison 

4.4.3    Effect of Alpha Parameter  
Alpha is commonly used to measure the internal consistency or reliability of a psy-
chometric test score and can take value between 0 or 1. We always observe in terms 
of type I errors alpha, which are always small (0.1, 0.05, .01). The smaller alpha value 
gets the firm proof that the alternative is correct, because the probability of type I 
error is reduced, but in some case high value of alpha causes high variance [16]. We 
calculate the rank of author using the different values of alpha 0.1, 0.2, 0.3, and up to 
0.9 shown in Figure 2. When we set the alpha value 0.2 in all methods little bit change 
is observed in author rank, on value 0.3 author rank score is also increased a bit. For 
0.4 and 0.5 value of alpha, there is maximum number of average citations and are 
stable. Consequently, the value of alpha used by us for all methods is 0.5.  

4.4.4    Effect of Damping Factor 
Damping factor value of 0.85 is usually used for ranking pages on Web [3]. Google 
itself uses this value because it is easy to get refined results. High damping factor 
means low dampened and PageRank grows higher. The StarRank is calculated for 
different values of damping factor to see its effect on rising star finding in terms of 
average citations of top ten authors. The citations of authors gradually increases from 
lower to high value of damping factor and one can see from Figure 3 that for 0.7, 0.8 
and 0.85 maximum average citations are gained. In this paper we also used damping 

Papers Citations

PubRank 353.2 546.5

AC StarRank 362 632.55

DPV StarRank 278.3 780.45

Composite StarRank 385.2 833.25

0

100

200

300

400

500

600

700

800

900



22 A. Daud, R. Abbasi,

 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

A
ve

ra
ge

 C
it

at
io

ns

factor value of 0.85 though
ing factor on average citat
quality of research. As aver
can be considered to judge 

 

Fig. 2. A

Fig. 3. Effect 

5 Conclusions and

This paper addressed the p
tion oriented mutual influen
we can conclude that mutu
helped in improved results 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

A
ve

ra
ge

 C
it

at
io

ns

 and F. Muhammad 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value of Alpha

PubRank
Contribution based StarRank 
Dynamic publication venue based StarRank 
Composite StarRank 

h one can use 0.7 and 0.8 too. We study the effect of dam
tions only as they are most important factor to judge 
rage number of papers is not a very important factor wh
the quality of research for an author.  

Average citation on different values of alpha 

 

of damping factor in terms of Average Citations 

d Future Directions 

problem of finding rising stars based on authors’ contri
nce and dynamic publication venue scores. From the res
ual influence based author contributions are important 
for AC StarRank method. We can also conclude that w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

Value of damping factor

mp-
the 

hich 

ibu-
ults 
and 

when 



 Finding Rising Stars in Social Networks 23 

 

dynamic publication venue scores are used instead of static publication venues scores, 
improved rising star finding results are obtained. Results have shown that dynamic 
publication venue scores are more useful as compared to author contribution oriented 
mutual influence though when both of them are hybridized more improved results are 
obtained. One can say that workshops are more typical venues but papers rejected 
from conferences are usually presented in them or incomplete works are presented in 
them for improvement. In future we plan to consider discriminative model for predict-
ing rising stars as they are recently used to better predict experts for futures [10]. 
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Abstract. Community Question Answering services (CQAs) have be-
come ubiquitous, and are widely used. Hence, it would be beneficial if
we can mine useful inferences from these data sets to improve these ser-
vices. For example, if we can infer or identify expertise of users’ from
these data sets, we can route questions to the right people. With the
identification of expertise, number of experts needed to cover a set of
topics (in a CQA service) can also be optimized. This paper addresses
the problem of inferring expertise.

Current approaches infer expertise using traditional link-based meth-
ods such as PageRank or HITS, and others (e.g., number of answers given
by a user or Z score). Although an ask-answer graph can be generated for
a CQA data set based on the ask-answer paradigm (who answers whose
questions), this graph is different, in its semantics, from the web graphs.
We posit that both graph structure and domain information related to
an answerer (e.g., answer quality) is critical for inferring the expertise of
users. Based on this observation, we propose the ExpertRank framework
to compute users’ expertise. We establish that the information used has
a bearing on the accuracy of results. We present our algorithm along
with extensive experimental analysis that indicates superiority of our
approach as compared to other link-based methods.

1 Introduction

Community Question Answering services (CQAs) strive to provide users with
meaningful information using the ask-answer paradigm. These communities allow
users to post questions and other users to answer them. When a user posts a ques-
tion using a CQA service, different approaches are used to find appropriate users
to answer the question. Current communities mainly use the following approaches.

Questioner-Based Approach: In this approach, the user who asks the ques-
tion is responsible for choosing an appropriate expert to answer his/her question.
For example, AllExpert (http://www.allexpert.com/) provides a number of
statistics for each expert in their list including number of questions answered,
publications, awards received, and honors in relevant areas. After a questioner
browses this information, s/he can direct his/her question to one of the experts.

Answerer-Based Approach: This approach allows answerers to select ques-
tions that are of interest and answer them. Users post their questions to the
community as a whole and answerers choose the ones to answer. This method is

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 25–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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mainly used in many different CQAs, such as Yahoo! Answers (http://answers.
yahoo.com), Stack Overflow (http://stackoverflow.com/), etc.

However, the above-mentioned approaches have a number of drawbacks. In the
questioner-based approach, there are a large number of users and hence it is im-
practical to expect questioners to find an expert by browsing users’ profiles. Al-
though the other approach encourages various users to answer questions, this
method ignores answerer’s quality. If it is possible to assess the expertise of users
in an acceptable manner, one can identify a small set of users to answer a question.
The questioner will not only be relieved of this burden but is also likely to receive
better answers. This will also result in lesser number of message exchanges.

Although both information retrieval [12] and (extended) link-based methods
[20,9] have been used for discovering experts from CQAs, they do not seem to be
appropriate for this problem. Similarity score does not represent quality. Link-
based methods assume transitivity (if B can answer A’s question and C can
answer B’s question, C’s expertise rank is boosted because C is able to answer a
question of someone who has some expertise). This assumption may not be valid
when questions are asked on diverse topics and there is considerable overlap
among the users answering questions. Another, more important and critical,
observation is that the link-based methods do not use the quality of contents
associated with a link. We strongly believe that not using contents is not an
option for QA services as the very notion of an expert depends upon the quality
of answers given by that user.

Consider the following short example to illustrate the above observations.
Table 1 shows a few questions and some of their answers from the Stack Overflow
service for “C” language. Figure 1 shows the ask-answer graph for Table 1 using
the ask-answer paradigm. A directed edge is drawn from user u1 to user u2 if
user u2 answered one or more questions of u1. Table 2 shows the ranking result
for this graph using the PageRank (PR) algorithm where user B and D have the
same PageRank score (expertise score), but user B’s expertise should be higher
than user D as reflected by the voted score 1.

Table 1. A Sample from Stack Overflow

User Votes Content

Questioner A In C arrays why is this true? a[5] == 5[a]
Answerer B 330 Because a[5] will evaluate to: *(a + 5) and

5[a] will evaluate to: *(5 + a)
Answerer D -6 You can search the result on the Google.

Questioner B What is the best tool for creating an Excel
Spreadsheet with C#?

Answerer C 144 You can use a library called Excel Library.
It’s a free, open source library posted on
Google Code.

Questioner E How can Inheritance be modeled using C?
Answerer A 0 See also: http://stackoverflow.com/quest-

ions/351733/can-you-write-object-oriented-
code-in-c

A

B

C

D

E

A

B

C

D

E

Fig. 1. ask-answer graph

Table 2. PR score

Node PageRank
A 0.21
B 0.20
C 0.28
D 0.20
E 0.11

1 In CQAs, the voted score of an answer is the sum of all votes received for that
answer. A user can give a +1 for a good answer and a -1 otherwise.

http://answers.yahoo.com
http://answers.yahoo.com
http://stackoverflow.com/
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Different service-specific information can be extracted from CQAs to identify
answer quality. The voting information (shown in Table 1) is one piece of in-
formation. Another feature that represents answer quality can be “the length
of answer” used in [1]. In addition, we can also use question/answer similarity
score to approximate the answer quality of a user.

Contributions:

– We propose a framework using which CQA service-specific information that
represents quality can be incorporated into the ask-answer graph. We an-
alyze domain information from several data sets and indicate what can be
beneficially used.

– We present the ExpertRank approach which is based on the Katz index algo-
rithm [10] to measure users’ expertise and rank them. A tunable parameter
α (attenuation factor in Katz index) is used to control the transitivity aspect
of the ask-answer graph.

– Extensive experimental analysis is performed on multiple, diverse data sets
to show how the proposed algorithm and the domain information provide
more accurate results than traditional link-based and other approaches.

Road Map: Section 2 presents related work. Section 3 defines the problem
and motivates our approach. Section 4 describes our contributions along with
the ExpertRank algorithm and alternative ways of using domain information.
Section 5 shows extensive experimental results on three diverse data sets and
their analysis. Section 6 has conclusions.

2 Related Work

Some IR techniques (e.g., similarity score) have been applied to CQA data sets
to identify users’ expertise. Efforts by [2,12] build a term-based expertise profile
for each user and rank expertise based on the relevance scores of their profiles for
a question by using traditional IR models. The notion of quality is not captured
by similarity. Zhang et al. [20] propose four methods to identify expertise (or
rank users in expertise order): number of answers given by a user (#Answers),
Z score measure, PageRank, and HITS. Note that none of these methods use the
contents of questions or answers. The first two does not really capture quality as
they are not based on content but only on the number of questions and answers.
Traditional PageRank [15] and HITS [11] are also used again without considering
answer quality and hence the accuracy of these link-based algorithms is not good.
Campbell et al. [4] and Dom et al. [5] use the ask-answer paradigm for the ex-
change of emails in a group/community. They use HITS and in-degree methods,
respectively, to rank users’ expertise. They apply link-based algorithms to both
a synthetic graph and a small email graph to rank correspondents according to
their out-degree of expertise on subjects of interest. Again quality of answers is
not taken into consideration. Rode et al. [17] also use traditional link-based rank
approaches to rank entities and model them as a graph-based relevance prop-
agation framework, but their work focuses on ranking entities (and not users)
and on the XML/Web service system, not in CQAs.
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Liu et al. [13] use TrueSkill [6] and SVM models [14] to rank users’ expertise
score using competition-based approach. They assume that given a question, its
best answerer b has a higher expertise level than its asker a and other answerers.
Thus, they extract pairwise comparison for each question as the training data
set using |A| as the number of answers for each question. They show that their
approach is better than the link-based approaches. Our work is different in that
we are extending the link-based approach with different types of quality infor-
mation to rank the expertise of users. Our future work includes using the same
data set to compare these two alternatives.

Other work on expertise analysis is not directly related to ours. For example,
Pal et al. [16] extract six features from CQAs by considering the user’s motivation
and ability to help other users and build learningmodels, such as SVM and DTree,
to predict potential experts. We want to use quality information rather than moti-
vation and ability to help. Others, such as [21], also use the link mining approach
for ranking experts in the paper-author network, but out work is different in that
we focus on the question-answer networks and ask-answer graphs.

3 Problem Statement

This paper focuses on the general problem of mining expertise of users’ from a
CQA data set and rank them. As there are many paradigms used in CQA ser-
vices, different types of domain (or service-specific) information are available.
This paper evaluates the effectiveness and utility of quality as domain informa-
tion for the purpose of ranking.

Given a CQA data set consisting of users u1, u2, u3, ..., un along with questions,
answers, and available domain (or service-specific) information (e.g., votes), our
goal is to infer users’ expertise and rank them. Ranking of users will facilitate: i)
providing a list of ranked experts for a topic category, ii) directing questions to a
small set of experts, and iii) CQA services to optimize on the number of experts
needed. We would like to point out that expertise rank order is quite subjective
and can vary with respect to the evaluator. Furthermore, no real expertise rank
exists in the CQA data set itself. Thus, it is really difficult to find a standard (or
a baseline) to compare the evaluated rank order. As a result, one has to resort to
manual evaluation as is commonly done by researchers on this topic [20,4].

3.1 Motivation for Our Approach

Traditional web page graphs capture citation or reference relationships. A web
designer who is creating a page is likely to choose the best page (according to
him/her) as a reference from that page. Hence, in a web reference graph, the
number of times a web page is referenced can be used to evaluate the web page’s
quality. The same intuition is not true for an ask-answer graph as any usercan
answer any question and there is no guarantee on quality!

Characteristics of Ask-Answer Graphs: In contrast, an ask-answer graph
does not have the same intuition as the web reference graph. First, in CQAs,
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any answerer, no matter good or not, can give an answer to a question. Thus,
in an ask-answer graph, questioners, typically, cannot choose the best answerer.
In Figure 1, recall that the direction of the edge is from the questioner to the
answerer. Since, in an ask-answer graph neither asker nor answerer ensure the
quality of the links, we cannot directly apply these linked-based rank algorithms
to this ask-answer graph. Thus, we propose approaches that include quality
aspect into an ask-answer graph using domain information. We propose four
different approaches to include quality information for links in an ask-answer
graph using domain specific information in CQAs. Second, the ask-answer rela-
tionship is also different from the web page reference relationship. Using a URL,
we can directly extract web page reference relationship. However, we cannot
directly extract the ask-answer relationship from the QA data set, because be-
tween two users there may be a number of ask-answer relationships (each with
varying quality). Therefore, combining/aggregating these relationships together
to describe the ask-answer relationship becomes an important problem. Based
on our observation, we believe that for an ask-answer graph we cannot directly
use traditional link-based ranking algorithm to identify users’ expertise.

4 ExpertRank Framework

Based on our earlier observations, the ask-answer graph derived from a CQA
data set is enhanced. First, a weight is associated with each edge (or link) using
domain information that reflects quality of answers corresponding to that edge.
As an edge in an ask-answer graph is likely to reflect more than one answer given
by a user, it is not sufficient to use the number of answers given by a user as it
can be misleading. Qualitative value of all the answers need to be aggregated to
reflect the edge semantics. Otherwise, some spam users who give bad or irrelevant
answers will reach a high authority score. Since an edge from user ui to user uj

in an ask-answer graph indicates that user uj answered one or more questions
of user ui, the weight of the edge between users ui and uj takes into account:
the quality of user uj’s each answer for ui’s question, and the fraction of ui’s
questions answered by uj. Second, the transitivity relationship used in most of
the link-based approaches also need to be adjusted for each data set. We want
to derive this transitivity relationship from the data set itself as this is likely
to be specific to a data set. In this paper, we adjust the variable α (called the
attenuation factor in the Katz index) to reflect this transitive relationship. We
believe that this is important for these applications.

In the following sections, we discuss the use of different types of domain
(or service-specific) information, their relevance, and the computation of edge
weights for an ask-answer graph.

4.1 Voted Score Approach (VS)

A voted score (available in many CQA services such as Yahoo! Answers) for
an answer is the cumulative score of that answer as judged by users in the
community. A score, given by a user for an answer, is either a +1, or -1 reflecting
positive, or negative answer quality. A voted score is meant to reflect the quality
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of an answer. The voted score seems to be a better indication of the quality of
an answer (especially if a good number of high quality users (In Stack Overflow
only those user whose reputation is more than 15 can vote for an answer.) take
part in the voting process as shown in Table 1).

We compute the answer score as

A Score(ui, uj , qk) = V S(ui, uj , qk)

where A Score(ui, uj , qk) is the answer score for uj’s answer to ui’s question qk
and V S(ui, uj, qk) is the voted score of uj’s answer for ui’s question qk. We still
need to combine quality scores from different answers given by the same user.
Since this step is common to all the approaches it is discussed in Section 4.5
after describing the approaches.

4.2 Ranked Answer Approach (RA)

We need an approach for services that may not have a voted score or where the
voted score may not be reliable. Many services mentioned earlier do not have
a special voting phase. In order to overcome the limitations of voted score as a
quality measure and have a safer alternative for arriving at the answer quality,
we use an approach for ranking answers for quality as described below2.

We use a method along the lines proposed in Shah et al. [19] for obtaining
answer quality by extracting a set of features from the data set. Specifically, we
use the approach proposed in [3] for this purpose. This approach uses a learning
to rank approach (RankSVM [8]) and temporal features which have been shown
to [3] estimate answer quality better. We use the score obtained for each answer
as its quality score.

A Score(ui, uj , qk) = RankSVM(ui, uj , qk)

where RankSVM(ui, uj , qk) describes the ranking score of uj’s answer for ui’s
question qk. The accuracy of ranked answer approach is mainly decided by the
training data set and the features used. We will discuss this in section 5.

4.3 Information Retrieval Approach (Sim)

Traditionally, cosine similarity value is used in document retrieval and search.
Although we believe that this is not a very good measure for answer quality, we
use this to demonstrate the effect of answer content information for CQA data
sets. If the similarity between an answer and a question is low, we interpret this
answer having low quality since this answer is unrelated to the question. For
example, since in Table 1 user D gives a “bad” answer for user A’s question, the
similarity score between D’s answer and A’s question is 0. After removing stop
words from a question and its answers in CQAs and stemming them, we build
a question vector (a term vector extracted from each question) and an answer
vector (a term vector extracted from each answer for that question) and then
use VSM [18] to calculate cosine similarity between question and answer.

2 Note that any approach for ranking quality of answers can be used here; we are using
one that we are familiar with.
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4.4 Hybrid Approach (Hyb)

In order to improve accuracy, it is possible to combine multiple answer quality
scores into a composite score. Since we believe that the similarity score is not as
good as the others for measuring quality (see [3]), we propose to combine the voted
score with the ranked score. We use a parameter γ to adjust the contribution of
these two scores.We use the following formula to calculate the hybrid answer qual-
ity score. In Section 5, we discuss the choice of γ for real data sets.

A Score(ui, uj , qk) = γV S(ui, uj , qk) + (1− γ)RankSVM(ui, uj , qk)

4.5 Computing Edge Weights

Since voted score which is an aggregate varies significantly from answer to an-
swer, it needs to be normalized. We normalize the voted score using the minimum
and maximum values of the scores for each answer as follows:

minA Score(ui, qk) = min{A Score(ui, uj , qk)|j = 1, ..., n}
maxA Score(ui, qk) = max{A Score(ui, uj , qk)|j = 1, ..., n}

and the normalized A Score is computed as

NA Score(ui, uj , qk) =

A Score(ui,uj ,qk)−minA Score(ui,qk)

maxA Score(ui,qk)−minA Score(ui,qk)
+ ε

1 + ε

which is in the range [ ε
1+ε , 1]. ε is used to adjust the lower bound of normalized

values. We do not want to set the normalized value for the answer receiving the
lowest voted score to 0 because these answers have been assessed for quality as
opposed to answers that have not been voted upon (which receive a normalized
score of 0). Thus, if an answer receives the lowest voted score, its normalizedquality
score is equal to ε

1+ε . In our experiments, ε is set to 0.1. ε value greater than 0.1 or
0.15 does not make sense as it is a compensatory value. We use the average score
of all answers as the answer quality score between two users. That is,

A Quality(ui, uj) =

∑|QA(ui,uj)|
j=1 NA Score(ui, uj , qk)

|QA(ui, uj)|

where A Quality(ui, uj) describes the answer quality (of an edge from ui to
uj) and |QA(ui, uj)| is the number of ui’s questions answered by uj. Usually, if
A Quality(ui, uj) is high, user uj has been able to answer user ui’s questions well.

In addition to answer quality, the fraction of ui’s questions answered by uj

captures whether or not user uj is familiar with user ui’s questions. Hence, uj ’s
quality of answers need to be tempered by the fraction of ui’s questions answered
by uj and is calculated as

Q Factor(ui, uj) =
|QA(ui, uj)|
|Ques(ui)|

where |QA(ui, uj)| is the number of ui’s questions answered by uj and |Ques(uj)|
is the total number of user ui’s questions. Q Factor(ui, uj) is in the range



32 Y. Cai and S. Chakravarthy

of [0, 1]. The quality of uj’s answers to ui’s questions combines these two factors.
Thus, the weight of the edge between ui and uj is computed as:

QA Quality(ui, uj) = A Quality(ui, uj)×Q Factor(ui, uj)

where QA Quality(ui, uj) captures the quality of uj’s to answer ui’s questions
(i.e., weight of the edge from ui to uj). As the edge in this graph captures the
quality of answers to question, we term this graph a weighted ask-answer graph.
Users and relationships in CQAs are modeled as a directed graph G = (V,E),
where a node in V represents a user in this QA community and a directed edge
< ui, uj > from ui to uj indicates that uj answered one or more of ui’s questions.
The weight of the edge < ui, uj > captures the quality of uj’s answers ui’s
questions. For a user ui in this graph, we denote Q(ui) and A(ui), respectively,
as the set of questioners (in-neighbors) and answerers (out-neighbors). The kth

questioner for user ui are denoted as Qk(ui), for 1 ≤ k ≤ |Q(ui)|, and individual
kth answerers of user ui are denoted as Ak(ui), for 1 ≤ k ≤ |A(ui)|.

4.6 ExpertRank Algorithm

The expertise rank of a user ui (ER(ui)) is the sum of user ui’s quality score with
respect to ui’s questioners. Thus, we have our iterative equations to compute
ER(ui) as:

ERk(ui) gives the expertise score for user ui on the kth iteration and we suc-
cessively compute ERk+1(∗) based on ERk(∗). We start with ER0(∗) where each
ER0(∗) is equal to 0, which is the lower bound on the actual expertise scoreER(ui):

ER0(ui) = 0

To compute ERk+1(ui) from ERk(∗), we use the following equation:

ERk+1(ui) =

|Q(ui)|∑
j=1

QA Quality(Qj(ui), ui) + α

|Q(ui)|∑
j=1

ERk(Qj(ui))

For iteration k + 1, we update user ui’s expertise scores of his/her neighbors
from the previous iteration k.

Algorithm 1. ExpertRank

Require:
User Weighted Matrix U ;

Ensure:
Expertise Rank Vector, ER;

1: ER0 ← 0;
2: Do k = 0 to Max-Iteration K
3: For each element ER(ui)

4: ERk+1(ui) =
∑|Q(ui)|

j=1 U(Qj(ui), ui) + α
∑|Q(ui)|

j=1 ERk(Qj(ui));

5: End For
6: Normalize(ER);
7: If ( max(ERk+1(ui) − ERk(ui)) < � ) go to line 9;
8: End Do
9: return ER;
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Algorithm 1 outlines ExpertRank computation. It takes one argument U . In
line 1, ExpertRank algorithm initializes variables and sets all the user’s exper-
tise rank score as 0. Lines 2-8 implements iterative equation to calculate each
user’s expertise score. Line 6 is used to normalize the user’s expertise score
in each iteration. Lines 2 and 7 are used to stop this iterative algorithm. Al-
though the convergence of iterative expertise rank algorithm can be guaranteed
in theory [10], practically a tolerance factor � is used to control the number of
iterations performed. It is recommended to set � = 0.001, same as the one used
in PageRank [15]. The terminating condition of the iterative algorithm is:

max(ERk+1(ui)− ERk(ui)) < �

The algorithm stops when the maximal change of rate of expertise rank score
between two consecutive iterations for all the users is smaller than the threshold
�. In all of our experiments we have seen rapid convergence with the relative
expertise ranking score stabilizing in 40 iterations. Hence, we have fixed the
number of iterations (k) to be 40.

we also analyze the time and space complexity of this algorithm. Because the
weighted ask-answer graph is a very sparse matrix, we need to store only the
edges for the weighted graph; Therefore, the space required is O(e), where e is
the number of edges in this graph. Let d be the average of |Q(ui)| over all the
users ui. The time complexity of this algorithm is O(kdn), since in each iteration,
expertise rank score of ui is updated with values from this user’s questioners. n
is the number of nodes in the graph. As d is the average of |Q(ui)| over all the
users ui, it can be treated as a constant as it is not likely to increase with n.

4.7 Discussion of α

Recall that α describes the transfer probability in the QA community. If α
is small, ExpertRank will only consider local information (a smaller scope of
graph); if α is large, ExpertRank will consider global information (a larger scope
of graph). For example, Figure 2 is a sample ask-answer weighted graph and
Table 3 shows ExpertRank’s results for different values of α. It is clear from the
graph that users d and f answer questions, and e further answers questions of
d and f. If the entire graph is considered, e should come out with the highest
expertise score followed by d and e. If only local information is used, d and e
should come out as equal experts. This translates to the values of α as follows. If
α is 0.5, node e receives the highest expertise score. However, if α is 0.05, node
d and f receive the highest expertise score. Table 3 also shows ranking results
of PageRank and In-Degree. PageRank considers global graph information to
rank each node; In-Degree just considers its neighbor nodes to rank the node.
In this example, when α is 0.5 (large), ExpertRank has the same rank order
as PageRank; when α is 0.05 (small), ExpertRank has the same rank order as
In-Degree. This example clearly shows that ExpertRank’s results shift from local
to global with the increase of α.
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Fig. 2. A Sample Ask-
Answer Graph

Table 3. Results of Rank Algorithms for Figure 2

Nodes ER(0.5) ER(0.1) ER(0.05) PageRank In-Degree HITS
a 0.18 0.30 0.32 0.05 0 0
b 0.18 0.30 0.32 0.05 0 0
c 0.18 0.30 0.32 0.05 0 0
d 0.45 0.39 0.37 0.18 3 0.61
e 0.63 0.38 0.35 0.34 2 0
f 0.45 0.39 0.37 0.18 3 0.61
f 0.18 0.30 0.32 0.05 0 0
g 0.18 0.30 0.32 0.05 0 0
h 0.18 0.30 0.32 0.05 0 0

1 ER(0.5) means that α in ExpertRank is 0.5.
2 � in all the algorithms is 0.001.

5 Experimental Analysis

We use different data sets to test our approaches (See Table 4).

Stack Overflow (SO) Data Set: This service focuses on computer program-
ming topics. Unlike other traditional QA services, SO allows a user to modify
other user’s answers. As a result, the average number of answers for each question
is only 2.36. We consider the first user who posts the answer as the answerer, be-
cause, in most cases, the first user is likely to provide a larger contribution than
others. Each question is marked with a topic tag (e.g., “C”). We use questions
marked as “C” (“Oracle”) as SO-C (SO-O) data set.

Turbo Tax (TT) Data Set: TT service discusses tax-related issues. This
community enrolles many experts to answer questions, so most of the users are
mainly questioners. Thus, the average number of answers for each question is
only about 1.11. We choose questions between 2009.1-2009.4 for our experiments
as this community is very active in that period.

Table 4. Data set Characteristics

Data set #Questions #Answers Avg (V) #Qs (1A)
SO-C 25,942 91,615 2.6 5,576
SO-O 8,644 21,879 1.6 2,811
TT 232,411 257,113 1.3 215,163

1 Avg (V) is the average number of votes for each
answer.

2 #Qs (1A) is #questions having 1 answer.

Table 5. Characteristics of 50
Random Users

Data set #Questions #Answers
SO-C 134 1,492
SO-O 246 2,408
TT 17 23,453

5.1 Evaluation Method

For these studies, baseline or a standard with which to compare results is ex-
tremely important. For some scenarios it is easy to find or derive a baseline.
Similarity is one such standard that is widely used in information retrieval. We
believe that similarity is not a very good measure for our problem. Our problem
for finding a standard for comparison is exacerbated by the fact that the notion
of expertise itself can be quite subjective. Hence our choice of data sets to areas
where that issue is minimized. There is no user expertise rank information in the
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data sets nor can it be derived from the data sets. Hence, as has been done by
other researchers (e.g, [20]), we have used human experts to manually evaluate
the expertise of users in each data set. Due to the large number of users (as can
be see from Table 4) it is impossible to manually rate all users in the data set.
Hence, we randomly choose 50 users in each data for manual evaluation. We only
choose users who have answered at least 10 questions to ensure enough content
for manual evaluation. Five levels of expertise (again commonly used in these
studies) as shown in Table 5 were used.

Table 6. Five Levels of expertise rating

Level Meaning Description
5 Top Expert Knows core theory and advanced topics
4 Professional Expert Can answer most questions and knows one or more sub topics well.
3 General Expert Knows some advanced concepts in these topics.
2 Learner Knows some basic concepts
1 New Recruit Just starting to learn these topics

We have used two independent experts who are very familiar with the “C
language” and the “Oracle database” from the computer science department
to evaluate the two SO data sets. We have used two experts from the business
department to evaluate the “Turbo Tax” data set. None of these experts take part
or are associated with this research. After each expert evaluated the data sets
independently, for sanity check, we used Kendall’s τ [7] score to compare these
two users’ rank lists. The Kendall’s τ distance between two raters is 0.741 for
SO-C, 0.761 for SO-Oracle, and 0.711 for TT. In order to maintain consistency
of evaluation, we remove users from our evaluation whose score differs by more
than 1 level in Table 6. Based on this criteria, we have removed 3 users from
the SO-C, 2 users from SO-O, and 5 users from TT data set. After this, the
Kendall’s τ has improved to 0.793 for SO-C, 0.783 for SO-O), and 0.788 for TT.
As we add the rating of two raters, there are a total of 10 categories.

The metric used for comparison is also important. In the information retrieval
area, researchers use a number of measures to evaluate the rank list’s accuracy;
one of them is the DCG (Discounted Cumulative Gain) score [7]. Intuitively,
the DCG score evaluation method penalizes experts with a higher rank if they
appear lower in the list. Hence, this evaluation metric matches well with our
application requirement3. Since DCG score is not between 0 and 1, we use the
Normalized DCG (or NDCG) [7] to evaluate the ranked list. If NDCG@n is large,
this algorithm’s rank order will match well with the standard; If NDCG@n is
small, this algorithm’s rank order does not match well with the standard.

Methods for Comparison: In the literature, four methods have been used
for predicting the expertise of users. In this paper, we have proposed four
ExpertRank-based approaches – ER (VS), ER (RA), ER (Sim), and ER (Hyb) –
for doing the same. Our analysis will compare these eight methods for accuracy:

– HITS: Jurczyk et al. [9] use the HITS authority score to identify users’ expertise.

3 Kendall’s τ is a measure for the list where as NDCG can be calculated for various
positions.
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– PageRank: Zhang et al. [20] use the PageRank score as the expertise score. In our
experiments, the parameter d (the damping factor) is 0.85 (the highest accuracy).

– #Answers: Zhang et al. [20] use the number of questions answered (or number of
answers) as users’ expertise score.

– Z Score: Considering both the number of questions and answers, Zhang et al. [20]
use Z score to identify users’ expertise.

– Four approaches in this paper: ER (VS), ER (RA), ER (Sim), and ER (Hyb).

Intuitive Analysis: Our premise is that there is a need for quality information
in addition to structure to predict expertise. We expect both ER (VS) and
ER (RA) approaches to do better than methods that do not use the above
information (PageRank and HITS). Z score and #Answers have been shown to
be better than the link-based methods in [20]. Our experiments indicate the
same. Intuitively, we do not expect the similarity approach to do better than
any of our approaches as merely the similarity information is not sufficient to
infer answer quality. Finally, we expect the ER (Hyb) to do much better than
all others as it combines two different and meaningful quality information.

5.2 Experimental Results

Parameter α affects the accuracy of ExpertRank score directly. This parameter
is application dependent. In order to study the effect of this parameter, for the
SO-C data set, we compared accuracy with the standard by changing the α value
and found as expected that the accuracy is high for the α value of 0.1. We have
used this value for all data sets. This also indicates that although we choose
the questions from a special domain, the transitivity of the ask-answer graph is
low. In other words, questions for each user cover a large scope. Eventually, this
parameter need to be tied to the characteristics of the data set.

Analysis of ER (RA): The accuracy of ER (RA) is mainly decided by the
training data set and the list of features used. In order to study the effect of the
training data set4, we chose the training data set in two ways. The first choice
included 1000 questions each of which has more than 5 answers. In the second
alternative, we randomly chose 1000 questions without imposing any constraints.
We show the results of these alternatives as ER (RA-5A) and ER (RA-Ran)
respectively. Figures 3a, 3b, and 3c show accuracy results of ER (RA-5A) and
ER (RA-Ran). Intuitively, more answers provide better quality values and hence
should perform better than random selection. Indeed ER (RA-5A) shows better
NDCG curve as compared to ER (RA-Ran) method for all the data sets. The
reason can be explained as follows. Some of these CQAs data sets have a lot
of questions that have only one answer (see Table 4). RankSVM cannot build a
very good ranking model for these questions because the rank is the comparison
for at least two elements. Because ER (RA-Ran) randomly chooses questions
from the CQAs, training data set will contains a lot of questions which have

4 Due to space constraints, we are not discussing alternate choices for features in this
paper.



Expertise Ranking of Users in QA Community 37

only one answer; Therefore, the ER (RA-Ran) model receives a lower accuracy
than ER (RA-5A). Moreover, Figures3a, 3b, and 3c clearly indicate that in the
TT data set the accuracy improvement from ER (RA-5A) to ER (RA-Ran) is
much higher than the other two data sets. This is because in the TT data set
more than 90% of questions has one answer. As ER (RA-5A) is better in general,
we only compare ER (RA-5A) with the other algorithms.

Parameter γ in ER (Hyb): ER (Hyb) uses γ to combine ER (VS) and ER
(RA). Figures 3d, 3e, and 3f show the accuracy for different γ values (0.25,
0.5, and 0.75). When γ = 0.75, ER (Hyb) reaches the highest accuracy in SO-
C; When γ = 0.5, both SO-O and TT data sets ER (Hyb) reach the highest
accuracy. To understand this, take a look at the average number of votes for
each answer in the SO-C data set which is 2.6. In contrast, in SO-O and TT data
sets the average number of votes for each answer is 1.6 and 1.3 respectively. (see
Table 4). More voting results in a better quality assessment and hence weighing
it higher is more useful for the hybrid approach. Based on this analysis, γ can be
chosen based on the characteristics of the data set which are easy to compute.
A similar analysis can be performed for the accuracy of the features and the
training data set to further determine the value of γ in ER (Hyb).

Accuracy Analysis: In these experiments, an NDCG score of 1 is desirable
for as many values of n as possible. A score of 1 up to an n indicates that the
predicted expertise matches the baseline completely up to n experts. Hence, the
goal is to improve the n value for which the NDCG score is 1. Even improvements
by a small n is significant when identifying top k experts. For example, extending
the NDCG score of 1 from @2 to @3 is an improvement of 50%. We have obtained
an improvement of 40% for the TT data set and 160% for the SO-C data set.
For the SO-O data set, our approach has achieved an NDCG score of 1 for @3
as compared to none of the earlier approaches even reaching an NDCG score of
1 for any n.

Figures 4a, 4b, and 4c show the comparison of 8 approaches for all three data
sets. Our experimental results clearly indicate: (i) in general, our approaches
(ER (Sim), ER (VS), ER (RA), ER (Hyb)) have better NDCG scores (for more
n) as compared to the other four methods proposed in the literature. We believe
this is due to the inclusion of answer quality and α, (ii) #Answers and Z Score
methods have better NDCG curves than PageRank and HITS. The reason can be
explained as the transitivity relationship in the QA community is much weaker
than web page graphs, (iii) Z score reaches similar accuracy as #Answers. In
the QA community a user who answers a lot of questions is likely to ask few
questions. In our test data sets these 50 users answer more than 10 questions and
they ask very few questions (See Table 5). Thus, Z score and #Answers have
similar NDCG curves, (iv) PageRank and HITS have similar results because
both of these two algorithms consider the transitive property as we discussed in
section 2, (v) ER (Sim) receives the lowest accuracy compared with the other
three approaches, namely ER (VS), ER (RA) and ER (Hyb). The reason can be
explained as similarity score only identifies the most related answer for a question
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Fig. 3. NDCG score for ER (RA) and ER (Hyb)
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Fig. 4. NDCG score for SO-C, SO-O and TT data set

but does not discriminate quality, (vi) in SO-C data set ER (VS) is better than
ER (RA); in SO-O and TT data set ER (RA) is better than ER(VS). The reason
is that in SO-C data set each answer receives enough votes and hence ER (VS)
is much more effective in identifying the users’ expertise, (vii) in SO-O data
set, only ER-based approaches show a NDCG score of 1, and finally (viii) as
expected, ER (Hyb) reaches the highest accuracy in all three data sets because
this method combines both ER (VS) and ER (RA) together with the right value
for γ (γ = 0.75 for SO-C and γ = 0.5 for SO-O and TT).
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In summary, out initial hypothesis that both structure and answer quality are
needed for these applications is borne out by the experimental results. Further,
we have shown how to use alternative and available domain information benefi-
cially. We have tied the values of weights to data set characteristics so that they
can be determined easily.

6 Conclusions

We have analyzed the ask-answer graphs generated from a CQAs and highlighted
subtle, but important differences with the conventional web graphs. Based on
these differences, we have proposed the use of domain (or service-specific) infor-
mation for mining expertise rank from CQA data sets. We have proposed the
ExpertRank framework and several approaches to predict the expertise level of
users with good accuracy by considering both answer quality and graph struc-
ture. We have demonstrated the effectiveness of our approach by comparing
them with traditional link-based approaches.
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Abstract. While most existing work about community focus on the
community structure and the tendency of one individual joining a
community; equally important is to understand social influence from
community and to find strategies of attracting new members to join the
community, which may benefit a range of applications. In this paper, we
formally define the problem of community expansion in social network,
which is under the marketing promotional activities scenario. We pro-
pose three models, Adopter Model, Benefit Model and Combine Model,
to present different promotion strategies over time, taking into consider-
ation the community structure characters. Specifically, Adopter Model
is based on the factors that can make an individual come into a commu-
nity. Benefit Model considers the factors that attract more new members.
Combine Model aims to find a balance between Adopter Model and Ben-
efit Model. Then a greedy algorithm ETC is developed for expanding a
community over time. Our results from extensive simulation on several
real-world networks demonstrate that our Combine Model performs ef-
fectively and outperforms other algorithms.

Keywords: community expansion, community, strategy, social network.

1 Introduction

More and more people use online social sites, such as Facebook, Twitter and
LinkIn to share interests and contact with each other. Its pretty impressive to
see that by 2012, Facebook has more than 800 million active users, with Twitter
100 million and LinkedIn over 64 million in North America alone[1]. Due to their
great social influence, some researchers study the structure of social networking,
e.g.community detection, to simplify the representation. Some research work
focus on the viral marketing analysis based on social medias. However, social
medias or social communities need to develop themselves such that they can
obtain greater influence and provide better service. In this paper, we argue that
it is equally important to study the strategy for community expansion, which
may carry significant benefits for a range of applications, such as
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i)Broaden Sales Horizons. Every company is looking for more customers to
increase new sales. How to find potential customers is important especially when
the marketing budget is limited. Community expansion problem analyzes how
existing customers organized. And who should be potential new customers. It
can provide strategy to increase customer community.

ii)Political Campaign. With the advent of Internet technology, the concept
of community has less geological constraint. In some cases, it refers to a group
people who have common will. Enlarging alliance is a good approach for political
candidates to spread their influence towards decision making process. Modeling
such influence based on community structure offers valuable insight in choices
during campaign activities.

iii)Boost Exhibition Participation. Trade shows and exhibitions support a
significant opportunity to enhance brand and product visibility. As the organizer
of exhibitions, lager size and higher level participators can improve the fame
of exhibition. How to choose excellent exhibit display participators that meet
marketing needs and budgetary requirements can be found in our problem.

To illustrate our problem clearly, consider the following example. Suppose a
company employs some salesmen to do promotional activities towards new cus-
tomers. All the salesmen know the structure of the whole social network, that is
who has relationship with whom. Since the cost of the promotional activities is
limited, each salesman can only do the promotion to one person during a certain
period. Our goal is to find a strategy for each salesman so that after several
times there are new members as much as possible.

The challenged part is how to select the next potential customers to do the
promotion. If the total number of new customers is our objective, we should not
only consider those who are easily persuaded to come into the given commu-
nity. Notice that each time when new customers come into the community, these
new customers have influence on the structure of the community. In common
sense, popular people may bring more customers but it is more difficult to per-
suade these people join the community. However, if more people came into the
community, it will have more probability to attract those popular people.

Our paper engage in solving this problem. The main contributions of this
paper can be listed as follows:

i)Formulate the problem of Community Expansion in social networks.
ii)Build three models for expanding the community, Adopter Model, Benefit

Model and Combine Model. The first model considers factors that make an
individual come into a community. The second model considers factors that
make an individual attract more new members. The third model aims to find
balance between Adopter Model and Benefit Model.

iii)Propose a greedy algorithm based on the above three models to present
the community expansion progress. Based on the experiment results, an analysis
is given to show which model is proper for which community structure.

The rest of this paper is organized as follows. In the next section, a brief
overview of related work is introduced. Section 3 present the formal definition of
our problem and several relative terms. We also compare our problem with other
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similar problems in this section. Section 4 give three models for our problem. A
greedy algorithm based on these models are proposed in section 5. The simulation
results and conclusions are showed in section 6 and 7 respectively.

2 Related Work

There are a lot of work focus on social network structure and their diffusion.
Newman, et al[2, 3] gave the definition of community that the nodes inside the
community have tighter connections than nodes outside the community. New-
man’s Q value is considered as an important measurement for detecting commu-
nity. Nguyen, et al[4] analysis four basic events occurring in dynamic network
and propose adaptive algorithms separately to update the network community
structure. Lars, et al[5]use decision tree to study the factors which influence
an individual to join communities. They also study which community has more
propensity to grow and how to measure the movement of individuals between
communities. Kumar, et al[6] partition the nodes in network into three segments:
singletons, middle region and giant component. Instead of using snapshot of net-
work, Kumar put their experiments on entire lifetime of two large social network
Flickr and Yahoo! 360 to study the overall properties of network and how these
communities grow and merge. Their work are both based on the self develop-
ment of a community which are different from the strategy that aims to enlarge
a community as we study here. Other researchers [7–9] focus on marketing on
social network. Domingos, et al[10] employ Markov random field to model the
marketing value for each individual from collaborative filtering databases. The
model use the influence between customers to increase the benefit. In [11] the
authors extend their previous work by considering each customer’s fund and re-
ducing the computational cost. They apply the idea on knowledge-share sites.
Generally, their work focus on the benefit which one single individual bring to a
network but ignore the global group profit.

Information propagation problem is to find a set of initial set of users in a
social network such that from this set the spread of influence in the network can
be maximized[12]. Linear Threshold (LT ) Model and Independent Cascade(IC)
Model are two main approaches to formalize the influence maximization problem.
Chen, et al[13] propose a MIA model and its heuristic algorithm to address the
scalability and efficiency issue in large scale networks. Shaojie, et al[14] consider
the links relationship impact on the information propagation. Saito, et al[15]
predict the final influence over the whole network from a given initial set without
modeling the diffusion process. They apply the expectation maximization(EM)
algorithm to learn the influence probabilities. Goyal, et al[16] use action log to
learn influence probabilities on each user. Their method can predict whether a
user will take an action and tell when the action will be performed. Our work is
different from all of the above. The comparison will be given in section 3.4.
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3 Problem Formulation

3.1 Preliminaries

We start with introducing a set of fundamental concepts used throughout the
paper. We denote the social network as a graph G = (V,E,W ), where V is a
set of vertices, E is the set of edges and W is the weight matrix for edges. In a
social network a vertex v corresponds to a person. An edge e = (v, u) represents
a connection between vertices v and u. wvu represents the connection weight
between v and u.

Definition 1. Target Community(TC): TC is a subgraph of G whose size
we aim to enlarge. TC satisfies the definition of community that nodes inside
the community are more densely connected internally than with the rest of the
network. We consider the nodes inside TC as original customers(OC) while the
nodes outside TC as potential customers(PC). Let TCs = {TC1, TC2, ..., TCT}
be a series of target community, where TCk is a snapshot of a target community
TC at time tk,(k∈ [1, ..., T ]).

Definition 2. Sales List(SL): SL is a subset of nodes which are outside the
target community (i.e PC). Suppose there are M sales lists such that PC =
SL(1) ∪ SL(2) ∪ ... ∪ SL(M). Note that we allow that different SL can have
different number of nodes and one SL can have different versions over time,
denoting the version at time tk as SL(m)k,(k∈ [1, ..., T ],m∈ [1, ...,M ]).

Definition 3. New Customers(NC): Some customers will decide to join in
TC after promotion. Among these new customers someone join because of pro-
motional activity from salesmen. We define them as Mark Customers MC. While
others receive no promotion but are influenced by their friends. We define them
as Automatical Customers AC. The number of NC changes with each promotion
time tk and NC = MC ∪AC.

3.2 Problem Definition

The progress of community expansion can be considered as the result of com-
munity attraction to individuals outside the community. The attraction can be
departed to two parts.

1. Due to promotional activities from the target community, some potential
customers are attracted. We denote the direct influence from target community
to an individual i as fTC→i.

2. Through ”word of mouth”, some customers should be influenced by their
neighbors. We denote the influence from one individual i to another individual
j as fi→j .

The final influence from target community to one individual i can be described
as

FTC→i = fTC→i +

d(i)∑
k=1

wijkfi→jk (1)
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where d(i) denotes the number of neighbors of i. wijk denotes the influence
weight between i and j.

Suppose at time slot t, each salesman chooses one customer from their sales
list and form the promotion target customers set Lt = {it1, it2, ..., itm}, recall that
m is the number of sales lists. Then our problem can be defined as

Community Expansion Problem. Given social network G(V,E,W ), sales
list SL, target community TC and time slot t ∈ {1, ..., T }, find nodes sets Lt,

such that the influence from TC to Lt,
∑T

t=1 FTC→Lt can be maximized.

T∑
t=1

FTC→Lt =

T∑
t=1

(

m∑
a=1

fTC→ita
+

m∑
a=1

d(ita)∑
b=1

witajb
fita→jb) (2)

In our paper, the influence f refers to attracting new customers. Specifically, the
result of fTC→i can be seen as customer i who accepts promotion and chooses
to be a new member of TC(i.e Mark Customer(MC)). The value of fi→j can
be considered as customer j who did not receive promotion but was influenced
by friend i, decides to join TC as well(i.e Automatical Customer(AC)). To ex-
tend our problem, influence function f can be described in other ways, such as
generating new connections or strengthening existing connections with TC.

3.3 Problem Assumptions

Our problem of expanding Target Community is based on the following assump-
tions:

i)Specific Potential Client Each Time. That means in each time slot tk each
salesman can do the promotional activity to one and only one potential customer
in their corresponding Sales List. Once one potential customer was chosen to be
promoted, he or she should be removed from the Sales List.

ii)Closed Customers Information Open Community Information. We
assume that Salesmen don’t share their own potential customers information
with each other. That means any two Sales Lists are not overlapping. However,
each person in the network G can get the latest information about the Target
Community structure. After each time slot, each person will obtain the TC
information and check whether the changes will affect its action.

iii)No New Connection Details. After each promotional activity, there might
be some New Customers(NC) come into TC. However, in our paper we assume
that the connections among the nodes in NC won’t change in T time slots. That
will be true since in real world, T time slots might be very small compared to the
time which the Target Community uses to build up. The network may be very
large and complex so that even there are some connections changed in T time
slots, these changes won’t affect the G’s structure too much. On the other hand,
the community organizers only care about enlarging the size of their community.
They don’t care about the new connections after new customers coming in TC.
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3.4 Comparison with Influence Maximization Problem

Compare to Influence Maximization problem, our problem is different in that:

(1) In our problem, we focus on the influence from a community which has a
specific structure, rather than the initial seed set in which nodes distributed ran-
domly. The community structure constraints provide some factors which should
be considered when building the models. While in Influence Maximization prob-
lem, the influence source has no constraints.

(2) In Influence Maximization problem there is only one interference in the
diffusion progress which is choosing the initial seed set occurring at the begin-
ning of diffusion. After choosing the seed set all the diffusion progress proceed
automatically. While in our problem human interference occur during the whole
progress. The salesmen do the promotion several times until the result is sat-
isfied. Each time they will adjust the candidates list according to the current
social graph structure.

(3) Our goal is to maximize the size of community not to spread the influence
from the seed set as described in Influence Maximization problem.

4 Community Expansion Models

4.1 Intuitions

Before formally introducing the model, we first explain several key observations:

Observation 1. In [5], the study shows that the tendency of an individual to
join a community depends on the underlying network structure. The probability
p of joining a community depends on the number of friends k who are already in
the community. The relation between p and k is under the ”law of diminishing
returns”. Besides k, how these friends connected in the community also affect an
individual’s decision. If an individual has no friends in the community, then ”how
far” from the people in the community will decide ”how much” the community
impacts on the person. [17] infers that everyone is approximately six steps away
from others.

Observation 2. Approximately 25% of US advertisements employ celebrities
in their media[18]. We cannot ignore that celebrities have positive impact on
consumer attitudes towards the purchase intention. Considering of that, a com-
pany should consider the financial returns from celebrities. In the real world the
celebrities are more likely be known by others. In the network graph, we can con-
sider the nodes which have more connections with other nodes as the celebrities.

Based on the intuitions and observations, we know that both the probability of
an individual coming into a community and the benefit of an individual to a
community depends on the current network graph structure. Now, we want to
build the Adopter Model to present how easy a potential customer join TC and
build the Benefit Model to denote how much benefit the customer can bring into
TC. Then Combine Model considers these two factors both.
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4.2 Adopter Model

In Adopter Model, an individual who wants to join in TC is affected by howmany
friends in TC and how close these friends are. We define the meaning of friends
is the same as neighbors in the following context, who have direct connection
with this individual. Let η denote the value of how easy an individual adopts
the promotional activity from TC. We give the formulation of η by the value of
k friends in TC

η = (a1 log k) + (a2 ∗ k

n
) + (a3 ∗ din)(k > 0) (3)

η =
a4
dis

(k = 0) (4)

where, k is the number of friends in TC. n is the number of neighbors of the
individual. din denotes the density of k friends connected in TC. dis is the
distance between the individual and the first node which the individual meet
in TC. a1, a2, a3, a4 are adjusted parameters to make the model to fit data set.
Function 3 denotes the customers who already have friends in TC. Intuitionally,
people are more likely join TC if they have more friends in TC. However, if there
are enough people to affect the individual to decide to join TC, additional friends
will have small effect. Such that η is not linearly changed with k. On the other
hand, even if two persons have the same number of friends in TC, that does
not mean they will both choose to accept TC. The high ratio of friends in TC
will obtain greater influence from TC. So we consider k

n here. The connection
density of friends in TC is also important. The more mutual friends they have,
the stronger power they have to affect another individual. Here, we compute din
by

din =
2 ∗ ρ

k ∗ (k − 1)
(5)

where, ρ denotes the number of connections between k friends in TC. k∗(k−1)
2

stands for the the number of connections if any two friends in TC have a relation.
As showed in Fig.1, node V1 has four friends V2, V3, V4 and V5 in TC. In
Fig.1(a), the connections between these four friends is 6 and their din = 1,
while in Fig.1(b), the four friends has no connection with each other so their
din = 0.

Fig. 1. Friends Connections in TC Fig. 2. Friends Connections not in TC
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Function 4 give the η value if the individual has no friends in TC. The distance
from TC determines how easy the individual to join in TC.

4.3 Benefit Model

Now we build Benefit Model to present the benefit that an individual can bring
into TC. This model is important when the marketing strategy considers the cost
constraints of promotional activities. Here to simplify the problem we assume
that the promotional cost to each potential customer is the same. We will put the
cost problem in the future extended work. Since our goal is to enlarge the size of
Target Community as much as possible, the individual who knows more people
will have more opportunities to introduce the Target Community to others, and
attract more people coming into TC. On the other hand, if a popular node
already has a lot of friends in TC, its benefit will be less than a node who have
many friends that still are potential customers. Another factor that affects an
individual’s benefit is the structure of friends’ connections. If the connections
among friends is very density, it is difficult to persuade them to join TC since
each individual is deeply influenced by the power of groups, not by a single
person. As showed in Fig.2, node V1 has three friends V2, V3 and V4 who are
potential customers. In Fig.2(a), the connections between these three friends is
0 while in Fig.2(b), these three friends have connections with each other so they
are not that easily persuaded by V1.

Based on the above analysis, we build the Benefit Model θ:

θ = (b1 ∗ n) + (b2 ∗ n− k

n
)− (b3 ∗ dout) (6)

where, n stands for the number of neighbors. n−k
n presents the tendency of how

many potential customers that the individual can attract. b1, b2, b3 are adjusted
parameters. dout denotes the connections density among friends who are not in
TC. It is computed by

dout =
2 ∗ σ

(n− k) ∗ (n− k − 1)
(7)

where, σ denotes the number of connections among neighbors who are not in

TC. (n−k)∗(n−k−1)
2 stands for the the number of connections if any two neighbors

who are not in TC have a relation with each other.

4.4 Combine Model

Combine Model wants to find a balance between Adopter Model and Benefit
Model. Choosing customers who are not too easily joining TC but still have
some benefit that will attract new customers in long term. We take some factors
from Adopter Model and Benefit Model respectively to define Combine Model.

γ = c1 log k + c2 ∗ (n− k) + c3 ∗ din − c4 ∗ dout (8)

where c1, c2, c3, c4 are adjusted parameters. The definitions of k, n, din and dout
can be found in Adopter Model and Benefit Model.
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5 The Algorithm

In this section, we propose an algorithm which includes three stages for Expand-
ing Target Community (ETC). The first step is to find Mark Customers(MC)
set after one promotional activity, in which we compute score for each potential
customer and choose the one with highest score from each sales list. Then we
compute its probability to see whether it will join TC or not. The second step is
to update the graph information. The final step is to check whether there are Au-
tomatical Customers(AC) after graph was updated. After T times promotional
activities we will get the total value MC and AC.

Algorithm 1: ETC Algorithm

Input: G = (V,E),TC, m Sales Lists sl1,· · · ,slm, T ;
Output: NC,MC,AC;
t = 0,MC = ∅, AC = ∅, NC = ∅;
while t < T do

t ← t+ 1;
for each sli, i < m do

compute each n’s score S(n),(n ∈ Sli);
select the node v with the highest score in sli;
compute v’s joining probability p(v);
if p(v) > λ then

MC ← MC ∪ {v};
end

end
for each v ∈ MC do

for each v’s neighbor w do
w.k = w.k + p(v);

end

end
for each v ∈ MC do

for each v’s neighbor w do
if w.k

w.n
> λ then

AC ← AC ∪ {w};
end

end

end
NC = MC ∪AC;

end

5.1 Customer’s Score and Joining Probability

To find Mark Customer set, we need to obtain the most reasonable potential
customer in each Sale List. Based on three different models we discussed above
Adopter Model, Benefit Model and Combine Model, we compute η, θ or γ
for each node as its score separately. Sort each Sale List by the score’s value in
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descending order. The node with the highest score in each list will be severed the
promotion. It comes into TC with some probability which has been studied by
Lars, et al[5]. They find that the tendency of an individual to join a community
is influenced by the number of friends within the community and by how those
friends are connected to each other. In our algorithm, the probability of an
customer v join in TC, p(v), can be computed as Equation 9 for appropriate
a, b, c.

p(v) = a log k + b ∗ din + c(k > 0) (9)

For those customers who don’t have friends in the community, we consider they
still have probability to join in TC, with

p(v) =
d

dis
(k = 0) (10)

The definitions of k, din, dis are the same as the description in Adopter Model.
d is the parameter. Here we use algebraic function f(x) to make sure the prob-
ability value is between 0 and 1.

f(x) =
x√

1 + x2

In our algorithm, whether a customer will join in TC is decided by threshold λ,
0 < λ < 1. It is a factor reflects how easy an individual can join in a community.
We will see how λ affects results in the experiments.

5.2 Graph Information Update and Automatical Customers

The coming of new Mark Customers will change their neighbor’s information
about friends number in TC k and connection density of friends. These updates
will make some neighbors join TC automatically. We define that if there ex-
ists more than λ ratio of friends in TC, the customer will become Automatic
Customer(AC). The nodes from AC will affect their neighbors as well, so the
process of finding AC will not cease until no nodes from AC make their neighbors
join TC. Figure 3 illustrates for V1 how its k value is updated. After on promo-
tional activity, node V3 and V4 join TC with the probability p(3) = 0.65, p(4) =
0.6. Node V2 is an original customer in TC. Now node V1 has 1+0.65+0.6 = 2.25
friends in TC. Since k

n = 2.25
4 > 0.5(λ = 0.5), node V1 will join TC automati-

cally.

6 Experiment

We conduct experiments on ETC algorithm as well as other two algorithms on
four real-world networks. Our experiments aim at illustrating the performance of
ETC algorithm from the following aspects: (1) Its capacity of attracting newmem-
bers comparing to other algorithms; (2) Its efficiency of attracting new members
comparing to other algorithms; (3) The tuning of its control parameter λ.
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Fig. 3. Effect on neighbors

6.1 Experiment Setup

Datasets. We use three realistic data sets: American College Football, Arenas
Email, NetHEPT and Facebook.

AmericanCollegeFootball(ACF ) The network is a representation of the
schedule of Division I games for the 2000 season, in which vertices represent
teams (identified by their college names) and edges are regular-season games
between the two teams they connect.

Arenas/email It comes from email interchange network, Univ. of Rovira i
Virgili, Tarragona. The nodes are the members in this university and the edges
represent email interchanges between members.

NetHEPT This data set is an academic collaboration network taken from the
”High Energy Physics (Theory)”section (from 1991 to 2003) of arXiv. The nodes
in NetHEPT denote the authors and the edges represent the co-authorship.

Facebook The nodes in Facebook denote the facebook users and the edges
represent the friendship. We choose these networks since it covers a variety of
networks with size ranging from 1K edges to 1M edges. Some statistics about
these networks’ properties are given in Table 1. Close customer refers to indi-
vidual who has friends in TC.

Table 1. Data Sets Properties

DataSets NetHEPT/Author Arenas/Email ACF/Team Facebook

Number of Nodes 15233 1133 115 63732

Number of Edges 62774 10903 1226 1634180

Number of Sale List 1819 70 12 210

Average Sale List Size 8.4 15.9 8.9 227.5

Target Community(TC) Size 1251 179 12 15963

Ratio of close customer 0.057 0.36 0.26 0.01

Average Friends of close customer 2.06 2.26 1.26 1.84

Average Degree 3.76 9.17 10.67 0.33

Generating Target Community
To find TC and Sale Lists, we first partition the social network graph into several
communities. We select the community with the maximum size as the Target
Community TC. The rest communities are considered as Sale Lists.The partition
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of NetHEPT and Facebook employ the methods in [19], and partition of Arenas
and ACF use the methods in [20].

Algorithms
We use our ETC algorithm based on the three models discussed above. Compare
the three models with a baseline model and another algorithm which solves
the similar problem. The following is a list of algorithms we evaluate in our
experiments.

(1) ETC: Our algorithm is a greedy algorithm. Base on our Adopter Model,
Benefit Model and Combine Model, we have methods ETCA,ETCB,ETCC
respectively.
(2) Random: As a baseline comparison, simply select node from each Sales List
each time.
(3) TABI: TABI is a heuristic algorithm proposed by Tao,et al[21] to solve the
participation maximization problem. This algorithm calculates participants’ in-
fluence and allocate thread according to influence ranking, which is similar with
our ETC algorithm. However, TABI only considers people who have participated
in the forum, which means the algorithm only chooses candidates from people
who have connections with the community. It computes every participant v’s
influence by

(1−
∏

u∈v.K

(1− wu,v))(1 +
∑

x∈(v.N−v.K)

wv,x

∏
y∈x.K

(1 − wy,x))

Here, v.K refers to v’s friends set in the community. v.N refers to v’s neighbor
set. Since our data sets are unweighed social networking, each edges has the
same weight.

To obtain each algorithm’s capacity of attracting new members. We run the
simulation 1000 times and take the average of results, which matches the accu-
racy of the greedy algorithm.

6.2 Experimental Results

Capacity of Attracting New Customers. We measure the capacity of at-
tracting new customers by two measurements, Automatical Customer size and
New Customer size. The promotion time T ranges from 1 to 10. The first mea-
surement is for evaluating the performance of attracting people who can bring
more benefit to the community. The second measurement is for evaluating the
performance of attracting more new customers totally.

For the moderate sized graph Arenas Email, as showed in Figure 4 and Figure
5, our ETCC performs best on both two measurements. When T = 10, for the
New Customers measurement, ETCC is 4.1%, 51%, 81.8% better, while for the
Automatical Customers measurement, ETTC is 0.1%, 32.8%, 51.7% better, com-
paring to ETCA, RANDOM and TABI respectively. ETTC performs even much
better than ETCA, RANDOM and TABI when T = 5. The results of ETCB
are very close to ETCC. TABI attracts more customers than RANDOM before
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T < 8. After that, RANDOM obtains more customers. That phenomena proves
that TABI is an expanding algorithm only considering people who have connec-
tion in the target community. TABI has weak capacity of attracting valuable
customers who can bring automatical customers.

Fig. 4. Arenas AC Fig. 5. Arenas NC Fig. 6. ACF AC

Fig. 7. NetHEPT AC Fig. 8. NetHEPT NC Fig. 9. ACF NC

Figure 6 and Figure 9 show the results on ACF/Team dataset. ETCC still
works the best on two measurements. For New Customers, ETCC is 8.4%, 9.3%
better than ETCB, RANDOM respectively when T = 10. While for Automatical
Customers, ETCC is 8.7%, 15.1%, 22.6% better than TABI, ETCB, RANDOM
respectively. TABI which has the similar result as ETCA, performs better on
this dataset. It is probably because ACF/Team is a small network with many
people who has connection in TC(i.e a relatively large ratio of close friend). In
this case, it seems choosing who can easily join TC is a better strategy for the
community.

Next, for the 60 thousand edges NetHEPT dataset, Figure 7 and Figure 8 show
ETCC performs slightly better than ETCA and ETCB, but consistently much
better than TABI and RANDOM. For New Customers, ETCC is 9.1%, 17.6%
better, while for Automatical Customers, ETCC is 41.6%, 54.9% better than
TABI and RANDOM respectively when T = 10.

Finally, for the 1.6 million edge Facebook dataset, Figure 10 and Figure 11
show that this time ETCA performs much better than other algorithms. ETCB,
ETCC and TABI have close results. For New Customers, ETCA is 55.4%, 75.4%
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Fig. 10. Facebook AC Fig. 11. Facebook NC Fig. 12. Tuning of λ

better, while for Automatical Customers, ETCA is 69.5%, 91.9% better than
TABI and RANDOM respectively when T = 10. This phenomena is quite differ-
ent from phenomena of other datasets result as we have seen so far. Note that
there are two unique features for this dataset: (a)the average degree of each node
is small, which means the distribution of nodes in the network is scattered. As
a result there are more nodes are easy to persuaded to join TC, which means
ETCA is a good choice; (b)TABI seems to consider the nodes that can join in
TC easily as well. However, TABI only considers nodes that have connections in
TC while the ratio of close friend in this dataset is rather small. So TABI will
ignore some nodes which in the view of ETCA is better choice.

Overall, we see that ETCC significantly outperforms the rest algorithms in
most cases. ETCB and ETCA still have better results than TABI and RANDOM.

Efficiency of Attracting New Customers. The efficiency of attracting new
customers is another important evaluation criterion, especially when the com-
munity considers the promotion time cost. In Figure 5 and Figure 9, we can see
that when T = 5, ETCC curve has reach its peak value, which means it has
attracted most new customers. While TABI and RANDOM need more time to
reach their peak value.

Tuning of Parameter λ. We investigate the effect of the tuning parameter λ
on the capacity of attracting new customers. λ ranges from 0 to 1. We compare
the results of ETCC, TABI and RANDOM when T = 10. Since λ decides how
easy an individual can join in TC, Figure 12 show that the capacity of attract-
ing new customers increases when the λ value decreases, as expected. For both
attracting NC and AC, ETCC(E NC,E AC) keep high value in lager range of λ
than TABI(T NC,T AC) and RANDOM(R NC,R AC), indicating that ETCC
performs more stable than TABI and RANDOM.

7 Conclusions

In this paper, we formally define the problem of expanding community. A greedy
Expanding Target Community (ETC) algorithm is proposed, which employs
three models Adopter Model, Benefit Model and Combine Model. These models
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consider the factors that affect an individual to join community and the factors
that attract new members. Experiment results based on four real world datasets
shows that our models perform better than RANDOM and TABI algorithm.
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Abstract. Similarity joins between two collections of item sets have
recently been investigated and have attracted significant attention, es-
pecially for linguistic applications such as those involving spelling error
corrections and data cleaning. In this paper, we propose a new approach
to similarity joins for general item set collections, such as purchase his-
tory data and research keyword data. The main objective of our research
is to efficiently find similar records between two data collections under the
constraints of the number of added and deleted items. Efficient matching
algorithms are urgently needed in similarity joins because of the combina-
torial explosion between two data collections. We developed a matching
algorithm based on Zero-suppressed Binary Decision Diagrams (ZDDs)
to overcome this difficulty and make matching process more efficient.
ZDDs are special types of Binary Decision Diagrams (BDDs), and are
suitable for implicitly handling large-scale combinatorial item set data.
We present, in this paper, the algorithms for similarity joins between
two data collections represented as ZDDs and pruning techniques. We
also present the experimental results obtained by comparing their per-
formance with other systems and the results obtained by using real huge
data collections to demonstrate their efficiency in actual applications.

Keywords: similarity joins, error-tolerant matching, recommendation,
zero-suppressed binary decision diagram.

1 Introduction

Similarity joins or error-tolerant matching algorithms between two collections of
item sets have recently been investigated and have attracted significant attention
[1, 2, 4, 6, 12–14, 17–19] for linguistic applications such as those involving spelling
error corrections, data integration, data cleaning, and detection of similar words.
The aims in these researches are to find similar records between two huge data
sets based on similarity definitions such as cosine measure, Jaccard similarity,
and edit distance.
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Here, we propose a new efficient method of implementing similarity joins
for general item set collections, such as those of purchase history and research
keyword data. The main objective of our research is to efficiently find similar
records between two data collections under the constraints of the number of
added and deleted items. These constraints can be considered to be natural
constraints for general unordered item set collections, and they have a broad
range of possible applications. For example, consider the following item sets:
D0 = {a, b}, D1 = {a, c}, D2 = {a} and D3 = {a, b, c}, where all of the edit
distances from D0 to D1, D2 and D3 are one. It is natural, however, to consider
that the distance from D0 to D1 would be longer than that from D0 to D2 and
D0 to D3 in real world data such as those in purchase histories rather than those
in linguistic applications.

In this research, the similarity between records is not defined approximately
but “exactly”. Efficient matching algorithms are urgently needed in exact simi-
larity joins because of the combinatorial explosion between two data collections.
To overcome this difficulty and make matching process more efficient, we devel-
oped a matching algorithm based on Zero-suppressed Binary Decision Diagrams
(ZDDs) [7, 9, 11]. ZDDs are special types of Binary Decision Diagrams (BDDs)
[3] and suitable for implicitly handling large-scale combinatorial item set data.
In our previous work [16], we developed an efficient method of set recommen-
dation using ZDD structures. In our set recommendation, a set of items to be
added or deleted is recommended to the initial item set so that the modified
set is classified to the target class. In this paper, we extend this approach to
establish set similarity joins between two collections of item sets.

The applications of our approach can cover a wide area of real applications
where we need to find similar records between two huge collections of data sets
such as those in :

– Patent searches
To find similar previous patents by other research institutes, organizations,
or countries.

– Data cleaning and duplicate entry detection
To fix errors in databases compared with other databases, or detect duplicate
entries between two databases.

– Similar research
To find similar research papers or research activities in previous decades,
those published by other organizations or countries, or those in different
areas.

– Fraud detection
To find fraudulent data in the database by comparing with previous fraud
cases. In fraud detection, rule based method is one of the most realistic
approaches. However, in fact, we can hardly define the rules explicitly to
detect individual case of fraud. Our approach in this paper enables us to
directly find similar cases to those in previous fraud data.
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– Customer classification
To find loyal or potentially-dependable customers, or to find unacceptable
customers by comparing with those in previous customer databases.

In this paper, we present the experimental results obtained from comparing
the performance of our approach with ordinary matching algorithms and other
similar methods, and also the results from other experiments using real huge
data collections such as those in DBLP research titles and NSF (National Science
Foundation) research abstracts, to demonstrate its efficiency and availability in
real applications.

The rest of the paper is organized as follows: Section 2 discusses some works
related to our research, especially previous researches on similarity joins. Section
3 provides some definitions and describes the implementation of our framework
using ZDD data structures. We present and discuss the results from evaluating
the performance of our approach in Section 4, and applications using real data
such as those from DBLP and NSF in Section 5. We conclude this paper in
Section 6 with a brief summary and some additional comments, and mention
future works.

2 Related Work

There have been many works about similarity joins [1, 2, 4, 6, 17–19] or error
tolerant matching [12–14], which can be considered to be essential operations in
many applications. The objectives in these researches have been to find similar
records based on “exact” matching under various constraints such as cosine
measure, Jaccard similarity and edit distance.

Chaudhuri [4] and Arasu [1] introduced a general operator called SSJoin, which
could be extended to various measures such as edit distance, Jaccard similar-
ity, Hamming distance. The algorithms PartEnum and WtEnum implemented
with SSJoin are based on a filtering method, i.e., filtering effective similarity joins
based on two ideas for signature generation called partitioning and enumeration.

Bayardo [2] proposed All-Pairs algorithms, on which irrelevant records could
be filtered out using inverted lists that were dynamically created on the pro-
cess according to constraints. They showed that All-Pairs algorithm was highly
efficient and scalable to huge size of records.

Xiao [18] introduced a filtering approach focused on the number of “mismatch-
ing” and proposed Ed-Join algorithms. The mismatch-based filtering methods
could reduce the numbers of candidates.

These approaches described above, were based on filtering-based methods to
avoid redundant matching as much as possible. First, by generating the signa-
tures for each data (e.g., string sequence), the candidates of similar pairs could be
generated (filtering phase). Then, to find exactly similar pairs with defined sim-
ilarities, these candidates were verified in a test phase. However, if the database
consisted of sets of relatively short strings, signature based filtering methods
could be an overhead since these approaches generally generated huge numbers
of candidate pairs.
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Feng [6] and Wang [17] proposed another approach rather than filtering meth-
ods, which was a trie based framework called Trie-Join, in which the data set
could be represented as trie structures. Trie structures can share common pre-
fixes for a set of strings. They proposed search procedures on trie structures and
pruning methods for sub-structures of the trie.

In our work, we do not consider filtering methods, but focus on efficient rep-
resentational structures and search algorithms to find similar records in two
data collections. Although our approaches and motivation are close to those
in Trie-Join [6, 17], Trie-Join assumed sequential patterns as input data and
edit distance as constraints, because they considered language processing as a
promising area of applications. However, our method takes into considerations
general item sets (unordered sets) and the constraints are slightly different from
the edit distance. Our system searches similar pairs under the constraints of the
number of added and deleted items. We consider that our constraints on item
addition and deletion are rather natural and generic for applications of general
item set collections or various applications in bioinformatics [15].

In this research, we adopt Zero-suppressed Binary Decision Diagrams (ZDDs)
[7, 9, 11] to implement the algorithms efficiently rather than trie structures.
ZDDs are not tree structures but directed acyclic graph (DAG) structures that
can share the same sub-structure.

3 Set Similarity Joins Using ZDDs

This section provides some definitions and examples of our set similarity joins
based on the addition/deletion constraints. We then briefly introduce ZDDs to
handle huge numbers of data sets, and present the algorithm for similarity joins
on ZDD structures.

3.1 Preliminaries

We will provide various definitions and notations as follows.

Definition 1 (item). An item is an atomic entity that represents a character-
istic or feature and is denoted by a lower-case character (a, b, c, . . .). A set of all
items to be considered is denoted by Σ.

Definition 2 (item set and collection of item sets). An item set is a set
of items that represents the characteristics or features of an object (we use D
to represent an item set). A collection of item sets is a set of item sets, and is
represented by S or T .

We sometimes call an item set a “record”, and an item set collection a “database”
for simplicity.

Definition 3 (add/delete-constraints). The upper bounds on the numbers
of items that can be added or deleted for an item set are denoted by N+, N−,
respectively.



60 Y. Shirai et al.

If we have item set D1 = {a, b, c, d} and N+ = 2, N− = 2, then item set
D2 = {a, e, f, d} is a modification to D1 under the constraints of N+ and N−.

Note that we do not consider a data set as an ordered sequence. Although the
edit distance between D1 and D2 in the above example is two (if we consider
the distance of replacement as one), the edit distance between D1 and D3 =
{a, d, e, f} is four, while D1 and D3 also satisfy the condition N+ = 2 and
N− = 2 as well as D1 and D2.

As an example, suppose we have two collections of item sets, S and T :

S = {{a, b}, {a, c}, {c}} (1)

T = {{a, d}, {a, b, c}, {b}} (2)

The similarity joins of T for S under the condition of N+ = N− = 1 would con-
sist of the following six pairs : {{a, b}, {a, d}}, {{a, c}, {a, d}}, {{a, b}, {a, b, c}},
{{a, c}, {a, b, c}}, {{a, b}, {b}}, {{c}, {b}}.

If the conditions of addition and deletion are N+ = 1 and N− = 0, only the
pair of {{a, b}, {b}} satisfies the condition. If N+ = 0 and N− = 1, two pairs
{{a, b}, {a, b, c}} and {{a, c}, {a, b, c}} satisfy the condition.

3.2 Zero-Suppressed Binary Decision Diagrams

This subsection reviews ZDDs, which are a variant of Binary Decision Diagrams
[3, 7] (BDDs). BDDs are well-known and widely used for efficiently manipulating
large-scale Boolean function data. A BDD is a directed graph representation of
the Boolean function. The reduction rules in a BDD consist of a “node deletion
rule” (delete all redundant nodes with two edges that point to the same node)
and a “node sharing rule” (share all equivalent sub-graphs).

Zero-suppressed BDDs (ZDDs) [7, 9, 11] are special types of BDDs that are
suitable for implicitly handling large-scale combinatorial item set data. The re-
duction rules for ZDDs are slightly different from those for BDDs and are out-
lined in Fig. 1.

– Share equivalent nodes as well as ordinary BDDs ((1) in Fig. 1).
– Delete all nodes whose 1-edge directly points to the 0-terminal node, and

jump through to the 0-edge’s destination ((2) in Fig. 1).

ZDDs are especially much more effective than BDDs for representing “sparse”
combinations such as purchase history data. For instance, sets of combinations
selecting 10 out of 1000 items can be represented by ZDDs up to 100 times more
compactly than those by using ordinary BDDs.

Fig. 1 has an example of reduced ZDDs for S in 3.1. Note that the non-
existence of a node on each path means that the item is negated in the ZDD
representation. For example, {c}, which is a model of S, can be represented
by the heavy line path in ZDD representation. S can be rewritten in a sum of
product representations as ab+ ac+ c within the ZDD context.
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Fig. 1. Reduced Binary Decision Tree with ZDDs

3.3 ZDD Based Similarity Joins

In our approach, two collections of item sets in text format are transformed into
ZDD structures via the ZDD package [10]. The input data of our system are
two ZDD structures and the constraints description. This subsection presents
the method for calculating similarity joins for two collections of item sets, i.e.,
for two ZDD structures.

Algorithm 1 outlines the search algorithm on ZDD structures. Fig. 2 has a
simple example of set similarity joins using ZDD based on Algorithm 1, where
the objective is to find similar item sets between S (diagram at left) and T
(diagram at right) under the constraints of N+ = N− = 1. The search step
begins to work from top node a on S (search zdd(n) in the algorithm).

Each square box on the edge indicates the search results, which is a list of a
pair: the current count of addition and deletion, and the corresponding path on
T . For example, box (1) on S is attached to the edge which indicates the negation
of a. +0-1:2 in box (1) indicates that the current count is “no additional item
(+0) and that one item has been deleted (-1)” for edge 2 on T . In the same
manner, +0-0:1 in box (1) indicates that the current count is “no additional or
deleted items” for edge 1 on T . The update candidate in the algorithm adds new
candidates to the current candidates, n1.cand and n0.cand. The reduce function
reduces the candidate set and checks the constraints.

Similarly, box (2) is created based on the results for box (1). We need the
result for box (3) as well as the result for box (2) to create the box (4). The
search process in our algorithm only proceeds if all parents of the node have
already finished their processes. After box (3) is calculated, the calculation of
box (4) starts based on the results for box (2) and (3).

For box (6) which means the addition of d in S, all the counts in boxes (4) and
(5) must add 1 to the addition of items, because no item sets in T have d as their
element. As a result, none of the counts in boxes (4) and (5) satisfy constraints
N+. If no elements in the box satisfy the condition N+ or N−, searching along
that path is terminated. Hence, box (6) becomes φ.
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Algorithm 1. Search Algorithm on ZDD structures

n0 is a top node of the ZDD S ;
n0.cand = {{+0− 0 : 0}};
search zdd(n0);

function search zdd(n)
if all of other ancestors of node n have not been processed then return
end if
if n is a terminal node then return cand; // output candidates
else

n1 = n.edge1.dest; // n1 : destination of 1 edge of node n
n0 = n.edge0.dest; // n0 : destination of 0 edge of node n
n1.cand = update candidate(n.edge1, n.cand, n1.cand);
n0.cand = update candidate(n.edge0, n.cand, n0.cand);
// update candidates for edge 1 and 0
n1.cand = reduce(n1.cand);
n0.cand = reduce(n0.cand);
// reduction of the candidate set and check the constraints
if n1.cand is not NULL then return search zdd(n1);
end if
if n0.cand is not NULL then return search zdd(n0);
end if

end if
end function

Although there are no solutions under the constraints for the example in Fig.
2, another example in Fig. 3 can obtain two sets of results, where the square
box labeled +0-1:2-4-5-6-7 indicates one item has been deleted from path
2-4-5-6-7 (i.e., {a, c, d}). We can hence, obtain the final result, {a, c, d}−{c} =
{a, d}. We can similarly obtain {b, c, d, e} (addition of e to {b, c, d}) from the label
of +1-0:1-3-5-6-7.

4 Performance Evaluation

4.1 Comparison on Sorted Text Search

We first evaluate the efficiency of our approach based on ZDDs, using artificial
data. The problem we provided to evaluate performance in this experiment con-
sists of 170 items in total (|Σ| = 170), and each record randomly contains five
items. We prepare two data sets as S which contain one million data and 10 mil-
lion data respectively, and four data sets as T with sizes from 1000−1000000.We
compare three types of programs for set similarity joins for two given data sets,
i.e., “(1) Text-Linear” : between two sorted text data sets, “(2) ZDD-Linear”:
between ZDD and a sorted text data set, “(3) ZDD-ZDD” : between two ZDDs
presented in this paper.

All the systems were implemented in C++, and the experiments were run on
a SUSE Linux Enterprise Server 11 with 32 Intel Xeon CPUs (2.66 GHz) and
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1,1 NN

Fig. 2. Example of set-similarity joins using ZDD (1)

1.024 TB RAM. Table 4 compares the execution times. None of the execution
times include the time for preparatory data processing, i.e., data sorting or ZDD
construction.

As we can see from the table, the execution times for (1) Text-Linear and
(2) ZDD-Linear increase linearly for the size of search data, while (3) ZDD-
ZDD method can suppress the increase in execution time. We could conclude
from these results that our algorithms based on two ZDD structures worked
efficiently than linear searches (1) and (2).

4.2 Comparison with Trie-Join

As we previously described, Trie-Join [6, 17] is a similar approach to our system.
It, however, only treats totally ordered sequences. Although it is difficult to make
precise comparisons with our systems, the experimental results in this subsection
provide some indications about their efficiency.

The data sets used in the experiments were as follows :

– Item sets are generated by the alphabet (“a” to “z” in Trie-Join, and “x01”
to “x26” in the ZDD-based method) in alphabetical (or numerical) order.

– The length (number of items) of each record is 10. However, if duplicate
items occur in the records, we suppress them since the ZDD approach does
not distinguish the plural occurrence of items.

Table 1 lists the sample data we used in this experiment.
There are three variations of data sets, each of which consists of 100000,

500000, and 1000000 data records. The results from execution by Trie-Join1 and

1 We used the Trie-Join program on :
http://dbgroup.cs.tsinghua.edu.cn/wangjn/codes/triejoin.tar.gz

http://dbgroup.cs.tsinghua.edu.cn/wangjn/codes/triejoin.tar.gz
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1,1 NN

Fig. 3. Example of set-similarity joins using ZDD (2)

Table 1. Sample Data Used in Trie-Join and ZDD-based Method

Trie-Join input ZDD-based method input

aegklorstw x01 x05 x07 x11 x12 x15 x18 x19 x20 x23

bcegjmtvxy x02 x03 x05 x07 x10 x13 x20 x22 x24 x25

filmrsux x06 x09 x12 x13 x18 x19 x21 x24

dijkmqrt x04 x09 x10 x11 x13 x17 x18 x20

aeinprst x01 x05 x09 x14 x16 x18 x19 x20

kqrvwy x11 x17 x18 x22 x23 x25

aefghlqvx x01 x05 x06 x07 x08 x12 x17 x22 x24

acgknoruxy x01 x03 x07 x11 x14 x15 x18 x21 x24 x25

our ZDD-based method are summarized in Table 2. Fig. 5 also compares perfor-
mance of two systems for some selected results in Table 2 where the horizontal
axis plots the number of results and the vertical axis plots the execution times
(sec).

As can be seen in the table, we concluded that our system could achieve
the same or better performance than Trie-Join for large scale problems. For ex-
ample, in Table 2, the execution time with Trie-Join is 436.6 (sec) to generate
approximately 149 million results for 1000000 records and edit distance = 2. On
the other hand, the execution time with the ZDD-based method for 1,000,000
records and N+ = N− = 2 is 1039.0 (58.5 + 980.5) (sec) to generate approx-
imately 809 million results which is over 5 times as much as the case of edit
distance = 2 on Trie-Join (the set of 149 million results by Trie-Join is a proper
subset of 809 million results by our ZDD-based method).
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Fig. 4. Performance Evaluation

Since these two systems assumed different constraints, we could not conclude
quantitative discussions preciously. Our system, however, could achieve at least
potential ability comparable with Trie-Join for the problems of similarity joining
with ordered sets.

5 Applications

This section presents some application results with real data sets that concern
research topics. We used the data sets from DBLP and NSF data collections.

5.1 DBLP Research Titles

This experiment took into account the paper titles in a DBLP xml data set2

whose tags include “article” and “inproceedings”. The total size of records in
this experiment is 863580.

We extracted the “publish year” and the “title” from the data set, and clas-
sified them into three collections according to the publish year, i.e., data set 1
(–1997 : 158706 records), data set 2 (1998 – 2007 : 348882 records), and data
set 3 (2008– : 355992 records). In this experiment, we excluded words, each of
whose frequency in all databases was less than 10. The size of Σ is 23224 (i.e.,
23224 words in total).

2 http://dblp.uni-trier.de/xml

http://dblp.uni-trier.de/xml
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Table 2. Comparison of ZDD-based method and Trie-Join

ZDD-based Method

Size of DB1 Size of DB2 Search Condition Num. of Results Exec.Time(sec)

ZDD Setting Search
add ≤ 1,delete ≤ 0 16,624 1.8 (Z1-1)
add ≤ 0,delete ≤ 1 16,664 1.6 (Z1-2)
add ≤ 1,delete ≤ 1 244,675 4.8 (Z1-3)
add ≤ 2,delete ≤ 0 68,530 3.1 (Z1-4)

100,000 100,000 add ≤ 0,delete ≤ 2 68,775 5.4 2.5 (Z1-5)
add ≤ 2,delete ≤ 1 1,293,882 11.1 (Z1-6)
add ≤ 1,delete ≤ 2 1,295,137 10.7 (Z1-7)
add ≤ 2,delete ≤ 2 8,713,274 37.2 (Z1-8)
add ≤ 1,delete ≤ 0 401,823 12.6 (Z2-1)
add ≤ 0,delete ≤ 1 405,813 10.2 (Z2-2)
add ≤ 1,delete ≤ 1 5,922,847 31.5 (Z2-3)
add ≤ 2,delete ≤ 0 1,649,671 19.2 (Z2-4)

500,000 500,000 add ≤ 0,delete ≤ 2 1,681,117 27.9 16.4 (Z2-5)
add ≤ 2,delete ≤ 1 31,163,852 84.4 (Z2-6)
add ≤ 1,delete ≤ 2 31,554,584 86.1 (Z2-7)
add ≤ 2,delete ≤ 2 210,967,890 368.7 (Z2-8)
add ≤ 1,delete ≤ 0 1,532,292 27.6 (Z3-1)
add ≤ 0,delete ≤ 1 1,563,436 23.1 (Z3-2)
add ≤ 1,delete ≤ 1 22,695,485 67.7 (Z3-3)
add ≤ 2,delete ≤ 0 6,312,234 40.0 (Z3-4)

1,000,000 1,000,000 add ≤ 0,delete ≤ 2 6,524,292 58.5 36.2 (Z3-5)
add ≤ 2,delete ≤ 1 119,123,804 210.6 (Z3-6)
add ≤ 1,delete ≤ 2 121,636,513 208.0 (Z3-7)
add ≤ 2,delete ≤ 2 809,214,292 980.5 (Z3-8)

Trie-Join

Size of DB1 Size of DB2 Search Condition Num. of Results Exec.Time(sec)

100,000 100,000 edit distance=1 78,315 1.1 (T1-1)
edit distance=2 1,746,849 19.8 (T1-2)

500,000 500,000 edit distance=1 1,827,303 8.2 (T2-1)
edit distance=2 40,789,678 159.1 (T2-2)

1,000,000 1,000,000 edit distance=1 6,701,562 23.1 (T3-1)
edit distance=2 149,904,112 436.6 (T3-2)
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Table 3. Experimental Results for DBLP database

Experiments for articles on DBLP (1) (– 1997 : 1998 – 2007)

Num. Year Title

1-a 1987 On The Complexity of Computable Real Sequences.
1-b 2001 Descriptive complexity of computable sequences

2-a 1982 Approximations for the waiting time distribution of the M/G/c queue.
2-b 2004 Mean Waiting Time Approximations in the G/G/1 Queue.

3-a 1979 On the connectivity of cayley graphs.
3-b 2005 Parameters of connectivity in (a, b)-linear graphs.

4-a 1993 An Affinity-Based Dynamic Load Balancing Protocol for Distributed Transaction
Processing Systems.

4-b 2006 Dynamic Load Balancing Protocol for Locally Distributed Systems.

5-a 1989 Efficient monotone circuits for threshold functions.
5-b 2006 Monotone circuits for monotone weighted threshold functions.

6-a 1981 The reconstruction of maximal planar graphs. I. Recognition.
6-b 2004 A simple recognition of maximal planar graphs.

Experiments for articles on DBLP (2) (1998 – 2007 : 2008 –)

Num. Year Title

1-a 2005 k-Center problems with minimum coverage.
1-b 2008 Asymmetric k-center with minimum coverage.

2-a 2006 On complexity of multistage stochastic programs.
2-b 2008 On Stability of Multistage Stochastic Programs.

3-a 2006 A remote laboratory for electrical engineering education.
3-b 2011 Developing a remote laboratory for engineering education.

4-a 2006 Arboricity and tree-packing in locally finite graphs.
4-b 2008 Locally finite graphs and embeddings.

5-a 2005 Transforming semantics by abstract interpretation.
5-b 2009 Abstract interpretation of resolution-based semantics.

6-a 2006 PolicyUpdater: a system for dynamic access control.
6-b 2008 A privacy-aware access control system.

The experimental results are summarized in Table 3, where we can see the
results for similarity joins between data sets 1 and 2, and between data sets 2
and 3. For example, 6-a (published in 1981) and 6-b (published in 2004) are
extracted as similar research papers by different authors. Since both 6-a and
6-b involve the recognition of maximal planar graphs, these two research are
intimately related with each other. On the other hand, the main theme in the
paper of 1-a is the computational complexity of real sequences, while the theme
in 1-b is the descriptive complexity for binary sequences. In this case, there seems
to be no deep relationship among these two researches.

In fact, although we can recognize that other characteristics (e.g., research
abstract) for research papers should be included if the results are practically
in use, similar research activities between decades can be detected by using set
similarity joins for item collections.

5.2 NSF Research Abstracts

We applied our system to the NSF data collection as another experiment, which
consists of NSF Research Award Abstracts from 1990 to 2003. There are 129000
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Table 4. Experimental Results for NSF database

Num. Year Title and Abstract

1-a 1992 Design of Parallel Algorithms
– support for postdoctoral associate,
– experimental computer science
– developed for idealized parallel computers on real parallel computers,
– load balancing techniques

1-b 1999 WORKSHOP: Parallel CFD’99 International Conference
– computational fluid dynamics research on parallel computers,
– parallel software system,
– case studies from fluid dynamics,
– early experiences on teraflops-class computers

2-a 1993 Constructing, Maintaining, and Searching Geometric Structures
– construction and maintenance of geometric structures,
– efficiently searching in such structures,
– computational geometry unsolved problems,
– dynamic maintenance of geometric structures,
– computer graphics and computer vision,
– sequential and parallel computation models

2-b 1999 Towards Simpler Algorithms in Computational Geometry
– design and analysis of algorithms for large amounts of geometric data,
– efficient algorithms for fundamental problems in computational geometry,
– computer graphics and computer vision,
– geometric optimization,
– construction of basic geometric structures,
– randomization, approximation, and techniques for correcting pessimistic

worst-case analyses

3-a 1991 Undergraduate Computer Integrated Design Laboratory
– establishment of an undergraduate computer integrated design laboratory,
– development of a unified education program,
– computer graphic simulation that gives insight into complex phenomena

3-b 1998 The Development of a Communication Networks Laboratory at Queens College
– computer communication networks laboratory,
– design and implementation of the Token Ring and Ethernet Local Area Net-

works,
– undergraduate laboratory and an associated laboratory manual

entries (title, period, budget, abstract, area key, . . .) in the database, and the
bag-of-word data for the total records. The data set is disclosed in the UCI
Machine Learning Repository3.

We divided the data into “before 1996” and “after 1996” in this experiment,
and we focused on entries whose abstracts include the word “computer”. We
created data sets, each of which consists of words in the title and the abstract.
In this experiment, the size of Σ is 3444 (i.e., 3444 words in total).

Part of the experimental results are listed in Table 4, where N+ = 3 and
N− = 3, which shows that relevant research activities are detected as well as
those from the DBLP experiments.

For example, 1-a (1992) is a project for studying basic techniques for parallel
algorithms, while 1-b (1999) is a workshop where more practical applications of
parallel computing such as fluid dynamics are discussed. In this experiment, we

3 NSF Research Award Abstracts in UCI Machine Learning Repository http://

archive.ics.uci.edu/ml/datasets/NSF+Research+Award+Abstracts+1990-2003

http://archive.ics.uci.edu/ml/datasets/NSF+Research+Award+Abstracts+1990-2003
http://archive.ics.uci.edu/ml/datasets/NSF+Research+Award+Abstracts+1990-2003
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can conclude that similar research projects can be detected as well as the case
of DBLP application.

6 Conclusion

In this paper, we described a new approach to similarity joins for general item
set collections under the constraints of the number of added and deleted items.

We introduced a matching algorithm based on Zero-suppressed Binary De-
cision Diagrams (ZDDs), which are special types of Binary Decision Diagrams
(BDDs). ZDDs can represent huge databases efficiently, especially for sparse
data collections. We developed efficient algorithms and pruning techniques for
two ZDD structures.

We presented some experimental results from evaluating performance with
other methods including Trie-Join, which is well known as an efficient imple-
mentation for similarity joins, although it is based on slightly different problem
setting. As a result, our approach could achieve comparable results with Trie-
Join for the problems we presented in this paper.

We also showed experimental results with actual huge data collections such
as those from DBLP research titles and NSF research abstracts to demonstrate
the availability in real applications.

Future works include extending our results in several directions such as :

– We intend to investigate various pruning techniques or filtering techniques
exploited in other systems [1, 2, 6, 17] to adopt them in our system. Some
pruning techniques [6, 17], such as length pruning and single branch pruning
would also be especially helpful in our system.

– We need to classify items to various classes such as editable, essential, and
requisite items, and we need to define transformation costs to replace these
items. These extensions would make the results quite effective for real use.

– We intend to investigate more enhanced algorithms using ZDDs such as
valuable ordering in ZDD construction or pruning techniques. In fact, it is
well known that the valuable ordering in ZDDs is sensitive to performance
in some cases.

– Sequence BDD [5, 8] offers considerable promise as a basic computation
framework instead of ZDD in dealing with string similarity problems. Se-
quence BDD shares the same common sub-sequence as DAG structures, and
can provide compact representations for manipulating sets of strings. We
are now investigating the algorithms for sequential similarity joins using the
sequence BDD framework.
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Abstract. Data and storage management is turning to distributed due
to the huge increase in data volumes. To satisfy users’ requirements and
preferences, advanced query operators, such as skyline, have been intro-
duced and implemented. Skyline offers users with interesting objects,
which has been explored in centralized, distributed and peer-to-peer
(P2P) systems. However, keyword-matched skyline has not been con-
sidered in distributed and P2P systems. This paper introduces keyword-
matched data skyline algorithms in P2P systems. Differing from other
operators, skyline algorithms are devised to exploit its properties to re-
duce traversed peers for a query. By partitioning data space and using
distributed hash tables (DHTs) and Bloom filters, we design new algo-
rithms, Nk-sky and Ck-sky, to reduce the required traversed peers to
answer keyword-matched data skyline queries. We apply the algorithms
on Chord as an example of DHT overlay P2P systems. Experimental
results show a significant reduction of traversed peers with the Cover-set
tuples algorithm Ck-sky.

Keywords: Peer-to-peer system, skyline query, keyword-matched
skyline.

1 Introduction

With the fast growing and huge volumes of data in the current Internet environ-
ment, advanced queries in distributed systems have been introduced, studied and
designed. Skyline operator introduced by Börzsönyi in [1] is an example of such
advanced queries. It recommends some interesting data objects to the users. The
interesting objects are dominating objects that a user would be more interested
in than the other objects. On the other hand, the processing limitations of cen-
tralized systems lead to distributed system designs. Different distributed systems
have been suggested and used to solve the problems efficiently. In peer-to-peer
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Fig. 1. An example of keyword-matched skyline

(P2P) systems, distributed hash tables (DHTs) have been discovered; and dif-
ferent network overlays have been designed (e.g. Content Addressable Network
(CAN) [2], Chord [3] and Harmonic Ring (HRing) [4] ). A query nature may
result in a preference of network overlays to others. Skyline queries, like others,
have been studied in different distributed systems and P2P system overlays (e.g.
CAN as in [5], and BAlanced Tree Overlay Network (Baton) as in [6][7]).

A skyline point is a point that is not dominated by any other point in all
dimensions. In general, the domination in one dimension is the user preference
in that dimension (e.g. cheaper, lower mileage, and shorter distance). As an
example, a user may be interested in buying a cheap used car with low mileage
as shown in Fig. 1. The skyline query will return the black-filled rounded points
in Fig. 1. However, a user may be interested in skyline for only points with some
features. For example, a dealer may have many used cars with different features.
Some cars come with cruiser controls, cd players, and/or airbags etc. A user, who
is interested only in cars with cruiser control, may not be interested in the results
that do not consider their preferences. The black-filled rectangular points shown
in Fig. 1 are what that user expects. Another example may come from a user who
is only interested in a restaurant with some dishes (e.g. sushi, seafood). Some
restaurants may serve sushi but some restaurants may not. Thus, the traditional
algorithms may result in skyline of no interest to the user. A skyline for only
restaurants that serve sushi is what a user needs to see. These types of queries
are called keyword-matched skyline queries.

Another example, consider some online scientific data analysis system where
different participants publish their findings and use others’ findings. Each partic-
ipant may focus on different parts of the experiments. Keywords-matched skyline
can help such scientists identify outstanding data and results of their interests.
There could be large numbers of keywords-matched skyline queries triggered by
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different scientists in a short time; thus, it is crucial to respond to such queries
quickly using as few as possible of peers.

In distributed systems, traditional skyline algorithms do not consider key-
words in their design. The work in [5] [6] [7], for example, considers values in
dimensions to distribute tuples. These studies exploit prune-ability and incompa-
rable partitions of skyline queries. Nevertheless, they do not consider keywords.
Modifying them to satisfy users’ requirements by ignoring undesired discovered
points results in traversing unneeded peers. On the other hand, traditional key-
word search query [8] and Napster [9] ignore skyline incomparability and prune-
ability features. To exploit skyline pruning ability and incomparability as well
as keyword search algorithms, this paper devise the keyword-matched skyline
algorithms to combine keyword search and skyline algorithms to efficiently an-
swer keyword-matched skyline. The algorithms keep some order of the peers to
exploit prune-ability and incomparability. They also use DHT functions, Bloom
filters and Cover-set features to keep track of points’ and peers’ keywords as
explained in Section 3.

The contributions of this paper are as follows:

• Bloom filters are used to figure out the candidate peers for query keywords
with cover-set tuples and nodes.

• Keyword-matched skyline algorithms are designed and implemented in P2P
systems.

• Experiments have been carried out and show that the proposed approaches
resulted in reduction of traversed peers while preserving progressiveness.

The rest of the paper is organized as follows. We first discuss related work in
Section 2. Problem definition and algorithms are discussed in Section 3. Section
4 discusses experiments and our findings. We conclude our paper in Section 5.

2 Related Work

Börzsönyi’s paper [1] was the first work to introduce skyline into databases.
Block Nested Loop (BNL) uses a window to compare all points and discover the
skyline points. Nearest neighbor (NN) [10] used R-trees and a to-do list to get
skyline; branch and bound skyline (BBS) [11], however, uses R-trees and a heap
to get rid of duplicates introduced in NN.

Because BNL, BBS, NN and the other centralized algorithms are not efficient
for distributed and P2P systems, the distributed algorithms have been suggested.
In [5], for example, data are distributed vertically. The traditional skyline is
retrieved using a round-robin on the presorted attributes. In the feedback-based
distributed skyline algorithm (FDS) [12], the coordinator iteratively contacts
the other nodes providing a feed-back. Some algorithms [6][13] have converted
multi-dimensional data into a single-data index and adapted it into P2P.

Other types of skyline queries (e.g. Subspace skyline, constrained skyline
queries) in P2P systems have also been considered in literatures. For constrained
skyline, data space is partitioned horizontally in the Distributed SkyLine query
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(DSL) [14]. SkyFrame [7] uses greedy and relaxed skyline search on Baton (a
balanced tree structure for peer-to-peer networks). In the Parallel Distributed
Skyline (PaDSkyline) [15] and SkyPlan [16], the querying peer collects the mini-
mum bounding rectangles (MBRs) from other peers, and with different measures
(e.g. weighted edges and spanning trees), a plan is mapped for incomparable
peers to work in parallel.

Skypeer [17] and Distributed Caching Mechanism (DCM) [18] are meant for
subspaces skyline queries in distributed systems. A super-peer architecture is
used for Skypeer. They defined the extended skylines which are collected by
super-peers from the other peers. Queries are submitted to a super-peer which
contacts the other super-peers for their subspace skyline. DCM explores caching.
The results of subspaces queries are cached in peers using a distributed cache in-
dex (DCI) on Baton or Chord. The subspace queries use the DCI to forward next
subspace skyline queries. Hose and Vlachou [19] have studied skyline processing
in distributed systems in more details.

Even though the above algorithms answer skyline query efficiently, they are
not designed to consider keyword-matched skyline. They all only use quantity
values in the attributes to take advantage of skyline feature of prune-ability and
incomparability. Attributes that may be boolean is not supported. A modifica-
tion of those algorithms to satisfy user’s requirements can reflect inefficiency.

Keyword-matched skyline has been introduced in [20]. It uses an R-tree. While
R-trees are efficient for centralized systems, they are inefficient for P2P systems
due to the heavy data volumes required for maintenance. In this paper, we
investigate the keyword-matched data skyline in P2P systems using Chord [3]
as our overlay. Other overlay structures may also be applied.

For keyword query, the traditional techniques either used centralized search
as Napster [9], query broadcasting as Gnutella [21], or well-known naming such
as Freenet [22]. They are not efficient for skyline queries because they do not
exploit skyline properties, such as pruning ability and incomparability.

To the best of our knowledge, keyword-matched skyline has not been consid-
ered in distributed and P2P systems. Our aim is to minimize the visited peers
in the network while preserving progressiveness.

3 Keyword-Matched Skyline Queries in P2P Systems

Some formalizations to keyword-matched skyline are presented in Section 3.1.
Algorithms for keyword-matched skyline in P2P systems will be discussed in the
next three Sections.

3.1 Problem Definition

In this subsection, some definitions are stated for keyword-matched skylines.
Without loss of generality, we assume minimum values of attributes are preferred
(e.g. cheaper is preferred to expensive, less mileage is preferred to high mileage,
etc). For maximum value preferences, the inverse of the values can be used.



Keyword-Matched Data Skyline in Peer-to-Peer Systems 75

A tuple t in a d-dimensional space Dd is defined as <V,W> where V =
(v1, v2, ..., vd) is a value vector of d-numerical values; and W = (w1, w2, ..., wk)
is a set of k keywords for the tuple t. In addition, the value vector of a tuple ti
is denoted by ti.V , while its set of keywords is denoted by ti.W .

Definition 1. A keyword-matched tuple to a query keyword (Qk(D
d,W )). For

a query q with a set of query keywords q.W , a tuple t is a keyword-match tuple
to the query q if and only if ∀w ∈ q.W , w∈ t.W .

Definition 2. Domination. Let t and t′ be two tuples in Dd, where t.V =
(v1, v2, ..., vd) and t′.V = (u1, u2, ..., ud). Then, t dominates t′ (t ≺ t′) if and
only if ∀i, vi ≤ ui and ∃i, vi < ui. Conversely, t does not dominate t′, denoted
t 
≺ t′ if and if only ∃i, vi > ui.

Definition 3. Skyline Tuple. In skyline operator (Qs(D
d)), a tuple t in Dd is

a skyline tuple if and only if 
 ∃t’∈ Dd; t′ ≺ t

Definition 4. A Keyword-matched Skyline Tuple. Let A be all keyword-matched
tuples to a query q with keywords W. A tuple t ∈ A is a keyword-matched skyline
tuple to the query q if and only if ∀t′ ∈ A; 
 ∃t′ ≺ t.

Definition 5. A keyword-matched skyline query (Qks(D
d,W )). Given a set of

query keywords W and a dataset Dd, a keyword-matched skyline query denoted
as Qks(D

d,W ), retrieves the set of skyline tuples whose each textual attribute
contains all words of W. Thus, the following equivalent rule is true:

Qks(D
d,W ) ≡ Qs(Qk(D

d,W )) (1)

Definition 6. Let m be minx ∈ D(xmin), Initial Skyline Peers P and Candidate
Skyline Points M as

P = {Pi|∃x ∈ DPisuch that xmin = m}
M = {x|x ∈ DP ∧ xmin = m},
where DP =

⋃
Pi∈P DPi .

Theorem 1. If SD and SM are the skylines of D and M respectively, then SM ⊆
SD and SM 
= φ.

Proof. From Definition 6 for M, for any x ∈ SM , x is not dominated by any
other point in M. Suppose m′ = min(x′

min) ∀ x′ ∈ D − M . As m < m’, x can
not be dominated by any x′ ∈ D − M . Therefore, x is not dominated by any
other point in D, i.e., x ∈ SD. Thus, we have SM ⊆ SD . Since M is not empty,
hence SM 
= φ.

Theorem 2. A tuple t1 with a minimum value t1.vi in a dimension i can not
be dominated by any point t2 with a minimum value t2.vj in any dimension j
where t1.vi < t2.vj.

Proof. Let’s assume t2 dominates t1. Thus, t2.vi ≤ t1.vi. Since t2.vi ≤ t1.vi ⇒
t2.vi < t2.vj . This contradicts that t2.vj is the minimum value of t2. If t2.vi is
the minimum value of y, the condition of our theorem is not satisfied. On the
other hand, if t2.vi > t1.vi, t2 does not dominate t1.
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In the next three sections, we present three algorithms: a baseline (Ch-isky)
which is based on a state of the art, and two new algorithms: Node-based keyword
skyline (NK-sky) and Cover-based keyword skyline (Ck-sky). Definition 6 and
Theorem 1 of isky[6] [13] are modified here to fit to our problem. Note that nodes
and peers are used interchangeably to mean peers in this paper.

3.2 Chord-Based isky (Ch-isky)

The baseline approach is based on isky [6] [13]. It is applied on Chord overlay
which we call Ch-isky. The algorithm is shown in Algorithm 1. As in isky, data
values in each dimension are assumed to be in the period [0, 1]. The period [1,
d+1] is distributed among peers with an equal continuous periods. Each peer is
responsible of the next period in clockwise fashion starting with peer 0. A tuple
is looked for its minimum value in all of its dimensions. The sum of the minimum
value and the dimension it is found in is used to determine its destination peer
when it is distributed. If the minimum value is found in more than one dimension,
the lowest dimension is taken.

Once a query is triggered, it blindly travels through nodes exploiting prune-
ability. Lines [3-7] in Algorithm 1 require the querying peer to first broadcast the
query to all Initial Skyline peers P (i.e. all peers that include the dimension values
{1,2, ... ,d} in their period). In line 8, the skyline tuples are calculated using the
volume filter and the min-max pruning ability to reduce calculations. In line 9,
a new volume filter and a new min-max values are found using Equations 3 and
4. Line 10, the keyword-matched skyline tuples are sent to the querying peer
and then returned to the user if these tuples exactly form a skyline. A volume
filter and the min-max pruning are used. In lines [11-13], the query travels from
a peer to the next peer in a clockwise fashion.

Our next two algorithms are based on the DHTs for the keywords and Bloom
filters to minimize the number of candidate peers for keyword-matched skyline
query. Even though Bloom filters can introduce few false positives, they do not
affect the correctness of our algorithms as shown later.

Bloom Filters. To summarize membership in a set, a hash-based data struc-
ture called a Bloom filter [8] is used. A peer A can send its Bloom filter for its
elements set EA to another peer B with an element set EB instead of sending its
elements set. Thus, it reduces the amount of communication required for a peer
to determine A ∩B. The membership test will never return false negatives, but
it may return false positives with a tunable, predictable probability as shown
in Equation 2 [8]. The results of the intersection in a peer EB with EA will
contain all of the true intersection and may have also a few (false positive) hits
that are only in EB and not EA. As the size of the Bloom filter increases, the
number of false positives falls exponentially. Equation 2 predicts the probability
of a false positive pfp when an optimal choice of hash functions is given, and
the Bloom filter bits m, and the number of elements in the set n are also given.
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Algorithm 1. Ch-isky: Chord-based isky algorithm

1: Input: MinMax-filter, VDR, Querying-Peer, keywords
2: BEGIN
3: if QueryingPeer then
4: for each Peer P includes an integer (1 to D) in its period do
5: send Keyword-matched-Skyline-Query
6: end for
7: end if
8: Calc-key-matched-sky-using-VDR-MinMax()
9: Calc-VDR-and-MinMax() /* using Equations 3, 4 */
10: Send-results-to-query-peer
11: if min(nextPeer) �> MinMax then
12: send-query-to-next-peer(MinMax,VDR)
13: end if
14: END

Thus, to maintain a low false-positives probability, the Bloom filter size needs
to be proportional to the number of represented elements.

pfp = 0.6185m/n (2)

3.3 Node-Based Keyword-Matched Skyline Algorithm (Nk-sky)

In this section, we propose Nk-sky, a node-based keyword-matched skyline algo-
rithm. For construction of Nk-sky, tuples are distributed to the peers according
to the sum of their minimum values and dimension of the minimum value as
explained above in Ch-isky. Each peer builds its keyword set. The peer’s key-
word set is the union of all points’ keywords in a peer. It hashes each of its
keywords using the DHT functions and sends them along with the peer’s id to
the keyword responsible peers. The keyword responsible peer hashes the node
ID into the Bloom filter of that keyword.

The Nk-sky skyline query runs through two stages: 1) discovering candidate
peers, and 2) skyline calculation.

1) Discovering Candidate Peers. Once the query is triggered, the querying
peer hashes one keyword using the DHT function and sends the query to the
responsible peer. The responsible peer gets the query peer Bloom filter for that
query keyword and sends it to the next keyword’s responsible peer. Each respon-
sible peer receiving a Bloom filter would do the intersection with its keyword’s
Bloom filter and sends the results to the next responsible peer until all query
keywords are processed. The last peer sends the results of the intersections to the
querying peer. The results are the nodes with all query keywords. There might
be few false positives but they will not affect correctness of the query results.
For each keyword, it may require at most O(log n ) lookup messages. Thus, for
k query keywords, at most O(klog n) lookup messages may be expected.
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2) Skyline Calculations. At this stage, candidate peers, in addition to a few
false positives, are known. The false positives will only affect traversing those
peers unnecessarily but they will not affect the correctness of the results. The
skyline query chooses peers from the candidates to broadcast to. A peer is chosen
if it is the closest above or equal candidate peer to any peer responsible of the
periods that include {1,2, . . .,d}. A peer c is the closest above or equal candidate
to another peer responsible of a value i if and only if there is no other peer in
the set that has a value v closer to i than any value in c and both v and c greater
or equal to i. For example, suppose a peer p is responsible of period [1.8, 2.2) if
p is in candidate peers, the query is sent to it because it includes 2. If p is not in
the candidate peers, the query is sent to the closest candidate peer within the
period [2.2, 3). Because there are at most d peers that include i ∈ {1,2, ... ,d},
the query broadcasts to a maximum of d candidate peers . All query processing
is done in parallel.

In Nk-sky, a peer processes the keyword-matched skyline query and sends its
results to the querying peer. The querying peer returns the results to the user if
no future point can dominate them progressively. The processing peer also sends
the query, a max-min value filter [6][13] and a Volume of Dominating Region
(VDR) [23] to the closest above candidate peer in a clockwise fashion.

SFglobal = minx∈S(xmax) (3)

In Equation 3, the min-max-value filter (SFglobal) is used because we use min-
imum value as opposed to maximum value used in [6][13]. It is obtained from
the already found skyline points (S). A peer is pruned if its minimum value is
greater than SFglobal. VDR, shown in Equation 4, is used to prune points within
a peer. It is expected to prune more points than others due to its volume.

V DRp =

d∏
i=1

(bi − pi) (4)

where bi is the maximum value in dimension i, and pi is the value of p in
dimension i. A peer and the following peers can be pruned if its minimum value
is greater than SFglobal.

Lemma 1. Keyword-matched skyline results of Nk-sky are correct and complete.

Proof. Correctness. Let t1 and t2 be two tuples with vi1 and vi2 be values in di-
mension i, respectively. Let t1 dominates (≺) t2. If t1 and t2 have their minimum
values in dimension i (i.e. vi1 and vi2, respectively), t1 is visited before t2. Thus,
t2 will be pruned. On the other hand, lets t1 and t2 have their minimum values
in different dimensions (i.e. vi1 and vj2, respectively). From Theorem 2, in the
algorithm, t2 will not be declared as a keyword-matched skyline tuple until t1 is
seen. t1 will prune t2. Thus, no false skyline tuple will be produced.

Completeness. All tuples are checked. A peer is pruned if its minimum values
are greater than the maximum value of a skyline tuple found so far. No tuple is
pruned if not dominated.
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Algorithm 2. Ck-sky: cover-based keyword-matched skyline algorithm

1: Input: MinMax-filter, VDR, QueryingPeer, keywords, Peers-to-be-traversed
2: BEGIN
3: if QueryingPeer then
4: /* first stage */
5: Peers-to-be-traversed = get-candidate-peers-using-BloomFilter()
6: for all P ∈ Peers-to-be-traversed do
7: if p closest above or equal peer to an integer (1 to D) then
8: send keyword-matched-skyline-query
9: end if
10: end for
11: end if
12: /* Second stage */
13: Calc-keyword-matched-skyline-using-VDR-MinMax()
14: Calc-VDR-and-MinMax() /* using Equations 3, 4 */
15: Send-results-to-query-peer
16: nextPeer = closest-candidate-peer-in-an-increase-order
17: if min(nextPeer) �> MinMax then
18: send-query-to-next-peer(MinMax,VDR)
19: end if
20: END

3.4 Cover-Based Keyword-Matched Skyline Algorithm (Ck-sky)

Using nodes instead of tuples in Nk-sky in Section 3.3 seems to be natural and
more attractable to reduce false positives according to Equation 2. However, in
reality, it is not the case for two reasons as shown in the experiments:

1) Node’s keywords produced by OR-ing do not mean a node have a tuple
with all query keywords.

2) Skyline query algorithms use pruning ability, which reduces the peers with
query keywords as well as false positives from the candidates.

We propose Ck-sky, a cover-based keyword-matched skyline algorithm, as shown
in Algorithm 2. In Ck-sky, a keyword-matched skyline query also runs in the
same two stages of Nk-sky. However, we use tuple keywords instead of node
keywords in Ck-sky. In lines [3-11], the first stage is presented. Thus, instead of
sending only a node id to the keyword responsible peer, the tuple id is also sent.
Bloom filter is used for the tuple ids. In the first stage, the querying peer gets
the candidate peers using bloom filter as shown in line 3. In lines [6-10], instead
of going to the dimension values peers discussed in Ch-isky, only the candidate
peers closest to the dimension values peers are used to start the query. Lines
[12-19]are responsible of the second stage. Line 13 calculates the skyline using
the VDR and MinMax filters. The new VDR and MinMax are calculated in line
14 using Equations 3 and 4. The results are sent to the querying peer in line 15.
The next peer to visit is calculated in line 16. In line 18, the query is sent to
next peer if it is not pruned.
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To reduce the number of tuples sent and maintained by the Bloom filter, we
suggest Cover set.

Cover Tuple: A tuple t is said to be a cover for a tuple t′ if and only if
∀w ∈ t′.W , w∈ t.W .

Mutual Cover Tuple Set: All tuples that cover each other in set (i.e. they
have the same keywords).

Cover Set: A cover set is the set of all tuples that have no cover in a node in
addition to a tuple from each mutual cover tuple set.

In Ck-sky, a peer can send its Cover set instead of sending all tuples at the
distribution phase. In the first stage, tuples are considered in the Bloom filter
as opposed to nodes in Nk-sky. The second stage are done as in Nk-sky.

In the first stage, a query may need O(klog n) lookup messages to reach to
all k query keyword peers for their Bloom filters. It is, however, optimized by
visiting keywords peers in order (in a clockwise order).

In the second stage, for an m candidate peers, a maximum of m jumps may be
needed. Each jump may require O(log n) lookup messages. Due to the traversal
order of our algorithms, the larger distance between candidate peers, the larger
number of peers pruned. The portion of the m candidate peers that may be
pruned, however, depends on the tuples in each peer.

Lemma 1 is also applicable for both Nk-sky and Ck-sky. The following Lemma
is complement to Lemma 1.

Lemma 2. Covered set does not affect the correctness of the keyword-matched
skyline query.

Proof. Let’s assume a peer p with a tuple t. t is either in the Cover set of p or not.
If t is in Cover set, then p will be included in the candidate peers. Let’s assume
t is not in the Cover set of p. This means there is t′ that covers t if t is keyword-
matched tuple to a query keyword q (Definition 1). Since (∀w ∈ q.W→w ∈ t.W
) and (∀w′ ∈ t.W→w′ ∈ t′.W ) =⇒ (∀w′′ ∈ q.W→w′′ ∈ t′.W ). Thus, the peer p
will be included in the candidate peers.

4 Performance Evaluation

In this section we evaluate our algorithms by checking the reduction of the visited
peers for keyword-matched skyline queries. For a thorough investigation, we use
synthetic datasets in our experiments to show the reduction in traversed peers
for different variances (parameters). Table 1 summarizes the used parameter
settings. The parameters include value distribution, dimensionality, cardinality,
query keywords size, network size, and skew factor of the word distribution.

As in [1], for the experiments, we generated three types of synthetic datasets:
(i) independent datasets, (ii) correlated datasets and (iii) anti-correlated datasets
with 1000 distinct keywords.
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Table 1. Parameter settings in the experiments

Parameters Values

Cardinality(N) of tuples 100k, 200k, 400k, 600k, 800k, 1M

Dimensionality 2, 3, 4, 5

The number of query words (k) 1, 2, 3, 4, 5

Zipf skew factor (θ) 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

Distribution(for values) independent, correlated, anti-correlated

Tuple’s keywords 6

Network size (no. of peers) 100, 1000, 2000, 3000, 4000
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Fig. 2. Visited Peers vs. Number of Tuples

The three types of datasets are usually used for the evaluation of skyline. In
the independent datasets, the values in each dimension is independent of each
other; while in correlated datasets, the values are correlated as in a good grades
of one student may come with more papers published. On the other hand, in
anti-correlated datasets, a better value in one dimension will probably mean
a worse value in the other dimensions as in the hotel example where a closer
distance hotel to the beach will be a more expensive hotel.

The experiments were carried out on Intel(R) Core(TM) i3 CPU M350 (2.27
GHz), 3 GB RAM using Peersim-1.0.5 [24].

Our Ck-sky has shown to perform better than the other two algorithms in
reducing the visited peers for a query.

4.1 The Effects of Cardinality

In this section, we show our findings with experiments to evaluate scalability
with respect to dataset cardinality. Our experiments were done for various car-
dinalities with the range [100k,1M] and the default parameters shown in Table
1. Fig. 2 depicts our findings.

It shows that in all distribution of values (independent, correlated, and anti-
correlated), Ck-sky preforms better. These results come from the fact that, in
Ck-sky, visited peers only will probably contribute to the answer to the query.
Using the minimum values to distribute tuples also contribute to minimizing the
traversed peers by pruning peers that definitely can not contribute to the answer.

Nk-sky performs better than Ch-isky because in Nk-sky, only suspected peers
are visited. Ch-isky, however, visits all peers in order of minimum values until
it finds a pruning answer. In the independent and anti-correlated distributions,
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Fig. 3. Visited Peers vs. Dimensions
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Fig. 4. Traversed Peers vs. Network Size

the curves for the Ch-isky and Nk-sky algorithms are higher than the curves in
correlated. In correlated datasets, fewer skyline points are expected due to their
correlations; and they can be found in early peers.

4.2 The Effects of Dimensionality

As the number of dimensions (attributes) increases, an increase in skyline points
is expected. Larger variation among tuples is expected when higher dimensions
are used. In this section, we show the effect of dimensions on the number of
traversed peers in our algorithms. Our experiments are done with different di-
mensions [1D,2D ... 5D] with default values shown in Table 1. Fig. 3 goes along
with our expectations that as dimensions increase, the number of traversed peers
increases. Ck-sky is still better than the other algorithms. Ck-sky’s increase as
the dimensions increase is also expected as the pruning ability decreases with
higher dimensions. In anti-correlated distribution, visited peers for all algorithms
show a slight increase in traversed peers because the expected skyline points are
also higher. All algorithms do better in correlated database distribution than
the others because the correlation between values results in a better pruning. As
stated earlier, Ck-sky visits only peers that will probably have skyline points.

4.3 The Effects of Network Size

As network size increases, we expect traversed peers to increase. How does the
increase vary with our algorithms? In this section, we answer this question. Fig. 4
shows that the increase in Ch-isky is with a slope of one. The OR-ing used in the
Nk-sky algorithm has more effects as the number of tuples in a peer decreases due
to the increase of network size. Nk-sky becomes better than Ch-isky depending
on the network size and type of data set. However, the affect is not as good as the
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Fig. 5. Traversed Peers vs. Query Keyword Size
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Fig. 6. Traversed Peers vs. Skewness

Ck-sky algorithm. Ck-sky traversed peers increase is expected as skyline tuples
are distributed to more peers when network size increases. Thus, the increase
in traversed peers in Ck-sky for the three types of data sets complies with [1].
Skyline tuples are more for the anti-correlated than the other models. Traversed
peers increase in this model with our experiments for the same reason. Its effect
is less for the other models due to the wrong peers traversed.

4.4 The Effects on the Size of Query Keywords

Query keywords can also affect traversed peers. As query keywords increase,
fewer tuples would probably satisfy the query. This is also shown in Fig. 5 for Ck-
sky. Due to the false peers that result from the other algorithms, more peers are
visited. For Ck-sky and Nk-sky they will have the same number of visited peers
when the query keyword is one because Nk-sky will not have false peers. False
peers increase as we go farther. Ch-isky can probably have the same traversed
peers at the beginning due to the probability that a peer will have tuples with
fewer keywords than many keywords. The difference becomes big as the system
does not have a tuple with the query keywords. However, Ck-sky can discover
this at the first stage.

4.5 The Effects of Word Distribution

The results in Fig. 6 might be surprising because more traversed peers are ex-
pected in Ch-isky and Nk-sky because more tuples will satisfy the query. The
reduction should not be surprising for two reasons: 1) Even though more peers
are supposed to have satisfied tuples, they are contained in the unnecessary peers
that are traversed with low zipf factor. 2) The skyline algorithms exploit prun-
ing. Thus, because the probability of visiting a real candidate peer increases and
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the prune-ability increases for the wrong peers. However, this reduction is not
big due to the big probability of a wrong visited peer. The increase in traversed
peers in Ck-sky is due to more tuples are expected to be in the solution. This
is shown more obviously in anti-correlated distribution where more tuples are
expected. For independent distribution, the number of traversed peers is slightly
higher than correlated distribution due to the prune-ability and the results size.

5 Conclusion

This paper addresses keyword-matched skyline in peer-to-peer systems. Tuples
may have keywords in addition to value (quantity) attributes. Keywords are
boolean attributes that a tuple may have ormay not. The designs of the traditional
skyline algorithms only consider value attributes in all tuples. By specifying some
keywords in the query, a user needs a skyline for only tuples with these keywords.
It is called keyword-matched skyline. Modifying traditional skyline algorithms is
inefficient. The traditional keyword algorithms are not good for keyword-matched
skyline because they do not exploit prune-ability found in skyline queries.

In this paper, node and tuple-based algorithms are designed to solve keyword-
matched skyline in peer-to-peer systems efficiently. The algorithms use DHTs
functions and Bloom filters to minimize the number of traversed peers. Cover
sets are also defined for peer’s tuples to reduce false positives peers resulted
from Bloom filters. Results show that tuple-based cover set (Ck-sky) algorithm
performs better than the other algorithms. It considers only necessary tuples
(cover set) in a node when keywords are hashed. Even though we studied the
keyword-matched skyline in P2P systems in this paper, other issues could also
be investigated, such as keyword-matched skyline in streams, subspaces and
probability of keyword-matched skyline. Those issues are to be considered for
the future work.
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Abstract. Large-scale distributed systems such as Dynamo at Amazon,
PNUTS at Yahoo!, and Cassandra at Facebook, are rapidly becoming the
data management platform of choice for most web applications. Those
key-value data stores rely on data partitioning and replication to achieve
higher levels of availability and scalability. Such design choices typically
exhibit a trade-off in which data freshness is sacrificed in favor of re-
duced access latencies. Hence, it is indispensable to optimize resource
allocation in order to minimize: 1) query tardiness, i.e., maximize Qual-
ity of Service (QoS), and 2) data staleness, i.e., maximize Quality of Data
(QoD). That trade-off between QoS and QoD is further manifested at
the local-level (i.e., replica-level) and is primarily shaped by the resource
allocation strategies deployed for managing the processing of foreground
user queries and background system updates. To this end, we propose
the AFIT scheduling strategy, which allows for selective data refreshing
and integrates the benefits of SJF-based scheduling with an EDF-like
policy. Our experiments demonstrate the effectiveness of our method,
which does not only strike a fine trade-off between QoS and QoD but
also automatically adapts to workload settings.

1 Introduction

A fundamental requirement in modern web applications is to consistently meet
the user’s expectations for response time as expressed by a Service Level Agree-
ment (SLA). An example of a simple SLA is a web application guaranteeing that
it will provide a response within 300ms for 99.9% of its requests for a peak client
load of 500 requests per second [6].

Recently, distributed key-value data stores have emerged as the data man-
agement platform supporting such Web applications (e.g., Dynamo [6], PNUTS
[5], Cassandra [9], etc.). Key-value data stores present a highly-replicated data
model based on simplified primary-key data access. However, achieving serializ-
ability over such a globally-replicated distributed system is very expensive and
often unnecessary [5]. In particular, web applications expect and tolerate the
weaker levels of consistency achieved via optimistic replication [11].

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 86–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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While providing weaker levels of consistency allows for high availability (i.e.,
low latency), this often comes at the expense of reduced data freshness where
user queries might access stale data. Recent work (e.g., [1,14]) has studied that
consistency/latency trade-off at a global-level (i.e., system-level), often in the
light of CAP Theorem and quorum protocols. The same tradeoff is further man-
ifested at the local-level (i.e., each replica node) and is primarily influenced by the
resource scheduling strategy, which is responsible for allocating the limited com-
putational resources at each replica for the processing of incoming: 1) foreground
user-queries, and 2) background system-updates [13]. Hence, it is indispensable
to optimize resource allocation in order to minimize: 1) query tardiness, i.e., max-
imize Quality of Service (QoS), and 2) data staleness, i.e., maximize Quality of
Data (QoD).

In a key-value data stores, each data object is accessed by its key leading to
a clear relationship between the arriving queries and their corresponding pend-
ing updates, which offers a valuable opportunity to achieve the aforementioned
optimization goals. For instance, the On Demand (OD) scheduling mechanism
is well suited to achieve that goal since it couples the execution of the pend-
ing updates together with the arriving user requests where all the data items
read by a certain query are refreshed on demand before the execution of that
query [3]. Clearly, however, OD might sacrifice QoS in order to maximize QoD.
Unlike OD, the Freshness/Tardiness (FIT) scheduling policy might selectively
skip applying some of the pending updates in order to minimize query tardiness
(i.e., maximize QoS) [15].

FIT is based on the classical Shortest Job First (SJF) scheduling policy, which
is well-known to perform reasonably well under most workload settings. SJF,
however, is oblivious to deadlines (i.e., SLAs), which leaves room for significant
improvements when it is integrated with other deadline-aware policies such as
Earliest Deadline First (EDF) [7]. Motivated by that, in this work we propose
the Adaptive Freshness/Tardiness (AFIT) method for scheduling queries and
updates in key-value data stores. AFIT exhibits the following desirable proper-
ties: 1) it exploits the coupling between the pending queries and corresponding
updates in order to optimize resource usage, 2) it employs a selective policy in
applying pending updates in order to balance the trade-off between QoS and
QoD, and in turn maximize the overall system utility, and 3) it complements
and integrates the SJF-based scheduling with an EDF-like policy, which allows
it to adapt to a wide spectrum of workload settings.

Our experimental evaluation shows that AFIT outperforms the existing strate-
gies in terms of striking a fine balance between QoS and QoD, which leads to
maximizing the overall system utility. In addition, those gains are maintained at
any feasible workload setting due the adaptivity feature of AFIT, which allows
it to dynamically and automatically adjust to those settings.

The remainder of this paper is organized as follows. Firstly, Section 2 describes
the system model. Then, Section 3 describes our proposed solution, i.e., AFIT,
and Section 4 shows the experimental results. Finally, Section 5 concludes our
paper.
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2 System Model

Our system model is based on modern distributed data management platforms,
in which each data item, as well as its replicas, are in the form of key-value
pairs. Under the weak consistency model, issued queries can access any replica
while updates are propagated in the background [6]. Hence, a user query might
access stale data items if any updates are pending for this item. In this section,
we discuss our system model including the data access operations (i.e., queries
and updates) as well as the performance metrics (i.e., query tardiness and data
staleness).

2.1 Queries

Without loss of generality, a query in our model is a read-only data access oper-
ation. For instance, most web applications such as browsing the recent messages
on a social network web site, involve executing a large number of such read-only
queries. In response to an API-level request, such as get() in Dynamo, the ob-
ject replicas associated with the query key are located in the storage system and
the corresponding value is returned.

In this paper, Qi notates the i-th query to arrive into the system, which is
associated with an arrival time Ai and a cost Ci. That cost is basically the
amount of time needed to access the requested data item and it incorporates
both CPU and I/O costs, which are statistically estimated by monitoring the
execution of previous queries over a reasonable time window.

2.2 Updates

Under the weak consistency model, updates are typically propagated in the
background to different replicas. Those updates are not applied immediately
but they are queued to refresh the corresponding data item. For instance, a
user might update some of her profile information on Facebook, but her friends
overseas may still see the old information. Generally, each update refreshes one
data item. Requests such as set() in PNUTS and put() in Dynamo are included
in the high-level API to update the value of a data item given its key.

In this work, we also assume that updates are blind [10] such that a newly
arriving update automatically makes any pending updates on the same data
item invalid. That is, to get the newest data, it is only needed to apply the latest
update rather than the intermediate updates. Hence, in our system model, Ui is
the cost of applying the latest update on the data item accessed by Qi. Similar
to query processing costs, the cost of applying an update includes both the CPU
and I/O costs and is typically evaluated by monitoring the processing of previous
updates over time.

2.3 Metrics

In order to quantify the user-perceived Quality of Service (QoS) and Quality of
Data (QoD), we discuss two metrics, namely tardiness and staleness.



Adaptive Query Scheduling in Key-Value Data Stores 89

Tardiness. To specify the user’s requirement on response time (i.e., QoS), each
query is associated with a tardiness deadline, which is formally defined as follows:

Definition 1. Tardiness deadline TDi for query Qi is defined as TDi = Ai+γi,
where Ai is the arrival time of Qi and γi is the tardiness tolerance of Qi.

At time t, if the tardiness deadline TDi of a query Qi has been missed, the
tardiness is calculated as t− TDi. Otherwise, that tardiness is zero. Therefore,
the tardiness of Qi can be represented as:

max(0, t− TDi) (1)

Staleness. To specify the user’s requirement on data freshness (i.e., QoD), each
query is associated with a staleness deadline, which is formally defined as follows:

Definition 2. Staleness deadline SDi for query Qi is defined as SDi = Ri+ δi,
where Ri is the arrival time of the first unapplied update on the data item accessed
by Qi and δi is the staleness tolerance of Qi.

Like tardiness, we use time-based staleness measure which is especially useful in
a distributed environment [8]. At time t, if the staleness deadline SDi of query
Qi has passed, the staleness is calculated as t− SDi. Otherwise, the staleness is
zero. Therefore, the staleness of Qi can be represented as:

max(0, t− SDi) (2)

2.4 Problem Statement

Given the definitions of tardiness in Eq. 1 and staleness in Eq. 2, the total penalty
of Qi at time t in terms of both QoS and QoD penalty is:

Pi(t) = Wi[λimax(0, t− TDi) + (1− λi)max(0, t− SDi)] (3)

where Wi is the query weight, λi is the QoS fraction, and 1 − λi is the QoD
fraction. Here, Wi represents the inter-query importance, whereas λi and 1− λi

represent the intra-query QoS and QoD preference, respectively. The QoS and
QoD components in Eq. 3 are depicted in Figure 1 and Figure 2, respectively.

The total penalty incurred by a query Qi is evaluated at its finish time Fi,
i.e., Pi(Fi). For a number of queries, the average total penalty is defined as:
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Fig. 2. QoD Penalty
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Fig. 3. Framework of AFIT Scheduler

Definition 3. The average total penalty for N queries is: 1
N

∑N
i=1 Pi(Fi), where

Fi is the finish time of Qi.

In this work, our goal is to find an optimal strategy for query scheduling to
minimize the average total penalty. The following sections describe our proposed
solution towards addressing this problem.

3 The AFIT Query Scheduling

Scheduling strategies such as On Demand (OD) [3] and Freshness/Tardiness
(FIT) [15] are well suited to optimize resource allocation in key-value data stores
so that to maximize both QoS and QoD. However, OD might sacrifice QoS in
order to maximize QoD since it always refreshes a data items before it is accessed
by a query. Although FIT allows to selectively skip some of the pending updates
to balance QoS and QoD, it employs a scheduling policy that is purely based on
the classical Shortest Job First (SJF) which is oblivious to deadlines.

In general queueing systems, it is well-known that Earliest Deadline First
(EDF) works reasonably well in the presence of SLAs except for systems that
exhibit high-utilization or fairly tight SLAs, in which case SJF typically outper-
forms EDF [7,12]. This exact trade-off between EDF and SJF motivates us to fur-
ther study the performance of query scheduling policies in key-value data stores.
In particular, in this work we propose Adaptive Freshness/Tardiness (AFIT),
an adaptive policy for the scheduling of queries and updates in a key-value data
store. Like FIT, our AFIT scheduler employs a selective policy in applying pend-
ing updates so that to balance the trade-off between QoS and QoD, and in turn
minimize the overall system penalty. Differently, however, AFIT employs a hy-
brid scheduler that integrates and extends both SJF and EDF into the scheduling
decision so that to dynamically adapt to variabilities in the workload settings.

As shown in Figure 3, the AFIT scheduler maintains two query lists: 1) Apply
List (AL); and 2) Skip List (SL). In both lists, each query is assigned a priority
value according to a weighted variant of SJF which considers the trade-off be-
tween benefit and cost. In the context of our work and according to our problem
statement presented in Section 2.4, that benefit is expressed in terms of minimiz-
ing the penalty paid by the system for violating the QoS and QoD requirements.
Hence, the higher the penalty, the higher the weight (i.e., priority). Accordingly,
those priorities are computed as follows:
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– Apply List (AL): A query Qi is added to this list when AFIT decides to
apply the latest pending update to the data item accessed by Qi before it
is executed. Accordingly, each query in this list would access a fresh data
item. Hence, AFIT needs to only consider the fraction of weight pertaining
to QoS (i.e., λi) and the priority of each query Qi in AL is computed as:
pi =

λiWi

Ci+Ui
.

– Skip List (SL): A queryQi is added to this list when AFIT decides to skip the
latest pending update to the data item accessed by Qi before it is executed.
Accordingly, a query in this list might access a stale data item. Hence, AFIT
needs to consider the total weight of QoS and QoD (i.e., Wi) and the priority
of each query Qi in SL is computed as: pi =

Wi

Ci
.

In order to make the decision in which list to place a new query, AFIT employs
a query router component (as shown in Figure 3). The query router decides
the placement of a new query according to the critical condition described in
Section 3.1. In addition, the query router also checks the existing queries in
the two lists and reallocates the queries for which that critical condition has
been violated. Figure 3 also shows the query selector component which, at each
scheduling point, decides the query to be scheduled for execution. The query
selector chooses between the two queries with the highest priority in the AL and
SL lists and its decision is based on an integration of the SJF and EDF policies
as described in Section 3.2.

3.1 Query Routing

The query routing component of AFIT is responsible for assigning each newly
arriving query to either the AL or the SL list. Central to that decision is esti-
mating the slack available for each query. That estimation is dependent on the
candidate target list (i.e., AL or SL) as well as the performance metrics under
consideration (i.e., tardiness and staleness). Before further discussing the details
of query routing, the different definitions of slack are given below:

Definition 4. The AL tardiness slack time tsai of query Qi is the maximum
amount of time that Qi can wait before it misses its tardiness deadline TDi.
This excludes the cost for applying the last pending update to the accessed data
item (i.e., Ui) and the cost for query execution (i.e., Ci). Specifically, tsai =
TDi − (t+ Ci + Ui) where t is the current system time.

Definition 5. The SL tardiness slack time tssi of query Qi is the maximum
amount of time that Qi can wait before it misses its tardiness deadline TDi. This
excludes the cost for query execution (i.e., Ci). Specifically, ts

a
i = TDi− (t+Ci)

where t is the current system time.

Clearly, for any query Qi, ts
s
i ≥ tsai at any time t. That is, the available slack

time to meet the tardiness deadline by skipping an update (i.e., tssi ) is always
greater than or equal the available slack time when an update is to be applied
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(a) 0 ≤ tsai < tssi

(b) tsai < tssi < 0

(c) tsai < 0 < tssi

Fig. 4. Potential Tardiness Increased

(i.e., tsai ). However, if an update is to be skipped, it is essential to measure the
available time to meet the staleness deadline. That is, the accessed data item
meets the pre-specified staleness tolerance, which is defined as:

Definition 6. The staleness slack time ssi of query Qi is the maximum
amount of time that Qi can wait before it misses its staleness deadline SDi. This
excludes the cost for query execution (i.e., Ci). Specifically, ssi = SDi− (t+Ci)
where t is the current system time.

Intuitively, a query Qi is inserted into AL if the penalty incurred by applying
the latest pending update is greater than the one incurred by skipping it, and
vice versa. Based on the definitions above, the critical condition employed by
the query router is represented as: query Qi is inserted into AL, if either Eq. 4a
or Eq. 4b meets.{

tsai ≥ 0 (4a)

λi[Ui −max(0, tssi )] ≤ (1− λi)max(0,−ssi) (4b)

Otherwise, Qi would be inserted into SL.
The equations above basically exploit the estimated potential penalty so that

to choose the appropriate list assignment for each incoming query. Only a QoS
penalty is incurred if the pending update is applied, whereas both QoS and QoD
penalties are expected if that update is skipped.

To further explain the intuition underlying the AFIT query router, lets con-
sider the different valid relationships between tsai and tssi as shown in Fig-
ures 4(a), 4(b) and 4(c).

1. 0 ≤ tsai < tssi : Figure 4(a) shows that even if Qi waits for data refreshing,
i.e., no QoD penalty, it still meets its tardiness deadline, i.e. no QoS penalty.
Hence, Qi should be inserted into AL since Eq. 4a is satisfied in that case.

2. tsai < tssi < 0: Figure 4(b) shows the case in which Qi will miss its tardiness
deadline TDi, even if the pending update is skipped. Specifically, if the
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pending update is skipped, Qi misses TDi by t+Ci − TDi and misses SDi

by max(0, t+Ci−SDi), i.e., max(0,−ssi). Hence, the total incurred penalty
Ps is λiWi(t + Ci − TDi) + (1− λi)Wimax(0,−ssi). To the contrary, If Qi

waits for the accessed data item to be updated, the total penalty Pa will only
include the QoS component and is estimated as: λiWi(t + Ci + Ui − TDi).
Therefore, Qi should be inserted into AL if Pa ≤ Ps, i.e.,

λiUi ≤ (1 − λi)max(0,−ssi) (5)

3. tsai < 0 < tssi : Figure 4(c) shows the final case in which Qi misses its
tardiness TDi if the data item is refreshed, whereas it meets TDi if the
data item is left stale. Similar to previous case, we compare the penalty
incurred by applying or skipping the pending update. If Qi skips the update,
only QoD penalty is incurred and then the total penalty Ps equals to (1 −
λi)Wimax(0,−ssi). To the contrary, if Qi applies the update, only QoS
penalty exists and the total penalty Pa is λiWi(t+Ci+Ui−TDi) = λiWi(Ui−
tssi ). Hence, Qi is inserted into AL if Pa ≤ Ps, i.e.,

λi(Ui − tssi ) ≤ (1− λi)max(0,−ssi) (6)

In the AFIT query router, the first case above is handled by Eq. 4a, whereas
the second and third cases are uniformly handled by Eq. 4b. In particular, a
newly arriving query is dispatched to either AL or SL according to those two
equations. Moreover, at each scheduling point, the query router maintains the
two lists as follows: (1) queries in SL that satisfy Eq. 4a or 4b are moved into
AL; and (2) queries in AL that satisfy Eq. 4a and 4b are moved into SL.

3.2 Query Selection

Clearly, the query with the highest priority in AL should be executed prior to
the other queries in that list. Similarly, the query with the highest priority in
SL should be the first one to be executed in that list. Hence, at each scheduling
point, the task of the query selector is to compare the head query in AL (say
QA1) to the head query in SL (say QS1) and the winner is selected for execution
(as illustrated in Figure 3).

One option is to compare those two queries according to the weighted SJF
priority pi assigned to them when first inserted in AL and SL, respectively.
This is similar to the approach followed by FIT [15], which is purely based on
cost-benefit analysis and has the drawback of ignoring the respective deadlines
of those two queries. To illustrate the impact of that drawback, consider the
following example:

Example 1. Figure 5 shows two queries QA1 and QS1, for which we assume equal
QoS fractions for the two queries (i.e., λA1 = λS1) as well as equal weights (i.e.,
WA1 = WS1). Computing the priority of each query according to weighted SJF
(as described earlier in the beginning of Section 3) results in pA1 = λA1WA1

CA1+UA1

and pS1 = WS1

CS1
. Given the query and update costs illustrated in Figure 5, in



94 C. Xu et al.

(a) QA1: CA1 = 2, UA1 = 3 (b) QS1: CS1 = 2, US1 = 6

(c) QS1 followed by QA1 (d) QA1 followed by QS1

Fig. 5. Motivated Example for Query Selection

this example pS1 > pA1 and a simple cost-benefit comparison would result in
QS1 being executed before QA1. However, that exact execution order results in
a system penalty (as shown in Figure 5(c)), whereas the reverse order, in which
QA1 is executed first, incurs no penalty (as shown Figure 5(d)).

Example 1 calls for an alternative scheduling approach which takes deadlines
into consideration. In this work, AFIT leverages the different available slacks
(as defined in Section 3.1) to extend that basic cost-benefit comparison and
inject EDF-like deadline-aware scheduling into the query selector decision. In
particular, the AFIT query selector employs the following criterion for query
execution: QS1 is executed first if it meets the following condition:

WA1λA1[max(0, CS1 −max(0, tsaA1))] < WS1[λS1max(0, CA1 + UA1−
max(0, tssS1)) + (1− λS1)max(0, CA1 + UA1 −max(0, ssS1))]

(7)

Otherwise, QA1 is the one scheduled for execution.
Eq. 7 compares the estimated penalty achieved by two different sequences:

1) QS1 → QA1 (i.e., QS1 followed by QA1), and 2) QA1 → QS1 (i.e., QA1

followed by QS1). Accordingly, it selects for execution the query that yields the
lower penalty to the system (if any). Those two alternative execution orders are
illustrated in Figures 6 and 7 and are further discussed next.

– QS1 → QA1: We estimate the tardiness experienced by QA1 due to waiting
forQS1’s execution according to the cases shown in Figure 6 and listed below:

• tsaA1 < 0: Figure 6(a) shows the case in which QA1 has already missed
its tardiness deadline TDA1 regardless of the execution order. Hence,
waiting for QS1 to finish execution increases QA1’s tardiness by CS1.

• 0 < tsaA1 < CS1: Figure 6(b) shows that QA1 has enough slack that it will
incur no tardiness if it was to be executed before QS1. However, waiting
for QS1 to finish execution increases QA1’s tardiness by CS1 − tsaA1.

• 0 < CS1 < tsaA1: Figure 6(c) shows that QA1 has large enough slack that
it will incur no tardiness regardless of its execution order. Hence, waiting
for QS1 to finish execution leads to no increase in QA1’s tardiness.
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(a) tsaA1 < 0

(b) 0 < tsaA1 < CS1

(c) 0 < CS1 < tsaA1

Fig. 6. QA1’s Tardiness Incurred by QS1

(a) ssS1 < 0

(b) 0 < ssS1 < CA1 + UA1

(c) 0 < CA1 + UA1 < ssS1

Fig. 7. QS1’s Staleness Incurred by QA1

Hence, the increase in total penalty PS→A due to QS1’s execution is com-
puted as: WA1λA1max(0, CS1 − max(0, tsaA1)), which is the left-hand com-
ponent of Eq. 7.

– QA1 → QS1: Similar to the first sequence, the increase in QoS penalty ex-
perienced by QS1 due to QA1’s execution is: WS1λS1max(0, CA1 + UA1 −
max(0, tssS1)). In addition, the increase in QS1’s staleness is discussed in
following three cases:

• ssS1 < 0: Figure 7(a) shows the case in which QS1 has already missed its
staleness deadline SDS1 regardless of the execution order. Hence, waiting
for QA1 to finish execution increases QS1’s staleness by CA1 + UA1.

• 0 < ssS1 < CA1+UA1: Figure 7(b) shows that QS1 will incur no stalness
if it was to be executed before QA1. However, waiting for QA1 to finish
execution increases QS1’s staleness by CA1 + UA1 − ssS1.

• 0 < CA1 + UA1 < ssS1: Figure 7(c) shows that QS1 will incur no stal-
eness regardless of its execution order. Hence, waiting for QA1 to finish
execution leads to no increase in QS1’s staleness.

Hence, the increase in total penalty PA→S due to QA1’s execution is the
right-hand component of Eq. 7.

By the discussion, if PS→A < PA→S , i.e., satisfies Eq. 7, QS1 is executed first.

3.3 Implementation

Putting it together, Algorithm 1 outlines the general framework of AFIT. In
particular, the AFIT query router places each newly arriving query into either
AL or SL (line 2). Further, at each scheduling point, AFIT would maintain both
AL and SL where some queries might be shuffled between the two lists by calling
the Adjust() procedure (line 4). Finally, the AFIT query selector will compare the
two queries with the highest priority in AL and SL and the winner is scheduled
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Algorithm 1. Framework of AFIT

1 while true do
2 foreach new arrival query Qi do
3 QueryRouter (Qi) ; /* the condition in Section 3.1 */

4 Adjust() ;
5 QA1 ← head of AL, QS1 ← head of SL;
6 Qe ← QuerySelector (QA1, QS1) ; /* the condition in Section 3.2 */

7 execute Qe;

Procedure Adjust

1 foreach query in SL do
2 if Eq. 4a ∨ Eq. 4b then
3 move into AL;

4 foreach query in AL do
5 if ¬ Eq. 4a ∧ ¬ Eq. 4b then
6 move into SL;

for execution (line 6). In our implementation, AL and SL are maintained as
two heaps. The cost of element insertion and deletion in a heap is logn. Hence,
the complexity of Algorithm 1 is O(n log n) which is similar to other classical
scheduling policies including SJF, EDF, etc.

To implement AFIT in key-value data stores, the query API is extended by
adding two parameters to specify the QoS and QoD requirement. AFIT works
at each node to schedule the execution of queries in the local query queues. That
is, it replaces existing scheduling methods that are oblivious to QoS and QoD
requirements (e.g., FCFS in Cassandra).

4 Experiments

We have created a detailed simulator to evaluate our proposed method. For each
simulated point, we generate 5000 queries and report the average results of 5
runs. The details of our simulator are as follows:

Queries: The processing cost Ci of each query Qi depends on the accessed data
item and is generated according to a uniform distribution over the range [10,
20] mSec. Each query Qi is assigned a tardiness deadline TDi = Ai + ki ∗ Ci,
where ki is generated uniformly over the range [1, kmax] and kmax = 10 in our
experiments. To assign staleness deadlines, each query Qi is associated with a
staleness tolerance δi that is uniformly distributed over [0, 100] mSec. Hence,
Qi’s staleness deadline SDi = Ri+ δi where Ri is the arrival time of the earliest
unapplied update to the data item accessed byQi. Further, each query is assigned
a weight Wi uniformly distributed over the range [1, 10] which represents the
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importance of that query. The QoS fraction of the weight (i.e., λi) follows Zipf
distribution in the range [0, 1] where in the default setting the skewness of Zipf
distribution is 0 (i.e., uniform). The arrival of queries is modeled as a poisson
process, where the arrival rate is a simulation parameter.

Updates: The processing cost of each update is generated according to a Zipf
distribution over the range [10, 50] mSec. The skewness of Zipf distribution
allows us to control the impact of updates on the system load. In the default
setting, it skews towards the high-end of the cost range and the skewness is 0.3.
The arrival of updates is also modelled as a poisson process, where we set the
arrival rate to 20 updates/sec.

Baselines: In this work, we follow the popular design principle on the separa-
tion of mechanism and policy. In particular, we make the distinction between
the high-level general mechanism used for specifying the dependency between
queries and updates and the low-level scheduling policy used for ordering the
execution of those queries and updates. As such, we compare AFIT against the
OD mechanism, under which we have implemented several low-level schedul-
ing policies, namely: First Come First Served (FCFS), Earliest Deadline First
(EDF), Least Slack (LS) [2] and Highest Density First (HDF) [4]. For setting
the priority under LS, we use the AL tardiness slack and the priority is simply
computed as −tsai . For HDF, the priority is Wi/(Ci + Ui) which considers both
the cost of applying the last pending update to the accessed data item (i.e., Ui)
and the cost of query execution (i.e., Ci). We also compare against FIT as it has
been described in [15].

4.1 Impact of Query Arrival Rate

In this experiment, we set all the parameters to the default values aforemen-
tioned. The query arrival rate is varied from 5 to 50 queries/second. Figure 8
shows the average total penalty incurred by the different policies. For all policies,
the total penalty increases along with increasing the query arrival rate. At low
query arrival rate (Figure 8(a)), all the OD -based policies (i.e., FCFS, EDF, LS
and HDF) perform poorly since they always need to refresh any accessed data
item. That poor performance is further emphasized in the case of high query
arrival rate (Figure 8(b)). Figure 8(b) also shows that at high query rate, AFIT
significantly outperforms the original FIT policy.

To further illustrate the performance of AFIT vs. FIT, in Figure 9(a) we
plot their performance normalized to that of HDF (the best OD-based policy
as shown in Figure 8). From the figure, it is clear that both FIT and AFIT are
superior to HDF. However, AFIT consistently outperforms FIT, especially at
medium query loads where a mix of EDF and SJF scheduling is much needed.
For instance, at a load of 25 queries/second, AFIT reduces the average total
penalty by 30% compared to HDF whereas FIT reduces it by only 20%. Finally,
the normalized performance of AFIT vs. FIT in terms of the QoS and the QoD
components is shown in Figures 9(b) and 9(c) respectively.
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Fig. 9. Impact of Query Arrival Rate: Normalized Penalty

4.2 Impact of Update Cost

In this experiment, we keep all the default settings except for the update skew-
ness factor, which is set to be 0.8 (i.e., skewed towards high update costs). Figure
10(a) shows the average penalty achieved by AFIT and FIT normalized to that
of HDF. The figure shows that the reductions in penalty provided by AFIT and
FIT at hight update costs are much higher than those under the default set-
ting (as previously shown in Figure 9(a)). For example, at 35 queries/second,
AFIT provides a 53% reduction in penalty compared to HDF under the default
setting (Figure 9(a)) and this reduction increases to 66% at high update costs
(Figure 10(a)). The same pattern of relative performance applies for FIT. AFIT,
however, adapts better than FIT as the update cost increases. For instance, at
35 queries/second, FIT provides only a 36% reduction in penalty compared to
HDF (vs. the 66% reduction provided by AFIT).

The results on the QoS and QoD penalties are depicted in Figures 10(b) and
10(c), respectively. Overall, the figures above show that, compared to FIT, AFIT
does better in recognizing updates with high cost and it either skips them to
reduce the tardiness of their corresponding queries or assign those queries a low
priority to enable the early execution of other pending queries.
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Fig. 10. Impact of Update Cost: Normalized Penalty
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Fig. 11. Impact of the QoS and QoD Preferences: Normalized Penalty

4.3 Impact of the QoS and QoD Preferences

In this experiment, to evaluate the impact of the QoS and QoD preferences, we
set the Zipf skewness of QoS fraction to 0.7 which leads to a higher preference
for QoS. Figure 11(a) shows that the performance gap between AFIT and FIT
becomes significantly larger with higher QoS preference, especially at moder-
ate query loads. For instance, at 30 queries/second, FIT only reduces the total
penalty by 10% compared to HDF, whereas AFIT reduces it by 61%. In Figures
11(b) and 11(c), we break down the total penalty into its QoS and QoD compo-
nents to further illustrate the relative performance of AFIT vs. FIT. The figures
show AFIT’s ability to handle queries with high QoS preferences and selectively
skipping their pending updates whenever it is beneficial.

5 Conclusions

In this paper, we propose a novel scheduling method called AFIT for scheduling
queries and updates in key-value data stores in order to minimize the combined
QoS and QoD penalty. Towards this, AFIT employs a selective policy in applying
pending updates to balance the trade-off between QoS and QoD. Additionally,
AFIT complements the SJF-based scheduling with an EDF-like policy. Due to
the effective query routing and query selection, AFIT outperforms the other
existing approaches for a wide spectrum of workload settings, which highlights
its adaptivity as demonstrated by our experimental evaluation.
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Abstract. One-dimensional mapping has been playing an important
role for nearest neighbor search in high-dimensional space. Two typical
kinds of one-dimensional mapping method, direct projection and distance
computation regarding to reference points, are discussed in this paper.
An optimal combination of one-dimensional mappings is achieved for the
best search performance. Furthermore, we propose a near-optimal par-
tial linear scan algorithm by considering several one-dimensional map-
ping values. During the linear scan, the partial distance to the query
point computed in the 1D space is used as the lower bound to filter
the unqualified data points. A new indexing structure based on clus-
tering with Gaussian Mixture is also designed to facilitate the partial
linear scan, which can reduce both the I/O cost and distance compu-
tations dramatically. Comprehensive experiments are conducted on sev-
eral real-life datasets with different dimensions. The experimental results
show that the proposed indexing structure outperforms the existing well-
known high-dimensional indexing methods.

Keywords: indexing methods, nearest neighbor search, one-dimensional
mapping.

1 Introduction

k-Nearest Neighbor (k-NN) search in high-dimensional space has many applica-
tions such as multimedia retrieval, time-series matching, data mining, and the
like. One serious problem in achieving efficient k-NN search is the notorious
”curse of dimensionality”. The traditional hierarchical indexing structures al-
ways degenerate to visiting the entire dataset when the dimensionality is high,
and are eventually outperformed by linear scan[5]. Therefore, for k-NN queries in
high-dimensional space, linear scan method remains an efficient search strategy
for similarity search [4] [5].

The design of indexing algorithm is also governed by hardware constraints.
For the disk-based indexing structure, I/O operations often dominate the cost
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of query processing because of the relatively low transfer speed between mem-
ory and disk. The linear scan avoids seeking the specified page, and it is much
faster than random access. Furthermore, linear scan methods are a lot easier
to integrate within a database engine or query engine. The typical linear scan
methods are the VA-file approachs [20] [8] and the omni-sequential. However,
these methods usually need to linearly scan the whole dataset, and every point
in the dataset incurs expensive distance computations.

Recently, one-dimensional mapping methods have attracted the attention,
which are widely used for the exact or approximate k-NN search. Two typical
one-dimensional mapping methods in metric space are projection-based tech-
niques and distance-based techniques. For the approximate NN search, both the
Locality Sensitive Hashing (LSH) [10] and NV-tree [14] are based on the con-
cept of projecting data points onto a line and classifying locations along this
line with different symbols. The random projection is applied in LSH methods,
and Principal Component Analysis (PCA) is used in NV-tree. For the exact NN
search, one-dimensional mapping is a good choice for the filter-and-refine strat-
egy, because the 1D mapping values have the lower-bounding property. When
mapping the high-dimensional data to 1D space, only partial data points need
to be accessed during the query. The omni-sequential [9] and iDistance [12] are
two typical methods using distance-based mapping.

When sorting the 1D mapping values, a simple linear scan algorithm using
filter-and-refine model can be presented. During the search, we locate the first
accessed point with its 1D value nearest to the mapping value of the query, and
then perform a two-stage linear scan. Since the 1D mapping value has the lower-
bounding property, only partial data file need to be linearly scanned. We call
this search strategy as ”Partial Linear Scan (PLS)”. The PLS has the advantage
of linear scan, and it also avoids accessing the whole data file.

In this paper, we aim at finding a best mapping scheme to support PLS. Two
kinds of mapping methods were analyzed and compared in this paper. To the
best of our knowledge, the performance of different one-dimensional mappings
is firstly studied in this paper, and our observations will be helpful for the re-
searches and applications in the high-dimensional space. To summarize, we make
the following main contributions:

• We formalize the PLS algorithm with respect to one-dimensional mapping
and discuss its advantages over existing linear scan approaches.

• We identify the parameter that affect the performance of PLS and present
a near-optimal PLS to take both processor and I/O time into account. By
using the variance of 1D mapping values as the parameter, we find the opti-
mal reference point for distance-based mapping and the optimal projection
line for projection-based mapping. Furthermore, an optimal combination of
different 1D mapping values is observed.

• We present PLS-VA, an efficient indexing structure for high-dimensional
datasets. Clustering with Gaussian Mixture is applied in PLS-VA and ex-
periment results on multimedia datasets show it can facilitate the PLS on
the approximate vectors.
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The rest of this paper is organized as follows. In Section 2, we survey the main
current indexing methods. Some observations of our work and the PLS algorithm
are presented in Section 3. Section 4 introduces our PLS-VA indexing structure.
An extensive performance study is reported in Section 5, and finally, we conclude
our paper in Section 6.

2 Related Work

Research on high-dimensional indexing can be divided into exact and approx-
imate retrieval. In the approximate category, Hashing has been demonstrated
to be effective for similarity search. LSH is one typical hashing method [10]. In
Euclidean space, the basic idea is to project data points onto a line and clas-
sify locations along this line with different symbols. Recently, the distance-based
hashing has also been introduced [1]. Several heuristic variants of LSH have
also been suggested. For example, Multi-probe LSH can obtain the same search
quality with much less tables [15], while LSB-tree addresses both the quality and
efficiency of multimedia retrieval [19]. NV-tree is another representative index
for approximate NN search [14]. Using partitioning and projections based on
PCA, NV-tree can give approximate answers with a single random disk read.

For exact k-NN queries in high-dimensional space, there exist mainly three
categories of high-dimensional indexing methods, such as dimensionality reduc-
tion, data approximation and one-dimensional mapping. A well known approach
to improving the indexing performance is Dimensionality Reduction (DR) be-
fore indexing the data in the reduced-dimensionality space [16]. The linear DR
approach first condenses most of information in a dataset to a few dimensions by
applying PCA or other techniques. Two strategies for dimensionality reduction
include Global DR and Local DR [7].

VA-file is the representative high-dimensional index for data approximation,
which suggests accelerating the linear scan by the use of data compression and fil-
tering of the feature vectors [20]. Some extensions of VA-file have been proposed,
such as IQ-tree [3], which achieves better query performance by combining a tree
structure with VA-file. VA+-file improves the approximate ability of VA-file by
transforming the data points in PCA space [8]. The Vector Approximation can
be seen as the scalar quantization. The Hyperplane Bound (HB) method uses
vector quantization to compress data points, and a new filtering algorithm based
on bounding hyperplane has been presented [17].

One-dimensional mapping approaches provide another direction for
high-dimensional indexing. The 1D mapping value has the lower-bounding prop-
erty. Therefore, data points can be cut off based on the 1D values, and the real
nearest neighbors are verified in the set of candidates. The typical example is
iDistance [12]. The dataset is partitioned and a reference point of each partition
is defined. Then data points are mapped to 1D values based on their distance
to the reference point. However, its performance is sensitive to the selection of
reference points and too much random access of data pages is required. Omni-
sequential method chooses some reference points as global ’foci’ and gauges all
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other data points based on their distances to each focus [9]. During the search,
the distances of the query point to each focus are computed, and the triangular
inequality can be used to reject the impossible point.

3 Optimal One-Dimensional Mapping

3.1 One-Dimensional Data Transformation

The basic idea of one-dimensional mapping is transforming high-dimensional
points into 1D values, which can be used to compute the lower bound of the
distance between points in the original high-dimensional space. Two typical one-
dimensional mapping methods in metric spaces are projection-based techniques
and distance-based techniques with respect to a chosen reference point.

Definition 1 (Projection-based 1D Transformation). Given a point p and
a vector X in the high dimensional space Rd, p can be projected onto X with its
one-dimensional mapping value p ·X.

Definition 2 (Distance-based 1D Transformation). Given a point p and
a reference point o in the high dimensional space Rd, the one-dimensional map-
ping value of p is defined as the distance between p and o, which is denoted as
dist(p, o). For Euclidean distance, dist(p, o) = ||p− o||, where || · || is L2 norm.

Lemma 1. Given two points p and q ∈ Rd, whose 1D mapping values are de-
noted as p1 and q1 respectively, we have dist(p, q) ≥ |p1 − q1|

Proof. There are two cases need to be considered here.
(1) For projection-based transformation, p1 = p ·X and q1 = q ·X . We have

dist(p, q) = ||p− q|| ≥ ||pX − qX || = |p1 − q1|

(2) For distance-based transformation, p1 = dist(p, o) and q1 = dist(q, o). By
considering the triangular inequality, we have

dist(p, q) ≥ |dist(p, o)− dist(q, o)| = |p1 − q1|

3.2 Partial Linear Scan

As proved in the Lemma 1, given two points, their full distance in the original
high dimensional space cannot be smaller than their 1D transformation distance.
Thus, their 1D transformation values (or 1D values, in short) can be used to
compute the lower bound of the full distance. According to this property, a
synchronous bi-directional linear scan algorithm can be designed to perform an
efficient PLS.

Given a collection of data points, they are firstly sorted in ascending order
according to their 1D values. Given a query point q, a distance array kDist [ ] of
size k is employed to store the k-NN distances found so far. During the search,
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Fig. 1. Search Space after 1D transformation

we locate the first point to be accessed as pb whose 1D value p1b is nearest to
q1. A bidirectional scan will be conducted by accessing data points from pb (i.e.,
forward and backward from pb). In practice, the linear scan in the disk always
accesses data pages along one direction. The bidirectional search can be modified
as two search processes with the same direction. The detailed algorithm is shown
in Algorithm 1 and explained below.

Require: Query point q, dataset D
Ensure: kDist []
1: Initialize kDist [] with MAXREAL
2: Locate the first accessed point pb w.r.t q1 in the first stage
3: for i = b to N do
4: Calculate

∣∣p1i − q1
∣∣

5: if
∣∣p1i − q1

∣∣ > kDist[k] then
6: break //End of the first stage scan
7: else
8: Calculate dist (q, pi) and update kDist []
9: end if
10: end for
11: Locate the first accessed point ps w.r.t q1 and kDist[k] in the second stage
12: for i = s to b− 1 do
13: Calculate

∣∣p1i − q1
∣∣

14: if
∣∣p1i − q1

∣∣ > kDist[k] then
15: break //End of the second stage scan
16: else
17: Calculate dist (q, pi) and update kDist []
18: end if
19: end for

Algorithm 1. Partial linear scan for exact kNN search

We perform the first stage scan first (Line 3-10). Before computing the full
distance between the query q and the current data point pi, the distance be-
tween q1 and p1i is calculated firstly (Line 4). If

∣∣p1i − q1
∣∣ > kDist [k], pi can be

safely pruned without computing its full distance dist (q, pi) of all dimensions.
Furthermore, the linear scan in this direction can be terminated (Line 5-6). If∣∣p1i − q1

∣∣ < kDist [k], the full distance between pi and q is required to be calcu-
lated while kDist [ ] will be updated (Line 8). When the scan in the first stage
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is terminated, we perform the second stage scan similarly (Line 11-18). The
first accessed point ps at the second stage satisfies

∣∣p1s−1 − q1
∣∣ > kDist[k] and∣∣p1s − q1

∣∣ ≤ kDist[k]. Fig. 1 shows data points accessed during the PLS when
performing projection-based and distance-based 1D transformation respectively,
where the k-th NN distance is denoted as r.

3.3 Performance Analysis on One-Dimensional Mappings

In this subsection, we will discuss how to evaluate the performance of different
1D transformation methods and introduce several important observations. The
filtering efficiency is a critical indicator of the PLS performance based on a
certain 1D data transformation. It is formally defined as below.

Definition 3 (Filtering Efficiency, FE). Given a number of N data points
and their 1D transformation, Nf is the number of data points pruned in PLS.
The filtering efficiency (fe) is defined as: fe = Nf/N , where N = |D|.

The best and most widely used approach for data projection is based on PCA.
For any two points p and q in a dataset D ∈ Rd, they can be projected onto
the j-th PC of D, denoted as pj and qj respectively. We give another difinition
according to the PCA.

Definition 4 (Energy Ratio, ER). Let σ2
j denotes the variance along the j-

th PC. The energy ratio of the j-th PC, denoted as er (j), is defined as follows:

er (j) = σ2
j /
∑d

k=1 σ
2
k

Apparently, a larger fe implies a smaller number of data points to be accessed
during the PLS. The er(j) measures the percentage of the variance introduced
by j-th PC over the whole distance variance. It’s difficult to analyze the FE the-
oretically, since datasets have different distributions and different query points
have different query performance. However, several important observations have
been found according to the experiment results. The first group of experiments
are conducted on a widely used real-life dataset, COLHIST1, which contains a
number of 68,040 32-dimensional color histograms. The conclusions and obser-
vations found on the COLHIST dataset are also validated by the experiments
on other datasets such as, the LANDSAT dataset and the SIFT dataset. To get
fairly results, 500 10-NN searches are performed to get the average performance.
We first test the FE and ER along different PCs, which are shown in Fig. 2(a).
We can observe that two curves have similar tendency and a larger ER leads to
a higher FE.

Observation 1. For projection-based 1D data transformation, the ER can re-
flect the FE of the PCs. In result, the first PC is the optimal projection line for
1D data transformation.

1 http://kdd.ics.uci.edu/database/CorelFeatures

http://kdd.ics.uci.edu/database/CorelFeatures
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Fig. 2. Performance Analysis

The Observation 1 can be easily justified. Data variance measures how data
points are spread out along the corresponding direction. As shown in Fig. 1(a),
the shadow area is the search space of the query q. The larger the data variance
is along X , the fewer the data points fall into the shadow area, leading to a
higher FE.

For distance-based 1D transformation, the FE mainly depends on the choice
of reference point. We have shown the strong correlation between the data vari-
ance and the filtering ability. An optimal reference point should be the point
maximizing the variance of the distances from the data points to the reference
point. It is impossible to test the entire space to find the optimal reference point.
Fortunately, PCA can be used to find the direction with largest data variance
for a dataset. The optimal reference point most likely lie on the line identified
by the first PC [18]. We select points along the first PC as the reference points,
and test the corresponding data variances. Fig. 2(b) shows the variances of the
distances w.r.t a reference point when selecting the reference point along the
first PC. The tests on the the other PCs also show the similar tendency.

Observation 2. The largest variance of distances w.r.t the reference point lies
out of one side of the line determined by the first PC. When the reference point
lies very faraway the origin along the first PC, the limit of variance of distances
is equal to the variance of the first PC.

3.4 Combination of Several One-Dimensional Mappings

In this subsection, we will focus on 1D data transformation by utilizing both
project-based and distance-based mapping to achieve a better filtering efficiency.
By taking more information into account, the data points can be better distin-
guished. Two models are studied in our work. In the first model, we consider
both 1D values computed by data projection and the distance to a reference
point. In the second one, we select two reference points to get distances. The
examples of these two advanced 1D transformation models are shown in Fig. 3,
in which only data points labeled with asterisk need to be accessed. We firstly
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o

First PC

Q
o Q

Fig. 3. Combination of 1D transformation models

test the combined FE of projection and distance by selecting reference point
along the first PC. Fig. 4(a) shows the results.

Observation 3. When combining 1D values achieved by projection-based and
distance-based 1D transformations, the largest FE can be reached when the ref-
erence point lies on the origin and the projection line is along the first PC.

The distance of data points to the origin is the norm. When the reference point
lies far outside of origin, the accessed region using projection and distances will
overlap, and result in almost the same FE as that just using projection.

Now, we will discuss how to get the largest FE when selecting two reference
points. By fixing one reference point on the first PC, we test the combined FE
when selecting the other reference point along the first PC. Three typical points
are chosen as the first reference point to illustrate different curve tendency, whose
1D value on the first PC are 0, 0.5 and 3 respectively. Fig. 4(b) shows the FE
when one reference point is fixed.

When the first reference point lies in the origin (i.e., 0), the largest FE can
be achieved if the second reference point locates very far outside of the origin.
As mentioned above, when the reference point lies very far outside of origin, the
accessed region using distances and projection will fully overlap. Therefore, we
can get the last observation.

Observation 4. When 1D transformation is based on the distance w.r.t two
reference points, its highest FE cannot be greater than the highest FE achieved
by utilizing both projection-based and distance-based 1D transformations.

So far, we can design a near-optimal PLS algorithm to take both processor and
I/O time into accout. Since combination of projection on the first PC and norm
can get better FE, and the variance of first PC is larger than the norm as shown
in Fig. 2(b), we sort data points according to the projections on the first PC,
and the norms of data points are also embedded. This algorithm is not optimal
if just considering I/O cost, since the largest variance of distances is not applied.
When performing k-NN search, the projection values on the first PC are used
for terminating the searching process. And the norms are used to reject more
impossible candidate points. During the high-dimensional distance computation,
the Partial Distortion Search (PDS ) algorithm can be adopted which use the
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Fig. 4. Filtering efficiency

projections on the other PCs to reject points. The PDS algorithm was widely
used in the Vector Quantization encoding process [2]. Since most of energy is
condensed to the first several PCs, we can perform PDS algorithm only on the
first several PCs. If data points can not be rejected on these dimensions, we
directly calculate dist (Q,Pi) on all dimensions.

4 PLS-VA

We have discussed how to get the near-optimal query performance when per-
forming PLS. In this section, we aim to build a new indexing structure applying
the PLS. One of the state of the art indices for linear scan is the VA-file ap-
proach. Our new indexing structure is proposed by utilizing VA-file and PLS,
which is so called PLS-VA.

4.1 The Framework of PLS-VA

The proposed indexing structure is specially designed for real-life datasets, in
which PCA is employed to get the projection values on the first PC. To facilitate
the PLS, we aim at getting the better FE by using partition technique. The
similar idea has been presented in iDistance, in which all data points in different
partitions are represented in a single dimensional space. It is also well known
that LDR can outperform GDR since it can find the correlations in the intrinsic
clusters. Several clustering techniques have been investigated, such as K-means
clustering and clustering with Gaussian Mixture [6]. We find that the clustering
with Gaussian Mixture is more suitable for PLS than K-means clustering. Fig.
5 shows an example. Gaussian Mixture is a model-based clustering approach,
which consists in using certain models for clusters and attempting to optimize the
fit between the data and the model. The Gaussian mixture architecture estimates
probalility density fuctions for each class, and then performs classification based
on Bayesian rule.
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(a) K-means partition (b) GMM partition

Fig. 5. Different partitions for building approximate vectors

Obviously, building approximate vectors in several partitions separately can
also improve the approximate ability, and the additional cost is that several code-
books need to be maintained. After performing the clustering, PCA is applied to
each cluster. The approximate vectors belonging to the same cluster are firstly
sorted according to the 1D projection values and then loaded in contiguous data
pages. The bound of projection values of each page can be described using a
two-dimensional array [α, β]. A B+-tree is applied to manage all the arrays in
one cluster, where only two values in one page are indexed as the keys in the
B+-tree.

4.2 Searching in PLS-VA

When performing k-NN search in the PLS-VA, the accessing order of each cluster
is determined by computing the lower bounds between the query point and each
cluster. Each cluster can be denoted as a hyper rectangle or a hyper sphere. The
hyper rectangle can be seen as an MBR (minimum bounding rectangle) used
in the R-tree [11], where the lower bound of distance between q to the MBR
can be easily calculated. The lower bound between q and the sphere can also be
computed, and the maximum value between two lower bounds is chosen as the
real lower bound between q and the cluster.

For the k-NN query in the whole dataset, we use a priority queue to navigate
the clusters accessed in increasing order of their lower bounds to the query point.
If the lower bound of a cluster to the query point is zero, the distance between
the centroid and q can be compared. During the search, if the lower bound of
one cluster to q is larger than the k-th smallest distance found so far, all the
data points in this cluster do not need to be accessed and the search can be
terminated. The k-NN search in PLS-VA includes two phases. The first phase
is to linearly scan the partial approximation file, and the second phase is the
access of exact vectors. The first search phase can guarantee no false dismissals
for the query. However, the search results may contain false positives which have
to be further refined in the second phase. In the first stage, it is noted that we
need to compute lower and upper bounds of distance instead of exact distances.
Therefore, the FE of PLS-VA is lower than the PLS in the exact vectors.
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5 Experiments

In this section, we performed extensive experiments on the high-dimensional
real-life datasets to demonstrate the practical effectiveness of PLS-VA. All ex-
periments were executed on HP workstation xw9300 with AMD Opteron 2.2
GHz CPU, 2GB RAM and 73GB 10Krpm SCSI disk. The data page size used
in the experiments is 4096 Bytes. We use real-life datasets to evaluate the effec-
tiveness of our method. Two datasets which are widely used in high-dimensional
indexing were chosen. The first dataset is COLHIST2, which contains 68,040
32-dimensional color vectors. The other dataset is called Satellite Image Texture
(LANDSAT)3, which contains 275,245 60-dimensional feature vectors extracted
from satellite images.

We use 500 queries to obtain the average results on 10-NN, 20-NN and 50-
NN search. A comprehensive performance study has been conducted on VA,
iDistance, HB, and PLS-VA. The results show the superiority of PLS-VA.

5.1 I/O Cost Model

The search in PLS-VA is comprised two phases. The first phase is to linearly
scan the approximate file, and the second phase is the random access of exact
vectors. We use the random page access as the I/O metric. The total I/O cost of
PLS can be calculated as: IOtotal = IOl + IOr. Suppose there are M clusters,
we need compute the sum of linear I/O cost of M clusters. Accessing of a new
cluster also need additional 2 random page access. The total I/O cost of PLS-VA
can be calculated as: IOtotal = IOl + IOr + 2 ×M . Assuming linear I/O is 10
times faster than random I/O [7] [13], and the post processing of candidate can
be one I/O per exact vectors [20]. However, as observed in [7], this assumption is
overly pessimistic. We, therefore, can assume that the total I/O cost of PLS-VA
is: IOtotal = num l/10 + num r/2 + 2 × M . Where num l is the total number
of page accessed in the first phase, and num r is the number of exact vector
accessed during the second searching process.

5.2 Performance Study on the Filtering Efficiency

In the first experiment, we study the effect of different clustering methods. The
results of 10-NN queries of PLS algorithm are shown in Fig. 6. We can see
that the clutering with GMM can improve the FE compared with the K-means
clustering. As expected, as the number of cluster increases, PLS incurs larger
FE. While we can choose a large number of clusters to improve the FE, this
will increase the random I/O cost. So a moderate number of clusters is fine. In
our other experiments, we have used 4 as the default number of clusters.

The second experiment studies the FE of different methods. We compare
PLS with two other well known indexing methods using clustering technique,

2 http://kdd.ics.uci.edu/database/CorelFeatures
3 http://vision.ece.ucsb.edu/datasets/

http://kdd.ics.uci.edu/database/CorelFeatures
http://vision.ece.ucsb.edu/datasets/
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Fig. 6. Comparison of filtering efficiency, the result of 10-NN queries
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Fig. 7. Comparison of filtering efficiency

iDistance and HB, which will be discussed later in detail. Both iDistance and HB
use the filter-and-refine strategy, and need to select a good number of clusters.
We use 64 partitions for iDistance in two datasets. We also tried the HB for
several numbers of clusters, then use 80 clusters for the COLHIST and 200
clusters for the LANDSAT. We also studied the effect of combination of two
one-dimensional mappings. The results are shown in Fig. 7. The ”PC” denotes
the FE of the first PC, and ”PC+Dist” deontes the FE when combining the first
PC and the norm. The combination of several 1D mapping values can improve
the FE. From the figures, we can see very small difference between ”PC+Dist”
and HB, and HB performs the best for the two datasets.

5.3 Comparative Study of PLS-VA with Other Methods

In this section, we compare PLS-VA with VA-file, iDistance and HB. For VA
and PLS-VA, the average approximate bit length is 6 bits per dimension for the
two datasets. When using PLS algorithm in PLS-VA, the distortion distance on
the first 5 PCs are used to prune data points. iDistance need to select a good
number of reference points to work efficiently. In our comparative studies, we
choose 64 reference points, which was reported to have the best average perfor-
mance. In COLHIST, the first search radius and the increasing step are 0.01, and
in LANDSAT the same parameters are set 0.1. HB uses the separating hyper-
plane boundaries of Voronoi clusters to complement the clustering-based index.
However, the HB suffers a huge number of lower bounds computations, suppose



Near-Optimal Partial Linear Scan 113

10NN 20NN 50NN
0

50

100

150

200

250

300

350

C
P

U
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

COLHIST

VA
iDistance
HB
PLS−VA

1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

C
P

U
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

LANDSAT

VA
iDistance
HB
PLS−VA

Fig. 8. Comparison of CPU cost

10NN 20NN 50NN
0

50

100

150

200

I/O
 c

os
t (

R
an

do
m

 P
ag

e 
A

cc
es

s)

COLHIST

VA
iDistance
HB
PLS−VA

10NN 20NN 50NN
0

100

200

300

400

500

600

700

I/O
 c

os
t (

R
an

do
m

 P
ag

e 
A

cc
es

s)

LANDSAT

VA
iDistance
HB
PLS−VA

Fig. 9. Comparison of I/O cost

there are K clusters, and as many as K (K − 1) /2 lower bounds calculations
are needed during the query. As mentioned above, 80 clusters are applied in
COLHIST and 200 clusters in LANDSAT.

First we present the comparision of CPU response time of different methods.
The results are shown in Fig. 8. The FE of HB and iDistance is larger than
PLS-VA, but PLS-VA has the shortest response time. It has a speedup factor
of more than 2 over iDistance and 6 over VA. The CPU response time of HB
is relative to the number of clusters. HB does not yet provide effective pruning
mechanisms of data points in the candidate cluster. To achieve better FE, more
clusters are needed. It can be seen its CPU time is more than 1 second in the
LANDSAT. PLS-VA is better than iDistance because the combination of several
1D mapping values enables more effective pruning of data points.

We also compared the I/O cost between different methods. The results are
shown in Fig. 9. Both PLS-VA and HB have less random page accesses than VA
and iDistance. The iDistance has the most random page accesses, because iDis-
tance incrementally enlarges the search space to find NNs in different partitions,
and more partitions result in more fragmented pages and lead to more random
page accesses. HB linearly scan the candidate clusters to find NNs, therefore
it has less I/O cost. PLS-VA and HB have similar I/O cost in COLHIST, and
PLS-VA has the least I/O cost in LANDSAT. To summarize, PLS-VA outper-
forms VA and iDistance in both CPU and I/O cost, and PLS-VA has less total
response time than HB.
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6 Conclusions

In this paper, we have studied the performance of different 1D transformation
methods and derived a novel yet more effective model to transform high di-
mensional data points into 1D subspace, in which an efficient PLS can be per-
formed. A novel indexing structure PLS-VA is proposed which partitions the
original data space with GMM and builds approximate vectors on each cluster
separately. The proposed indexing structure can be easily built, and it highly
improves the pruning power of the linear scan on the vector approximate file.
Extensive experiments are conducted on two real-life multimedia datasets. The
results confirm that PLS-VA outperforms existing indexing structures.
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Abstract. In the paper, we study the problems of nearest neighbor
queries (NN) and all nearest neighbor queries (ANN) on location data,
which have a wide range of applications such as Geographic Information
System (GIS) and Location based Service (LBS). We propose a new
structure, termed AVR-Tree, based on the R-tree and Voronoi diagram
techniques. Compared with the existing indexing techniques used for NN
and ANN queries on location data, AVR-Tree can achieve a better trade-
off between the pruning effectiveness and the index size for NN and ANN
queries. We also conduct a comprehensive performance evaluation for
the proposed techniques based on both real and synthetic data, which
shows that AVR-Tree based NN and ANN algorithms achieve better
performance compared with their best competitors in terms of both CPU
and I/O costs.

1 Introduction

With the emergence of location-aware mobile device technologies, communica-
tion technologies and GPS systems, the location-aware queries have attracted
great attentions in many important applications such as location based service
(LBS) and geographic information system (GIS). Particularly, the nearest neigh-
bor search and its variants play an important role among these queries since it is
very natural to find various facilities with close spatial proximity. In the paper,
we focus on the nearest neighbor (NN) and all nearest neighbor (ANN) queries
on location data. Given an object (e.g., a user location) and a set of facilities
(e.g., warehouses, petrol stations and restaurants), the nearest neighbor search
identifies the closest facility regarding an object. All nearest neighbor (ANN)
query aims to retrieve nearest neighbors for a set of objects regarding a set
of facilities. Both queries are fundamental in spatial queries and have a wide
spectrum of applications. Below is a motivating example.

Fig. 1 shows a map consisting of seven supermarkets and three warehouses.
To deliver stocks from a warehouse to a supermarket with the minimized deliv-
ery cost and time, it is desirable to put the stocks in the nearest warehouse of
each supermarket. For simplicity, the distance between two spatial locations is
calculated as Euclidean distance. By issuing a nearest neighbor query on super-
market s1, it is reported that w3 is its nearest warehouse. On the other hand,

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 116–130, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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we may issue an all nearest neighbor query against all supermarkets and ware-
houses. Then we can find w1 is the closest warehouse to supermarket s2, w2 is
the closest to s4, s6 and w3 is the closest to s1, s3, s5 and s7.

2

4

6

8

w 1

             Supermarket

Warehouse

w 3s5
s1

s2

s3
s7

w 2

s4

s6

6 8 1042

Fig. 1. Motivation Example

Since the number of objects and facilities might be massive in many applica-
tions, it is desirable to develop an indexing technique to facilitate the nearest
neighbor query and its variants. R-tree technique has been widely employed to
support various nearest neighbor queries which relies on the simple rectangular
grouping principle, where objects or facilities are grouped by minimal bounding
rectangles (MBRs) in a hierarchical way. Efficient NN and ANN algorithms [12,6]
have been proposed based on R-tree structure, where the algorithms utilize var-
ious distance metrics (e.g., minimal distance and minimal maximal distance )
against MBRs. Observe that the R-tree technique may lead to some unnecessary
traversals in nearest neighbor query because MBR only provides a coarse gran-
ule for various NN queries, Sharifzadeh et al. [13] propose the VOR-Tree which
incorporates voronoi diagrams into R-tree such that users can quickly identify
the search regions with R-tree technique and then provide effective pruning for
various NN queries based on the voronoi diagram techniques.

Although VOR-Tree can take advantage of voronoi diagram technique, the
benefit is offset by the following facts. Firstly, the intermediate entries of VOR-
Tree cannot take advantage of the voronoi diagram technique since they only
keep the MBRs of the facilities. This implies that we cannot derive more effec-
tive pruning metric compared with the MBR based pruning techniques in [6].
Secondly, since all the vertexes of the voronoi cell and delaunay neighbors are
kept for each facility, the capacity (i.e., fan-out) of the VOR-Tree is small. As
shown in the empirical study, this results in high I/O cost in NN and ANN
queries.

To address the above issues, in the paper we propose a new index approach,
termed AVR-Tree, to achieve a better trade-off between the pruning effectiveness
and the space usage of the index structure when voronoi diagram technique
is applied. More specifically, our index structure is also built on R-tree. But
instead of keeping the voronoi cell vertexes and delaunay neighbor information,
we maintain the minimal bounding box of a voronoi cell (VBR) and the maximal
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nearest neighbor distance1 (MND) for each facility. Moreover, we also maintain
the aggregate information of VBRs and MNDs in the intermediate entries. Then
effective pruning techniques are proposed for NN and ANN queries based on
AVR-Tree structure.

Contributions. Our contributions can be summarized as follows.

– We propose a new data structure, termed AVR-Tree, that effectively utilizes
the advantage of the voronoi diagram and the R-tree techniques.

– Efficient nearest neighbor (NN) and all nearest neighbor (ANN) queries are
proposed based on AVR-Tree.

– Comprehensive experiments demonstrate the effectiveness and efficiency of
our techniques.

Organization of the Paper. The remainder of the paper is organized as fol-
lows. Section 2 formally defines the NN and ANN query. In Section 3, we propose
our new data structure, AVR-Tree. Efficient NN and ANN algorithms are pro-
posed based on AVR-Tree in Section 4 and Section 5 respectively. Results of
comprehensive performance studies are presented in Section 6. Section 7 intro-
duces the related work. Finally, Section 8 concludes the paper.

2 Preliminary

In this section, we will formally define the problems we study in this paper in
Section 2.1. In Section 2.2 we briefly describe the voronoi diagram. Table 1
below summarizes the notations frequently used throughout the paper.

Table 1. The summary of notations

Notation Definition

o (O) object (a set of objects)

f (F) facility (a set of facilities)

NN(o) the nearest neighbor of an object o in facilities F
V BR the voronoi minimal bounding rectangle for facility

entries (data entries and intermediate entries)

MND the maximal nearest neighbor distance for data entries and intermediate entries

2.1 Problem Definition

A point (location) p referred throughout the paper, by default, is in d-dimensional
numerical space. Let δ(p, f) denote the Euclidean distance between two points
(locations) p and f . For simplicity, we use Euclidean distance in the paper. Nev-
ertheless, the techniques proposed in the paper can be easily extended to other
metric distances.

1 The maximal distance if the facility is the nearest neighbor.
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The NN query is formally defined as follows.

Definition 1. Nearest Neighbor(NN) Query. Given an object o and a set
F of facilities, the nearest neighbor of o, denoted by NN(o), is the facility f ∈ F
with the closest distance to o; that is, δ(o, f) ≤ δ(o, f ′) for any facility f ′ in F .

Then we have the definition of all nearest neighbor query in which we aim to
find the nearest neighbors for a set of objects.

Definition 2. All Nearest Neighbor (ANN) Query Given a set O of ob-
jects and a set F of facilities, for each object o ∈ O, we retrieve its nearest
neighbor from F .

Example 1. In Fig. 2, there are three objects {o1, o2, o3} and three facilities
{f1, f2, f3} in O and F respectively. Given the object o1, its nearest neighbor
regarding F is f2, i.e., NN(o1) = f2. Fig. 2 shows the nearest neighbors for all
objects, which can be obtained by issuing the all nearest neighbor query against
O and F .

f1

f2

f3

o1

o2

o3

Object

Facility

Fig. 2. NN and ANN Example

2.2 Voronoi Diagram

Voronoi diagram is a data structure that consists of a set of voronoi cells where
each cell is a polygon. Each cell has an owner which is usually called as seed.
Voronoi diagram provides us a nice feature for nearest neighbor search, which is
if a point is in a voronoi cell, this point is guaranteed to be the nearest neighbor
of the cell’s seed. Although the cells are constructed in a way that guarantees
the seed is the nearest neighbor of all the points fall in the cell, determining
which cell a point falls in can be time consuming.

3 AVR-Tree

In this section, we will introduce a new data structure, termed AVR-Tree, to
efficiently facilitate the NN and ANN queries. In Section 3.1, we will show the
motivation of the AVR-Tree and then followed by the detailed description of the
new indexing structure, including the maintenance of the AVR-Tree.
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3.1 Motivation

As the facilities are usually organized by some hierarchical spatial indexes such
as R-tree and the NN search follows the branch-and-bound travel paradigm, it
is critical to estimate the minimal and maximal possible distances between a
query object o and a minimal bounding rectangle (MBR) such that some non-
promising entries can be excluded from computation at high level to significantly
reduce the I/O and CPU costs.

o

MINDIST

RMAXDIST

MINMAXDIST

R1
MINDIST

( a )

MINDIST RMAXDIST

NXNDIST

( b )

S

Fig. 3. Example for upper and lower bounds for NN distance

For a query object o, we use nearest neighbor distance, denoted by nnd(o),
to represent the distance between o and its nearest neighbor. Given a mini-
mal bounding rectangle (MBR) R of a set of facilities, we use nndmin(o,R)
( nndmax(o,R) ) to denote the lower (upper) bound of the nearest neighbor
distance of o regarding facilities located in R. As shown in Fig. 3(a), an immedi-
ate approach is to use the minimal distance (MINDIST) and maximal distance
(MAXDIST) between o and R as nndmin(o,R) and nndmax(o,R). See detailed
calculation in [12]. Observe that each MBR’s face is touching at least one facility
within R, the concept of MiniMax Distance (MINMAXDIST) is proposed in [12]
which can provide a tighter upper bound for nndmax(o,R) as shown in Fig. 3(a).

Example 2. In the example of Fig. 3(a), MINMAXDIST between o and R is
smaller than MINDIST between o and R1. This implies that none of the facilities
in R1 can be the nearest neighbor of o and hence R1 is pruned without exploring
its facilities. On the other hand, we cannot prune R1 if MAXDIST is used as
nndmax(o,R).

With similar rationale, a new pruning metric NXNDIST is proposed in [6], which
can provide a tighter upper bound of the nearest neighbor distance between two
MBRs. More specifically, as shown in Fig. 3(b), S and R represent MBRs of a
set of objects and facilities respectively. For any object o within S, its nearest
neighbor distance regarding the facilities within R is bounded by NXNDIST.
The empirical study in [6] shows that NXNDIST is much more effective than
MAXDIST between two MBRs.
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Observe that the MBRs based pruning technique is less effective compared
with the Voronoi technique, in [13], VOR-Tree combines the R-tree and Voronoi
diagram techniques to speed up the nearest neighbor search. Nevertheless, since
all the vertexes of the voronoi cell and delaunay neighbors are kept for each
facility, the node capacity (i.e., fan-out) of VOR-Tree is small. For instance, the
node capacity of VOR-Tree and R-tree is 40 and 204 respectively when page size
is 4K. As shown in the empirical study, this results in expensive I/O costs in NN
and ANN queries. Moreover, the intermediate entries of VOR-Tree cannot take
advantage of the Voronoi diagram technique since they only keep the MBR of
the facilities. This implies that they cannot derive more effective pruning metric
compared with the MBR based pruning techniques.

Motivated by the above facts, in the paper we propose a new index approach,
termed AVR-Tree, to achieve a better trade-off between the pruning capability
and the overhead of the index. Before going to the detail, we first introduce two
notations:

Definition 3. Voronoi Bounding Rectangle (VBR). Given a facility f, the
voronoi bounding rectangle (VBR) of a facility is the minimum bounding box of
its voronoi cell, denoted by f.V BR. Given a set of facilities F , the VBR of F
is the minimal bounding rectangle of the VBRs of all facilities in F , denoted by
F.V BR.

Besides the VBR, we also maintain the maximum nearest neighbor distance
(MND) for each facility, which is defined as follow.

Definition 4. Maximum Nearest Neighbor Distance (MND). Given a
facility f , the Maximum Nearest Neighbor Distance (MND) of f , denoted by
f .MND, is the furthest distance between f and all locations within its voronoi
cell; that is, we have δ(o, f) ≤ f.MND if f is the nearest neighbor of an object
o. Similarly, we use F.MND to denote the maximal MND values among the
facilities in F .

Since each voronoi cell is a convex polygon, it is immediate that we can derive
f.MND by finding the furthest voronoi cell vertex regarding the facility f .

Example 3. In Fig. 4(a), the polygon (v1, v2, v3, v4, v5) is the voronoi cell of fa-
cility p1. The VBR of f1 (f1.V BR) is shown in the example, as well as p1.MND,
which is the distance between p1 and v2.

Unlike the VOR-Tree which keeps all voronoi cell vertexes and delaunay neigh-
bors for each facility, we only maintain the VBR and MND of a facility so that
we can utilize the nice property of the voronoi cell with smaller index size (i.e.,
larger node capacity). Moreover, we can naturally keep the VBR and MND for a
set of facilities and apply VBR and MND based pruning for intermediate entries
in AVR-Tree.

In Section 3.2, we will introduce the data structure of AVR-Tree which inte-
grates VBR and MND of the facilities to R-tree structure. Moreover, effective
pruning techniques are proposed for NN and ANN queries in Section 4 and
Section 5 respectively.
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3.2 AVR-Tree Structure

The Aggregate Voronoi R-tree (AVR-Tree for short) is an R-tree like structure
which enriches with VBRs and MNDs of the facilities. A data entry of the AVR-
Tree consists of a facility location and its VBR and MND. As to an intermediate
entry, the MBR, VBR and MND are obtained from its descendant entries.

Fig. 4 illustrates an example of AVR-Tree for a set F of facilities {p1, . . . , p7},
where there are 7 data entries {∗p1, . . . ,∗ p7} and 3 intermediate entries {N0, N1,
N2}. Fig. 4(a) shows the Voronoi diagram of F and the data entries (e.g., ∗p1 )
can be constructed based on the corresponding voronoi cells. Fig. 4(b) depicts
the MBRs and VBRs of the intermediate entries N1 and N2 where facilities
{p1, p2, p3, p4} are contained by N1 and others are assigned to N2. Note that
the MNDs are also kept for N1 and N2. Fig. 4(c) shows the structure of the
AVR-Tree.

3.3 AVR-Tree Construction

Construction of an AVR-Tree consists of two phases. In the first phase, we build
an R-tree against the facilities following the standard R-tree algorithm [8]. In
the second phase, the Voronoi diagram is constructed and the VBRs and MNDs
information of the AVR-Tree entries are obtained in a bottom up fashion.

3.4 AVR-Tree Update

The insertion and deletion of a facility in an AVR-Tree is exactly the same as
the R-tree except that we also need to recalculate the VBRs and MNDs of the
facilities affected by the update, and then propagate the changes to their parent
entries in a bottom up fashion.
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4 Nearest Neighbor (NN) Query

In this Section, we introduce the AVR-Tree based nearest neighbor query. We
first introduce the pruning technique, then the detailed algorithm.

o

N2.VBR

MINDIST

N1.VBR

N1.MBR

Fig. 5. Pruning Example for NN search

Theorem 1. Given an object o and an AVR-Tree entry F (data entry or in-
termediate entry), F can be excluded from NN of o if F.V BR ∩ o = ∅ or
F.MND < MINDIST (o, F.MBR 2).

Proof. F.V BR ∩ o = ∅ implies that f.V BR ∩ o = ∅ for all facilities f within
F since F.V BR is the minimal bounding box of {f.V BR} for all facilities f from
F . On the other hand, an object o must fall in the voronoi cell of f if f is the NN
of o. Since the voronoi cell of f is contained by f.V BR, we can safely claim that
none of the facilities in F can be the nearest neighbor of o if F.V BR ∩ o = ∅.

We prove the second case by the contradiction. Suppose a facility f fromF is the
NN of o, and then we have δ(o, f) ≤ f.MND. Consequently, we have δ(o, f) ≤
F.MND since f.MND ≤ F.MND. Clearly we have MINDIST (o, F.MBR)
≤ δ(o, f) since f ∈ F.MBR, and hence MINDIST (o, F.MBR) ≤ F.MND.
This is against the assumption MINDIST (o, F.MBR) > F.MND. �

Example 4. Regarding the example in Fig. 5, we can immediately prune the
entry N2 since N2.V BR ∩ o = ∅. If MINDIST (o,N1.MBR) > N1.MND, N1

can also be eliminated from NN candidate of the object o.

In Algorithm 1 we illustrate the details of the NN algorithm assuming the fa-
cilities F are organized by an AVR-Tree, represented by FAVR. The algorithm
follows the branch-and-bound paradigm. A priority queue Q is employed to ac-
cess the AVR-Tree entries where the key of an entry is its closest distance to
the query object o. Consequently, algorithm can terminate when the first ob-
ject is popped from Q (Line 1). For each intermediate entry popped from Q,
Line 1 eliminates its non-promising child entries based on Theorem 1. Our em-
pirical study demonstrates the efficiency of Algorithm 1 since a large number of
non-promising entries can be pruned at low cost.

2 If F is a data entry (i.e., facility), then the location of F is F.MBR.
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Algorithm 1. NN (o, FAV R)

Input : o : an object o ,
FAV R : a set F of facilities organized by AVR-Tree

Output : the nearest neighbor of o in F
Q ← root of FAV R ;1

while Q �= ∅ do2

E ← top element popped from Q ;3

if E is a data entry then4

return the facility f associated with E5

else6

for each child entry e of E do7

if e.V BR ∩ o �= ∅ and MINDIST (o, e.MBR) ≤ e.MND then8

Push e into Q with key value MINDIST (o, e.MBR) ;9

5 All Nearest Neighbor (ANN) Query

In this section, we investigate the problem of all nearest neighbor (ANN) query.
We first introduce the AVR-Tree based pruning techniques, then the details of
the ANN algorithm.

Theorem 2. Given the MBR of a set of objects, denoted by O.MBR, and
an AVR-Tree entry F (data entry or intermediate entry), F can be excluded
from NN calculation of any object o ∈ O.MBR if F.V BR ∩ O.MBR = ∅ or
MINDIST (O.MBR,F.MBR) > F.MND.

Proof. The proof of this Theorem is similar to that of Theorem 1. We omit the
details due to the space limitation.

O.MBRN2.VBR

MINDIST

N1.VBR

N1.MBR

Fig. 6. Pruning Example for ANN query

Example 5. In Fig. 6 we can safely prune N2 from the nearest neighbor compu-
tation for the objects in O.MBR since O.MBR ∩ N2.V BR = ∅. Similarly, N1

can be eliminated if MINDIST (N1.MBR,O.MBR) > N1.MND.

Algorithm 2 illustrates the details of the all nearest neighbor (ANN) query, where
we assume a set O of objects and a set F of facilities are organized by R-tree
OR and AVR-Tree FAVR respectively. Similar to spatial join [5,10], we apply
the synchronized R-tree traversal paradigm to process ANN query in a level
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by level fashion. In Algorithm 2, we use a tuple to maintain the object R-tree
entry (intermediate or data entry), denoted by T.O, as well as a set of facility
AVR-Tree entries (intermediate or data entries), denoted by T.F , which may
contribute to the nearest neighbors for the objects within T.O. A FIFO queue,
denoted by Q, is employed to maintain the tuples and is initialized as < root of
OR, root of FAVR > at Line 2. Line 2-2 iteratively process each tuple in the
queue until it is empty. When a tuple T is popped from Q, we can come up with
the nearest neighbor of the object if all entries in T.O and T.F are data entries
(Line 2-2). Otherwise, Line 2 retrieves all child entries of T.O to set L. Similarly,
the set R keeps all child entries of the entries in T.F 3. For each object entry
oe ∈ L, we identify the facilities from R which may be the nearest neighbor of
an object within oe. Specifically, Theorem 2 is applied at Line 2 to eliminate
non-promising facility entries regarding oe. When Algorithm 2 terminates, the
nearest neighbors of all objects in O are retrieved.

Algorithm 2. ANN (OR, FAVR)

Input : OR : the objects organized by R-tree,
FAV R : the facilities organized by AVR-Tree

Output : N : the nearest neighbors for all objects in O
Q ← tuple < root of OR, root of FAV R >;1

while Q �= ∅ do2

T ← the tuple popped from Q ;3

if both T.O and T.F are data entries then4

o ← object associated with T.O ;5

Calculate distances between o and the facilities in T.F ;6

N ← < o, the nearest neighbor of o > ;7

else8

L := child entries of T.O ;9

R := child entries of the entries in T.F ;10

for each entry oe ∈ L do11

C = ∅ ;12

for each entry fe ∈ R do13

if fe.V BR ∩ oe.MBR �= ∅ and MINDIST(fe.MBR, oe.MBR)14

≤ fe.MND then
C := C ∪ fe;15

push < oe, C > into Q ;16

6 Performance Evaluation

We present results of a comprehensive performance study to evaluate the effi-
ciency and scalability of the proposed techniques in the paper. Following algo-
rithms are evaluated.
3 Note that we have L = T.O if T.O is a data entry and facility entries are intermediate
entries. The set R is handled in the same way.
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R-tree the algorithms in which facilities are organized by R-tree. The NN and
ANN queries are implemented based on the techniques proposed in [12]
and [6] respectively.

VOR-Tree the algorithms in which facilities are organized by VOR-Tree [13].

AVR-Tree the algorithms in which facilities are organized by AVR-Tree. Par-
ticularly, the NN and ANN queries are implementation as described in Al-
gorithm 1 and Algorithm 2 in the paper.

All algorithms in this paper are implemented in standard C++ with STL library
support and compiled with GNU GCC. Experiments are performed on a PC
with Intel Xeon 2.50GHz dual CPU and 2G memory running Debian Linux.
The disk page size is fixed to 4096 bytes. The node capacity of the R-tree,
AVR-Tree and VOR-Tree are 204, 102 and 40 respectively. Besides the MBR,
we also keep the VBR (voronoi bounding rectangle) and MND (maximal nearest
neighbor distance) information in each node of AVR-Tree. Therefore, the node
capacity of AVR-Tree is smaller than that of R-tree. Similarly, we need to keep
the voronoi neighbor vertexes and delaunay neighbor identifications for each
location in VOR-Tree, and VOR-Tree has smallest node capacity. We use an
LRU memory buffer with size 512K bytes.

Real Datasets. Three real spatial datasets, LB ,CA and USA, are employed in
the experiments. The facilities in CA are 45, 671 facility locations in California
(http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm). Similarly, the fa-
cilities inUSA are obtained from theU.S.Geological Survey (USGS) and consists of
205, 323 facility locations (http://www.geonames.usgs.gov).Meanwhile, the ob-
ject locations ofCA andUSA are public available from http://www.census.gov/

geo/www/tiger, where there are 62, 556 and 1M objects in CA and USA respec-
tively. In LB , both facility and object locations are obtained from the Long Beach
dataset fromhttp://www.census.gov/geo/www/tiger, inwhich there are 53, 145
locations. In the above three datasets, all dimensions are normalized to domain
[0, 10000].

In the paper, the processing time, which includes the CPU time and I/O
latency, is used to measure the efficiency of the algorithms. We also record the
number of I/O accesses in the algorithms.

6.1 Evaluate Nearest Neighbor Search

In the first set of experiments, we evaluate the performance of three NN search
algorithms based on R-tree, VOR-Tree and AVR-Tree against dataset LB , CA
and USA, where 1, 000 query points are randomly chosen from [0, 10000]2. The
average query response time, CPU time and the number of I/O accesses for the
three algorithms are reported in Fig. 7. It is shown that AVR-Tree outperforms
R-tree and VOR-Tree on both CPU time (Fig. 7(b)) and I/O cost (Fig. 7(c)),
and hence has the fastest query response time ( Fig. 7(a)). As shown in Fig. 7(c)
VOR-Tree incurs the largest number of I/O accesses due to its small node ca-
pacity. Nevertheless, its overall performance (i.e., query response time) is better

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
http://www.geonames.usgs.gov
http://www.census.gov/geo/www/tiger
http://www.census.gov/geo/www/tiger
http://www.census.gov/geo/www/tiger
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Fig. 7. NN Query on Different Datasets

than that of R-tree since it can take advantage of voronoi diagrams and use
much less CPU time as shown in Fig. 7(b).

In the second set of experiments, we evaluate the scalability of the three
algorithms where the facility locations are randomly chosen from USA object
locations, with size ranging from 200K to 1M. Fig. 8 shows that the performance
of the three algorithms are scalable towards the growth of the number of facilities.
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6.2 Evaluate All Nearest Neighbor (ANN) Query

Fig. 9 evaluates the performance of R-tree, VOR-Tree and AVR-Tree Algorithms
for all nearest neighbor (ANN) query, where three datasets LB , CA and USA
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are employed. It is shown that the performance of AVR-Tree significantly out-
performs R-tree and VOR-Tree. In USA, the query response time of AVR-Tree
is 8 times faster than that of R-tree and VOR-Tree. Similar to NN query in
Section 6.1, Fig. 9(b) and Fig. 9(c) show that VOR-Tree is more time efficient
compared with R-tree, but invokes more I/O accesses due to its small node
capacity. AVR-Tree demonstrates superior performance in comparison with R-
tree and VOR-Tree because it can achieve a good trade-off between the pruning
effectiveness and indexing overhead (e.g., node capacity).
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We also study the scalability of the three algorithms towards the growth of
the number of facilities and objects in the ANN query. In Fig. 10, a set of object
locations are randomly chosen from [1, 100000]2 with size ranging from 1M to
4M. It is reported that the scalability of VOR-Tree is poor because it can only
apply the MBR based pruning on facility and object entries at the intermediate
level and the node capacity is small due to a large amount of information kept
for each facility. As expected, AVR-Tree always ranks first when the number
of objects grows. Similar observation is reported in Fig. 11, where a number of
facilities are randomly chosen from USA.

6.3 Index Construction

In this subsection, we evaluate the index size and index construction time of
R-tree, on the facilities of the three datasets LB , CA and USA. Fig. 12 reports
the size of the three indexing structures on LB , CA and USA. As expected,
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VOR-Tree has the largest index size, followed by AVR-Tree and R-tree. The
construction time of the three index structures is illustrated in Fig. 13. As the
dominant cost of VOR-Tree and AVR-Tree construction is the R-tree construc-
tion, their performance is slightly slower than that of R-tree. Note that the
voronoi diagram and delaunay graph computation algorithms are public avail-
able from Qhull (http://www.qhull.org/).
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7 Related Work

The family of the nearest neighbor search problems consists of nearest neighbor
(NN) search [14,8] or top k nearest neighbor search [12,3], all nearest neigh-
bor (ANN) search [15,6], reverse nearest neighbor [11] and approximate nearest
neighbor [1] and etc. Our work focuses on the NN and ANN queries on location
data. The problem of NN query on location data has a wide spectrum applica-
tions and has been extensively studied in the literature. Roussopoulos et al. [12]
propose to use R-tree [8] as the index structure for nearest neighbor search in
low dimensional space. [3] proposes a tree-based index to solve nearest neighbor
search in high dimensional space. Recently, M. Sharifzadeh et al. [13] propose a
new structure, VOR-Tree, where it is an R-tree with voronoi cells stored in its
data entries. The data entries also store the information of the neighboring cells
of each cell.

Our work also relates to ANN search. One of the earliest work proposed by
Braumuller et al. [4] is to perform one NN search on the facility data set for each
data in the object data set. Zhang et al. [15] propose an R-tree based approach to
search the nearest neighbors as a batch. Corral et al. [7] and Hjaltason et al. [9]
propose a technique based on R*-tree structure [2]. Corral et al. [7] also propose a
pruning rule and two updating strategies to efficiently solve the search problem.
Recently, Y. Chen et al. [6] propose a tighter upper bound distance between
two MBRs so that the pruning is more effective in order to retrieve all nearest
neighbors more efficiently.

8 Conclusion

In this paper, we introduce a new structure, termed AVR-Tree, to organize
location data, which utilizes the R-tree and Voronoi diagram techniques. Efficient

http://www.qhull.org/
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nearest neighbor (NN) and all nearest neighbor (ANN) algorithms are proposed
in the paper and comprehensive experiments are conducted to demonstrate the
effectiveness and efficiency of the algorithms.

Acknowledgement. Ying Zhang is supported by ARC DP110104880, ARC
DP130103245 and UNSW ECR grant PS27476. Wenjie Zhang is supported by
ARC DP120104168 and ARC DE120102144. Xuemin Lin is supported by ARC
DP0987557, ARC DP110102937, ARC DP120104168 and NSFC61021004.

References

1. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An opti-
mal algorithm for approximate nearest neighbor searching fixed dimensions. J.
ACM 45(6), 891–923 (1998)

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: An efficient
and robust access method for points and rectangles. In: SIGMOD Conference, pp.
322–331 (1990)

3. Berchtold, S., Ertl, B., Keim, D.A., Kriegel, H.-P., Seidl, T.: Fast nearest neighbor
search in high-dimensional space. In: ICDE, pp. 209–218 (1998)

4. Braunmüller, B., Ester, M., Kriegel, H.-P., Sander, J.: Efficiently supporting multi-
ple similarity queries for mining in metric databases. In: ICDE, pp. 256–267 (2000)

5. Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using
r-trees. In: SIGMOD Conference, pp. 237–246 (1993)

6. Chen, Y., Patel, J.M.: Efficient evaluation of all-nearest-neighbor queries. In: ICDE,
pp. 1056–1065 (2007)

7. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms
for processing k-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1),
67–104 (2004)

8. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIG-
MOD Conference (1984)

9. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial
databases. In: SIGMOD Conference, pp. 237–248 (1998)

10. Huang, Y.-W., Jing, N., Rundensteiner, E.A.: Spatial joins using R-trees: Breadth-
first traversal with global optimizations. In: VLDB 1997 (1997)

11. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: SIGMOD Conference, pp. 201–212 (2000)

12. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD
Conference, pp. 71–79 (1995)

13. Sharifzadeh, M., Shahabi, C.: Vor-tree: R-trees with voronoi diagrams for efficient
processing of spatial nearest neighbor queries. PVLDB 3(1), 1231–1242 (2010)

14. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: VLDB, pp. 194–205
(1998)

15. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in
spatial databases. In: SSDBM, pp. 297–306 (2004)



Top-k Neighborhood Dominating Query

Xike Xie1, Hua Lu1, Jinchuan Chen2, and Shuo Shang1

1 Department of Computer Science, Aalborg University, Denmark
{xkxie,luhua,sshang}@cs.aau.dk

2 Key Labs of Data Engineering and Knowledge Engineering MOE,
Renmin University of China, China

jcchen@ruc.edu.cn

Abstract. In many real-life applications, spatial objects are associated with mul-
tiple non-spatial attributes. For example, a hotel may have price and rating in
addition to its geographic location. In traditional spatial databases, spatial objects
are often ranked solely based on their distance to a given query location, e.g., in
a nearest neighbor search. In another line of research, domination based skyline
queries are used to return best objects according to multi-criteria on non-spatial
attributes. In this paper, we study how to rank spatial objects with respect to
their non-spatial attributes within their spatial neighborhoods. To enable a general
ranking, we design a ranking function that inherits the advantages of dominance
relationship and integrates them with spatial proximity. Further, we propose an
effective index structure, and a branch and bound solution that executes the rank-
ing efficiently via the index. We conduct extensive empirical studies on real and
synthetic datasets. The results demonstrate the high efficiency of our proposal
compared to straightforward alternatives.

1 Introduction

Spatial objects are associated with multiple non-spatial attributes in many real-life ap-
plications. Non-spatial attributes capture the quality or properties of spatial objects
whose locations are typically represented in coordinate values (e.g., longitude and lat-
itude). Without loss of generality, we abstract a spatial object o by two sequences of
attributes: 2-dimension spatial attributes and d-dimension non-spatial attributes. For-
mally, we have o = (o.η, o.ψ), where η = (x, y) denotes the spatial location, and ψ =
(ψ[1], . . . ψ[d]) denotes the non-spatial attributes which we also call quality
attributes.

In traditional spatial databases, spatial objects are retrieved solely based on spatial
locations and the implied spatial distances. Typical examples are range queries, nearest
neighbor queries, and spatial joins. On the other hand, dominance relationship has been
extensively studied and used to compare objects in skyline queries [2] [8] [16] [9] [19]
and data analysis [15] [10] [3]. Given two objects p and q, p is said to dominate q
(p � q), if p is no worse than q in all quality attributes and better than q in at least
one quality attribute. Without loss of generality, we assume that all quality attributes
are defined on numeric domains, and “better than” means “larger than”. The formal
definition of dominance is given as follows.

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 131–145, 2013.
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Definition 1. (Dominance) Object p dominates object q, denoted as p � q, if ∀i,
p.ψ[i] ≥ q.ψ[i] and ∃j, p.ψ[j] > q.ψ[j].1

Given a set P of objects, a skyline query returns all those objects in P that are not
dominated. The key advantage of the dominance concept based skyline query is that it
does not require any special ranking function to compare multiple attributes. Neverthe-
less, the dominance concept can be employed to rank objects according the number of
objects they dominate [19], or that of objects dominating them [11].

Although spatial locations and non-spatial attributes are heterogeneous in nature,
it is useful to combine them to formulate novel types of queries that serve practical
user needs. For example, hotel investors are interested in investing in those hotels that
dominate their neighbor hotels because such advantaged hotels have higher potential to
make profit. To find such advantaged hotels, both spatial locations and quality attributes
should be involved in a query. However, neither a traditional spatial query nor a pure
skyline query can meet such practical needs that integrate the two heterogeneous as-
pects. A spatial query does not consider the quality attributes, whereas a skyline query
ignores the impact of the neighborhood determined by objects’ spatial locations.

An example is shown in Figure 1. If we run a skyline query on these hotels listed in
Figure 1 (a), {p, q, R3} will be returned since they are not dominated by others while
all others are dominated by them. However, from a investor’s perspective, p is more
interesting as it dominates more neighbor hotels than q does, as shown in Figure 1 (b).
Specifically, p dominates both R1 and R2 in its neighborhood whereas q only dominates
R4 in its neighborhood. On the other hand, a pure spatial query (e.g., a range query, a
nearest neighbor query, or any pure counting query based on them) cannot differentiate
p and q to serve the investor’s interest.

Restaurant Number of Rooms Stars

q 400 4

p 300 5

R1 200 4

R2 300 3

R3 500 2

R4 300 4

(a) non-spatial attributes (b) spatial attributes

Fig. 1. Example

To bridge the gap between practical needs and existing techniques, we study a generic
ranking mechanism for spatial objects with quality attributes in this paper. Particularly,
we focus on the Top-k neighborhood dominating query, which returns k spatial objects

1 Although the dominance definition employs “>”, the proposed techniques in this paper can
also be applied to scenarios where lower values are preferred. As pointed out in the lit-
erature [2], a simple negation operator on the original values will make such scenarios
compatible.
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with highest ranking scores. The score of an object is defined in a generic and flex-
ible manner to reflect its dominating capability in its neighborhood. Users are given
the flexibility to tailor the score function to meet various scenarios that include the one
exemplified above.

Our contributions in the paper are summarized as follows.

– We define a general score function for ranking spatial objects with respect to their
neighborhood dominating capability, and give a basic solution (Section 2).

– We derive the upper/lower bounds for the score function to speed up the ranking
evaluation (Section 3).

– We design the Ψ -augmented R-tree to further improve the ranking efficiency (Sec-
tion 4).

– We demonstrate the superiority of our methods through extensive experiments (Sec-
tion 5).

In addition, we review related work in Section 6 and conclude the paper in Section 7.
The Notations used throughout this paper are listed in Table 1.

Table 1. Notations

Notation Meaning
O a set of objects (o1, o2, . . . , on)
|O| the size of database O
D Domain of spatial attributes
Ψ Domain of non-spatial attributes

|a, b| the Euclidean distance between a and b
|E| the number of objects inside R-tree node E

o.η(x, y) the spatial attributes of o (〈x, y〉)
o.ψ the quality attributes of o
p  q p dominates q or p.ψ dominates q.ψ
p ≺ q p is dominated by q or p.ψ is dominated by q.ψ
φ(o) ranking score of object o

φ−/φ+ the upper / lower bounds of the ranking score
ωE the augmented distribution function of R-tree node E

ω−
E/ω+

E the upper / lower bounds of ωE

2 Problem Definition and Basic Algorithm

We define the query in Section 2.1, and give a basic algorithm in Section 2.2.

2.1 Problem Definition

We start by briefly reviewing several score functions. Based on that, we propose our
own score functions. Yiu and Mamoulis [19] quantify the dominating capability of an
object s by the number of objects it dominates:

φ′(s) =
∣∣∣{o ∈ O

∣∣s.ψ � o.ψ}
∣∣∣ (1)
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In other words, the dominance score φ′(s) is the number of objects dominated by s.
However, the spatial attributes are not considered in this definition.

Yiu et al. [17,18] propose to assign different weights w(.) to different dimensions of
non-spatial attributes and integrate them into a score function. As a flavor to the score
function, the spatial neighborhood can be emphasized by a general ripple coefficient,

2−
|p,q|

ε [18]. |p, q| denotes the Euclidean distance between p and q, and ε is a user-
specified parameter for the spatial range. The ripple coefficient gives a higher value
if p and q are close and a lower value otherwise. The score function with the ripple
coefficient is as follows.

φ′′(s) = AGGi

{
max{w(o.ψ[i]) · 2−

|s,o|
ε }

}
(2)

However, users have to specify the weights to integrate all non-spatial dimensions in the
score function above. Consequently, the key benefit of dominance and skyline queries
diminishes. Our purpose in this paper is to define a ranking (score) function φ that
integrates the advantages of both φ′ and φ′′. For two objects s and o, we can define the
partial score of s with respect to o as:

Partial Score: φ(s, o) = 2−
|s,o|

ε︸ ︷︷ ︸
Spatial Factor

· τ(s, o)︸ ︷︷ ︸
Dominance Indicator

(3)

where τ(o, s) =

{
1 s.ψ � o.ψ
0 otherwise

Let the product of spatial factor and dominance factor be φ(s, o), meaning how much
weight for object o to add to s’s dominance, the score function of s is the summation of
partial score function for all other objects in the database O:

Ranking Score: φ(s) =
∑
o∈O

φ(s, o) (4)

Our score function φ inherits ε-ripple from φ′′ (spatial factor) and the dominance quan-
tification from φ′ (dominance factor). Unlike φ′′, φ does not have to assign different
weights to different dimensions, which preserves the advantage of skyline query. Also,

φ′ can be viewed as a special case of φ while ε is infinite. Since the limit of 2−
|p,q|
∞ is

1, we have:

lim
ε→∞

φ(s) =
∑
o∈O

τ(s, o) =
∣∣∣{o ∈ O

∣∣s.ψ � o.ψ}
∣∣∣ = φ′ (5)

Thus, by defining φ-function, we bridge the gap between the dominance query and
the neighborhood dominance query. Based on this generic score function, we give the
formal problem definition as follows:

Definition 2. Given a databaseO of spatial objects, a top-k neighborhood dominating
query (k-NDQ in short) retrieves a set S ⊆ O of k objects such that ∀oi ∈ S, ∀oj ∈
O \ S, φ(oi) ≥ φ(oj).
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2.2 Basic Solution

Intuitively, the query can be answered by iterating all objects in O and computing ex-
act φ(s) for each encountered object s. Meanwhile, a global max-heap Hk is used to
maintain the current top-k results in terms of the scores. After all object in O has been
processed, the query returns the k objects in Hk.

To compute the score φ(s), a straightforward way is to iterate over all other objects
in O one by one. This brute-force way is called Basic and is formalized in Algorithm 1.
Apparently, the basic algorithm is expensive as it examines all objects but s in database
O in order to compute the score for s. In the following sections, we propose more
efficient ways to compute φ(s).

Algorithm 1. Basic
1: function BASIC(Object s)
2: φ(s) ← 0;
3: for each object o ∈ O ∧ o �= s do
4: Compute φ(s, o);
5: Add φ(s, o) to φ(s);

6: Update Hk with φ(s) if necessary;

3 Efficient kNDQ Evaluation

In this section, we propose an efficient algorithm to compute φ(s). It employs a R-tree
to significantly reduce the number of objects to be accessed. The main idea is to estimate
the upper/lower bounds (ULBounds in short) for the current object s’s score. If its upper
bound of ranking score φ+(s) is below the current top-k score γk, the computation of
φ(s) is immediately stopped. By using ULBounds, considerable score computation cost
can be saved.

In Section 3.1, we propose a branch-and-bound framework for computingφ(s). After
that, we further discuss two key components of the algorithm: upper/lower bounds and
the partial order property in Section 3.2.

3.1 kNDQ Framework

This framework uses two global parameters: a max-heap Hk for storing current top-
k scores and γk is the k-th highest score in the heap. Initially, Hk is empty, γk is 0.
Suppose spatial objects in O are organized in a hierarchical structure (e.g., a R-tree).
The ranking score of object s can be computed in a top-down manner, starting at the
R-tree root node. Subsequently, tree nodes are accessed recursively. When accessing a
tree node E, its tree node partial score φ(s, E) is computed.

Definition 3. (Tree Node Partial Score) Given an object s and R-tree node E, the
score of s with respect to E is

φ(s, E) =
∑
e∈E

φ(s, e) (6)
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Definition 3 is recursive. If E is a leaf node, φ(s, E) returns all partial scores of s
with respect to all objects in E, i.e., φ(s, E) =

∑
o∈E φ(s, o). If φ(s, E) can be well

estimated by its upper/lower bounds without retrieving o ∈ E, we can use the score
bounds to update current φ(s). If its upper bound φ(s)+ < γk, there is no need to
access the subtree of E. The computation is significantly reduced.

To compute ULBounds of tree node partial scores, we store in each tree node with
a vector of aggregated values 〈count, ψl, ψu〉2, where ψl[i] = mino∈E{o.ψ[i]} and
ψu[i] = maxo∈E{o.ψ[i]}. How to derive the ULBounds is detailed in Section 3.2.
Next, we give the branch-and-bound framework for computing φ(s) in the query pro-
cessing.

The pseudocode of the framework is shown in Algorithm 2. A max-heap is used to
keep the entries to be visited. Entries are sorted according to the upper bounds of partial
scores, as higher valued scores tend to contribute more to φ(s)+. Thus, the branch and
bound process would stop earlier. At each iteration, a node E is visited. First, we treat
ULBounds of φ(s, E) as the Original Form and reduce them from {φ−(s), φ+(s)} (line
7). Second, we expand E and derive ULBounds of φ(s, e) for all child nodes {e ∈ E}
(line 9-12, 14-17). The summation of e ∈ E’s ULBounds is called Expanded Form, as
it is the result of expanding E.

Algorithm 2. kNDQ
1: function KNDQ(RootNode R, object s)
2: H is a max-heap ranking on the upper bounds of partial score;
3: {φ−(s), φ+(s)} ← {φ−(s,R), φ+(s,R)};
4: push heap(H,R);
5: while H is not empty do
6: E ← pop heap(H,R);
7: Subtract φ−(s,E) from φ−(s); Subtract φ+(s,E) from φ+(s);
8: if E is a non-leaf node then //Expand E
9: for each entry e ∈ E do

10: Add φ−(s, e) to φ−(s); Add φ+(s, e) to φ+(s);
11: if γk  φ+(s) then
12: return;
13: else // E is a leaf node; Expand E
14: for each object o ∈ E do
15: Add φ−(s, o) to φ−(s); Add φ+(s, o) to φ+(s);
16: if γk  φ+(s) then
17: return;
18: if γk � φ(s) then
19: Update Hk and γk;

Each time E is accessed, we transform ULBounds of φ(s, E) from original form
into expanded form. Meanwhile, ULBounds of φ(s) become tighter. Actually, they can
converge to φ(s) after all iterations. In the sequel, we study how to derive the UL-
Bounds and prove that the expanded form is tighter than the original form (partial order
property).

2 Such an aggregated R-tree is implemented based on the R∗-tree [1].
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3.2 Spatial Dominance Upper/Lower Bounds

We derive the ULBounds for a tree node partial score φ(s, E). They can be plugged
in Algorithm 2 to speed up the query processing. We discuss different ULBounds ac-
cording to different types of E. The spatial factor could be founded by the minimum or
maximum distance between s and E. The dominance factor could be bounded by the
number of objects inside node E, denoted by |E|. Then, for each bound, we derive the
two forms, original form and expanded form, as aforehand mentioned. The reasonabil-
ity of the transition between two forms is also illustrated.

ULBounds for Leaf Nodes

Lemma 1. Given an object s and a leaf node e, the upper bound of φ(s, e) is:

Original Form: φ+(s, e) = 2−
|s,e|min

ε · |e| (7)

Expanded Form: φ+(s, e) = φ(s, e) =
∑
o∈e

{
2−

|s,o|
ε if s  o

0 if s � o
(8)

Proof. For original form, we overestimate φ(s, e)’s spatial factor to 2−
|s,e|min

ε , and
overestimate φ(s, e)’s dominance factor to |e|, assuming that s dominates all objects in
e. Hence, the original form is φ(s, e)’s upper bound. The expanded form of φ+(s, e)
degenerates into the partial score φ(s, e), which can be considered as a trivial upper
bound.

Lemma 2. Given an object s and a leaf node e, the lower bound of φ(s, e) is:

Original Form: φ−(s, e) =

{
2−

|s,e|max
ε if s  e.ψu

0 otherwise
(9)

Expanded Form: φ−(s, e) = φ(s, e) =
∑
o∈e

{
2−

|s,o|
ε if s  o

0 if s � o
(10)

Proof. For the original form, we underestimate φ(s)’s spatial factor by 2−
|s,e|max

ε . If s
dominates all objects in e (s � e.ψu), the dominance factor equals to 1. Otherwise the
dominance factor of φ(s, o) is underestimated as 0. Hence, the original form is φ(s, e)’s
lower bound. The expanded form of φ−(s, e) equals to φ(s, e), so it is a trivial lower
bound.

ULBounds for Non-leaf Nodes

Lemma 3. Given an object s and a non-leaf node E, the upper bound of φ(s, E) is:

Original Form: φ+(s,E) = 2−
|s,E|min

ε · |E| (11)

Expanded Form: φ+(s,E) =
∑
e∈E

{
2−

|s,e|min
ε · |e| if s  e.ψu

0 if s ≺ e.ψl
(12)
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Lemma 4. Given an object s and a non-leaf node E, the lower bound of φ(s, E) is:

Original Form: φ−(s,E) =

{
2−

|s,E|max
ε · |E| if s  E.ψu

0 otherwise
(13)

Expanded Form: φ−(s,E) =
∑
e∈E

{
2−

|s,e|max
ε · |e| if s  e.ψu

0 if s ≺ e.ψl
(14)

The proofs of Lemma 3 and 4 are omitted due to page limit.

Partial Order Property. The expanded form of ULBounds must be tighter than the
original form counterparts. This is guaranteed by the following lemma.

Lemma 5. For a parent node E and its children {e ∈ E}, we have:{∑
e∈E φ+(s, e) ≤ φ+(s, E) (Upper Bound Partial Order)∑
e∈E φ−(s, e) ≥ φ−(s, E) (Lower Bound Partial Order)

(15)

Proof. Let’s consider upper bound partial order.
1) E is a leaf node:

(Expanded form)
∑
o∈e

{
2−

|s,o|
ε if s  o

0 if s � o
≤

∑
o∈e

2−
|s,o|

ε

≤
∑
o∈e

2−
|s,e|min

ε = 2−
|s,e|min

ε · |e| (Original Form)

2) E is a non-leaf node:

(Expanded form)
∑
e∈E

{
2−

|s,e|min
ε · |e| if s  e.ψu

0 if s ≺ e.ψl
≤

∑
e∈E

2−
|s,e|

ε

≤
∑
e∈e

2−
|s,E|min

ε = 2−
|s,E|min

ε · |E| (Original Form)

The lower bound partial order can be proved in a similar manner. Thus, the lemma is
proved.

With the partial order property (Lemma 5), we can infer that the more entries we visit,
the tighter ULBounds will be. Thus, it is guaranteed that by expanding tree nodes in
Algorithm 2, the ULBounds gradually converge. Specially, when a leaf node e is ex-
panded, the upper/lower partial scores of s with respect to e converge to the partial
score φ(s, e). However, the converge of ULBounds can be slow, if the dominance fac-
tor is only roughly estimated by aggregated values 〈ψl, ψu〉. In the sequel, we study
how to derive tighter ULBounds by better estimating the dominance factor.

4 Ψ -Augmented R-Tree and Ψ -Augmented ULBounds

In this section, we improve the estimation of the dominance factor by constructing an
auxiliary structure, Ψ -augmented R-tree. Section 4.1 introduces the index structure as
well as its construction. Section 4.2 investigates how to use the index to improve the
query efficiency.
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4.1 Dominance Histogram and Ψ -Augmented R-Tree

Rather than just storing the range of E.ψ, we augment each R-tree node E with the
distribution of non-spatial values for objects belonging to E. We denote the distribution
function of E by ωE . Formally,

ωE : Ψd → N (16)

Given a range [ψ1, ψ2] (ψ1, ψ2 ∈ Ψ), ωE [ψ1, ψ2] returns the number of objects in E’s
subtree whose non-spatial attributes are within the range.

ωE [ψ1, ψ2] =
∣∣{o | o.ψ ∈ [ψ1, ψ2] ∧ o ∈ E}

∣∣ (17)

In implementation, ωE can be represented by a set of discrete histogram bars. For each
histogram bar b, it stores its range [ψbl , ψbu ] as well as the number of objects in the
range, denoted by b.count ( or ωE [ψbl , ψbu ] equivalently). We call ωE as the dominance
histogram of node E.

Fig. 2. Ψ -augmented R-tree

We show a dominance histogram with 2 non-spatial dimensions in Figure 2. Each R-
tree node Ri is augmented with a histogram ωRi . For each dimension of Ψ , we partition
it into equal-width intervals. In Figure 2, both dimension Ψ [1] and Ψ [2] are partitioned
into 4 intervals (4×4 bars in total). Then, we count the number of objects belonging
to each histogram bar. For example, leaf node R1 has two objects o1 and o2. In ωR1 ,
two bars are marked with “1”, indicating the existence of o1 and o2. The parent node
R0’s histogram ωR0 can be collected by merging ωR1 and ωR2 . A non-leaf node’s bar
count equals to the summation of corresponding children’s bar counts. For example,
ωR0 .[2; 2] = 2, which is the summation of ωR1 .[2; 2] and ωR2 .[2; 2]. Formally,

ωE[ψbl , ψbu ] =
∑
e∈E

ωe[ψbl , ψbu ] (18)

Suppose B is the fanout of R-tree, then the total number of nodes in R-tree is N =∑
i=1∧ |O|

Bi ≥1
|O|
Bi [4]. If each dimension is split into m equal-width intervals, the space

complexity of the tree is O(Nmd) and the time complexity is O(NBmd).
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We notice that in multi-dimensional space the non-spatial attributes are often dis-
tributed sparsely. Instead of keeping all the histogram bars, we can maintain a partial
order histogram bar list for each R-tree node. The elements of the bar list are sorted
according to the partial order on “Ψ -coordinates”. For example, bar ωR0 .[2; 2] is a Ψ -
coordinate. To distinguish from ≺, we use “≺c” to represent the dominance relationship
between two Ψ -coordinates.

Definition 4. ≺c. Given two Ψ -coordinates a = [a1; . . . ; ad] and b = [b1; . . . ; bd], we
say a ≺c b, if ∀i, ai ≤ bi and ∃1 ≤ j ≤ d, aj < bj .

In ωR0 , [2; 2] ≺c [3; 4] and [2; 2] ≺c [4; 3], so they are sorted as 〈[2; 2], [3; 4], [4; 3]〉.
Then, to collect ωR0 ’s partial order list, we merge the sorted lists of ωR1 and ωR2 . Let
the length of the partial order list be O(l) (usually l � md). By using partial order
histogram bar lists, we reduce the space and time complexity to O(Nl) and O(NBl),
respectively.

Ψ -Augment a R-Tree. Given a constructed R-tree, we can augment it with the partial
order histogram in a recursive manner, as detailed in Algorithm 3. The algorithm returns
the histogram bar list of the input node. Initially, the input is set to be the root of R-tree.
The algorithm tests if the input tree node is a leaf node or not. If it is a leaf, line 4-10
calculates the partial order list. Line 7 and 10 can be done in Olog(l), because the list is
sorted. Otherwise, it is a non-leaf node, all its children’s lists are merged and returned.
The cost of merging O(B) sorted lists is O(Bl).

Algorithm 3. Ψ -augment
1: function Ψ -AUGMENT(Node E)
2: if E is a non-leaf node then
3: return Mergee∈EΨ -augment(e);
4: else //E is a leaf node
5: for each object o ∈ E do
6: project o.ψ into bar b[ψbl , ψbu ], where o.ψ ∈ [ψbl , ψbu ];
7: if b exists in E’s partial order list then
8: b.count ++
9: else

10: insert b into list and set b.count to be 1;
11: return E’s partial order list;

4.2 Ψ -Augmented Upper/Lower Bounds

Now we discuss how the Ψ -augmented R-tree is used to estimate the dominance factor
in processing kNDQ. Due to the limited granularity of histogram bars, the dominance
factor can be estimated by a interval. Given the histogram constructed on node E, we
use B−

E [ψl, ψu] to represent bars covered by interval [ψl, ψu], and B+
E [ψl, ψu] to rep-

resent bars overlapping with interval [ψl, ψu]:

{
B−

E [ψl, ψu] = {bi | [ψbl , ψbu ] ⊆ [ψl, ψu]}
B+

E [ψl, ψu] = {bi | [ψbl , ψbu ] ∩ [ψl, ψu] �= ∅} (19)
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Fig. 3. ω−(s) and ω+(s) Fig. 4. Upper/lower Bound

Then, we can count the We use ω+
E(s) (or ω−

E (s)) to denote ω+
E [0, s.ψ] (or ω−

E [0, s.ψ]).
An example is shown in Figure 3, where ω+

E(s) is the number of objects over shaded
bars. In other words, ω+

E(s) denotes the largest number of objects s can possibly domi-
nate inside node E. Then, ω+

E(s) and ω−
E(s) can be written as:{

ω−
E (s) =

∑
b∈B−

E [0,s.ψ] b.count

ω+
E(s) =

∑
b∈B+

E [0,s.ψ] b.count
(20)

We can obtain ω+
E(s) and ω−

E(s) by scanning E’s partial order histogram bar list.
Given object s, and the histogram bar width Wi on i-th non-spatial dimension, b’s Ψ -
coordinate can be calculated by {bi = � s.ψ[i]

Wi
�}di=1. Meanwhile, we collect b’s range

[ψl
b, ψ

u
b ]. To retrieve values for ω+

E(s) and ω−
E (s), we sequentially scan E’s histogram

bar list, find bars whose ranges are dominated by ψl
b and ψu

b , and then summarize their
counts. The collected results are ω−

E(s) and ω+
E(s), respectively. The time complexity

is O(l).
We use ω+

E(s) and ω−
E (s) to estimate the dominance factor of s with respect to node

E. We use |s, E|min and |s, E|max to estimate the spatial factor, as shown in Figure 4.
The bounds in Lemmas 1 2 3 and 4 can thus be tightened. The improved ULBounds are
as follows.

Ψ -Augmented ULBounds

Lemma 6. Given object s and a node E, the Ψ -augmented upper bound of φ(s, E) is:

Original Form: φ+(s,E) = 2−
|s,E|min

ε · ω+
E(s) (21)

Expanded Form: φ+(s,E) =
∑
e∈E

2−
|s,e|min

ε · ω+
e (s) (22)

Lemma 7. Given object s and a node E, the Ψ -augmented lower bound of φ(s, E) is:

Original Form: φ−(s,E) = 2−
|s,E|max

ε · ω−
E (s) (23)

Expanded Form: φ−(s,E) =
∑
e∈E

2−
|s,e|max

ε · ω−
e (s) (24)

The proofs of Lemma 6 and 7 are omitted due to page limits. To integrate them into
Algorithm 2, we need to prove that they abide by the partial order property.
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Partial Order Property for Ψ -Augmented ULBounds

Lemma 8. The partial order property for Ψ -augmented upper/lower bounds holds.

Proof. Let’s consider the Ψ -augmented upper bound:

(Expanded form)
∑
e∈E

2−
|s,e|min

ε · ω+
e (s) ≤

∑
e∈E

2−
|s,E|min

ε · ω+
e (s)

= 2−
|s,E|min

ε ·
∑
e∈E

ω+
e (s) = 2−

|s,E|min
ε · ω+

E(s)(Original Form) (25)

The partial order property for Ψ -augmented lower bound can be proved in a similar
manner. Thus, the lemma is proved.

5 Experiments

Experimental setup is discussed in Section 5.1, where default parameters are bolded.
Results are reported in Section 5.2.

5.1 Setup

Datasets. We use both synthetic datasets and real datasets for experiments. For all
datasets, we normalize the spatial attributes to the Euclidean space [0, 10000]2; and
the non-spatial attributes to space [0, 1]d.

For synthetic datasets, we generate a series of datasets, containing 50K, 100K, and
200K following the way introduced in previous work [14]. We assume non-spatial at-
tributes are independent with dimensions 3, 4, and 5.

We also use a real dataset from AllStays.com3 that maintains hotels, resorts, camp-
grounds, etc. around the world. We clean the dataset following the way introduced
in [12]. Then, we obtain 30,918 hotel records with the schema (longitude, latitude,
review, stars, price). We then normalized all 30,918 hotel records as described above,
and call the normalized dataset USH.

Query. The parameter ε is set to 10, 50, and 100. The parameter k is set to 50, 100, and
200.

Methods. To evaluate kNDQ, we list several competitors: Basic, kNDQ-SD, kNDQ*. Ba-
sic uses Algorithm 1. kNDQ-SD adopts Algorithm 2 with spatial dominance ULBounds
(Section 3). kNDQ* adopts Algorithm 2 with Ψ -augmented ULBounds (Section 4).

Miscellaneous. The Ψ -augmented R-tree is implemented on R*-tree [13]. The entire
tree is accommodated in the main memory. We set the tree fanout to be 25, according
to the results reported elsewhere [7]. For dominance histogram, the bar width is set to
be 0.5. If a dataset has 4 non-spatial attributes, each dominance histogram bar will have

25
(1/0.5)4 = 1.56 objects on average. For higher dimensional data, objects will be more
sparsely distributed among histogram bars. Thus, the bar width is reasonably small. All
programs were implemented in C++ and run on a Core2 Duo 3.40GHz PC enabled by
MS Windows 7 Enterprise.

3 http://www.allstays.com/

http://www.allstays.com/
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5.2 Results

Synthetic Datasets. We test the query performances of Basic, kNDQ-SD, and kNDQ*
by varying the size of database O in Figure 5. Compared to the fast increasing query
time (Tq) of Basic, the time cost of kNDQ* increases in a relatively stable pace. Spe-
cially, when |O| = 100K , the time cost of kNDQ* is less than one quarter of that of
Basic. The gap is enlarging while |O| is increasing.

Fig. 5. Tq(s) vs. |O| Fig. 6. Pruning Ratio vs. |O| Fig. 7. Tq(# of node access) vs.
|O|

To understand the superiority of kNDQ*, we study the effectiveness of upper/lower
bounds. Referring to Figure 6, the pruning ratio of kNDQ* is stably above 88%, which
is much higher than its counterparts. The superior pruning power is also reflected in
Figure 7, where kNDQ* accesses one order of magnitude less tree nodes than others.

Fig. 8. Tq(s) vs. k Fig. 9. Tq(s) vs. ε Fig. 10. Tq(s) vs. d

We further study the query performance by varying query parameter k and ε. With
respect to k, all methods perform stably, while kNDQ* is the most efficient one, accord-
ing to the results in Figure 8. For ε, both kNDQ* and Basic decrease slightly according
to the results in Figure 9. A higher value of ε corresponds to a lower value of spatial
factor of Equation 4. In other words, a higher ε implies that objects are harder to be
found in “neighborhood” and thus have higher chances to be pruned.

We then study the impact of dimensionality d, and show the results in Figure 10.
As d increases, the query time of kNDQ* increases stably. According to the result in
Figure 11, the pruning ratio stays stable with respect to the increase of d.

Fig. 11. Pruning Ratio vs. d Fig. 12. Avg. Histogram Size
per Node vs. d

Fig. 13. Construction Time
of Histogram vs. d
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Also, we check the impact of d over the histogram size. From Figure 12, the average
histogram size (per node) increases linearly with the dimensionality. Without histogram
bar list, it would take ( 1

0.5 )
5 = 32 units to store the bars when d = 5. Thus, the

bar list representation saves about 60% storage cost. The construction time increases
super linearly as the results in Figure 13 indicate. Compared to the benefits in the query
efficiency, the histogram construction is well worth the effort.

Real Datasets. Similar trends are observed from real datasets. The query time of kNDQ*
increases stably with k (in Figure 14) and decreases with ε (in Figure 15). Compared to
Basic and kNDQ-SD, kNDQ* achieves higher efficiency by accessing considerably less
R-tree nodes, as shown in Figure 16.

Fig. 14. Tq(s) vs. k (USH) Fig. 15. Tq(s) vs. ε (USH) Fig. 16. Tq(# of node access)
vs. ε (USH)

6 Related Work

Our work is related to previous works on dominance relationship and spatial ranking.

Dominance Relationship. Dominance relationship has been studied extensively in
skyline queries. Borzonyi et al. [2] propose the external memory solution for skyline
queries. Kossmann et al. [8] and Tan et al. [16] investigate indexes for efficient skyline
query evaluation. Li et al. [9] use a data cube to facilitate dominance relationship analy-
sis. Yiu et al. [19] study top-k dominating queries, which retrieves k objects dominating
the highest number of objects.

Dominance Relationship in Spatial Databases. Sharifzadeh et al. [15] define a spatial
dominance relationship based on spatial distances. They study on how to use Voronoi
diagram to achieve higher efficiency. Huang et al. [5] propose a route skyline query
which returns points of interests for query point moving on a pre-defined route. Con-
tinuous skyline queries for moving objects are studied in [6] [20]. However, all those
works do not rank spatial objects. Lu et al. [12] rank objects by considering their dis-
tances to the nearest dominators.

Ranking Spatial Data. Du et al. [3] define the influence score of an spatial object as
the weighted summation of its reverse nearest neighbors. Li et al. [10] study different
queries involving both dominance relationship and spatial proximity. However, their
approach handles the two aspects separately, and therefore is not applicable to ranking
objects. Yiu et al. [17, 18] use an aggregated score function for non-spatial attributes
and combine it with spatial proximity. Unlike this paper, their approach requires extra
preferences to be specified to combine non-spatial attributes into an aggregated value.
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7 Conclusion

In this paper, we study a novel type of query: top-k neighborhood dominating query
(kNDQ). Adopting a flexible and general score function that takes into consideration
both spatial locations and non-spatial quality attributes, kNDQ is able to capture differ-
ent practical user needs in querying spatial objects. To support efficient query evalua-
tion, we design an effective index structure, Ψ -augmented R-tree. With the augmented
information at each index node, we efficiently estimate the ranking score by deriving
effective upper/lower bounds without spending unnecessary cost on computing exact
scores. Based on the proposed index, we design a branch and bound solution. Extensive
experiments on synthetic and real datasets demonstrate the efficiency of our proposals.
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Abstract. The MaxBRNN problem is to find an optimal region such that setting 
up a new service site within this region might attract the maximal number of cus-
tomers by proximity. It has many practical applications such as service location 
planning and emergency schedule. Typical real-life applications are most in pla-
nar space, and the data volume of the problem is huge and thus an efficient solu-
tion is highly desired. In this paper, we propose an efficient algorithm, namely, 
OptRegion, to tackle the MaxBRNN problem in a two-dimensional space. Our 
methods employ three optimization techniques, i.e., sweep line, pruning strategy 
(based on upper bound estimation), and influence value computation (of candidate 
points), to improve the search performance. Extensive experimental evaluation us-
ing both real and synthetic datasets confirms that OptRegion outperforms the ex-
isting ones significantly under all problem instances. 

1 Introduction 

Given a database, an RNN (Reverse Nearest Neighbor) query returns the data points 
that have a given query point as their nearest neighbor. A BRNN (Bichromatic Re-
verse Nearest Neighbor) is the bichromatic version of RNN, in which all data points 
consist of the service point set P and the customer point set O. For a service point 
p�P, a BRNN query finds all the points o�O whose nearest neighbor in P is p. 
Those customer points o in O constitute the influence set of p and the influence value 
of p equals to the cardinality of the influence set. For example, in Fig.1, for a service 
point p2, its BRNN, i.e., the influence set, is {o2, o3}. 

The MaxBRNN problem [5,6] aims to find the region S in which all the points 
have the maximum influence value, namely the cardinality of BRNN set of all points 
p in S is maximized in a space. The MaxBRNN can be regarded as an optimal region 
search problem and has attracted much research efforts. 

The MaxBRNN problem has many interesting real life applications in service loca-
tion planning and emergency schedule. For example, in Fig. 1, there are five customer 
points o1 to o5 and four stores p1 to p4 in a city. Now a company wants to set up a new 
store and the objective is to find a location that can attract as many customers as poss-
ible under the assumption that the customers are more interested in visiting a conve-
nient store based on their distances. We draw a circle for each customer point oi 

(1≤i≤5), centered at oi and the distance between oi and its nearest store as radius.  
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The MaxBRNN problem is to find the optimal region, which is the intersection of 
three circles of o2, o3, and o5, to set up a new store. 
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p2

p4

MaxBRNN 
Region

BRNN 
of p2

p3o2

o3

o5

p1

o1

y

x
 

Fig. 1. An example of BRNN and MaxBRNN 
problem 

Fig. 2. The y-intervals of NLRs 

There have been several algorithms [6,11,18,19] proposed to deal with the MaxBRNN 
problem in the literature. However, all these algorithms degrade significantly as the data-
set becomes very large. Although the MaxBRNN problem has some applications in high 
dimensional spaces, most applications are in planar spaces, and the data volume of the 
problem is huge, and hence an efficient solution is highly desired. 

In this paper, we propose an efficient algorithm called OptRegion to solve the 
MaxBRNN problem in a two-dimensional space. Our methods employ three optimiza-
tion techniques, i.e., sweep line, pruning strategy (based on upper bound estimation), and 
influence value computation (of candidate points), to improve the search performance. 

To sum up, our major contributions can be summarized as follows: 

• We propose an efficient algorithm, namely, OptRegion, to the MaxBRNN   

problem, which can be applied for arbitrary Lp-norm space. Also, the sweep 
line technique is adopted in the algorithm to find overlapping circles quickly. 

• We propose an effective pruning strategy, by which the majority of candidate 
points can be pruned without evaluation. 

• We conduct extensive experiments with both real and synthetic data sets to 
demonstrate the performance of our proposed algorithm. 

The rest of the paper is organized as follows. A survey of related work is given in 
section 2. Section 3 formulates the MaxBRNN problem. Section 4 describes the algo-
rithm OptRegion in detail, and analyzes its efficiency. Section 5 evaluates the pro-
posed algorithm and the pruning strategy through extensive experiments with real and 
synthetic data, and we conclude the paper in section 6. 

2 Related Work 

There are two types of RNN queries, namely, monochromatic and bichromatic RNN 
[9]. In the monochromatic case, all points are of the same category. In the bichromatic 
case, the points are of two different categories, such as services and customers. The 
original RNN problem has been studied in the literature [12,13,16] and the proposed 
algorithms are mainly based on some space-partition and pruning stratgies. In recent 
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years, the RNN problems have been studied extensively in the road network and the 
continuous environment[3,4,8,10,15]. 

The MaxBRNN problem, which maximizes the number of potential customers 
for the new service, was first introduced by Cabello et al. in [5,6], where they call 

it MAXCOV problem and present a solution for the two-dimensional Euclidean 
space. They also study other optimization criteria in BRNN queries: MINMAX, 
which minimize the maximum distance to the associated customers, and MAXMIN, 
which maximize the minimum distance to the associated customers. 

The MaxBRNN is challenging in that there exists an infinite number of candidate 
locations where the new service may be built. The Algorithm MaxOverlap in [18] 
utilizes a technique called region-to-point transformation, which is also adopted in our 
OptRegion algorithm. It transforms the optimal region search problem to an optimal 
intersection point search problem in order to avoid searching an exponential number 
of regions. Nevertheless, the MaxOverlap does not scale well because the computa-
tion of optimal intersection points is expensive. 

Wong et al. in [17] extend the MaxOverlap algorithm [18] for Lp-norm in the two 
and three-dimensional space. To the best of our knowledge, there is no previous work 
that study MaxBRNN query in more than 3 dimensional spaces. 

Algorithm MaxSegment in [11] tries to speed up finding the optimal intersection 
point by checking intersection arcs of circles. However, since they don’t use any 
pruning strategy, there may be a lot of intersection arcs that need to be checked, 
which is very time-consuming. 

Zhou et al in [19] present an efficient algorithm called MaxFirst to solve the 
MaxBRNN problem. The MaxFirst utilizes the branch-and-bound principle, and parti-
tions the space into quadrants recursively and computes the upper and lower bounds 
of the size of a quadrant’s BRNN. The algorithm then retrieves only in those qua-
drants that potentially contain an optimal region. Experimental results show that 
MaxFirst is much more efficient than the MaxOverlap. Nonetheless, in some situa-
tions, there may also be a lot of quadrants need to be processed. 

3 Problem Statement 

Suppose we have a set P of service points and a set O of customer points in a two-
dimensional space D. Each point o�O has a weight w(o), which is used to represent 
the number of customers or importance. 

For a point o�O, kNN(o,P) represents the set of the top k points in P that are near-
est to o. for a point s in D (s�P or not), BRkNN(s,O,P∪{s}) represents the set of 
points in O that take s as one of their k nearest neighbors in P∪{s}. For simplicity, we 
take k=1 in the following discussion, which can be easily extended to the case k>1. 

Definition 1. (influence set/value) given a point s, we define the influence set of s to 
be BRNN(s,O,P∪{s}). the influence value of s is equal to ∑o∈BRNN(s,O,P∪{s})w(o). 

Definition 2. (Nearest Location Region, NLR) Given a customer point o, the nearest 
location region R of o is defined to be the region centered at o and containing all the 
point s with d(o,s)≤d(o,NN(o,P)). NN(o,P) is the nearest neighbor of o in P and d(x,y) 
is the distance between points x and y. The weight of R equals to the weight of o. 
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In the definition 2, we adopt the notation NLR to capture the general case when con-
sidering Lp-norm space. Minkowski distance can be adopted in computing d(x,y). 

When considering euclidean space, i.e., the L2-norm space, the NLR is a circle 
around o with radius d(o,NN(o,P)). 

Definition 3. (MaxBRNN) Given a set P of service points and a set O of customer 
points in a two-dimensional space D. we want to find an optimal region S such that 
all points in S have the maximum influence value. 

For example, in Fig. 1, the optimal region S is the intersection of three NLRs o2, o3, 
and o5, and the influence value of S is the sum of the three NLRs’ weights. Informally 
speaking, the MaxBRNN returns the region with maximum overlapped NLRs. 

4 Algorithms for OptRegion 

We also adopt the region-to-point transformation [18] to transform the optimal region 
search problem into finding the maximum influence intersection point between any 
two NLRs. The maximum influence intersection point can subsequently be mapped 
into the optimal region. Let S be the optimal region returned by the MaxBRNN query. 
If S is the intersection of more than one NLR, then there must exist two NLRs and at 
least one of their intersection points is contained in S. 

OptRegion consists of three steps. First, NLRs are constructed for every customer 
point. Then, all intersection NLRs are detected, and the upper bound of influence 
values for all NLRs are estimated. Last, the exact influence values of candidate points 
are computed and the point with maximum influence value is found. 

We first describe several techniques used in OptRegion in section 4.1 and 4.2, then 
give the overall algorithm in section 4.3. We omit the detailed description of our in-
fluence value computation technique here, since it is similar to the algorithm Max-
Segment in [11] despite some differences in details and expressions. 

4.1 Sweep Line 

The method to find intersection NLRs in algorithm MaxOverlap [17,18] and MaxFirst 
[19] is as follows. First, an R*-tree is built for all NLRs. Then a range query against 
the R*-tree for each NLR is performed to find its all intersection NLRs. But it will 
take a lot of time to construct R*-tree and perform range query, especially when there 
is a large amount of customer points. 

We adopt the sweep line approach to find all intersection NLRs, which localize the 
search range of intersection NLRs to speed up the processing. Sweep line approach is 
widely adopted in a variety of computational geometry problems, such as line seg-
ment intersection, Voronoi diagram construction etc [2]. 

In sweep line and subsequent prune strategy techniques, we model an NLR by its 
minimum bounding rectangle (MBR), which means the result is a kind of upper 
bound estimation. The exact result can be gained in the influence value computation 
process. 
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We define the y-interval of an NLR to be its orthogonal projection onto the y-axis, 
as shown in fig. 2. When the y-intervals of a pair of NLRs do not overlap, then they 
cannot intersect. Hence, only the pairs of NLRs whose y-intervals are overlapping 
need to be tested for intersection. It is obvious that there exists a horizontal line that 
intersects both NLRs whose y-intervals are overlapping. So, to find these pairs we 
imagine sweeping a line downwards over the plane, starting from a position above all 
NLRs. While we sweep the imaginary line, we keep track of all NLRs intersecting 
with it, so that we can find the intersection pairs we need. 

The line is called the sweep line and the status of the sweep line is the set of NLRs 
intersecting with it, as shown in Fig. 3. We need a status structure to maintain the 
status of the sweep line. This is an ordered sequence of NLRs intersecting with  
the sweep line. All NLRs in the status structure are ordered by their x-coordinates of 
the left-most points. The status structure must be dynamic: as NLRs start or stop to 
intersect with the sweep line, they must be inserted into or deleted from the structure 
on the fly. We use the balanced binary search tree [14] in status structure implementa-
tion. The status structure changes while the sweep line moves downwards, but not 
continuously. Only at particular points, called event points, the update is required. 
Here the event points are the top and bottom point of NLRs, as shown in Fig. 3. 

Lemma 1. To find intersection NLRs correctly, the status structure need to be up-
dated only when the sweep line reaches the event points. 

Proof. Considering an NLR R, there are two cases: 1) When the sweep line reaches an 
event point which is the top point of an NLR R, NLR R starts intersecting with the 
sweep line. Before R is inserted into the status structure, it is tested for intersection 
against the NLRs in status structure, which finds intersection NLRs that have been 
swept up to now. Other intersection NLRs with R below sweep line will be found and 
added to the intersection NLR list of R subsequently while the sweep line goes down; 
2) When the sweep line reaches the bottom event point of R, it can be removed from 
the status structure safely, for all intersection NLRs with R have been found and R no 
longer intersects with the sweep line.                                                □ 

 

 

      Fig. 3. An example of sweep line              Fig. 4. An example of OptRegion 
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We maintain an event queue to store all the event points, which are the top and  
bottom points of all NLRs. The event points are ordered by their y-coordinates 
downwards. If two event points have the same y-coordinate, the process order can be 
arbitrary and the result is the same. 

Lemma 2. Let xleft and xright be the x-coordinate of the left-most and right-most 
point of an NLR R, and di be the maximum diameter of NLRs swept up to now (as 
shown in Fig. 3). The NLRs whose left-most points are out of the range [xleft−di, 
xright] will not intersect with R. 

Proof.  We prove by contradiction. Suppose that an NLR Ri intersects with R and the 
x-coordinate xa of the left-most point is out of the range [xleft−di, xright]. There are 
two cases: 

1) If xa<xleft−di: let u be the diameter of Ri. Since Ri intersects with R and the left-
most point of Ri lies to the left of R, it can be argued that the x-coordinate of Ri’s 
right-most point must be no less than that of R’s left-most point, namely, xleft≤xa+u. 
Combined with xa<xleft−di, we can get di<u, which contradicts with the fact that di is 
the maximum diameter of NLRs swept up to now. 
2) If xa>xright: it obviously contradicts with the assumption that Ri intersects with R.   □ 

Based on lemma 2, we can perform a range query of [xleft−di, xright] in the status 
structure to find all NLRs intersecting with NLR R at the moment R is inserted into 
the status structure. This range query finds those intersection NLRs that have been 
swept up to now. Other intersection NLRs with R below sweep line will be found and 
added to the intersection NLR list of R subsequently while the sweep line goes down. 
By this way we localize the search of intersection NLRs by only testing pairs of NLRs 
for which there is a horizontal line that intersects with both NLRs. When the sweep 
line reaches the bottom event point of R, then all intersection NLRs with R have been 
found and R can be deleted from the status structure safely.  

For example, in Fig.3, Ri is the NLR of customer point oi. When the sweep line 
reaches point a1 (the top event point of NLR R1 ), we can get the intersection NLR list 
of R1 at this moment is IR1 ={R2, R3, R4, R6}, for their left-most points locate in R1’s 
search range. At the same time, R1 is added to the intersection NLR list of R2, R3, and 
R4. After R1 is inserted into the status structure, the sweep line moves down and 
reaches point a3, the set IR1 is updated to be I’R1={R2, R3, R4, R5, R6}. Finally, when 
the sweep line reaches a2, we delete R1 from the status structure and the resulting 
intersection NLR list of R1 is I’R1. Here, we have to mention that the resulting I’R1 is a 
superset of the exact intersection NLR list, e.g., R4 in I’R1 is actually not intersecting 
with R1. The exact result can be gained in the subsequent influence value computation 
process. 

Based on the above discussion, the sweep line algorithm is given below. We con-
struct an event queue in line 1. The sweeping process is described in line 3-9. When a 
top point of NLR R is encountered, it is tested for intersection NLRs and inserted into 
the status structure. When a bottom point is encountered, R is deleted from the status 
structure. By the end of the algorithm, the construction of intersection NLR lists for 
all NLRs are accomplished. 
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Algorithm 1. SweepLine                                                                        
input  : O := set of NLRs of all customers 
output: I := intersection NLR lists for every NLR 
1    construct the event queue 
2   initialize an empty status structure 
3    for each event point in the event queue by downward y-coordinate order 
4        let R be the NLR of the event point 
5        if the event point is the top point of R 
6 find the intersection NLRs in the status structure and record in both 

 intersection list of R and intersection NLRs 
7 insert R into the status structure 
8        else //the bottom point of R 
9 delete R from the status structure 
10   return I 
 

4.2 Pruning Strategy 

We divide an NLR into eight subspaces evenly, illustrated as NLR R1 in Fig. 4, by 
four dotted lines, horizon, vertical, and two lines intersect with horizon line by 45o 
angle. For each subspace, we sum the weight of the NLRs intersect with the current 
NLR and locate in that subspace (including the NLR itself), noted as ws1 to ws8.  
Although the partitioning scheme with eight subspaces is described here, other parti-
tioning scheme such as no partitioning, 4 or 16 partitioning can also be used. The 
selection of partitioning scheme is based on the balance between pre-computing cost 
and pruning power. With more partitioning subspaces, the pruning power is better but 
we need much more precomputing cost. 

Lemma 3. The weight sum wsi (1≤i≤8) is the upper bound of the maximum influence 
value of the intersection points in that subspace. wsMax=max{wsi, 1≤i≤8} is the upper 
bound of maximum influence value of the intersection points in an NLR. 

Lemma 4. Suppose max is the maximum influence value found so far, then any NLRs 
with wsMax less than max can be safely pruned without further consideration. 

Proof. During the computation of the wsMax value, we conduct upper bound estima-
tion of the value, namely, it is a little greater than or equal to the actual maximum 
influence value of the intersection points in an NLR. There are two cases of upper 
bound estimation: 

1) Every NLR is modeled by its MBR, which will certainly lead to over-
estimation. For example, in Fig.5(a), although the MBR of R1 and R2 intersect with 
each other, the circles don’t intersect actually. Therefore, ws1 and ws2 of R1 is greater 
than the actual influence value of intersection points in this subspace. For R3, it 
doesn’t locate in the third subspace, but it is counted in the computation of ws3, which 
makes ws3 a little greater, for point a locates in the subspace. 

2) When we compute the wsi value, we sum the weight of the NLRs that intersect 
with the current NLR and locate in the subspace. However, in most cases, the NLRs 
located in the same subspace may not all contain a same point, in other word, wsi is 



 OptRegion: Finding Optimal Region for Bichromatic Reverse Nearest Neighbors 153 

 

the upper bound estimation of the maximum influence value of the intersection points 
in that subspace. For example, in Fig.5(b), NLR R2, R3, and R4 all intersect with R1 
and locate in the third subspace, so ws3 is 4 (including R1 itself). However, because R2 
doesn’t intersect with R3 and R4, the actual optimal intersection points are a3 or a4 
whose maximum influence value is 3, which is smaller than ws3. 

Thus, any NLRs with wsMax less than max will certainly contain no intersection 
point with influence value greater than max and the NLRs can be pruned safely.     □ 
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Fig. 5. Upper bound estimation 

While performing upper bound estimation, the intersection points of NLRs are not 
necessary to be computed. We only need to decide in which subspaces an intersection 
NLR may be located with respect to the current NLR by comparing of the customer 
points’ coordinate values, avoiding the time-consuming computation of intersection 
points and corresponding influence values [18]. 

Based on lemma 3, after we have computed the wsMax value of all NLRs, NLRs 
are processed by the descending wsMax order. The NLRs with greater wsMax have 
higher probability containing the optimal intersection point and there are more 
chances to prune NLRs. 

4.3 OptRegion 

Definition 4. (Intersection Arc) If NLR R intersects with NLR Ri, then the arc in the 
perimeter of R within the intersection region is called intersection arc in R. The 
weight of the intersection arc is equal to the weight of Ri, i.e. w(oi). 

We illustrate briefly the influence value computation technique and the algorithm 
OptRegion by an example in Fig.4. After the sweep line process, we find that R1 in-
tersects with R2 to R6, and we compute that ws1=3, ws2=4, ws3=4, ws4=4, ws5=3, 
ws6=2, ws7=3, ws8=3, so the wsMax value of R1 is 4. Similarly, the wsMax of R2 to R6 

are: 4,4,3,3,4. So, we will first deal with NLR R1 with the wsMax value 4. 
NLR R1 intersects with R6 by arc a1a1 in R1 (it is the whole circle of R1), with R3 by 

arc a2a4, with R2 by a3a5, and with R5 by a6a7. To find the intersection point with max-
imum influence value among a1 to a7, we only need compute the maximum overlap 
weight of the arc a1a1, a2a4, a3a5, a6a7, and plus the weight of R1. Suppose the weight 
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of each oi is equal to 1. By sweeping around the circle of R1 once, we can easily find 
the points a3 and a4 have the maximum influence value 4, which is corresponding to 
the optimal region overlapped by R1, R2, R3,and R6. Having found the intersection 
point with influence value 4, namely, max=4, we can prune all the other NLRs with-
out further influence value computation since there is no NLR with the  wsMax val-
ue larger than max. 

We give our algorithm OptRegion below. All NLRs are constructed in line1. We 
build a kd-tree for all service points in P. Then we use the algorithm ANN in [1] to 
find the nearest service point over the kd-tree for each customer point in O. 

In line 2-3, algorithm OptRegion calls algorithm SweepLine to find all intersecting 
NLRs and construct an intersection NLR list for each NLR, then we estimate the up-
per bound of maximum influence value of the intersection points in an NLR.Variable 
s and max are global variables representing the intersection point with the maximum 
influence value found so far and its influence value. Line 5 to 7 initialize s and max to 
be the point and weight of the single NLR with largest weight, with the purpose to 
correctly deal with the case where the optimal region is contained in only one NLR. 
In the above example, s is set to be R1 and max to be 1. 

In line 8-11, NLRs are processed by descending wsMax order, in an attempt to 
prune more NLRs that the estimated maximum influence value are less than the max-
imum influence value found so far. 

In line 11, the algorithm tries to find the exact maximum influence value of all in-
tersection points in R by sweeping around the perimeter of R counterclockwise. Based 
on the intersection NLR list of NLR R, it is easy to compute the endpoints of intersec-
tion arcs for all intersection NLRs. By this way, we map all the customer points that 
contribute to the influence value of the candidate points to circular arcs in the perime-
ter of NLR. Then, we sweep around the circle of R to compute the influence value of 
each intersection point. The details of the process can refer to [11]. 
 
Algorithm 2. OptRegion 
input  : O  := set of customer points 

              P  := set of service points 
output: S := optimal region presented by the overlapping NLRs 
1     for each o�O construct an NLR for o 
2     call SweepLine 
3     compute the wsMax for all NLRs 
4     sort all the NLRs by the wsMax value 
5     choose the NLR R with the largest weight 
6     s←any point in R 
7     max←w(R) 
8     for every R in the NLR set by descending wsMax order 
9  if the wsMax of R is less or equals to max 
10            break 
11           influence value computation for all intersection points in R, if the 

computed value is greater than max, the max is replaced and s is replaced 
with the intersection point for the corresponding max 

12 find the intersection of all NLRs containing s, put the id of these NLRs into S 
13   return  S 
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4.4 Analysis 

Time Complexity: The algorithm OptRegion has the following three steps. 

Step 1 (NLR construction): We use kd-tree [7] to perform nearest neighbor query. We 
build a kd-tree for all service points in P, which requires O(|P|log|P|) time and O(|P|) 
space. Then we use the algorithm ANN in [1] to find the nearest service point over the 
kd-tree, which requires O(log|P|) time for each customer point in O. Thus, the con-
struction of NLRs can be done in O(|P|log|P|+|O|log|P|). 

Step 2 (Find intersection NLRs and estimate upper bound of influence value): Let d 
be the maximum number of NLRs whose MBR intersects with a given NLR’s MBR, 
and c be the maximum NLRs intersecting with a sweep line. In the sweep line algo-
rithm, it takes O(|O|log|O|) time to sort the event queue. For each NLR, it takes 
O(d+logc) time to test intersection, and O(logc) time to insert into and delete from the 
status structure. So, the overall execution time for sweep line algorithm is 
O(|O|(d+log|O|)). For each NLR, its MBR intersects with at most d MBRs, thus it 
takes O(d) time to process each NLR, i.e., O(|O|d) time to estimate upper bound of 
influence value for all NLRs. Thus, this step requires O(|O|(d+log|O|)) time. 

Step 3 (Find the optimal intersection point): first we need to sort all NLRs by des-
cending wsMax order, which requires O(|O|log|O|) time. Actually, we need not fully 
sort all NLRs, here we only need a priority queue that can return the NLR with next 
maximum wsMax value. As soon as the wsMax value returned is below the maximum 
influence value found so far, remained NLRs are all pruned without further 
processing. Let α (0≤α<1) be the prune rate. There are at most d intersection arcs in 
each NLR, the influence value computation takes O(d) time for each NLR. Thus, this 
step requires O((1−α)|O|d) time. 

From the analysis above, we can get the following theorem. 

Theorem 1. The overall time complexity of our algorithm is O(|P|log|P|+|O| 
(log|P|+d+log|O|)). 

Correctness: Intuitively, the correctness of OptRegion is guaranteed by the following 
three aspects: 1) Based on Lemma 1 and 2, the algorithm sweep line can find all the 
intersection pairs of NLRs as the sweep line goes down; 2) Based on Lemma 4, the 
pruning strategy prune the NLRs correctly; 3)The influence value computation 
process can compute the influence value of intersection points exactly. 

The correctness of OptRegion can be concluded as theorem 2. We omit the detailed 
proof here to save space. 

Theorem 2. Algorithm OptRegion returns the MaxBRNN region correctly. 

5 Performance Study 

We have conducted extensive experiments to evaluate the performance of our algo-
rithm OptRegion. We compare our algorithm with the state-of-the-art algorithm 
MaxOverlap[18], MaxSegment[11], and MaxFirst[19] for the MaxBRNN problem. 
All experiments show that our algorithm outperforms other algorithms significantly. 
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The algorithm OptRegion is implemented in C++, in which we reused part of the 
C++ code of MaxOverlap. The C++ code of MaxOverlap is got from the authors. We 
implement the algorithm MaxSegment and MaxFirst in C++ according to the descrip-
tion in their papers. All experiments are carried out on a Linux machine with an Intel 
Core2 Duo 2.9 GHz CPU and 2GB memory. 

The performance evaluation is performed using both synthetic and real datasets. 
The synthetic datasets follow uniform and Gaussian distributions, and the number of 
customer points ranges from 50K to 200K. The customer dataset and the service data-
set have the same distribution. Two real world datasets LB and CA, which contain 2D 
points representing geometric locations in Long Beach Country and California respec-
tively, are also used in the experiments. The LB and CA datasets are available at 
http://www.rtreeportal.org/spatial.html. For real datasets, the number of customer 
point is in the range from 10K to 40K. We partition the real datasets into two parts, 
the first 40K points are customers and the remaining 20K points are services. We set 
the cardinality of P (service set) to be half the cardinality of O (customer set) for both 
synthetic and real datasets, since in reality the number of services is always much 
fewer than that of customers.  

The weight of each customer point in both synthetic and real datasets is set to 1. 
When the weights of customer points are other than 1, the experimental results are 
similar and we omit it here. 

We first conduct experiments to evaluate the pruning strategy with different parti-
tioning methods in section 5.1. In section 5.2, to gain insight of the performance pro-
motion of our algorithm, we compare algorithms from two aspects of running time: 1) 
overall running time, which includes the execution time for all three steps in section 
4.4; 2) running time without preprocessing, which includes the time of finding inter-
section NLRs, estimating upper bound of influence value, and finding the optimal 
intersection point, i.e. the step 2 and step3 in section 4.5. 

5.1 Effectiveness of Pruning Strategies 

The upper bound estimation of influence value in OptRegion is based on the space parti-
tioning of an NLR. Different partitioning will have different pruning effect. We explore 
three strategies here, i.e. 1-partition, 4-partition and 8-partition, in which an NLR is 
partitioned into 1, 4, and 8 subspaces respectively. We depict the pruning effect and 
running time of different strategies in Fig. 6 and Table 1 respectively, which show that 4 
and 8-partition are superior to 1-partition. The experiments are conducted on the syn-
thetic dataset with 80K customer points. Compared to 1-partition, both 4 and 8-partition 
have more powerful pruning effect. We have to compute exact influence value of more 
than 1300 NLRs against all 80K NLRs when 1-partition is used, whereas only 253 and 
140 NLRs really need exact influence value computation when 4 and 8-partition are 
used respectively. The prune rate α is 99.83% for 8-partition. 

From Table 1 we can find that, as the increase of subspace number, the time per-
centage of exact influence value computation decreases, but the time percentage of 
upper bound estimation increases. There are almost no differences between the run-
ning time of 4 and 8-partition. Although 8-partition strategy can prunes more NLRs, 
the pruning process itself need more computation. Except the 1-partition strategy, we 
can choose either of the other two pruning strategies. 
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Fig. 6. Pruning effect of different strategies 

Table 1. Running time of different pruning strategies 

 1-partition 4-partition 8-partition 

uniform 

80K 

number of NLRs not pruned 1302 253 140 

time percentage of upper bound estimation 70.04% 78.20% 82.76% 

time percentage of influence compute 16.30% 4.71% 1.31% 

total time (without preprocessing) 1.67s 1.38s 1.45s 

Gaussian 

80K 

number of NLRs not pruned 1261 69 40 

time percentage of upper bound estimation 76.60% 82.10% 82.77% 

time percentage of influence compute 7.90% 0.45% 0.38% 

total time (without preprocessing) 1.58s 1.3s 1.29s 

5.2 Results on MaxBRNN 

Overall Running Time: The experiment results are given in Fig. 7 for synthetic and 
real datasets with different point set cardinalities. Our algorithm OptRegion outper-
forms MaxOverlap, MaxSegment, and MaxFirst significantly for all circumstances. 
The performance promotion is up to about one order of magnitude. As the number of 
point set increases, the overall running time of the other algorithms increase dramati-
cally, whereas OptRegion has a relatively much smaller increase rate, showing its 
good scalability. 

There are four major advantages in OptRegion that contribute to the remarkable 
performance improvement:  

1) We use kd-tree instead of R*-tree to store the service points and perform nearest 
neighbor query. The preprocessing time of other algorithms are almost the same and 
increase dramatically with the increase of point number. They all adopt the same R*-
tree index structure. Although the time complexity by using kd-tree is the same as R*-
tree, we find that the kd-tree is much more efficient for nearest neighbor query than 
R*-tree through experiments. The kd-tree is overlap free and the partition is even, 
which make the algorithm need not to search useless branches. We adopt an existing k 
nearest neighbors query library (http://www/cs/umdedu/~mount/ANN/) in our imple-
mentation. The library is an implementation of the algorithm ANN in [1]; 

2) We adopt sweep line technique to find intersection NLRs, which localizes the 
search range and has much more simple computation;  
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Fig. 7. Overall running time 
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Fig. 8. Running time without preprocessing 
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3) We adopt a pruning strategy, which is based on the upper bound estimation of 
the influence value for candidate points. A large amount of NLRs can be pruned 
without further processing;  

4) We adopt a novel approach to fast compute the exact influence value of candidate 
intersection points, which need much less computation cost than other algorithms. 

Running Time without Preprocessing: The experiment results are given in Fig.8. 
Without the preprocessing time, OptRegion is about one time faster than MaxFirst 
and several times faster than MaxOverlap and MaxSegment. 

Comparing Fig. 8(a) and 8(b), we observe that data distribution affects the  
algorithms performance. All algorithms spend more time on datasets with Gaussian 
distribution than uniform distribution, for there are much more intersection NLRs and 
intersection points in the dense area of Gaussian distribution dataset. 

From Fig. 8(c) and 8(d), we find that the result on real world datasets is consistent 
with the synthetic datasets. For the dataset CA, OptRegion is about 50% improvement 
over MaxFirst and about 75% and 80% improvement over MaxSegment and Max-
Overlap. For dataset LB, the result is almost the same except that MaxOverlap 
degrades dramatically when the cardinality is 40K. 

6 Conclusion and Future Work 

In the paper, we propose an efficient algorithm called OptRegion to address the 
MaxBRNN problem, which has many applications in real life. OptRegion employs 
several efficient techniques, such as sweep line, upper bound estimation, and fast 
influence value computation. Extensive experiments using both real and synthetic 
data sets verify the effectiveness and efficiency of our proposed OptRegion algorithm. 
The experimental results show that OptRegion is one order of magnitude faster than 
the-state-of-the-art competitors in all cases. 

There are several directions in our future work. First, we will explore the 
MaxBRNN problem in the high dimensional space and the road network. Second, the 
current MaxBRNN problem assumes that every service point has infinite capability 
for customers. However, a service point (for example, a restaurant) can only accom-
modate a certain number of customers in reality. It is necessary to consider the prob-
lem under the limited capability assumption. 
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Abstract. Ensuring data protection and enhancing selective query per-
formance over encrypted data are two closely linked challenges for out-
sourced databases. It needs to develop indexes over encrypted data to
support secure and efficient selective queries on server side. However, the
plaintext-associated information hidden in those indexes may introduce
inference attacks when comparing with different encrypted tuple sets. In
this paper, we investigate a kind of inference attacks by linking query
results from different database users. The inferences are based on im-
plicit equality relations hidden in query results. To defend against this
attack, we develop a generalization-based method to construct secure
and private indexes. We design a combined metric to measure the infer-
ence resistance of our proposed method. This measure is quantized by
the entropy values and attribute value diversities in query results. We
have conducted some experiments to validate our proposed method.

1 Introduction

As is common knowledge, storing data encrypted is a basic requirement for
outsourcing databases. How to execute selective queries securely and efficiently
over encrypted data becomes a main concern in database research community. To
avoid storing too many different encrypted versions of a single tuple on servers,
each tuple is generally encrypted with a single key by default in early efforts
on outsourced databases [1][5]. This implies that a certain user may have the
full rights to access any encrypted tuples if he has the decryption key. The data
owners need to participate in the post-retrieval process to provide different views
to different users.

The selective encryption methods use different keys to encrypt different data
portions such as tuples or attributes [7]. To avoid users from managing too
many keys, the keys can be derived from user hierarchy [2] and the traditional
encryption method can be changed into some appropriate methods such as the
attribute-based encryption (ABE) method [14]. Although these methods pro-
vide an effective and possible way to combine encryption with access control,
the fulfillment of access control depends on the readability of decrypted data.
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This means that some decryption efforts on client side are wasted. It needs puri-
fied indexes locate encrypted tuples as precisely as possible to reduce the extra
decryption costs.

The granularity of data encryption in outsourced databases can be a tuple or
an attribute. Constructing the indexes directly on the encrypted values is not
an ideal choice because of the poor query efficiencies. It is generally to introduce
auxiliary attributes to index encrypted values [5][9]. These auxiliary attributes
reflect mapping images of plain attribute values. The preimage of each image
can be a single value or a set of values. And then the constructed indexes can
be called as value-based indexes or bucket-based indexes [11].

The introduced auxiliary attribute values is of benefit to locate encrypted
tuples accurately. However, those values only shadow real the attribute values.
They are inextricably linked to the original attribute values and may introduce
potential disclosure of confidential information [1][11][12]. Securely combining
the index and selective encryption is still immature.

In the scenario of outsourced databases, on one hand, the database service
provider is not required to guarantee a strict separation among data portions
available to different users. On the other hand, if index values on a certain
attribute value cannot be distinguished on the tuples with different access control
lists, the equality relations on the plain attribute values among those tuples will
be demonstrated explicitly. This may lead an adversary user can infer attribute
values in some tuples that he cannot access even if these tuples are encrypted
[11].

The inference on the explicit equality of index tags can be eliminated by
introducing different index values. We note that query results implicitly contain
some equality relations among attribute values. Once the adversary user obtains
query results for other users by colluding with the service provider, he can exploit
the implicit equality to infer the attribute values he cannot access.

In this paper, we will address the issue of protection against this kind of
collusion-based inferences by mitigating the implicit equality relations among
query results. We try to close the gap between indexing for efficient querying
and selective encryption for access controls. We propose a generalization-based
method to construct private indexes to defend against collusion-based inferences.
We define a combined metric, quantized by the entropy values and attribute
value diversities, to measure the degree of privacy protected among those query
results.

The rest of this paper is structured as follows. In Section 2, we give our basic
models and introduce the collusion-based inference attack over encrypted data.
In Section 3, we explore the reason why the collusion-based inference attack can
be achieved. In Section 4, we introduce the notion of generalization and propose
the notion of (k, α)-secure index to develop a generalization-based index. In
Section 5, the method to construct the (k, α)-secure index is proposed. In Section
6, we conduct some experiments to validate our proposed method. And finally,
the conclusion is drawn in Section 7.
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Fig. 1. The outsourced databases scenario

2 Background

We consider the typical outsourced database scenario described in DAS model
[5]. According to this model, the plain relation R = (A1,A2, ...,An) is stored as
corresponding encrypted relation Rs = (etuple,As

1,A
s
2, ...,A

s
n) on server where

the attribute etuple denotes the encrypted tuple in R and As
i denotes the index

for Ai in Rs with i = 1, 2, ..., n.
As illustrated in Fig. 1, when user u initiates a plain query qu, a proxy at

client side will translate it into a corresponding encrypted version qsu and deliver
it to the remote server. After executing qsu over encrypted data on server side, the
query result T s

u will be returned to the proxy as replies. The proxy will decrypt
all tuples in T s

u, filter the decrypted tuples according to the conditions in qu,
and finally return results to user u.

Three parties are involved in the scenario where the users and the proxy are on
client side and a provider on server side provides outsourced database services.
In our threat model, the proxy is trust and secure, and the user can access any
outsourced data based on his access rights. The service provider is honest but
curious, sometimes a bit greedy. This means that the provider can provide the
service he claims to be able to provide but he may leak some stored encrypted
tuples out to others for curiosity or benefits. When no ambiguity is possible, we
also call the service provider as the server.

Table 1(a) and 1(b) show an original relation with an access control list
and corresponding encryption version on server side, respectively. For exam-
ple, the tuple t1, 〈8, beef, 22〉, in Table 1(a) is stored as the encrypted tuple ts1,
〈e1, idu(8), idu(beef), idu(22)〉, in Table 1(b) where e1 = encrypted(〈8, beef, 22〉)
and idu() is a mapping function, privately defined by user u, for attributes. This
mapping function is used to construct value-based attribute indexes. The value-
based index mapping is an injective function and it maps different attribute
value to different images. The keyed hash function and the block ciphers can be
used to construct value-based index.

It seems perfect when executing query over encrypted tuples is with user-
specified index. However, the service provider is a pure storage service provider,
he has no obligation to design appropriate storage constraints to separate tuple
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Table 1. A Relation in plain and encrypted with ACL and value-based index

(a) Original Relation with ACL

tid ACL Mon Cmdty Qty

t1 u 8 beef 22
t2 u,v 8 pork 25
t3 v,w 8 ham 25
t4 u,v 9 pork 23
t5 w 9 beef 22

(b) Encrypted Relation with Value-based Index

tids etuple Mons Cmdtys Qtys

ts1 e1 idu(8 ) idu(beef ) idu(22 )
ts2 e2 idu(8 )idv(8 ) idu(pork)idv(pork) idu(25 )idv(25 )
ts3 e3 idv(8 )idw(8 ) idv(ham)idw(ham) idv(25 )idw(25 )
ts4 e4 idu(9 )idv(9 ) idu(pork)idv(pork) idu(23 )idv(23 )
ts5 e5 idw(9 ) idw(beef ) idw(22 )

(c) Encrypted Relation with Conflict-free Value-based Index

tids etuple Mons Cmdtys Qtys

ts1 e1 idu(8, Su1) idu(beef, Su1) idu(22, Su1)
ts2 e2 idu(8, Su2)idv(8, Sv1) idu(pork, Su1)idv(pork, Sv1) idu(25, Su1)idv(25, Sv1)
ts3 e3 idv(8, Sv2)idw(8, Sw1) idv(ham, Sv1)idw(ham, Sw1) idv(25, Sv2)idw(25, Sw1)
ts4 e4 idu(9, Su2)idv(9, Sv1) idu(pork, Su1)idv(pork, Sv1) idu(23, Su1)idv(23, Sv1)
ts5 e5 idw(9, Sw2) idw(beef, Sw1) idw(22, Sw1)

sets on access rights. A set of encrypted tuples may be leaked intentionally or
unintentionally. This means that an adversary user could potentially get some
encrypted tuples that he cannot access. Though the adversary cannot take the
plain values by decryption, the same index values could open a door to draw
inferences on those tuples and thus the index-based inference attack could be
launched.

As an instance for the index-based inference, considering the tuples ts1 and
ts2 in Table 1(b). They are the encrypted versions of t1 and t2 in Table 1(a),
respectively.

According to the access control mechanism, user u can access both tuples and
user v can only access ts2. However, if v obtains the entire index value of ts2.Mons,
he may infer that the value of idu(8 ) represents the index for attribute Mon with
value 8. This is because he realizes that both idu(8 ) and idv(8 ) appear in the
field of attribute Mons of tuple ts2 while he knows that t2.Mon is with 8. If he
could obtain the tuple ts1, which is with Mons value idu(8 ), he can precisely infer
that t1.Mon is with value 8 though he has not the right to access t1.

The reason why the index-based inference attack could be launched is because
of the conflict between the equal attribute values and the unequal access control
lists in some tuples. The tuples t1 and t2 are such tuples that are conflicting over
attribute Mon. Note that the attribute values can be hidden by corresponding
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index tag values, this inference can be prevented if the explicit equality relation
between index tags is destroyed. The notion of salt is introduced in constructing
the conflict-free mapping function id() [11].

Table 1(c) demonstrates an encrypted table with salted indexes. Recall the
tuples t1 and t2 we discussed previously, it is easy to find that the user v can still
realize that both idu(8 ,Su2) and idv(8, Sv1) represent the attribute Mon index
with 8, but he cannot directly infer any other tuple is with attribute Mon value
8 except the tuple t2 which he can access.

However, this method cannot prevent the collusion between the server and
users. Note that a query operation is on a set of constraints and it implies that
any tuple in query results satisfies the constraints. For example, the returned
result for the query q, select ∗ from R where R.Mon = 8, implies that all those
returned tuples are with attribute Mon value 8 whether executing decryption or
not. Thus, the collusion-based inference attack exploited the implicit equality in
tuples could be launched. For example, the collusion between the user v and the
server s may lead v to decide t1.Mon precisely based on the query q although he
is not granted to access t1.

3 The Collusion-Based Inference

In this section, we will explore the collusion-based inference which is based on
the implicit equality relations among the single-attribute-single-value equality
query results.

Let t and t∗ be two different tuples in a relation R. Suppose their correspond-
ing access control lists are denoted by t.ACL and t∗.ACL, respectively.

Definition 1. Two tuples t and t∗ are said to be ACL-related if t.ACL 
=
t∗.ACL and t.ACL ∩ t∗.ACL 
= φ.

Definition 2. Given an attribute A in relation R, two tuples t and t∗ are said
to be A-related if t.A = t∗.A.

Definition 3. Two tuples t and t∗ are said to be conflicting tuples over attribute
A, denoted by t ∼A t∗, if they are A-related and ACL-related.

For the relation in Table 1(a), t1 and t2 are conflicting over attributeMon because
they are ACL-related and Mon-related.

Definition 4. User u can collude with the server s if s can return u any query
result included at least one tuple that u can access.

Theorem 1. Given two tuples t and t∗ with t ∼A t∗ and t.ACL− t∗.ACL 
= φ.
If user u, u ∈ t.ACL − t∗.ACL, can collude with server s, then u can precisely
infer the value of t∗.A.

The proof is sketched as the following.
Let a = t.A. Consider query q, select * from R where R.A = a. After user u

initiates q, the server s will return tuple set Tu, {tu,1, tu,2, ..., tu,nu}, and we have
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Fig. 2. Two tuple sets and their intersection

t ∈ Tu. Let v ∈ t.ACL ∩ t∗.ACL. User v can also initiate query q, and then s
returns tuple set Tv, {tv,1, tv,2, ..., tv,nv}. It is apparently that t ∈ Tv and t∗ ∈ Tv.
If u can collude with s, he can get tuple set Tv, and hence he can determine that
t∗.A is the same as t.A.

In fact, user u can determine the value of t
′
.A for any tuple t

′ ∈ Tv − Tu.
The collusion-based inference is a kind of link attack based on implicit equality.
As illustrated in Fig. 2, user u connects Tv with Tu by colluding with server
s. He can infer values in Tv − Tu by the intersection Tv ∩ Tu and the implicit
equality contained in Tv. To defend against this kind of link attack, we consider
the generalization method [3].

Our idea is to construct the index on the generalized attribute value. Thus,
even if the user u colludes with the server s and takes the set Tv −Tu, he cannot
precisely infer any corresponding attribute values in set Tv −Tu. Hence, we need
to measure the degree of information in Tv that user u can be used to infer a
certain attribute values in Tv − Tu.

4 Generalization-Based Indexes

4.1 Generalization Mapping

Attributes can be classified into two types, the categorical and the continuous.
The categorical attributes take values on discrete domains whereas the con-
tinuous take on continuous domains. Note that a continuous domain can be
partitioned into a set of buckets and these buckets can be viewed as a discrete
domain, we assume all attributes are categorical.

Although attributes take values on specific discrete domains, it is possible to
construct general domains for some attributes. It means some specific attribute
values can be mapped to a general value in a general domain.

Formally, a generalization on attribute A means that there is a generalization
mapping gmA from the original domain D to a general domain G such that ∀a ∈
D, ∃g ∈ G, gmA(a) = g. a is said to be a preimage of g and the set of preimages
of g in tuple set T is defined as Preimage(g) = {t.A|t ∈ T ∧ gmA(t.A) = g}.
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4.2 Measuring Privacy Protection of Generalization

The generalization replaces original values with generalized values and hence
keeps the privacy of those specific values. We will propose some formulas to
measure the privacy protected by a certain generalization mapping.

Given a tuple set T , a generalization mapping gmA, and a generalization
instance g, the entropy of the tuple set Tg, {t|t ∈ T ∧ gmA(t.A) = g}, can be
computed by

H(Tg) = −
∑

t∈Tg∧t.A=a

ma

mg
· log ma

mg
, (1)

where mg is the total number of tuples whose attribute values can be generalized
to the instance g, and ma is the number of tuples t with t.A = a.

Let us consider the generalization version query, select * from R where

gm(R.A) = g. After user u executes this query, the server s will return tuple set
Tu,g, {tu,1, tu,2, ..., tu,nug}. Similarly, when user v executes, s returns set Tv,g,
{tv,1, tv,2, ..., tv,nvg}. In the case of Tu,g ∩Tv,g 
= φ, when user u colludes with s,
he can get the set Tv,g and realize that the attribute A values of all tuples in Tv,g

are generalized to g. Note that the user u knows the tuples in set Tu,g ∩Tv,g and
he always tries to infer the attribute A values of tuples in Tv,g−Tu,g based on the
known tuples. Therefore the question is transformed as how much information
hidden in the set Tv,g for the user u.

Let gmA(a) = g. Let m−
g denote the number of tuples in Tv,g − Tu,g and

m∩
g denote the number of tuples in Tv,g ∩ Tu,g. Let m−

a denote the number of
tuples t : t ∈ Tv,g − Tu,g with t.A = a and m∩

a denote the number of tuples
t : t ∈ Tv,g ∩ Tu,g with t.A = a . We have
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a +m∩
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whereDKL(Tv,g−Tu,g||Tv,g) is the Kullback-Leibler divergence [6] between Tv,g−
Tu,g and Tv,g, and DKL(Tv,g ∩ Tu,g||Tv,g) is the Kullback-Leibler divergence
between Tv,g ∩ Tu,g and Tv,g.

Since the user u only takes the plain tuples in Tu,g ∩Tv,g, the hidden entropy
Hu(Tv,g) in tuple set Tv,g for the user u can be computed by

Hu(Tv,g) = H(Tv,g)−
m∩

g

m−
g +m∩

g

H(Tv,g ∩ Tu,g). (2)

This formula could be used to measure the privacy protected in Tv,g with respect
to user u.

4.3 Generalization-Based Indexes

Definition 5. Two tuples t and t∗ are said to be generalized A-related if
gmA(t.A) = gmA(t

∗.A).

For the relation in Table 1(a), when defining the generalization mapping over
attribute Mon as gmMon : {8, 9} → {[8, 9]}, all the tuples in this table are
generalized Mon-related.

Definition 6. Two tuples t and t∗ are said to be generalized conflicting tuples
over attribute A, denoted by t ∼gmA

t∗, if they are ACL-related and generalized
A-related.

A generalization-based index mapping maps a generalization value into an index
tag value. Actually, it maps a set of attribute values into a single value. If two
tuples are generalized conflicting, an adversary user could launch an index-based
inference attack to infer the ranges of attribute values he cannot access. To
mitigate this kind of inference, we can construct a conflict-free generalization-
based index mapping by introducing the salts as discussed in [11].

Definition 7. The generalization mapping gmA is α-secure if for any general-
ized conflicting tuple t and t∗ with ∀u ∈ t.ACL − t∗.ACL and ∀v ∈ t.ACL ∩
t∗.ACL, Hu(Tv,g) ≥ α where g = gmA(t.A).

Intuitively, we can use the α-secure generalization mapping to construct indexes
against collusion-based inference. However, the lack of diversity in attribute value
combinations can still lead a successful inference.

Recall the computation of Hu(Tv,g), the adversary user u can access plain
tuples in set Tu,g ∩ Tv,g and he also knows the preimage set of g. Since he
can obtain the encrypted version of tuples in Tv,g − Tu,g by colluding with the
server, he can construct a candidate plain set, say T c

v−u,g, for Tv,g − Tu,g by
assigning preimage combinations and then compute Hc

u(Tv,g) according to the
formula (2). If only one preimage combination makes Hc

u(Tv,g) ≥ α satisfied,
he can immediately determine the real set of Tv,g − Tu,g. We call the number
of preimage combinations that satisfy Hc

u(Tv,g) ≥ α as the diversity of the set
Tv,g − Tu,g and denote it as ‖Tv,g − Tu,g‖d.
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Table 2. Encrypted Relation with Conflict-free Generalization-based Index over Mon

ACL tids etuple Mons
g

u ts1 e1 idu([8, 9 ], Su1)
u,v ts2 e2 idu([8, 9 ], Su2)idv([8, 9 ], Sv1)
v,w ts3 e3 idv([8, 9 ], Sv2)idw([8, 9 ], Sw1)
u,v ts4 e4 idu([8, 9 ], Su2)idv([8, 9 ], Sv1)
w ts5 e5 idw([8, 9 ], Sw2)

Definition 8. The generalization mapping gmA is (k, α)-secure if for any gen-
eralized conflicting tuple t and t∗ with ∀u ∈ t.ACL− t∗.ACL and ∀v ∈ t.ACL∩
t∗.ACL, Hu(Tv,g) ≥ α and ‖Tv,g − Tu,g‖d ≥ k where g = gmA(t.A).

Table 2 demonstrates an encrypted relation with conflict-free generalization-
based index over Mon corresponding to the relation in Table 1(a). We can show
that the generalization mapping, gmMon : {8, 9} → {[8, 9]}, is (2, 0.25)-secure.

4.4 Generalization with Noise Tuples

Generalization fundamentally relies on spatial locality. In the case of attribute
value generalization, it means that each tuple must have enough number of
neighbor tuples whose corresponding attribute values can be involved in a same
generalization class. However, the real data distribution is not as ideal as we
expected. An outlier tuple is a tuple with markedly different features from others
when they are generalized into a same equivalence class. The outlier tuples often
lead generalization to a higher hierarchy.

To mitigate the negative effects introduced by outliers, some generalization
methods adopt the suppression strategy [3]. For the scenario of outsourced
databases, the suppression strategy will destroy the logical completeness of tu-
ples. We consider the strategy of adding artificial noise tuples to datasets.

When constructing a (k, α)-secure generalization mapping, the parameter α
is a key factor in determining generalization hierarchy. For example, to satisfy
Hu(Tv,g) ≥ α, a general way is to increase the generalization mapping level,
i.e., increase the number of distinct attribute values with image g. If outliers are
involved in Tv,g, especially involved in Tv,g−Tu,g, it may need higher generaliza-
tion level to satisfy Hu(Tv,g) ≥ α. However, if we add some artificial noise tuples
with distinct attribute values but with the same mapping images as outliers, the
inequality Hu(Tv,g) ≥ α would be satisfied at lower generalization level.

5 Constructing (k, α)-Secure Conflict-Free Indexes

In this section, we discuss two key procedures, the Generalize() and the Salt(),
for constructing (k, α)-secure conflict-free generalization-based indexes.
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5.1 Attribute Generalization

procedure Generalize(Table T , Attribute A, Threshold k, α, β)
CandSet = {t.A|t ∈ T}
while CandSet �= φ

pick a ∈ CandSet
construct initial generalization mapping gm for a
while TRUE and CandSet �= φ

g = gm(a)
CandSet ← CandSet− Preimage(g)
if (gm is (k, α)-secure over Preimage(g))

gmA(a) � gm(a) where a ∈ Preimage(g)
break

else
add noise tuples with probability β
increase generalization level with probability 1− β

endif
endwhile

endwhile
if gm is (k, α)-secure

return gmA

else
return FAILED

endif
endprocedure

The procedure Generalize() is for constructing (k, α)-secure generalization map-
ping over attribute A. We first initial a candidate value set CandSet for gener-
alizing attribute A values. After choosing value a from CandSet, we construct a
generalization mapping on a according to a predefined generalization hierarchy.
Then a sequence of (k, α)-secure tests is launched. If all of the tests are passed, we
will choose next candidate value to repeat construct-and-test procedure. If some
of the tests are failed, we will choose the increasing-generalization-level strat-
egy or the adding-noise-tuples strategy to repeat construct-and-test procedure
according to the generalization parameter β.

5.2 Conflict-Free Indexes

We construct conflict-free generalization-based indexes by introducing random
values, the salts, as a parameter for index function id().

The procedure Salt() is for constructing conflict-free generalization-based
indexes. We first construct the set of tuple-user pairs according to the tuple
set and ACL lists. For each generalization image g, we construct user set Ug,
Ug = {u|t ∈ T ∧ gm(t.A) = g ∧ u ∈ t.ACL}. And then construct a user u
associated tuple set Tu,g and partition this set Tu,g into a sequence of equiv-
alence classes. Tuples in the same equivalence classes have the same ACL.
Let Tu,g,t1 , Tu,g,t2 , ......, Tu,g,tk be such classes, where Tu,g = ∪k

i=1Tu,g,ti and
Tu,g,ti ∩ Tu,g,tj 
= φ for 1 ≤ i, j ≤ k and i 
= j. It is easy to show that for
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any pair of equivalence class Tu,g,ti and Tu,g,tj , we have ti ∼gm(A) tj . And then
different salts are distributed to tuples in different classes to construct index
mapping values.

procedure Salt(Table T , Attribute A, GenMapping gm)
TU = {(t, u)|t ∈ T ∧ u ∈ t.ACL}
while TU is not empty

pick (t∗, u∗) ∈ TU ;
g = gm(t∗.A)
Ug = {u|(t, u) ∈ TU ∧ gm(t.A) = g}
for each u ∈ Ug

Tu,g = {t|(t, u) ∈ TU ∧ gm(t.A) = g}
generate equivalence class subsets: Tu,g,ti , 1 ≤ i ≤ nu

generate random numbers: Sui , 1 ≤ i ≤ nu;
for each t ∈ Tu,g

i = arg(t ∈ Tu,g,ti)
t.As

g = idu(g, Sui)
TU ← TU − {(t, u)}

endfor
endfor

endwhile
endprocedure

6 Experiments and Discussion

6.1 The Datasets

To evaluate the behavior of our proposed method, we need two types of materials
for experiments, the data tuples and the authorized users for tuples.

For the data tuples, we first generate a relational table with 800000 tu-
ples following the TCP-H benchmark specifications, and then randomly se-
lect 3000, 8000, 13000, and 18000 tuples to construct tables Data3k, Data8k,
Data13k, and Data18k, respectively. Each table contain the same three at-
tributes, including 10000, 9999, and 1000 distinct integers, respectively.

For the authorized users for tuples, we extract the authors coauthored with
Professor Jiawei Han from the DBLP repository. In particular, we extract the
top m most productive authors and construct authors set of size n from the
repository. We view the constructed authors set as the authorized users set,
i.e., the ACL lists for tuples. In our experiments, we set m as 40, 90, 140,
and 190, respectively, and correspondingly, we set n as 60, 124, 204, and 297,
respectively. We denote our constructed ACL lists as ACL1, ACL2, ACL3, and
ACL4, respectively.

6.2 The Results

In our conducted experiments, we set k = 2 and the generalization mapping
images are denoted by intervals. The secure threshold α is from 0.5 to 3 with
step size 0.5, and the generalization parameter β is chosen in {0.4, 0.7, 1}.
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Fig. 3. The number of gm images on α (case of ACL1 and β = 0.4)

Fig. 4. The number of gm images on α (case of Data3k and β = 0.4)

Fig.3 demonstrates the relationship between the number of generalizationmap-
ping, gm, images the secure thresholdα for the case of the access control listACL1
and the generalization parameter β = 0.4. We find that the number of gm images
is decreasing as the α increases. This implies that more original attribute values
are mapped to a single images averagely in order to satisfy the larger α.

When comparing with the Fig.3(a) and (b), we find the number of gm images
are similar in all four datasets in our experiments. It means that the number of
images depends on the sizes of attribute values domains. Intuitively, the larger
size of dataset, larger number of images. However, the number of images is
not consistent with the size of dataset. For example, Fig.3(c) shows that the
larger size of dataset, the smaller number of images. This is because of the
generalization mapping images in our conducted experiment are on intervals.
Given an access control list, the larger dataset with smaller size of domain may
introduce more outlier attribute values. This figure implies that the number of
gm images depends on the size of attribute domain when giving a certain access
control list.

Fig.4 demonstrates the trend of the number of gm images on the secure thresh-
old α in the case of Data3k and β = 0.4. As shown in Fig.3, the larger value of
α leads smaller number of the gm images. It also shows that the access control
list with more users makes the number of gm images smaller given a dataset.
This implies that the introduced complexity of larger access control list require
more different original values mapping to a single generalization value.
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Fig. 5. The hitted ratios on α (case of Data13k and ACL1)

Fig. 6. The number of salts and α (case for Data13k and ACL1)

Generalization maps specified values into a general value. It means that when
initiating a query from client, the returned tuple set will contain some tuples
unsatisfied original query conditions. The hitted ratio reflects the ratio of tuples
satisfied original conditions. For a single-attribute-single-value query, i.e., the
query select * from R where R.A = a, the hitted ratio can be computed by ma

mg
.

In our experiments, we randomly generate single-attribute-single-value queries
for different users and compute Max,Median, and Min hitted ratios for user
queries in different attributes. Figure 5 demonstrates the relation between hitted
ratios and α with Data13k and ACL1. It shows that the hitted ratio drops when
the generalization level becomes higher.

To defend against index-based inference, it needs different attribute index val-
ues for conflicting tuples. Fig.6 demonstrates that in our conducted experiments,
limited number of salts can be used for users to prevent index-based inference.

6.3 Related Work

Outsourcing data to third parties out of the control of data owners requires stor-
ing data encrypted on remote servers. To avoid storing many different encrypted
versions of a same tuple on servers, encrypting each tuple with a single key
is a common knowledge. Since the early efforts on outsourced databases [1][5]
are focused on how to translate the client-side plain queries into corresponding
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server-side encrypted versions, they assume that all the tuples are encrypted by
a same key. It implies that a certain user may have the full rights to access any
encrypted tuples if he gets the decryption key.

The selective encryption methods use different keys to encrypt different data
portions such as tuples or attributes [7]. To avoid users from managing too many
keys, the keys can be derived from user hierarchy [2]. And also, the traditional
ciphers are replaced with the attribute-based encryption (ABE) method to en-
crypt data [14]. However, the access controls provided by these methods depend
on the readability of decrypted data. This means that some decryption efforts
on client side are wasteful.

Other efforts are on developing new ciphers for keyword searching on en-
crypted data. However, either the symmetric encryption scheme [10] or the
asymmetric encryption scheme [13] cannot prevent the curious service provider
locating the positions with the same method. We note that locating encrypted
tuples implies execute comparison operations over encrypted data on server with-
out decryption. The partially [8] or fully [4] homomorphic encryption methods
can be used to perform the comparison. But, as mentioned previously, if the
comparison results could be distinguished on server, the curious service provider
could also manipulate in the same way to obtain the results of comparison.

To improves the speed of encrypted data retrieval operations on server, sev-
eral index techniques are proposed. The CryptDB scheme [9] defines layers of
encryption for different types of database queries. For executing a specific query,
layers of encryption are removed by decrypting to an appropriate layer and the
tuple index is directly on the encrypted data. This method may lead many sen-
sitive values be stored to the level defined by the weakest encryption scheme. No
inference attacks are considered in this scheme. The DAS (Database as a Service)
model [5] proposes a bucketization method to construct the index. This index
is defined on an auxiliary attribute which is associated with the corresponding
original attribute. However, there is no formal security analysis about this kind
of index. Value-based index is discussed in [1]. Comparing with the bucketiza-
tion index, the value-based index locate encrypted data in high accuracy but
also disclose many other useful information such as the data distribution.

To our knowledge, the authors in [11] firstly address the inferences of en-
crypted data in outsourced databases. They discuss a kind of inference attack
introduced by the value-based index. The addressed inferences are on the ex-
plicit equality relations among tuples with different access rights. But they do
not address the collusion-based inference on the implicit equality relations among
retrieved tuples.

Our proposed generalization-based index can be viewed as a kind of bucketi-
zation index. Comparing with the index in [5], we define a combined measure to
measure the inference resistance against the collusion-based inference. We also
introduce the notion of salt which is proposed in [11] to construct conflict-free
generalization-based index.
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7 Conclusion

Ensuring data privacy is fundamental for outsourced databases. Indexes over
encrypted data provide efficient selective queries on server side. However, the
plaintext-associated information hidden in those indexes may introduce infer-
ence attacks. In this paper, we investigate a kind of inference attacks based on
implicit equality relations hidden in query results. To defend against this attack,
we develop a generalization-based method to construct private indexes. We de-
sign a combined metric, quantized by the entropy values and attribute value
diversities, to measure the inference resistance for our proposed methods. We
have conducted some experiments to validate our proposed method.
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Abstract. Alphabetic Huffman Tree (AH-Tree) is an appropriate data
structure to index data set with skewed access frequencies, which fits
the feature of web-based wireless data broadcast service to a mass num-
ber of mobile clients. In this paper we solve a long-time open question
to construct an arbitrary k-ary AH-Tree with Hu-Tucker algorithm [1]
by dynamic programming, whose time complexity is O(kn2), where n
is cardinality of the data set. We then build a distributed AH-Tree in-
dex sequence with a special control-table shrinking technique. Next, we
introduce a pyramid index allocation method, which is scalable to any
available broadcast channel. We prove the correctness of our algorithm,
analyze the time complexity of tree-construction process, and compare
our design with B+-Tree index by numerical experiments. Both mathe-
matical analysis and simulation results prove the efficiency of our design.
To the best of our knowledge, we are the first to propose a detailed, fast,
and distributed k-ary AH-Tree index with allocation protocol, which has
both theoretical and practical significance in this area.
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1 Introduction

Wireless data broadcast is an efficient data dissemination technology to a mass
number of mobile clients with battery-constraint portable wireless devices (i.e.,
mobile phones, smart phones, and PDAs). Due to the nature of wireless commu-
nication, instead of point-to-point query-reply mode, a server broadcasts public
information like traffic conditions, live TV streams, weather forecasts, and tourist
services, etc., over multiple channels periodically. Each mobile client can access
onto the channel, wait for the required data items, and download its required
data packet sequence each at a time slot.

Intuitively, the criteria to evaluate the performance of a wireless data broad-
cast system are the downloading time and energy consumption of mobile devices.
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Correspondingly, access latency and tuning time are two widely accepted system
evaluation standards. The former denotes the time interval from when a client
sends a request to the time when it receives the required datum, while the latter
denotes the activating time of the mobile device during data retrieval process.

Indexing technology is one of the most effective methods to reduce tuning
time. Each mobile device has two modes: active mode and doze mode. Its energy
consumption during active mode is far greater than that in doze mode. Indices
help to reduce the active time of a mobile device significantly. Clients can follow
the direction of indices on broadcasting channels, turn off during the waiting
period, and turn on again right before the required data item appears.

There have been a lot of works discussing efficient indexing schemes, which
can be classified into three categories: hashing-based indexing [2], tree-based
indexing (e.g., B+ tree [3], Huffman tree [4]), and table-based indexing (e.g.,
exponential index [5]). Among them, tree-based indices are the most widely
implemented structures according to their easy-searching and fast-constructing
characteristics. Additionally, researchers prefer to choose a balanced tree as a
base for their index design, since it is easier to control the tree height and bound
the index size to avoid large increase of access latency.

However, data broadcast system serves mobile clients with hundreds or thou-
sands of data items, whose visiting frequencies vary hugely according to the
empirical statistics of human behavior with preference difference. Based on the
investigation of website popularity [6], we find that a few data items have very
high popularity; a medium number of data items have middle-of-the-road vis-
iting frequencies; while a huge number of data items actually have very low
preference. Such phenomenon implies that balanced tree is probably not an ap-
propriate index structure for web service since each searching path has similar
length, bringing longer tuning time on average.

To overcome the aforementioned shortcoming, the Alphabet Huffman Tree
(AH-Tree) is a good choice. In a typical AH-Tree, the higher the frequency of a
data item, the shorter the path from root to the corresponding leaf index. Many
literatures have studied AH-Tree index during the past two decades. In [1], Hu
and Tucker first proposed a binary AH-Tree algorithm with time complexity
O(n log n), where n is the size of data items. Their design is based on a com-
plex queue technology, which cannot be directly extended to construct k-ary
AH-Tree with arbitrary k [7]. Later, Shivakumar et al. [8] extended Hu-Tucker
Algorithm into k-ary AH-Tree, and first implemented it as indices to broadcast
environment. Nevertheless, they did not describe the algorithm clearly. They
only mentioned a skeleton of how to build a k-ary AH-Tree, lack of specification
of internal node construction with k branches. The time complexity of such de-
sign would be high up to O(n3) if we directly follow their description without
creating any particular queue structure, which is impractical for real-world ap-
plications. Similarly, [4], [9], and [10] discussed AH-Tree index for data broadcast
problem respectively, none of which provided complete tree-construction process
with time complexity analysis. They only gave simple explanation according to
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the description in [8], almost in the same manner. Therefore, how to construct
an arbitrary k-ary AH-Tree by Hu-Tucker algorithm remains an open problem.

Additionally, researchers tended to modify the index tree into a distributed in-
dex sequence to improve the performance [3,10,11]. This scheme relies on the use
of control table. However, we found that the control table also results in overhead
in space, which becomes an unneglectable factor as we found half of the control
table is redundant. Moreover, the control table contains as much redundancy as
the useful information. How to eliminate these redundancy becomes crucial.

In this paper, we propose an efficient AH-Tree construction with the help of
dynamic programming. Our algorithm can build arbitrary k-ary AH-Tree in-
dex with bounded tree height in O(kn2) time. We then modify this tree into a
distributed index sequence with control table design to further reduce the search-
ing steps. Considering the influence of control table size, we further propose a
general and effective scheme to eliminate redundant entries in control tables to
reduce the overall index packet length, which save almost 50% of the storage.
Finally, we use the dynamic pyramid scheme for index and data allocation. We
prove the correctness and complexity of our design theoretically and illustrate
the performance of the broadcast system by numerical experiments. Both theo-
retical proofs and simulation results validate the efficiency of our design. To the
best of our knowledge, we are the first to propose the detailed design for k-ary
Hu-Tucker algorithm with time complexity analysis. Our design does not rely on
any special data structure and queue design, which can be easily implemented in
any practical system. The simulation results show that our design gains signifi-
cant growth regard to skew distributed data. However, it does not over perform
B-Tree with regard to uniform distribution [12].

The rest of this paper is organized as follows. Section 2 summarizes the re-
lated work in this research area. Section 3 illustrates the problem formulation and
the architecture of broadcast system. In Sec. 4 we introduce the dynamic pro-
gramming to construct k-ary AH-Tree index and provide the correctness proofs,
while in Sec. 5 we complete the process to build a distributed index sequence
with control tables. Section 6 describes the index allocation method. In Sec. 7
we compare our design with the latest work in [12] and prove the efficiency of
our construction. Finally, Section 8 gives conclusion and future works.

2 Related Works

The key research topics in wireless data broadcast are basically focusing on how
to deign index structures and how to allocate data onto channels, in order to
reduce access latency and tuning time [13].

A series of research works deal with data scheduling problem to decrease access
latency, without implementing indexing technology [14]. As a result, the tuning
time is as long as the access latency, which still leads to high power consumption
for mobile devices.

Traditional disk-based indexing techniques have been modified to meet the re-
quirement of data broadcast systems, which can be classified into three categories:
hashing-based [2], tree-based (e.g., Huffman tree [4]), and table-based (e.g., ex-
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ponential index [5]) schemes. Hashing-based schemes use hash functions to dis-
tribute data onto channels. For instance, Yao et al. [2] proposed MHash to facil-
itate skewed access probabilities and reduce access latency. Table-based schemes
include exponential index proposed by Xu et al. [5], which shares links in differ-
ent search tables and allows users to start searching at any index node. However,
this scheme may not perform well under non-uniform access probabilities. Tree-
based schemes are sometimes faster to design and easier to maintain, thus achiev-
ing more attentions. One common tree-based index, i.e. B+-tree distributed index
(BTD) was extended to satisfy different system requirements. Gao et al. [11] re-
designed BTD and built a complete multi-channel broadcasting system with non-
uniform data access probabilities and unequal data sizes.

When it comes to multi-channel data broadcasting, how to allocate index
and data will produce heavy impact on the performance of each scheme. A
certain allocation method could be helpful to a specific index structure, but at
the same time it might reduce the efficiency of another index scheme. Several
works [10,15] deal with data allocation for multi-channel data broadcast. One
work [16] proposed an index allocation method named TMBT, which creates a
virtual BTD for each data channel and multiplexes them on the index channel.

Huffman tree is a skewed index tree that takes into account the data access
probability, where more popular data have shorter search paths from the root of
the tree [8]. However, most existing works discussed Huffman tree for a certain
data type with special constraints and features. Recently, Zhong et al. [9] pro-
posed a uniform AH-Tree indexing scheme to satisfy all possible environments.

Based on the observation that the previous schemes can be further improved,
we propose a novel AH-Tree based indexing approach under multi-channel en-
vironment, where data items have different access probabilities. Our scheme is
further refined to minimize both average access latency and tuning time, while
the performance compared to other related schemes is also provided. Simulation
results confirm the efficiency of our scheme.

3 Problem Formulation and System Architecture

We consider multi-channel wireless data broadcast with a server and numbers
of clients. The server first retrieves data from its local database and then calls
the Index Generator modular to index the data. Next, the Channel Allocation
modular allocates channels to data and index. We take index-data separation
mode in this paper to reduce the possible switches among channels. After that,
the server periodically broadcasts data and index sequences in a fixed range
over wireless channels. Clients can access the data at anytime by tuning onto the
channels. In this paper, we focus on Index Generator and Channel Allocator. We
propose distributed AH-Tree based index sequence in Index Generator modular
and pyramid index allocation scheme in the Channel Allocation modular.

Let D = {d1, d2, . . . , dt} be the data set to broadcast, where t is the number
of data item. Associated with D, P = {p1, p2, . . . , pt} is the access frequency set,
where pi is the access frequency of di. Also, since each di may have different size,
we use si, measured by KB, to represent the size of di and S = {s1, s2, . . . , st},
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There are A = m + n channels in the system. We assign m channels to the
data and n channels to the index. The channel set is C = {C1, C2, . . . , CA}.

For clarity, we summarize the symbols with their meanings in Table 1. Some
of them will be described in the following sections.

Table 1. Symbol Description

Sym Description Sym Description

D Data set. D = {d1, · · · , dt} C Channels. C = {C1, · · · , CA}
L Level of T l Cut level of T
T An AH-Tree t Number of data items

k Maximum branch no. for T Bj
i The jth index at ith level of T

N Node set of index tree Dk The kth datum in T

A Available channels A = m+ n Δi The ith sub-tree at level l + 1

m Number of data channels PATH(Bj
i ) A path from B1

1 to Bj
i

MAX(Bj
i ) Maximum key Bj

i domains n Number of index channels

4 Basic Index Technology

In this section, we describe the index technique used in the Index Generator
modular and an AH-Tree index technique is proposed.

4.1 Tree Construction

First, let us introduce the two-stage construction process of the k-ary AH-
Tree [1,8]. In the first stage, we build an optimal k-ary Huffman tree without

Algorithm 1. AH-Tree Construction

1: Input: D, P ;
2: Output: Node set N of AH-Tree T .
3: Create t leave nodes for di ∈ D and push them into N . Set I = {1, · · · , t}.
4: while |I | > 1 do
5: if

∑k
i=1 pni = min(

∑k
i=1 pxi), where ni, xi ∈ I and no leaves among n1, · · · , nk

and n1, · · · , nk are the leftmost k nodes then
6: Merge n1, · · · , nk as n′ with rn′ =

∑k
i=1 rni (n′ is parent of n1, · · · , nk) ;

7: Insert n′ into N , mark n1, · · · , nk as “processed” and remove them from I ;
8: end if
9: n = n− (k − 1);
10: end while
11: Traverse T , mark each node’s level from the root and get max level L;
12: for l = L → 2 do
13: Find the leftmost index node p on the (l − 1)th level and the leftmost k nodes

n1, · · · , nk on the lth level, and then mark them;
14: Record “p” into field new parent of n1, · · · , nk and “n1, · · · , nk” into array

new children of p without altering their original parent/children;
15: Keep finding new nodes until no unmarked nodes exist in level l;
16: end for
17: Replace parent and children of all nodes with new parent and new children.
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alphabetic order, where dynamic programming is employed to simplify the al-
gorithm. In the second stage, we adjust the tree in a bottom-up approach to
generate a new tree, which preserves the alphabetic order while keeping the
same cost. The construction process is shown in Alg. 1.

Stage 1 (Line 4 to 10) contains several iterations. During each iteration, we
select k nodes to merge into one new node and then insert it into the original
data sequence to form a new sequence. Recall that k is the number of branches
of the tree. The selected k nodes should satisfy three conditions: (1). There are
no leaf nodes among them; (2). The sum of their frequencies is the minimum
among all k candidate groups; and (3). They should be the leftmost nodes.

We create a new index node as the parent of these k nodes with the frequency
as the sum of the k nodes. Then we insert the new node into the data sequence,
mark the k nodes as processed leaf nodes, and delete them from the sequence.
After that, we start a new iteration and continue the process until there is only
one node left in the sequence, which is the root of the tree. At the end of Stage
1, we produce a tree T ′ without alphabetic order.

Stage 2 (Line 11 to 17) adjusts the tree in a bottom-up, left-right approach
such that every k consecutive nodes on the same level have the same parent.
Finally, an AH-Tree T is constructed. The correctness proof is provided in [17].

Example 1. Throughout the paper, we use a data set in Table 2. The frequency
indicates how many times a datum has been accessed from historical record.

Table 2. Example Data Set

Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fre 16 8 30 4 1 12 27 36 41 2 9 15 19 7 23 1

Based on this data set, we apply Alg. 1 to construct the tree. After two stages,
we generate T ′ and T as shown in Fig. 1, respectively.

4.2 Subroutine Dynamic Programming

It is time-consuming to choose k nodes from the data sequence in stage 1. In this
subsection, we design a dynamic programming to solve this problem in O(ki),
where i is the number of nodes in the current iteration and k is the number of
branches in the tree. We first describe the basic idea and derive the recursive
relation, and then verify the correctness in the following part.

Consider the problem of selecting j nodes from sequence [n1, n2, . . . , ni]. There
are only two cases to be considered.

Case 1: There is at least one unselected leaf node in [j+1, . . . , i]. Let f(i, j) be
the minimal weight sum of the j selected nodes in this case.
Case 2: There is no unselected leaf node in [j + 1, . . . , i]. Let g(i, j) be the
minimal weight sum of the j selected nodes in this case.
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Fig. 1. T ′ (Tree construction after Stage 1) and T ′ (Tree construction after Stage 2)

We now derive the recursive relation. In Case 1, the ith node is unselected,
otherwise no leaf node exists in [j + 1, . . . , i− 1]. There are also two subcases:

1. If the ith node is an index node, then there is at least one unselected leaf
node in [j + 1, . . . , i− 1]. We need to solve the subproblem f(i− 1, j);

2. If the ith node is a leaf node, then there may be no leaf node in [j+1, . . . , i−1].
We have to consider both f(i−1, j) and g(i−1, j) and choose the minimum.

Then the recursive relation for f is shown below:

f(i, j) =

{
f(i− 1, j), if ith node is an index node
min(f(i− 1, j), g(i− 1, j)), if ith node is an unmarked leaf

In Case 2, there are also two subcases:

1. If the ith node was an unselected leaf node, it must be selected now, otherwise
there will be an unselected leaf node in [j + 1, . . . , i], which violates our
assumption of Case 2. So we need to consider the subproblem of g(i−1, j−1).
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2. If the ith node is an index node, since whether select it or not will not violate
the condition, we have to consider min(g(i − 1, j − 1), g(i− 1, j)).

Hence, the recursive relation for g is as following:

g(i, j) =

{
g(i− 1, j − 1) + ri, if ith node is an unmarked leaf
min(g(i− 1, j − 1) + ri, g(i− 1, j)), if ith node is an index node

After computing f(n, k) and g(n, k), the final result is min(f(n, k), g(n, k)). We
record the choices when generating values in f and g to locate the k nodes.

4.3 Correctness of the Dynamic Programming

We now verify the correctness of our design. The first step is to prove that the
problem has optimal substructure. In the following, we show that both f and g
have optimal substructures. Let’s start with g, which is independent to f .

Lemma 1. (Optimal Substructure of g) Let Si = [d1, d2, . . . , di] be the data
sequence, and Zj = [di1 , . . . , dij ] be any optimal solution satisfying the condition
of Case 2 (we also call it an optimal solution of Si for convenience). Then:

1. If di is an unselected leaf node, then Zj−1 is an optimal solution of Si−1;
2. If di is an index node, then Zj−1 is an optimal solution of Si−1 if di = dij ;

otherwise Zj is an optimal solution of Si−1.

Proof. Condition 1. If di is a leaf node, then it is surely in Zj . Suppose Z
′
j−1 =

[d′i1 , . . . , d
′
ij−1

] is an optimal solution of Si−1 with cost less than Zj−1, then we

replace Zj−1 with Z ′
j−1 in Zj to get Z ′

j . Obviously Z ′
j is a solution of Sn whose

cost is less than Zj. It contradicts to the condition that Zj is an optimal solution.
Condition 2. If di is an index node, then there are two cases:

(a) if di = dij , that is, we select the ith node. We can use the same method in
Condition 1 to prove that Zj−1 is an optimal solution of Si−1.
(b) if di 
= dij , that is, the i

th node is unselected. Suppose Z ′
j = [d′i1 , d

′
i2 , . . . , d

′
ij ],

with a cost less than Zj, is an optimal solution of Si−1. Since the ith node is an
index node, it follows that Z ′

j is also a solution of Si. Then we find a solution
of Si with a cost less than Zj , which contradicts the condition that Zj is an
optimal solution of Si. Hence, Zj is an optimal solution of Si−1.

From above, we conclude that g has optimal substructure. ��
Lemma 2 shows that solving f also contains the optimal substructure.

Lemma 2. (Optimal substructure of f) Let S′
i = [d1, d2, . . . , di] be the sequence,

and Zj = [di1 , di2 , . . . , dij ] be any optimal solution that satisfies Case 1 (we also
refer it an optimal solution of S′

i), then Zj is an optimal solution of S′
i−1.

Proof. The proof is divided into two parts:
Part 1. If di is an index node, there is at least one leaf node in [j+1, . . . , i−1].

Thus Zj is a solution of S′
i−1. Let Z

′
j = [d′i1 , d

′
i2 , . . . , d

′
ij ] be an optimal solution

of S′
i−1, which costs less than Zj . In the case of Z ′

j , there must be at least one
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unselected leaf node in [j+1, . . . , i] since di is an index node. So Z ′
j is a solution

of S′
i. That is, there is another solution which costs less than Zj. Contradiction.

Part 2. di is an unselected leaf node. Since di is unselected, we prove that Zj

is an optimal solution of both S′
i−1 and Si−1. Suppose Z ′

j is an optimal solution
of Si−1 and S′

i−1 with a cost less than Zj . Since di is a leaf node, Z ′
j is also

a solution of S′
i. Thus we find a solution of S′

i that costs less than Zj, which
contradicts the condition. Thus, Zj is an optimal solution of Sj−1 and S′

j−1. ��
Lemma 1 and Lemma 2 imply that both f and g have optimal substructures.

The next two lemmas will complete the final conclusion, in which Lemma 3 can
be directly derived from Lemma 1 and Lemma 2.

Lemma 3. Solving min(f(n, k), g(n, k)) problem has optimal substructure.

Lemma 4. Solving min(f(n, k), g(n, k)) problem has overlapping subproblem.

Proof. Solving min(f(n, k), g(n, k)) involves solving f(n−1, k) and f(n−1, k−
1), which are two overlapping problems. Thus it has overlapping subproblem. ��

Theorem 1. If Zj = [dn1 , . . . , dnk
] is the output of our dynamic programming,

then it satisfies three conditions:

1. There are no leaf nodes among these k nodes.
2. The frequency sum of Zj is the minimum among all possible selection.
3. The k nodes should be the leftmost ones among all the candidates.

Proof. It follows directly from Lemma 3 and Lemma 4. ��

5 Distributed AH-Tree Construction

We have constructed an AH-Tree using dynamic programming in Sec. 4. To
avoid searching from the tree root every time, we employ the distributed index
technique. This technique is first introduced in [3] and applied to B+ tree index.
Then it is applied to AH-Tree index in [9]. The tree is split into replicated part
and non-replicated part. The basic idea is to add the dominating range of all
ancestors into the replicated-part nodes. Thus, from any replicated-part node,
we know which subtree we are looking for, and can directly tune to it.

5.1 Control Table

First we introduce some notations. The index nodes are divided into two parts.
Suppose l is the cut level. The nodes in replicated part are called control index,
while the remaining nodes are named search index. Bj

i denotes the jth index
node of level i, and Dk represents the kth data node in the tree. Note that if the
jth node of level i is a data node, then Bj

i does not exist.
Let Δi denote the i

th subtree below the cut level l, rooted at Bi
l+1. To generate

the distributed index sequence, we use PATH(Bj
i ) to represent a path from the

root to Bj
i excluding Bj

i . For instance, PATH(B4
4) in Fig. 1 is [B1

1 , B
2
2 , B

3
3 ]. In
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order to broadcast data, we linearize the tree by depth-first search. We use B
j[x]
i

to denote the xth appearance of Bj
i during the process of depth-first search.

For each control index B
j[x]
i , suppose that PATH(B

j[x]
i ) = {B1[x1]

1 , B
j2[x2]
2 ,

. . . , B
ji−1[xi−1]
i−1 }, then the control table of B

j[x]
i is shown in Table 3.

Table 3. Format of the Control Table

1 MAX(Δg−1) B
1[1]
1

2 MAX(Bj2
2 ) B

1[x1+1]
1

. . . . . . . . .

r MAX(Bjr
r ) B

jr−1[xr+1]
r−1

. . . . . . . . .

i MAX(Bji
i ) B

ji−1[xi+1]

i−1

Each entry of the control table contains two elements: the key value and
the control index it hops to. The MAX(Δg−1) in the first entry gives a lower

bound of the dominating range of B
j[x]
i . If the key k we are looking for is less

than MAX(Δg−1), it means that k has been broadcast, so we have to wait for

another round. In this case, we jump to B
1[1]
1 . The key value in the rth entry

gives an upper bound of the dominating range of Bjr
r . The second element gives

a hint of which subtree to hop to in the next step. When the client wants to
retrieve a datum with key greater than this element, it should directly hop to
the control index in this entry. Note that a control index cannot appear more
than k times in one round, but the value of (xr + 1) in the computing process
may be larger than k. In this case the second element of the entry is set to no.

Example 2. The control table of the tree with cut level l = 4 in Fig. 1 is showed
in Table 4.

Table 4. The Control Table of the Example Data Set

B
1[1]
1 no no B

1[1]
2

no no

8 B
1[2]
1

B
1[1]
3

no no

8 B
1[2]
1

3 B
1[2]
2

B
1[1]
4

no no

8 B
1[2]
1

3 B
1[2]
2

2 B
1[2]
3

B
1[2]
4

1 B
1[1]
1

8 B
1[2]
1

3 B
1[2]
2

2 B
1[2]
3

B
1[2]
3

2 B
1[1]
1

8 B
1[2]
1

3 B
1[2]
2

B
1[2]
2

3 B
1[1]
1

8 B
1[2]
1

B
2[1]
3

3 B
1[1]
1

8 B
1[2]
1

8 B
1[2]
1

B
3[1]
4

3 B
1[1]
1

8 B
1[2]
1

8 B
1[2]
1

7 B
2[2]
3

B
3[2]
4

6 B
1[1]
1

8 B
1[2]
1

8 B
1[2]
1

7 B
2[2]
3

B
2[2]
3

7 B
1[1]
1

8 B
1[2]
1

8 B
1[2]
1

B
1[2]
1 8 B

1[1]
1

B
2[1]
2

8 B
1[1]
1

16 no
B

3[1]
3

8 B
1[1]
1

16 no

12 B
2[2]
2

B
3[2]
3

9 B
1[1]
1

16 B
1[2]
1

12 B
2[2]
2

B
6[1]
4

9 B
1[1]
1

16 no

12 B
2[2]
2

12 B
2[2]
2

B
6[2]
4

11 B
1[1]
1

16 no

12 B
2[2]
2

12 B
2[2]
2

B
2[2]
2

12 B
1[1]
1

16 no
B

4[1]
3

12 B
1[1]
1

16 no
16 no

B
7[1]
4

12 B
1[1]
1

16 no
16 no

14 B
4[2]
3

B
7[2]
4

16 B
1[1]
1

16 no
16 no

14 B
4[2]
3

B
4[2]
3

16 B
1[1]
1

16 no
16 no

B
8[1]
4

14 B
1[1]
1

16 no
16 no
16 no

B
8[1]
4

15 B
1[1]
1

16 no
16 no
16 no

Look at the control table of B
6[2]
4 in the lower left corner of the table. Since

it is the second appearance of B6
4 , all the keys less than or equal to 11 have

been broadcasted. Thus if the searching key is less than 11, we jump to B
1[1]
1 .

The second entry means that, if the search key is larger than 16, then there is
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no where to go since the largest key is 16. Suppose that we want to search the

key value of 14,then the next hop is B
2[2]
2 , which is exactly the nearest ancestor

dominating 14.

From the control table in Table 4, we find that some control tables, marked as

gray, have redundancy. For example, the control table of B
4[1]
3 , there are two

identical entry 16 no. When the tree becomes large, the redundancy will be as
big as half of the whole control index, which will waste lots of resource. As the
next section shows, almost half of the control tables contains redundancy, so we
will save half of the space if we can eliminate those redundancy.

5.2 Redundancy Elimination for Control Table

In this section, we propose a scheme to eliminate redundancy. We claim that
our scheme is not only suitable for AH-Tree, but also for any other tree-based
indices employing distributed technique. For the balance tree, the scheme can
save 50% of the space for storing the control tables.

Having redundancy in the control table means that for two entries A and
B in the control table, the key value of them are identical. Formally speaking,

suppose the ith and jth entries are redundant in B
j[x]
i ’s control table. It means

that the upper bound of the dominating range of ith and jth ancestor of B
j[x]
i

are the same. Recall that during the process of searching the control table,
after we find the key value of some entry less than the searching key, we jump
immediately. The following entries with the same key value will never be used.
So we can simply discard these following entries. The problem is how to locate
the redundant control tables. A simple case is the rightmost path of the tree.

A

B

C

………

…
MAX(i) I

...
MAX(j) J

...
…

MAX(i) I
...

MAX(j) J
...

Node with redundancyA

B

C
…

MAX(A) I
MAX(B) J

...

IF
MAX(i)=MAX(j)

IF
MAX(A)=MAX(B)

Fig. 2. Example of Redundancy in Control Table

The upper bound of the dominating range of the control index along this path
are all the same. Consider the left part of Fig. 2. Since B is the rightmost child
of A, we have MAX(A) = MAX(B). Thus the control table of C contains
redundancy. Another case maybe less obvious. The control table of a control
index also contains redundancy if one of its ancestors’ control table contains
redundancy, as shown in the right part of Fig. 2. However, all those causes can
be combined into Theorem 2. Before that, we first give two properties of the
control table without proof.
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Property 1: If index node A and B are ancestors of C, and A is ancestor of
B, then MAX(A) ≥ MAX(B) ≥ MAX(C), and in the control table of C, the
entry of A is in front of that of B.

Property 2: If MAX(A) = MAX(B) and B is a child of A, then B must be
the rightmost child of A and vice versa.

Theorem 2. Let PATH
′(B

j[x]
i ) = [Bj2

2 , Bj3
3 , . . . , Bji

i ], which is PATH(B
j[x]
i )

plus B
j[x]
i then excludes the root of the tree. The control table of B

j[x]
i contains

redundancy if and only if there exits consecutive index nodes B
ja−1

a−1 and Bja
a in

PATH
′(B

j[x]
i ), such that Bja

a is the rightmost child of B
ja−1

a−1 .

Proof. ⇒. Suppose thatB
ji1
i1

and B
ji2
i2

belong to PATH
′(B

j[x]
i ) andMAX(B

ji1
i1

)

= MAX(B
ji2
i2

) in the control table of B
j[x]
i . Without loss of generality, we assume

i1 < i2, so B
ji1
i1

is an ancestor of B
ji2
i2

.

(a) If i1 +1 = i2, then B
ji2
i2

is a child of B
ji1
i1

. Since MAX(B
ji1
i1

) = MAX(B
ji2
i2

),

by Property 2 B
ji2
i2

is the rightmost child. Then Bja
a is B

ji2
i2

, B
ja−1

a−1 is B
ji1
i1

.

(b) If i1+1 < i2, then i1 < i1+1 < i2, which impliesMAX(B
ji1
i1

) ≥ MAX(B
ji1+1

i1+1 )

≥ MAX(B
ji2
i2

) by Property 1. However, MAX(B
ji1
i1

) = MAX(B
ji2
i2

), so

MAX(B
ji1
i1

) = MAX(B
ji1+1

i1+1 ). We conclude that B
ji1+1

i1+1 must be the rightmost

child of B
ji1
i1

by Property 2. Let Bja
a be B

ji1+1

i1+1 and B
ja−1

a−1 be B
ji1
i1

.

⇐. Since Bja
a is the rightmost child of B

ja−1

a−1 , we haveMAX(Bja
a )=MAX(B

ja−1

a−1 ),
then there are redundancy in the control table. ��
By traveling the tree, we can find all the redundant control tables with the help
of the above theorem. Then we eliminate all the redundant entries but the one
with least level. Finally we get a “clear” control tables.

6 Index and Data Allocation

After adding control tables to the index nodes, the final step is to allocate them
onto channels. In this section, we present the scheme of index and data allo-
cation. There are many index allocation method, such as [4,16,18], but they
didn’t employ distributed technique. In this paper, we use the simple pyramid
scheduling scheme to allocate data and indices onto channels.

We define W (B
j[x]
i ) as the weight of the index node B

j[x]
i , which denotes the

sum of the probability of all its data descendants, while W (Di) is the access
probability of data Di. Since we apply the same method to allocate index and
data, we only describe data allocation in the paper, which is identical to index
allocation method. The algorithm of data allocation is shown in Alg. 2.

There is a dynamic threshold for each index channel. In Alg. 2, recall that
n is the number of index channels. Suppose that the sum of all the weight is
SUM , then the threshold of the first channel is SUM/n. Thus, we assign indices
to the first index channel one by one until the total weight of all these assigned
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Algorithm 2. Data Allocation on Multiple Channels

1: Input: W , the weight set of the data; n, the number of the data channels;
2: Output:C = {C1, C2, . . . , Cn}, the generated data channel set.
3:
4: Sort the data set by frequency in ascending order, results in I = {D1, D2, . . . , Dt};

5: SUM =
∑t

i=1 W (Di);
6: Set ave = 0; p = SUM ; thre = SUM

n
; Ci = ∅; j = 1;

7: for i = 1 to t do
8: if ave ≤ thre then
9: ave = ave+W (Di);
10: Cj = Cj ∪ {Di};
11: else
12: p = p− ave; ave = 0; thre = p

n−j
; j++; i−−;

13: end if
14: end for

indices exceeds the threshold of the first channel. Next, we begin to assign the
remaining indices to the next channel. Instead of having the same threshold for
all the channels, we set the threshold of next channel as

total weight of the remaining indices

the number of remaining index channels

for fairness. Then we repeat the above process until no index is left.

Example 3. We use the data set in sec.4 and apply the allocation scheme to it.
Suppose there are 4 data channels.

(1)In the first iteration, the threshold thre = (16 + 8 + 30 + 4 + 1 + 12 . . . +
23+1)/4 = 62. We assign the data one by one to the first channel until the sum
of frequencies of assigned data exceeds 62.This ends the assignment of the first
channel and the first 6 data are assigned to it.
(2)We calculate the threshold of the second channel, thre = (27 + 36 + 41 +
. . . + 23 + 1)/3 = 60, which the assigned data and channel are not considered
any more. We assign the data one by one to the second channel until the sum of
frequencies of assigned data exceeds 60.

We apply this process until all the data have been assigned. The final allocation
is: 1 : {1, 2, . . . , 5, 6}, 2 : {7, 8, }, 3 : {9, 10, 11, 12}, 4 : {13, 14, 15, 16}.

7 Simulation

In this section, we evaluate the performance of AH-Tree based system in different
conditions. We conduct the performance evaluation on k, l, and m.

Firstly, we model different system conditions by setting all parameters in
Table 5. We let the frequency of each data follow Zipf distribution. The num-
ber data items are set as 10,000 and we generate 20,000 clients requests in
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our experiments. Performance of our system is mainly measured by two met-
rics: Average Access Latency (AAT) and Average Tuning Time (ATT), both of
which are counted in logical time units. As proposed in [12], each logical time
unit represents the time required to broadcast 1KB data. For index bucket with
1 head segment, k children pointers and 1 default pointer, the size equals to
(k + 2) ∗ 0.1KB, that is to say, it requires (k + 2) ∗ 0.1 time units to visit. Our
experiments are conducted on a computer with Intel(R) Core(TM) i7-3610QM
(2.30GHz) CPU and 4.00 GB memory under Windows 7 version 6.1. The simu-
lator is implemented in Java 1.7.005.

Table 5. Parameters used in our experiments

Parameter Default value Range Meaning

t 10,000 Number of data items
r 20,000 Number of requests
A 10 Number of available channels
k 3 2 to 20 k-ary AH-Tree
l 3 1 to (L-1) cut level, L is the height of tree
m 3 1 to 9 Number of index channels

Secondly, we verify the effectiveness of our index-allocation algorithm, namely,
the pyramid scheduling scheme. We use two different allocation algorithms: the
McNaughton’s Wrap-Around algorithm which simply allocates indices evenly
onto index channels, and our pyramid scheduling algorithm, then compare their
respective performances. From Fig. 3 to Fig. 8, we can conclude that (1). Pyra-
mid index allocation achieves better performance than simple wrap-around al-
gorithm, and (2). the AAL and ATT of our system have closer relationship with
parameter settings of k, l, m than the adopted allocation scheme, because the
shapes of the lines look similar with different allocation schemes.

Thirdly, we compare the performance of AH-Tree based system with B+-Tree
based one. Both of the two systems adopt pyramid index allocation algorithm.
Generally, Fig. 9 to Fig. 14 reveal that AH-Tree performs better than B+-Tree
on both access latency and tuning time for data following Zipf distribution.
In Fig. 10, the ATT declines with the increase of l since more control indices
contribute to faster hopping to targeted data. In the meanwhile, the AAL in
Fig. 9 firstly drops then rises again since too much control indices make the
index sequences in index channels too long, thus lengthen the access latency.
Fig. 11 clearly shows that large k has negative effects on AH-Tree’s performance
and the AAL of AH-Tree based system fluctuates severely with the variation of
k. Therefore, choosing a proper k for AH-Tree based system is crucial for its
user experience. For Zipf distribution, the access latency is mainly determined
by the waiting time for small number of frequently visited indices, so we find
that larger m leads to the decrease of AAL in Fig. 7. On the other hand, the
change of m does not change the structure of index sequence, hence it has no
effects on ATT as shown in Fig. 8.
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Fig. 3. Change of AAL un-
der Zipf distribution w.r.t. l
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Fig. 5. Change of AAL un-
der Zipf distribution w.r.t.
k (l = 3, m = 3)
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Fig. 6. Change of ATT un-
der Zipf distribution w.r.t.
k (l = 3,m = 3)
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Fig. 7. Change of AAL
under Zipf distribution
w.r.t.m (k = 3, l = 3)
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Fig. 8. Change of ATT
under Zipf distribution
w.r.t.m (k = 3, l = 3)
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Fig. 9. Change of AAL un-
der Zipf distribution w.r.t. l
(k = 3,m = 3)
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Fig. 10. Change of ATT
under Zipf distribution
w.r.t. l (k = 3,m = 3)

2 4 6 8 10 12 14 16 18 20

100

200

300

400

500

600

700

800

k

A
ve

ra
ge

 A
cc

es
s 

La
te

nc
y

 

 
AH−Tree
B+−Tree

Fig. 11. Change of AAL
under Zipf distribution
w.r.t. k (l = 3,m = 3)
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Fig. 12. Change of ATT
under Zipf distribution
w.r.t. k (l = 3,m = 3)

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

m

A
ve

ra
ge

 A
cc

es
s 

La
te

nc
y

 

 
AH−Tree
B+−Tree

Fig. 13. Change of AAL
under Zipf distribution
w.r.t.m (k = 3, l = 3)
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Fig. 14. Change of ATT
under Zipf distribution
w.r.t.m (k = 3, l = 3)
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8 Conclusion

In this paper, we propose an efficient AH-Tree construction with the help of
dynamic programming. Our algorithm can build arbitrary k-ary AH-Tree index
with bounded tree height in O(kn2) time, where n is the number of data items
to be broadcast. We then modify this tree into a distributed index sequence with
a general and effective control-table shrinking technique to further reduce the
index length and the client searching time. We prove the correctness and com-
plexity of our design theoretically and illustrate the performance of the broadcast
system by numerical experiments. Both theoretical proofs and simulation results
validate the efficiency of our design. To the best of our knowledge, we are the
first to propose the detailed design for k-ary Hu-Tucker AH-Tree construction
with time complexity analysis, which solves a long-time open question since the
beginning of twenty-first’s century.
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Abstract. This paper is motivated by the lack of study on the diversity of user
information needs in the scenario of graph search, which offers the prospect of
significant improvements on search. We report our investigation on this issue, and
then exploit the knowledge to optimize a commonly-used type of graph search:
known-item search which only wants the answer trees of a familiar and compact
pattern. To address the problem, we propose a novel MVP (Matched Vertex Prun-
ing) index, which captures the query-independent local connectivity information
in the graph, to reduce the search space with heuristics by pruning matched ver-
tices that will not participate in the answer trees with heights less than a thresh-
old. Moreover, our optimization approach is independent of search algorithm,
and requires the minimal index access times. Our experimental results show that
our approach can generally reduce the number of matched vertices to 1%-10%,
thereby effectively improving the efficiency of the known-item search.

1 Introduction

The importance of understanding why users are performing their searches has already
been realized by the traditional search engine community for years [2,12]. Researchers
propose a “taxonomy of web search” that classifies daily user queries into some com-
mon search types, such as navigational search and informational search. Now, all of the
major web search engines try to detect which type of search the user is performing, to
better accommodate common user behaviors in their search results pages.

However, to the best knowledge we have, there is still a lack of study on search
types in the scenario of graph search. By our observation, graph search reflects an even
more diverse set of underlying information needs, and the knowledge of those needs
offers the prospect of significant improvements. More importantly, for graph search,
the potential improvements are not only on the presentation of the search results, but
also on the optimization of the search process. Let us consider the following two types
of graph search, which we call exploratory search and known-item search respectively.

Example 1 (Exploratory Search). Consider a keyword query “albert einstein stuttgart”.
It intends to discover the associations between the scientist Albert Einstern and the Ger-
man city Stuttgart. Obviously, these two entities have no direct connections in common

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 193–200, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(a) Exploratory search on DBPedia.

(b) Known-item search on DBLP.

Fig. 1. Two typical search types on graph

sense. For that, the user likely wants to explore the whole graph to find as many relevant
results as possible and manually browse the results. Figure 1(a) illustrates a variety of
paths connecting Albert Einstern and Stuttgart in the DBPedia1 graph. For example, the
highlighted path indicates: Stuttgart is the birthplace of Max, Max influences Arthur,
who is influenced by Albert Einstern.

In sharp contrast to the exploratory search, the known-item search has already some
answers of a particular meaningful and frequently-used pattern in mind.

Example 2 (Known-Item Search). Consider a keyword query “mengchi xuhui”. It in-
tends to locate the paper coauthored by Mengchi and Xuhui, or the person who is a
coauthor of both of them. Figure 1(b) illustrates several answer trees (where the ver-
tices on the left are the leaves) in the DBLP2 graph, where “person” and “paper” enti-
ties are represented as vertices and “write” and “cite” relationships between them are
represented as edges. The answers with label Grape No.1 and No.10 are exactly of the
target pattern. The Grape No.1 shows a paper coauthored by Mengchi Liu and Xuhui
Li, and the Grape No.10 indicates that Zhiyong Peng is a coauthor of both of them.

These two search types will lead to quite different processing and optimization strate-
gies (see details in Section 2). The known-item search does not need to explore the

1 http://dbpedia.org/
2 http://www.informatik.uni-trier.de/˜ley/db/

http://dbpedia.org/
http://www.informatik.uni-trier.de/~ley/db/
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whole graph for unfamiliar large and complex answer patterns. It is promised that the
efficiency of the known-item search can be remarkably improved, especially on large
graphs, compared with the general graph search (i.e., naive exploratory search). On the
other hand, a large proportion of real world queries are known-item search, at least
20%-30% by statistics, according to the experiences gained from traditional search en-
gines [2]. However, existing approaches (e.g., [1, 3–7, 11]) has not yet taken advantage
of this valuable feature. As a result, optimizing the known-item search is a critical task.

In this paper, we propose a novel indexing technique for optimizing the known-item
search. We summarize the contributions of this paper as follows.

– We initiate the problem of studying the user information needs for graph search.
– We propose a practical matched vertex pruning strategy for optimizing the known-

item search on graph, which is independent of search algorithm.
– We present an indexing technique that captures the query-independent local con-

nectivity information in the graph for supporting fast online pruning, which requires
the minimal index access times for processing a query.

– We run experiments to evaluate the pruning effect. By observation, our approach
can significantly reduce the search space on large graphs.

2 Diversity of Graph Search

Keyword search on graph reflects a diverse set of underlying information needs. The
knowledge of the needs offers the prospect of significant improvements. Achieving the
improvements involves three primary tasks. First, we need to know different informa-
tion needs. Second, we need a way to associate information needs with queries. Third,
we need to extend the search engines in order to better accommodate users’ intents.

To investigate users’ real information needs, we conducted a survey in the 29th Na-
tional Database Conference of China held in 2012. Attendees could use a state-of-the-
art graph search engine to search on the DBLP graph. By interviewing the attendees,
we summarized the following two typical search types, which could represent most of
the needs.

– Exploratory Search. By issuing an exploratory search, the user is either unfamiliar
with the underlying graph structures, unsure about what patterns of answer trees
they need, or both. So, the user’s goal is to find as various answer trees as possible,
so that they can learn something by reading and comprehending the search results.

– Known-Item Search. By issuing a known-item search, the user’s target is a or a set
of answer trees of a particular pattern, either because the user has seen them before
or because the user assumes them exist by prior experience.

We do not address the automatic identification of search types in this paper. There are
some similar studies on web search, such as [8]. Our focus is how to exploit the knowl-
edge of information needs to improve graph search. Exploratory search aims to find rich
results of various patterns, which means a complete search over the graph. This is nearly
unfeasible on very large graphs, since the computational complexity and memory us-
age of graph search is extremely high. Therefore, our opinion is that exploratory search



196 M. Zhong et al.

should take into consideration the parallel computation paradigms like Pregel [10] and
Trinity [13], or the novel query mechanism that operates in a “semantic pattern first,
entity subgraph later” way [14].

Unlike the exploratory search, the known-item search usually focuses on meaningful
and familiar answer patterns with limited size. When an answer tree has a relatively
large size (which depends on the number of keywords in the query), it is not likely to
be a so-called known-item. Because the relationships between the entities in the answer
are loose, so that the pattern cannot be very meaningful to and frequently-used by the
user. For example, consider the previous example illustrated in Figure 1(b). Besides
the Grape No.1 and No.10, there are also other larger answers like the Grape No.17
can be found by keeping on searching on the graph. The Grape No.17 shows a more
complicated pattern, which may be interested by some users but is not possible to be
frequently queried by a known-item search.

Therefore, the known-item search does not need to explore the whole graph for un-
familiar large and complex answer trees. It means that we could avoid producing an
answer tree if we can predicate that it will grow too large. This is different from the
top-k search, which can only limit the number of returned answers but can not limit
the size of them directly. Inspired by this idea, we propose an effective optimization
approach for the known-item search in the next section.

3 Matched Vertex Pruning

3.1 Preliminary

Let G be a vertex-labeled undirected weighted graph and Q be a query composed of
a set of keywords. For a vertex v, if its label contains the keyword t ∈ Q, v is called
a matched vertex of keyword t. Let mv(t) denote the set of matched vertices of t in
G. The answers to Q are minimum connected trees, which are subtrees of G containing
at least one matched vertex of each keyword in Q. Moreover, any proper subtrees of
them do not contain (the matched vertices of) all keywords. For an answer tree a, let
root(a) be its root, rkpath(a, t) be the root-keyword path between root(a) and the
nearest matched vertex of keyword t in a, and |rkpath(a, t)| be the length of the path.

Generally, compacter answer trees include more relevant information. To support
efficient top-k search, we follow [5] to score (the compactness of) an answer tree a as
the sum of the lengths of all its root-keyword paths.

Consider the running example illustrated in Figure 2. Figure 2(a) illustrates an ex-
ample graph, where the vertices containing the terms a, b, c are marked. Figure 2(c)
illustrates the best (most compact) answer tree to the query in Figure 2(b). The score of
this answer tree is 0.8 + 0.8 + 1.5 = 3.1. Note that, the lower score the better answer.

3.2 Our Approach

Since the known-item search only wants the compact enough answer trees, the basic
idea of our optimization approach is to prune the matched vertices that will not be
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contained by such answer trees to a given query before search, so that the unproduc-
tive graph traversals started from the pruned matched vertices can be avoided, thereby
decreasing response time.

While, whether an answer tree is compact enough is a relative concept, which de-
pends on the underlying graph and the user. Thus, the measurement should be tunable
with regards to different circumstances. Moreover, we need to be able to know before
search if a matched vertex is contained by an answer tree satisfying the measurement
demand. Or, it is unfeasible to track and prune those matched vertices. It is the reason
why we cannot just choose the score of answer tree as measurement, because finding the
answer trees under a specific score is an agnostic problem before search. For that, we
heuristically choose the height of answer tree as the measurement and give the formal
definition of δ-ceiling answer tree below.

Definition 1 (δ-Ceiling Answer Tree). For an answer tree a to a query Q, its height is
the length of its longest root-keyword path. The answer tree is called a δ-ceiling answer
tree if and only if its height is at most δ, namely, max{|rkpath(a, t)|| t ∈ Q} � δ.

Given a graph G, a keyword query Q and the expected maximum answer tree height δ,
we call the matched vertices contained by the δ-ceiling answer trees to Q in G as seeds.
So, our pruning target is the matched vertices other than seeds.

To identify the seeds, we do not have to really find the δ-ceiling answer trees. Instead,
we fulfill that by locating their roots. Let us see the following concepts.

Definition 2 (δ-Neighborhood). For each vertex v ∈ V , the δ-neighborhood of v, de-
noted as Δ(v), is a set of vertices in G that can be connected to v by a path no longer
than δ. In particular, the δ-neighborhood of a vertex includes this vertex itself.

Definition 3 (Potential Root). For each vertex v ∈ V , v is a potential root of a keyword
t ∈ Q, if and only if v belongs to the δ-neighborhood of a matched vertex of t, namely,
∃u ∈ mv(t) s.t. v ∈ Δ(u). We use pr(t) to denote the set of potential roots of t.

With above definitions, the following theorem holds. Its proof is omitted.

Theorem 1. For a vertex v ∈ V , if v is a potential root of each keyword in Q, namely,
v ∈

⋂
t∈Q pr(t), then v is the root of a δ-ceiling answer tree to Q, and vice versa.

Intuitively, Theorem 1 indicates how to locate the roots of the δ-ceiling answer trees
to a specific query by using the δ-neighborhoods and the potential roots. Consider the
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running example illustrated in Figure 2 again. Given δ = 2.0, the potential roots of each
keyword in the query are listed below.

pr(a): 2 4 6 7 8 9 11 12 13 19 20
pr(b): 2 5 6 7 8 9 10 11 12 13 15 16 17 19 20
pr(c): 1 2 3 4 9 14 18

Thus, the roots of the δ-ceiling answer trees to the query are 2 and 9. Then, we can
identify the seeds of the query: the matched vertices whose δ-neighborhoods contain
the roots. We compare the original matched vertices and the seeds below.

All matched vertices: 3 5 6 8 11 12 13 14 17 18 19 20
Seeds: 3 5 6 11 12 13 14

We successfully reduce the number of matched vertices from 12 to 7. In real graphs,
seeds are usually a much smaller subset of original matched vertices (see our experi-
ments in Section 5), conforming to our expectation of the known-item search.

A major advantage of our pruning strategy is its search-independence. All of the
task can be fulfilled before search. Thus, current graph search algorithms and index
techniques can still be used after the matched vertex pruning. It guarantees that the
performance of the known-item search can be improved.

4 MVP Index

In this section, we present an MVP (Matched Vertex Pruning) index for implementing
our pruning strategy quickly in query time. As illustrated in Figure 3, our index system
has the following two index structures.

δ-Neighborhood lookup table is used for looking up the δ-neighborhood of a specific
vertex. A δ-neighborhood is physically represented as a sorted list of vertex ids (vids).
The lookup table is constructed in advance of the MVP index.

MVP index is like an inverted index. The index entry of a term t is composed of
a head list and a number of follower lists organized in a particular order for efficient
process. The head list consists of the vids of the potential roots of t, namely, is the
sorted pr(t). Following the head list, there are |pr(t)| corresponding follower lists. The
i-th follower list consists of the vids of the matched vertices of t in the δ-neighborhood
of the i-th vertex in the head list.

For example, given δ = 2.0, the index entry of term c in the MVP index of the running
example graph is {1, 2, 3, 4, 9, 14, 18}, {3, 18}, {3}, {3}, {3}, {14}, {14}, {18}. The
follower list corresponding to the first vertex 1 in the head list is {3, 18}, which means
the vertices 3 and 18 contain term c and belong to the δ-neighborhood of potential root 1.
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Given a query Q, we will get the index entries of each keyword in Q from the MVP
index. Then, we can get the roots of δ-ceiling answer trees to Q by intersecting the
head lists of all keywords in Q according to Theorem 1. The seeds of Q can be fetched
from the follower lists corresponding to such roots in the head lists of each keyword.
In the running example, the roots of δ-ceiling answer trees are 2 and 9, whose follower
lists in the index entry of keyword c are {3} and {14} respectively. So, the set of seeds
matched by keyword c is {3} ∪ {14} = {3, 14}.

A very important advantage of our index is that it requires the minimal access times
for query processing. By simply using a normal inverted index, we still need to access
it once for each keyword in the query to initial the search, as many as our index. In
contrast, current graph indexing techniques [5,9,11] will incur unlimited times of index
access during search, and thus have to reside in memory for avoiding expensive disk
IO, which is unfeasible on large graphs due to tremendous memory usage.

5 Experiment

Our experiments were run on the graphs generated from DBLP and IMDB3. The DBLP
graph has about 0.83M vertices, 1.25M edges, and 4.30M terms in the labels. The IMDB
graph has about 3.42M vertices, 13.06M edges, and 6.81M terms in the labels. The
edges are assigned a weight in the range of [0.39, 0.99].

For both of the test graphs, we constructed their MVP indexes with δ = 2.0. The
time cost of indexing a large graph like IMDB is about 5 hours by using a basic in-
dexing algorithm. If using a MapReduce environment, the time cost of indexing can be
effectively reduced, according to our observation in [15].

Table 1 shows the matched vertex pruning results of several sample keyword queries
we tested by using the MVP indexes. The 3rd column shows the numbers of matched
vertices before pruning. We can see that most keywords have a large number of matched
vertices. The 4th column shows the numbers of seeds (i.e., matched vertices remained
after pruning), most of which are only about 1%-10% of the previous numbers. It is
proved that our approach can reduce the search space significantly. In particular, the
pruning effect of q1 is not as good as the others. That is because the keywords in q1 are

Table 1. The statistics of the matched vertex numbers before and after pruning

id query matched vertex # seed #

DBLP
q1 sensor network 2842, 12509 2342, 5714
q2 banks keyword search 199, 175, 4986 15, 26, 186
q3 michael daniel david eric 3758, 1699, 4011, 984 234, 151, 265, 136
q4 wang chang graph index update 2391, 1054, 3911, 833, 612 21, 20, 47, 82, 49

IMDB
q5 marion batman nolan 978, 539, 374 54, 117, 35
q6 nicolas cage john travolta 1094, 255, 22330, 20 5, 9, 196, 11

3 http://www.imdb.com

http://www.imdb.com
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actually a phrase and they usually appear together in the labels, so that their matched
vertices are always contained by δ-ceiling answer trees. In that case, the search is still
fast without a lot of prunes, since not many traversals are needed to find the top-k.

6 Conclusion

In this paper, we reveal the diversity of user information needs in the scenario of key-
word search on graph, and propose an MVP index to improve the search efficiency for
queries driven by a particular type of needs called known-item search. The experimental
results show that our approach can effectively reduce the search space.
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Abstract. We consider the recently introduced monochromatic reverse
top-k query which asks for, given a (possibly new) tuple q and a dataset
D, all possible top-k queries on D ∪ {q} for which q is in the result.
Towards this problem, we introduce the first query-agnostic approach,
which leads to an efficient index. We present the novel insight that by
representing the dataset as an arrangement of lines, a critical k-polygon
can be identified and can singularly answer reverse top-k queries.

1 Introduction

In this age of arbitrarily large datasets, personalizing query results has become
ubiquitous. A common approach is the traditional (linear) top-k query, which
has been a staple of database systems for over a decade. (See the survey by
Ilyas et al. [5].) In querying a dataset D of n numeric tuples (a1 ∈ R, . . . , ad ∈ R),
a top-k query models the user with an ordered list of weights (w1, . . . , wd),
representing his degree of “personal preference” for each of the d attributes of
D. In executing the query, each tuple t ∈ D is assigned a score, score(t) =
w1a1 + . . .+ wdad, and the k tuples with highest score are presented.

In this paper, we consider these top-k queries from the perspective of the tuple
rather than the user. A tuple t ∈ D is only relevant if it is the response to some
top-k query. Its relevance is proportional to the breadth of queries for which it
is returned. A reverse top-k (mRTOP) query [10] computes that breadth. Given
a (possibly new) tuple of interest, q, a reverse top-k query reports the set of
(traditional linear) top-k queries on D ∪ {q} for which q is in the result set.

Table 1. Top-k query example. Shown is a dataset D of two fictitious basketball
player tuples, p1 and p2, with two normalized attributes, points (pts norm) and blocks
(blks norm). Also shown is an additional query tuple, q = (0.725, 0.400). Two top-k
queries are given in the rightmost columns, along with each tuple’s score and rank.

query a: (0.75, 0.25) query b: (0.25, 0.75)
pid pts norm blks norm score rank score rank

p1 0.333 1.000 0.500 3 0.833 1
p2 0.667 0.167 0.542 2 0.292 3
q 0.725 0.400 0.644 1 0.481 2

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 201–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Table 1 gives a small example of two traditional top-k queries, namely a =
(0.75, 0.25) and b = (0.25, 0.75). Of these, only query a would be in the response
to a reverse top-1 query on tuple q, because tuple q is only ranked among the
best 1 tuples for query a, not for query b. Both queries would be in the response
to a reverse top-2 (or top-3) query on q, because tuple q is ranked among the
best 2 tuples for both queries.

Users can specify top-k queries from all of Rd, so reverse top-k query solutions
are infinite sets.1 For the dataset in Table 1, the reverse top-1 query reports
all traditional queries within [(1.00, 0.00), (0.605, 0.395)], a range within which
query a, but not query b, falls. We focus on the two dimensions and the positive
quadrant. We do note, however, that the ideas we present generalize cleanly to all
quadrants, an extension shown to be of significant interest by Ranu and Singh [7].

State of the Art. Reverse top-k queries are quite new and an example of the
growing field of reverse data management [6]. As yet, there are two algorithms to
answer mRTOP queries, the one originally proposed [10] and recently refined [11]
by Vlachou et al., and a subsequent algorithm proposed by Wang et al. [12]. Both
are linear-cost, two-dimensional algorithms. Both also have a common limita-
tion, that their computation is heavily centred on and sensitive to the particular
query tuple. The former compares every data tuple to the query tuple in terms
of both pareto-dominance and a radial plane sweep. The latter achieves an ex-
perimental order-of-magnitude improvement by employing the geometric duality
of Das et al. [3] to segment R2 and simultaneously computing the rank of the
query tuple for each induced region.

Our Query-Agnostic, Index Approach. We term this common limitation
query-dependence. In either algorithm, any computation done towards resolv-
ing one query is unusable for subsequent queries. The computation, involving in
both algorithms a full table-scan, must be restarted from scratch. Furthermore,
it cannot begin until the query is known. Our approach to the mRTOP problem,
illustrated in Fig. 1, is to create an index on D. We do this by employing four key
geometric techniques: duality (using the transform of Chester et al. [2]), arrange-
ments of lines (surveyed nicely by Sharir [9] in 1995), plane sweep (detailed well
in the introductory text of de Berg et al. [1]), and data depth contours [4,8,13].

Our index, constructed without knowledge of q, can respond to many queries,
each with only logarithmic cost. The general idea, shown in Fig. 1 (left), is to
convert D into an arrangement of lines and identify the critical k-contour, a
unique polygon, with a plane sweep algorithm. The index is a succinct repre-
sentation of the polygon and each query is then equivalent to identifying the
intersection of a query line lq with that polygon, as illustrated in Fig. 1 (right).

Summary of Our Contributions. This paper makes several significant ad-
vances on the state of the art for reverse top-k queries. We:

1 Vlachou et al. [10] define this problem as the monochromatic reverse top-k query, in
contrast to the bichromatic reverse top-k query, but we will simply refer to it as a
reverse top-k (mRTOP).
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Fig. 1. Illustration of our algorithm. To the left, D is converted to an arrangement of
lines by transforming each tuple t = (a1, a2) into a line a1x+a2y = τ , for an arbitrary,
constant, positive real, τ (in this case, τ = 1). The two contours are visible in different
shades. To the right, the first contour is used to answer the reverse top-1 query on q.

– introduce the first query-agnostic approach. This allows computation to be
reused or even done offline in advance. It also implies that the performance
is consistent regardless of the query point. Previous work is sensitive both
to the dataset and the choice of query point;

– introduce new geometric techniques that are themselves of high interest:
our novel depth contours and k-polygons provide tools that are useful to
researchers investigating related top-k and reverse top-k problems;

– and demonstrate consistently better empirical performance than existing
algorithms by orders of magnitude.

2 Polygons, Contours, and Our Indexing Algorithm

Throughout all this work, we assume queries are executed on a two-dimensional,
numeric relation D which is a set of tuples (v1 ∈ R+, v2 ∈ R+). Tuples can
also alternatively be viewed as points (v1, v2) in the Euclidean plane or as two-
dimensional vectors v = 〈v1, v2〉. We assume |D| is “large” and that k is a small
constant, k ∈ Z+ � |D|.

The monochromatic reverse top-k (mRTOP) query is a query tuple q =
(q1, q2) not necessarily in D. The response is the set of traditional, linear top-k
queries on D ∪ {q} for which q is in the result set. Formally:

Definition 1. The response to a reverse top-k query, q = (q1, q2), is the set of
angles

mRTOP (q) = {θ ∈ [0, π/2] : |{v ∈ D : v1 + v2 tan θ > q1 + q2 tan θ}| < k}.

Our objective is to produce a succinct representation of D that encodes every-
thing needed to respond efficiently to mRTOP queries in two dimensions.
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2.1 The Critical k-Polygon, Pk

We use the duality transform introduced by Chester et al. [2] to convert a set of
tuples, D, into a set of lines, L. A tuple v = (v1, v2) is interpreted as a vector
v = 〈v1, v2〉 and then transformed to the line lv with equation y = τ

v2
− v1

v2
x.

The constant τ is an arbitrary but positive real. The line lv is exactly the vector
nullspace of v, but translated into the positive quadrant. The score for tuple v
for any weight vector lying on lv is exactly τ . The transformation is illustrated
in Fig. 1 for the two tuples given in Table 1, using τ = 1.

Having used this duality transform, one can immediately infer the highest-
ranked tuples for any user weight vector w, because the rank of any line in the
direction of w is precisely given by its position in the resultant arrangement of
lines. In fact, for a ray emanating fromO, the order in which lines are encountered
exactly gives their ranks in the dataset. If one took together all line segments with
equal rank, a star-shaped polygon would be formed, as indicated in Lemma 1:

Lemma 1. A k-contour is a star-shaped polygon.

Lemma 1 establishes that we can represent D as a set of polygons with a unique
depth i, each of which itself encodes the i’th ranked tuple for any possible tradi-
tional, linear top-k query. If there is only one value k of interest, then the entire
dataset can be represented just by one polygon, which we alternately call the
k-contour or Pk of D.

2.2 Properties of Pk and Its Convex Hull Approximation

There are some important properties of the k-polygon, including bounds on its
size, that translate into bounds on asymptotic complexity. In particular, we show
in Lemma 2 that if one created a new line from a new tuple, it would have a
small number of intersection points with the polygon.

Lemma 2. Any line l can intersect Pk at most k times.

Furthermore, we can approximate Pk with its convex hull while maintaining
bounds on the closeness of that approximation. Specifically, we have Lemma 3:

Lemma 3. A concave region between vertices of the convex hull of the k-contour’s
upper boundary can have at most 2k − 1 vertices.

Consequently, we can transform the problem under study into one simpler:

Theorem 1. The response to a mRTOP query, given query vector q = 〈q1, q2〉,
is the component of lq (y = τ

q2
− q1

q2
x) that intersects the interior of Pk.

2.3 A Reverse Top-k Index

So, expectedly, our index is a convex hull approximation of the k-polygon that
is annotated with the O(k) edges suppressed by each face of the approximation.
The query operation is, as indicated in Theorem 1, to find the intersection with
Pk of lq, the dual of the query tuple q. Here we briefly describe the representation
and construction of that index.
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The k-Polygon Index Structure. For the data structure, we exploit Lemma 3.
Let H denote the set of vertices of the convex hull of a k-polygon, Pk. We main-
tain two arrays, which we collectively refer to as the dual-array representation
of Pk. The first, which we call the convex hull array, contains the |H| vertices of
H, ordered anti-clockwise from the x-axis. The second array, which we call the
concavity array, is of size |H| − 1. The i’th entry is a sequential list of the up to
2k − 1 vertices of the k-polygon between the i’th and (i+ 1)’st vertices of H.

Constructing the k-Contour. To construct Pk, we use a radial plane sweep.
First, all lines are sorted by their y-intercept and the intersection points of
adjacent lines are inserted into a priority queue, sorted by angle from the y-axis.
The algorithm proceeds like a classic plane sweep algorithm by popping “events”
(i.e., intersection points) from the queue; swapping the order of the intersecting
lines to maintain a proper sort; and inserting into the priority queue the (up
to) two new intersection points of lines made newly adjacent, provided that the
angle is greater than that of the intersection point currently being processed.
This proceeds until the queue is empty.

Determining the k-contour in this manner is efficient. Whenever a popped
event involves the line in the k’th index of the sorted array of lines, it represents
a new vertex of the k-contour.

Querying the k-Contour Index. To query the dual-array representation, we
conduct a binary search on the convex hull to find the (at most two) intersection
points with lq. Then, the intersection points of lq with Pk must occur within
the concavity lists for those two convex hull edges. We proceed with a sequential
scan of the O(k) edges of Pk in each list and report all intersection points.

Asymptotic Analysis. From the algorithm we describe, one can derive the
following bounds on our algorithm:

Theorem 2. The two dimensional mRTOP problem can be solved using
O(log n+ k) query time with an index that requires O(n) disk space.

3 Experimental Evaluation

Here, we examine the performance of our index through experimentation. We
answer two questions. Since the size of the k-polygon is O(|D|) and the size
of its convex hull is |H|, then the query cost of our index is O(k + log |H|).
So, a natural question is, “What values do |DS| and |H| typically have?” This
indicates how much disk space the data structure requires and whether it will
fit in memory. It also indicates the number of IOs required, if not.

The second question is of raw performance, the wall time to build and later
query the index. We compare our index to that of repeatedly executing the
algorithms of Vlachou et al. [10] and of Wang et al. [12].
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3.1 Experimental Setup

For the experiments, we implemented and optimised the algorithms of Vla-
chou et al., of Wang et al., and of this paper (Chester et al.) in C and compiled
our implementations with the GNU C compiler 4.4.5 using the -O6 flag. We
ignore the cost of outputting the response, because this is moreorless the same
for each algorithm. On the other hand, each algorithm interprets the tuples dif-
ferently, so we do include in the measurements the cost of reading the input
files.

We ran the experiments on a machine with an AMD Athlon processor with
four 3GHz overclocked cores and 8GB RAM, running Ubuntu. The timings were
calculated using the linux time command. The data structure sizes were mea-
sured in separate trials by modifying the code to count vertices.

Table 2. The five basketball datasets. Each of the five datasets under study and the
attributes used in the 2d projection to create the datasets.

Dataset # x-Attribute y-Attribute Correlation

1 Points, Field goals made Correlated
2 Defensive rebounds, Blocks Anticorrelated
3 Personal fouls, Free throw attempts Independent
4 Defensive rebounds, Assists Correlated
5 Blocks, Three pointers made Anticorrelated

Datasets. We use the regular season statistics from databasebasketball.com and
create five datasets with which to perform experiments by projecting combina-
tions of two attributes. The attribute combinations are chosen to diversify the
degree of (anti-)correlation based on intuitive reasoning about the attributes and
are described in Table 2. A traditional top-k query on each pair is equivalent to
asking for the k best player-seasons according to a given blend of the skills.

We reserve the most recent season, 2009, as a set of 578 query points and
use the other seasons, 1946-2008, as the dataset of 21383 tuples. Each mRTOP
query is equivalent to asking, “for which blends, if any, of the given two skills was
this particular player’s performance this season ranked in the top-k all-time?”
This contrasts to traditional analysis of basketball data which would struggle to
define rankings on more than one attribute, to the detriment of rounded players.

3.2 Experimental Results

Our first experiment evaluated the size of our data structure, since it strongly
affects query time. Fig. 2 shows how the size varies with k on datasets 3 and
1, which produced the largest and smallest data structures, respectively. Other
datasets exhibited very similar behaviour, with the convex hull size remaining
relatively constant and the total contour size growing linearly with k.
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Fig. 2. Contour size as a function of k. To the left is shown the number of data
structure vertices for the contours derived on dataset 5; to the right, on dataset 1.

Fig. 3. Execution time for the implemented algorithms. For the batch of 578 queries
comprised of 2009 basketball statistics, using the statistics from 1946-2008 as a dataset.
Vlachou et al. is measured using pre-sorted data; Wang et al. is not. To the left are
results for dataset 4 and, the right, 5. The y-axis is on a logarithmic scale.

The second experiment investigated how construction and query time varied
with respect to k and attribute correlation. The execution time of our algorithm
was nigh constant: across all experiments the construction time had an average
duration of 34ms with a standard deviation of 9.1ms; the query time, 480μs with
a standard deviation of 22μs; and the total time for construction and querying,
35ms with a standard deviation of 8.8ms. Fig. 3 illustrates the total execution
times for the three algorithms.2 Although not previously reported in literaure,
we observed the algorithms of Vlachou et al. and of Wang et al. are sensitive to
the sortedness of the input; so, we report their performances for the quicker of
when the data is presorted by y value and when that presorted file is randomized
with the linux command sort -R. The algorithm of Vlachou et al. was up to an
order of magnitude faster on presorted data; that of Wang et al. was up to an
order of magnitude slower on presorted data.

2 We omitted results for datasets 1, 2, and 3 because they were very similar to those
of dataset 4. We show the results in which the algorithms perform closest.
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3.3 Discussion

Overall, our indexing does superbly, with a query cost slightly less than 1μs
per query, independent of k, typically three to four orders of magnitude faster
than the other two algorithms. In fact, our algorithm in most cases runs one or
two orders of magnitude faster, even with the construction cost included. This is
remarkable, because the construction cost we assume will be done offline in ad-
vance of the query’s arrival, but implies that the index construction is sufficiently
fast to render it feasible in non-indexing scenarios, too. That the query time does
not vary much is not surprising in light of our analysis of data structure size.
From Fig. 2, the convex hull is consistently under forty vertices.

It is worth noting that there are a few instances in which the algorithm of
Vlachou et al. outperforms our index for low values of k on presorted data. As
soon as k tuples are seen that dominate the query tuple, a null result can be
reported and the Vlachou et al. algorithm can be halted. This is substantially
more likely for lower k. With sorted data, these points will be among the first
seen. So, an important question is whether expecting presorted data is realistic.

With such encouraging experimental results, we intend next to generalize the
algorithm and techniques for higher dimensions.
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Abstract. Search engine query log is a valuable information source to
analyze the users’ interests and preferences. In existing work, click graph
is intensively utilized to analyze the information in query log. However,
click graph is usually plagued by low information coverage, failure of
capturing the diverse types of co-occurrence and the incapability of dis-
covering the latent semantics in data. In this paper, we go beyond click
graph and analyze query log through the new perspective of probabilistic
topic modeling. In order to systematically explore the potential assump-
tions of the latent structure of the log data, we propose three different
topic models. The first model, the Meta-word Model (MWM), unifies
the co-occurrence of query terms and URLs by the meta-word occur-
rence. The second model, the Term-URL Model (TUM), captures the
characteristics of query terms and URLs separately. The third model,
the Clickthrough Model (CTM), captures the clicking behavior explic-
itly and models the ternary relation between search queries, query terms
and URLs. We evaluate the three proposed models against several strong
baselines on a real-life query log. The experimental results show that the
proposed models demonstrate significantly improved performance with
respect to different quantitative metrics and also in applications such as
date prediction, community discovery and URL annotation.

1 Introduction

Search engine query log provides a good window for understanding the users’
underlying interests and preferences. Therefore, query log has also been serving
as the basis of many functionalities of search engines, such as spelling correction
[1], query suggestion [3] and search personalization [16][9]. The majority of ex-
isting work on query log analysis is conducted by analyzing click graph, which is
essentially a bipartite graph built upon search queries and clicked URLs. While
reasonably good performance has been achieved for some tasks, some inherent
drawbacks of click graph have not been satisfactorily addressed so far. The fol-
lowing example illustrates the limitations of click graph.

Consider the query log sample in Table 1 and its corresponding click graph in
Fig. 1. The following three limitations of click graph can be observed:

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 209–223, 2013.
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Table 1. Search Engine Query Log Sample

IDUser Query Clicked URL Timestamp

q1 u1 flash player get.adobe.com/.../... 2011-04-11 15:12:41

q2 u1 adobe 2011-04-12 11:13:44

q3 u1 flash www.adobe.com/.../... 2011-04-12 11:14:21

q4 u1 photoshop www.brothersoft.com/... 2011-04-13 07:13:01

q5 u1 flash 2011-04-15 19:13:01

q6 u2 blade series en.wikipedia.org/.../... 2011-04-10 09:44:26

q7 u2 superhero www.superherodb.com/ 2011-04-14 14:35:14

q8 u2 flash www.imdb.com/.../... 2011-04-14 14:36:26

flash

flash
player

photoshop

superhero

blade
series

www.adobe.com/ /...

get.adobe.com/ /...

www.brothersoft.com/ /...

www.imdb.com/ /...

www.superherodb.com/ /...

en.wikipedia.com/ /...

Fig. 1. An Example Click Graph of Table 1

1. The click graph combines q3, q5 and q8 as a single node “flash”. However,
these queries are submitted to satisfy different information needs. By man-
ually analyzing the corresponding URLs, we find that u1 submits q3 to look
for a software product of Adobe while u2 submits q8 to search a popular TV
series. Due to the polysemy of the query terms, information confusion clearly
exists in the example click graph.

2. The click graph ignores the user information, which is effective in disam-
biguating the meaning of queries. If the user information is taken into consid-
eration, we can see that u1 is interested in IT technology and u2 is
interested in superheroes. Thus, q3 is more likely to be related to the software
product and q8 is more likely to be about the TV series of the superhero.

3. The click graph ignores the information of timestamps and abandoned queries,
which are critical for inferring a query’s real meaning. Before submitting q3,
u1 searched q2 (“adobe”) within a minute. Thus, q3 is likely to be related to
“adobe” and to be interpreted as Adobe Flash. Right before q8, u2 searched
q7 (“superhero”). Therefore, q8 is more likely to be related to the TV series
of the superhero Flash. Another drawback of ignoring the timestamp is the
lack of capturing the web dynamics. For example, if the TV series Flash is
a hot topic during the period, then q5 is also likely to be submitted by u1 to
satisfy the information need about the TV series.
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Due to the advantage of capturing complicated relations in a principled man-
ner, we explore the paradigm of probabilistic topic modeling to tackle with the
unsolved problems of click graph. However, this task is not trivial and the chal-
lenges are primarily twofold. First, as is shown in Table 1, each log entry contains
different types of information. How to integrally utilize all the information to
tackle the limitations of click graph is a challenging issue. Second, different from
the scenario of document modeling which faces homogeneous words, query log is
composed of two kinds of heterogeneous items, the query terms and the URLs.
Thus, topic modeling on query log needs to handle the heterogeneous items and
capture the complicated co-occurrence between them. The two challenges render
conventional topic models inapplicable or they can only work suboptimally in
the scenario of query log analysis.

To better handle with the aforementioned challenges, we first pre-process the
raw query log, making it suitable for topic modeling. Then we propose three
probabilistic topic models: the Meta-word Model (MWM), the Term-URL Model
(TUM) and the Clickthrough Model (CTM), in order to systematically explore
the potential assumptions of the relations between the query terms and URLs.
TheMeta-word Model (MWM) unifies the co-occurrence relations between query
terms and URLs as the meta-word co-occurrence, and assumes these meta-words
follow the same distribution given a topic. The Term-URL Model (TUM) mod-
els the clickthrough behavior explicitly and assumes that query terms and URLs
follow different distributions given a topic. The Clickthrough Model (CTM) in-
troduces the variable of search query and utilizes the ternary relationship be-
tween search queries, query terms and URLs. We quantitatively evaluate the
proposed models with conventional topic models such as Latent Dirichlet Al-
location (LDA) [2] and Topics-Over-Time (TOT) [21]. The proposed models
demonstrate significantly better performance in the scenario of query log anal-
ysis. Furthermore, we also compare the proposed models with some click graph
based approaches in the applications of community discovery and URL anno-
tation. The three models also demonstrate superior performance. The contribu-
tions of this paper are summarized as follows:

1. First, we identify the limitations of click graph and view search engine query
log from a new perspective of probabilistic topic modeling.

2. Second, we formulate three probabilistic topic models to analyze query log.
The three models can effectively integrate multiple types of information in
query log and systematically explore different assumptions of the relations
between query terms and URLs.

3. Third, we carry out extensive evaluations on the three proposed models with
a real-life query log. The proposed models demonstrate significantly improved
performance compared to several strong baselines with regard to different
quantitative metrics. We also validate the usefulness of the models with ap-
plications such as date prediction, community discovery and URL annota-
tion.

The remainder of the paper is organized as follows. In Section 2, we review the
related work. In Section 3, we discuss the pre-processing procedure. In Section 4,
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we formulate three probability topic models, the Meta-word Model (MWM), the
Term-URLModel (TUM) and the Clickthough Model (CTM), in order to discover
search topics from query log. The experimental results are presented in Section
5. Some discussion is presented in Section 6. Finally, the paper is concluded in
Section 7.

2 Related Work

In recent years, probabilistic data analysis is gaining momentum in data mining
[2] [19] [21]. Among them, the topic modeling approach demonstrates superior
performance in exploring the latent knowledge of electronic archives. Griffiths et
al. [4] applied Latent Dirichlet Allocation (LDA) to scientific articles and stud-
ied its effectiveness in finding scientific topics. As an extension of LDA, Wang et
al. [21] presented a topic model that captures both the latent structure of data
and how the structure changes over time. There follow more topic models that
are proposed to handle the problems of document analysis that exist in specific
domains, such as sentiment analysis [11] and geographical analysis [10]. Fur-
thermore, Kang et al. [12] proposed a topic-concept cube which supports online
multidimensional mining of query log. Mei et al. [17] proposed a novel probabilis-
tic approach to model the subtopic themes and spatiotemporal theme patterns
simultaneously. Some recent work on query log analysis also studied the impact
of temporal issues. Ha-Thuc et al. [5] proposed an approach for event tracking
with emphasis on scalability and selectivity, and their experiments showed that
the approach can extract important temporal patterns about the news events.
To the best of our knowledge, our work is the first one to systemically explore
different assumptions about the relations between query terms and URLs via
probabilistic topic modeling. The experimental results show that topic modeling
is an effective approach to discover the latent semantics in query log and out-
performs several strong baselines with regard to both quantitative metrics and
real applications.

3 Pre-processing

In the pre-processing procedure, we first organize the log entries of the ith search
engine user as the document di and then group the consecutive queries that have
semantic relations as search sessions. A search session refers to a series of queries
which are submitted within a short time period to satisfy the same information
need. In order to avoid the performance degradation that is caused by includ-
ing irrelevant queries in the same session, we prioritize the semantic coherency
across queries within the same session. The query reformulation taxonomy pro-
posed in [8] consists of a series of rules that evaluate the lexical similarity between
queries and demonstrates high precision in detecting semantically relevant search
queries. Thus, we utilize it to evaluate the relevancy between two consecutive
queries in the log. Finally, we use the stopword list provided in [15] to filter



Beyond Click Graph: Topic Modeling for Search Engine Query Log Analysis 213

out the non-informative terms from each search query. The timestamps are nor-
malized to a real number between 0 and 1 based on the earliest and the latest
timestamps in query log.

4 Topic Models

4.1 Meta-word Model (MWM)

The Meta-word Model (MWM) assumes that each user’s query log (i.e., each
document) has a unique distribution over a set of K search topics and each of
which is represented as a multinomial distribution over all the meta-words in
the vocabulary drawn from a symmetric Dirichlet prior β. The meta-words have
two potential interpretations:

– The first interpretation only utilizes the query terms. This interpretation
simply ignores the URLs and is denoted as MWM-T in the rest of the paper.

– The second interpretation considers both the query terms and the URLs as
meta-words. This interpretation is denoted as MWM-TU in the rest of the
paper. Note that this interpretation does not explicitly capture the click-
through behavior, since the query terms and URLs are utilized without dif-
ferentiation.

Although we may only use the URLs as the meta-words to derive topics that
solely consist of URLs, this option is not included as an interpretation of MWM
due to its lack of topic interpretability and the incapability of supporting down-
stream applications. The generative process of MWM is depicted in Algorithm 1.
Each document is generated by first drawing a document-specific mix θ over topic
1 to topic K that is drawn from a symmetric Dirichlet prior α. Since the infor-
mation within the same session serves the same information need, we assume
that a session is relevant to the same search topic. This observation inspires
us to use sessions rather than meta-words as the basic unit of topic assignment.
Since we assign search topics on a session basis, a session-specific topic z is drawn
from θ. Then within the session, some meta-words are drawn from a multinomial
distribution based on the topic z. In MWM, the topic assignment of a session
is not only subject to the co-occurrence of meta-words but also subject to the
timestamps within the session. We utilize the continuous Beta distribution to
capture the temporal prominence of each topic. The timestamps within a session
are drawn from a Beta distribution ψz which is specific to the session topic z.
Ultimately, each meta-word w is picked in proportion to how much the enclosing
document prefers the topic z and how much the topic prefers the meta-word
w. The timestamp is picked in proportion to how much the enclosing document
prefers the topic z and how much the topic prefers the timestamp t.

We aim to find an efficient way to compute the joint likelihood of the observed
meta-words and timestamps with the hyperparameters:

P (w, t, z|α, β, Ψ) = P (w|z, β)P (t|Ψ, z)P (z|α). (1)
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Algorithm 1. Generative Process of MWM

1: for topic k ∈ 1, ..., K do
2: draw a meta-word distribution φk ∼ Dirichlet(β)
3: end for
4: for each document d ∈ 1, ..., D do
5: draw d’s topic distribution θd ∼ Dirichlet(α)
6: for each session s in d do
7: choose a topic z ∼ Multinomial(θd)
8: generate meta-words w ∼ Multinomial(φz)
9: draw timestamps t ∼ from Beta(Ψz)
10: end for
11: end for

We will use this joint likelihood to derive efficient updates for the parameters
Θ, Φ and Ψ . The right term P (z|α) =

∫
P (z|Θ)P (Θ|α)dΘ is the same as for the

standard LDA and this term ultimately contributes the same terms to the full
conditional as well as the sampling formula for updating individual topic assign-
ments zi. Thus, we use the same derivation as in [4]. Using the independence
assumptions of the model, we consider the probability of the meta-words and
the timestamps. The probability of the meta-words is given as follows:

P (w|z, β) =
∫ D∏

d=1

Sd∏
s=1

Wds∏
i=1

P (wdsi|φzds)
Ndswdsi

K∏
z=1

P (φzds|β)dΦ. (2)

The probability of the timestamps is listed as follows:

P (t|Ψ, z) =
D∏

d=1

Sd∏
s=1

Tds∏
j=1

P (tdsj |ψzds)
Ndstdsj . (3)

After combining terms, applying Bayes rule and folding terms into the propor-
tionality constant, the conditional probability of the kth topic for the ith session
is defined as follows:

P (zi = k|z−i,w, t, α, β, Ψ) ∝
CDK

dk + αk∑K
k′=1(C

DK
dk′ + αk′)

Γ (
∑W

w=1(C
KW
kw + βw))

Γ (
∑W

w=1(C
KW
kw + βw +Niw))

W∏
w=1

Γ (CKW
kw + βw +Niw)

Γ (CKW
kw + βw)

T∏
j=1

(1− tj)
ψk1−1tψk2−1

j

B(ψk1, ψk2)
.

(4)

Gibbs sampling [20] is used to estimate the probability that a query belongs to
a certain topic. For simplicity and efficiency, we estimate these Beta distribution
ψz by the method of moments, once per iteration of Gibbs sampling. After each
iteration, we update ψk1 and ψk2 for each topic as follows:

ψk1 = t̄k(
t̄k(1− t̄k)

s2k
− 1), (5)
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ψk2 = (1− t̄k)(
t̄k(1− t̄k)

s2k
− 1), (6)

where t̄k and s2k denote the sample mean and biased sample variance of topic
k’s timestamps.

4.2 Term-URL Model (TUM)

Since the semantics of the URLs is less ambiguous than query terms [13], the
URLs are stronger endorsements than query terms in terms of the topical com-
monality. Considering them separately can better capture the importance of
URL clicking, since the amount of query terms significantly outnumbers that
of the URLs. Therefore, we further propose the Term-URL Model (TUM) to
capture the topical distribution of query terms and URLs separately.

The generative process of TUM is presented in Algorithm 2. Similar to MWM,
we constrain that the query terms and URLs in the same session share the same
topic. The query term selection process is the same as the meta-word selection
process in MWM and the timestamp selection process is the same as that of
the MWM. Additionally, each URL is picked in proportion to how much the
enclosing document prefers the topic z and how much the topic prefers the URL
u. The joint probability of terms, URLs and timestamps is given as follows:

Algorithm 2. Generative Process of TUM

1: for topic k ∈ 1, ..., K do
2: draw a term distribution φk ∼ Dirichlet(β)
3: draw a URL distribution Ωk ∼ Dirichlet(δ)
4: end for
5: for each document d ∈ 1, ..., D do
6: draw d’s topic distribution θd ∼ Dirichlet(α)
7: for each session s in d do
8: choose a topic z ∼ Multinomial(θd)
9: generate terms t ∼ Multinomial(φz)
10: if Xs = 1 then
11: generate URLs u ∼ Multinomial(Ωz)
12: end if
13: draw timestamps t from Beta(Ψz)
14: end for
15: end for

P (w, t,u, z|α, β, δ, Ψ,X) = P (w|z, β)P (u|z, δ,X)P (t|Ψ, z)P (z|α). (7)

In Equation (7), the terms P (z|α), P (w|z, β) and P (t|Ψ, z) are the same as those
in MWM. However, one issue that results from separate modeling the topical
distributions of queries and URLs is that sometimes the session is abandoned
and no clickthrough is raised. Since these queries are also complementary with



216 D. Jiang et al.

respect to the user’s search interests [14], we introduce a variable X to indicate
whether there exists clickthrough in the session.

P (u|z, δ,X) =

∫ D∏
d=1

Sd∏
s=1

{
Uds∏
i=1

P (udsi|Ωzds)
Ndsudsi}I(Xds=1)

K∏
z=1

P (Ωzds |δ)dΩ. (8)

The generative process of TUM is further updated as follows. The user first
decides the topic and then selects some query terms according to the chosen
topic. For each session, the user needs to decide whether to click on some URLs.
If X = 1, the user clicks on one or more URLs according to the chosen topic.
Again, Gibbs sampling is used to estimate the probability that a query belongs
to a certain topic. At each transition step of the Markov chain, the conditional
probability of the topic of the queries in the ith session should be differentiated.
Using a deduction process similar to MWM, we can obtain the update formulas
for TUM. The topic of the queries in the ith session, zi is drawn according to
Equation (9) and the temporal parameters ψz are updated after each iteration
according to Equations (5) and (6).

P (zi = k|z−i,w, t,u,X, α, β, δ, Ψ) ∝
CDK

dk + αk∑K
k′=1(C

DK
dk′ + αk′)

T∏
j=1

(1− tj)
ψk1−1tψk2−1

j

B(ψk1, ψk2)

Γ (
∑W

w=1(C
KW
kw + βw))

Γ (
∑W

w=1(C
KW
kw + βw +Niw))

W∏
w=1

Γ (CKW
kw + βw +Niw)
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(9)

4.3 Clickthrough Model (CTM)

TUM assumes that query terms and URLs have the topical independence, i.e.,
their generation processes are independent given the topic. A more sophisticated
strategy is to assume that the two items are not independent given the topic.
We propose CTM to model the dependence between query terms and the URLs
through search queries. The generative process of CTM is presented in Algorithm
3. As we assume that search queries, query terms and URLs within a session
share the same search topic, we also use search session as the basic unit for topic
assignment. Similar to MWM and TUM, a session-specific topic z is drawn
from θ. Within the session, some query terms are drawn from a multinomial
distribution based on the topic z. These query terms are then composed as search
queries. We also use an indicator X to indicate whether there exists clickthrough
in a search session. If there exists clickthrough (X = 1), the URLs are drawn
from a multinomial distribution, which is identified by the selected topic z and
the corresponding search query q. The joint likelihood of generating the corpus
is as follows:

P (w,u, t,q, z|α, β, δ, Ψ,X) = P (w|z, β)P (u|δ, z,q,X)P (q|w)P (t|Ψ,z)P (z|α), (10)
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Algorithm 3. Generative Process of CTM

1: for topic k ∈ 1, ..., K do
2: draw a term distribution φk ∼ Dirichlet(β)
3: for query q ∈ 1, ..., Q do
4: draw a URL distribution Ωqk ∼ Dirichlet(δ)
5: end for
6: end for
7: for each meta document d ∈ 1, ..., D do
8: draw d’s topic distribution θd ∼ Dirichlet(α)
9: for each session s in d do
10: choose a topic z ∼ Multinomial(θd)
11: generate terms t ∼ Multinomial(φz)
12: for each query q in s do
13: if Xq = 1 then
14: generate URLs u ∼ Multinomial(Ωqz)
15: end if
16: end for
17: draw timestamps t from Beta(Ψz)
18: end for
19: end for

In CTM, the formula terms P (z|α), P (w|z, β) and P (t|Ψ, z) are the same as
those in TUM. P (q|w) is constant and independent of the search topic. The
major difference is that w and u are not independent anymore given the topic.
The generation of u subjects to both the topic z and the corresponding search
query q.

P (u|δ, z,q,X) =

∫ D∏
d=1

Sd∏
s=1

{
Uds∏
i=1

P (udsi|Ωqudsi
zds

)
Ndsudsi }I(Xds=1)

Q∏
q=1

K∏
z=1

P (Ωqzds
|δ)dΩ.

(11)
The conditional probability of the kth topic for the ith session is defined in
Equation (12). After each iteration, the temporal parameters ψz are updated
according to Equations (5) and (6).

P (zi = k|z−i,w, t,u,X, α, β, δ, Ψ) ∝ CDK
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(12)

5 Experiments

In this section, we present the experimental results. We utilize a real-world
query log from a major commercial search engine to conduct the experiments.
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The raw query log is pre-processed according to the discussion in Section 3. The
dataset records the search history of 2,417 users during 3 months. In Section
5.1, we quantitatively evaluate the proposed models against LDA and TOT by
using three metrics: the perplexity of held-out data, the predictive perplexity
of partially observed data. In Sections 5.2, 5.3 and 5.4, we demonstrate the ef-
fectiveness of the the proposed models in applications such as date prediction,
community discovery and URL annotation.

5.1 Quantitative Evaluation

We now evaluate the effectiveness of the proposed models by two quantitative
metrics. The pre-processing procedures such as document grouping and stopword
preprocessing are the same for all the models under evaluation. We choose the
following methods as the baselines:

– LDA-T: Latent Dirichlet Allocation [2] that only utilizes the query terms.
– LDA-TU: Latent Dirichlet Allocation that utilizes both the query terms and

URLs as metawords.
– TOT-T: Topics-Over-Time model [21] that only utilizes the query terms.
– TOT-TU: Topics-Over-Time model that utilizes the query terms and URLs

as metawords.

The first metric we use is the perplexity of heldout data. Perplexity is a measure
of the ability of a model to generalize to unseen data. Better generalization
performance is indicated by a lower perplexity. We compare the proposed models
with LDA and TOT by a ten-fold cross validation. We use Equation (13) to
calculate the perplexity for each model [18].

Perplexityheldout(M) = (
D∏

d=1

Nd∏
i=1

p(wi|M))
−1∑D

d=1
(Nd) , (13)

where M is the model learned from the training process.
Figure 2(a) illustrates the average perplexity for each model. MWM, TUM

and CTM all provide significantly better fit than LDA and TOT. For example,
when the number of topics is set to 100, the average perplexity of LDA-T is 8013,
that of MWM-T is 3753, MWM-TU is 4713, TUM is 3287 and CTM achieves the
lowest perplexity of 2189. We also observe that the performance of MWM-T and
MTM-TU are comparable when the number of topics is small while MWM-TU
has better performance than MWM-T when the number of topics is large. The
result suggests that incorporating the URL information enables the model to
support more topics.

Another metric for comparing the relative strengths of LDA and TOT with
our proposed models is how well the models predict the remaining query terms
after observing a portion of the user’s search history. Suppose we observe the
query terms w1:P from a user’s query log and aim to find out which model
provides a better predictive distribution p(w|w1:P ) of the remaining query terms.
We use Equation 14 to calculate the perplexity of the remaining unseen data.
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(a) Perplexity for held-out data (b) Predictive perplexity for par-
tially observed data

Fig. 2. Perplexity Comparison

The results of the comparison are presented in Figure 2(b). We observe that
the proposed models significantly outperform LDA. The average perplexity of
MWM-T is 119, MWM-TU is 176, TUM is 112 and CTM demonstrates the best
performance with an average perplexity of 83.

Perplexityportion(M) = (
D∏

d=1

Nd∏
i=P+1

p(wi|M, wa:P ))
−1∑D

d=1
(Nd−P ) . (14)

5.2 Data Prediction

We proceed to compare the accuracy of the timestamp prediction of our models
given the query terms in a session. We use 6624 held-out search sessions as the
evaluation data and then evaluate each model’s ability to predict the date of a
search session. The Beta distribution for each LDA topic is fitted in a post-hoc
fashion. The results of the comparison are presented in Figure 3(a). The average
date prediction error of LDA-T is 22.93 days and the average error of LDA-TU
is 21.56 days. The average error of MWM-T is 15.14 days, that of MWM-TU
is 14.94 days and TUM is 13.87 days and CTM demonstrate the highest date
prediction accuracy with an average error of 11.26 days. The above three metrics
indicate that the proposed models are better at capturing the temporal trends
in web search and thus achieves better performance in date prediction.

5.3 Community Discovery

After processing each user’s search history by the proposed models, the ith user’s
search interests are represented by a topic vector (θi1, θi2, ..., θin) where θik is a
real number that indicates the ith user’s endorsement for the kth search topic.

We prepare the ground truth with a small portion of the query log, including
500 users and their 114,400 queries. The queries are manually classified into
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(a) Date prediction (b) Community Quality Analysis

Fig. 3. Performance Comparison

21 ODP1 categories and thus each user is represented by a 21-element vector,
where each element is the frequency of the user’s queries that belong to the
corresponding category. After normalization, the vector serves as the ground
truth user profiles.

The first baseline for user profiling is the widely used TF-IDF text repre-
sentation (denoted as TF-IDF), by which we represent a user’s search history
by his/her corresponding TF-IDF vector of query terms and URLs. The second
baseline for user profiling is Latent Semantic Indexing (denoted as LSI) [7], which
is able to extract the conceptual content of a body of text by establishing asso-
ciations between those terms that occur in similar contexts. In the LSI profiling
method, we use the extracted “concept” vector as the user profile. The fourth
baseline is the DADC algorithm [13], which utilizes a variant of click graph to
analyze the relation between users, search queries and concepts.

We then apply K-means clustering algorithm to the ground truth user pro-
files and those from the baselines and the proposed models. Our objective is to
evaluate whether the profiles obtained from the proposed models can generate
communities that are closer to that of the ground truth comparing to the base-
lines. For the purpose of community quality evaluation, we check the resultant
relation2 between each pair of users against the results obtained from the ground
truth. For the clustering result cp that is obtained from the user profiling method
p and two users i and j, if the relation of i and j in cp is consistent with the result
ctruth that is obtained from the ground truth, then we consider it as a positive
judgment. We repeat this process for each pair of users and then normalize the
final counting by the total number of user pairs. We call the normalized value
the Human Judgment Correlation Score (HJCS) and formally define HJSC as
follows:

HJCSp =

∑
i,j =i1(cp(i, j) = ctruth(i, j))

C2
n

. (15)

1 http://www.dmoz.org/
2 The relation means whether i and j belong to the same cluster or not.

http://www.dmoz.org/
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The higher the HJCS, the closer the correlation between cp and ctruth. The
results shown in Figure 3 (b) demonstrate the effectiveness of the proposed
models. With the increase of the number of communities, the HJCS of TF-
IDF, LSI and DADC demonstrate decreasing trends while the HJCS of the
proposed models gradually increase. Since high HJCS is trivial when the number
of communities is small (e.g., in the extreme case, HJCS value would be all 100%
if the number of communities is set to be 1) while high HJCS is challenging when
the number of communities is large, the increasing trend of our models illustrates
their high degree of correlation with human judgment and suggests that they
are effective to discover small but coherent user communities.

5.4 URL Annotation

We now evaluate the quality of URL annotations that are generated by the
proposed models. LDA-TU, TOT-TU, MWM-TU, TUM and CTM support the
discovery of the semantic relation between query terms and URLs. Within each
search topic, the top-ranked query terms can be considered as the annotation of
the top-ranked URLs. In order to quantitatively evaluate the quality of URL an-
notation obtained from the models, we compare them withM2 and baseline+M2,
which are two click graph based methods and achieve the best performance in [6],
in the task of URL classification. For a specific topic, we select the top 2 URLs
and use the top 10 terms as their annotations. In total 500 URLs are selected
for this experiment. Other experimental settings are the same as that discussed
in [6] and are skipped here to save space. TUM and CTM achieve classification
accuracies of 0.6397 and 0.6535, which significantly outperform M2’s 0.5124 and
baseline+M2’s 0.5558. LDA-TU, TOT-TU and MWM-TU achieve accuracies of
0.4979, 0.5213 and 0.5444, respectively. The result suggests that the TUM and
CTM are effective to capture the semantic relation between query terms and
URLs. Thus, the resultant search topics are effective for interpreting the URL’s
content with higher accuracy.

6 Discussion

Based on the evaluation in the previous section, we find that query log analysis
needs specialized probabilistic topic models due to its unique characteristics.
Conventional topic models such as LDA and TOT can only work suboptimally
in this task. We also observe that good probabilistic topic models can outperform
the click graph (or its variant) based methods in the task of community discovery
and URL annotation. The result indicates that utilizing the information missed
in click graph can effectively boost the performance of some applications. Among
all the three proposed models, the CTM model achieves the best performances in
most cases. This result shows that the two heterogenous items, query terms and
URLs follow distinct distributions and are strictly coupled via search queries.
However, the performance superiority of CTM is gained with a price to pay.
The space complexity of MWM is O(DK + KW ), where W is the number of
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metawords. The space complexity of TUM is O(DK +KW +KU), where W is
the number of query terms and U is the number of URLs. The space complexity
of CTM is O(DK +KW +QKU), where W is the number of query terms, U is
the number of URLs and Q is the number of queries. Therefore, CTM usually
consumed more space than MWM and TUM. Thus, when the memory is limited,
MWM or TUM can be used as good alternatives of CTM.

7 Conclusion

In this paper, we introduce three new probabilistic topic models, the Meta-
word Model (MWM), the Term-URL Model (TUM) and the Clickthrough Model
(CTM), in order to analyze search engine query log. The three models explore
different assumptions to discover search topics from the users’ search history.
Parameter inference approaches such as Gibbs sampling are further introduced to
estimate the value of latent variables. Our findings demonstrate that probabilistic
topic modeling has the advantage of seamlessly integrating different types of
information in query log and effectively capturing the latent semantics. Empirical
evaluations on a real-life query log unequivocally demonstrate the superiority of
the proposed models and their utilities in different applications.
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Abstract. When a user performs a search on a search engine, the query reflects
a particular interest of the user. The interest may either span a short session of
a few minutes, or a long period of time like months or years. In the latter, the
user may perform searching related to a particular interest from time to time,
making the queries related to that interest sporadically distributed in the search
log. Identification of these topically related queries is very meaningful, since it
can help the search engine better understand the user’s interest and hence de-
liver better results to the user. In this paper, we propose a method to aggregate
topically related queries into interests regardless of where the queries appear in
the search log. It first identifies sets of continuous topically-related queries called
CTQs and then clusters similar CTQs together to form interests. In order to iden-
tify the CTQs accurately, we propose the Pattern-Concept-Time-Based (PCTB)
method that utilizes query reformulation patterns, concepts behind the queries
and the user’s continuous searching behavior to compute the similarity between
two queries. To evaluate the effectiveness of our approach, we employ the AOL
search log as our test dataset and develop a search middleware on top of Google
for extracting concepts related to the queries. Experimental results show that our
method can obtain a high precision and recall on identifying CTQs, which in turn
improves the performance of interest identification.

1 Introduction

When a user submits a query to a search engine, the user usually has in mind a specific
interest (also referred to as information goal or information need). In response to the
query, the search engine returns to the user a list of search results. The user then clicks
on the results that he/she judges as relevant to his/her interest. If the user finds the search
results not relevant enough, he/she may reformulate the query to retrieve a more relevant
set of results. The search engine log records all of the users’ queries, clickthroughs and
time, from which a user’s interests can be mined. The discovered user interests can
then be applied to applications such as search engines and recommendation systems to
improve their performance.

Pass, et. al., studied two billion web queries and found that 28% of the queries are
modifications of the previous queries [15]. These modifications are always done within
a short session and adhere to the same search interest, and are referred to as query refor-
mulations or query refinements. However, a user’s interest may last beyond a session. In
other words, queries related to the same interest may be sporadically distributed across

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 224–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Table 1. Example of an Interest

User id Query Time

599381
mcdonalds all american high

school basketball games
2006-03-15

19:41:01

599381
mcdonalds all american high school

basketball game information
2006-03-15

19:42:43
... other queries ...

599381
girls intensive basketball

camps in california
2006-04-16

01:53:46

multiple sessions in the search log. Consider the example in Table 1, which is a snap-
shot of the AOL log. The user first submitted the query “mcdonalds all american high
school basketball games”, indicating that he/she was interested in finding some activ-
ities related to basketball. After browsing through the results from the query, the user
might find the results not relevant enough and thus reformulated the first query into
“mcdonalds all american high school basketball game information” to look for more
specific information. Since the second query is a reformulation1 of the first query and
issued only two minutes after the first query, they likely reflected the same interest of
the user. After the second query, the user might have found the desired information and
stopped searching further. After a month, the user issued another query related to bas-
ketball activities. This search log shows that the user has an interest in basketball and
that the interest went beyond the short session containing the first two queries.

In this paper, a set of consecutive queries initiated by a user with the same search
interest is defined as continuous topically related queries. We refer to the set as a CTQ.
Notice that according to our definition the queries within a CTQ do not have to fall
within a certain time gap or are reformulated queries. However, the queries in a CTQ
must be consecutive and topically related. We further define an interest as a set of top-
ically related queries that may appear anywhere in user’s entire search log. To identify
a user’s interest, we propose to (i) identify the CTQs in a search log, and (ii) cluster the
CTQs in user’s entire search log into search interests.

We observe that most existing methods for identifying CTQs are based on time
thresholds or overlapping keywords between consecutive queries without considering
the concepts behind the queries. These methods have two drawbacks. First, methods
based on time thresholds only would consider two consecutive queries different if they
exceed the pre-defined time threshold even if one is a close reformulation of the other.
Second, even if two consecutive queries fall within the time threshold, methods based
on keyword overlap will not be able to identify semantically related queries (e.g., “avi-
ation” and “flying”) because of the lack of common keywords in the two queries.

Although some methods (e.g., [8]) employed lexical databases such as Wordnet to
identify synonyms, they cannot deal with the wide diversity of queries issued by the
users. To tackle this problem, we propose a CTQ identification method which extracts
concepts representing the semantics of a query and uses them to estimate the simi-
larity between queries. We further propose an effective mechanism to integrate our

1 Rules for determining query reformulation are discussed in Section 4.2.
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concept-based method with the traditional time-threshold and query reformulation meth-
ods to achieve high effectiveness. We call our proposed method Pattern-Concept-Time-
Based (PCTB) method. PCTB is capable of grouping semantically related queries to-
gether even if they are different syntactically or separated by a large time gap. Since a
CTQ represents a common search goal, it can be considered a “unit interest”. We can
further cluster the CTQs extracted from the entire search log to form general interests.
To evaluate the effectiveness of our approach, we conduct experiments using the AOL
search log. The experimental results confirm that PCTB yields better precision and re-
call comparing to existing CTQ identification methods that are based on time thresholds
or overlapping query keywords. The improved performance of CTQ identification also
results in a boost of the performance of interest identification.

The major contributions of this paper are summarized as follows.

– We propose a two-level interest identification method which first identifies CTQs
and then clusters CTQs into interests. This two-level approach is both effective and
efficient since CTQs are composed of consecutive queries and hence CTQ iden-
tification incurs only a single scan of the query log. The clustering of CTQs into
interests is much more efficient than clustering individual queries, since there are
much fewer CTQs than individual queries in the search log.

– We propose a novel CTQ identification method, PCTB, which considers three fac-
tors, namely, query reformulation pattern, concepts behind the queries, and time
threshold. PCTB combines the advantages on these three factors while avoiding
their disadvantages. As a result, PCTB is able to achieve the same high precision
inherited from query reformation and at the same time high recall resulted from the
consideration of concepts in queries.

– We perform extensive experiments to determine which factors affect the precision
of recall of CTQ identification most. Experiments show that time threshold and
concept expansion are the important factors. Comparing to the existing methods,
combining time and concept yields better performance in CTQ identification and
consequently better performance in interest identification.

The rest of the paper is organized as follows. Section 2 reviews the related work. In
Section 3, we present how to build the concept database. In Section 4, we present our
CTQ identification method, PCTB. Experimental results evaluating the performance of
our approach against the state-of-the-art methods are presented in Section 5. Finally,
Section 6 concludes the paper.

2 Related Work

In this section, we will briefly introduce the previous work related to CTQ and user
interest identification.

2.1 Session Segmentation

In [6], Gayo-Avello gave a comprehensive survey on session segmentation. There are
several definitions on “session” in the literature. A widely accepted definition of session
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is “a series of queries by a single user made within a small range of time”. Even though
CTQ identification and session segmentation share some similarity, they have three
major differences. First, queries in a session must be issued within a short period of
time, but CTQs, according to our definition, do not have such requirement. CTQs only
take the time gap between two queries as a strong, but not the only, indicator on whether
the two queries are topically related. Second, queries in a session are not necessarily
topically related. However, CTQs must satisfy this requirement. Third, the goal of the
two techniques are different. Sessions are commonly used for constructing a context
of the current query to help the search engine to better understand the user’s searching
needs. CTQs are more focused on the concepts and semantic meaning behind the query,
which is used for clustering topically related queries for better query suggestion and
document classification.

Existing session detection methods can be classified into three categories, namely
temporal cutoff, lexical relation, and hybrid. Temporal cutoff methods consider differ-
ent time interval thresholds as the factor for detecting sessions. Lexical relation methods
are based on the lexical relationship between continuous queries, and hybrid methods
combine both temporal cutoff and lexical relation methods in session detection.

Temporal Cutoff Methods. Query time is a useful indicator for detecting new ses-
sions. In He, et. al [7], the idea of session and session boundary was first introduced.
The detection of session boundary was based on different time interval thresholds. Since
the time gap between two consecutive queries is an important feature in session detec-
tion, many temporal cutoff methods have been proposed based on different time interval
thresholds (e.g., 5 minutes cutoff [16], 10−15 minutes cutoff [6] and 30 minutes cutoff
[5]).

Lexical Relation Methods. The lexical relationship between consecutive queries has
been used as an indicator for session aggregation. Lau, et. al., suggested to use lexical
relation to estimate the relationship between two consecutive queries by studying the
common keywords between the two queries [9]. Huang, et. al., [8] proposed a more
comprehensive query reformulation strategy to identify search queries addressing the
same information need. They included more reformulation patterns (e.g., whitespace
and punctuation, stemming, substring, etc.) into the existing patterns (e.g., specializa-
tion, generalization, reformulation, etc.). However, these pattern-based methods all suf-
fer the semantic rephrasing problem [8]; that is, two queries without common terms
could also be topically related in the semantic level.

Hybrid Methods. Buzikashvili and Jansen [3] proposed to first set up a temporal cut-
off (e.g., 15 or 30 minutes) to extract preliminary sessions and then applied a lexical
comparison method (called transitive closure) to perform further refinement. Sophis-
ticated session detection methods employing different machine learning methods have
been proposed. Ozmutlu developed session detection methods based on neural networks
[13], multiple linear regression [12], and conditional probabilities [14]. However, most
of them used time interval and search pattern as features in the training process, and the
only difference between them is the classification model.
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2.2 Query Clustering

As discussed in Section 1, interest identification is essentially a query clustering task.
Most clustering methods were done based on the clickthrough data of the search engine.
Beeferman and Berger [2] proposed an agglomerative clustering algorithm (denoted as
BB in this paper) to exploit the query-document relationship from the clickthrough data.
BB performs clustering based on a bipartite graph, in which nodes on the left hand side
are queries and those on the right hand side are web pages. When a user clicks a page
in a query’s search result, an edge is created between the page and the query. The sim-
ilarity between two queries are calculated based on the number of common pages they
share. Likewise, the similarity of two pages depends on the number of queries shared by
the pages. During the clustering process, query nodes of high similarity are merged to-
gether and then pages of high similarity are merged, and so on. The merging/clustering
processes are done iteratively until a termination condition is fulfilled. However, due to
the sparsity of edges in the graph, the recall is low.

To alleviate the problem, Leung and Lee [10] introduced the concept-based graph
model, in which concepts are extracted from web-snippets to build a query-concept bi-
partite graph upon which a clustering procedure similar to BB is applied. Experiment
showed that it could greatly enhance the recall. Baeza-Yates [1] expanded a query with
keywords frequently appearing in the the query’s clickthroughs and used cosine simi-
larity to calculate query similarity (denoted as “Baeza” in this paper). The uniqueness
of our query clustering method is that we identify CTQs before clustering is performed.
This approach can fully utilize the continuity of a user’s search behavior to boost the
recall while maintaining high precision of CTQs.

3 Building Concept Database

In this section, we will briefly introduce how to build the concept database for finding
the concepts behind the queries, which will be used in PCTB presented in the next
section. When a query q is submitted to a search engine, web-snippets containing brief
summaries of the search results are returned to the user. Our concept extraction method
assumes that if a keyword (or more generally a key phrase) exists frequently in the
web-snippets of the query q, the keyword represents an important concept/topic related
to q, as it co-exists in close proximity with the query in the top-ranked documents. To
mine the concepts for q, we extract all keywords from the web-snippets of the top 100
results returned from q. Then, the following support formula, which is inspired by the
well-known problem of finding frequent item sets in data mining [4], is employed to
measure the interestingness of a particular keyword ci with respect to q:

support(ci) =
sf(ci)

n
· |ci| (1)

where sf(ci) is the snippet frequency of the keyword ci (i.e., the number of web-
snippets containing ci), n is the number of web-snippets returned and |ci| is the number
of terms in the keyword ci. If the interestingness of a keyword ci (i.e., support(ci)) is
greater than a threshold s, we treat ci as a concept for q. This technique has been used
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to construct a large-scale concept database by treating the mined concepts as queries to
iteratively expand the concept database [11].

The extracted concepts together with the concept similarities retrieved from the
query q form the possible concept space arising from q, which will then be stored in our
concept database. The concept space, in general, covers the possible topics appeared in
the retrieved web-snippets. For example, when the user searches for the query “apple”,
the concept space derived from the web-snippets can contain different concepts such
as “fruit”, “iphone” and “itunes”. If the user then searches for the query “ipod”, the
concept space can contain similar concepts such as “iphone”, “itunes” and “music”. We
can immediately see that the two queries “apple” and “ipod” are related, because they
retrieve similar concepts, “iphone” and “itunes”, in their search results.

Note that all of the concepts are pre-computed, which means the concepts database
has already been built before CTQ identification is performed. Thus, when we need the
concepts behind a query, we can directly look up the database without incurring much
computational cost.

4 CTQ Grouping and Interest Identification

Continuous Topically Related Queries (CTQs) are sets of consecutive queries, and the
queries within each CTQ are all topically related. This definition does not require a
query in a CTQ to be a reformulation of its preceding query or within a certain time
threshold. A CTQ can be considered a basic unit of user interest. A consequence of this
definition is that consecutive CTQs are not topically related or else they should be com-
bined in one CTQ. As discussed in Section 2, most of the existing research on session
identification are based on query reformulation and/or time threshold. In this paper, we
first propose a method for identifying CTQs based on the concepts behind the queries.
We adopt the method described in Section 3 for extracting concepts from the web snip-
pets returned from the query and use the concepts as a representation of the query.
Then, we introduce a general CTQ identification method called Pattern-Concept-Time-
Based (PCTB) method, which combines the merits of query reformulation, concept and
time based methods while avoiding their drawbacks. In Section 4.1, we first define the
important terms used in this paper. In Section 4.2, we introduce PCTB. Section 4.3 ex-
plains why PCTB can offer complementary merits. In Section 4.4, we study interest
identification based on the clustering of CTQs.

4.1 Definitions

A query log is a sequence of queries {q0, q1, ..., qn}, where q0 and qn are, respectively,
the first and the last query in the query log and qi is issued at time ti.2 A user issues a
sequence of queries to look for information pertaining to a particular information need.
In doing so, the user modifies his/her queries until the information need is fulfilled.
When a new information need arises, the user will issue a new sequence of queries to

2 In general, a query log contains queries from different users. However, since this paper only
studies CTQs of a single user, “query log” hereafter refers to the set of query records for a
single user.
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fulfill the new need. A query that is modified from and sharing the same information
goal as the previous query is called a reformulated query, whereas a query that starts a
new information need is called a shift query. Note that a shift query always signifies the
beginning of a new CTQ. We also name it as a “CTQ shift”.

4.2 Integration of Pattern, Concept and Time in CTQs

We now describe how to integrate query reformulation, concepts and time threshold in
our pattern-concept-time-based (PCTB) CTQ grouping method. The details of PCTB
is presented in Algorithm 1. The input of the algorithm is a search log containing a set
of consecutive queries. The first step of PCTB (lines 1-10 in Algorithm 1) segments a
query log into cliques by detecting query reformulation performed by the user using tra-
ditional query reformulation strategies. In this paper, we apply thirteen different query
reformulation strategies, which include “word reorder”, “whitespace and punctuation”,
”remove word”, “add word”, “url stripping”, “stemming”, “acronym”, “substring”, “ab-
breviation”, “word substitution”, “spelling correction”, etc. Readers are referred to [8]
for the details, but the names of these strategies are mostly self explanatory. For ex-
ample, “word reorder” means some of the words in a previous query are reordered to
produce the next query, whereas “whitespace and punctuation” means whitespaces and
punctuation marks are added or removed from a query to produce the next query. This
step produces a sequence of cliques which have high precision but low recall (see Sec-
tion 5.2 for the details).

The second step of our method (lines 11-13 in Algorithm 1) extracts concepts from
the queries in each clique using the concept extraction strategy introduced in Section 3.
Thus, after this step, every clique corresponds to a set of concepts. In the third step of
our method (lines 14-19), the conceptual and time similarity between two consecutive
cliques is computed using the following similarity metric:

Sim(clii, clii+1) = α · CosineSim(V (clii), V (clii+1)

+(1− α) · T imeSim(clii, clii+1)
(2)

T imeSim =

{
0.9, if Ti+1 < 60mins

0.1, if Ti+1 ≥ 60mins
(3)

where V (clii) and V (clii+1) are the concept vectors for the cliques clii and clii+1, co-
sine similarity is used in calculating the concept similarity. The time similarity
T imeSim is calculated based on Equation 3, where Ti+1 is the time gap between two
consecutive cliques clii and clii+1, α is the weighting factor between CosineSim and
T imeSim. In traditional session segmentation methods, different time thresholds have
been employed, with typical choices being 15, 30, or 60 minutes. Since our goal is to
boost the recall, we choose a large time threshold, namely, 60 mins. In order to estimate
the time similarity function, we pick 30% of the ground truth CTQs as validation set to
see how CTQs are distributed in different time ranges. Figure 1 shows the distribution.
Since the AOL log spans 3 months, the largest time range is 3 months. We can observe
that 70% of the CTQs have time gap less than 5 minutes, and about 90% percents have
time gap less than 60 minutes.
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Algorithm 1. Concept-Based CTQ Identification
Input: Search engine log data L in the form of (userID, query, URL, timestamp)
Output: CTQs, each CTQ is a set of entries in the form of (userID, query, URL, timestamp,

concepts, label). CTQ will always start with label “false” and contain only one “false”.
1: i=1, q1=false
2: for each pair of consecutive queries qi and qi+1 in L; do
3: if qi+1 is a reformulated query of qi then
4: Label qi+1 as true;
5: else
6: Label qi+1 as false;
7: end if
8: i ← i+1
9: end for

10: Merge into clique clii a sequence of consecutive queries that begins with a query labelled as
“false”, followed by zero or more queries labelled as “true” until a query labelled as “false”
or the end of the query search log is met.

11: for each clique clii in L do
12: Search the concept database to retrieve the concepts of queries in ci with the method

introduced in Section 3; {Each clique can be represented by a vector of concepts}
13: end for
14: for each pair of consecutive cliques clii and clii+1 in L do
15: Calculate the similarity between clii and clii+1 using Equation (2).
16: if Sim(clii, clii+1) > threshold then
17: concatenated clii and clii+1, by reversing the first query of clii+1 from “false” to

“true”;
18: end if
19: end for

According to this observation, we set T imeSim to 0.9 if the two consecutive cliques
fall within the 60-min time threshold, and 0.1, otherwise. If the overall similarity be-
tween two consecutive cliques is larger than a threshold, they are concatenated into one
CTQ.

4.3 Benefits of Concept Based CTQ Identification

Traditional query reformulation strategies usually have high precision but low recall. In
Huang, et. al. [8], query reformulation strategies can obtain a high precision of 98.2%.
We implement their strategies on our own dataset containing 11484 search records, and
obtain a precision of 97%, which is consistent with the result reported in [8]. However,
the recall is only 61.3%, which is quite low. In [8], the low recall was attributed to the
semantic rephrasing problem. That is, some queries are semantically the same but they
cannot be identified with rules (e.g., morphological rules) or lexical databases (e.g.,
Wordnet). In PCTB, we use the existing reformulation strategies to segment a query log
into cliques, which can be considered preliminary groups that need to be refined further.
Due to the high precision of the query reformulation strategy, we do not lose accuracy
in this step. Then, we apply our concept mining and time similarity to identify con-
secutive cliques that are judged to be topically related and concatenate them together.
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Fig. 1. Queries distribution within the ground truth CT query groups

This step can greatly improve the recall of traditional methods based on query reformu-
lation alone, and hence improve the precision of our CTQ identification task. Concept
similarity is calculated by cosine similarity, which is widely used in vector space model
to measure the similarity between two documents, whereas time similarity originates
from time-based session segmentation methods.

4.4 Interest Identification Based on CTQs

Interest identification aims at clustering all topically related queries in the search log
together, whether the queries are consecutive or not. Since a CTQ already represents a
single topic, we propose to cluster CTQs with similar topics together to form an interest
instead of clustering the individual queries. There are two alternatives to cluster topi-
cally similar CTQs into interests. First, since a CTQ is represented by a set of concepts,
we propose to construct a CTQ-concept bipartite graph, in which nodes on one side
represent CTQs, nodes on the other side represent concepts and edges connect CTQs
to their underlying concepts. This is similar to the query-concept bipartite graph in the
“QC” method (which is similar to [10] and explained in Section 2). Scattered topically
related CTQs can be grouped together based on their common concepts. Since the idea
is an extension of QC, we name it “group+QC”. The second method is to apply cosine
similarity on the concept vectors of the CTQs and cluster CTQs of high similarity into
an interest. We name it “group+cos”. Finally, as a baseline in performance comparison,
we also implement the pure cosine clustering method, in which two queries are assigned
to the same cluster if the similarity of their concept vectors is larger than a threshold.
In general, the high accuracy of CTQs benefits the accuracy of interest identification.
More importantly, since clustering on large datasets is very time consuming, cluster-
ing methods based on CTQs instead of individual queries can reduce the computational
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cost by orders of magnitude. Although the extension is intuitive, CTQs significantly
improves the performance of interest identification.

After applying the above clustering techniques, we can aggregate topically related
queries from different CTQs together forming larger query clusters representing user
interests. User interests can be used to predict the user’s future searches or deliver per-
sonal (e.g. advertising, news delivery) services according to the interests. Details on the
applications of user interests and their performance are beyond the scope of this paper
and will be investigated in our future research.

5 Experimental Results

In Section 5.1, we first describe the experimental setup for building the ground truth
and collecting experimental data. In Section 5.2, we compare the performance of
six CTQ identification methods, namely, time-based (TB), search-pattern-based (PB),
time-pattern-based (TPB), concept-based (CB), pattern-concept-based (PCB), and
pattern-concept-time-based (PCTB), some of which are traditionally used in session
segmentation. PCTB is the method proposed in this paper, while the other methods
serve as the baselines in the comparison. In Section 5.3, we apply our CTQ identifica-
tion method, namely, PCTB, in clustering CTQs to find the user’s interests.

5.1 Experimental Setup

We use a subset of AOL search engine log data which contains 11, 484 search records
as our experimental data set. Each record contains attributes such as user ID, query,
time stamp, and URLs that the user has clicked. In order to evaluate the performance of
the CTQ identification methods, we need to create the ground truth, which is the ideal
CTQs obtained from the search log with human judgment. The preliminary ground
truth was built by Gayo-Avello [6], who segmented the search log manually based on
human judgment. The ground truth was manually built by considering the queries, click-
throughs as well as the time distance between queries. This results in 4,253 sessions in
the ground truth. Since in our study we require the queries in a CTQ to be topically
related but there is no threshold requirement on the time gap between the queries, we
went through the ground truth built by Gayo-Avello and concatenated consecutive, se-
mantically related sessions into one CTQ regardless of the time gaps between them. As
a result, 197 sessions were combined, resulting in 4,056 groups in our ground truth.

To perform concept extraction, we implemented a Google middleware. When a query
is submitted to the middleware, the top 100 search results from Google are retrieved, and
the important terms are extracted according to the concept extraction method proposed
in Section 3. Table 2 shows the statistics of our experimental dataset.

5.2 Evaluation of CTQ Identification Methods

We now compare the performance of six CTQ identification methods, namely TB, PB,
TPB, CB, PCB and PCTB.
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Table 2. Statistics of Dataset Used in Experiments

No. of queries 11,484
No. of users 215
Avg. no. of queries issued by a user 53.41
No. of concepts retrieved 226,601
Avg. no. of concepts retrieved for a query 19.73
No. of CTQs 4056
Avg. no. of queries per CTQ 2.83
Avg. no. of concepts per CTQ 55.87
No. of search patterns 15

– Time-based method (TB): TB purely relies on the time gap between two consecu-
tive queries and serves as the baseline. If the time gap exceeds a certain threshold,
a new CTQ is formed.

– Pattern-based method (PB): PB identifies CTQs purely based on query reformula-
tion patterns, which is the strategy used by Huang, et. al. [8].

– Time-Pattern-based method (TPB): TPB is a combination of TB and PB.
– Concept-based method (CB): CB identifies CTQs based on the similarity of the

concepts extracted for the queries.
– Pattern-Concept-based method (PCB): PCB is a combination of PB and CB.
– Pattern-Concept-Time-based method (PCTB): PCTB is a combination of PB, CB

and TB (introduced in Section 4.2).

We employ the six methods to segment the continuous AOL search log into CTQs. The
results are evaluated against the ground truth to obtain precision, recall and F-measure.
Precision is defined as the number of correctly identified CTQ shifts divided by the
total number of identified CTQ shifts. Recall is the number of correctly identified CTQ
shifts divided by the number of correct CTQs in ground truth. F-measure is an overall
performance measure defined on precision and recall and is defined as (2×precision×
recall)/(precision+ recall). It is important to note that in our definition of precision
and recall the goal is to correctly identify all CTQ shifts (i.e., shift queries) without any
mistake (i.e., misidentifying a query that is topically related to its preceeding query as a
shift query), whereas the query reformulation strategies in Huang, et. al., [8] try to find
sequences of semantic consistent queries. Thus, the precision and recall values obtained
in our experiments should be interpreted differently from that of the traditional work.

Figure 2 shows the performance of the six CTQ identification methods at their op-
timal cutoff thresholds. In the comparison, TB is used as the baseline. As discussed in
Section 4.2, PB suffers from the semantic rephrasing problem, meaning that it is hard to
identify a semantically related but syntactically different query as a reformulated query,
however this can help identify shift query. According to our definition of precison and
recall in our CTQ identification background, the misidentification will lower precision
but does not hurt recall much since se- mantic shift queries must not be reformulations
of their preceding queries, that is why PB achieves high recall. This property can be
observed in Figure 2, which shows a low precision and high recall for PB. Although
TPB considers the time factor in addition to query reformulation, it has a performance
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Fig. 2. Performance of different CT queries grouping methods

similar to PB, meaning that time is not a strong factor in deciding CTQs. We can see
that CB can effectively boost recall, because semantically similar queries can be easily
identified by comparing the concept spaces of two consecutive queries. By combining
PB and CB, PCB achieves both good precision and recall. Finally, we observe that by
adding the time factor into PCB, we further improve the performance of PCTB, which
is the best method with the highest F-measure.

There are two variables in CTQ identification, which are α in Equation 2 and the
similarity threshold. In order to check how the performance is affected by these two
variables, we collect 11 performance points at different cutoff thresholds, ranging from
0.25 to 0.75 with 0.05 increment in each step, and 8 different α values. Thus, there
are 8*11 combinations in total. For clarity, we do not list all of the combinations. For
each α value, we instead pick five values, which are the highest, lowest, mean, standard
deviation, and the number of points with F-measure values larger than 0.8. Thus, there
are 8*5 combinations in total, which are shown in Table 3. We can see from the table
that if we purely rely on time similarity, which is TB (i.e.α = 0), we obtain a much lower
F-measure of 0.77. This shows that a pure time-based similarity function is not optimal
for CTQ identification. Moreover, when the similarity function is biased towards the
concept side (e.g., α = 0.6 and α = 0.8), a larger number of points with F-measure
larger than 0.8 are obtained, meaning that the overall effectiveness is higher.

5.3 Interest Identification

In this section, we compare the performance of “QC”, “Baeza”, “group+QC”,
“group+cosine” and “pure cosine”. These methods have been introduced in Section
2 and Section 4.4. The five methods are used to cluster queries into topically related
queries forming the interests of the user (see 5.1). To create the ground truth for this
experiment, we examine the ground truth CTQs obtained in the previous experiment
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Table 3. F-measure Statistics at Different α

α Highest Lowest Mean S.D. > 0.8

0.8 0.848 0.813 0.839 0.008 11
0.6 0.854 0.687 0.820 0.054 10
0.4 0.861 0.598 0.789 0.077 7
0.2 0.858 0.598 0.771 0.067 4
0.15 0.851 0.738 0.776 0.036 3
0.1 0.858 0.738 0.776 0.036 3
0.05 0.834 0.738 0.766 0.024 1
0.0 0.767 0.761 0.762 0.003 0
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Fig. 3. Performance comparison of different Query Clustering methods

(see Section 5.1) and manually label CTQs on the same topic but distributed across the
search log as an interest. There are totally 2,345 interests in our ground truth and on
average 4.9 queries per interest. Clustering results are compared to the ground truth to
compute the precision and recall, which are defined as follows.

precision(q) =
|Qrelevant ∩Qretrieved|

|Qretrieved|
(4)

recall(q) =
|Qrelevant ∩Qretrieved|

|Qrelevant|
(5)

where Qrelevant is the set of queries that exist in the predefined cluster for q, and
Qretrieved is the set of related queries generated by a query clustering algorithm. The
precision and recall values from all queries are averaged to plot the performance graphs.

Figure 3 shows the precision, recall and F-measure of the five methods under eval-
uation, namely, “QC”, “Baeza”, “group+QC”, “group+cos”, “pure cos” with differ-
ent similarity cutoff thresholds. By comparing QC with group+QC and pure-cos with
group+cos in Figure 3(c), we can observe that clustering based on CTQs can consis-
tently and significantly improves the effectiveness of interest identification. Since our
CTQ identification method, PCTB, can discover CTQs with high precision and recall
as shown in Section 5.2, both group+QC and group+cos benefit from the high preci-
sion and recall of PCTB. Thus, the group-based methods perform better than non-group
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Table 4. Performance of Different Query Clustering Methods

Method Precision Recall F-measure
QC 0.775 0.672 0.720
Baeza 0.807 0.573 0.670
group+QC 0.753 0.783 0.767
group+cos 0.810 0.807 0.808
pure cos 0.841 0.470 0.603

based methods in identifying user interests. Finally, we can observe that Baeza’s perfor-
mance is somewhere in the middle of the five methods. Although it is non-CTQ based,
it performs better than the other two non-CTQ based methods, pure cosine and QC.

Finally, we observe that “group+cos” outperforms “group+QC” in Figure 3(c). This
may be attributed to the difference between the two methods’ similarity functions. In
cosine similarity, the similarity is calculated based on common words as well as their
corresponding concept weights. However, in QC, two queries are similar only because
they share a certain number of common concepts, but the weights of the concepts are
not considered.

Figure 3(a) and 3(b) depict the precision and recall values of the five methods with
different cutoff thresholds. With the increase of the cutoff threshold, more evidence is
needed in order to merge two clusters. Thus, the precision becomes higher, and the
correspondingly recall becomes lower. We can see that CTQ-based clustering methods
perform very well with high recall values. Again, since PCTB can effectively cluster
consecutive and similar queries together, we can expand the hidden semantics from
a single query to a group of similar queries effectively. By exploiting the similarities
between CTQs, we can effectively identify and group semantically related queries to-
gether, and thus improving the recall of the proposed group-based clustering methods
(i.e., “group+cos” and “group+QC”).

Table 4 shows the best F-measure values for “QC”, “Baeza”, “group+QC”,
“group+cos”, and “pure cos” methods. From the results, we can see that CTQ-based
methods perform better compared to the other two baseline methods. Furthermore, the
complexity of CTQ-based methods is much less compared to QC and Baeza.

6 Conclusions

This paper develops a method for identifying sets of continuous topically related queries,
called CTQs. The method integrates three techniques that are based on reformulation
patterns, concepts and time thresholds of the queries. Thus, it is called Pattern-Concept-
Time-Based (PCTB) method. We show that PCTB can integrate the merits of both tradi-
tional query reformulation and segmentation methods based on time thresholds. PCTB
takes into account the overlap of the concepts behind the queries to group semantically
related queries together. To evaluate the effectiveness of our approach, we employ the
AOL search log together with a Google middleware for concept extraction. Experi-
mental results show that our approach yields better precision and recall comparing to
the existing CTQ identification methods. We apply PCTB to identify user interests by
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clustering queries sporadically distributed in the query log but are topically related into
user interests. We propose to first identify the CTQs and then cluster the CTQs to pro-
duce user interests. Since PCTB produces high-quality CTQs, the subsequent clustering
process becomes much more efficient and effectiveness.

As for the future work, we plan to study the effectiveness of applying the identified
user interest to some real applications, for example, advertisement targeting, personal
news delivery, and so on.
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7. He, D., Göker, A., Harper, D.J.: Combining evidence for automatic web session identifica-
tion. Information Processing Management 38 (2002)

8. Huang, J., Efthimiadis, E.N.: Analyzing and evaluating query reformulation strategies in web
search logs. In: CIKM (2009)

9. Lau, T., Horvitz, E.: Patterns of search: analyzing and modeling web query refinement. In:
Proc. of the UM Conference (1999)

10. Leung, K., Lee, D.: Deriving concept-based user profiles from search engine logs. IEEE
Transactions on Knowledge and Data Engineering 99(1) (2007)

11. Leung, K.W.-T., Fung, H.Y., Lee, D.L.: Constructing concept relation network and its appli-
cation to personalized web search. In: Proceedings of the 14th International Conference on
Extending Database Technology, EDBT/ICDT 2011, pp. 413–424 (2011)

12. Ozmutlu, H.C., Ozmutlu, F.S.: Automatic new topic identification in search engine transac-
tion logs (2006)

13. Ozmutlu, H.C., Ozmutlu, S.: Cross-validation of neural network applications for automatic
new topic identification. American Society for Information Science and Technology (2008)

14. Ozmutlu, S., Ozmutlu, H.C., Buyuk, B.: Using conditional probabilities for automatic new
topic identification. Online Information Review (2007)

15. Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: Proc. of the INFOSCALE
Conference (2006)

16. Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web search
engine query log. SIGIR Forum, 6–12 (1999)



Efficient Responsibility Analysis

for Query Answers

Biao Qin, Shan Wang, and Xiaoyong Du

School of Information, Renmin University of China, Beijing 100872, China
{qinbiao,swang,duyong}@ruc.edu.cn

Abstract. Provenance information describes the origins and the history
of data in its life cycle. Responsibility captures the notion of degree of
causality and tells us which facts are the most influential in the lineage.
Since responsibility cannot be computed by a relational query, the anal-
ysis of lineage becomes an essential tool to compute responsibility of
tuples in the query results. We extend the definitions of causality and
responsibility of a tuple t for the answer r to those of a set of tuples for
the answer r, and Co-Trees to P-Trees for read-once functions. By using
P-Trees, we develop an efficient algorithm to compute responsibilities of
tuples in read-once formulas, and a novel algorithm to find top-k respon-
sibility tuples in read-once functions. Finally, experimental evaluation on
TPC-H data shows substantial efficiency improvement when compared
to the state of the art.

1 Introduction

Causality in databases aims to answer the following question: given a query over
a database instance and a particular output of the query, which tuple(s) in the
instance caused that output to the query? So causality is related to provenance
[4,11], yet it is a more refined notion. A formal, mathematical study of causality
has been initiated by the work of Halpern and Pearl [13]. Chockler and Halpern
[5] introduced an extension of causality called degree of responsibility that allows
us to do a more fine-grained analysis of causality. Since then, causality and
responsibility become hot in computer science research community [8,6,20,22].

According to causality [13], variables are partitioned into exogenous and en-
dogenous. Intuitively, exogenous variables define a context determined by exter-
nal, unconcerned factors, deemed not to be possible causes, while endogenous
variables are the ones who affect the outcome and are thus potential causes.
Moreover, the endogenous variables are ones whose values are ultimately deter-
mined by the exogenous variables. In a database setting, variables are tuples
in the database. An endogenous tuple t is a cause for the query results only
if there is a hypothetical setting of the other endogenous tuples under which
the addition/removal of t causes the query results to change. Therefore, contin-
gency is a set of endogenous tuples which relate to tuple t. If we remove them
from the database, then t immediately affects the answer in the new state of the
database. In theory, in order to compute the contingency one has to iterate over
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subsets of endogenous tuples. So it is NP-complete to check causality in general
[8]. However, Meliou et al. [22] have shown that the causality of conjunctive
queries can be determined in PTIME, and moreover, all causes can be com-
puted by a relational query. Causality is related to lineage of query results, such
as why-provenance [7] or where-provenance [2], and very recently, explanations
for non-answers [27,3,15].

The definition of responsibility refines the “all-or-nothing” concept of causality
by measuring the degree of causality as a function of the size of the smallest
contingency set. In applications involving large datasets, it is critical to rank
the candidate causes by their responsibility, because answers to complex queries
may have large lineages and large numbers of candidate causes. In theory, in
order to compute the responsibility one has to iterate over all contingency sets.
Hence it is NP-hard to compute responsibility in general [5]. However, Meliou et
al. [22] have proved that the complexity depends on the conjunctive query and
established a dichotomy between PTIME and NP-complete cases. The class of
PTIME queries is called linear queries. If you are interested in linear queries,
please refer to [22]. For the PTIME cases, they gave a non-trivial algorithm,
consisting of a reduction to the max-flow computation problem. Moreover, they
have proved that responsibility cannot be computed by a relational query. So
responsibilities must be computed by data-centric techniques. A Boolean formula
Φ is read-once [14] if it can be factorized into a form where every Boolean variable
appears at most once.

Example 1. If the following query evaluates over databases shown in Figure 1,

q1 : −R1(A), R2(B), R3(C), R4(A,B,C,D)

The lineage of the answer tuple is shown as follow:

Φ = a1b1c1d1 + a2b2c2d2 + a2b2c3d3

= a1b1c1d1 + a2b2(c2d2 + c3d3) (1)

Since q1 is not a linear query, Meliou’s algorithm can not perform responsibility
analysis for Φ in PTIME. Because each variable occurs at most once, Equation
(1) is a read-once formula.

In this paper, we investigate a method to efficiently compute the responsibility
for read-once formulas. In order to compute responsibilities of tuples in read-
once formulas, we extend Co-Tree [10] to P-Tree with two additional fields for
each node. The main contributions of this paper are as follows.

– We extend the definitions of causality and responsibility of a tuple t for the
answer r to those of a set of tuples for the answer r, and Co-Trees to P-Trees
for read-once formulas.

– By using P-Trees, we devise an efficient PTIME algorithm to compute the
responsibilities of tuples in read-once expressions,

– We introduce a novel algorithm to find top-k responsibility tuples in read-
once formulas.
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R1

tid A

a1 2

a2 4

R2

tid B

b1 1

b2 2

R3

tid C

c1 2

c2 4

c3 6

R4

tid A B C D

d1 2 2 1 1

d2 4 4 2 2

d3 4 6 2 3

Fig. 1. An example database

The rest of this paper is organized as follows: In the next section, we outline
query cause and responsibility. In Section 3, we develop an algorithm to compute
responsibilities of tuples in read-once functions. In Section 4, we introduce a
novel algorithm to find top-k responsibility tuples. In Section 5, we report the
experimental results. In Section 6, we discuss related work before concluding
with Section 7.

2 Preliminaries

Assume a standard relational schema includes relation R1, · · · , Rk. We write D
for a database instance and q for a query. D = Dn ∪Dx, where Dn and Dx rep-
resent endogenous and exogenous tuples in D, respectively. Ri = Rn

i ∪Rx
i , where

Rn
i and Rx

i denote the endogenous and exogenous tuples in Ri, respectively. Me-
liou et al. [22] adapted the concept of causality to Boolean query as follows: A
tuple t is a counterfactual cause if its removal from the database makes q false.
A tuple t is an actual cause for result tuple r of q in D if it has a contingency
Γ ⊆ Dn, such that t is a counterfactual cause for r in D − Γ . Obviously, if we
set Γ = ∅, then every counterfactual cause is also an actual cause. The causality
definitions [22] can be extended to sub-formulas Φi as follows.

Definition 1. Assume that the lineage of an answer tuple r forms a formula Φ.
Let Φi ∈ Φ and φij ∈ Φi and Vars(Φ) denote all tuples involved in Φ.

– A set of tuples Vars(φij ) is a counterfactual cause with respect to Φi, if its
removal from the database also removes Φi from Φ.

– A set of tuples Vars(φij ) is an actual cause with respect to Φi if one can find
a contingency under which it becomes a counterfactual cause: more precisely,
one has to find a set Γ such that, after removing Γ from the database we
bring it to a state where removing/inserting Vars(φij ) causes Φi to switch
between Φi ∈ Φ and Φi 
∈ Φ.

The responsibility definition [22] can be extended to sets directly as follows:

Definition 2. Let r be an answer or non-answer to a query q, and let a set of
tuples Vars(Φi) be a cause. The responsibility of Vars(Φi) for the answer r is

resp(Φi ) =
1

1 +MCS (Φi)

where MCS (Φi) = minΓ |Γ | and Γ ranges over all contingency sets for Vars(Φi).
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We will illustrate how to computeMCS (Φ) in Example 3 later. The co-occurrence
graph Gc [12] of a Boolean formula Φ is a undirected graph whose set of nodes
V (Gc) is the set of variables of Φ and whose set of edges E(Gc) is defined as
follows: there is an edge between x and y iff both occur in the same conjunct
of Φ. Using the co-occurrence graph, Golumbic et al. [10] gave a fast algorithm
that takes as input a formula in irredundant disjunctive normal form, decides
whether it is read-once, and if it is, computes the read-once form. Traditionally,
Co-Trees [10] have been used to represent read-once formulas. Co-Trees are trees
where leaves correspond to Boolean variables while internal node ∗© represents
∧ and +© represents ∨.

3 Responsibility Analysis of Read-Once Formulas

It is NP-hard to compute the degree of responsibility for general Boolean formu-
las [5]. Based on a new data structure P-Tree, we develop an efficient algorithm
called PResp to compute the responsibilities of all variables in read-once formulas
in P-TIME. We describe the two steps of PResp one by one as follows.

3.1 Building P-Trees for Read-Once Formulas

In order to compute responsibility, we introduce a new data structure P-Tree to
represent read-once expressions. Similar to Co-Tree, nodes of P-Tree have the
following properties:

– Every leaf node is a distinct variable.
– Internal node ∗© represents ∧ and +© represents ∨.
– In P-Tree, ∗© and +© alternate along every path.

The key technique of Golumbic’s algorithm [10] is to recursively partition a co-
occurrence graph Gc into conjunction and disjunction partitions alternately and
implement a function ρ that maps graphs to read-once formulas. It takes the
Gc of a DNF formula as input. If Gc can be divided into disjunction partitions
G1, . . . , Gn by calculating its connected components, then ρ(Gc) = ρ(G1) +
. . . + ρ(Gn). Otherwise, we compute the complement of Gc and check again
for connected components G1, . . . , Gm. Then, ρ(Gc) = ρ(G1) ∗ . . . ∗ ρ(Gm). We
recursively execute with smaller graphs and check for connected components in
these graphs and their complements. Before any complementation, the formula
is obtained as the disjunction of the subformulas for the connected components.
With each complementation, we alternate conjunctions and disjunctions until
one of the following cases happens:

– The connected component is a trivial graph, that is, the connected compo-
nent is a node.

– The complement of a connected component is also a connected graph. In this
case, this partition of subgraph can not be mapped into a read-once formula.
So the formula can not be transformed into a read-once function.
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Since a P-Tree can be mapped into a read-once formula, Φ is mapped to the
root node of its P-Tree. Furthermore, a partition of a P-Tree can be mapped
into a subformula. So partition and subformula can be used interchangeably in
this paper. Every node and its children form a partition in a P-Tree. In order to
remember the property of a subformula, we give the following definition.

Definition 3. In order to make a subformula false, we call the minimal set of
variables that should be set to false the minimal false set, which is denoted by
MFS. We further denote the size of the minimal false set of a subformula Φi by
MFS (Φi ).

The difference between MCS (Φi ) and MFS (Φi ) is that the former represents the
minimal number of variables outside Vars(Φi) should be set to false, while the
latter denotes the minimal number of variables inside Vars(Φi) should be set to
false. Since there are +© and ∗© nodes in a P-Tree, we use Φ+ to denote a partition
from +© and Φ∗ to denote a partition from ∗©, respectively. For any node vi of a
P-Tree, MFS (vi) means the size of the minimal false set of a partition from vi,
and Vars(vi) means all variables of a partition from vi. Different from Co-Tree,
every node vi of P-Tree has three fields, which are shown in Figure 2(a). The
first field is type which denotes a tuple t, +©, or ∗©. The second field is MFS (vi).
The final field is MCS (vi). For any node vi, we use its type to identity it. So
different from building Co-Tree, we should compute MFS (vi ) and MCS (vi) of
all nodes in a P-Tree. The following theorem introduces a technique to compute
MFS (vi) of all nodes vi in a P-Tree bottom-up.

Theorem 1. There are three kinds of nodes vi in a P-Tree. We compute their
respective MFS (vi ) as follows.

1. If the first field of a node vi is a tuple t, then MFS (t) is equal to 1.
2. If the first field of a node vi is ∗©, then MFS ( ∗©)= min(MFS (Φ1), · · · ,

MFS (Φm)) for all sub-partitions Φj ∈ Φ∗.
3. If the first field of a node vi is +©, then MFS (+©)=

∑m
j=1 MFS (Φj) for all

sub-partitions Φj ∈ Φ+.

Proof. 1. In a P-Tree, tuples are only in the leaf nodes. For each leaf node, the
partition includes only one tuple. Thus MFS (t) is equal to 1.

2. If the first field of a node vi is ∗©, then the partition Φ∗ can be divided
into m conjunctive sub-partitions. So ρ(Φ∗) = ρ(Φ1) ∗ . . . ∗ ρ(Φm). If we set
any one of its sub-partition Φj to false, Φ∗ is also set to false. Thus MFS ( ∗©)=
min(MFS (Φ1), · · · ,MFS (Φm)) for all sub-partitions Φj ∈ Φ∗.

3. If the first field of a node vi is +©, then the partition Φ+ can be divided into
m disjunctive sub-partitions. So ρ(Φ+) = ρ(Φ1)+. . .+ρ(Φm). If we set all its sub-
partitions to false, then Φ+ is also set to false. Thus MFS (+©)=

∑m
j=1 MFS (Φj)

for all sub-partitions Φj ∈ Φ+.
This proves the theorem.

By Theorem 1, we introduce Algorithm 1 to build P-Trees for Boolean formulas.
The following theorem proves Algorithm 1 can build P-Tree and compute correct
MFS (vi) of all nodes in a P-Tree.
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Algorithm 1. Building-PTree(Gc, Root , disjunct = true)

1: create a node vi;
2: if (Gc is a trivial graph) then
3: type(vi ) = t and MFS(vi) = 1
4: else
5: type(vi ) = !disjunct? ∗©: +©;
6: for (every connected component G[i] of Gc) do
7: convert G[i] to its complement graph G[i];
8: M [i] = Building-PTree(G[i], vi , !disjunct);
9: MFS(vi) = !disjunct ? min(M [0 ], . . . ,M [n]) : SUM (M [0 ], . . . ,M [n]);
10: end for
11: end if ;
12: add vi to the child of Root ;

Theorem 2. If a formula Φ can be compiled into a read-once form, Algorithm 1
can build its P-Tree from its co-occurrence graph and compute correct MFS (vi)
of all nodes vi.

Proof. If a formula Φ can be compiled into a read-once function, the technique
of Golumbic et al. [10] ensures that it can be built into a Co-Tree. Our P-Tree
is similar to Co-Tree besides two additional fields for every node. Thus our
algorithm can build a P-Tree for the formula. Moreover, Theorem 1 ensures that
Algorithm 1 can compute correct MFS (vi ) of all nodes in a P-Tree. This proves
the theorem.

We prove the time complexity of the Building-PTree algorithm as follows.

Theorem 3. For a formula Φ which can be compiled into a read-once func-
tion, Algorithm 1 can build its P-Tree from its co-occurrence graph and compute
MFS (vi) of all nodes in the time complexity of O(αN2), where α is the number
of tables in the query and N is the number of nodes in the co-occurrence graph.

Proof. In every recursive iteration of Algorithm 1, it computes the connected
components of the co-occurrence graph whose time complexity is O(N2). It con-
verts every connected component into its complement graph whose time com-
plexity is O(N2).

In a P-Tree, the conjunction and disjunction nodes occur alternately. So the
algorithm iterates at most 2α times. Therefore, the time complexity of Algorithm
1 is O(α) ∗ (O(N2) +O(N2)) = O(αN2).

The following example demonstrates the technique to build a P-Tree and com-
pute MFS (vi) of all nodes in the P-Tree.

Example 2. Continuing the running Example. We build its P-Tree as follows.
From Equation (1), we know that Φ = a2b2(c2d2 + c3d3) + a1b1c1d1. Let Φ1 =
a2b2(c2d2 + c3d3) and Φ2 = a1b1c1d1. Since Vars(Φ1 ) ∩ Vars(Φ2 ) = ∅, the Gc

of Φ has two connected components G[1] for Φ1 and G[2] for Φ2. We first create
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a disjunction node +©0 which represents Φ and then convert G[1] and G[2] into
their respective complement graphs G[1] and G[2]. We then use G[1] and G[2]
as input and build a P-Tree top-down. We create a conjunction node ∗©11 to
represent Φ1 and add it to the child of +©0. Then we break G[1] into three
connected components. Since its components a2 and b2 are both trivial graphs,
we create a leaf node for every variable and then add them to the children of
∗©11. At the same time, we create a node +©21 and then add it to the child of
∗©11. We recursively build its children. With the similar method, we can build
the right branch of +©0. The P-Tree is shown in Figure 2(a).

We use the left branch of the P-Tree as an example to compute MFS (vi)
of all nodes bottom-up. Since c2, d2, c3 and d3 are all leaf nodes, MFS (c2 ) =
MFS (d2 ) = MFS (c3 ) = MFS (d3 ) = 1. Because ∗©31 is a conjunctive node,
MFS ( ∗©31) = min(MFS (c2 ),MFS (d2 )) = 1. With a similar method, MFS ( ∗©32)
= 1. Since +©21 is a disjunctive node, MFS (+©21) = MFS ( ∗©31) + MFS ( ∗©32) =
2. Because a2 and b2 are both leaf nodes, MFS (a2 ) = MFS (b2 ) = 1. Since ∗©11

is a conjunctive node, MFS ( ∗©11) = min(MFS (a2 ),MFS (b2 ),MFS (+©21)) = 1.
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(b) The partly expanded P-Tree

Fig. 2. The P-Tree and its partly expanded P-Tree of Equation (1)

3.2 Computing Responsibilities of Tuples

Theorem 4. Assume that a P-Tree has a node vi and its parent node vj. We
compute MCS (vi) as follows:

1. For a root node vj, MCS (vj ) is equal to 0.
2. If the first field of vj is ∗©, then MCS (vi) = MCS (vj ).
3. If the first field of vj is +©, then MCS (vi) = MCS (vj )+MFS (vj )−MFS (vi).

Proof. 1. For a root node vj , Vars(vj ) is a counterfactual cause with respect to
r. So MCS (vj ) = 0.

2. If the first field of vj is ∗©, vj can be divided into m conjunctive partitions.
So ρ(vj) = ρ(v1) ∗ · · · ρ(vi) · · · ∗ ρ(vm). Thus MCS (vi ) = MCS (vj ).

3. If the first field of vj is +©, then vj can be divided into m disjunctive
partitions. So ρ(vj) = ρ(v1)+ · · · ρ(vi) · · ·+ ρ(vm). If Vars(vi) is an actual cause
for r, then Vars(vj ) is an actual cause for r and Vars(vi) is an actual cause for
partition vj . Thus, MCS (vi ) = MCS (vj ) +MFS (vj )−MFS (vi).

This proves the theorem.
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By Theorem 4, the Calc-Responsibility algorithm computesMCS (vi ) of all nodes
in a P-Tree top-down and further computes the responsibilities of all variables
in read-once formulas.

Algorithm 2. Calc-Responsibility(Root)

1: if (Root is a leaf node) then
2: resp(x) = 1

1+MCS(x)
;

3: else if (type(Root) is ∗©) then
4: for (every child node vi of Root) do
5: MCS(vi) = MCS(Root);
6: Calc-Responsibility(vi);
7: end for
8: else
9: for (every child node vi of Root) do
10: MCS(vi) = MCS(Root) +MFS(Root)−MFS(vi);
11: Calc-Responsibility(vi);
12: end for
13: end if ;

The following theorem proves Algorithm 2 can compute correct MCS (vi ) of
all nodes in a P-Tree.

Theorem 5. If a formula Φ can be compiled into a read-once form, Algorithm 2
can compute correct MCS (vi ) of all nodes in a P-Tree and correct responsibilities
of all variables in Φ.

Proof. If a formula Φ can be compiled into a read-once form, then Algorithm
1 can build its P-Tree. Moreover, Theorem 4 ensures that Algorithm 2 can
compute correct MCS (vi ) of all nodes in a P-tree and correct responsibilities of
all variables in Φ. This proves the theorem.

We prove the time complexity of Algorithm 2 as follows.

Theorem 6. Assume that a formula Φ has N variables. If Φ can be compiled
into a read-once form, then Algorithm 2 can compute the responsibilities of all
variables in the time complexity of O(N).

Proof. By the property of a P-Tree, we conclude that the number of nodes in the
P-Tree of Φ is not more than the sum of N and the number of conjunction and
disjunction operators. Since both conjunction and disjunction operators are bi-
nary, the sum of conjunction and disjunction operators is less than N . Therefore,
the number of nodes is less than 2N .

Algorithm 2 computes the responsibilities of all variables at one time depth-
first traversal of the P-Tree. So its time complexity is O(N). This proves the
theorem.
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The following example demonstrates the technique to compute the responsibili-
ties of all input tuples for the answer tuple r.

Example 3. Continuing Example 2. We have built a P-Tree of Φ and computed
MFS (vi) of all nodes in the P-Tree. By Theorem 4 item 1, we set MCS (+©0)
= 0. We use the left branch of the P-Tree as an example to compute the re-
sponsibilities of all tuples in a depth-first method. Since +©0 is a disjunction
node, MCS ( ∗©11) = MCS (+©0) + MFS (+©0) - MFS ( ∗©11) = 1. Then, we look
on ∗©11 as a root node. Since ∗©11 is a conjunction node, MCS (a2 ) = MCS (b2 )
= MCS (+©21) = MCS ( ∗©11) = 1. So resp(a2) = resp(b2) = 0.5. Finally, we look
on +©21 as a root node. With a similar method, we can compute MCS (vi ) of
all its children and the responsibilities of all its leaf nodes. The final P-Tree is
shown in Figure 2(a).

4 Computing Top-k Responsibility Tuples in a Read-Once
Formula

The MCS s of the nodes in a P-Tree have the following properties:

Theorem 7. The MCSs of the nodes in a P-Tree monotonically increase as we
go down the P-Tree.

Proof. The proof is very easy to see using recursion. In P-Trees, every leaf node
is a distinct variable, and +© and ∗© alternate along each path. Assume that
there are a node vi and its parent node vj in a P-Tree. There are the following
two cases:

– If the first field of vj is ∗©, then MCS (vi) = MCS (vj) by Theorem 4 item 2.
Thus MCS (vi) ≥ MCS (vj).

– If the first field of vj is +©, then MCS (vi) = MCS (vj)+MFS (vj)−MFS(vi)
by Theorem 4 item 3. Since the first field of vj is +©, MCS (vj) =

∑
Γ |Γ | by

Theorem 1 item 3, where Γ ranges over its all children. Thus MFS (vj) >
MFS (vi) and MCS (vi) ≥ MCS (vj).

This proves the theorem.

We know that the MFS of every leaf node is 1. Thus if a ∗© has a leaf node then
its MFS is equal to 1 by Theorem 1 item 2. +© does not influence the MFS of
its parent node ∗©. Once we meet this kind of ∗©, we stop expanding its children
and compute the MFSs bottom-up. In this way, we can compute the MFS s of
all nodes except the unexpanded +©s. Since +© may become a unexpended node,
the P-Tree has a new kind of leaf node.

We know that the MCS of the root is equal to 0. Thus by Theorem 4, we
can compute the MCS of every node in the P-Tree top-down. Since we should
compute MFS bottom-up, we cannot compute the MFS of the unexpanded +©.
Since the parent node of +© is ∗©, the MCS of +© is equal to the MCS of ∗©
by Theorem 4 item 2. Thus for the unexpanded +©, we can compute its correct
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Algorithm 3. Building-PTree-Topk(Gc, Root , disjunct = true, expand = true)

1: create a node vi;
2: if (Gc is a trivial graph) then
3: type(vi) = t and MFS(vi) = 1;
4: else if (!expand ) then
5: type(vi) = +© and MFS(vi) = x;
6: add vi to a queue;
7: else
8: type(vi) = !disjunct? ∗©: +©;
9: isStop = (Gc includes a trivial graph && !disjunct)? true: false;
10: for (every connected component G[j] of Gc) do
11: convert G[j] to its complement graph G[j];
12: if (isStop) then M [j] = Building-PTree-Topk(G[j], Root , !disjunct , false);
13: else M [j] = Building-PTree-Topk(G[j], Root , !disjunct , true);
14: MFS(vj ) = !disjunct ? min(M [0 ], . . . ,M [n]) : SUM (M [0 ], . . . ,M [n]);
15: end for
16: end if ;
17: add vi to the child of Root ;

MCS too. We sort the unexpanded nodes by their MCS in a queue. We expand
the P-Tree of a formula step by step until we find the top-k responsibility tuples.
We give the definition of the expanding step as follows.

Definition 4. An expanding step of a P-Tree is to expand all branches until each
of them meets a ∗© whose children include at least one leaf node and children
+©s will not be expanded in this step.

If we do not find the top-k responsibility tuples in the first expanding step,
we should further expand the P-Tree. We expand the unexpanded +© with the
smallest MCS from the queue. For the unexpanded +©, we have known its MCS
but do not know its MFS . So the unexpanded +© has the same property as
the root node. Thus we can expand the unexpanded +© as a root node for the
following expanding step. And we can compute the correct MFS for each node
except the new unexpanded +©s and the correct MCS for all nodes.

Algorithm 3 expands an expanding step of the P-Tree for every branch and
then we can compute the MCS of every node by the Calc-Responsibility al-
gorithm. Combining Theorem 7, we can check if we have found out the top-k
responsibility tuples. If so, we can stop expanding the P-Tree. Otherwise, we
should further expand the P-Tree. Thus we can find the top-k responsibility
tuples without building the whole P-Tree of the formula.

The following example demonstrates the technique to find out the top-k re-
sponsibility tuples without building the whole P-Tree.

Example 4. We plan to compute the top-5 responsibility tuples of Equation (1).
We build its P-Tree as follows. With the same method as in Example 2, we create
a conjunction node ∗©11 to represent Φ1 and add it to the child of +©0. Then
we break G[11] into three connected components. Since its components a2 and
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Table 1. Lineage characteristics (scale factor 0.1)

Queries Lineage size #variables
Q3 125,154 158,504
Q10 11,433 21,833
Q15 180,785 181,785
Q16 80,000 100,001
Q18 165,324 216,368

b2 are trivial graphs, we create one leaf node for every variable and then add
them to the children of ∗©11. Since G[11] includes trivial graphs and node ∗©11

is conjunctive, node +©21 will not be expanded. Thus node +©21 is a unexpanded
node. Then we create a conjunction node ∗©12 to represent Φ2 and add it to the
child of +©0. With the similar method to build the sub-tree of ∗©11, we can build
the sub-tree of ∗©12. Its P-Tree is shown in Figure 2(b).

We use the left branch of the P-tree as an example to compute the MFS s of
all nodes bottom-up. Since nodes a2 and b2 are both leaf nodes, their respective
MFSs are equal to 1. We do not know the exact MFS (+©21) but we do know
that it is greater than 1. Since node ∗©11 is a conjunctive node, MFS ( ∗©11)
= min(MFS (a2), MFS (b2), MFS (+©21). Thus MFS ( ∗©11) = 1. We can further
compute the MCS s of all nodes of the P-Tree similar as in Example 3. Since
we have found the top-5 responsibility tuples, we will not expand node +©21

anymore.

5 Experiments

The experiments were conducted on two intel Xeon CPUs each 2.0GHz, 4.0G
Memory and running Windows Server Enterprise. We use boost library [1] to
implement graph data structure and min-cut algorithm. The experiments have
been done on TPC-H data with scale factor 0.1. Table 1 reports the sizes of the
lineage (ie, number of clauses) for each of our queries and the number of variables
needed for responsibility analysis. We first report the experiments for read-once
formulas and then for top-k responsibility tuples of read-once formulas. In the
experiments, we only consider Boolean queries.

5.1 The Experiments for Read-Once Formulas

Since the Building-PTree algorithm and the Cal-Responsibility algorithm are
the two steps to calculate the responsibility, we call the combination of the two
steps the PTree algorithm and denote it by PResp. We adopt the linear algorithm
proposed in [22] as a baseline and denote it by LResp. From the query-centric
perspective, Meliou et al. introduced LResp to perform responsibility analysis
for linear queries. The lineages of hierarchical queries is read-once [24]. If a query
is not hierarchical but linear, PResp can not perform its responsibility analysis
but LResp can perform its responsibility analysis.
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The following experiments are carried on the 22 TPC-H queries [24]. Since
most of them involve complex aggregates, we modify the query and pick the
queries with more than one joining relation. Since Q3, Q10, Q15, Q16 and Q18
are hierarchical [24], their results are all read-once. We change the inequality
conditions of those queries. We further find that Q3, Q10, Q15, Q16 and Q18
are all linear. We compare the performance of PResps of the above queries with
those of their respective LResps. The experimental results are shown in Fig-
ure 3, where we find that PResp performs one order of magnitude better than
LResp, especially for Q3 and Q16. This is the following reason. Meliou et al. [22]
employed max-flow/min-cut algorithm to compute the responsibility. The time
complexity of their algorithm is O(V M +V 2 logV ) [26], where V is the number
of nodes and M is the number of edges. However, the time complexity of PResp
is O(αN2), where α is the number of tables in the query and N is the number of
variables of the P-Tree. The relationship of the time complexity between PResp

and LResp is γ = V M+V 2logV
αN2 . In [22], the hypergraph uses two nodes and one

edge to denote a variable. From Table 1, we find the number of variables are
large. Thus logV is not small. In addition, V is bigger than N . Thus PResp has
better performance than LResp.

Fig. 3. Results on the TPC-H queries

5.2 The Experiments of Top-k Responsibility Tuples

Since the Building-PTree-Topk algorithm and the Cal-Responsibility algorithm
are the two steps to find the top-k responsibility tuples, we call the combination
of the two steps the TopK responsibility algorithm and denote it by Topk . In
order to compute the top-k responsibility tuples for a query result, the naive
method is to compute the responsibility of every tuple and then sort them by
responsibility. We use PResp as a baseline to compute the responsibility of every
tuple and then sort them by responsibility.

Assume that we want to compute the top-1000 responsibility tuples. We com-
pare the performance of Topk of queries Q3, Q10, Q15, Q16 and Q18 with
those of their respective PResp. The experimental results are shown in Figures
4, where we find that Topk has better performance than PResp. Since Topk can
find the top-1000 responsibility tuples without building the whole tree, it has
better performance than the naive algorithm. However, Topk does not perform
more than one order of magnitude better than PResp. There are two reasons.
First, since the data population is larger in the first several expanding steps
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Fig. 4. Top-1000 results for TPCH scale factor 0.1

while it is smaller in the latter ones, the first several expanding steps cost much
more than the latter ones. Second, Topk may expand many times before finding
the top-1000 elements.

6 Related Work

The classical counterfactual causality (if X had not occurred, Y would not have
occurred) was proposed by Hume [23], and the best known modern counter-
factual analysis of causation was due to Lewis [19]. In recent work, Meliou et
al. [20] initiated a discussion on causality in databases. By using the definition
of actual causes by HP [13], Meliou et al. [21] proposed functional causes as a
refined definition of causality for explaining query answers. Moreover, Meliou
et al. [22] developed the notion of causality of input tuples on the result tuples
of a query. Informally, a tuple t is a cause for a query result if there exists a
state of database in which the presence/absence of t changes the query result
for that new state of database. The responsibility [5] of a tuple t on the query
result relates to the number of contingency sets [6]. Kanagal et al. [17] proposed
a unified framework to handle sensitivity analysis and explanations for robust
query evaluation in probabilistic databases. Their concept of influence has some
connection with responsibility.

Provenance has been widely studied in the database literature [4,11,7,2,29] and
several models of provenance have been proposed, based on Boolean formulas
(lineage), semirings and so on. Cui et al. [7] studied lineage, in which an output
tuple is associated with a set of input tuples that influenced the output tuple.
Their work seems to be the first model to be defined for relational queries based
on a semantic criterion. Subsequently, Buneman et al. [2] defined two forms
of provenance called why- and where-provenance for queries in a deterministic
tree data model. Meliou et al. [22] pointed to the close connection between
why-provenance and why-so causality. The how-provenance and semiring-valued
relational models were introduced by Green et al. [11], along with a high-level
discussion of the possibility of extracting lineage and why-provenance from how-
provenance. The Trio project [29] investigated combining tuple-level lineage with
uncertainty and probability information.

The goal of Knowledge Compilation [16,9] is to represent a Boolean expression
in a format in which it can answer a range of online-queries in PTIME. Read-once
Boolean formula is one of the tractable expressions, which have been studied for
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some time, albeit under various names [14,28,18]. It turns out that Golumbic
et al. [10] gave a fast algorithm that takes as input a formula in irredundant
disjunctive normal form, decides whether it is read-once, and if it is, computes
the read-once form. Moreover, Sen et al. [25] proved that one only needs to
test if the co-occurrence graph is a cograph to judge whether the Boolean for-
mulas of the result tuples produced by conjunctive queries without self-joins
are read-once. In recent work, Fink et al. [9] compiled semimodule and semir-
ing expressions into so-called decomposition trees. Then the computation of the
probability distribution of positive relational algebra queries with aggregates can
be done in time linear in the product of the size of the probability distributions
represented by its nodes. In this paper, we propose a P-Tree to compute the
responsibilities of tuples in read-once formulas.

7 Conclusions and Future Work

Responsibility refines the concept of causality by measuring the degree of causal-
ity as a function of the size of the smallest contingency set and serves to rank
potentially many causes by their relative contributions to the effect. In this
paper, we extend the Co-Tree to P-Tree for read-once expressions. Based on
P-Trees, the proposed algorithm can efficiently compute responsibilities of vari-
ables in read-once formulas. Moreover, we introduce a novel algorithm to find
top-k responsibility tuples. We plan to use parallel algorithm to build P-Trees
and compute the responsibility of every tuple in the future.
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Abstract. In recent years, explaining missing answers in the query re-
sults achieved from the extracted data has become an attention topic.
Several techniques have been developed to do the explanation, however,
they posted lots of disadvantages, including incorrect explanations, un-
reasonable explanations, and non-minimized explanations. In this pa-
per, we propose a novel explanation technique to avoid such unexpected
explanations and we guarantee that the generalized explanation is mini-
mum. We propose two algorithms by considering different kinds of mod-
ification object values for the attributes satisfying referential integrity
constraint. Experimental results show that our approach can efficiently
minimize explaining missing answers.

1 Introduction

Although information extraction [1] can help users to find requiring information
data efficiently and quickly, great data uncertainty has been brought at the
same time. Users may feel confused that the answer they expect is not in the
query results when querying on extracted data, then they may ask why? It
is becoming more and more important to support users with data provenance
explanations for query results. Data provenance [2,3] which is also called data
lineage describes the origins and the evolution history of data, and it provides
users with provenance explanations for the query answers received from the data.
Most of the data provenance technologies can only explain why the answers are
in the query results, but they can not answer why the answers are not in the
query results. In other words, they can’t explain the problem of missing answers,
such as query rewriting technology [4], provenance semiring [5], and so on.

1.1 Motivation

To explain missing answers, literature [6] has proposed an explaining model
based on value-modification. However, literature [6] has some disadvantages as
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ANO ANAME

a1 A1 AC

a2 A2 CS

a3 A3 CE

a4 A4 SZ

(a) Airline

RNO LEAVE TO

r1 R1 Shenyang Hangzhou

r2 R2 Shenyang Nanjing

r3 R3 Shanghai Guangzhou

r4 R4 Beijing Chengdu

(b) Route

ANO RNO ECONOMY BUSINESS

p1 A1 R1 1400 2100

p2 A2 R2 990 1485

p3 A3 R3 880 1320

p4 A3 R1 1300 1950

p5 A4 R4 820 1230

(c) Price

NAME SUM

s1 Shenyang 2

s2 Shanghai 1

s3 Beijing 1

(d) Statistic

Fig. 1. Extracted Air Ticket Information Tables (AIR CHINA, CHINA SOUTHERN,

CHINA EASTERN and SHENZHEN AIRLINES in short: AC, CS, CE, SZ)

follows: i) It returns some incorrect explanations which result in missing existed
query answers. ii) Some unreasonable explanations which contain overabundance
modifications are returned when the query statement contains query inequality.
iii) It dose not consider that some modifications of data violate the function
dependency or aggregation constraint. iv) It returns all non-minimized expla-
nations for the missing answers which make users confused. Most of the users
may just want to get the most possible explanations, in other words, they are
just interested in those explanations whose number of modified components in
tuples is the smallest while modifying the original data to get missing answers.

Example 1. Assume that an IE application extracts air tickets information for
airlines, air routes and ticket prices, and we extract four tables which are shown
in Fig. 1. Fig. 1(a) shows a table storing names of airlines. Fig. 1(b) shows a
table storing the departure and destination of air routes. Fig. 1(c) shows a table
storing two kinds of prices which are the economy and business price of an air
route supplied by an airline. Fig. 1(d) shows a view counting the number of air
routes whose departures are same. In our work, we suppose that the value of
attribute Price.BUSINESS is 1.5 times as large as Price.ECONOMY, and the value of
Statistic.SUM aggregately depends on attribute Route.LEAVE.

Now suppose that a user has a question about names of the airlines which
leave from Shenyang and the economy price is within 1000. The IE application
can answer the question by executing the following query Q:

Select a.ANAME, From Airline a, Route r, Price p Where a.ANO=p.ANO And

r.RNO=p.RNO And p.ECONOMY ≤ 1000 And r.LEAVE=Shenyang.

Given extracted data mentioned above, the query returns CS. The user may be
confused that missing answer CE dose not appear in the query results, his friend
just bought an airline ticket he wants from CE a few days ago. Using explaining
model in [6], the user can get some explanations for CE as shown in Table 1.
As shown in Explanation e1, if modifying A2 to A3 and 990 to n(n ≤ 1000) in
p2, CE will appear in the query results. Obviously e1 is incorrect, because the
modification of A2 makes the existed answer CS no longer appear in the query
results. And at the same time, the modification of 990 violates the functional
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Table 1. False Explanations for CE

ANO ANAME RNO LEAVE TO ANO RNO ECONOMY BUSINESS

e1 A3 CE R2 Shenyang Shanghai A2 → A3 R2 990 → n 1485

e2 A3 CE R3 Shanghai → Shenyang Guangzhou A3 R3 880 → n 1320

Table 2. Correct Explanations for CE

ANO ANAME RNO LEAVE TO ANO RNO ECONOMY BUSINESS

e3 A3 CE R1 Shenyang Hangzhou A3 R3 → R1 880 1320

e4 A3 CE R1 Shenyang Hangzhou A3 R1 1300 → n 1950 → 1.5n
e5 A3 CE R3 Shanghai → Shenyang Guangzhou A3 R3 800 1320

dependency, because it only modifies the value of attribute Price.ECONOMY with-
out Price.BUSINESS. Furthermore, explanation e1 is also unreasonable, because
990 in p2 has already been within 1000 and it no longer needs to be modified
to n. Explanation e2 violates aggregation constraint, because it only modifies
the value of attribute Route.LEAVE. Note that the value of Statistic.SUM should
have been updated at the same time, but it dosen’t.

1.2 Related Work and Contributions

There have already existed some explaining models. For example, while the miss-
ing answers need appearing in the query results, [6] processes the problem by
presenting the users how to modify the original data, which is related to our
work. However, our work conquers the disadvantages mentioned above in [6],
and we propose a new framework to minimize explaining missing answers.

Literature [7] explains missing answers by identifying the “culprit” operations
which can exclude the missing answers in the query statement.

Another model is called Artemis [8,9]. While the missing answers need ap-
pearing in the query results, it presents users what kinds of tuples should be
inserted into the original database to explain the missing answers. Both of this
model and our work are based on modifying the original database. But the mod-
ifications in their approach are much different from ours, which only modifies
the value of attributes in original database.

The recent model is based on query-refinement [10]. It explains missing an-
swers by automatically generating a refined query whose query results include
both the original query answers and the missing answers. Another work [11] uses
the same approach to address the why-not questions on top-k queries.

Our work is also related to the problem of database repairing [12]. The problem
we process is orthogonal to the database repairing problem. We attempt to find
modifications in a consistent database, while the database repairing problem
only considers how to answer queries over an inconsistent database.

We can get some correct explanations for CE as shown in Table 2, although
e3, e4 and e5 all can explain CE, e3 only needs to modify one component in
tuples, e4 needs to modify two components and e5 needs to modify three compo-
nents, which is because two cascade modifications are triggered when modifying
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Shanghai to Shenyang. One challenge in our work is how to guarantee existed
query answers to be lossless and avoid overabundance modifications. Moreover,
the other challenge is to quickly get the most possible explanations.

Our work is motivated by [6]. We propose a new technique to minimize ex-
plaining missing answers and conquer those disadvantages in [6]. Our contribu-
tions can be summarized as follows. i) We present a new framework to minimize
explanations based on value-modification. ii) We overcome those disadvantages
in [6]. iii) We improve the quality of explanations for missing answers. iv) We
propose two algorithms to minimize explaining missing answers. v) We evaluate
our algorithms using experiments in extracted real world data.

The rest of the paper is organized as follows. Section 2 formally defines our
problem and presents some related definitions. In Section 3, we present our
explaining framework and algorithms to minimize explaining missing answers.
Section 4 evaluates our approach and makes a comparison with [6]. Section 5
concludes the paper.

2 Preliminaries and Problem Definition

The setting in our work with data in the database extracted from an IE system
is the same with [6]. An attribute is called a trusted attribute if all its values
in a table are correct, and the value of it can not be modified in the process
of generating explanations. The users can manually choose to trust individual
attributes. However, in general it can be done automatically that referenced
attributes should be trusted attributes. Because usually modifying values of ref-
erenced attributes would violate referential integrity constraint, then we need to
modify much more components to avoid violating referential integrity constraint.
This is not worth the candle for minimal explanations. Therefore, the referenced
attributes can automatically be chosen as trusted attributes.

The model in [6] separates the original component in tuples from the modified
component by using an arrow (for example, u→u′ indicates that u must be
changed to u′ to make the missing answer appear in the query results). In our
work, we will continue using this separation approach.

In this paper, we only consider the equi-join between two query tables R1

and R2 like R1.c1 = R2.c2, and the attributes c1 and c2 should satisfy referen-
tial integrity constraint. The referencing relation between the attributes in those
tables may constitute a directed graph when the query statement involves mul-
tiple query tables. Suppose that a query statement involves five tables v1, v2,
v3, v4, v5, and their referential relation is illustrated in Fig. 2. For simplicity,
this paper only considers that the directed edge Ev1−v3 in Fig. 2(a) represents
that one attribute in v3 references to one attribute in v1. The directed edges
Ev2−v3, Ev3−v4 and Ev4−v2 constitute a cycle as shown in Fig. 2(b).

Definition 1. (Cascade modification). Given an explanation e, if some modifi-
cations in e violate a functional dependency f or an aggregation constraint α,
other components involved in f or α must be modified at the same time.
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(a) Acyclic (b) Cyclic

Fig. 2. Two directed graphs for different table referencing relation

For example, consider explanation e5 in Table 2 and tables in Fig. 1, we modify
Shanghai to Shenyang in r3 which would trigger two cascade modifications that
modifying the value of Statistic.SUM to 0 in s2 and to 3 in s1.

Cascade modification can help us to improve the quality of explanations.
Now we present the definitions of m-value and minimizing explanations.

Definition 2. (m-value). The m-value of an explanation e is defined as the
number of modified components in e plus the number of cascade modified com-
ponents triggered by some modifications in e.

Problem Definition. Given a query and a missing answer t, the minimizing
explanations problem for t is to find explanations whose m-value is the smallest
among all the explanations for t.

For example, consider the explanations e3, e4, and e5 in Table 2, the m-value
of e3 is 1, the m-value of e4 is 2 including one cascade modification and the m-
value of e5 is 3 including two cascade modifications. The minimizing explanations
problem is to quickly find the minimal explanation e3 for CE.

3 Minimizing-Explanation Algorithms

3.1 Explanation Framework

The query Q, database DB, query answers R and missing answer ΔR are taken
as input to our explaining framework, and DB+ΔDB is returned after minimal
modifying DB which is shown in Fig. 3. We need to find a minimal modification
plan for DB to make sure that the query results will include R and ΔR when
executing Q on DB +ΔDB. At the same time, this minimal modification plan
must guarantee to avoid OM (overabundance modification) and violating FD
(functional dependencies) and AC (aggregation constraints).

Fig. 3. Explaining framework
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To get ΔR, we can determine a modification object value for every attribute
column in each table in DB. According to the query predicates and the missing
answer, the object values of some attribute columns can be projected to a con-
stant. And the object values of other attribute columns that can not be projected
will be symbolized as a wildcard ‘?’ (which can stand for anything satisfying the
query or constraint predicate). They may also be symbolized as a variable satis-
fying a boolean expression when the query statement contains inequality. These
object values of each attribute column in the table can constitute a modification
object value set for the table. Consider Example 1, according to Q and CE we
can project Airline.ANAME to CE, Route.LEAVE to Shenyang, and Price.ECONOMY

to a variable n (n ≤ 1000). The object values of other attribute columns are
symbolized as a wildcard ‘?’. So we can determine the object value set of Airline
as (‘?’,CS). To minimize modifying DB to DB+ΔDB, we need to choose tuples
in Airline which are the most similar to the modification object value set of
Airline. So we choose a2 in Airline to generate the minimal explanations.

To get the minimal modification plan, according to Q, DB and ΔR we define
a modification object for each query table. We can find tuples which are the
most similar to their modification objects in each table, then modify them and
generate DB+ΔDB according to their modification object. In the following, we
give the definition of modification object to find the minimal modification plan.

3.2 Modification Object

Definition 3. (Modification object). A modification object (m-object for short)
is an ordered object value set (m1, m2, m3, m4..., mn) for a query table, mi

represents the modification object value of the i-th attribute column in the ta-
ble, and it may be a constant, a wildcard ‘?’ or a variable satisfying a boolean
expression.

Ifmi can not be projected to a constant, we will use a wildcard ‘?’ to symbolize its
value. If the attribute corresponding to the value mi satisfies referential integrity
constraint (we name this attribute as reference attribute and the attribute it
referencing as referenced attribute), we will use a variable to replace the wildcard
‘?’, because the object value of a reference attribute is determined by that of
its referenced attribute. If mi needs to satisfy a query inequality, it will be
symbolized as a variable such as n ≤ 30.

Consider Example 1, we can get the modification objects of query tables shown
in Table 3. Because Q and CE can not determine the constant object values of
Airline.ANO, Route.RNO, Price.ANO, and Price.RNO, we use the variable Ax, Rx,
Ax, and Rx to symbolize them respectively and use the wildcard to symbolize
Route.TO and Price.BUSINESS. The query predicate in Q can determine that the
value of Price.ECONOMY should be within 1000, so we symbolize its object value
with a variable n (n ≤ 1000).
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Table 3. Modification object of tables

Table Modification Object
t1 Airline (Ax,CE)
t2 Route (Rx,Shenyang,‘?’)
t3 Price (Ax,Rx,n(n ≤ 1000),‘?’)

Table 4. Modification priority of tuples

Table Modification Priority
t1 Airline a3 > (a1, a4)
t2 Route (r1, r2) > (r3, r4)
t3 Price (p3) > (p4, p5) > p1

3.3 The Function of Modification Object

Definition 4. (Tuple dissimilarity). Given a relation R, let t be a tuple of R,
t ∈ R, and the m-object Rm, the tuple dissimilarity (t-diss for short) of t is the
number of different components between t and Rm plus the number of components
need cascaded modifying triggered by modifying the components in t.

If mi is ‘?’, it can be equivalent to any components in tuples. If mi is a variable
satisfying a boolean expression, and there is one component just also satisfying
the boolean expression, we consider that the component is equivalent to mi. If
the object value of a reference attribute in a table is a variable, we should firstly
determine the object value of its referenced attribute, then determine its object
value, and compute the t-diss of the tuples in the table.

For example, given query tables as shown in Fig. 1 and the corresponding
m-objects as shown in Table 3. The t-diss of a3 is 0 and the t-diss of r3 is 3.
The object values Ax and Rx are all variables, we should determine their values
firstly, then determine the m-object of Price, and compute the t-diss of the tuples
in Price. Suppose that Ax is A3 and Rx is R1, the t-diss of p4 is 2. However if
we determine Ax as A3 and Rx as R2, the t-diss of p4 is 3.

To avoid missing the existed query answers and improve the quality of ex-
planations, we have to determine those tuples in the query tables which can be
used to generate the explanations for the missing answers.

Theorem 1. Given a tuple t1 contributes to the query answer, if the t-diss of
t1 is not equal to 0, then t1 can not be used to generate explanations.

Proof. If the t-diss of t1 is not equal to 0, we will use t1 to generate explana-
tions. The components in t1 which are different from their object values must
be modified. However, modifying t1 will result in missing existed answer, so t1
could not be used to generate explanations.

While one query answer is generated by executing the same query on joining
different tuples, which is the special case. If the tuples involing in the joins are
quite different from each other, we will use those tuples to generate explanations.
If the joins contain some identical tuples, we will discard all the identical tuples
and use those different tuples to generate explanations.

Theorem 2. Given a trusted attribute p in R and the m-object Rm of R, if
the object value of p in Rm is a constant representing as v, then we can only
choose the tuple whose value of p is equivalent to v to generate explanations.
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Proof. Attribute p is a trusted attribute means its value can’t be modified. If
the object value of p is a constant representing as v, we can not modify the value
of p to v which is not equivalent to v to generate explanations and we can only
use those tuples whose value of p is equivalent to v to generate explanations.

When the query statement contains inequality, literature [6] does not check the
component in the tuple using to generate explanations satisfy the inequality or
not, but directly modify the component to a variable. In that case, the explana-
tions returned by the approach in [6] contain some overabundance modifications.
In our work, we modify components in tuples with their object values to gen-
erate explanations. And we need to check if the component is equivalent to its
object value before modifying the component. Once the component is equivalent
to its object value, we do not modify this component. Therefore, overabundance
modifications should be avoided.

3.4 Modification Priority

To generate the minimal explanations, we propose the definition of modification
priority as the order to modify the tuples in a query table.

Definition 5. (mpTuples). The mpTuples are defined as the tuples with the
highest modification priority in a table.

Theorem 3. Given a tuple t1 in the table R and the m-object Rm of R, the
smaller the t-diss of t1 is, the higher the modification priority of t1 has.

Proof. The t-diss of t1 in R is the smallest means that the number of modified
components in t1 will be the smallest if we modify t1 to generate explanations.
Therefore, we prior to modify t1 to generate the minimal explanations, the mod-
ification priority of t1 is the highest among all the tuples in R.

Example 2. Consider Example 1, the modification priority of tuples in Airline
discarding a2, Route discarding r2, and Price discarding p2 are shown in Ta-
ble 4. t3 shows the modification priority of tuples in Price discarding p2 when
determining Ax as A3 and Rx as R2.

3.5 Exploring Minimal Explanation

In this section, we propose two algorithms to minimize explanations.
Suppose that the nodes v2, v3, and v4 in Fig. 2(b) represent three query tables

R1, R2, and R3. If the object values of the reference attributes in these tables
all contain variables, then the values of those variables can not be determined.
Because the object value of a reference attribute in R2 needs to be determined by
that of its referenced attributes in R1. However, determining the object values
of R1 needs to determine that of R3 firstly and determining the object values of
R3 needs to determine that of R2 firstly. These variables form a endless loop. So
we can not determine the m-object of these tables and the modification priority
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of the tuples in these tables, and our approach can not be used to generate the
minimal explanations.

Because the operation between two query tables is accomplished by joining one
attribute and its reference attribute, whether the object value of a non-reference
attribute is a variable or not has no effect on the join, but the reference attribute
dose. Thereby, whether the object values of reference attributes in query tables
contain variables or not, we present two algorithms.

3.5.1 An Algorithm for Constant Reference Attribute Values

Theorem 4. Given a query Q, database D, and a missing answer t. If none of
the object values of the reference attributes in m-objects of all query tables is a
variable, then the explanation set E generated by joining the modified mpTuples
in each table is the minimal explanation set for t.

Proof. It can be proved by contradiction. If none of the object values of the
reference attributes is a variable, the process of choosing mpTuples in each query
table dose not affect each other. If existing one explanation e the m-value of which
is less than that of explanations in E, the modification priority of one tuple t1
being modified to generate e must be higher than that of the tuple modified to
generate E which comes from the same table with t1. There exist two kinds of
mpTuples with different t-diss in one query table, which violates the definition
of mpTuples and is unreasonable, so E is a minimal explanation set for t.

Algorithm 1: MinExplain - ConsRefAttr

Input: The query Q, database D, missing answer t and trusted attributes;
Output: A minimal explanation set E ;

1 Initialize a set E′ to store the mpTuples of each query table;
2 for each table R mentioned in Q do
3 Rm ← get the m-object of R;
4 R′ ← process contributing tuples for query answers;
5 R′ ← process trusted attributes in R′;
6 R′

set ← get the mpTuples in R′ according to Rm;
7 E′ ← modify R′

set according to Rm;
8 E′ ← process cascade modifications;
9 E ← make a cartesian product between E and E′;

10 return E;

When none of the object values of the reference attributes in query tables is
a variable, we can minimize explaining missing answers by using Algorithm 1.
Algorithm 1 makes a cartesian product between the modified mpTuples of each
table R mentioned in Q and E iteratively (lines 2-9). We firstly get the m-object
of R (line 2). Then we process contributing tuples for query answers (line 4). If
R contains trusted attributes, we process them according to their object values
in Rm (line 5). We get mpTuples in R (line 6). Then we modify those tuples
according to their m-object, if some modifications violate functional dependency
or aggregation constraint, some cascade modifications will be triggered (lines
7-8). Finally, we make a cartesian product between modified mpTuples in R and
E to generate the minimal explanation set E (line 9).
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3.5.2 An Algorithm for Variable Reference Attribute Values
It is mentioned above in Algorithm 1, we choose mpTuples in each query table
to generate the minimal explanations. However, it can affect the generation of
mpTuples in table R where the object values of the reference attributes contain
one or more variables. We define join plan as a set of tuples which can accom-
plish join operations. We have two approaches to determine the value of those
variables. One is to resolve them by the value of their referenced attributes cor-
responding referenced tables of R as mentioned in Example 2. The other is to
determine them by choosing one tuple in R. Consider Example 1, we can choose
p3 in Price to determine Ax as A3 and Rx as R3. So we can choose a3 in Airline
and r3 in Route to constitute a join plan with p3. We define the sum of the t-diss
of the tuples in a join plan as the t-diss of the join plan, so the t-diss of the join
plan constituted by p3, a3 and r3 is 3.

To determine the mpTuples of R we define those join plans as the minimum
join plans for R with the smallest t-diss. Those join plans join the mpTuples of
R and other tables which are in front of R in the topological order about the
referencing relation of all query tables.

We have two approaches to get the minimum join plans for R as mentioned
above. Suppose that we get the mpTuples of R as mp1 and generate some mini-
mum join plans jp1 by using the first approach, and get another mpTuples of R
asmp2 and generate some minimum join plans jp2 by using the second approach.
Then we compare the t-diss of jp1 and jp2, if the t-diss of jp1 is smaller than
that of jp2, we determine mp1 as the mpTuples of R, if the t-diss of jp1 is equal
to that of jp2, we determine mp1 and mp2 as the mpTuples of R, otherwise,
we determine mp2 as the mpTuples of R. Consider Example 1, jp1 contains of
two join plans, one of which consists of a3, r1, and p3 and the other consists a3,
r2, and p3. Their t-diss is 1. jp2 consists of p4, a3, and r1, and its t-diss is 2.
Thereby, we determine p3 as the mpTuples in Price.

Theorem 5. If the object values of the reference attributes in R contain one or
more variables, the tuples in R with the smallest t-diss determined by mpTuples
in the referenced tables of R are the mpTuples in R by using the first approach.

Proof. It can be proved by contradiction. Given three query tables R1, R2, and
R3, and their referencing relation just like the relation of three nodes A, B,
and C in Fig. 2(a). Assume one join plan pl1 is that we choose the mpTuples
of R1 whose t-diss is 0 and the mpTuples of R2 whose t-diss is 1, and we can
determine the mpTuples of R3 whose t-diss is 2, so the t-diss of pl1 is 3. If existing
alternative join plan pl2 that we choose the mpTuples of R1 whose t-diss is 1 and
the mpTuples of R2 whose t-diss is 1, and we can determine the mpTuples of
R3 whose t-diss is 0, so the t-diss of pl1 is 2. Based on the consideration above,
we can determine a tuple of R3 whose t-diss is 1 in pl1, which pl1 and pl2 have
only one different attribute values in R3 referencing attribute in R1. But this
contradicts our assumption that we choose the tuples of R3 whose t-diss is the
smallest. Therefore the muTuples of R in pl1 will be the mpTuples of R.
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In the procedure BackTrack, we need to backtracking traversal every tuple
in R′, and we propose an approach to prune this procedure. We backtrack to
choose one tuple t1 in R to get the mpTuples of R, if the sum of accumulative
t-diss has already been larger than the t-diss of the join plans generated by the
first approach, we can break and choose the next tuple in R to backtrack. For
instance, we select P1 in Price whose t-diss is 2, which has already been larger
than the sum of t-diss of a3, r1, and p3 equaling to 1 generated by the first
approach, then we break and select p2.

Algorithm 2: MinExplain - VarRefAttr

Input: The query Q, database D, missing answer t, referenced tables Rr of a
table R and trusted attributes;

Output: A minimal explanation set E;
1 Initialize a set Eset to store the mpTuples of each query table, Tset to store

tuples of tables having been polled out;
2 S ← generate the topological order of the referencing relation graph of D;
3 while S is not empty do
4 Rm ← poll a table R and generate its m-object ;
5 R′ ← process contributing tuples and trusted attributes ;
6 if reference attributes in Rm associate with one or more variables then
7 Rmset ← get all the possible Rm according to the mpTuples of Rr;
8 R′ ← process the contributing tuples and trusted attributes again;
9 Rmp ← get the modified mpTuples of R′ according to Rmset ;

10 E1 ← join Eset and Rmp;
11 E2 ← BackTrack(R′, Tset);
12 E′ ← compare the t-diss of E1 with E2 to resolve the mpTuples for R′;

13 else
14 E′ ← determine the mpTuples of R;

15 add E′ to Eset, add R′ to Tset;

16 make joins between mpTuples in Eset to generate E and modify E;
17 return E;

Algorithm 2 firstly gets the topological order of the referencing relation graph
of D by continuously deleting the node with indegree 0 and puts those table
names into a queue S orderly (line 2). It sequentially removes one table R from
S and takes the m-object as Rm of R (line 4). R′ is generated by processing
the contributing tuples to existed answers and trusted attributes (line 5). If
object values of reference attributes in Rm contain one or more variables, we
will determine all the possible Rm with the mpTuples in Rr and process the
contributing tuples and trusted attributes again (lines 6-8). We get the mpTu-
ples of R′ and modify the reference attributes value in mpTuples of R′, then
join E and mpTuples of R′ to generate E1 (lines 9-10). In the procedure Back-
Track, we backtrack from R′ to Tset to get the mpTuples for R′ and represent
the minimal join plans as E2 (line 11). We make a comparison of the t-diss of
E1 with E2 to determine the mpTuples of R′, If the t-diss of E2 is smaller than
or equal to the t-diss of E1, we need to update E (line 12). Otherwise we di-
rectly choose the mpTuples in R′ to generate E′ (line 14). We add E′ to Eset,
and add R′ to Tset (line 15). Finally, we do a join operation between mpTu-
ples of each table in Eset and modify them to get the minimal explanation set
E(lines 16).
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Table 5. Different queries over database DB

Qid Query Missing Answer

Q0 ΠANAME(Airline �� σECONOMY≤(1000)(Price) �� σLEAV E=Beijing(Route)) CS
Q1 ΠANAME(Airline �� σECONOMY≤(1000)(Price) �� σLEAV E=Shenyang(Route)) SC
Q2 ΠANAME(Airline �� σECONOMY≤(1000)(Price) �� σLEAV E=Tianjin(Route)) CE
Q3 ΠANAME(Airline �� σECONOMY≤(1000)(Price) �� σLEAV E=Nanjing(Route)) SD
Q4 ΠTO(σANAME=CS(AirLine) �� σECONOMY≤(1000)(Price) �� Route) Hangzhou
Q5 ΠTO(σANAME=CE(AirLine) �� σECONOMY≤(1000)(Price) �� Route) Kunming

Table 6. Comparison results of explanations for Q0 −Q5

Queries Approaches All Correct Missing answer Overabundance Violate function Violate aggregation

Q0 MinExplain 3 3 0 0 0 0
NonAnswers 8460 0 2328 4371 8460 7191

Q1 MinExplain 12 12 0 0 0 0
NonAnswers 8460 0 3588 4371 8460 6532

Q2 MinExplain 8 8 0 0 0 0
NonAnswers 8460 0 5280 4371 8460 6463

Q3 MinExplain 6 6 0 0 0 0
NonAnswers 8460 0 914 4371 8460 7978

Q4 MinExplain 10 10 0 0 0 0
NonAnswers 8460 0 672 4371 8460 0

Q5 MinExplain 6 6 0 0 0 0
NonAnswers 8460 0 3020 4371 8460 0

4 Experiments

In this section, we report our experimental results. We have implemented both
MinExplain using in this paper and NonAnswers in [6]. All the algorithms were
implemented with Java 1.7. Eclipse 4.2 was used as our Java IDE tool. The
experiments were run on a PC with an Intel 3.10GHz Quad Core CPU i5 and
8GB memory with a 1TB disk, running a Windows 7 operating system. We use
MySQL 5.5 as our DBMS and run it locally on the same machine.

4.1 Results of Explanations

We extract real data from one web site about air tickets information for airlines,
air routes and ticket prices. The schema of the database DB just like the one
shown in Fig. 1. DB consists of four tables, which are Airline, Route, Price, and
Statistic. The data we use contain ten Airline tuples, twenty Route tuples, sixty
Price tuples, and eight Statistic tuples.1

Assume that the attributes Airline.ANO and Route.RNO are trusted attributes.
Table 5 shows six queries used in our experiments, in which the last column shows
the missing answer questions.

Table 6 shows the number of explanations for queries Q0 − Q5 returned by
MinExplain and NonAnswers. Taking query Q0 as instance, NonAnswers returns
8460 explanations, while MinExplain only returns 3 minimal explanations. Ta-
ble 6 also analyzes the quality of all explanations returned by NonAnswers and
MinExplain. Those explanations returned by NonAnswers contains 0 correct
explanations, 2328 explanations resulting in missing existed answers, 4371 ex-
planations containing overabundance modifications, 8460 explanations violating
functional dependency and 7191 explanations violating aggregation constraint.

1 The data was extracted from http://www.qunar.com/

http://www.qunar.com/
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Table 7. Analysis of explanations for Q0

Approaches ANO ANAME RNO LEAVE TO ANO RNO ECONOMY BUSINESS m-value

MinExplain A2 CS R3 Beijing Guangzhou A2 R7 → R3 950 1425 1
A2 CS R4 Beijing Chengdu A2 R7 → R4 950 1425 1

A2 CS R3 Beijing Guangzhou A2 R7 → R3 950 → n 1425 2
MinNonAnswer A2 CS R4 Beijing Chengdu A2 R7 → R4 950 → n 1425 2

A2 CS R7 Nanjing → Beijing Hainan A2 R7 950 → n 1425 2

Table 8. Modified mpTuples in query tables for Q0

Algorithm
table

Airline Route Price

(R3,Beijing,Guangzhou) (A1,R1,760,1140)
ConsRefAttr (A2,CS) (R4,Beijing,Chengdu) (A2,R7,950,1425)

(R16,Beijing,Guilin) (A3,R9,900,1350)
· · · · · ·

(R3,Beijing,Guangzhou) (A2,R7 → R3, 950,1425)
VarRefAttr (A2,CS) (R4,Beijing,Chengdu) (A2,R7 → R4, 950,1425

(R16,Beijing,Guilin) (A2,R7 → R16, 950,1425

However, MinExplain only returns correct explanations. The results for the other
five queries are similar to Q0, and the details can be seen in Table 6.

We combine our MinExplain with the approach NonAnswers and get a Min-
NonAnswer approach. The minimal explanations for Q0 use MinExplain and
MinNonAnswers respectively, which are shown in Table 7. MinExplain can re-
turn three minimal explanations and the m-value is 1. MinNonAnswer returns
one more incorrect minimal explanations. For instance, the first and second ex-
planations returned by MinNonAnswer both exist overabundance modification
that modifying 950 to n, so their actual m-value should be 1. The third explana-
tion returned by MinNonAnswer violates aggregation constraint, so its actual m-
value should be 3 excluding the overabundance modification for Price.ECONOMY.
While our approach can conquer those disadvantages and directly return correct
minimal explanations for CS.

We generate the minimal explanations for missing answer CS in query Q0

by using Algorithm 1 and Algorithm 2 respectively. We can get the modified
mpTuples in each table as shown in Table 8. Algorithm 1 returns zero explanation
for CS, because no join can be executed. Moreover, if executing a join, Price
should contain one tuple just like (A2,R3,n,‘?’) or (A2,R4,n,‘?’) or (A2,R16,n,‘?’).
But once Price contain one tuple mentioned above, CS would be an existed
answer instead of a missing answer. Algorithm 2 returns three explanations for
CS just like those explanations returned by MinExplain in Table 7. So when
the object values of those reference attributes in the query tables contain one or
more variables, we should use Algorithm 2 to generate the minimal explanations.

4.2 Effects of M-Values and Minimal Explanation Number

The m-value of returning minimal explanations for the same database is mainly
affected by executing different queries, and the m-value of returning minimal
explanations for the same missing answer is mainly affected by choosing different
trusted attributes manually.

Fig. 4(a) illustrates the m-values for queries Q0 − Q5 by using MinExplain
and NonAnswers, because the number of modified components of explanations
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Fig. 4. Comparison of m-values and running time under different settings
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Fig. 5. Comparison of m-values for Q0 −Q5 when choose different trusted attributes
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Fig. 6. Comparison of the number of minimal explanations for Q0 −Q5

returned by NonAnswers are very different, we use the average value of those
numbers as the m-value of the explanations returned by NonAnswers. It can be
seen that our approach can effectively return the minimal explanations.

Fig. 4(b) shows the running time for queries Q0−Q5 by using MinExplain and
NonAnswers respectively. We can see that the running time for queries Q0 −Q5

using our approach MinExplain is faster than that of using NonAnswer. One
reason is that MinExplain discards those tuples which contributing to the existed
query answers to avoid missing existed query answers. The other principle reason
is that we only choose mpTuples in every query table to generate the minimal
explanations for the missing answers, while NonAnswers choose all the tuples
in every query table. We also can see that MinExplain is not very sensitive to
different queries for the same query database.

Fig. 5 shows the m-values for queries Q0 − Q5 while trusting different at-
tributes in Price. As shown in Fig. 5(a) and Fig. 5(b), we can get the minimal
explanations whose m-value is 1 when we have no trusted attributes in Price
or only trust Price.ANO. And it also shows that the minimal explanations don’t
modify the values of Price.ANO. But we can not modify Price.RNO to generate
the minimal explanations while trusting Price.RNO. As shown in Fig. 5(c) and
Fig. 5(d), we can only generate the minimal explanations whose m-value is 3
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just like the third explanation excluding overabundance modification returned
by NonAnswers in Table 7. Although additional trusted attributes can reduce
the number of components which can be modified as mentioned before, it can
also increase the m-values of the minimal explanations.

The number of minimal explanations for same missing answers is also mainly
affected by choosing different trusted attributes manually.

Fig. 6 shows the number of minimal explanations for queries Q0 − Q5 while
trusting different attributes in Price. Taking Q0 as instance, Fig. 6(a) and
Fig. 6(b) show the number of minimal explanations is unchanged while trusting
Price.ANO which illustrates that the minimal explanations don’t modify the value
of Price.ANO. Fig. 6(c) and Fig. 6(d) show the number of minimal explanations is
becoming smaller while trusting Price.ANO, which illustrates that some minimal
explanations in Fig. 6(c) modify the value of Price.ANO. The number of other
queries is showed in Fig. 6 in detail.

5 Conclusion and Future Work

We have developed a new framework to explain missing answers. We give two al-
gorithms for minimal explanations. Our experiments show that our approach can
effectively return minimal explanations for missing answers correctly. As parts of
future work, we will further study minimize explaining missing answers, includ-
ing an alternative definition of the minimal explanations for missing answers,
other faster and effective algorithms.
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Abstract. As XML data nowadays are extensively used in the appli-
cations of data exchange and other fields, supporting efficient query
processing on XML data, particularly in determining the structural rela-
tionships between two elements, is in great demand recently. To avoid the
time-consuming tree traversal tasks, many labeling schemes have been
proposed to assign each node a unique label, so that the structural re-
lationships between nodes, such as the ancestor-descendant relationship,
can be efficiently determined by comparing their labels. However, to the
best of our knowledge, none of the existing labeling schemes can support
all structural relationships in constant time and also require the least
amount of space. In this paper, we propose a labeling scheme based on
the concept of the complete tree, which is called the CT (complete-tree)
labeling scheme. This labeling scheme is simple and the resultant labels
are compact. We formally analyze its properties and perform an empiri-
cal evaluation between the CT labeling scheme and other state-of-the-art
labeling schemes on different data sets. The experimental results show
that the space requirement of our CT labeling scheme is superior to oth-
ers in most cases. It is also demonstrated that this scheme can efficiently
support all structural relationships and may perform even better than
other labeling schemes.

Keywords: XML, labeling scheme, structural relationship.

1 Introduction

As XML data nowadays are extensively used in the applications of data exchange
and other fields, supporting efficient query processing on XML data, particularly
in determining the structural relationships between two elements, is in great
demand recently. According to W3C specification [17], an XML document can
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Fig. 1. A sample XML tree with the containment, Dewey, and branch labels

be modeled as a tree structure, where elements are represented as nodes, and the
nested relationships between elements are represented as edges. In the associated
query language such as XPath [18], eleven axes1 are then designed to support
path traversals in an XML tree, such as ancestor, parent, preceding-sibling, and
following-sibling, etc. Since tree traversal may be time-consuming when the XML
tree is large, labeling schemes are proposed to avoid such tasks. Specifically, given
an XML tree, every node is assigned a unique label by the rules of the labeling
schemes, so that we can determine the structural relationships of two nodes, such
as the ancestor-descendant (AD), parent-child (PC), and sibling relationships,
by directly comparing their labels without traversing the XML trees.

Among all the existing labeling schemes, the containment labeling scheme [5][16]
is one of the most widely used ones. It refers to the type of labels which utilizes the
containment relationship between labels to determine the structural relationship
of nodes. Consider nodes G and H in Figure 1. The first two components of G′s
containment label form the range (11, 18), while those of H ′s containment label
form the range (12, 13). Since the former range contains the latter one, we can
conclude that G is an ancestor of H . On the other hand, the prefix-based label-
ing scheme [6][8][10][12] is also commonly applied. This scheme has the Dewey
number as the representative, which includes the parent node’s Dewey number
as the prefix. For example, as depicted in Figure 1, node H ′s Dewey number is
1.2.1.1, and its parent, node G, has the Dewey number 1.2.1.

These two labeling schemes are popular because they are basically simple
and efficient, but there is still room left for improvement. Particularly, the con-
tainment labeling scheme can support AD and PC relationships efficiently, but
cannot support the sibling relationship without extra information. On the other
hand, the prefix-based labeling scheme can directly support all structural rela-
tionships, but is less efficient in supporting the AD and PC relationships than
the containment labeling scheme. Recently, the branch code labeling scheme [14]
is proposed. It keeps the number of siblings of all its ancestors, and can effi-
ciently support the AD, PC, and sibling structural relationships, but it may be

1 We omit the discussion of the namespace and attribute axes in this paper.
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inefficient in determining the relationship of the document order, which plays
an important role in processing XML queries when the ordering constraint is
required. Another concern is related to space requirement, which is a critical
issue for large XML documents.

In this paper, we propose a simple labeling scheme based on the concept of the
complete tree. The main idea is that we expand the original tree to a “virtual”
complete tree according to the maximum number of siblings of each level. We
then assign a unique label, called Complete-Tree-label, or CT-label in short, for
every node in the complete tree. The labels of the nodes in the original XML tree
are assigned based on the labels associated with the complete tree. By this way,
the CT-label implicitly encodes the maximum number of siblings of all levels into
a single number, so it is very compact. For example, node H in Figure 1 has the
CT-label “27”, which is a single number. In contrast, the containment, Dewey,
and branch code labels for node H are (12, 13, 3), 1.2.1.1, and [9, 1, 3], which
require three to four numbers respectively. We also design a set of functions to
help determine the eleven structural relationships based on CT-labels. All of
these functions can be performed in constant time and thus are very efficient.
To summarize, the contributions of this paper are as follows:

– We propose a simple labeling scheme, which assigns the CT-label to each
node of an XML tree.

– The fundamental properties of our CT labeling scheme are analyzed and
used to assist in efficiently determining the structural relationships between
nodes.

– We have performed an empirical evaluation among the containment, Dewey,
branch code, and CT labeling schemes. The results show that the proposed
CT-labels are compact, since each node is only assigned a number and thus
requires the least space most of the time.

– The experimental results also show that the CT labeling scheme is very effi-
cient when computing all the structural relationships. Particularly, it always
outperforms the Dewey labeling scheme when computing the AD, PC, and
sibling relationships.

The rest of this paper is organized as follows. Section 2 introduces the con-
tainment, Dewey, and branch code labeling schemes. The proposed CT labeling
scheme is described in Section 3. In Section 4, we show the experimental results
of comparing these four labeling schemes. At last, related works and conclusions
are given in Section 5 and Section 6, respectively.

2 Preliminaries

We explain the containment, the prefix-based, and the branch code labeling
schemes in this section. Figure 1 will be used as the running example, and
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the Dewey numbers will act as the representative of the prefix-base scheme
hereafter. Due to space limitation, we only briefly discuss how these labeling
schemes determine some basic structural relationships. Interested readers can
refer to the original papers for more details.

In the containment labeling scheme, every node is assigned a label of three
values (start, end, level). The value of start increases according to the pre-order
traversing, while the value of end is assigned according to the post-order se-
quence. Accordingly, the document order of two nodes can be naturally derived
by the start values of the containment labels. In addition, the range formed by
start and end of a given node is contained in the range of its ancestor. On the
other hand, the level value, which starts from 0 in this paper, describes the depth
of the node, and is used to assist the determination of the PC relationship.

The Dewey number is the representative of the prefix-based labeling scheme.
In the Dewey labeling scheme, every node inherits the label from its parent and
adds a new number at the end. The new number is generally enumerated from
1. For example, node H inherits node G’s label (1.2.1) and adds “1” at the end,
which leads H ’s label as 1.2.1.1. Node I also inherits node G (1.2.1) and adds
“2” at the end since I is the second child of G, and thus the Dewey number
of node I is 1.2.1.2. Therefore, we can determine the AD and PC relationships
based on a node’s prefix, and the last component can be used to identify the
sibling order.

As to the branch code, each label primarily has three values [g, h, level]. The
g value keeps the “number” of its ancestors’ siblings, and the h value keeps the
“order” of its ancestor among their siblings. Specifically, given a node n and its
parent np, n’s g value equals to np’s g value multiple the number of n’s siblings.
n’s h value equals to np’s h value plus np’s g value times the order of n among its
siblings. For instance, nodes A, B, and D are ancestors of node E. The number
of siblings of these three ancestors are 1, 3, and 2, respectively. Besides, the order
of these three ancestors among their siblings are 0, 0, and 1, in which the order
is counted from 0. Therefore, n’s g value equals to 3 · 2 · 1 = 6, and n’s h value
equals to ((0+1 · 0)+3 · 1)+6 · 0 = 3. The level value is the same as that of the
containment scheme, so node E has the branch code [6, 3, 3]. By values g and h,
we can determine the AD and siblings relationships in constant time. However,
this labeling scheme costs O(d) time to determine the document order, where d
is the depth of the XML tree.

Note that the AD, PC, document order, and siblings relationships are funda-
mental to the eleven XPath axes. Specifically, the AD relationship can support
the following axes: ancestor, ancestor-or-self, descendant, and descendant-or-self;
the PC relationship can support the two axes: parent and child; the document
order relationship can support the following and proceeding axes; the sibling re-
lationship and the document order can support the two axes: following-sibling
and proceeding-sibling. The self axe can be trivially determined based on the
equality of labels. Therefore, our focus will be on these four particular structural
relationships.
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Fig. 2. The corresponding complete tree of the original XML tree

3 The CT Labeling Scheme

We illustrate our CT (complete-tree) labeling scheme in this section, including
the basic concept, properties of CT labels, and the pseudocodes of determining
the structural relationships of two CT-labels. The tree structure of Figure 1 is
continually used as the sample tree of our CT labeling scheme, and the CT-label
of a node is also used to represent the node for simplicity.

3.1 Basic Concept

Given an XML tree, the maximum number of siblings of each level is a constant.
Let d be the maximum depth of the XML tree and ak be the maximum number
of siblings of level k. For example, (a0, a1, ..., ad−1) of the sample XML tree in
Figure 1 are (1, 3, 2, 3). Recall that the depth is enumerated from 0 in our
framework. The concept of assigning CT labels could be decomposed into four
steps as follows:

1. Expand the original XML tree to a complete tree according to the maximum
number of siblings of each level (a0, a1, ..., ad−1). Figure 2 shows the complete
tree of the sample XML tree.

2. Label the leaf nodes. The CT-label of the left-most leaf node is numbered
as d − 1. For example, d is 4 in the sample XML tree in Figure 1, and the
leftmost child will be assigned 3. Subsequently, every leaf node is increased by
d from left to right. Therefore, the CT-labels of leaf nodes form an arithmetic
sequence with common difference d.

3. Label the internal nodes. The CT-label of every internal node is equal to the
CT-label of its first child minus 1.

4. Map the original XML tree to the complete tree. Since the original one is
a subtree of the expanded complete tree, the one-to-one mapping is feasible
between these two trees. The nodes with gray color in Figure 2 construct the
same tree structure of the original XML tree. Figure 3 displays the sample
XML tree with CT-labels.
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Fig. 3. A sample XML tree with CT-labels

Note that the first step, which expands the original XML tree to a complete tree,
is actually not required, because it is possible to label the CT-labels for all the
nodes by preorder traversing the original XML tree. We will have more details
in Section 3.3.

3.2 Properties

Now we discuss some properties which may be used for determining the struc-
tural relationships of two CT-labels. Note that these properties are discussed
based on the complete tree.

Property 1. The CT-labels from left to right of the same level form an arith-
metic sequence.

Proof. Undoubtedly, the CT-labels of leaf nodes are an arithmetic sequence.
Recall that the CT-label of every internal node is the CT-label of its first child
minus 1. Since the CT-labels are based on the complete tree, the “gaps” formed
by their first child are identical. That is, the CT-labels of the first child of the
same level are also an arithmetic sequence. Therefore, this property still holds
for those nodes in the same level. �

Recall that ak represents the maximum number of siblings of level k. Let sk be
the common difference of level k (0 ≤ k ≤ d−1). We know that sd−1 = d. Besides,
by the characteristic of the complete tree, we obtain that sk = sk+1 · ak+1 =
Πd−1

i=k+1ai · d, where 0 ≤ k ≤ d − 2. For example, (s0, s1, s2, s3) of Figure 2 are
(72, 24, 12, 4).

Property 2. The depth of a CT-label x is equal to the remainder of x divided
by d.

Proof. The initial term of the arithmetic sequence of level k is exactly k, and
the remainder of k divided by d is also k. Consider the CT-labels of level k. Since
sk (the common difference of level k) is a multiple of d, the remainder of any
CT-label of level k divided by d is certainly k. �

Property 3. Given two distinct CT-labels x and y, and suppose x is of depth
k, x is the ancestor of y if and only if x < y and x+ sk − k > y.
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Proof. Let T be the subtree rooted at x. It is clear that x is the minimum CT-label
of T , and the maximum CT-label is the right-most leaf node of T . In addition,
the number of leaf nodes of T is equal to Πd−1

i=k+1ai. Suppose z is the right-most
leaf node of T . We can derive z by the arithmetic sequence formula as follows:

z = x+ d− 1− k + (Πd−1
i=k+1ai − 1) · d

⇒ z = x− 1− k +Πd−1
i=k+1ai · d

⇒ z = x− 1− k + sk
⇒ x+ sk − k > z

If y is a descendant of x, y must be in the range between x and z. That is,
x < y ≤ z. Hence, x is the ancestor of y if and only if x < y and x+ sk − k > y.
Besides, the parent-child relationship can also be determined if the depth of x is
exactly equal to the depth of y minus one. �

Property 4. Let T (j, k) be the subtree rooted at the jth node of level k. Suppose
Lmin(Lmax) is the minimum (maximum) CT-label of T (j, k). We can derive that
�Lmin/sk� = �Lmax/sk� = j − 1.

Proof. As mentioned in Property 3, Lmin is the root of T (j, k) and is equal to
(k+(j− 1) · sk), since it is the jth node of level k. In addition, Lmax is equal to
(Lmin − 1− k+ sk). We now consider the floor of Lmin and Lmax divided by sk:

�Lmin/sk�
= �(k + (j − 1) · sk)/sk�
= �k/sk�+ j − 1 = j − 1

�Lmax/sk�
=�(Lmin − 1− k + sk)/sk�
=�(k + (j − 1) · sk − 1− k + sk)/sk�
=�(sk − 1 + (j − 1) · sk)/sk�
=�(sk − 1)/sk�+ j − 1 = j − 1 �
According to Property 4, if the floors of two CT-labels divided by sk are identical,
it indicates that they have the same ancestor at level k. We next give an example
for Properties 2, 3, and 4.

Example 1. Consider Figure 2. Recall that the depth is counted from 0, and
thus the maximum depth is 4. By Property 2, the depths of nodes with CT-labels
26 and 51 are 2 and 3, respectively. By Property 3, node 35 is the descendant of
node 26 since 26 < 35 and 26 + 12 − 2 > 35. According to Properties 4, nodes
26 and 38 are siblings because both nodes 26 and 38 are at level 2 and �26/24�
= �38/24�. However, nodes 14 and 26 are not siblings which could be verified in
a similar way. �

3.3 Pseudocodes

In this subsection, we first provide the pseudocode which assigns the CT-label for
each node by preorder traversing the XML tree. We then show the pseudocodes
of determining the structural relationships of two CT-labels, which are based on
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Input: An XML tree T .
Output: Tree T with CT-label for each node.

CT labeling(T )
1 for every node n in T do
2 n.num ← 0
3 for i ← 0 to d− 1 do
4 ai ← 0
5 for every child node nc of root do
6 GetMaxSiblings(nc, 1)
7 sd−1 ← d
8 for i ← d− 2 to 0 do
9 si = si+1 · ai+1

10 root.label ← 0
11 LabelNodes(root, 0)

GetMaxSiblings(n,k) /*n: a node, k: current level*/
1 np ← n.parent
2 np.num ← np.num + 1
3 if ak < np.num then
4 ak ← np.num
5 for every child node nc of n do
6 GetMaxSiblings(nc, k + 1)

LabelNodes(n, k)
1 j ← 0
2 for every child node nc of n do
3 nc.label ← n.label + 1 + j · sk+1

4 j ← j + 1
5 LabelNodes(n, k + 1)

Fig. 4. The pseudocode of the CT labeling procedure

the properties discussed in the previous subsection. Note that the original XML
tree has never really been expanded to the complete tree during the assignment
of the CT-label for each node. The reason is that once the CT-label of the parent
node is given, we can directly infer the CT-labels of its children. Suppose y is
the jth child of the parent node x. Then, y is equal to x+1+(j− 1) · sdy , where
dy is the depth of y.

The pseudocode of assigning the CT-labels for an XML tree is shown in Fig-
ure 4. Variable n.num of line 2 is used to record the current number of n’s
children. Hence, n.num is initialized as 0 in the beginning. In line 6, procedure
GetMaxSiblings is called recursively to get the number of maximum siblings
of each level by traversing the tree in preorder. We next compute the common
difference for each level in lines 7 to 9. Procedure LabelNodes also traverses the
XML tree in preorder, and gives the CT-labels for all the children of node n.
Observe that we traverse the tree exactly twice in Figure 4. One is to compute
the maximum number of siblings of each level, and the other is to compute the
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IsAncestor(x, y)
1 if x < y then
2 k ← x mod d
3 if x+ sk − k > y then
4 return true
5 return false

IsParent(x, y)
1 if x < y then
2 k ← x mod d
3 if x+ sk − k > y and k + 1 = y mod d then
4 return true
5 return false

IsSibling(x, y)
1 dx ← x mod d
2 dy ← y mod d
3 if dx = dy and �x/sdx−1� = �y/sdx−1� then
4 return true
5 return false

Fig. 5. The pseudocode of determining the structural relationships of two CT-labels

CT-label for each node. In addition, the cost of visiting a node can be done in
constant time. Therefore, the time complexity of procedure CT labeling is in
linear proportion with the size of the XML tree.

The pseudocodes of determining the structural relationships of two CT-labels
are shown in Figure 5. The document order relationship is not listed because
it can be directly determined by comparing the value of two CT-labels. The
IsAncestor(x, y) procedure returns true if x is the ancestor of y. According to
Property 3, if the statements of both lines 1 and 3 are true, x is the ancestor of y.
Otherwise, procedure IsAncestor returns false. The pseudocode of procedure
IsParent is quite similar to that of procedure IsAncestor. However, it addition-
ally checks whether the depth of x is equal to the depth of y minus one, which is
an essential condition of the PC relationship. In the IsSibling(x, y) procedure,
the depths of x and y are represented as dx and dy. We first check whether x and
y are at the same level. We then check whether �x/sdx−1� is equal to �y/sdx−1�.
If so, it indicates that x and y have the same parent. Accordingly, x and y are
siblings. All the three procedures mentioned above run in O(1) time. Further,
the ancestor of x at the kth level cab be located by the formula “ak+�x/sk�·sk”.

Table 1 summarizes the eleven XPath axes, and the time complexity of deter-
mining the corresponding structural relationship performed by the four labeling
schemes, respectively. The last column also explains how our CT-labels deter-
mine the particular relationship. For example, the first row describes how to
determine if a node x is the parent of the other node y. In our framework, we
can directly invoke the function IsParent to achieve this task, which has the time
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Fig. 6. The sample bit-strings of node J for the four labeing schemes

Table 1. The time complexity of determining all structural relationships by the four
labeling schemes

XPath axes containment Dewey Branch CT CT-labels implementation
labeling labeling labeling labeling

parent O(1) O(d) O(1) O(1) IsParent(x, y)
ancestor O(1) O(d) O(1) O(1) IsAncestor(x, y)
ancestor-or-self O(1) O(d) O(1) O(1) x = y or IsAncestor(x, y)
child O(1) O(d) O(1) O(1) IsParent(y, x)
descendant O(1) O(d) O(1) O(1) IsAncestor(y, x)
descendant-or-self O(1) O(d) O(1) O(1) x = y or IsAncestor(y, x)
following O(1) O(1) O(d) O(1) x > y
preceding O(1) O(1) O(d) O(1) x < y
following-sibling N/A O(d) O(1) O(1) x > y and IsSibling(x, y)
preceding-sibling N/A O(d) O(1) O(1) x < y and IsSibling(x, y)
self O(1) O(1) O(1) O(1) x = y

complexity O(1). The time complexity of the other schemes are also listed here
for comparison. As shown in this table, our CT-label has the best time complex-
ity in determining all structural relationships. The containment labeling scheme
also has the best time complexity in many cases, but it cannot determine some of
the structural relationships. In contrast, the Dewey labeling scheme usually can-
not achieve constant-time computation, and the branch labeling is particularly
inefficient in processing the following and preceding axes. In the next section, we
will deliver more detailed performance studies.

4 Performance Studies

In this section, we discuss the implementation issues and compare the space
and time performance among the containment labeling scheme, Dewey num-
bers, branch codes, and the CT labeling scheme. All the labeling schemes were
implemented in C++ with the environment of Windows 7 and Visual Studio
2005. We applied six data sets2 to perform the experiments. Table 2 displays
the basic information of the data sets, including the file size of the XML tree,
the number of nodes, the maximum depth, and the average depth. In addition,
the experiments were performed on a 2.83GHz quad-core CPU with 4.0GB RAM.

2 These data sets could be downloaded from:
http://www.xml-benchmark.org/downloads.html/

http://www.cs.washington.edu/research/xmldatasets/

http://www.xml-benchmark.org/downloads.html/
http://www.cs.washington.edu/research/xmldatasets/
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Table 2. The basic information of the data sets

Data Set Doc. Size Nodes Max/Avg Depth
Sigmod Rec. 467 KB 19,909 7/5.7
Reed 277 KB 18,855 5/3.7
NASA 23.8 MB 904,556 9/6.1
XMark 25 MB 571,775 12/7.1
Mondial 1.7 MB 124,736 7/4.6
DBLP 127 MB 7,146,530 7/3.5
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Fig. 7. The label size of the data sets

4.1 Space Analysis

In this subsection, we explain the data structures of the four labeling schemes
used in our experiments and discuss their space requirement. For each labeling
scheme, we basically use the minimum numbers of bits to represent the required
values.

First, for the containment labeling scheme, suppose the XML tree hasN nodes
in total. The maximum value of end will be equal to 2N , so we need 2 · log 2N
bits to record start and end, where “log” represents the base-2 logarithm in this
paper. In addition, level requires logd bits where d is the maximum depth of the
XML tree. Therefore, every containment label requires 2 ·  log 2N!+ logd! bits.
For instance, there are totally 14 nodes in the sample XML tree of Figure 1.
Hence, every containment label requires 2 ·  log 28! +  log 4! = 12 bits. The
bit-string of node J corresponding to the containment labeling scheme is shown
in the lower left of Figure 6. The start value is located before end and level
because it allows us to directly compare the document order without decoding
the value of start from the bit-string.

As to the Dewey numbers, they are implemented according to the data struc-
ture discussed in [15]. Specifically, every Dewey number has d entries, and each
entry uses the smallest number of bits needed to store the maximum Dewey com-
ponent number. Hence, every Dewey number requires  log(a0+1)!+  log(a1+1)!
+ ... +  log(ad−1 + 1)! bits.3

Recall that each branch code is composed of three values (g, h, level). It is
relatively complicated to give a standard formula for its storage requirement since
the space cost of each node varies with the number of ancestors’ siblings. In our

3 Each Dewey component number is enumerated from 1 in our experiments, because
0 is used to denote the end of the Dewey component number.
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experiments, we basically use the smallest number of bits needed to store values
g and h. Besides, the cost of value level is the same as that of the containment
scheme.

Finally, in our CT labeling scheme, the maximum value of the CT-label ap-
pears at the right-most leaf node of the complete tree. Recall that the initial term
of the leaf level is d− 1, and the common difference is d. Since there are Πd−1

i=0 ai
leaf nodes in total, the CT-label of the right-most leaf node is Πd−1

i=0 ai · d − 1.
Hence, every CT-label requires  (log a0+log a1+ ...+log ad−1+log(d−1))! bits.
Compare the branch code and the CT-label. Though the value of a CT-label is
always larger than the g (or h) value of a branch code, the difference between
them is usually small in logarithmic scale. In addition, it requires to store both
g and h when using branch codes. Hence, the space cost of the CT labeling
scheme is generally better than that of branch code. Please see the two sample
bit-strings in the lower right of Figure 6 for comparison.

Based on the data structures discussed above, the resultant label sizes of the
six data sets are shown in Figure 7. We can see that the containment labeling
scheme and branch codes have the worst performance when the depth of the
data set is small, while the Dewey labeling scheme is the worst when the depth
of the data set is large. Note that the space cost of the containment labeling
scheme has nothing to do with the depth of the XML tree, but the other three
labeling schemes do, since they either explicitly or implicitly represent ancestors’
information. This is the reason why the XMark data set has less nodes than
those of the DBLP data set, but the Dewey number, the branch code, and the
CT-label need even more space. However, our CT-labeling scheme still performs
better than the other two. To summarize, our CT labeling scheme has the best
performance when the depth of the data set is small, and only requires a little
more space than the containment labeling scheme when the depth of the data
set is large.

4.2 Time Analysis

The time performance is also measured based on the data sets listed in Table 2.
After the XML tree and the four types of labels for every node are constructed by
parsing through an XML document, we randomly create a million pairs of nodes
as the input source. Each pair of node tests the structural relationships using the
four labels. In addition, according to our experiments, we found that the module
operator (the symbol “%” in C++ language) is slower than the other CPU
instructions, such as addition, shift, and AND operators. Since computing the
remainder of two integers plays an important role in our framework, we modify
the representation of the maximum depth of the XML tree d to accelerate the
computing of the depth of a CT-label. Specifically, the real depth is represented
as 2�log d� so that we can use the AND operator to compute the depth of a
CT-label instead of using the module operator.

The experimental results of the time performance for each data set are dis-
played in Figure 8. The processing time is the total time consumed to determine
a structural relationship for all the one-million-pair nodes. We can see that it
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Fig. 8. The processing time of determining the structural relationships with different
data sets

costs more time for the Dewey numbers to determine the AD and PC relation-
ships than the other labeling schemes. The reason is that we have to compare
each component of the Dewey number while the other labeling schemes are able
to compute the relationships in constant time. Besides, we can also see that the
branch code is much inefficient than the others in determining the document or-
der. The reasons are that the time complexity of the branch scheme is O(d), and
many time-consuming module operators may be used. The containment labeling
scheme cannot be used to compute the sibling relationship, so we compare only
the Dewey numbers, branch codes, and CT-labels for the sibling relationship. It
is obvious that our CT labeling scheme works more efficiently than the Dewey
number on determining the sibling relationship. The reason is quite similar to
that of the AD and PC relationships.

In summary, the experimental results show that our CT labeling scheme works
almost as efficiently as the containment labeling scheme for computing the AD
and PC relationships, but the CT labeling scheme further provides the ability
of determining the sibling relationship. In addition, the experimental results
also show that the CT labeling scheme often works more efficiently than the
Dewey number and the branch code for computing the AD, PC, and sibling
relationships.
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5 Related Work

Many labeling schemes have been proposed to process XPath efficiently. For
example, the authors in [2] used P-labeling and D-labeling to process the queries
involving consecutive child axes and descendant axes traversal, and the authors
in [1] discussed how to process XPath based on relational databases. Besides, the
techniques discussed in [7][9][11] have been proposed to process twig patterns in
XML databases. We do not compare our labeling schemes with all of them since
their labeling scheme tend to be more complex and each label requires more
information than the other schemes discussed in this paper.

Note that all of the four labeling schemes discussed in this paper are not
fully dynamic, that is, re-labeling is sometimes required if we perform update
operations on XML documents. Specifically, in the containment labeling scheme,
the whole XML tree should be re-labeled once a node is newly added. In the
Dewey labeling scheme, all the nodes that follow the newly added node should
be re-labeled. As to the branch code labeling scheme, the subtree rooted at the
parent of the newly added node will be re-labeled. For our CT-labeling scheme, if
the newly inserted node exceeds the range covered by the corresponding complete
tree, the whole tree will need to be re-labeled. For example, if we add a new node
following node E of Figure 3, it can be assigned the number 19. However, if we
add a new node following node D, there is no room for new labels and the whole
tree should be re-labeled.

Several dynamic labeling schemes have been proposed to avoid the task of re-
labeling[3][4][8][12][13]. Particularly, some of them are the extensions of Dewey
numbers. For example, in the ORDPATH labeling scheme proposed by O’Neil et
al. [8], every label is composed of only odd numbers at the initial states. Hence,
there exists a gap between two adjacent siblings for future insertion. This labeling
scheme is currently used in Microsoft SQL Server. On the other hand, Wu et al.
used the concept of the vector order to develop a dynamic labeling scheme called
Dynamic DEwey (DDE) [12]. In short, given two DDE sibling labels, the newly
inserted label is the addition of the component at the same level, and we can
compare the structural relationships of two DDE labels by their initial terms.
However, these methods cannot be applied to the other three labeling schemes.

In summary, the proposed CT labeling scheme is proper for read-only XML
documents. If we expect there will be node insertions in the future, we can leave
some gaps in advance, as the containment labeling scheme does. Although not
fully dynamic, this scheme can already work for most cases. Particularly, note
that the contents of XML documents usually do not change in most application
scenarios. For example, we will not change the XML document if it is a purchase
order received through data exchange.

6 Conclusions

In this paper, we propose a labeling scheme based on the concept of the complete
tree. According to the experimental results, the CT labeling scheme is very effi-
cient in processing all structural relationships. It is also shown that our labeling



A Compact and Efficient Labeling Scheme for XML Documents 283

scheme is more compact than the others in most cases. In the future, we will
investigate how to make the CT labeling scheme fully dynamic. The challenge
lies in how to make the CT-label compact and flexible at the same time.
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Abstract. Data analytics applications, content-based collaborative plat-
forms and office applications require the integration and management of
current and historical data from heterogeneous sources. XML is a stan-
dard data format for information. Thanks to its semi-structured-ness, it
is a good candidate data model for the integration and management of
heterogeneous content. However, the management of historical and col-
laboratively created data compels considering extensions of the original
XML model to constraint-based, probabilistic and temporal aspects. We
consider here an extension of the XML data model with mutual exclusion
between nodes for the purpose of the management of versions in XML
databases. XML query processing algorithms for ordinary XML data fo-
cus on the parent-child, ancestor-descendant, sibling and lowest common
ancestor relationships between nodes. In this paper, we extend existing
labeling schemes and query processing algorithms for the processing of
queries over an extension of the XML data model with mutual exclusion.
We focus on structured twig pattern query, and show that the same tech-
nique can be applied to keyword queries as well. We empirically evaluate
the performance of the proposed techniques.

1 Introduction

1.1 Context

Data analytics is increasingly used by organizations to make better business
decision, improve customer services, and verify existing or discover new opera-
tional models. At the same time, different applications regularly or continuously
collect, integrate and maintain data to serve analytics tools. Those data may be
large in size, and pose speciality compared to normal business data. The capac-
ity and throughput of modern systems tackles data size, while special handling
may be required to meet the speciality of such data.

We use two examples to illustrate data speciality. In many situations, data need
to be collected and integrated from multiple sources. Uncertainty is unavoidable
in such kind of data integration. To store and query uncertain data, probabilis-
tic data management ([4][5]) were studied. The second example ismulti-versioned
data management. Data may change over time.With the development of hardware
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capacity, many old-versioned data are no longer stored as “log”, but stored in the
same database as the current version.Analytical tasks often visit different versions
of data by “time-travel” queries [16].

Although there are adequate works extending the traditional relational
database to support storage and query for data with special characteristics,
more and more modern data are represented, exchanged and archived in semi-
structured or even unstructured format rather than relational model. XML has
become a standard format for information exchange and storage. Our study
focuses on semi-structured XML database.

There are a number of extensions to XML in order to represent data with
different speciality. Continuing with the above two examples, probabilistic XML
model [15] and temporal XML model [17] were proposed to represent uncertain
XML data and multi-versioned XML data respectively. Because of the simple
but strict syntax requirement of XML, any extension to XML data only puts in
additional tags to meet its speciality. The two XML fragments in Fig. 1 show a
probabilistic XML data and a temporal XML data, in which the colored italic
element tags and attributes are introduced to indicate distribution and proba-
bility, and time window in the two documents respectively. In the probabilistic
XML data in Fig. 1(a), the container throughput of the port of Hong Kong
in each year may exist with a probability, and are independent to each other.
Furthermore, the information for 2009 came from two sources with different
probabilities, and the two pieces of information are mutually exclusive to each
other. In the temporal XML data in Fig. 1(b), the information of 2008 and 2009
have been updated at different times, and different versions of information are
all kept with a time window to indicate their valid period.

<ports>
<port name= “Hong Kong”>

<container_throughput>
<ind>

<2007 pro= “0.7”>23.998</2007>
<2008 pro= “0.8”>24.494</2008>
<mux pro= “0.9”>

<2009 pro= “0.8” source= “HKPDC”>21.040</2009>
<2009 pro= “0.2” source= “Asian News”>20.9</2009>

</mux>
</ind>

</container_throughput>
</port>
…… 

</ports>

(a) Probabilistic XML

<ports>
<port name= “Hong Kong”>

<container_throughput>
<2007>23.998</2007>
<2008 time= “[2008, 2009]”>24.494</2008>
<2008 time= “[2009, now]”>24.89</2008>
<2009 time= “[2009, 2011]”>21.040</2009>
<2009 time= “[2011, now]”>20.9</2009>

</container_throughput>
</port>
…… 

</ports>

(b) Temporal XML

Fig. 1. Fragments of probabilistic and temporal XML data

1.2 Motivation and Contribution

Most works on query processing in extended XML models only focus on func-
tionality extension (e.g., [8][7] for temporal XML and [11][10] for probabilis-
tic XML), ignoring the performance gap between their novel algorithms and
the many efficient algorithms proposed for ordinary XML data. Twig pattern
matching and keyword search are two typical topics in XML query processing,
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for structured and unstructured XML queries respectively. Among the state-of-
the-art algorithms for both twig pattern matching and XML keyword search,
document labeling and inverted list for labels are widely adopted to achieve bet-
ter performance. In particular, for twig pattern matching, efficient structural join
algorithms e.g., [6], were proposed over inverted list streams, while for keyword
search, relevant inverted list streams are scanned in order to find LCA nodes
e.g., [19]. It is proven that using document labeling and inverted lists, both I/O
and computational cost during query processing can be significantly improved
[9], compared to some naive approaches, e.g., document sequential scan.

Despite the considerable research efforts dedicated to query processing over
the ordinary XML model, few of them were adapted to extended XML models.
One of the key reasons is that the current labeling schemes (e.g., the contain-
ment scheme [20] and the prefix scheme [18]) only facilitate ordering, parent-child
(PC), ancestor-descendant (AD) and lowest common ancestor (LCA) checking.
These operations are sufficient for query processing in ordinary XML data. How-
ever, for XML data in extended models, another relationship among document
nodes, mutual exclusion, must be verified. Unfortunately, the existing labeling
schemes cannot serve this operation.

For example, to process a twig pattern query (expressed in XPath) A[//B]//C,
for each satisfied A-typed node we not only need to ensure that there is a B-
typed node and a C-typed node appearing as its descendants, but also need to
ensure that the B-typed node and the C-typed node are not in the same mux
distribution if the data is probabilistic, or their time windows have overlapped
period if the data is temporal. Similarly, for any keyword query, we not only
need to find the LCAs (or extended LCAs) of the query keywords, but also need
to check that the nodes matching the query keywords can exist simultaneously.

In this paper, we aim to build a bridge between efficient query processing
approaches for ordinary XML data and query processing problems in extended
XML models. We take two typical extended XML models, probabilistic XML and
temporal XML under consideration. These two models attract most research
attention in extended XML, and they share the common characteristic, i.e.,
mutual exclusion among nodes. In this paper, we abstract these two models
as the extended XML model with mutually exclusive nodes, called XML-ME,
and argue that the mutual exclusion among document nodes poses challenges in
query processing. The presentation will focus on structured twig pattern query,
and we show that the same technique can be easily applied to keyword search.
The contribution of this paper can be summarized as:

– We study the underlying difference between ordinary XML model and ex-
tended XML models, w.r.t. query processing. We discover that though all
kinds of XML data inherit the same syntax and presentation, the different
node semantics bring in speciality to data in different models, which also
becomes an obstacle preventing most efficient query processing approaches
proposed to ordinary XML data being adopted by extended XML models.

– We propose simple extension to the existing XML labeling schemes, so that
the mutual exclusion relationship between document nodes can be verified.
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We also extend the existing query processing algorithms accordingly, to make
them adoptable for extended XML models with mutual exclusion.

– We conduct experiments to validate the performance improvement of our
extension.

1.3 Organization

The rest of the paper is organized as following. In Section 2, we revisit some back-
ground knowledge and related work. In Section 3, we propose extension to the
existing labeling scheme to indicate constraints for mutual exclusion checking.
We also discuss how the existing inverted list based algorithms can be extended
to process queries over XML-ME data. In Section 4, we conduct experiment to
validate our algorithms. Finally, we conclude this paper in Section 5.

2 Background and Related Work

2.1 XML Models

Semi-structured XML data can be naturally modeled as a tree. Each element, at-
tribute and value becomes a tree node. The nesting relationship between element
and sub-element, as well as the relationship between element and its attribute,
between element and its enclosed text, and between attribute and its value, is
modeled as tree edge. By considering the ID reference, some applications also
model XML data as graph to facilitate their processing.

Similar to the relational databases, XML model is also extended for different
database purposes. Probabilistic XML and temporal XML are two typical ex-
tended XML models. They introduce additional elements and/or attributes with
special semantics to serve their functions. Although the syntax of the text presen-
tation remains, the introduced functional elements and attributes are normally
specially treated in applications. In probabilistic XML models (see the survey
[2]), the distributional nodes are specially marked out of ordinary XML nodes,
and do not affect the PC relationship across them, i.e., they are not counted
as real document nodes. In temporal XML models, the time window can be ei-
ther modeled as a normal tree node, or modeled as an edge label [17]. However,
no matter how the graphic model emerges, the only purpose is to indicate the
functional nodes, and facilitate the application processing.

2.2 XML Queries

XML queries are divided into structured queries and unstructured queries. In
structured queries, the query language (e.g., XPath and XQuery) needs to specify
the structural constraints in order to form a query. It is generally considered that
twig pattern (small tree pattern) is the core pattern for structured XML queries.
Unstructured query, or called keyword query, is simply comprised of a set of
keywords. Due to the weak query semantics can be expressed, different from
structured queries, unstructured query does not aim to find exact answers, but
to search for more relevant and meaningful approximated answers.
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Inverted list is an important data structure for both twig pattern query pro-
cessing and keyword search in ordinary XML data. Generally, an XML docu-
ment is labeled with a certain labeling scheme. One requirement for the labeling
schemes is that the PC, AD and LCA relationship between document nodes must
be identifiable based on their labels. Then the labels for each type of document
node are organized in an inverted list, in document order. Query processing are
performed by scanning only query-relevant inverted list streams, and perform
e.g., structural join for twig pattern query processing and LCA computation
for keyword search. This approach can significantly reduce I/O cost (as not all
nodes are scanned), and proven optimal for computation in some cases [9].

Query processing over extended XML models mainly focus on handling special
functions. For example, [8][7] focus on supporting time window to XML queries
and [14][17] focus on indexing temporal XML data; while research in probabilistic
XML querying focus on linking search result to probabilistic models [11][10][3].
They paid less attention to the performance issues, in comparison with some
efficient or even optimal algorithms proposed to ordinary XML data and queries.
For example, a recent work on keyword search over probabilistic XML data [12]
was proposed, but it focuses more on probability computation and adopts simple
document scan approach to find SLCA nodes.

3 Query Processing over XML-ME Documents

It is quite normal that simple XML queries, e.g., twig pattern queries or keyword
queries, are issued to those XML data in extended models. Since there are many
sophisticated and efficient algorithms to process such queries over ordinary XML
documents, we aim to adapt the existing algorithms for XML data in extended
models, by keeping the optimality and efficiency of the algorithms. We choose
the inverted list based algorithms, as they are proven more efficient than other
approaches, e.g., document scan and subsequence matching.

As mentioned earlier, we take two extended XML models that are widely
used in modern applications under consideration, i.e., probabilistic XML and
temporal XML. Due to the space limitation, we only present algorithms for twig
pattern matching. We discuss how the same technique can be easily applied to
keyword search.

3.1 Mutually Exclusive Nodes and XML-ME Model

Definition 1. (XML instance) An instance of an XML document D is a copy
of D in which every node is in one of its possible states defined in D.

Definition 2. (Mutually Exclusive Nodes) In an XML document, two nodes
are mutually exclusive if and only if they do not exist simultaneously in any
instance of this document.

For probabilistic XML data, mutually exclusive nodes do not exist simultane-
ously in any single possible world; for temporal XML data, the time windows
for a pair of mutually exclusive nodes do not have overlapping period.
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Definition 3. (Ordinary XML document) Ordinary XML document refers
to the XML document in which each node has only one state, i.e., there is only
one instance.

Theorem 1. Ordinary XML documents do not contain mutually exclusive nodes.

Since an ordinary XML document only has one instance, all nodes can exist
simultaneously.

Definition 4. (XML-ME model and document) We name the extended
XML model that allows mutual exclusion among elements as XML-ME model.
Any document in XML-ME model is called an XML-ME document.

For example, a probabilistic XML document is an XML-ME document with any
two nodes under the same mux distributional node mutually exclusive to each
other. A temporal XML document is also an XML-ME document, in which
two nodes with non-overlapping time period are mutually exclusive to each
other. Query processing over XML-ME documents needs to take mutual ex-
clusion checking into account. Any search result with mutually exclusive nodes
co-existing is meaningless.

Theorem 2. In an XML-ME document, two mutually exclusive nodes cannot
be in the same root-to-leaf path. In other words, two mutually exclusive nodes
cannot be in AD relationship.

If two nodes u and v are in AD relationship in an XML-ME document, assuming
v is u’s descendant, then the existence of v implies the existence of u. Thus u
and v are not mutually exclusive.

3.2 Mutual Exclusion Checking

In the inverted list based algorithms, labels stored in each inverted list are only
sufficient for PC, AD and LCA checking. No matter which labeling scheme is
employed, mutual exclusion between document nodes cannot be verified.

The naive approach is to maintain a mutually exclusive map between each
pair of document node. Then after the normal processing of a query, the result
can be post-processed to filter those answers with mutually exclusive nodes.
However, the number the nodes in an XML document can be huge. No matter
how we compact the map, it will still introduce a great overhead. As a result,
the mutual exclusion checking needs to be done on-the-fly, which is similar to
PC, AD and LCA checking.

In order to perform mutual exclusion checking during query processing over
XML-ME documents, we need to complement the existing labeling scheme by
introducing an additional indicator, namely mux indicator, and implement a
function to evaluate the mux indicators from any two document nodes.

Example 1. For probabilistic XML data, any two nodes under the same mux dis-
tributional node are mutually exclusive to each other. We assign an ID to each
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mux distributional node and let its child nodes inherit the ID as the mux indica-
tor. Then the checking function can be implemented as that any two document
nodes with the same mux indicator are mutually exclusive.

For temporal XML data, the mux indicator can be the time window of each
node. The checking function will be that any two document nodes having mux
indicators without overlapping period are mutually exclusive.

3.3 Twig Pattern Matching

In this section, we discuss how the existing twig pattern matching algorithms can
be extended to handle queries over XML-ME documents. TwigStack [6] was the
first algorithm on holistic twig pattern matching, which introduced inverted list
streams and stacks to achieve good performance and proven optimal for certain
query cases. Later extensions inherit similar ideas and make such a structural join
based approach a typical way to process twig pattern queries. In our paper, we
take TwigStack as an example to illustrate how such a structural join algorithm
can be extended for XML-ME documents. Our extension is adoptable to all other
stack-based algorithms.

We invent a new document labeling scheme, which complements the existing
schemes by introducing two more components. The new label for each document
nodes is a triplet:

(positional label, mux indicator, annotation)

positional label is from the existing labeling scheme, e.g., containment scheme
[20] or prefix scheme [18]. mux indicator is described in the previous section. The
last component annotation is used for certain XML-ME documents for which
output result needs to be annotated. We will show an example later. For other
documents, this annotation field will be empty.

The original TwigStack algorithm has two phases, path matching and path
merging. By Theorem 2, because two nodes along the same path will not be mu-
tually exclusive, in the first phase, we do not need to check for mutual exclusion.
However, during path matching, we need to combine the mux indicators and
annotations from each node in each potential path answer. Then in the second
phase, when we merge the path answers, we can easily check for mutual exclu-
sion. We combine the mux indicators and annotations for each path when the
path is outputted from stacks. Algorithm 1 shows the procedure. Note that this
procedure follows the algorithms proposed in [6], and for simplicity, we assume
that the path query contains only AD edges. For more general path query with
PC edges, readers can refer to the discussion in [6].

The two introduced functions in line 5 and 6 should be implemented based on
different requirements of different documents. We use two examples to illustrate
how the functions are implemented for probabilistic XML and temporal XML
data.

Example 2. For probabilistic XML data, the mux indicator is simply the ID of
the corresponding mux distributional node, if any. The annotation of each node
contains the absolute probability of this node appearing in one possible world.
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Algorithm 1. outputPath(SN, SP)

Input: the position SP of the stack SN, which we are interested in
Output: a path answer
1: let S[i] be the i-th stack of the query nodes from the root to the current path leaf
2: let index[i] be the position in the i-th stack that we are interested in, where the

bottom of each stack has position 1
3: index[SN] = SP
4: if SN == 1 then
5: aggregateMuxIndicator()
6: aggregateAnnotation()
7: return path S[n].index[n]-...-S[1].index[1] with combined mux indicator and up-

dated annotation
8: else
9: for i = 1 to S[SN].index[SN].pointer to parent do
10: outputPath(SN -1, i)
11: end for
12: end if

This value can be computed by multiplying the probabilities of all probabilis-
tic nodes along the same path from the root to the current node. Suppose in
a probabilistic XML document, a node A is a child of a mux node m1 with
probability of 0.5, and m1 does not have any other distributional node as its
ancestor. Then the mux indicator of A is m1 and its annotation is 0.5. If A has
a child B which links with A through another mux node m2 with probability of
0.8 (note that distributional node does not affect the PC relationship between
the two nodes across it), B’s mux indicator will be m2 and its annotation will
be 0.5*0.8=0.4. The aggregateMuxIndicator function for probabilistic XML is
implemented as merging all mux indicators of the nodes along the give path.
Then the merged set for path A/B will be {m1, m2}. The aggregateAnnotation
function returns the annotation of the leaf node along the path, i.e., 0.4, which
means the absolute probability of the path appearing in a possible world.

Example 3. For temporal XML data, the mux indicator is the time window of the
node, if any. The annotation of a node is not needed. Suppose in a document, a
node A has a time window of [2008, 2010] and its child node B has a time window
of [2009, 2012], then the aggregateMuxIndicator function takes the overlapped
period, i.e., [2009, 2010]. This means only within this period, the two nodes (i.e.,
the path A/B) can exist together.

In the next step, we present how the aggregated mux indicator and annotation
of each path answer can be used to return final answers.

Approach 1. In the first approach, we check for the aggregated mux indicator
of each path answer during path merging. Also, we update the final annotation
for the whole twig answers. The algorithm is presented in Algorithm 2.

Similarly, the function satisfy(Ip, Iq) and update(Ap, Aq) should be imple-
mented for ad hoc XML-ME documents.
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Algorithm 2. pathMerge

Input: two sets of path answers P and Q to be merged
Output: merged result, possibly with annotation
1: suppose the n-th node the branching node to merge two paths from P and Q
2: for all pair of paths p and q from P and Q respectively do
3: let p[i] and q[i] be the i-th nodes in path p and q
4: if p[n] and q[n] have the same positional label then
5: let Ip and Iq be the aggregated mux indicator, Ap and Aq be the aggregated

annotation in p and q respectively
6: if satisfy(Ip, Iq) then
7: update(Ap, Aq)
8: return merged result with updated annotation
9: end if
10: end if
11: end for

Example 4. For probabilistic XML data, the satisfy() function over two aggre-
gated mux indicators returns true if the two mux indicators do not have any
common element. In other words, the two paths do not have any pair of nodes
that are under the same mux distributional node. Then the update() function
updates the overall annotation, i.e., the probability of the merge result, by mul-
tiplying the probabilities of the two paths and dividing it by the probability of
their common prefix path.

For temporal XML data, the satisfy() function returns true if the two ag-
gregated mux indicators have overlapped time period, i.e., the two paths can
existing simultaneously.

Although the proposed extension works on top of any optimal twig pattern
matching algorithms (e.g., [6] for twig queries with only AD edges and [13] for
twig queries with AD edges, as well as PC edges under non-branching nodes),
it cannot guarantee any optimality. This is because the optimal twig matching
algorithms only consider structural join, but no mux indicator. To achieve opti-
mality for twig pattern matching, we need to push mux indicator checking down
to the getNext() function, which is the core function to ensure optimality in
those twig pattern matching algorithms over ordinary XML data.

Approach 2. In the second approach, we aim to maintain the optimality of
the existing algorithms when they process twig pattern queries over XML-ME
data. The idea in the existing algorithms to achieve optimality for matching a
certain class of twig pattern queries is to introduce the getNext() function, which
guarantees that when a node is pushed onto the stack its corresponding query
node must have a subtwig matching solution.

In the existing algorithms, to ensure a query node has a subtwig matching
solution, they only check with AD (and also PC in some extended work [13])
relationship. In our situation, in addition, we also need to check the mutual
exclusion relationship among all nodes matching a certain subtwig. Thus, in
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Algorithm 3. getNext(q)

1: if isLeaf(q) then
2: return (q, next(Tq).muxIndicator)
3: end if
4: let mux[i] store the aggregated mux indicator for the subtwig rooted at i-the child

of q
5: for qi in children(q) do
6: (ni, muxi) = getNext(qi)
7: mux[i] = muxi

8: if ni != qi then
9: return (ni, muxi)
10: end if
11: end for
12: nmin = minargni nextL(Tni)
13: nmax = maxargni nextL(Tni)
14: while nextR(Tq) < nextL(Tnmax) do
15: advance(Tq)
16: end while
17: if nextL(Tq) < nextL(Tnmin) ∧ !checkMux(mux[]) then
18: return (q, aggregatedMuxIndicator(mux[]))
19: else
20: return (nmin, mux[min])
21: end if

the extended getNext() function, we aggregate the mux indicators of the nodes
that potentially form a subtwig match (aggregatedMuxIndicator()), and include
a function to check whether the mux indicators of a set of nodes allow them
to appear in the same answer (checkMux()). The pseudo-code for the extended
getNext() function is presented in Algorithm 3. Similarly, we continue with the
getNext() function proposed in [6], e.g., using the containment scheme for posi-
tional labeling and checking the position of two nodes based on their labels, etc.

Example 5. Consider a temporal XML data fragment in Fig. 2(a). The label of
each edge indicates the time period of the corresponding subtree. Suppose we
have a twig pattern query to process, as shown in Fig. 2(b). Using Approach 1,
during the first phase of pattern matching, paths b1-c1, b1-d1, b2-c2 and b2-d2 are
returned. Then in the second phase, these paths are merged into twig answer,
during which, the aggregated mux indicators (i.e., time period) of each path are
checked. Finally, only b2-c2 and b2-d2 are returned and form a twig answer. Using
Approach 2, during the first phase, the getNext() function will not return node
b1 (and all paths with b1), as it does not have any subtree matching the query
twig and satisfying mutual exclusion constraint.

Theorem 3. Algorithm 3 complements structural join algorithms that use get-
Next() function, and maintains the optimality of these algorithms.

Algorithm 3 modifies the original getNext() function by adding the constraint
to check for mutually exclusive nodes, in order to control the node pushed onto
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[2002, 2006] [2006, 2012]

[2006, 2010] [2009, 2012][2004, 2005][2002, 2003]

(a) Temporal XML data

b

c d

(b) Query

Fig. 2. Example temporal XML data and twig pattern query

stacks. In other words, any node returned by the new function must contain
sub-matches in which there is no mutually exclusive nodes. Also any node con-
taining mutually exclusive nodes in its sub-matching will not be returned. Thus,
the optimality of the original algorithm can be maintained. For example, in
TwigStack, by considering mutual exclusion relationship between nodes, the al-
gorithm is still optimal for queries with AD edges only, by using our extended
getNext() function.

3.4 Keyword Search

In XML keyword search, similarly, the query-relevant inverted list streams are
sequentially scanned, and LCA or extended LCA (e.g., SLCA [19], etc.) of a
group of nodes, each of which comes from a stream, is computed. To handle
XML-ME documents, we still follow the same labeling scheme as described in
the previous section, and use it to check for mutual exclusion relationship among
a group of nodes, to decide whether their LCA is needed to be computed. If
the mux indicators of a group of nodes cannot pass the corresponding checking
function, this group can be ignored, without computing LCA.

Example 6. Consider a keyword query {c, d} issued to the temporal XML data in
Fig. 2(a). Without considering mutual exclusion, the LCAs for both pairs (c1, d1)
and (c2, d2) need to be computed. With our labeling scheme, we can check that
c1 and d1 are mutually exclusive. Thus, we can skip computing LCA for (c1, d1).

Since our extension for mutual exclusion checking is orthogonal to LCA compu-
tation, it inherits the advantages of any existing efficient LCA-based algorithms,
e.g., skipping nodes along an inverted list stream. We do not further discuss
LCA computation with mutual exclusion, as technically it is the same as twig
pattern matching.

4 Experiment

In our experimental evaluation, we compare three approaches to process twig
pattern queries over XML-ME data. To be fair, we use the same algorithm,
TwigStack, as the fundamental structural join algorithm for all the three ap-
proaches. In the first approach, we simply consider the document as ordinary
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XML document and perform structural join to find query matches. Then we
post-process the answers to filter those with mutually exclusive nodes. We call
this approach Post-filtering. The second approach follows the algorithm proposed
in Section 3.3, in which we filter the paths that are exclusive to other paths dur-
ing path merging. We call this approach Merge-filtering. In the last approach,
we implement the algorithm in Section 3.3. We call it TwigStackX.

4.1 Settings

We use the XMark [1] benchmark XML data (the standard 110MB document
downloaded from [1]) for our experiment. We randomize the mutually exclusive
nodes in the document to make it an XML-ME document. In particular, we
randomly assign an mux indicator to a portion of document nodes. Two or more
nodes with the same mux indicator are considered exclusive to each other. We
control two factors, muxDegree and contraDegree. muxDegree is the percentage
of document nodes to be assign mux indicator, while contraDegree controls the
probability that two nodes have the same mux indicator, under the condition
that both of them have mux indicators.

We randomly compose five queries for the evaluation. The queries are shown in
Table 1. Note that our purpose is to evaluate the proposed algorithms to handle
XML-ME data. We vary the muxDegree and contraDegree of the document to
show the efficiency of the algorithms. The variety of the queries is less important.

Table 1. Queries used in experiments

Query XPath Expression

Q1 //item[location=“United State”]/id

Q2 //person[//profile/age=“40”]/name

Q3 //open auction[//type=“Featured”]//initial

Q4 //regions/africa/item[//mailbox//mail/from]//keyword

Q5 //closed auction[seller][buyer]/price

We set muxDegree to be in {0.2, 0.4, 0.6} and contraDegree to be in {1/3,
1/4}. We obey Theorem 2, i.e., there is no pair of nodes along the same path
having the same mux indicator.

4.2 Intermediate Path Set

In this section, we monitor the intermediate paths returned by each algorithm.
The detailed result is shown in Table 2. For Post-filtering and Merge-filtering,
no matter how muxDegree and contraDegree changes, the intermediate path
set does not change. The reason is that both of the two algorithms will generate
intermediate paths as that in ordinary XML data, and then check for mutual ex-
clusion. In particular, Post-filtering checks on twig answers, while Merge-filtering
checks during path merging. This also explains why they have the same inter-
mediate path result.
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Table 2. Intermediate path size evaluation

Query Post-filtering Merge-filtering TwigStackX (muxDegree-ContraDegree)
0.2-1/3 0.4-1/3 0.6-1/3 0.2-1/4 0.4-1/4 0.6-1/4

Q1 38044 38044 34512 21800 16676 30091 22333 19651

Q2 270 270 186 112 42 160 122 70

Q3 11434 11434 7470 4086 2762 7328 3960 2780

Q4 1257 1257 1114 753 975 956 877 1210

Q5 29250 29250 15111 6129 1818 14850 6300 1893

For TwigStackX, the intermediate path result set is smaller. Furthermore, when
the muxDegree increases, the intermediate set decreases, as better viewed in Fig.
3. This is easy to understand. As more nodes have mux indicators, there will be
more mutual exclusion cases exist. Then the getNext() function will filter more
nodes before pushing nodes onto stacks. One interesting case is that for Q4, this
rule does not hold. When muxDegree increases from 0.4 to 0.6, the intermediate
path set for Q4 also increases. The reason is that Q4 is quite deep along a path,
and the branching node is at the low position. Based on Theorem 2, when the
muxDegree is high, most mux indicators are assigned to the common part of the
two paths for Q4. Then there will be less path filtered during pattern matching.

muxDegree=0.2, contraDegree=3
Naïve Approach1
CPU time intermediate CPU time intermedia

Q1 546 38044 545
Q2 310 270 309
Q3 295 11434 286
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Fig. 3. Intermediate path size changes for TwigStackX

4.3 Performance

In this section, we evaluate the performance of the three approaches. As we
set three values to muxDegree and two values to contraDegree, we show the
performance comparison in all six cases. The results are shown in Fig. 4.

From the figure we can see that the performance for Post-filtering and Merge-
filtering are quite similar, though they filter the mutually exclusive nodes at
different stages of query processing. TwigStackX is more efficient than the first
two approaches. Also, by comparing Fig. 4(a) to 4(c) and Fig. 4(d) to 4(f), for
each query, the processing time is almost proportional to the muxDegree, i.e.,
the intermediate path size (except for Q4). We can conclude that the size of
intermediate path is the main factor affecting query processing performance.
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Fig. 4. Performance comparison in six cases

5 Conclusion

In this paper, we investigate the problem of query processing over semi-structured
XML data with mutually exclusive nodes, e.g., probabilistic XML data and tem-
poral XML data. We abstract such extended XML model as XML-ME model.
We show that the existing XML query processing techniques are insufficient and
not extendable to handle queries over XML-ME data. Motivated by this, we
invent a new labeling scheme for XML-ME data, and devise and compare query
processing algorithms to solve this problem. We focus on structured twig pattern
query, and illustrate that the same technique can be applied to keyword query
processing.
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For future work, we plan to look at ad hoc queries (e.g., query with time
constraints) to the XML-ME data. We will study how the performance issues
in, e.g., twig pattern matching affect the ad hoc query processing.
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Abstract. Keyword search is a popular technique which allows querying
multiple data sources on the web without having full knowledge of their
structure. This flexibility comes with a drawback: usually, even though
a large number of results match the user’s request only few of them are
relevant to her intent. Since data on the web are often in tree-structured
form, several approaches have been suggested in the past which attempt
to exploit the structural properties of the data in order to filter out irrel-
evant results and return meaningful answers. This is certainly a difficult
task, and depending on the type of dataset, these approaches show low
precision and/or recall.

In this paper, we introduce an original approach for answering key-
word queries called XReason. XReason identifies structural patterns in
the keyword matches and reasons with them in order to return mean-
ingful results and to rank them with respect to their relevance. Our
semantics shows a non-monotonic behavior and in the presence of ad-
ditional patterns, it is able to better converge to the users intent. We
design an efficient stack-based algorithm for evaluating keyword queries
on tree structured data, and we run experiments to evaluate its efficiency
and the effectiveness of our semantics as a filtering and ranking system.
Our results show that our approach shows better performance than the
other approaches in many cases of real and benchmark datasets.

1 Introduction

Keyword search on tree-structured data has attracted a lot of attention in recent
years. One of the reasons is that tree-structured data (e.g., XML, JSON) has
been established as the standard format for exporting and exchanging data on
the web. Another reason is that keyword search is by far the most popular
technique for searching the web. Its popularity is due to the fact that the users
do not need to know a complex query language (like XQuery) in order to retrieve
information from the web. In addition, they can issue queries without having full
or even partial knowledge of the schema (structure) and the same query can be
issued against multiple, differently structured data sources on the web.

The candidate results of a keyword query on an XML tree are defined usu-
ally as the minimum connecting trees (MCTs) in the XML tree that contain an
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instance of all the keywords. The roots of the MCTs are the lowest common an-
cestors (LCA) of the included keyword instances and are often used to identify
the candidate results. A drawback of keyword search is that keyword queries
usually return a very large number of results most of which are irrelevant to
the user’s intent. Many recent works focus on addressing this problem by ap-
propriately assigning semantics to keyword queries on tree data. A number of
these semantics, characterized as filtering, aim at filtering out a subset of the
candidate LCAs that are irrelevant. Some filtering semantics prune LCAs based
exclusively on structural information (e.g., Smallest LCA [7, 14, 19] or Exclusive
LCA [6, 20] semantics) while others take also into account semantic information,
that is, the labels of the nodes in the XML tree (e.g., Valuable LCA [4, 8] or
Meaningful LCA [11] semantics). Other recent works assign ranking semantics
to keyword queries, that is, they rank the results aiming at placing on top those
that are more relevant [1, 3, 4, 6, 12, 15, 17]. Ranking the results improves the
usability of the system. In order to perform the ranking these works exploit:
(a) structural characteristics of the results, and/or (b) statistical information
or information theory metrics adapted to the tree structure of the data. All
the ranking approaches rank the results based on some scoring function which
assigns scores to the results.

Although filtering approaches are intuitively reasonable for specific cases of
data, they are ad-hoc and they are frequently violated in practice resulting in low
precision and/or recall [17]. This weakness is due to the fact that these semantics
depend on the local properties of the LCAs in the XML tree. For instance, the
Exclusive LCA semantics filters out candidate LCAs whose keyword instances
are descendants of other descendant candidate LCAs, while the Smallest LCA
semantics prunes candidate LCAs that are ancestors of other candidate LCAs.
Most ranking approaches are combined with filtering approaches, that is, they
rank only the LCAs accepted by the respective filtering semantics, this way
inheriting the low recall of the filtering semantics.

Contribution. In this paper, we claim that a meaningful semantics for keyword
queries should not depend on the local properties of the LCAs in the XML tree
but on the patterns the keyword instances define on the XML tree. Further, a
ranking for the results should not be obtained based merely on scores assigned
through a scoring function, but by directly comparing the structural and seman-
tic properties of the patterns, that is, by reasoning on them. In the present work
this comparison is realized based on homomorphisms between patterns.

The main contributions of this paper are the following:

• We define the concept of pattern of a keyword query on an XML tree. A
pattern is a tree that records the structural relationships between node labels
in the tree defined by an instance of the query. Every pattern represents the
set of query instances in the XML tree that comply with this pattern. We
introduce homomorphisms between patterns and we use them to define two
relations all path homomorphism (aph) and partial path homomorphism (pph)
on patterns (Sections 3.1 and 3.2).
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• Based on the aph and pph relations, we organize the patterns of a query into a
graph of patterns which we leverage to define filtering and ranking semantics
for queries. We name this approach and the semantics XReason. When the
size of the data increases, new patterns may be detected and the reasoning
process might retain them as more relevant to the query. Since these patterns
might represent fewer query instances,XReason has a non-monotonic behavior
(Section 3.3).

• We design an efficient stack-based algorithm for computing query answers
that implements XReason. Contrary to the previous ranking algorithms that
rely on auxiliary structures and require a preprocessing of the datasets, our
algorithm uses only the inverted lists of the keywords in order to compute
and rank the query answers (Section 4).

• We run experiments on real and benchmark datasets and we compared with
previous approaches in order to assess the effectiveness of XReason and the
efficiency of our algorithm. Our results show that XReason filtering and rank-
ing semantics outperform previous approaches with respect to various metrics
and our algorithm is fast and scales well when the number of query results
increases (Section 5).

2 Definitions

Data Model. As is usual, we view XML documents as ordered node labeled
trees. Nodes represent elements and attributes. Edges represent element to el-
ement and element to attribute relationships. A function value is defined on
every node and returns the content of the element or the value of the attribute
represented by the node. Since we want to allow keywords to match also element
and attribute names, we assume that function value returns also the label of a
node on which it is applied. If the value value(n) of a node n includes a keyword
k we say that n contains keyword k and that node n is an instance of k. XML
tree nodes are enumerated using the Dewey encoding scheme.

Fig. 1 shows an XML tree. Dewey codes are omitted for clarity. Plain numbers
are used instead to identify the nodes.

Keyword Queries. A (keyword) query Q is a set of keywords {k1, k2, . . . , kn}.
Keyword queries are embedded to XML trees.

Definition 1. Let Q be a query and T be an XML tree. An instance of Q on T
is a function from Q to the nodes of T that maps every keyword k in Q to an
instance of k in T .

We use the term “query instance” to refer to the function that maps the query
keywords to the tree nodes and also, to the set of the nodes in the tree which
are the images of the query keywords under this function. Note that two query
keywords can be mapped to the same tree node.

Definition 2. Let Q be a query, T be an XML tree, and I be an instance of Q
on T . The instance tree (IT) of I is the minimum subtree S of T such that: (a)
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Fig. 1. An XML tree T

S is rooted at the root of T and comprises all the nodes of I, and (b) every node
n in S is annotated by the keywords which are mapped by I to n. The annotation
of node n is denoted as ann(n). The minimum connected tree (MCT) of I is the
minimum subtree of S that comprises the nodes of I.

Clearly, the root of the MCT is the Lowest Common Ancestor (LCA) of the
nodes of I in T .

Consider the XML tree of Fig. 1 borrowed from [17] and the keyword query
Q = {XML, Integration, V LDB}. Figures 2(a) and (b) show the IT and the
MCT, respectively, of the instance {(XML, 18), (V LDB, 19), (Integration, 20)}
of Q on T . Non-empty annotations are shown between square brackets by the
nodes.

Given a keyword query Q and an XML tree T , the set C of the ITs of all the
instances of Q on T is the set of the candidate results of Q on T . The answer of
a keyword query Q on an XML tree T is a subset of C.

3 Query Semantics

In order to define semantics for queries we introduce patterns of ITs and homo-
morphisms between patterns and study their properties.

3.1 IT Patterns and Pattern Homomorphisms

Definition 3 (IT pattern). A pattern P of a query Q on an XML tree T
is a tree which is isomorphic (including the annotations) to an IT of Q on T .

Fig. 2. (a) An IT and (b) its MCT
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The MCT of a pattern P refers to P without the path that links the LCA of the
nodes with non-empty annotations to the root of P . Function size(P ) returns
the number of edges of P .

Multiple ITs of Q on T can share the same pattern. Fig. 3 shows eight patterns
(out of 12 in total) of the keyword query Q = {XML, Integration, V LDB} on
the XML tree T of Fig. 1. The size of pattern P3 is 3 and that of its MCT is 2.
The size of pattern P6 is 7 and that of its MCT is 6.

Fig. 3. Some patterns for Q = {XML, Integration, V LDB} on the tree of Fig.1

Definition 4 (Pattern homomorphism). Let S and S′ be two subtrees of
patterns of a query on an XML tree. A homomorphism from S to S′ is a function
h from the nodes of S to the nodes of S′ such that:
(a) for every node n in S, n and h(n) have the same labels.
(b) if n2 is a child of n1 in S, h(n2) is a child of h(n1) in S′, and
(c) for every node n in S, ann(n) ⊆ ann(h(n)).

Fig. 4 shows the MCTs M, M ′, and M ′′ of three patterns of the query Q =
{Informatics, John, Smith} on an XML tree. As we can see in this figure
there are homomorphisms from M ′′ to M ′ and from M ′ to M but not from M
to M ′ or from M ′ to M ′′.

Fig. 4. Pattern MCTs M , M ′ and M ′′ and homomorphisms between them
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Fig. 5. Pattern MCTs M3 and M5 and a path homomorphism from M3 to M5

3.2 Path Homomorphisms and PH Relations

Definition 5 (Path homomorphism). Let S and S′ be two subtrees of pat-
terns of a query on an XML tree. We say that there is a path homomorphism
from S to S′ if for every path p from the root of S to a node n in S annotated
by a keyword k (every path is considered separately), there is a function ph from
the nodes of p to the nodes of a path p′ of S′ such that:
(a) for every node n1 in p, n1 and ph(n1) have the same labels.
(b) if n2 is a child of n1 in p, ph(n2) is a child of ph(n1) in p′, and
(c) k ∈ ann(ph(n)) ∪ label(ph(n)).

Fig. 5 shows the MCTs M3 and M5 of the corresponding patterns (shown in
Fig. 3) for the query {XML, Integration, V LDB} on the XML tree of Fig.
1. There is a path homomorphism from M3 to M5 (but not vice versa). The
different types of dashed lines indicate the different mappings of the paths of
M3 to paths of M5 according to this path homomorphism.

In Fig. 4, one can see that there are path homomorphisms between any two
pattern MCTsM ,M ′ andM ′′. This is expected due to the following proposition.

Proposition 1. Let M and M ′ be two pattern MCTs of a query on an XML
tree. If there is a homomorphism from M to M ′, there is also a path homo-
morphism from M to M ′. The opposite is not necessarily true. Further, if there
is a homomorphism from M to M ′, there is also a path homomorphism from
M ′ to M.

We now use the concept of homomorphism to define a relation named
all path homomorphism (denoted ≺aph), on patterns.

Definition 6 (≺aph relation). Let P and P ′ be two patterns of a query Q on
an XML tree T . P ≺aph P ′ iff one of the following conditions holds:
(a) There is a homomorphism from the MCT of P ′ to the MCT of P but not

vice versa.
(b) There is a path homomorphism from the MCT of P to the MCT of P ′ but

not vice versa.

As an example, observe that for the pattern MCTs M3 and M5 of Fig. 5, P3 ≺aph

P5 by virtue of condition (b). For the patterns P , P ′ and P ′′ whose MCTs are
shown in Fig. 4, P ≺aph P ′ ≺aph P ′′ by virtue of condition (a). We now show a
property of relation ≺aph.
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Fig. 6. A path homomorphism from a path of pattern P6 to a path of P5

Proposition 2. The relation ≺aph on the set of patterns of a query on an XML
tree is a strict partial order.

In order to avoid returning results that come from different unrelated parts of
an XML tree, we define below a relation, named partial path homomorphism, on
query patterns.

Definition 7 (≺pph relation). Let P and P ′ be two patterns of a query Q on
an XML tree T , and p be a path from the root of P to an annotated node of P .
P ≺pph P ′ iff there is a path homomorphism ph of p to a path in P ′ such that:
(a) the root of P is mapped by ph to the root of P ′.
(b) the root of the MCT of P is mapped by ph to a node which is a descendant

(not self) of the root of the MCT of P ′, and
(c) P ′ 
≺aph P .

Fig. 6 shows the patterns P5 and P6 of the query {XML, Integration, V LDB}
on the XML tree of Fig. 1. As shown in the figure, there is a path homomor-
phism from the path bib/paper/title[XML] of P6 to the same path of P5 and
the image of root of the MCT of P6 (paper) under this homomorphism is a
descendant of the root of the MCT of P5 (bib). Therefore, P6 ≺pph P5. It is not
difficult to see that the relation ≺pph is acyclic.

3.3 XReason Semantics

We use path homomorphisms to define filtering and ranking semantics to key-
word queries called XReason semantics. We first define a precedence relation, ≺,
on patterns.

Definition 8. Let P and P ′ be two patterns of a query Q in an XML tree T .
P ≺ P ′ iff P ≺pph P ′ or P ≺aph P ′.

Based on the previous discussion one can see that the following property holds
for the precedence relation on patterns.

Proposition 3. The relation ≺ on the set of patterns of a query on an XML
tree is acyclic.
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Given the relation ≺ on the set of patterns of a query Q on an XML tree T ,
consider a directed graph G≺ such that: (a) the nodes of G≺ are the patterns of
Q on T , and (b) there is an edge in G≺ from node P1 to node P2 iff P1 ≺ P2.
Clearly, because of Proposition 3,G≺ is acyclic. Fig. 7(a) shows the graph G≺ for
the relation ≺ on the set of patterns of query Q = {XML, Integration, V LDB}
on the XML tree of Fig. 1. There are 12 such patterns and eight of them (patterns
P1 - P8) are shown in detail in Fig. 3. The edges are labeled by letters a and/or
p to indicate which of the relations ≺aph and ≺pph relate its nodes. Transitive
a-edges which are not p-edges are omitted to reduce the clutter. In general, a
graph G≺ can have multiple source nodes (i.e., nodes without incoming edges).
The one of Fig. 7 has only one source node (pattern P3).

Fig. 7. (a) The graph G≺, (b) Pattern order O

Definition 9 (Filtering XReason semantics). According to the filtering
XReason semantics the answer of Q on T is the set of ITs of Q on T whose pat-
terns are source nodes in the G≺ graph. These ITs are called results of Q on T .

Based on the previous definition the answer of query Q = {XML,
Integration, V LDB} on the XML tree of Fig. 1 is the set of ITs which share
pattern P3 (the only source node in graph G≺ of Fig. 7(a)). There is only one
such IT which corresponds to the subtree rooted at bib whose leaves are nodes 5
and 6 in Fig. 1.

In the graph of Fig. 7(a), observe that all the nodes (patterns) can be parti-
tioned in levels based on their maximum distance (GLevel) from a source node.
For instance, in level 3 there are patterns P6 and P7. The patterns in one level
can also be further distinguished based on the depth of their MCT root in the
pattern (MCTDepth) and the size of their MCT (MCTSize). We create an or-
der O for the patterns in G≺ which ranks them in: (a) ascending order of GLevel,
(b) descending order ofMCTDepth, and (c) ascending order of MCTSize. Note
that two patterns might be placed at the same level in O. Order O does not dis-
tinguish between these patterns. In our running example, one can see that the
twelve patterns of Fig. 7(a) are ordered with respect to O as shown in Fig. 7(b).
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Definition 10 (Ranking XReason semantics). According to the ranking
XReason semantics the answer of a query Q on an XML tree T is the list of
ITs of Q on T ranked in an order which complies with the order O of their
patterns.

4 The Algorithm

In order to implement XReason we designed a stack-based algorithm named
PatternStack which is outlined in Algorithm 1. PatternStack takes as input the
keyword query and the inverted lists of the nodes (Dewey codes) for these key-
words in the dataset. It returns the patterns of the query answers associated
with their ITs. PatternStack processes nodes from the keyword inverted lists in
document order. Each stack entry corresponds to a node and is associated with
a set of patterns. In order for a node n to be pushed into a stack, the top stack
node should be the parent of n (lines 4-7). This is guaranteed by appropriate
pops of non-ancestor nodes and pushes of all the ancestors of n. For each new
node, a partial pattern MCT (i.e., an MCT of a subset of the query) is con-
structed (line 21). Then, it is combined with all existing patterns of the top
stack node and the resulting pattern set is unioned with that of the top stack
node (lines 22-23). During a pop action, all complete patterns are removed from
the top stack entry (lines 13-14). The remaining patterns are extended with an
edge from their root to the parent of the top node (line 15-16). The top entry
is popped (line 17) and its extended patterns are combined with the patterns

Algorithm 1: PatternStack algorithm
1 PatternStack(k1, . . . , kn: keyword query, invL: inverted lists)
2 s = new Stack()
3 while currentNode = getNextNodeFromInvertedLists() do
4 while s.topNode is not ancestor of currentNode do
5 pop(s)

6 while s.topNode is not parent of currentNode do
7 push(s, ancestor of currentNode at s.topNode.depth+1, ””)

8 push(s, currentNode, keyword)

9 while s is not empty do
10 pop(s)

11 pop(Stack s)
12 for temp = s.top.patterns.next() do
13 if temp is complete then
14 s.top.removePattern(temp)

15 else
16 childPatterns.add(extendToParent(temp))

17 s.pop()
18 newPatterns = produceNewPatterns(s.top.patterns, childPatterns)
19 add(s.top, newPatterns)

20 push(Stack s, Node n, String keyword)
21 newPatternId = partialPattern(n.labelId,keyword)
22 newPatternMCTs = produceNewPatterns(s.top.patterns, newPatternId)
23 add(s.top, newPatternMCTs)
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of the parent stack entry to produce new ones (line 18). Finally, the extended
patterns together with newly combined ones are added to the parent stack entry.

Algorithm PatternStack constructs every pattern once and keeps only their ids
in the stack entries. Every pattern has a unique string representation comprising
the labels and keywords contained by the nodes. This representation is used for
comparing patterns between them. Every time two patterns are combined to
produce a new one, the ids of the combined patterns and that of the new one are
kept in a table. Another table maps each pattern MCT to the pattern produced
when the first is extended with an edge to the parent of its root (line 16). These
two tables are consulted before any pattern is constructed (lines 16, 18, 21 22),
in order to avoid reconstructing any patterns already created.

Once the patterns are computed the graph G≺ is constructed and the order
O of patterns is produced.

5 Experimental Evaluation

We performed experiments to measure the efficiency and effectiveness ofXReason
as a filtering and ranking system. We compared the quality of our results to that
of previous approaches.

For the experimentation, we use Mondial (1.7 MB), SIGMOD (467 KB),
EBAY (34 KB) and NASA (23 MB) datasets obtained from the UW XML Data
Repository1. We also use the benchmark dataset, XMark (150 MB) for scala-
bility experiments. The experiments were conducted on a 2.9 GHz Intel Core i7
machine with 3 GB memory running Windows 7.

We first introduce the metrics we use for the experimental evaluation; then,
we present our results on effectiveness for both filtering and ranking semantics,
and finally we present our efficiency experiments.

5.1 Metrics

Since the ranking approaches we consider may view a number of results as equiv-
alent (i.e., having the same rank) we extend below the metrics that are usually
used to measure the quality of ranking. For the experiments, relevant results
were determined by the experts after examining all the results.

Filtering Experiments. Since XReason works with patterns, if a pattern is
minimal with respect to ≺, all candidate results that conform to that pattern
are regarded as relevant and are returned to the user. We use precision and recall
to measure the effectiveness of filtering semantics. Precision is the ratio of the
number of relevant results in the result set of the system to the total number of
results returned by the system. Recall is the ratio of the number relevant results
in the result set of the system to the total number of relevant results.

Ranking Experiments. For the ranking experiments, we employ two metrics:
Mean Average Precision (MAP) and R-Rank.

1 http://www.cs.washington.edu/research/xmldatasets/

http://www.cs.washington.edu/research/xmldatasets/
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Table 1. Definitions of SLCA, ELCA and XReal semantics in terms of IT s

Approach Definition of the answer of Q on an XML tree T

SLCA {t | t ∈ IT set(Q,T ), v = root(MCT (t)), and � ∃ t′, v′ (t′ ∈ IT set(Q,T ),
v′ = root(MCT (t′)) and v′ is a descendant of v)}

ELCA {t | t ∈ IT set(Q,T ), v = root(MCT (t)), and � ∃ v′(v′ is a node in MCT (t),
v �= v′ and v′ ∈ LCAset(Q,T )}

ITReal {t | t ∈ IT set(Q,T ), v = root(MCT (t)), and ∃ v′ (v′ ∈ XRealNodes and
v′ is an ancestor of v)}

MAP is the mean average precision of a set of queries with average precision
of a query being the average of precision scores after each relevant result of the
query is retrieved. As a ranking effectiveness metric, MAP takes the order of the
results into account. R-Rank of a query is the reciprocal of the rank of the first
correct result of the query. If no relevant results are retrieved, R-Rank is 0.

We extend both MAP and R-Rank so that they take into account equivalence
classes of results. An equivalence class in a ranked list is a set of all the results
which have the same rank. Different orderings of these results in the ranked list
would affect the value of ranking metrics MAP and R-Rank. For this reason, we
define and compute worst and best versions for MAP and R-Rank. In the worst
(resp. best) version, the ranked list is assumed to have the correct results ranked
at the end (resp. beginning) of each equivalence class. This extension allows us
to compute upper and lower bounds for the ranking metrics between which the
scores of all the possible rankings lie. We denote these metrics as MAPworst,
MAPbest and R-Rankworst, R-Rankbest.

In order to assess the effect of answer set size on precision in ranking experi-
ments, we also measure precision with a cutoff point for the number N of results
which is called precision@N (P@N). Similarly to MAP and R-Rank we consider
two versions of P@N: P@Nworst and P@Nbest.

5.2 Effectiveness of Filtering Semantics

For the filtering experiments, we compare XReason with two well-known base-
line approaches SLCA [3, 7, 19] and ELCA [6, 20]. We also compare with an
adaptation of a recent state-of-the-art approach, XReal [1].

In order to allow the comparison of XReason, which returns IT s and not sim-
ply LCAs with the other approaches, we provide definitions for a query answer
according to SLCA and ELCA semantics in terms of IT s in Table 1. For a query
Q on an XML tree T , IT set(Q, T ) denotes the set of IT s of the instances of Q
on T . XReal infers promising result node types (label paths from the root) and
ranks and returns the nodes that match these node types. In order to compare
XReal with XReason we adjusted XReal in Table 1 so that it returns IT s and
we named this new approach ITReal. XRealNodes denotes the set of nodes in T
that match the node type inferred by XReal.
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Table 2. Queries used in the experiments

Dataset Query ID Keywords

Mondial

M1 international, monetary, fund, established
M2 government, democracy, muslim
M3 jewish, percentage
M4 new, york
M5 north, atlantic, treaty, organization
M6 bosnia, herzegovina, government

SIGMOD

S1 divesh, srivastava, database
S2 michael, stonebraker, postgres
S3 query, optimization
S4 database, systems, security
S5 christos, faloutsos, signature, files
S6 efficient, maintenance, materialized, views, subrahmanian

EBAY

E1 shipping, 10, days
E2 maxtor, hard, drive
E3 cpu, 933, mhz
E4 2, days
E5 1, year, warranty
E6 logitech, mouse, multimedia, keyboard

We run 6 queries on each of the datasets shown in Table 2. Precision scores of
systems are presented in Fig. 8. Since all the systems have perfect (100%) recall,
recall scores are not displayed.

ELCA has the worst precision scores among the four semantics. ITReal has
better scores on the Mondial dataset. Its precision is reduced if there are many
irrelevant results under the nodes that match the node types returned as in the
SIGMOD dataset. Both ITReal and XReason are also ranking systems and they
can use their ranking capacity to reduce the negative effect of a large size answer
set on precision. For this reason, in the next section we also measure P@N. As
we can see, XReason outperforms the other approaches and shows very good
precision and perfect recall on all cases.

5.3 Effectiveness of Ranking Semantics

In order to evaluate the effectiveness of the ranking semantics of XReason we
computed the queries of Table 2 under XReason and ITReal semantics on the
datasets and we measured best and worst bounds for MAP, R-Rank and P@N.

Table 3 shows the average scores for MAP and R-Rank. XReason outperforms
ITReal with respect to both MAP and R-Rank. Since XReason ranks the correct
answers almost always higher than the incorrect answers, it has almost perfect
MAP and R-Rank scores.

Best and worst P@N scores are shown in Fig. 9. For a given query and a given
approach, best and worst scores are shown on the same column with worst scores
superimposing best scores, i.e., if the scores are the same, only worst scores are



XReason: A Semantic Approach That Reasons with Patterns 311

(a) Mondial (b) SIGMOD (c) EBAY

Fig. 8. Precision scores for the queries of Table 2

(a) Mondial (b) SIGMOD (c) EBAY

Fig. 9. Best and worst P@10 scores for the queries of Table 2

visible. N = 10 for all datasets because most of the queries have few correct
results. For ITReal, limiting the result set size did not have a significant effect
on the precision for most of the queries, which means that some incorrect results
are ranked high in the result list. XReason has almost perfect P@10 scores in
almost all cases.

5.4 Efficiency

In order to evaluate the efficiency of PatternStack algorithm we compared its
performance with that of a näıve algorithm and we also ran scaling experiments.
The näıve algorithm generates all the ITs of the query using the inverted lists
of the keywords and iterates over them to extract the patterns.

Table 3. Best and worst MAP and average R-Rank scores for the queries of Table 2

Dataset Semantics MAPworst MAPbest R-Rankworst R-Rankbest

Mondial
XReason 0.95 0.95 1.00 1.00
ITReal 0.60 0.87 0.59 1.00

SIGMOD
XReason 1.00 1.00 1.00 1.00
ITReal 0.19 0.69 0.26 0.83

EBAY
XReason 1.00 1.00 1.00 1.00
ITReal 0.60 0.80 0.53 1.00
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(a) Mondial (b) SIGMOD

Fig. 10. Algorithm execution times (in secs) for the queries of Table 2

(a) NASA (b) XMark

Fig. 11. Response time for PatternStack for queries with 3 and 4 keywords

Fig. 10 shows the response times of the queries of Table 2 on the Mondial and
SIGMOD datasets. Note that the y-axis is in logarithmic scale. PatternStack is
at least two orders of magnitude faster than the näıve algorithm in all the cases.
The response time of PatternStack is reasonable for real-time search systems
even without optimizations.

We ran scalability experiments for PatternStack on NASA (a real dataset)
and XMark (a benchmark dataset). We used queries with the first three and all
four of the keywords in the sets {define(40), dates(30), boxes(20), bubble(10)}
and {conserve(25), preservings(20), dreamers(10), almond(5)} for NASA and
XMark respectively. The numbers in parenthesis indicate the number of instances
of the respective keyword. For each query, we truncated the keyword inverted
lists to the 20%, 40%, 60% and 80% of their total sizes.

The measured response times in relation to the total number of results are
shown in Fig. 11. We can see that PatternStack scales smoothly and the response
time is almost linear. Even though the number of results on XMark is smaller
than that on NASA, the response times are larger. This is due to the fact that
XMark is deeper (max. depth 11) than NASA (max. depth 7) which results in
a much larger number of patterns in XMark than in NASA.
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6 Related Work

Several papers elaborate on filtering and ranking semantics for keyword queries
on tree-structured data. A number of them compute LCAs using structural [6, 16,
19] and/or semantic information [4, 8, 11, 18]. XMean [12] defines a conceptual
relation among keyword matches using entities, and clusters the results according
to their patterns.

XRank [6] uses a variation of PageRank algorithm to rank the results. XSearch
[4] ranks the results using a tf-idf-like function. XReal [1] introduces a similarity
function to rank nodes with respect to their similarity to the query. Termehchy
and Winslett [17] exploit mutual information to calculate coherency ranking
measures for ranking the query answer. Nguyen and Cao [15] use mutual in-
formation to compare results and to define a dominance relationship between
results for ranking. SAIL [9] introduces the concept of minimal-cost trees and
identifies the top-k answers by using link analysis and keyword-pair relevancy.

XReal [1, 2] defines the type of a node as the prefix path from the root to
the node which includes labels of all the nodes on the path. A variation of tf-idf
is used to find the candidate result type of a query. XBridge [10] uses a scoring
measure as well but it also takes into account the structure of the results while
scoring the type. XSeek [13] utilizes entity, attribute or connection nodes to
decide upon the nodes to be returned in the results. MaxMatch [14] introduces
the concepts of consistency and monotonicity for evaluating semantics assigning
approaches.

Algorithms for finding SLCAs and ELCAs for a keyword query are presented
in [19–22]. Hristidis et al. [7] develop efficient algorithms for finding a compact
representation of the result subtrees. In [5], a multi-stack algorithm to return a
size-ranked result list to a keyword query is presented. Chen and Papakonstanti-
nou [3] introduce algorithms to support top-k SLCA and ELCA calculation.

7 Conclusion

The goal of this paper is to show that high quality semantics for keyword queries
on tree-structured data can be obtained by extracting patterns of the query in-
stances on the data tree and by reasoning on them, but also that this is com-
putationally feasible. To this end we introduced XReason, an adaptive approach
that does not use a scoring function to rank the results but does so by using
homomorphisms between patterns. Our experimental results show that XRea-
son outperforms many previous approaches in terms of quality of answers and
can efficiently compute keyword queries on large data trees without requiring a
preprocessing of the datasets.

An interesting feature of the “reasoning with patterns” aspect of our approach
is that it can easily consider additional information (e.g, contextual, keyword
instance statistical, or ontological information) during the reasoning process to
filter out patterns and to further improve their ranking and the quality of the
results. We are currently working towards this direction.
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Abstract. This paper presents a novel implementation scheme of XML docu-
ments. First, we describe a labeling scheme for dynamic XML trees, in which 
no relabeling is necessary against the structural update of trees by the help of 
small auxiliary data structure. Second, two kinds of encoding/decoding data 
structure are proposed for implementing XML documents based on history-
offset encoding, which is designed for encoding multidimensional datasets. One 
is for XML tree structure and the other is for path expressions from the root 
node. By cross-referencing the encoded/decoded results obtained by using these 
data structures, the structural retrieval using both axis specification and path 
expressions can be performed very efficiently. Finally, using the constructed 
prototype system, the performance of our implementation scheme is evaluated 
and compared with eXist-db, a native XMLDB system. 

1 Introduction 

To handle XML document structure, it is important to provide a labeling scheme for 
XML nodes that can effectively capture the underlying XML tree structure. There are 
some sophisticated labeling schemes such as [1], [2], [3] with their encoding methods 
that support dynamic structural updates such as node insertions and deletions. The 
advantage of such schemes is that they can preserve the document order without re-
labeling any existing nodes even if dynamic nodes are inserted dynamically. Howev-
er, the encoded label size may become very large with the dynamic insertions. [7] 
takes an approach that embeds an XML tree to a complete k-ary tree, and an im-
proved scheme using this approach can be found in [8]. In these schemes, a query 
along an axis such as parent or sibling can be quickly answered through simple 
arithmetic operation on label values. However, they are basically for static XML 
trees; when new nodes are dynamically inserted, many node label values need to be 
recomputed to preserve the document order. In addition, they are not efficient in the 
usage of label value space and this space can be quickly saturated by node insertions. 

The history-offset labeling scheme we are proposing in [4] embeds XML tree struc-
ture into a dynamically extendible multidimensional array [5] and takes advantage of 
the array structure in both space and time costs. The following are significant advan-
tages of this scheme over the above-mentioned labeling schemes. The storage cost for 
label values is smaller irrespective of the node insertion order and position in the 
XML tree. In addition, structural retrieval along an axis such as parent, siblings, or 
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descendents is faster. In general a node labeling scheme can handle XML tree struc-
ture, but the representation of XML documents including element or attribute names 
are not considered. Therefore, a path expression of a node from the root node cannot 
be handled using the element names on the path. 

This paper presents a new implementation scheme of XML documents. Two types of 
encoding/decoding data structure are constructed based on the history-offset encod-
ing/decoding methods. One is for XML tree structure and the other is for path expres-
sions from the root node. By cross-referencing the encoded/decoded results obtained 
by using these data structures, the structural retrieval by both axis specification and 
path expressions can be performed very efficiently. Using the constructed prototype 
system, the performance of our proposed scheme is evaluated. In the evaluation, our 
system is compared with eXist-db(Release-1.4.1) [6], a native XMLDB system. The 
evaluation proves that in most retrieval conditions using XPath our system exhibits 
higher performance than eXist-db and the dynamic structural updates of XML trees 
outperforms eXist-db. 

2 History-Offset Encoding  

History-offset encoding[17] is for encoding multidimensional datasets on the basis of 
the concept of extendible arrays. HOMD is an implementation scheme of multidi-
mensional datasets using history-offset encoding.  

2.1 Extendible Arrays 

An n dimensional extendible array A has a history counter h  and three kinds of aux-
iliary table for each extendible dimension i(i = 1,...,n). See Fig.1. These tables are 
history table Hi, address table Li, and coefficient table Ci. The history tables memor-
ize extension history of A. When the current size of A is [s1, s2, ... ,sn], for an  
extension of A along dimension i, contiguous memory block that forms an n - 1 di-
mensional subarray S of size [s1, s2,...,si-1, si+1,..., sn-1, sn] is dynamically allocated and 
attached to A. Then the history counter h is incremented by one, and the value is me-
morized at Hi[si+1], while the first address of S is held at Li[si+1]. Note that an ex-
tended subarray S is uniquely identified by the history value Hi[si+1]. 

As is well known, element (i1, i2, ..., in-1) in an n-1 dimensional fixed size array of 
size [s1, s2, ..., sn-1] is allocated on memory using addressing function as follows: 

f(i1, ..., in-1)= s2s3 ...sn-1i1+s3s4 ...sn-1i2+ ...+sn-1in-2+in-1   (1)

We call these n-2 coefficients (s2s3...sn-1, s3s4...sn-1, ..., sn-1) in (1) as a coefficient vector. 
The vector is computed at array extension and is held in the coefficient table Ci[si+1]. 
Note that if n is less than 3 the table can be void. Using these three kinds of auxiliary 
table, the address of an array element (i1, i2, ..., in) can be computed as follows: 

(a) Determine the largest history value in {H1[i1], H2[i2], ... , Hn-1[in]}. If it is Hk[ik], 
the subarray identified by Hk [ik] includes the element. 

(b) Using the coefficient vector at Ck [ik], the offset of the element (i1, ..., ik-1, ik+1, ..., 
in) in the subarray corresponding to Hk[ik] is computed according to its addressing 
function in (1).  
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initialized. All existing elements in the original HOMD becomes n+1 dimensional and 
the subscript of the newly added dimension becomes 0. Note that relabeling of the 
nodes in the original HOMD is not necessary, since <history value, offset value> 
labels of any nodes are not necessary to be modified. Conversely, in the case that the 
height of an XML tree decreases by the deletion of all nodes on the maximum level of 
the XML tree, the dimension of HOMD decreases by one. Note also that relabeling of 
the nodes in the original HOMD is not necessary. However, when drop column or add 
column SQL command for a relational table is performed, a large overhead arises 
since reorganization of all existing tuples would be necessary. 

3.4 Preserving Order among Siblings in Dynamic Environment 

HOMD cannot preserve the logical order (i.e., document order) among siblings in 
dynamic environment, because the subscript value for each child node of the same 
parent is assigned in the order of insertion irrespective of the logical order among 
them. In order to preserve the logical order among sibling nodes, an additional table 
called OS (Order of Siblings) table is maintained in each parent node. The OS table is 
an array and serves to rearrange the subscripts in the sibling order as shown in Fig. 6. 
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Fig. 5. Dimensional extension in HOMD 

3.5 Axis Computation 

This section describes the computation of axes in XPath language[9] using the labe-
ling scheme presented in Section 3.1. In our history-offset encoding method, the label 
can be calculated on the basis of its corresponding coordinate in the logical extendible 
array in HOMD.  In Fig. 7, assume the context node is (2, 2, 0, 0).  The coordinate 
of its parent node can be obtained by replacing the subscript of the second dimension 
(i.e., the level of the context node) with 0.  Therefore the coordinate of the parent 
node is (2, 0, 0, 0), which is encoded to the label <history value, offset value>. 

Decoding of the label <history value, offset value> of a node to its corresponding 
coordinate (i1, i2, …, in) can be performed as follows: 

(a) The dimension p and subscript ip corresponding to the subarray that includes the 
node can be known from the history value by inspecting the history tables.   

(b) Let o(o > 0) be the offset value of the label and let the coefficient vector Cp[ip]  
of the subarray known in step (i) be (c1, c2, …, cn-2). Then o can be computed as 
follows: 

o = c1i1+c2i2+…+cp-1*ip-1+cp*ip+1+…+cn-2*in-1+in 
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Therefore, the coordinate ik can be simply computed as:  

ik = (o%ck-1)/ck  (if k < p),    ik = (o%ck-2)/ck-1  (if k > p). 

Here, % denotes the residue of the division. 

Conversely, encoding of the coordinate of a node to <history value, offset value> can 
be performed as in the element address computation of an extendible array explained 
in Section 2.1; the largest history value decided in step (a) gives history value and the 
offset in step (b) gives offset value. 
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4 History-Offset Implementation Scheme of XML Documents  

In Section 3, the structural representation of an XML tree was described, but the 
XML primitives for representing XML documents, such as element names(tag 
names), path expressions(concatenation of element names) or attribute names have 
not been considered. In this section an implementation scheme of XML documents is 
proposed incorporating such primitives for representing XML documents. 

4.1 nHOMD and pHOMD 

The HOMD for representing XML tree structure described in Section 3 is called an 
nHOMD(node HOMD). It only represents the XML tree structure. The label <history 
value, offset value> of a node is called nID and the RDT of an nHOMD is called 
nRDT. A set of nIDs is stored in nRDT. It should be noted that among the nHOMD 
components, the CVT of each dimension does not exist, since the content information 
such as element or attribute names are not involved in nHOMD. 

In XML documents, more than two child nodes of the same element name may ex-
ist, and more than two distinct routes from the root node can be represented by the 
same path expression.  Here, in order to solve this non-uniqueness problem, struc-
tural summary of an XML document (See Fig. 8), in which sibling nodes of the same 
element name are unified to a single node, is used in combination with nHOMD. For 
implementing the structural summary, we also employ HOMD separately from 
nHOMD. This HOMD is called path HOMD (pHOMD). By using pHOMD, a path 
expression from the root node can be encoded into the corresponding <history value, 
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offset value> label. This label value is called pID and the RDT of the pHOMD is 
called pRDT. Unlike nHOMD, pHOMD handles document information such as ele-
ment or attribute names, so it requires all kinds of HOMD component including 
CVTs.  

  
 
      

 

 
 

Fig. 8. Structural summary of an XML tree 

4.2 Storing Path Expressions Using pHOMD 

As in nHOMD, each level of the structural summary of an XML tree corresponds to a 
dimension of the logical extendible array of pHOMD and each element name of a 
node (simply referred to as node name in the following) on the same level of the 
summary tree corresponds to a subscript of its dimension (See Fig. 9). If more than 
two nodes of the same name exist, they are assigned to the same subscript. Each node 
name is converted to its subscript of the dimension by using the corresponding CVT. 
A path expression on the summary tree is converted into a coordinate of the corres-
ponding array element of pHOMD and the coordinate can be encoded to <history 
value, offset value> as pID, and stored in pRDT as a key value. Note that the nodes 
reached by the same path expression in an XML tree can be encoded to the same pID. 

 

Fig. 9. HOMD for storing path expressions (pHOMD) 

4.3 Data Structures for Cross-Referencing pID and nID 

Fig. 10 shows the relationship between nHOMD and pHOMD. For each node in the 
XML tree, its nID in nHOMD corresponds to the unique pID of the path expression 
from the root node to it. For each path expression in the pHOMD tree, its pID corres-
ponds to the set of nIDs, each of whose nodes in the XML tree is reached by the path 
identified by the pID. In order to establish these relationships in nHOMD and 
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pHOMD, in the sequence set of nRDT, for a key value nID, its pID is stored as a data 
value. Conversely, in the sequence set of pRDT, for a key value pID, the reference to 
its corresponding list of nIDs is stored as a data value. Note that by cross-referencing 
pID and nID using pHOMD and nHOMD, both the path expression retrieval and 
structural retrieval along the specified axis can be performed quickly.  

4.4 Conversion between Node Label and Path Expression 

For a node label (nID), its corresponding path expression pe can be known as follows. 
First, by searching nRDT with nID as a key, the pID of pe can be known, then the pID 
is decoded to the coordinate of the subscripts using the coefficient vector table of 
pHOMD. Since each subscript of the coordinate corresponds to its node name, by 
referring to the attribute tables of pHOMD mentioned in Section 2.3, each node name 
in pe can be obtained. Conversely, for a path expression pe, its corresponding set of 
node labels can be known as follows. First, using pHOMD including CVTs, pe is 
encoded to its pID, then the pID is searched in pRDT to get the reference to the set of 
node labels (nIDs).   
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Fig. 10. Cross-referencing of pID and nID using nHOMD and pHOMD 

5 Structural Retrieval Using nHOMD and pHOMD 

nHOMD plays a important role in structural retrieval along an axis on an XML tree. 
In this section we describe the procedures of structural retrieval along some axes 
based on the example illustrated in Fig. 11. Fig. 11 shows an XML tree and the logi-
cal extendible array in nHOMD. Here, the nID of the context node is assumed to be 
<5,0> and its coordinate of the extendible array to be (3,0). 
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(1) Retrieval of the child nodes 
The OS table of the context node <5,0> is accessed in nRDT, by which the subscript 
of each child node is known in the document order. In Fig. 11, the subscripts 1 and 2 
of the second dimension are known in this order. Therefore, from the coordinate (3,0) 
of the context node, the coordinates of the child nodes are known to be (3,1), (3,2). By 
using nHOMD, these coordinates are encoded into the child node nIDs <5,1>, <5,2> 
respectively. The path expressions corresponding to the obtained nIDs can be known 
by using the procedure mentioned in Section 4.4.  

(2) Retrieval of the parent node 
Let dm be the largest dimension of the context node’s coordinate whose subscript 
value is non-zero. The coordinate of the parent node can be determined by replacing 
the non-zero subscript of the dimension dm of the context node with 0. Since the con-
text node’s coordinate is (3,0) and dm is the first dimension, the coordinate of the 
parent node is determined to be (0, 0), which is encoded to nID <0,0>. 

(3) Retrieval of the sibling nodes 
To retrieve the sibling nodes, first the parent node of the context node is determined. 
The nID of the parent node is <0,0>, which is searched in nRDT and its OS table is 
obtained. The subscripts arranged in the document order are read from the OS table; 
in the order 1, 2, 3 in this example. These subscripts are combined with the parent’s 
coordinate (0, 0). Therefore the coordinate of the first child is (1,0) and this is en-
coded to nID <1,0>.  In the same way, the following siblings (2,0) (nID <4,0>) and 
(3,0) (nID<5,0>) can be obtained. Since the latter is the context node itself, the elder 
siblings nID<1,0> and nID<4,0> are obtained. No younger siblings exist. The path 
expressions corresponding to the obtained nIDs can be known by using the procedure 
mentioned in Section 4.4. 
 

 

Fig. 11. An XML tree and its logical array of nHOMD 

6 Related Work 

As is well known, the implementation schemes of XMLDB include mapping XML 
documents into relational tables and constructing native XMLDB for storing XML 
documents. The most significant advantage of the former is that the database func-
tions, such as query processing or transaction processing, provided by RDBMS can be 
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utilized, but both storage cost and retrieval cost increase because of the required map-
ping. Many commercial RDBMSs, such as Oracle XDK[10], provide XML docu-
ments processing capabilities as their extensions, and so many XMLDB systems such 
as [11] are designed for research purpose. On the other hand, in the latter implementa-
tion scheme both storage and retrieval costs are smaller, but the system development 
cost is rather high. Many native XMLDB systems such as eXist-db[6], Xindiche[12],  
DB2[13] are developed, .  

Along with these XMLDB system developments, various kinds of XML node labe-
ling scheme reflecting the underlying XML tree structures have been proposed and 
analyzed. These include range-based labeling scheme [14], prefix scheme [15], and 
the scheme for mapping XML trees to k-ary complete trees [7][8].  These labeling 
schemes make it possible to traverse structural relationships such as parent, children, 
siblings, ancestors, or descendents efficiently by only inspecting node labels, but they 
are static labeling schemes and for the dynamic new node insertions, a part of or all of 
existing node labels should be recalculated. 

On the other hand, node label encoding schemes for dynamic XML trees such as 
ORDPATH [1], QED [2], DLN [3] and prime number labeling scheme [16] have been 
proposed. eXist-db[6] employs DLN labeling scheme. The main benefit of these labe-
ling schemes is that they can preserve the document order without relabeling even if 
structural updates are made against the XML tree. However, in these labeling 
schemes, label sizes can be greatly increased if nodes are concentratedly inserted 
around the close position. In contrast, our history-offset labeling scheme does not 
share this deficiency and the label size does not increase irrespective of the insertion 
positions. The history-offset encoding scheme has been originally designed for encod-
ing multidimensional datasets [17]. Some works on the storage schemes for data wa-
rehousing based on history-offset encoding can be found in [18] or [19]. 

7 Experiments and Evaluations 

Using a prototype system incorporating our proposed implementation scheme, expe-
riments have been conducted. Its storage cost and retrieval performance are measured 
in the following computing environment. Retrieval performance is measured on some 
typical query path expressions using XPath. 

 
CPU:Intel Xeon(R) X7560(2.27GHz),  Memory: 132GB,  OS: Linux 2.6.18  
 

In the experiment, our constructed system was compared with eXist-db (version 
1.4.1-rev15155), which is one of the native XMLDB systems. The reason for adopt-
ing eXist-db is that it is well maintained and its node labeling scheme DLN is similar 
to our scheme, in which no relabeling is necessary against dynamic structural updates 
of an XML tree. We show the results of two types of experiments. For eXist-db, one 
is the most advantageous node insertion order (Section 7.1) and the other is nearly the 
most disadvantageous node insertion order (Section 7.2). Essentially our scheme is 
not influenced by the node insertion order. Our prototype system is written in C lan-
guage, while eXist-db is written in Java. 
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7.1 Comparisons When an XML Document Is Loaded in Preorder 

In eXist-db, the instruction was issued to load an XML document into DB in preorder, 
while in our system the same XML document was scanned through and also stored  
in preorder into nHOMD and pHOMD data structures. Using XMark benchmark data 
[20], the employed XML document was generated as follows: 

 
 Total number of nodes 370,311 
 (Document file size: 9.8502MB) 

   (Element nodes: 200,336, attribute nodes: 53,512, text nodes: 116,463) 
 

(1) Comparison of storage costs 
The storage cost of our system was the total size of nHOMD, pHOMD, OS tables and 
the external file containing the content of the document. The storage cost of eXist-db 
is the total size of the produced files in the DB directory after storing XML document 
into its DB. Table 1 shows the results. The major files used in eXist-db will be ex-
plained in Section 7.3. The cost of our system was 1.16 times larger than that of eX-
ist-db. The greater part of our system was occupied by nHOMD, in which the size of 
nRDT storing nIDs was dominant.  Size of nRDT is the size of the file storing the set 
of pairs nID and its data (pID, references to OS table, attribute values, and texts (See 
Fig. 10)). The B+ tree for nRDT was constructed from this file at opening DB.  The 
data structures of nHOMD other than nRDT, such as history tables or coefficient 
vector tables described in Section 2 were very small and negligible.  On the other 
hand, data structures of pHOMD are very small compared with those of nHOMD and 
they are placed in the main memory. They are frequently accessed in the path expres-
sion retrieval.  

 
(2) Comparison of retrieval costs  
The retrieval costs were measured using XPath queries on the XML document speci-
fied above. The results are shown in Table 2. In any queries, the performance of our 
system overweighed that of eXist-db. In particular, for the queries that consist of only 
element names, our system far outweighed eXist-db. Conversely, for the queries that 
specify attribute values or texts, the performance degraded in the case of a large num-
ber of retrieval results, because much time was spent in seeking the position of data 
stored in the external files. 

Table 1. Storage costs 

our scheme eXist-db 
data structure storage size [MB]    file storage size [MB] 

nHOMD 10.140 dom.dbx 16.4727 
- nRDT in nHOMD 9.8884 elements.dbx 2.1406 

pHOMD 0.03528 collections.dbx 0.01172 
-p RDT in pHOM 0.01543 values.dbx 0.007813 

nID list 5.0938 ngram.dbx 0.007813 
OS tables 0.03020 symbols.dbx 0.0008850 
text data 5.7738   
attribute values 0.5857   

total 21.6588 total 18.6415 
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Table 2. Retrieval costs for the XMLDB constructed in preorder 

query path expression our scheme[msec] eXist-db[msec] # of hits 

/site/regions/africa/item/description/parlist/listitem 4.8993 171.1 65 

/site/closed_auctions/closed_auction/price 81.0875 260.8 1365 

/site/people/person/name 119.182 401.4 3570 

/site/regions/*/item/description 212.9675 402.7 3045 

/site/regions/africa/item/location[text()=’United States’] 5.2991 185.8 62 

/site/regions/africa/item[@featured=’yes’] 4.3994 152.9 7 

/site/regions/*/item 17.4974 366.8 3045 

/site/regions/*/item/location[text()=’United States’] 258.1609 616.8 2284 

/site/regions/*/item[@featured=’yes’] 178.773 250.1 303 

 
Table 3 shows the retrieval times to get the nodes that meet the XPath queries by 

using only pHOMD. In this experiment, since the structural data in nHOMD was not 
used, the retrieved results could not be sorted in the document order. In addition, que-
ries that specify attribute values or texts could not be issued since only nHOMD 
stores these data as shown in Fig. 10. Table 3 shows the total retrieval times measured 
1000 times for each query. It is negligible compared with that of nHOMD. The re-
trievals of such simple path expressions are very fast if the results do not need to be 
output in the document order.  

Table 3. Retrieval costs by using only pHOMD 

query path expression retrieval time x1000 times [msec] 

/site/regions/item/description/parlist/listitem 3.7993 

/site/closed_auctions/closed_auction/price 22.0967 

/site/people/person/name 52.5920 

/site/regions/*/item/description 64.1902 

/site/regions/*/item 63.5904 

7.2 Comparison When Dynamic Node Insertions Are Performed 
Concentratedly 

In this experiment, as shown in Fig. 12, XML nodes were appended between the  
context node and last inserted node; hence, concentratedly inserted around the same 
position. These insertions of the new nodes cannot be performed in a batch manner 
mentioned in Section 7.1, but require dynamic insertions. In eXist-db, XUpdate 
statement can be used for dynamic insertions. However the statement was very time 
consuming in determining the insert position in the DOM; therefore a smaller XML 
file generated by XMark was used as input. 

 Total number of nodes 112,340  
(Document file size: 9.8502MB) 

      (Element nodes: 200,336, attribute nodes: 53,512, text nodes: 16,463) 
The storage and retrieval costs were measured in storing the XML file in both preord-
er and the concentrated insertions stated above. 
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Fig. 12. Document order and insertion order in concentrated insertions 

(1) Comparison of storage costs 
Table 4 summarizes the total storage costs in preorder and concentrated node inser-
tions. In eXist-db, we can observe that the cost of concentrated insertions was 1.8 
times larger than that of preorder insertions. This is because of the property that the 
labeling scheme of DLN allows the label size to become very large by the concen-
trated insertions. Note that this property is shared by other labeling schemes including 
ORDPATH [1] and QED [2]. Conversely, the storage cost of our scheme was nearly 
constant irrespective of the node insertion order. 

 

(2) Comparison of retrieval costs 
Table 5 shows the retrieval costs in preorder and concentrated node insertions.  In 
eXist-db, in some queries, the retrieval time increased. This is because since the label 
size tends to become large in DLN, the retrieval of nodes with many sibling nodes is 
time consuming in decoding long labels.  

7.3 Used Files and Indexing in eXist-db  

The major files used in eXist-db are shown in Table 1. collection.dbx stores the meta 
information for the XML document. dom.dbx stores persistent DOM and stores node 
data. symbols.dbx stores the names of nodes, attributes, namespaces. eXist-db provides  
 

Table 4. Total storage costs for small-sized XML documents  

 our scheme [MB] eXist-db [MB] 

preorder insertions 12..4047 10.6728 

concentrated insertions 12.5114 19.1728 

Table 5.    Retrieval costs for small-size XMLDB 

                                     
     

query path expression our scheme eXist-db our scheme eXist-db 

/site/regions/africa/item/description/parlist/listitem 2.8995 153.5 2.9991 176.5 

/site/closed_auctions/closed_auction/price 47.6927 210.4 37.2945 266.4 

/site/people/person/name 65.7902 319.7 85.6871 326.6 

/site/regions/*/item/description 121.0816 312.7 129.8802 437.5 

/site/regions/africa/item/location[text()=’United States’] 2.9994 157.7 3.2994 157.5 

/site/regions/africa/item[@featured=’yes’] 2.7997 142 2.7994 142.9 

/site/regions/*/item 10.0985 276 14.7979 282.7 

/site/regions/*/item/location[text()=’United States’] 145.9775 416.5 157.576 420.9 

/site/regions/*/item[@featured=’yes’] 102.3845 208.5 107.0839 215.9 

concentrated 
insertions [msec]

preorder inser-
tions[msec]

2

document order

insertion order 
1 3 4 5
1 2 3 4 5
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some kinds of index. elements.dbx is the structural index for XML elements and 
attributes. The other indices are for string search and full text search using Apache 
Lucene[21], which were not used in our experiment. 

8 Conclusion 

In this paper, first we described labeling scheme for dynamic XML trees by using 
history-offset encoding, which has been designed for encoding multidimensional data. 
Second, on the basis of history-offset encoding, we proposed a scheme of implement-
ing XML documents. Two kinds of encoding/decoding data structure were provided; 
one for XML tree structure and the other for path expressions. Finally, using the con-
structed prototype system, the performance of our scheme was evaluated and com-
pared with the native XMLDB system eXist-db. It proved that the storage cost of our 
scheme was more than that of eXist-db, but the retrieval cost of our scheme outper-
formed that of eXist-db in almost every kind of XPath query. We also verified the 
advantage of our scheme that the storage cost is not dependent on the node insertion 
order and places. 
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Abstract. An important issue in releasing individual data is to protect the sensi-
tive information from being leaked and maliciously utilized. Famous privacy pre-
serving principles that aim to ensure both data privacy and data integrity, such as
k-anonymity and l-diversity, have been extensively studied both theoretically and
empirically. Nonetheless, these widely-adopted principles are still insufficient to
prevent attribute disclosure if the attacker has partial knowledge about the overall
sensitive data distribution. The t-closeness principle has been proposed to fix this,
which also has the benefit of supporting numerical sensitive attributes. However,
in contrast to k-anonymity and l-diversity, the theoretical aspect of t-closeness
has not yet been well investigated.

We initiate the first systematic theoretical study on the t-closeness principle
under the commonly-used attribute suppression model. We prove that for every
constant t such that 0 ≤ t < 1, it is NP-hard to find an optimal t-closeness
generalization of a given table. The proof consists of several reductions each of
which works for different values of t, which together cover the full range. To
complement this negative result, we also provide exact and fixed-parameter al-
gorithms. Finally, we answer some open questions regarding the complexity of
k-anonymity and l-diversity left in the literature.

1 Introduction

Privacy-preserving data publication is an important and active topic in the database area.
Nowadays many organizations need to publish microdata that contain certain informa-
tion, e.g., medical condition, salary, or census data, of a collection of individuals, which
are very useful for research and other purposes. Such microdata are usually released
as a table, in which each record (i.e., row) corresponds to a particular individual and
each column represents an attribute of the individuals. The released data usually con-
tain sensitive attributes, such as Disease and Salary, which, once leaked to unauthorized
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Table 1. The raw microdata table

Quasi-identifiers Sensitive
Zipcode Age Education Disease

1 98765 38 Bachelor Viral Infection
2 98654 39 Doctorate Heart Disease
3 98543 32 Master Heart Disease
4 97654 65 Bachelor Cancer
5 96689 45 Bachelor Viral Infection
6 97427 33 Bachelor Viral Infection
7 96552 54 Bachelor Heart Disease
8 97017 69 Doctorate Cancer
9 97023 55 Master Cancer
10 97009 62 Bachelor Cancer

Table 2. A 3-anonymous partition

Quasi-identifiers Sensitive
Zipcode Age Education Disease

1 98��� 3� � Viral Infection
2 98��� 3� � Heart Disease
3 98��� 3� � Heart Disease
4 9���� �� Bachelor Cancer
5 9���� �� Bachelor Viral Infection
6 9���� �� Bachelor Viral Infection
7 9���� �� Bachelor Heart Disease
8 970�� �� � Cancer
9 970�� �� � Cancer
10 970�� �� � Cancer

Table 3. A 2-diverse partition

Quasi-identifiers Sensitive
Zipcode Age Education Disease

1 98��� 3� � Viral Infection
2 98��� 3� � Heart Disease
3 9���� �� � Heart Disease
5 9���� �� � Viral Infection
8 9���� �� � Cancer
9 9���� �� � Cancer
4 97��� �� Bachelor Cancer
6 97��� �� Bachelor Viral Infection
7 9���� �� Bachelor Heart Disease
10 9���� �� Bachelor Cancer

parties, could be maliciously utilized and harm the individuals. Therefore, those features
that can directly identify individuals, e.g., Name and Social Security Number, should be
removed from the released table. See Table 1 for example of an (imagined) microdata
table that a hospital prepares to release for medical research. (Note that the IDs in the
first column are only for simplicity of reference, but not part of the table.)

Nonetheless, even with unique identifiers removed from the table, sensitive personal
information can still be disclosed due to the linking attacks [27,28], which try to identify
individuals from the combination of quasi-identifiers. The quasi-identifiers are those
attributes that can reveal partial information of the individual, such as Gender, Age, and
Hometown. For instance, consider an adversary who knows that one of the records in
Table 1 corresponds to Bob. In addition he knows that Bob is around thirty years old
and has a Master’s Degree. Then he can easily identify the third record as Bob’s and
thus learns that Bob has a heart disease.

A widely-adopted approach for protecting privacy against such attacks is general-
ization, which partitions the records into disjoint groups and then transforms the quasi-
identifier values in each group to the same form. (The sensitive attribute values are
not generalized because they are usually the most important data for research.) Such
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generalization needs to satisfy some anonymization principles, which are designed to
guarantee data privacy to a certain extent.

The earliest (and probably most famous) anonymization principle is the k-anonymity
principle proposed by Samarati [27] and Sweeney [28], which requires each group in
the partition to have size at least k for some pre-specified value of k; such a partition is
called k-anonymous. Intuitively, this principle ensures that every combination of quasi-
identifier values appeared in the table is indistinguishable from at least k − 1 other
records, and hence protects the individuals from being uniquely recognized by linking
attacks. The k-anonymity principle has been extensively studied, partly due to the sim-
plicity of its statement. Table 2 is an example of a 3-anonymous partition of Table 1,
which applies the commonly-used suppression method to generalize the values in the
same group, i.e., suppresses the conflicting values with a new symbol ‘�’.

A potential issue with the k-anonymity principle is that it is totally independent of
the sensitive attribute values. This issue was formally raised by Machanavajjhala et
al. [19] who showed that k-anonymity is insufficient to prevent disclosure of sensitive
values against the homogeneity attack. For example, assume that an attacker knows that
one record of Table 2 corresponds to Danny, who is an elder with a Doctorate Degree.
From Table 2 he can easily conclude that Danny’s record must belong to the third group,
and hence knows Danny has a cancer since all people in the third group have the same
disease. To forestall such attacks, Machanavajjhala et al. [19] proposed the l-diversity
principle, which demands that at most a 1/l fraction of the records can have the same
sensitive value in each group; such a partition is called l-diverse. Table 3 is an example
of a 2-diverse partition of Table 1. (There are some other formulations of l-diversity,
e.g., one requiring that each group comprises at least l different sensitive values.)

Li et al. [16] observed that the l-diversity principle is still insufficient to protect sensi-
tive information disclosure against the skewness attack, in which the attacker has partial
knowledge of the overall sensitive value distribution. Moreover, since l-diversity only
cares whether two sensitive values are distinct or not, it fails to well support sensitive
attributes with semantic similarities, such as numerical attributes (e.g., the salary).

To fix these drawbacks, Li et al. [16] introduced the t-closeness principle, which re-
quires that the sensitive value distribution in any group differs from the overall sensitive
value distribution by at most a threshold t. There is a metric space defined on the set of
possible sensitive values, in which the maximum distance of two points (i.e., sensitive
values) in the space is normalized to 1. The distance between two probability distribu-
tions of sensitive values are then measured by the Earth-Mover Distance (EMD) [26],
which is widely used in many areas of computer science. Intuitively, the EMD mea-
sures the minimum amount of work needed to transform one probability distribution to
another by means of moving distribution mass between points in the probability space.
The EMD between two distributions in the (normalized) space is always between 0 and
1. We will give an example of a t-closeness partition of Table 1 for some threshold t
later in Section 2, after the related notation and definitions are formally introduced.

The t-closeness principle has been widely acknowledged as an enhanced principle
that fixes the main drawbacks of previous approaches like k-anonymity and l-diversity.
There are also many other principles proposed to deal with different attacks or for use
of ad-hoc applications; see, e.g., [3,20,22,23,29,30,32,33] and the references therein.
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1.1 Theoretical Models of Anonymization

It is always assumed that the released table itself satisfies the considered principle (k-
anonymity, l-diversity, or t-closeness), since otherwise there exists no feasible solution
at all. Therefore, the trivial partition that puts all records in a single group always guar-
antees the principle to be met. However, such a solution is useless in real-world scenar-
ios, since it will most probably produce a table full of ‘�’s, which is undesirable in most
applications. This extreme example demonstrates the importance of finding a balance
between data privacy and data integrity.

Meyerson and Williams [21] proposed a framework for theoretically measuring
the data integrity, which aims to find a partition (under certain constraints such as k-
anonymity) that minimizes the number of suppressed cells (i.e., ‘�’s) in the table. This
model has been widely adopted for theoretical investigations of anonymization prin-
ciples. Under this model, k-anonymity and l-diversity have been extensively studied;
more detailed literature reviews will be given later.

However, in contrast to k-anonymity and l-diversity, the theoretical aspects of the
t-closeness principle have not been well explored before. There are only a handful of
algorithms designed for achieving t-closeness [16,17,8,25]. The algorithms given by Li
et al. [16,17] incorporate t-closeness into k-anonymization frameworks (Incognito [14]
and Mondrian [15]). Cao et al. [8] proposed the SABRE algorithm, which is the first
framework tailored for t-closeness. The information-theoretic approach in [25] works
for an “average” version of t-closeness. None of these algorithms is guaranteed to have
good worst-case performance. Furthermore, to the best of our knowledge, no computa-
tional complexity results of t-closeness have been reported in the literature.

1.2 Our Contributions

In this paper, we initiate the first systematic theoretical study on the t-closeness prin-
ciple under the commonly-used suppression framework. First, we prove that for every
constant t such that 0 ≤ t < 1, it is NP-hard to find an optimal t-closeness gener-
alization of a given table. Notice that the problem becomes trivial when t = 1, since
the EMD between any two sensitive value distributions is at most 1, and hence putting
each record in a distinct group provides a feasible solution that does not need to sup-
press any value at all, which is of course optimal. Our result shows that the problem
immediately becomes hard even if the threshold is relaxed to, say, 0.999. At the other
extreme, a 0-closeness partition demands that the sensitive value distribution in every
group must be the same with the overall distribution. This seems to restrict the sets of
feasible solutions in a very strong sense, and thus one might imagine whether there ex-
ists an efficient algorithm for this special case. Our result dashes this hope. The proof of
our hardness result consists of several different reductions. Interestingly, each of these
reductions only work for a set of special values of t, but altogether they cover the full
range [0, 1). We note that the hardness of t1-closeness does not directly imply that of
t2-closeness for t1 
= t2 since they may have very different optimal objective values.

As a by-product of our proof, we establish the NP-hardness of k-anonymity when
k = cn, where n is the number of records and c is any constant in (0, 1/2]. To the
best of our knowledge, this is the first hardness result for k-anonymity that works for
k = Ω(n). The existing approaches for proving hardness of k-anonymity all fail to
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generalize to this range of k due to inherent limits of the reductions. Note that k = n/2
is the largest possible value for which k-anonymity can be hard, since when k > n/2
any k-anonymous partition can only contain one group, namely the table itself.

To complement our negative results, we also provide exact and fixed-parameter al-
gorithms for obtaining the optimal t-closeness partition. Our exact algorithm for t-
closeness runs in time 2O(n) ·O(m), where n and m are respectively the number of rows
and columns in the input table. Together with a reduction that we derive (Lemma 1),
this gives a 2O(n) · O(m) time algorithm for k-anonymity for all values of k, thus
generalizing the result in [4] which only works for constant k. We then prove that the
problem is fixed-parameter tractable when parameterized by m and the alphabet size
of the input table. This implies that an optimal t-closeness partition can be found in
polynomial time if the number of quasi-identifiers and that of distinct attribute values
are both small (say, constants), which is true in many real-world applications. (Param-
eterized complexity has become a very active research area. For standard notation and
definitions in parameterized complexity, we refer the reader to [10].) We obtain our
fixed-parameter algorithm by reducing t-closeness to a special mixed integer linear
program in which some variables are required to take integer values while others are
not. The integer linear program we derived for characterizing t-closeness may have its
own interest in future applications. Both of our algorithms work for all values of t.

Last but not least, we review the problems of finding optimal k-anonymous and l-
diverse partitions, and answer two open questions left in the literature.

– We prove that the 2-diversity problem can be solved in polynomial time, which
complements the NP-hardness results for l ≥ 3 given in [31]. (We notice that
the authors of [9] claimed that 2-diversity was proved to be polynomial by [31].
However what [31] actually proved is that the special 2-diversity instances in which
there are only two distinct sensitive values can be solved in polynomial time. They
do not have results for general 2-diversity. To the best of our knowledge, ours is the
first work to demonstrate the tractability of 2-diversity.)

– We then present an m-approximation algorithm for k-anonymity that runs in poly-
nomial time for all values of k. (Recall that m is the number of quasi-identifiers.)
This improves the O(k) and O(log k) ratios in [1,24] when k is relatively large
compared to m. We note that the performance guarantee of their algorithms can-
not be reduced even for small values of m, due to some intrinsic limitations (for
example, [24] uses the tight Θ(log k) approximation for k-set cover).

Finally, we note that our contributions in this paper are mainly towards building theoret-
ical foundations of the privacy-preserving principles, which is desirable for the whole
system to stand on. It is very interesting to see whether good implementations of our
algorithms can be found that perform well on real databases.

1.3 Related Work

It is known that finding an optimal k-anonymous partition of a given table is NP-hard for
every fixed integer k ≥ 3 [21], while it can be solved optimally in polynomial time when
k ≤ 2 [4]. The NP-hardness result holds even for very restricted cases, e.g., when k = 3
and there are only three quasi-identifiers [5,6]. On the other hand, Blocki and Williams
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[4] gave a 2O(n) · O(m) time algorithm that finds an optimal k-anonymous partition
when k = O(1), where n and m are the number of rows and columns of the input table
respectively. They also showed this problem to be fixed-parameter tractable when m
and |Σ| (the alphabet size of the table) are parameters. The parameterized complexity
of k-anonymity has also been studied in [6,7,11] with respect to other parameters.

Meyerson and Williams [21] gave an O(k log k) approximation algorithm for k-
anonymity, i.e., it finds a k-anonymous partition in which the number of suppressed
cells is at most O(k log k) times the optimum. The ratio was later improved to O(k) by
Aggarwal et al. [1] and to O(log k) by Park and Shim [24]. We note that the algorithms
in [21,24] run in time nO(k), and hence are polynomial only if k = O(1), while the
algorithm in [1] runs in polynomial running time for all k. There are also a number of
heuristic algorithms for k-anonymity (e.g., Incognito [14]), which work well in many
real datasets but fail to give good worst-case performance guarantee.

Xiao et al. [31] are the first to establish a systematic theoretical study on l-diversity.
They showed that finding an optimal l-diverse partition is NP-hard for every fixed in-
teger l ≥ 3 even if m, the number of quasi-identifiers, is any fixed integer not smaller
than l. They also provided an (l · m)-approximation algorithm. Dondi et al. [9] proved
an inapproximability factor of c ln(l) for l-diversity where c > 0 is some constant, and
showed that the problem remains APX-hard even if l = 4 and the table consists of only
three columns. They also presented an m-approximation when the number of distinct
sensitive values is constant, and gave parameterized hardness results and algorithms.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces notation and def-
initions used throughout the paper, and then formally defines the problems. Section 3
is devoted to proving the hardness of finding the optimal t-closeness partition, while
Section 4 provides exact and parameterized algorithms. Sections 5 and 6 present our
results for k-anonymity and 2-diversity, respectively. Finally, the paper is concluded in
Section 7 with some discussions and future research directions.

Due to space limitations, we omit most rigorous proofs of our theorems. All the
missing proofs can be found in the full version of this paper [18].

2 Preliminaries

We consider a raw database that contains m quasi-identifiers (QIs) and a sensitive at-
tribute (SA).1 Each record t in the database is an (m + 1)-dimensional vector drawn
fromΣm+1, whereΣ is the alphabet of possible values of the attributes. For 1 ≤ i ≤ m,
t[i] is the value of the i-th QI of t, and t[m+1] is the value of the SA of t. Let Σs ⊆ Σ
be the alphabet of possible SA values. A microdata table (or table, for short) T is a
multiset of vectors (or rows) chosen from Σm+1, and we denote by |T | the size of
T , i.e., the number of vectors contained in T . We will let n = |T | when the table T is
clear in the context. Note that T may contain identical vectors since it can be a multiset.

1 Following previous approaches, we only consider instances with one sensitive attribute. Our
hardness result indicates that one SA already makes the problem NP-hard. Meanwhile, it is
easy to verify that our algorithms also work for the multiple SA case.
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Table 4. The first three records in Table 1

Quasi-identifiers Sensitive
Zipcode Age Education Disease

1 98765 38 Bachelor Viral Infection
2 98654 39 Doctorate Heart Disease
3 98543 32 Master Heart Disease

After generalization:
1 98��� 3� � Viral Infection
2 98��� 3� � Heart Disease
3 98��� 3� � Heart Disease

Table 5. A 0.3-closeness partition

Quasi-identifiers Sensitive
Zipcode Age Education Disease

1 9���� �� � Viral Infection
2 9���� �� � Heart Disease
4 9���� �� � Cancer
3 9���� �� � Heart Disease
5 9���� �� � Viral Infection
8 9���� �� � Cancer
9 9���� �� � Cancer
6 9���� �� Bachelor Viral Infection
7 9���� �� Bachelor Heart Disease
10 9���� �� Bachelor Cancer

We also use T [j] to denote the j-th vector in T under some ordering, e.g., T [3][m+ 1]
is the SA value of the third vector of T . Let � be a fresh character not in Σ. For each
vector t ∈ T , let t∗ be the suppressor of t (inside T ) defined as follows:

– t∗[m+ 1] = t[m+ 1];
– for 1 ≤ i ≤ m, t∗[i] = t[i] if t[i] = t′[i] for all t′ ∈ T , and t∗[i] = � otherwise.

The cost of a suppressor t∗ is cost(t∗) = |{1 ≤ i ≤ m | t∗[i] = �}|, i.e., the number
of ‘�’s in t∗. It is easy to see that all vectors in T have the same suppressor if we
only consider the quasi-identifiers. The generalization of T is defined as Gen(T ) =
{t∗ | t ∈ T }. (Note that Gen(T ) is also a multiset.) The cost of the generalization
of T is cost(T ) =

∑
t∗∈Gen(T ) cost(t

∗), i.e., the sum of costs of all the suppressors.
Since all suppressors in T have the same cost, we can equivalently write cost(T ) =
|T | · cost(t∗) for any t∗ ∈ Gen(T ).

As an illustrative example, Table 4 consists of the first three record of Table 1, which
contains eight QIs (we regard each digit of Zip-code and Age as a separate QI) and one
SA. The generalization of Table 4 is also shown. In this case all suppressors have cost
5, and the cost of this generalization is 5 · 3 = 15.

A partition P of table T is a collection of pairwise disjoint non-empty subsets of T
whose union equals T . Each subset in the partition is called a group or a sub-table. The
cost of the partition P , denoted by cost(P), is the sum of costs of all its groups. For
example, the partition of Table 1 given by Table 2 has cost 5 · 3 + 6 · 4 + 5 · 3 = 54.

2.1 t-Closeness Principle

We formally define the t-closeness principle introduced in [16] for protecting data pri-
vacy. Let T be a table, and assume without loss of generality thatΣs = {1, 2, . . . , |Σs|}.
The sensitive attribute value space (SA space) is a normalized metric space (Σs, d),
where d(·, ·) is a distance function defined on Σs × Σs satisfying that (1)d(i, i) = 0
for any i ∈ Σs; (2)d(i, j) = d(j, i) for all i, j ∈ Σs; (3)d(i, j) + d(j, k) ≥ d(i, k) for
i, j, k ∈ Σs (this is called the triangle inequality); and (4)maxi,j∈Σs d(i, j) = 1 (this is
called the normalized condition).
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For a sub-table M ⊆ T and i ∈ Σs, denote by n(M, i) the number of vectors
whose SA value equals i. Clearly |M | =

∑
i∈Σs

n(M, i). The sensitive attribute value
distribution (SA distribution) of M , denoted by P(M), is a |Σs|-dimensional vector
whose i-th coordinate is P(M)[i] = n(M, i)/|M | for 1 ≤ i ≤ |Σs|. Thus P(M) can
be seen as the probability distribution of the SA values in M , assuming that each vector
in M appears with the same probability. For a threshold 0 ≤ t ≤ 1, we say M have
t-closeness (with T ) if EMD(P(M),P(T )) ≤ t, where EMD(X,Y) is the Earth-
Mover Distance (EMD) between distributions X and Y [26]. A t-closeness partition of
T is one in which every group has t-closeness with T .

Intuitively, the EMD measures the minimum amount of work needed to transform
one probability distribution to another by means of moving distribution mass between
points in the probability space; here a unit of work corresponds to moving a unit amount
of probability mass by a unit of ground distance. The EMD between two SA distribu-
tions X and Y can be formally defined as the optimal objective value of the following
linear program [26,16]:

Minimize
|Σs|∑
i=1

|Σs|∑
j=1

d(i, j)f(i, j) subject to:

|Σs|∑
j=1

f(i, j) = X[i], ∀1 ≤ i ≤ |Σs| and
|Σs|∑
i=1

f(i, j) = Y[j], ∀1 ≤ j ≤ |Σs|

f(i, j) ≥ 0, ∀1 ≤ i, j ≤ |Σs|.

The above constraints are a little different from those in [16]; however they can be
proved equivalent using the triangle inequality condition of the SA space. It is also easy
to see that EMD(X,Y) = EMD(Y,X). By the normalized condition of the SA space,
we have 0 ≤ EMD(X,Y) ≤ 1 for any SA distributions X and Y.

The equal-distance space refers to a special SA space in which each pair of distinct
sensitive values have distance exactly 1. There is a concise formula for computing the
EMD between two SA distributions in this space.

Fact 1 ([16]). For any SA distributions X and Y in the equal-distance space, we have

EMD(X,Y) =
1

2

|Σs|∑
i=1

|X[i]−Y[i]| =
∑

1≤i≤|Σs|:X[i]≥Y[i]

(X[i]−Y[i]).

Therefore, in the equal-distance space, the EMD coincides with the total variation dis-
tance between two distributions.

Let us go back to Table 1 for an example. We let 1,2,and 3 denote the sensitive values
“Viral Inspection”, “Heart Disease”, and “Cancer”, respectively. Let the SA space be
the equal-distance space. The SA distribution of the whole table is then (0.3, 0.3, 0.4).
Suppose we set the threshold t = 0.3. It can be verified that Table 3, although being a 2-
diverse partition, is not a t-closeness partition of Table 1. In fact, the SA distribution of
the first group is (0.5, 0.5, 0), and hence the EMD between it and the overall distribution
is 0.4. (This example also reflects some property of the skewness attack that l-diversity
suffers from. If an attacker can locate the record of Alice in the first group of Table 3,
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then he knows that Alice does not have a cancer. If he in addition knows that Alice
comes from some district where people have a very low chance to have heart disease,
then he would be confident that Alice has a viral infection.) We instead give a 0.3-
closeness partition in Table 5. We can actually verify that it achieves 0.1-closeness.

Now we are ready to define the main problem studied in this paper.

Problem 1. Given an input table T , an SA space (Σs, d), and a threshold t ∈ [0, 1], the
t-CLOSENESS problem asks to find a t-closeness partition of T with minimum cost.

Finally we review another two widely-used principles for privacy preserving, namely
k-anonymity and l-diversity, and the combinatorial problems associated with them. A
partition is called k-anonymous if all its groups have size at least k. A (sub-)table M
is called l-diverse if at most |M|/l of the vectors in M have an identical SA value. A
partition is called l-diverse if all its groups are l-diverse.

Problem 2. Let T be a table given as input. The k-ANONYMITY (l-DIVERSITY) prob-
lem requires to find a k-anonymous (l-diverse) partition of T with minimum cost.

3 NP-Hardness Results

In this section we study the complexity of the t-CLOSENESS problem. The problem
is trivial if the given threshold is t = 1, since putting each vector in a distinct group
produces a 1-closeness partition with cost 0, which is obviously optimal. Our main
theorem stated below indicates that this is in fact the only easy case.

Theorem 1. For any constant t such that 0 ≤ t < 1, t-CLOSENESS is NP-hard.

We will prove Theorem 1 via several reductions each covering a particular range of t.
We first present a result that relates t-CLOSENESS to k-ANONYMITY.

Lemma 1. There is a polynomial-time reduction from k-ANONYMITY to t-CLOSENESS

with equal-distance space and t = 1− k/n.

Proof. Let T be an input table of k-ANONYMITY. We properly change the SA values
of vectors in T to ensure that all their SA values are distinct; this can be done because
the SA values are irrelevant to the objective of the k-ANONYMITY problem. Assume
w.l.o.g. that the SA values are {1, 2, . . . , n}. Consider an instance of t-CLOSENESS

with the same input table T , in which t = 1−k/n and the SA space is the equal-distance
space. The SA distribution of T is (1/n, 1/n, . . . , 1/n). In the SA distribution of each
size-r group Tr, there are exactly r coordinates equal to 1/r and n−r coordinates equal
to 0. It is easy to see that EMD(P(T ),P(Tr)) = (n − r)(1/n) = 1 − r/n. Hence, a
group has t-closeness if and only if it is of size at least k. Therefore, each k-anonymous
partition of T is also a t-closeness partition, and vice versa. The lemma follows. ��

By Lemma 1 we can directly deduce the NP-hardness of t-CLOSENESS when the
threshold t is given as input, using e.g. the NP-hardness of 3-ANONYMITY [21]. How-
ever, to show hardness for constant t that is bounded away from 1, we need k/n = Ω(1)
and thus k = Ω(n). Unfortunately, the existing hardness results for k-ANONYMITY
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Fig. 1. An example of the reduction from MINBISECTION to (n/2)-ANONYMITY

only work for k = O(1) and cannot be generalized to large values of k. For example,
most hardness proofs use reductions from the k-dimensional matching problem, but
this problem can be solved in polynomial time when k = Ω(n). Below we show the
NP-hardness of k-ANONYMITY for k = Ω(n) via different approaches.

Theorem 2. For any constant c such that 0 < c ≤ 1/2, (cn)-ANONYMITY is NP-hard.

To the best of our knowledge, Theorem 2 is the first hardness result for k-ANONYMITY

when k = Ω(n). We note that the constant 1/2 is the best possible, since for any
k > n/2, a k-anonymous partition can only contain one group, namely the table itself.
We first prove the following result as a starting point in further reductions.

Theorem 3. (n/2)-ANONYMITY is NP-hard.

Proof. We will present a polynomial-time reduction from the minimum graph bisection
(MINBISECTION) problem to (n/2)-ANONYMITY. MINBISECTION is a well-known
NP-hard problem [12,13] defined as follows: given an undirected graph, find a partition
of its vertices into two equal-sized halves so as to minimize the number of edges with
exactly one endpoint in each half.

Let G = (V,E) be an input graph of MINBISECTION, where |V | ≥ 4 is even. Sup-
pose V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. In what follows we construct
a table T of size n = |V | that contains m = |E| quasi-identifiers. (The sensitive at-
tributes are useless in k-ANONYMITY so they will not appear.) This table will serve as
the input to the k-ANONYMITY problem with k = n/2. Intuitively each row (or vec-
tor) of T corresponds to a vertex in V , while each column (or QI) of T corresponds
to an edge in E. The alphabet Σ is {1, 2, . . . , n}. For each i ∈ [n] and j ∈ [m],2 let
T [i][j] = i if vi ∈ ej , and T [i][j] = 0 if vi 
∈ ej . Thus each column contains exactly
two non-zero elements corresponding to the two endpoints of the associated edge. See
Figure 1 for a toy example. Obviously T can be constructed in polynomial time.

Before delving into the reduction, we first prove a result concerning the partition cost
of T . Any (n/2)-anonymous partition of T contains at most two groups. For the trivial
partition that only contains T itself, the cost is n · m because all elements in T should
be suppressed. Thus an (n/2)-anonymous partition with minimum cost should consist
of exactly two groups. Suppose P = {T1, T2} is an (n/2)-anonymous partition of T
where |T1| = |T2| = n/2. Let {V1, V2} be the corresponding partition of V (recall that
each vector in T corresponds to a vertex in V ). Consider Gen(T1), the generalization

2 We use [q] to interchangeably denote {1, 2, . . . , q}.



On the Complexity of t-Closeness Anonymization and Related Problems 341

of T1. For any column j ∈ [m], if some endpoint of ej , say vi, belongs to V1, then
T [i][j] = i. By our construction of T , any other element in the j-th column does not
equal to i. Since |T1| ≥ n/2 ≥ 2, column j of T1 must be suppressed to �. On the other
hand, if none of ej’s endpoints belongs to V1, then column j of T1 contains only zeros
and thus can stay unsuppressed. Therefore, we obtain

cost(T1) = |T1| · (|E11|+ |E12|) = n(|E11|+ |E12|)/2, (1)

where Epq denotes the set of edges with one endpoint in Vp and another in Vq , for
p, q ∈ {1, 2}. Similarly we have cost(T2) = n(|E22|+ |E12|)/2. Hence,

cost(P) =

2∑
p=1

cost(Tp) = n(|E|+ |E12|)/2, (2)

noting that |E| = |E11|+ |E12|+ |E22|.
We now prove the correctness of the reduction. Let OPT be the minimum size of

any cut {V1, V2} of G with |V1| = |V2|, and OPT ′ be the minimum cost of any (n/2)-
anonymous partition of T . We prove that OPT ′ = n(|E| + OPT )/2, which will
complete the reduction from MINBISECTION to (n/2)-ANONYMITY. Let {V1, V2} be
the cut of G achieving the optimal cut size OPT , where |V1| = |V2| = n/2. Us-
ing notation introduced before, we have OPT = |E12|. Let P = {T1, T2} where
Tp = {T [i] | vi ∈ Vp} for p ∈ {1, 2}. Clearly P is an (n/2)-anonymous partition
of T . By Equation (2) we have OPT ′ ≤ cost(P) = n(|E|+OPT )/2.

On the other hand, let P ′ = {T ′
1 , T ′

2} be an (n/2)-anonymous partition with
cost(P ′) = OPT ′. We have |T ′

1 | = |T ′
2 | = n/2. Consider the partition {V ′

1 , V
′
2}

of V with V ′
p = {vi | T [i] ∈ T ′

p} for p ∈ {1, 2}. Since |V ′
1 | = |V ′

2 | = n/2, we have
OPT ≤ |E′

12| where E′
12 denotes the set of edges with one endpoint in V ′

1 and an-
other in V ′

2 . By Equation (2) we have OPT ′ = n(|E|+ |E′
12|)/2 ≥ n(|E|+OPT )/2.

Combined with the previously obtained inequality OPT ′ ≤ n(|E|+OPT )/2, we have
shown that OPT ′ = n(|E|+ OPT )/2. By the analyses we also know that an optimal
(n/2)-anonymous partition of T can easily be transformed to an optimal equal-sized
cut of G. This finishes the reduction from MINBISECTION to (n/2)-ANONYMITY, and
completes the proof of Theorem 3. ��
Using Theorem 3 we can design a reduction to show the NP-hardness of (cn)-
ANONYMITY when 0 < c ≤ 1/3. Roughly speaking, the idea is to add a large sub-
graph that is too expensive to split and therefore the optimal bisection of the old graph
used in the proof of Theorem 3 does not change too much. This can be done only if c
is small since the number of nodes in an old group is required to be more than c times
the final size. We can find that c = 1/3 is the largest possible value for this reduction to
work. Thus, the hardness of (cn)-ANONYMITY for c ∈ (0, 1/3]∪ {1/2} is established.
For the remaining case c ∈ (1/3, 1/2), we need a totally different reduction, starting
from a variant of the famous maximum clique problem [12]. The proof is harder and
more tedious than previous ones. Due to space limitations, the proofs of these two re-
ductions are omitted and can be found in the full version of this paper [18].

Combining Theorem 2 with Lemma 1, we obtain:

Corollary 1. For any constant t such that 1/2 ≤ t < 1, t-CLOSENESS is NP-hard even
with equal-distance space.



342 H. Liang and H. Yuan

The proof for the remaining case 0 ≤ t < 1/2 is done by two reductions from the
3-dimensional matching problem [12]. We only present the theorem due to space con-
straints, and the proof can be found in the full version of this paper [18].

Theorem 4. For any constant t ∈ [0, 1/2), t-CLOSENESS is NP-hard even if |Σs| = 4.

4 Exact and Fixed-Parameter Algorithms

In this section we design exact algorithms for solving t-CLOSENESS. Notice that the
size of an instance of t-CLOSENESS is polynomial in n and m + 1. The brute-force
approach that examines each possible partition of the table to find the optimal solution
takes nO(n)mO(1) = 2O(n logn)mO(1) time. We first improve this bound to single ex-
ponential in n. (Note that it cannot be improved to polynomial unless P = NP.) The
proof can be found in the full version of this paper [18].

Theorem 5. The t-CLOSENESS problem can be solved in 2O(n) · O(m) time.

In many real applications, there are usually only a small number of attributes and dis-
tinct attribute values. Thus it is interesting to see whether t-CLOSENESS can be solved
more efficiently when m and |Σ| is small. We answer this question affirmatively in
terms of fixed-parameter tractability.

Theorem 6. t-CLOSENESS is fixed-parameter tractable when parameterized by m and
|Σ|. Thus we can solve t-CLOSENESS optimally in polynomial time when m and |Σ|
are constants.

We prove this theorem by reducing the task to an mixed integer linear program that
precisely characterizes the objective value of our problem. The details can be found in
the full version of this paper [18].

5 Approximation Algorithm for k-Anonymity

In this section we give a polynomial-time m-approximation algorithm for k-
ANONYMITY, which improves the previous best ratio O(k) [1] and O(log k) [24] when
k is relatively large compared with m. Compared to theirs, our algorithm is very easy
to implement.

Theorem 7. k-ANONYMITY can be approximated within factor m in polynomial time.

Proof. Consider a table T with n rows and m QI columns. Denote by OPT the min-
imum cost of any k-anonymous partition of T . Partition T into “equivalence classes”
C1, . . . , CR in the following sense: any two vectors in the same class are identical, i.e.,
they have the same value on each attribute, while any two vectors from different classes
differ on at least one attribute. Assume |C1| ≤ |C2| ≤ . . . ≤ |CR|. If |C1| ≥ k, then
these classes form a k-anonymous partition with cost 0, which is surely optimal. Thus
we assume |C1| < k, and let L ∈ [R] be the maximum integer for which |CL| < k.
Then |CL′ | ≥ k for all L < L′ ≤ R. It is clear that each vector in C1 ∪ . . . ∪ CL

contributes at least one to the cost of any partition of T . Thus OPT ≥
∑L

i=1 |Ci|.
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Case 1:
∑L

i=1 |Ci| ≥ k. In this case we partition T into R − L + 1 groups: {C1 ∪
. . . ∪ CL, CL+1, CL+2, . . . , CR}. This is a k-anonymous partition of cost at most m ·∑L

i=1 |Ci| ≤ m · OPT .

Case 2:
∑L

i=1 |Ci| < k and
∑L

i=1 |Ci|+
∑R

i=L+1(|Ci| − k) ≥ k. We choose C′
i ⊆ Ci

for L+1 ≤ i ≤ R satisfying that |Ci\C′
i| ≥ k and

∑L
i=1 |Ci|+

∑R
i=L+1 |C′

i| = k. This
can be done because of the second condition of this case. We partition T into R−L+1
groups: {

⋃L
i=1 Ci ∪

⋃R
i=L+1 C

′
i, CL+1 \C′

L+1, . . . , CR \C′
R}. This is a k-anonymous

partition of cost at most m · k ≤ m · OPT , since OPT ≥ k.

Case 3:
∑L

i=1 |Ci| +
∑R

i=L+1(|Ci| − k) < k. We claim that there exists i ∈ {L +
1, . . . , R} such that any vector in Ci contributes at least one to the cost of any k-
anonymous partition. Assume the contrary. Then there exists a k-anonymous partition
such that, for every L + 1 ≤ i ≤ R, there is a vector v ∈ Ci whose suppression
cost is 0, which means that v belongs to a group that only contains vectors in Ci;
denote this group by C′

i . We also know that there is at least one group in the parti-
tion that has positive cost. However, by removing all C′

i, L + 1 ≤ i ≤ R, from T ,
the number of vectors left is at most n − k(R − L) =

∑R
i=1 |Ci| − k(R − L) =∑L

i=1 |Ci| +
∑R

i=L+1(|Ci| − k) < k, due to the condition of this case. This contra-
dicts with the property of k-anonymous partitions. Therefore the claim holds, i.e., there
exists j ∈ {L + 1, . . . , R} such that any vector in Cj contributes at least one to the
partition cost. Thus we have OPT ≥

∑L
i=1 |Ci|+ |Cj | ≥

∑L+1
i=1 |Ci|. We partition T

into R − L groups: {
⋃L+1

i=1 Ci, CL+2, . . . , CR}. This is a k-anonymous partition with
cost at most m ·

∑L+1
i=1 |Ci| ≤ m ·OPT .

By the above case analyses, we can always find in polynomial time a k-anonymous
partition of T with cost at most m ·OPT . This completes the proof of Theorem 7. ��

We note that Theorem 7 implies that k-ANONYMITY can be solved optimally in poly-
nomial time when m = 1. This is in contrast to l-DIVERSITY, which remains NP-hard
when m = 1 (with unbounded l) [9].

6 Algorithm for 2-Diversity

In this part we give the first polynomial time algorithm for solving 2-DIVERSITY. Let
T be an input table of 2-DIVERSITY. The following lemma is crucial to our algorithm,
whose proof can be found in the full version of this paper [18].

Lemma 2. There is an optimal 2-diverse partition of T in which every group consists
of 2 or 3 vectors with distinct SA values.

We reduce 2-DIVERSITY to a combinatorial problem called SIMPLEX MATCHING

introduced in [2], which admits a polynomial algorithm [2]. The input of SIMPLEX

MATCHING is a hypergraph H = (V,E) containing edges of sizes 2 and 3 with non-
negative edge costs c(e) for all edges e ∈ E. In addition H is guaranteed to satisfy the
following simplex condition: if {v1, v2, v3} ∈ E, then {v1, v2}, {v2, v3}, {v3, v1} are
also in E, and c({v1, v2}) + c({v2, v3}) + c({v1, v3}) ≤ 2 · c({v1, v2, v3}). The goal
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is to find a perfect matching of H (i.e., a set of edges that cover every vertex v ∈ V
exactly once) with minimum cost (which is the sum of costs of all chosen edges).

Let T be an input table of 2-DIVERSITY. We construct a hypergraphH = (V,E) as
follows. Let V = {v1, v2, . . . , vn} where vi corresponds to the vector T [i]. For every
two vectors T [i], T [j] (or three vectors T [i], T [j], T [k]) with distinct SA values, there
is an edge e = {vi, vj} (or e = {vi, vj , vk}) with cost equal to cost({T [i], T [j]}) (or
cost({T [i], T [j], T [k]})). Consider any 3D edge e = {vi, vj , vk}. Since each column
that needs to be suppressed in {T [i], T [j]}must also be suppressed in {T [i], T [j], T [k]},
we have c(e)/3 ≥ c({vi, vj})/2. Similarly, c(e)/3 ≥ c({vi, vk})/2 and c(e)/3 ≥
c({vj , vk})/2. Summing the inequalities up gives 2c(e) ≥ c({vi, vj}) + c({vi, vk}) +
c({vj , vk}). ThereforeH satisfies the simplex condition, and it clearly can be constructed
in polynomial time. Call a 2-diverse partition of T good if every group in it consists of
2 or 3 vectors with distinct SA values. Lemma 2 shows that there is an optimal 2-diverse
partition that is good. By the construction of H , each good 2-diverse partition of T can
be easily transformed to a perfect matching of H with the same cost, and vice versa.
Hence, we can find an optimal 2-diverse partition of T by using the polynomial time
algorithm for SIMPLEX MATCHING [2]. We thus have:

Theorem 8. 2-DIVERSITY is solvable in polynomial time.

7 Conclusions

This paper presents the first theoretical study on the t-closeness principle for privacy
preserving. We prove the NP-hardness of the t-CLOSENESS problem for every constant
t ∈ [0, 1), and give exact and fixed-parameter algorithms for the problem. We also
provide conditionally improved approximation algorithm for k-ANONYMITY, and give
the first polynomial time exact algorithm for 2-DIVERSITY. There are still many related
problems that deserve further explorations, amongst which the most interesting one to
the authors is designing polynomial time approximation algorithms for t-CLOSENESS

with provable performance guarantees. The parameterized complexity of t-CLOSENESS

with respect to other sets of parameters (see, e.g., [6,7,11]) are also of interest.
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Abstract. With the proliferation of cloud computing, there is an in-
creasing need for sharing data repositories containing personal infor-
mation across multiple distributed databases, and such data sharing is
subject to different privacy constraints of multiple individuals. Most of
the existing methods focus on single database anonymization, although
the concept of distributed anonymization was discussed in some litera-
tures, it only provides an uniform approach that exerts the same amount
of preservation for all data providers, without catering for user’s spe-
cific privacy requirements. The consequence is that we may offer insuf-
ficient protection to a subset of people, while applying excessive privacy
budget to the others. Motivated by this, we present a new distributed
anonymization protocol based on the concept of personalized privacy
preservation. Our technique performs a personalized anonymization to
satisfy multiple data provider’s privacy requirements, and then publish
their global anonymization view without any privacy breaches. Extensive
experiments have been conducted to verify that our proposed protocol
and anonymization method are efficient and effective.

1 Introduction

Cloud computing is a long dreamed vision of computing as a utility, where cloud
consumers can remotely store their data into the cloud so as to enjoy the on-
demand high quality applications and services from a shared pool of configurable
computing resources[1]. Third-party computing clouds, such as Amazon’s EC2

and Microsoft’s Azure, provide support for computation, data management, and
internet services. For its great flexibility and economic savings, more and more
data providers outsource their data to the cloud platform. Government and or-
ganizations increasingly recognize the critical value and opportunities in sharing
such a wealth of information across multiple distributed databases. Examples of
success cases on EC2 include Nimbus Health [2], which manages patient medical
records, and ShareThis [3], a social content-sharing network that has shared 430
million items across 30,000 web sites. Unfortunately, such data sharing is subject
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to constraints imposed by privacy of individuals, which is consistent with related
works on cloud security [4][6][7][8]. In fact, researchers have showed that attack-
ers could effectively target and observe information from specific cloud instances
on third party clouds [9]. To protect data privacy, the sensitive information of in-
dividuals should be preserved before outsourcing to the commercial public cloud
[10]. Partition-based privacy preserving data publishing technique resolves this
problem by anonymizing the original data. It has been widely discussed in the
literature such as k-anonymity [11][19], (a,k)-anonymity [12], l-diversity [13], t-
closeness [30], m-invarance [14], etc. Given that many data providers need to
release their original data to the cloud and each of them has a different need for
privacy requirement, the problem becomes a challenging task.

In the most related literature, privacy preserving data publishing for a single
dataset has been extensively studied. A lot of work contributes to algorithms that
transform a dataset to meet a certain privacy principle by using techniques such
as generalization, suppression, perturbation, and swapping [15][16][17][18][21].
Although Xiong et al. [5] studied a problem of data anonymization for horizon-
tally partitioned datasets and proposed a distributed anonymization protocol,
it only gave a uniform approach that exerts the same level of protection for all
data providers, without catering for their d needs. How to design a new dis-
tributed anonymization protocol over cloud servers, which can satisfy different
data provider’s personal needs and maximize the utility of the anonymous data,
still remains a challenging problem.

In this paper, we design an algorithm which inserts data objects into an R-
tree for anonymization on top of the k -anonymity and l -diversity principle. For
the first time, we propose a new distributed anonymization protocol that allows
multiple data providers to publish datasets with personalized needs to cloud
servers for building a virtual anonymized database, which is in turn based on
the integration of all the local generalized data. As the output of the protocol,
each private dataset produces a local anonymized dataset that satisfies each data
provider’s privacy constraints and their union forms a global virtual database
that meets a global anonymization principle.

The remainder of this paper is organized as follows. Section 2 briefly reviews
works related to our research. Section 3 introduces the problem definition and
discusses the privacy model we used. Section 4 presents our designed distributed
annymization protocol, and Section 5 gives a generalization algorithm to achieve
the protocol, Section 6 presents a set of experimental evaluations and Section 7
concludes the paper with future work.

2 Related Work

Our work is inspired by work in a number of research areas. We briefly review
the work in closely related areas below and discuss how our work leverages and
advances the current state-of-the-art techniques.

Privacy Preserving Data Publishing. Privacy preserving data publishing
for centralized databases has been studied extensively in recent years [25].
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One aspect of work aims at devising privacy principles, such as k-anonymity [11],
(a,k)-anonymity [12], l-diversity [13], t-closeness [30], and m-invarance [14], that
designed as criteria for judging whether a published dataset provides a certain pri-
vacy preservation. Another large part of work contributes to proposing algorithms
that transform a dataset to meet one of the above privacy principles. In this study,
our distributed anonymization protocol is built on top of the k -anonymity and l -
diversity principles. We propose a new anonymization algorithm by inserting all
the data objects into an R-tree to achieve high quality generalization.

Distributed Anonymization Solutions. There are a number of potential ap-
proaches can be applied to enable data anonymization for distributed databases.
One naive solution is for each data provider to implement data anonymization
independently. Data analysts or users can then query the individual anonymized
database or an integrated view over all of them. Since the data is anonymized
before integration, thus the main drawback of this solution is that it will cause
low data utility. An alternative approach assumes the existence of a third party
that can be trusted by all data providers. In this case, data providers upload
their data to the trusted third party where data integration and anonymiza-
tion are performed, clients then can query the centralized database in the third
party. However, finding such a trusted third party is not always feasible. Com-
promise of the server by attackers could lead to a complete privacy loss for all
the participating parties and data subjects [5].

Jiang et al. [26] presented a two-party framework along with an application
that generates k-anonymous data from two vertically partitioned sources without
disclosing data from one site to the other. Zhong et al. [27] proposed provably
private solutions for k-anonymous generalization in the distributed scenario by
maintaining end-to-end privacy from the original customer data to the final
k-anonymous results. Xiong et al. [5] presented a distributed anonymization
protocol aims to achieve anonymity for both data subjects and data providers.

In contrast to the above work, our work is aimed at outsourcing data provider’s
privatedataset to cloud servers for data sharing.More importantly, our anonymiza-
tionprotocol aims at satisfying eachdata provider’s individual need of privacy bud-
get and producing a virtual database based on all the local anonymized datasets.
Wepropose adistributeddata anonymizationapproach that enables dataproviders
to publish their private data into cloud servers. It is important to note that the
anonymous data still resides at individual databases in servers. Integration of all
local anonymized datasets is performed through the secure distributed protocols.
In this case, each individual database can execute the query on its local data, and
then engage in distributed protocols to assemble the results that are guaranteed to
be k -anonymous.

3 Problem Statement

3.1 Preliminaries and Problem Definition

We assume that the microdata is distributed stored among s (s > 2) sites
(nodes), and each site owns a private local database di (1 ≤ i ≤ s) published
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Site 1
Age Zip CodeDisease

20− 30 5000-5100 AIDS

20− 30 5000-5100 Flu

20− 30 5000-5100 Cold

40− 50 5000-5100 Cold

40− 50 5000-5100 Flu

Site 2
Age Zip CodeDisease

20− 30 5000-5100 Cold

20− 30 5000-5100 Flu

20− 30 5000-5100 AIDS

40− 50 5000-5100 Flu

40− 50 5000-5100 Cold

40− 50 5000-5100 Flu

Site 3
Age Zip CodeDisease

30− 40 5200-5300 AIDS

30− 40 5200-5300 Flu

30− 40 5200-5300 Cold

30− 40 5200-5300 Flu

30− 40 5200-5300 Cold

Fig. 1. Different anonymous tables within 3 sites

by one of the data providers. The union of all the local databases, denoted as
microdata set D as given in Definition 1, gives a complete view of all the data
(D = ∪di). In particular, the quasi-identifier attributes of each record within
each local database are the same. To preserve the privacy of data, our work
based on the rationale of k -anonymity to achieve anonymity for data subjects
and this algorithm can be easily extended to support l -diversity [13]. Follow-
ing a distributed anonymization protocol, each site produces a local anonymized
database d∗i that meets its own privacy principle ki since data providers have
different privacy requirements for publishing. The union of all local anonymized
databases forms a virtual database that is guaranteed to meet a global privacy
requirement K. Note that max(k1, k2, k3, ..., ks) ≤ K. As illustrated in Fig.1,
the data is partitioned horizontally among 3 sites. The anonymized dataset d∗1
of d1 is required to be 2-anonymity, d∗2 of d2 is required to be 3-anonymity,
and d∗3 of d3 is required to be 5-anonymity. The global anonymized database
D∗ = (d1 ∪ d2 ∪ d3)

∗ is required to be 5-anonymity. Note that, simply combine
all anonymized local datasets cannot always satisfy the global privacy budget
K, that is to say, (d1 ∪ d2 ∪ d3)

∗ = (d∗1 ∪ d∗2 ∪ d∗3) does not always hold.

Definition 1 (Microdata Set). A microdata set D (or table T ) is of the fol-
lowing form: D = {r1, r2, ..., rn}, where r1, r2, ..., rn are n distinct records, and
ri (1 ≤ i ≤ n) represents the information of an individual with identifier at-
tribute Aid = {A0}, quasi-identifier (QI) attributes AQI = {A1, A2, ..., Ad} and
sensitive attributes AS = {Ad+1}.

Definition 2 (Anonymized Dataset). An anonymized dataset D∗ is of the
following form: D∗ = {G1, G2, ..., Gm}, where G1, G2, ..., Gm are m disjoint
groups, denoted as Equivalence Class or QI-group, and Gi (1 ≤ i ≤ m) repre-
sents the information of a group of individuals with the same generalized quasi-
identifier attributes A∗

QI = {A∗
1, A

∗
2, ..., A

∗
d} and all occurrences of sensitive at-

tribute {Ad+1} of individuals within group Gi.

In general, given a microdata set D = ∪di (1 ≤ i ≤ s) and the privacy budget
ki, K, our objective is to generate an anonymized data set D∗ such that (1)
d∗i satisfies ki-anonymity, (2) D∗ satisfies K-anonymity, and (3) the anonymized
dataset preserves as much detailed information as possible for query analysis.
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3.2 Privacy Preservation Goals

We use k-anonymity and l-diversity as objectives of privacy preservation. Al-
though they have relatively weak privacy guarantee compared to principles such
as differential privacy [16], we chose them in this paper because they are intu-
itive and have been justified to be useful in many practical applications such as
privacy-preserving location services. Under the protocol in this paper, the data
providers and users can only see the result of the designed functions and can not
learn anything more.

Privacy for Data Objects Based on Anonymity. k -anonymity [11] [19] was
regarded as an important privacy principle that protects against individual iden-
tifiability, it requires a set of k records to be indistinguishable from each other
based on a quasi-identifier group. As mentioned above, given a microdata set D,
attributes are characterized into: unique identifiers attribute A0 which identifies
individuals (e.g. names); quasi-identifier which is a minimal set of attributes
(A1, ..., Ad) that can be combined with an external database to recover the per-
sonal identities; and sensitive attribute that should be protected. The set of all
tuples containing identical values for the QI set is recorded as an equivalence
class. An improved principle l -diversity [13], requires each equivalence class con-
tains at least l diverse sensitive values. Given our research goal of extending the
anonymization techniques and integrating them with secure computation tech-
niques, we use the principle of k -anonymity and l -diversity to achieve privacy
protection.

Privacy between Data Providers. Given that multiple data providers need
to publish their private datasets in the cloud for data sharing, certain background
knowledge may enable attacks for individual identifiability by composing several
local anonymized datasets in servers (see composition attack [31]). Our second
privacy goal is to avoid the attack between data providers, in which individual
dataset reveal nothing about their data to the other data providers apart from
the virtual anonymized database. It resembles the goal of secure multi-party
computation (SMC) [28]. In SMC, a protocol is secure if no participant can
learn anything more than the result of the function (or what can be derived
from the result).

Similar to the method [5] using the multi-dimensional top-downMondrain al-
gorithm for distributed anonymization, we propose a distributed anonymization
protocol using R-tree [23] [24]. We assume that the initial local ki-anonymous
tables have been built. We use a distributed anonymization algorithm to build a
virtual K-anonymous database and ensure the locally anonymized table d∗i to be
ki-anonymous. When users query the virtual database, each individual database
executes the query on d∗i and then engage in a distributed querying protocol to
assemble the results that are guaranteed to be K-anonymous.

3.3 Anonymization Algorithm

Given our privacy model, one important thing is to design an anonymization al-
gorithm with checking mechanism for cloud servers and implement the algorithm
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using distributed protocols. Generally speaking, we can decompose a centralized
anonymization algorithm and utilize distributed protocols for communication
which are proven to be secure in order to generate a secure and distributed
anonymization among cloud servers. However, even every step is secure, using
the results obtained from one secure computation to perform another compu-
tation at another server, may still reveal intermediate information that is not
part of the final results. Therefore, minimizing the disclosure of intermediate
information is an important consideration when designing such protocols.

It has mentioned above that we plan to generalize against the initial local
ki-anonymous tables using a distributed anonymization algorithm, and aim at
building a virtual database that guaranteed to beK-anonymous and maintaining
the local anonymized datasets to be ki-anonymous from the beginning to the end.
There are plenty of algorithms proposed to achieve k -anonymity, in this paper,
we choose the bottom-up R-tree generalization method instead of the top-down
Mondrain algorithm to achieve k -anonymity for better generalization efficiency
(See Section 6.2).

Based on the multi-dimensional R-tree algorithm, our distributed anonymiza-
tion protocol uses a greedy bottom-up approach to recursively insert the data
objects into the minimum overlapping quasi-identifer domain space, and when
overflow occurs, the quasi-identifer domain space will be split into two parts. It
recursively chooses the best branch to insert the data objects for grouping the
closest data objects. The split of the R-tree leaf node is repeated until it can
not be divided, meaning that the data objects in a particular region cannot be
divided without violating an anonymity constraints or generalization hierarchies.

4 Distributed Anonymization

4.1 Protocol

The main idea of the distributed anonymization protocol is to use secure multi-
servers computation protocols to realize the R-tree generalization method for
the cloud setting, so that each database produces a local anonymized dataset to
meet the data provider’s need, and the union of all anonymized data sets forms
a virtual database that is K -anonymous.

We assume that a master node is selected from cloud server for the main
protocol, and all the other local databases are consider as slave nodes. The
protocols for the master node and other slave nodes are presented in Algorithm
as illustrated in Fig.2. Clearly, the procedure performed at the master node
is similar to the centralized generalization method. Considering the possibility
of too much workload imposed to the master node, slave nodes only need to
send summary information of each equivalence class to the master node for
generalization in form (I, num), where I denotes a d -dimensional rectangle which
is the bounding box of the equivalence class’s spacial QI values [l1, u1], ..., [ld, ud]
and num is the total number of data objects in the equivalence class. In addition,
the sender slave node’s address Sid is need to record because the master can use
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Algorithm Master node
Phase 1: Read data from each Slave node
1. read data (I, num) from each slave node into a set S
Phase 2: Generalize data to be K -anonymous table
2. For each rectangle I ∈ S do
3. Insert I into an R-tree
4. if split is possible, do Split(see the process of split)
5. end For
Phase 3: Modify the local ki-anonymous database
6. For each equivalence class Ei of the K -anonymous table, do
7. get rectangles set G contained in R of Ei

8. For each rectangle I ∈ G
9. Send I and R to Slave node through Sid

10. end For
11. end For

Algorithm Slave node i (i > 0)

Phase 1: Send equivalence classes to the master
1. For each equivalence class Ej of ki-anonymous table, do
2. get summary information of Ej in form (I, num)
3. send data (I, num) and address Sid to the master
4. end For
Phase 2: Receive modifying commands from the master
5. Read the data I and R from the Master
6. For each equivalence class Ej of ki-anonymous table, do
7. if rectangle of Ej equals I
8. Enlarge the rectangle of Ej to R
9. end if
10. end For

Fig. 2. Distributed anonymization protocol

it to send message back. Note that, before the distributed generalization, the
initial local ki-anonymous tables have been built among cloud servers.

In Phase 1, the master node reads data (I, num) of each equivalence class
from each slave node into a set S. In Phase 2, the algorithm generalizes the
data to be K -anonymous, where K is set by the cloud platform from a global
view. The algorithm inserts each rectangle I from S into an R-tree. If split is
possible, do split. Note that, the equivalence class read from slave nodes can not
be split into two parts in the process of split. Later we will give the detail of
the split process in Section 4.3. In Phase 3, the master node modifies all the
initial local ki-anonymous databases. The algorithm traverses each equivalence
class Ei of the K -anonymous table, to find the rectangles set G contained in it.
Note that, the rectangle is the data I that read from slave nodes at the initial
stage. For each rectangle I ∈ G that contained in the bounding box R of Ei, we
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Node 0
ID Age Zip Code

1 11− 23 5200− 5300

2 11− 23 5200− 5300

Node 1
ID Age Zip Code

3 73− 80 5400 − 5500

4 73− 80 5400 − 5500

Node 2
ID Age Zip Code

5 23− 30 5200− 5300

6 23− 30 5200− 5300

7 23− 30 5200− 5300

8 65− 76 5400− 5500

9 65− 76 5400− 5500

10 65− 76 5400− 5500

Node 3
ID Age Zip Code

11 45− 60 5300 − 5400

12 45− 60 5300 − 5400

13 45− 60 5300 − 5400

14 45− 60 5300 − 5400

15 45− 60 5300 − 5400

16 45− 60 5300 − 5400

Fig. 3. Initial local ki-anonymous tables

Node 0
ID Age Zip Code

1 11− 30 5200− 5300

2 11− 30 5200− 5300

Node 1
ID Age Zip Code

3 65− 80 5400 − 5500

4 65− 80 5400 − 5500

Node 2
ID Age Zip Code

5 11− 30 5200− 5300

6 11− 30 5200− 5300

7 11− 30 5200− 5300

8 65− 80 5400− 5500

9 65− 80 5400− 5500

10 65− 80 5400− 5500

Node 3
ID Age Zip Code

11 45− 60 5300 − 5400

12 45− 60 5300 − 5400

13 45− 60 5300 − 5400

14 45− 60 5300 − 5400

15 45− 60 5300 − 5400

16 45− 60 5300 − 5400

Fig. 4. Modified local ki-anonymous tables

send data I and R back to a corresponding slave node. When receive the data
I and R from the master, the slave node finds out the equivalence class whose
rectangle equals I and then enlarges its rectangle to R. Now our distributed
anonymization algorithm completes.

4.2 Example

We illustrate the overall protocol with an example scenario as shown in Fig. 3 and
Fig. 4, where four data providers publish their private databases across four slave
nodes with their personalized privacy budget as k0 = 2, k1 = 2, k2 = 3, k3 = 5
and the global K=5. Before the distributed anonymization algorithm performs,
four initial local ki-anonymous tables have been built shown in Fig. 3,Node 0
is 2-anonymous, Node 1 is 2-anonymous, Node 2 is 3-anonymous and Node 3
is 5-anonymous. From Fig. 3 to Fig. 4, the distributed algorithm only modifies
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Fig. 5. Two scenarios in split process

the rectangle of the equivalence class of Node 0 from [11 − 23][5200− 5300] to
[11−30][5200−5300], Node 1 from [73−80][5400−5500] to [65−80][5400−5500]
and the rectangle of two equivalence class of Node 2 from [23−30][5200−5300] to
[11−30][5200−5300], [65−76][5400−5500] to [65−80][5400−5500] respectively.
The distributed generalization algorithm first read all the equivalence classes
from each 4 slave nodes and then insert the rectangle of each equivalence class
into an R-tree for generalization. At last it modifies each local ki-anonymous
database and the union forms a virtual 5-anonymous database.

4.3 Split Process

The split process performed for a global R-tree in the master node is different
from the Node splitting phase of a local R-tree. The algorithm focuses on the
split of overflowed leaf nodes, which consists of rectangles of equivalence classes
that read from other initially ki-anonymous databases. As to the split of internal
R-tree nodes, we can follow the split phase of R-tree in [23]. Our goal is to split
the data as much as possible while satisfying the privacy constraints so as to
maximize the utility of the anonymized data. The split algorithm first picks
two seeds from the entries (rectangles of equivalence classes) that would get the
largest area enlargement when covered by a single rectangle. That is, the distance
between the two chose entries is the biggest. Then, for the others, one at a time
is chosen to be added into one of the two groups. The one chosen is the one with
the greatest difference in area expansion. If one group gets too full (more would
force the other group to violate min fill requirement) then another group gets
the rest. Finally, the entries are successfully split into two groups. We say the
split is successful only if the two parts after splitting both satisfy the privacy
constraints. e.g. assume the generalized table need to be k -anonymous and the
total number of data objects in two groups is l and r respectively, so l ≥ k and
r ≥ k. Here we give two scenarios: First, the split is not successful because the
two groups are not both meet the privacy constraints; Second, the splitting node
is divided into two groups while both satisfy the privacy constraints.

We show the two scenarios in Fig. 5, where we denote the equivalence classes
of Node 0 to Node 3 (See Fig. 3) as e1, e2, ..., e5. Initially, equivalence classes e1
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and e2 are inserted into the R-tree. When e3 is inserted, the R-tree node splits
into two groups, e1 and e3 into one group and e2 into the other. But the number
of tuples in e2 is only 3 (less than 5), it is the scenario 1, the split is unsuccessful
and the process will quit. When the equivalence classes e4 comes, the scenario
becomes different, e1 and e3 will be split into one group, e2 and e4 into the other.
The two groups both satisfy the privacy constraints (the number of tuples in two
groups both equal 5). At last, e5 comes, following the insert algorithm, it will be
inserted into the group that contains e2 and e4, and then the group will be split
to two parts again, that is e2 and e4 in one group and e5 the other, as illustrated
in scenario 2 of Fig. 5.

5 R-Tree Generalization

Similar to the multi-dimensional top-down Mondrian algorithm [20] that gen-
eralizes data by using a Kd-tree, our method uses an R-tree. In particular,
our algorithm uses a greedy bottom-up approach to recursively insert the data
objects into the minimum overlapping quasi-identifer domain space, and when
overflow occurs, the quasi-identifer domain space will be split into two parts. It
recursively chooses the best branch to inset the data objects for gathering the
closest data objects. When all the data tuples are inserted into the R-tree, the
generalization table was built. Our method is experimentally verified to have
better quality in anoymized dat than the Mondrian algorithm.

5.1 Index Structure

It is simple to generalize datasets to k -anonymous by mapping the tuples of
each R-tree leaf node to an equivalence class and setting the capacity of leaf
node’s entries as 2×k-1. We can retrieve and gather all the leaf nodes in the
R-tree to create a k -anonymous table. Leaf nodes contain index record entries
of the form (I, SI), where SI refers to the sensitive information for a tuple, and
I = (I1, I2, ..., Id) is a d-dimensional rectangle which is the bounding box of one
equivalence class’s spacial QI values. Here d is the number of dimensions and Ii
is a bounded interval [a,b] describing the QI value along dimension i. In this way,
the whole information of an equivalence class can be easily retrieved from the
leaf node. Non-leaf nodes contain entries of the form (I, childPointer), where
childPointer is the address of a lower node in the R-tree and I tightly covers
all rectangles in the lower node’s entries. Here I is also regarded as a minimum
bounding rectangle(mbr). Fig.6 shows a two-dimensional R-tree where 12 tuples
(a, b, c, ..., l) are clustered into 5 R-tree leaf nodes R3, R4..., R7 according to their
spatial proximity, then recursively grouped into notes R1, R2 which become the
entries of the root.

5.2 Insertion and Node Splitting

The R-tree construction is based on the insertion algorithm. We create the R-
tree by inserting every object into the indexing structure. Given a new object,
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Fig. 6. R-tree structure

in a greedy way, the insertion algorithm chooses the best branch to follow at
each level of the tree. Assume that we insert an object a which is contained by
I of leaf node R3 (in Fig.6). At the root level, the algorithm chooses the entry
whose rectangle needs the least area enlargement to cover a, so R1 is selected
for its rectangle does not need to be enlarged, while the rectangle of R2 needs
to expand considerably. In the same way, R3 is selected next. When following
the leaf node, the SI of a is added into the index record entries of leaf node R3

and the I of leaf node R3 may be enlarged a little to contain a. The rectangles
of its parent(like R1) will be recursively updated.

An overflow occurs when the leaf node reached (i.e., data object m is added
to the index record of leaf node R3) is full(i.e., it already contains the maximum
number of entries). In this case, the algorithm performs Node Splitting. The first
step picks two seeds from the entries that would get the largest area enlargement
when covered by a single rectangle. Then, of the remaining records, one at a time
is chosen to be put in one of the two groups. The one chosen is the one with
the greatest difference in area expansion. If one group gets too full (more would
force the other group to violate min fill requirement), then the other group gets
the rest. Finally, the entries are successfully split into two groups.

6 Performance Analysis

We evaluate the distributed anonymization protocol on Amazon’s EC2 platform.
Our system was implement in Java 1.6.0.13 and run on a set of EC2 computing
units. Each computing unit is a small instance of EC2 with 1.7GHz Xeon proces-
sor, 1.7GB memory and 160GB hard disk. The computing units are connected
via 250Mbps network links. The number of computing units in our system is 10.
We use three different datasets with Uniform, Gaussian and Zipf distribution
to evaluate our distributed anonymization scheme.

6.1 Performance of Distributed Anonymization Protocol

We first perform experiments comparing the quality using the discernibility met-
rics, which is based on the size of the equivalence classes Gj in D∗. Intuitively,
the discernibility metric (DM) assigns each tuple r∗i in D∗ a penalty, which is de-
termined by the size of the equivalence class containing it, that is DM(D,D∗) =∑m

i=1 |Gi|2. We present an evaluation of the distributed anonymization protocol
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compared to the optimal centralized anonymization approaches in terms of this
metric.

Dataset and Setup. For each synthetic dataset, we generate 10K tuples for
each node. We report results for the following scenarios: 1) All the 100K tuples
is located in one centralized database and R-tree generalization algorithm was
used to generalize the database to be K -anonymous. In this scenario, we get the
optimal discernibility metric value. 2) Data are distributed among the 10 nodes
and we use the distributed anonymization approach presented in Section 4.

The first set of experiments compared these two approaches with varied K. We
fixed the total number of tuples at 100K, and the number of attributes at 3. Our
distributed anonymization protocol generalizes the 10 distributed databases to
K -anonymous in global view but local generalized database with ki-anonymous,
where the ki is selected independently and randomly from [1, K]. Results for the
two generalization approaches are shown in Fig.7.

(a) Uniform (b) Gaussian (c) Zipf

Fig. 7. Discernability Metrics vs. k

The next set of experiments in Fig. 8 measured the quality for varied diversity
l, we extend the privacy principle from k -anonymous to l -diversity. We also fixed
the number of attributes at 3 and used three kinds of distribution to perform
our algorithm. The third set of experiments compared these two algorithms for
varied dimensionality d, with diversity l = 6, as shown in Fig. 9.

Result. From all the above three sets of experiments, we observe that our dis-
tributed anonymization protocol performs close to the optimal anonymization.

6.2 Effect of R-Tree Generalization Method

We perform experiments to evaluate generalization quality comparing with the
Mondrian algorithm. Concretely, each private database uses these two methods
to generalize data to be ki-anonymous, then the union of them will be sent to
the master for achieving a virtual K -anonymous database.

We measure the absolute error, i.e., |actual − estimate|, where actual is the
correct range query answer number and estimate is the number of candidate set
computed from the anonymous table. For each considered setting, we pose 100
queries that span a certain percentage of the entire domain space and report the
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(a) Uniform (b) Gaussian (c) Zipf

Fig. 8. Discernability Metrics vs. l

(a) Uniform (b) Gaussian (c) Zipf

Fig. 9. Discernability Metrics vs. d

average absolute error of these queries under the same parameter settings. The
first set of experiments measured the absolute errors with fixed dimension at 3
and varied K. In the next set of experiments, K is fixed at 7 and the dimension
d is varied from 2 to 5.

Result. As shown in Fig.10 and Fig.11, queries on data anonymized by our
method are more accurate than those on data anonymized by the Mondrian
algorithm. Also as expected, the naive partition algorithm (Mondrian algorithm
uses KD-tree for top-down data partition) suffers in data utility, this is caused by
Mondrian making use of KD-tree, which does not group the closest data objects
into the same minimum bounding rectangles.

(a) Uniform (b) Gaussian (c) Zipf

Fig. 10. Absolute Error vs. K
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(a) Uniform (b) Gaussian (c) Zipf

Fig. 11. Absolute Error vs. d

7 Conclusion

We have presented a distributed anonymization protocol for privacy-preserving
data publishing from multiple data providers in a cloud system. Our method per-
forms a personalized anonymization to satisfy every data provider’s requirements
and the union forms a global anonymization to be published. We also presented
a new anonymization algorithm using R-tree index structure. Our future work
will continue along several directions. First, we are interested in developing a
protocol toolkit incorporating more privacy principles like differential privacy.
In particular, dynamic or serial releases of data with updates are extremely rel-
evant in our cloud setting. Second, as compared to existing systems based on
cryptographic approaches, we are interested in building efficient indexes based
on anonymized cloud data to offer more efficient and reliable data analysis.
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Abstract. Topic-based publish/subscribe (pub/sub) is a popular paradigm to de-
couple message producers and consumers with the help of brokers. However,
third-party brokers may be hacked, sniffed, subpoenaed, or impersonated. Thus,
the brokers cannot be trusted. In particular, the collusion attack between com-
promised subscribers and untrusted brokers easily exposes the privacy of hon-
est subscribers. Given the untrusted brokers and collusion attacks, traditional
security techniques alone cannot protect subscribers’ privacy. By adopting the
k-anonymity model to the topic-based pub/sub, we propose to use cloaked sub-
scriptions to blur subscribers’ real interests. Such cloaked could protect the sub-
scription privacy but meanwhile incur high forwarding cost. Thus, we minimize
the forwarding cost meanwhile satisfying the privacy requirement, and formulate
an integer programming (IP)-based optimization problem. After relaxing the IP
problem to a linear programming (LP) problem, we design a new rounding al-
gorithm that optimally minimizes the expected forwarding cost. The experiments
show that our scheme efficiently achieves the trade-off between the forwarding
cost and the privacy requirement.

1 Introduction

The topic-based publish/subscribe (pub/sub) [10] is a simple yet very popular paradigm
to decouple message producers and consumers. Subscribers declare their interests by
specifying logic topics in subscription conditions, and brokers maintain channels as-
sociated with topics specified in subscriptions. Publications are identified by specific
topics. On receiving the publication messages from publishers, brokers forward publi-
cations to interested subscribers in a one-to-many manner.

Unfortunately, there are security concerns with respect to (w.r.t) the brokers: they
may be hacked, sniffed, subpoenaed, or impersonated. Thus, the brokers cannot be
trusted. If some users subscribe to sensitive publications (e.g., corporation or military
or political/religious affiliations), the untrusted brokers could expose such subscribers.
In particular, by deploying brokers as public third-party servers, many modern applica-
tions, such as online games, RSS feeds, and social computing platforms, have adopted

� Part of this work was done when the first author was at the HKUST.

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 361–376, 2013.
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the pub/sub paradigm which allows end users to subscribe to favorite content. Attacks
against public third-party servers could easily leak sensitive privacy information be-
longing to subscribers. On April 27 2011, Sony admitted that its PSN platform had
been hacked, leading to the information leakage of 70 million users [3]. This example
confirms that untrusted public servers could lead to users information leakage.

Due to the existence of untrusted broker servers and potentials of information leak-
age, a number of research proposals [15,21,20] have been proposed to address the se-
curity issues in pub/sub. Most of them are related to publication access control, data
(i.e., publication) confidentiality, secure publication routing (using cryptographic tech-
niques), and so on. However, none of these works is related to the subscriber privacy.
In particular, the collusion attack [8] between compromised subscribers and untrusted
brokers easily leaks subscribers’ privacy. For example, a group of users subscribe to a
specific topic pertaining to sensitive publications. Suppose one of such users is compro-
mised and colludes with the untrusted broker. Due to the one-to-many communication
pattern, the broker can link the sensitive publications with a set of recipients (includ-
ing the compromised user and the remaining honest ones). Though we can encrypt the
publications (and even the topic name), the compromised user decrypts such encrypted
publications. Then, attackers can easily infer that the honest users are also interested in
such sensitive publications.

In this paper, to protect subscribers’ privacy, we adopt the k-anonymity [22,19] to
the topic-based pub/sub, called k-subscription-anonymity. With this privacy model, the
collusion between an untrusted broker and compromised subscribers exposes honest
subscribers with probability at most 1/k. To implement the privacy model, we propose
to use cloaked subscriptions, and register the cloaked subscriptions to the channels of
topic-based pub/sub. Thus, among the cloaked subscriptions (including both fake and
real subscriptions) in the channel of a topic, it is indistinguishable which subscriptions
are truly interested in the topic.

A naive approach to create the cloaked subscriptions is to register all subscriptions
on every channel. This approach offers the privacy protection but incurs high network
traffic. Thus, we propose to minimize the overall forwarding cost, and formulate an
integer programming (IP)-based optimization problem. After relaxing it to a linear pro-
gramming (LP) problem. Differing from the classic rounding approach [16], we design
a new rounding algorithm that guarantees to optimally minimize the expected overall
forwarding cost. To summarize, we make the following contributions.

– We identify that that the traditional secured pub/sub alone cannot defend against
the collusion attack between untrusted brokers and compromised subscribers.

– We introduce an anonymizer engine to separate the roles of brokers, propose the k-
subscription-anonymity model, and achieve the trade-off between the privacy pro-
tection and efficiency goal.

– Our experiments show that our solution only consumes a slightly higher cost to of-
fer the subscription privacy protection (e.g., for a large anonymity level k = 40, the
proposed scheme uses only 2.48 folds of cost compared with the original pub/sub).

The rest of this paper is organized as follows. Section 2 gives the preliminaries. Next,
Sections 3 introduces the proposed technique and derives the criteria to meet the pri-
vacy requirement. After that, Section 4 designs the algorithm to achieve the trade-off
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between the privacy requirement and the efficiency goal. Section 5 evaluates the pro-
posed scheme. Section 6 investigates the related work. Finally Section 7 concludes this
paper. Due to the space limit, the proofs of the theorems refer to our full report [2].

2 Preliminaries

In this section, we first give an overview of the topic-based pub/sub. After that, we
define the k-subscription-anonymity model, and state our problem.

2.1 Topic-Based Publish/Subscribe

The topic-based pub/sub is a popular paradigm to decouple message publishers and sub-
scribers, due to its simple interface, inherent scalability, and widely acceptance by both
academic and industry communities. Many applications adopt the topic-based pub/sub
to offer asynchronous delivery services [6,7], including RSS feeds, on-line gaming, etc.

Publisher Subscriber

1. advertise

3. publish

2. subscribe

4. notify
(a)

Broker

...... fa,fb,fet1

fct3

t2

t3

(b)

t4 fd

t1

t2 fa,fb,fe

t4

Fig. 1. Topic-based Pub/Sub: (a) architecture; (b) broker internals

Fig. 1(a) consists of publishers, subscribers and a broker server. The broker dis-
patches messages, which are regulated by advertisements, subscriptions, and publica-
tions [5]. Publishers first advertise publications that they intend to publish by means of
advertisements. The advertisement contains valid topics and statistics associated with
to-be-published publications. Subscribers specify the topics of interest by means of sub-
scriptions. Frequently, subscribers share subscription proxy services (e.g., proxy servers
in campus and large companies) to save the network traffic between brokers and sub-
scribers. For every topic ti in subscriptions, the broker maintains an associated channel,
and registers the subscriptions to the channel of ti. When publications come, the bro-
ker checks whether or not the topics of the publications are exactly the same as the
ones defined by the filters. If true, the broker consequently forwards publications to the
matching subscribers via notifications.

Fig. 1(b) illustrates the channels maintained by a broker. Among the five subscrip-
tions, three of them, fa, fb and fe, are interested in two topics t1 and t2, and the remaining
subscriptions fc and fd are interested in t3 and t4, respectively. The broker registers each
filter to the associated channel. When 4 publications are published, based on the channel
of each topic, the publications are forwarded to interested subscribers.

Notations: Given the sets of topics T , publicationsM and subscribers N , we assume
that each topic ti ∈ T with 1 ≤ i ≤ T is associated with mi publications and ni sub-
scribers. Denote the cardinality ofM andN to be M and N. We have

∑T
i=1 mi = M and
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∑T
i=1 ni = N, respectively. We note that the advertisements given by publishers contain

the statistical parameters like mi, M, etc.
Given the above sets T and N , we define a binary coefficient xi j = 1 if a subscriber

f j ∈ N is interested in a topic ti ∈ T , and otherwise xi j = 0. For a specific topic
ti, multiple subscribers may be interested in ti and we denote the set of the associated
subscriptions to be Θi. Next a subscriber f j could be interested in multiple topics, and
we denote the set of the associated subscriptions to be Φ j. Intuitively, given the T topics
and N subscribers, we then treat the subscriptions xi j as the elements of a T ×N matrix.
The Θi (resp. Φ j) can be as a row (resp. column) of the matrix in terms of ti (resp. f j).

Consider that subscribers shre subscription proxies to save network traffic. We then
define an indicator z j j′ = 1 if two subscribers f j and f j′ (1 ≤ j � j′ ≤ N) share the
same proxy and otherwise z j j′ = 0. Given the indicator, we build a matrix Z consisting
of N × N elements z j j′ . We call the property that subscribers share the same proxy as
the subscriber locality property. This property shares the network bandwidth between
brokers and subscribers and thus saves network traffic cost.

2.2 Privacy Model

Brokers offer the excellent decoupling property for subscribers and publishers. Unfortu-
nately, the decoupling property meanwhile leads to the leakage of subscribers’ privacy,
because the the broker inherently works by the two roles: (i) registering subscriptions
with (encrypted) topics ti to associated channels, and (ii) forwarding (encrypted) pub-
lications with (encrypted) topics ti to subscribers inside associated channels. Thus, via
the topic ti, the broker can link sensitive publications of ti with a set of recipients. Due
to the linkage, the following collusion attack exposes subscribers’ privacy.

Collusion Attack: For a subscription set Θi and a honest subscriber f j ∈ Θi, the broker
and up to (N − k) compromised subscribers (except the other k − 1 honest subscribers
in Θi) collude together against f j.

Given the collusion attack, for a specific topic ti, attackers can link sensitive (though
encrypted) publication of ti with a set of recipients (including both compromised and
honest subscribers). After the compromised subscribers decrypt the encrypted publica-
tions, attackers then infer that honest subscribers are truly interested in such sensitive
publications. Therefore, even if the publications are encrypted, attackers correspond-
ingly expose the privacy of the honest subscribers.
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t4 fa,fb,fc,fd,fe

(a)

t2

t3
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(a) Anonymization Engine (b) Cloaked Subscriptions (c) Defending Collusion Attack

Fig. 2. Privacy-aware Pub/Sub
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To overcome the above issue, we introduce an anonymizer engine, illustrated in
Fig. 2(a). After receiving subscription requests with encrypted topics (step 2.1), the
anonymizer engine then generates cloaked subscriptions and sends them to the broker
(step 2.2). Cloaked subscriptions contain both real subscriptions (truly interested in the
associated topics) and fake subscriptions (not interested in the associated topics). Con-
sistent with the notations in Section 2.1, we denote the set of cloaked subscriptions of
ti to be Θ′i and a cloaked subscription to be x′i j.

After receiving Θ′i from the anonymizer engine, the broker builds a channel for each
topic ti inside Θ′i . Next, still following the original forwarding protocol, the broker
checks the topics ti of publications and the associated channels, and forwards the pub-
lications to all (cloaked) subscriptions inside the channels. Since the set Θ′i contains
both real and fake subscriptions, subscription proxies may receive useless publications.
In view of this, our purpose is to minimize the total number of useless publications.
Thus, subscription proxies spend least effort to filter out useless publications and notify
subscribers only of truly useful publications.

To enforce subscribers’ privacy, we adopt the k-anonymity [22,19] to the topic-based
pub/sub, called k-subscription-anonymity. Because the subscriptions x′i j in Θ′i contain
both real and fake subscriptions, then given x′i j = 1, the claim of xi j = 1 holds with
probability at most 1/k. That is, (i) the set Θ′i contains at least k subscriptions; and (ii)
given the set Θ′i and x′i j = 1, attackers cannot identify that xi j = 1 must hold.

Until now, the anaonymizer engine and traditional cryptography technique can work
together to defend against the collusion attack. In detail,

– First, though the broker forwards sensitive publications to subscribers, some sub-
scriptions are fake and it is indistinguishable which subscribers are really interested
in the sensitive publications. Thus, the broker, even with the help of (N − k) com-
promised subscribers, cannot reveal the honest subscribers’ privacy.

– Second, though the anonymizer engine receives real subscriptions, typically the
topics are encrypted using the cryptography technique. Thus, a curious anonymizer
engine alone cannot reveal the subscribers who are truly interested in such sensi-
tive topics. It is because the topics inside real subscriptions can be encrypted as
meaningless ciphertext.

Therefore, neither the anonymizer engine nor the broker alone can separately reveal the
subscription privacy, unless the anonymizer engine and the broker (plus compromised
subscribers) collude together. Obviously, it disobeys the definition of the collusion at-
tack. We note that the anonymizer engine is typically operated by the trusted authority
(the same situation occurs for the widely used certificate authority (CA)). Thus, the
strong collusion between the anonymizer engine and the pub/sub services is practically
infeasible. Nevertheless, to defend against such strong collusion, we use classical cryp-
tographic techniques such as secure multi-party computation [24,12]. Specifically, a
subscriber, together with the remaining (k − 1) honest subscribers, registers its filter to
the subscription proxy by the technique of secure multi-party computation. This allows
a set of N subscribers to register subscriptions and receive content of interests without
revealing subscriptions to each other or to outside observers of their publication traffic.
It shields every subscriber even against the collusion attack plus the collusion between
the untrusted broker and curious anonymizer engine. Thus, our solution is not to replace
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cryptographic techniques. Instead, they work together to offer the complete solution to
protect subscribers’ privacy.

2.3 Problem Statement and Challenges

Given the privacy models above, we state our problem: the privacy aware topic-based
pub/sub scheme should satisfy four following requirements.

– Function Requirement: each subscriber, if truly interested in a topic ti, should re-
ceive all publications of ti without false negatives;

– Privacy Requirement: given the collusion attack, a subscriber is exposed to be in-
terested in ti by probability at most 1/k;

– Capacity Constraint: for each subscription proxy, the number of received publica-
tions is no more than the proxy’s capacity constraint;

– Efficiency Objective: when M publication messages are published, the total number
of forwarded publications from the broker to subscription proxies is minimized.

We will formally formulate the above problem by an integer programming form in Sec-
tion 4. The challenge of the above problem is to meet all requirements. For example, if
without meeting the efficiency goal and the capacity constraint, the anonymizer engine
registers all N subscriptions to each channel. Then, it is the most difficult to expose a
subscriber. However, this solution leads to the largest number M ∗ N of messages from
the broker to subscription proxies. It incurs the lowest efficiency and easily breaks the
capacity constraint.

Differing from the solution above, Section 3 will derive the criteria to protect sub-
scription privacy, and Section 4 will finally solve the proposed problem.

3 Privacy Protection

In this section, we first give an overview of cloaked subscriptions. Next, we derive the
criteria to meet the k-subscription-anonymity and to defend against the collusion attack.

3.1 Overview and Analysis Model

Our basic idea is to ensure that the channel of a topic ti registers both fake subscrip-
tions and real subscriptions (together called cloaked subscriptions). That is, though the
subscriber f j is interested in ti′ but not interested in ti (� ti′ ), i.e., xi′ j = 1 but xi j = 0,
the processing of the anonymizer engine ensures that f j is registered to the channels
of both ti and ti′ . That is, the (cloaked) subscriptions w.r.t f j include both x′i′ j = 1 and
x′i j = 1. Therefore, it is indistinguishable which subscriptions are truly interested in ti
and which are not.

Example 1: To protect the subscriber fc that is truly interested in t3 (see the real sub-
scriptions of Fig. 1(b)), we register four other subscribers ( fa, fb, fd and fe), though not
truly interested in t3, to the channel of t3, shown in Fig. 2(b). Thus, the cloaked subscrip-
tion set Θ′3 contains five subscriptions fa, fb, fc, fd and fe where fc is truly interested in
t3. Similar situation occurs in the cloaked subscription set Θ′4 associated with t4.
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Given the anonymity number k = 2, we show that the collusion attack cannot expose
fc of Fig. 2(b). In the cloaked subscription set Θ′3, even if knowing the interests of
any (N − k) = 3 subscribers (e.g., fa, fb and fe), attackers cannot distinguish which
subscriber ( fc or fd) is truly interested in t3. Meanwhile, since fc is registered to the
channels of both t3 and t4, attackers cannot identify which topic, either t3 or t4, fc is
interested in. Thus, fc (plus fa, fb and fd ) is safe against the collusion attack.

Analysis Model: Before deriving the criteria to meet the privacy protection, we first
report the used analysis model, which helps formulate the proposed integer program-
ming problem. Consider the subscriber set N and the topic set T . Recall that xi j = 1 if
a subscriber f j ∈ N is truly interested in a topic ti ∈ T and otherwise xi j = 0. Based on
xi j, we build a matrix X consisting of T rows and N columns. The element of X (i.e.,
the subscription xi j), is associated with a topic ti and a subscriber fi. The matrix X has
the following properties:

– The row of X w.r.t a topic ti ∈ T , i.e., Θi, represents the subscriptions that are
interested in ti. Thus, the sum of all elements in the row of ti, i.e.,

∑N
j=1 xi j, is

the total number of subscribers inside N that are truly interested in ti. For any two
topics ti and ti′ , then we easily verify that

∑N
j=1(xi j · xi′ j) is the number of subscribers

that are interested in both ti and ti′ .
– The column of X w.r.t a subscriber f j ∈ N (i.e., Φ j) represents the topics that f j is

truly interested in. Thus, the sum of all elements in the column of f j, i.e.,
∑T

i=1 xi j,
is the total number of topics that f j is interested in. Note that we assume that each
subscriber f j is interested in at least one topic, then

∑T
i=1 xi j ≥ 1 holds.

Given the matrix X, the anonymizer engine generates a cloaked matrix X′, also consist-
ing of T × N element. The element x′i j ∈ X′ indicates whether a subscriber f j is added
to the cloaked subscription set Θ′i . Section 4 will present the details to build X′.

3.2 Privacy Criteria

Before deriving the privacy criteria, we first present a theorem to study the cases that
subscribers are exposed (here we assume that f j is truly interested in ti).

Theorem 1. f j is exposed to be interested in ti with probability higher than 1/k, if
either of the following cases occurs: (i) Θ′i contains fewer than k subscriptions; or (ii)
f j appears in fewer than k cloaked subscription sets.

Now, based on the above theorem, we derive the criteria to meet the privacy require-
ment. First, in terms of any topic ti, if the row of ti in X′ contains at least k elements
equal to 1, then the probability of identifying that ti is of interest to f j with probability
at most 1/k. Thus, we have Criterion (1): if ∃ti with xi j = 1, then

∑N
j=1 x′i j ≥ k.

Next, in terms of any topic f j, the column of f j in X′ contains at least k elements
equal to 1. Otherwise, it is easy to infer that f j must be interested in ti with probability
higher than 1/k. That leads to Criterion (2): if ∃ f j with xi j = 1, then

∑T
i=1 x′i j ≥ k.

Criterion (2) is important as follows. Consider that f j is truly interested in ti and
even a very large number of fake subscriptions are registered to the channel of ti (due
to Criterion (1)). If f j appears in only one channel (e.g., ti), f j is then exposed to be
certainly interested in ti.
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Besides the above two criteria that are used to meet the k-subscription-anonymity,
we need to consider how the collusion attack can expose subscribers’ privacy.

Theorem 2. Though Criteria (1) and (2) are satisfied, the collusion attack can still
expose f j to be interested in ti.

Example 2: We use Fig. 2 (c) as an example (the k-anonymity number is 2) to verify
the above theorem. The channel of t3 contains three subscribers, and Criterion (1) thus
holds. Meanwhile, fc, truly interested in t3, appears in the channel of t1 as a fake sub-
scription. Thus, Criteria (2) also holds. Similar situation occurs for the channel of t4.
Now, given the collusion attack, we assume that in channel of t3, two subscribers fc and
fd are honest (due to k = 2) and all other three subscribers fa, fb, and fe are comprised.
Among the three subscribers fa, fd and fe in the channel of t4, the two subscribers fa
and fe are compromised (due to the collusion attack), and they are not interested in
t4. Because t4 is of interest to at least one subscriber, attackers infer that fd must be
interested in t4. Thus, the privacy of fd is exposed.

By Example 2, we find Criteria (1-2) cannot defend against the collusion attack.
Thus, we derive Criterion (3) together with Criteria (1-2) to defend against the attack:
if ∃ti with

∑N
j=1 xi j = 1, then

∑N
j=1 x′i j · x′i′ j ≥ (k + 2) and

∑N
j=1 (x′i j + x′i′ j − 2x′i jx

′
i′ j) ≤

(k − 2) hold.

4 Building Cloaked Subscription Matrix X′

Besides the privacy requirement in Section 3, in this section, we build the cloaked ma-
trix X′ to satisfy the other requirements of the problem definition in Section 2.3.

4.1 Overview

Among all four requirements of the proposed problem, we consider the problem to build
the matrix X′ as an integer programming-based optimization problem, where the objec-
tive is to minimize the forwarding cost, and three criteria in Section 3 are as constraints.
It is an integer problem because the element x′i j in X′ is either 0 or 1.

To minimize the overall forwarding cost, we first leverage the subscriber locality
property of subscription proxies (see Section 2.1) to reduce the forwarding cost (Sec-
tion 4.2). After that, we formulate an integer programming based optimization problem,
and relax it to a linear reprogramming problem with fractional results (Section 4.3). Fi-
nally, instead of the simple rounding algorithm [16], we propose a guaranteed random-
ized rounding algorithm to satisfy the required privacy criteria and optimally minimize
the expected forwarding cost (Section 4.4).

4.2 Optimization Policy

Recall that the subscriber locality property means some subscribers share the same
subscription proxies to save the network bandwidth between the broker and subscription
proxies. Thus, the overall forwarding cost of the privacy-aware pub/sub is the total
number of messages forwarded from the broker to subscription proxies.
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For each topic ti, we denote the number of publications of ti to be mi (the number is
given in advertisements). Then, due to the effect of subscriber locality, the cost to for-
ward these publications is mi · [

∑N
j=1 x′i j −

∑N
j=1
∑ j−1

j′=1 (z j j′ · x′i j · x′i j′ )]. Here, the first item
∑N

j=1 x′i j is the total number of publications of ti from the broker to subscription proxies

when the subscriber locality is not adopted. The second item
∑N

j=1
∑ j−1

j′=1 (z j j′ · x′i j · x′i j′ )
means that if f j and f j′ use the same proxy (i.e., z j j′ = 1), the forwarding of a publica-
tion of ti to the two subscribers f j and f j′ needs only one message copy from the broker
to the proxy which both f j and f j′ share. Given T topics, the overall forwarding cost is
∑T

i=1 mi · [
∑N

j=1 x′i j −
∑N

j=1
∑ j−1

j′=1 (z j j′ · x′i j · x
′
i j′ )].

Background Knowledge Attack: First consider that a large number of subscribers are
truly interested in a topic ti, i.e., the set set Θi contains a large number of member
subscriptions. Next, if more (cloaked) subscriptions inside the subscription set Θ′i share
the same subscription proxies, the overall forwarding cost becomes smaller. Given our
optimization objective to minimize the overall forwarding cost, purposely adding more
fake subscriptions, which share the same subscription proxies as those real subscriptions
inside Θi, to the set Θ′i then helps reduce the overall forwarding cost.

The above optimization essentially is a greedy policy. It does reduce the forwarding
cost, but meanwhile incurs a potential risk of exposing real subscriptions if attackers
know the optimization policy and some background knowledge. We call this attack
background knowledge attack. In terms of the background knowledge, it is well-known
that the number of subscribers who are interested in topics typically follows a Zipf dis-
tribution [13]. That is, more users are interested in popular topics and few are interested
in unpopular topics. If the greedy optimization policy is adopted, the channel of a popu-
lar topic will register more fake subscriptions. Next, by counting the number of cloaked
subscriptions inside the channels, attackers correspondingly derive the following obser-
vations: (i) the channels having the smallest number of subscribers might be associated
with unpopular topics; and (ii) most subscribers registered to unpopular channels are
real and have more potential to be truly interested in the associated unpopular topics.

Since the privacy criteria in Section 3.2 do not consider the background knowledge
attack, we need to set up an upper bound H to limit the number of subscribers registered
to each channel. The number H is inside the range between

∑N
j=1 xi j and N; otherwise,

incurring an infeasible solution for our optimization problem. Considering that
∑N

j=1 xi j

subscribers are truly interested in ti, we can set up H smaller than k ·
∑N

j=1 xi j. It makes
sense because the probability to identify any of those subscribers truly interested in ti is
at most 1/k, which is consistent with the definition of k-anonymity. Now, we improve
Criterion (1): if ∃ti with xi j = 1, then k ≤

∑N
j=1 x′i j ≤ H .

4.3 Problem Formulation

We formulate an optimization problem to build the matrix X′i (called Cloaked Subscrip-
tion Matrix problem, in short CSM) as follows.
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Given matrix X,matrix Z, and mi with 1 ≤ i ≤ T
To build matrix X′ with T×N elements x′i j

Minimize
∑T

i=1 mi · [
∑N

j=1 x′i j −
∑N

j=1
∑ j−1

j′=1
(z j j′ · x′i j · x

′
i j′ )]

Subject to (1)∃tiwith xi j = 1, then k ≤
∑N

j=1 x′i j ≤ H;
(2)∃ f jwith xi j = 1, then k ≤

∑T
i=1 x′i j ≤ C j ;

(3)∃tiwith
∑N

j=1 xi j = 1, then
∑N

j=1 x′i j · x
′
i′ j
≥ (k + 2),

and
∑N

j=1 (yi j + yi′ j − 2x′i j x
′
i′ j

) ≤ (k − 2);
(4)∃ f jwith xi j = 1, then x′i j = 1;

In the above CSM problem, there exist four criteria. Among these criteria, Criteria
(1-3), pertaining to the privacy requirement, are given by Section 3.2. The original Cri-
terion (2) is improved by setting

∑T
i=1 x′i j ≤ C j, where C j is the capability limitation of

the associated proxy. It ensures
∑T

i=1 x′i j, i.e., the number of publications forwarded to
the proxy associated with f j, is no larger than C j. In addition, the Criterion (4) ensures
the function requirement (see Section 2.3). That is, if a subscriber f j is truly interested
in ti (i.e., xi j = 1), then x′i j = 1 must hold.

We show that CSM is NP-hard. Due to space limit, we ignore the details of the proof
(refer to our technical report). Thus, we relax the 0/1 element x′i j into an fractional
element yi j ∈ [0.0, 1.0], and replace x′i j with yi j. Then, the CSM problem is transformed
into a linear programming problem (in short LPCSM).

Note that the subitems
∑N

j=1
∑ j−1

j′=1 (z j j′ · x′i j · x
′
i j′ ) and

∑N
j=1 x′i j · x

′
i′ j in the objective and

Criterion (3) of CSM are not in strict linear programming (LP) form. Thus, we need to
simplify both subitems to a LP form. In detail, (i) in the subitem

∑N
j=1
∑ j−1

j′=1 (z j j′ · x′i j · x
′
i j′ ),

we replace the inner variables j′ by those variables j′ satisfying xi j′ = 1. Since xi j′ is
given by X, the objective of CSM becomes the LP form. The intuition of this simplifi-
cation is that for any subscriber f j′ truly interested in ti with xi j′ = 1, we expect those
to-be-registered fake subscriptions share the same proxies as real subscribers f j′ . It is
consistent with the optimization policy in Section 4.2. (ii) to simplify Criterion (3), we
note that Criterion (3) is to ensure that the set memberships of Θ′i andΘ′i′ should be com-
mon as much as possible. Thus, we set x′i j = x′i′ j for all 1 ≤ j ≤ N for the simplification
of Criterion (3) such that Θ′i and Θ′i′ have exactly the same memberships. In this way, we
relaxe Criterion (3) to a LP form.

4.4 Rounding Algorithm

Until now, the simplified CSM becomes the strict 0/1 LP form, which can be solved
by the classical simplex algorithm with polynomial-time. The result of LPCSM can
be intuitively viewed as a fractional scheme, where a subscriber f j can be split into
arbitrary parts and registered to a channel by probability yi j.

When the fractional result yi j of LPCSM is ready, the next step is the rounding
scheme. The simple closest integer rounding or the classic randomized rounding ap-
proach [16]. However, such approaches incur problems. For example, by the approach
[16] (we call it simple rounding scheme, in short SRS), in the fractional results related
to f j, there are two elements with yi j = 0.5 and yi′ j = 0.5. It means that f j is added to
two sets Θ′i and Θ′i′ respectively with the equal probability 0.5. In a trial of adding f j

to Θ′i and Θ′i′ , SRS might not add f j to any set of Θ′i and Θ′i′ , and break the criteria of
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LPCSM. Even with more trials, SRS might add f j to one set, for example, Θ′i . However,
given mi ≥ mi′ , adding f j to Θ′i , instead of Θ′i′ , incurs a larger forwarding cost.

Algorithm 1. Random Alg (matrix Y with 0 ≤ yi j ≤ 1)
1: initiate matrix X′ with x′i j = 0;

2: Lu ←
∑N

i=1 C j , Ll ← k · N, L← 0;
3: while (Ll ≤ L ≤ Lu) is NOT satisfied do
4: {/* There still exist subscribers dissatisfying Criteria (2) */}
5: uniformly set y with a random value between 0.0 and 1.0; uniformly set t with a random num. between 1 and T ;
6: for j = 1 to N do
7: �u ← C j , �l ← k, �←

∑T
i=1 x′i j ;

8: if (�l ≤ � ≤ �u) is NOT satisfied and y ≤ yt j then
9: {/* for each f j dissatisfying Criteria (2), add f j to the channel of t with probability yt j */}
10: x′i j ← 1; yt j ← yt j − 1.0; L← L + 1.0.

11: end if
12: end for
13: end while

To avoid the issues above, we develop a new rounding algorithm (Alg. 1). This al-
gorithm can optimally minimize the expected forwarding cost and strictly satisfy all
required criteria (except that Criterion (1) is expectedly satisfied). Its intuition is to en-
sure that the event of adding f j to Θ′i with probability yi j occurs by multiple trials, until
Θ′i strictly registers at least k and at most C j cloaked filters, (i.e., Criteria (2) is met),
and on the overall, at least k · N (and at most

∑T
i=1 C j) cloaked filters are created.

Finally, we analyze the objective. Given a subscriber f j ∈ N uses a proxy P, we are
interested in the probability that f j and other subscribers using the same proxy P are
registered to the same channel. We assume that P contains NP subscribers (including
f j) with 1 ≤ j′ ≤ NP. Then, we have the following theorem.

Theorem 3. A subscriber f j and other subscribers using the same proxy P are regis-
tered to the same channel with probability at least 1 −

∑T
i=1
∑NP

j′=1, j′� j min(yi j, yi j′).

By the item 1−
∑T

i=1
∑NC

j′=1, j′� j min(yi j, yi j′), Theorem 3 guarantees that Alg. 1 maximizes
the expected occurrence of registering f j and f j′ into the same channel. It immediately
means that the expected forwarding cost of LPCSM is minimized and equal to the opti-
mal cost of CSM.

5 Evaluations

To generate the experimental data set (including the number of real subscriptions per
topic and per subscription proxy, and the number of publications per topic), we follow
the previous work [6,7] to use the Zipf distribution. Each subscriber specifies at least
one subscription. After that, we use the popular lpsolve [1] to solve LPCSM. For each
running instance of LPCSM, we translate it to an input file of lpsolve. Based on the
fractional results, we then follow Alg. 1 to have integer results. By the integer results,
we then register (cloaked subscriptions) to channels and calculate the forwarding cost.
Table 1 gives main parameters. Note that, for the parameter H w.r.t each topic ti, if the
default value k ·

∑N
j=1 xi j is a small value, it could incur an infeasible solution of LPCSM.

Thus, we relax H to set H = N. Similar situation occurs for C j: if a small value of C j

leads to an infeasible solution, we set C j = M.



372 W. Rao et al.

Table 1. Parameters Used in Experiments

Parameter Allowable Range Default Value

T : # of topics 40 − 1, 000 100
N: # of subscribers 100 − 10, 000 1,000
M# of publications 1,000
S # of subscriptions N ∗ 10
H: max. subs per topic k ·

∑N
j=1 xi j

C j : capacity of f j k ·C′j
P: # of proxies 10 − 10, 000 100
α: Zipf parameter 0.01 − 1.0 0.5
k: anonymity number 2 − 80 40

5.1 Efficiency Study

We first study the efficiency of the privacy aware pub/sub. We measure the efficiency
by the ratio between the number of publications used by the privacy aware pub/sub and
the number of publications of the original pub/sub. Such a metric is called cost ratio.
In addition, we compare the LPCSM solution with the approach that broadcasts each
publication to all proxies (in short broadcast solution).

First, Fig. 3(a) studies the effect of the anonymity number k. When the anonymity
number k is larger, the cost ratios of both approaches become larger. This is because
Criteria (1) and (2) directly require more fake subscriptions. In this figure, when k = 40,
the cost ratio is only 2.48. It means that offering the high anonymity level k = 40 does
not incur significantly high cost. For k > 60, the cost ratio of LPCSM keeps stable (=
6.62). That is, the proposed optimization policy in Section 4.2 ensures that fake sub-
scriptions and real subscriptions share the same proxies, and thus even given a large
k, LPCSM at most forwards the publications to the channels on which all real sub-
scriptions are registered. It thus reaches such an upper bound. Instead, the broadcast
approach has the cost ratio of 12.06, independent upon the anonymity number k. Obvi-
ously the broadcast approach incurs larger forwarding cost than LPCSM.

Second, in Fig. 3(b), we vary the number of topics T . In this figure, when T = 40 is
equal to the default anonymity number k, the cost ratio of LPCSM is exactly equal to
that of the broadcast approach. That is, given T = k = 40, LPCSM adds each subscrip-
tion to all channels and each subscription proxy receives all publications, which just is
the broadcast approach. After T > 40, more topics in LPCSM lead to lower cost ratio.
When more channels are allowable to register fake subscriptions, LPCSM has more
chance to optimize the forwarding cost, and achieves a smaller cost ratio. Meanwhile,
due to the fixed number of subscriptions, more topics (i.e., channels) mean a diverse
distribution of subscriptions over channels and a smaller average of subscriptions per
channel. It thus help have more chance to select the best channels to register fake sub-
scriptions, leading to a smaller cost ratio. Instead, for the broadcast approach, when T
is larger, it always registers each subscriber to all channels, and thus the cost ratio of
the broadcast approach becomes larger.

Fig. 3(c) shows the effect of subscribers. A larger number N of subscribers incurs
higher cost ratios for both approaches. When N is larger, each channel has to regis-
ter more subscriptions. Thus, more cost is paid to forward publications to associated
proxies. Note that, since the number of subscription proxies (and topics) is fixed, the
increased forwarding cost is relatively slight as shown in this figure.
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(a) k-anonymity Num. (b) Num. of Topics T (c) Num. of Subscribers N

(d) Num. of Proxies P (e) Zipf Parameter α (f) Max. Subscribers Per channel

(g) ρi Vs. pi (h) wi Vs. pi (i) Entropy of pi and qj

Fig. 3. Efficiency Study and Attack Resilience

Fig. 3(d) studies the effect of proxies. When the number P of proxies is larger, the
cost ratio of the broadcast approach grows very fast because each publication is for-
warded to all proxies. Instead, for LPCSM, the optimization policy ensures that fake
and real subscriptions share the same proxies. Thus, even if P in increased, LPCSM en-
sures fake subscriptions share the bandwidth between the broker and proxies as much as
possible. Therefore, a larger number of proxies will not significantly increase the cost
ratio as the broadcast approach.

Fig. 3(e) studies the effect of the Zipf parameter α. When α is larger, the distribution
of publications (and subscribers) across topics is skewer, i.e., most topics are unpopular
and only several topics are very popular. Thus, LPCSM can optimize the assignment of
fake subscriptions and register them to the channels of unpopular topics, and achieve
a lower cost ratio. For the broadcast approach, since the number of channels associ-
ated with popular topics is very small, the overall number of subscribers registered to
these popular channels is correspondingly small (also indicating a small number of sub-
scription proxies). Thus, a very small number of proxies receive popular publications
but most proxies receive unpopular publications, and the overall forwarding cost of the
broadcast approach is smaller.

Finally Fig. 3(f) shows the effect of the maximal number H of real subscribers per
channel. When such number is larger, then given a fixed number of subscribers, some
channels register more subscribers than others. This indicates an uneven distribution of
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subscribers across all channels. Thus, when H becomes larger, the cost ratio becomes
smaller. Note that, the decreasing trend of this figure is relatively smooth than Fig. 3(e),
because a larger H only affects the distribution of subscribers across channels but does
not change the total number of publications.

5.2 Attack Resilience

Next, we proceed to evaluating the resilience of the proposed solution against the back-
ground knowledge attack. Following [23], we measure the strength of the subscription
privacy protection by the following metrics.

– Given a topic ti, we compute its popularity in Θ′i and Θi by pi=
∑N

j=1 x′i j/
∑T

i=1
∑N

j=1 x′i j
(where the denominator is the total number of all cloaked subscriptions, and the nu-
merator is the number of clacked subscriptions w.r.t ti) andρi =

∑N
j=1 xi j/

∑T
i=1
∑N

j=1 xi j.
We are interested in (i) the correlation between wi and pi and (ii) the correlation be-
tween ρi and pi. We also calculate the entropy of pi. A large entropy means an even
distribution, which helps guard against the background knowledge attack.

– If a subscription f j is registered to T ′j channels (denoted as T ′j ), we define the fol-

lowing formula: q j =
∑T

i=1 xi j
∑T

i=1 x′i j
· (1 − #of subscriptions commonly registered to T j

#of all subscriptions registered to T j
). In this

formula, the former subitem indicates the rate of the channels that f j is truly in-
terested in against all channels to which f j is registered; its smaller value indicates
better privacy protection (due to Criterion (2)). The latter subitem is related to the
rate of subscriptions commonly registered to the channel set T j against all subscrip-
tions registered to T j; its smaller value also indicates better privacy protection (due
to Criterion (3)). Besides, we calculate the entropy value of normalize q j.

Fig. 3(g) shows the relation between ρi and pi, where the x-axis shows the sorted rank-
ing Id and the y-axis shows the corresponding ρi and pi. In this figure, the originally
popular topics in X (i.e., a larger ρi) might be unpopular in X′ (i.e., a smaller pi) and
vice versa. Thus, given a skew distribution of topic popularities, it is indistinguishable
which topics are of interest to subscribers, and the background knowledge attack cannot
easily expose subscribers’ privacy.

Fig. 3(h) shows the relationship between wi and pi. The x-axis shows the ranking
Id of pi in ascending order, and the associated wi and pi are respectively given in the
y-axis. This figure clearly indicates low correlation between wi and pi. It prevents the
background knowledge attack from exposing real subscriptions. The reason is that our
optimization policy in Section 4.2 does not greedily register fake subscriptions to the
channels with the lowest wi. Instead, it registers the faked subscriptions at the same
proxies as real subscriptions.

Fig. 3(i) plots the entropy values of pi and q j for LPCSM. First, when k becomes
larger, the entropy value of pi increases, indicating that the distribution of pi becomes
uniform. It helps defend against the background knowledge attack in Section 4.2. Sec-
ond, the entropy value of q j keeps unchanged because Criteria (2) and (3) are inde-
pendent upon the value of k. Finally, for k > 16, the entropy value of pi for LPCSM
becomes stable, consistent with Fig. 3(a). Due to the space limitation, we do not plot
the figures of those entropy values for other parameters like T , N, α and C, but with
similar curves as Fig. 3(i).
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6 Related Works

The k-anonymity privacy model [22,19] prevents attackers from identifying an individ-
ual with probability 1/k. The main techniques of the works include generalization and
suppression. In addition, �-diversity [14] guards against attackers with homogeneity at-
tack and background knowledge attack. Such works significantly differ from our work.
First, they are completely different areas: [22,19,14] focus on the generalization and sup-
pression of the micro data and the protection of the individual’s privacy (e.g., healthy
records), and our solution is designed for middleware systems. Second, [22,19,14] focus
on the protection of the published data. Instead, our solution protects the subscription pri-
vacy, and does not generalize publications; otherwise, subscribers cannot receive correct
and precise content. Finally, different from [22,19,14], our solution and the traditional
cryptographic techniques works together to protect subscription privacy.

Many location services adopt location k-anonymity [11], location �-diversity [4], and
road segment s-diversity [23]. For example, the location k-anonymity mainly utilizes a
cloaked region to represent the client location and this region needs to contain at least
(k − 1) other client locations.The main difference between our work and the location
privacy is the attack model. We consider the collusion of the broker server and all other
(N−k) compromised subscribers. The location privacy does not consider such collusion
attack, and only focuses on the attack that attackers know privacy protection algorithms
and some background knowledge, which are also considered in this paper.

Secured pub/sub systems [15,21,20] utilize cryptographic techniques to protect the
data confidentiality, secure routing, publishers’ privacy, but they did no consider the
privacy issue of subscribers.

Finally, our recent work [18] focuses on privacy protection for content-based pub/sub,
leading to the correspondingly different solutions. Another recent work [25] instead
proposed privacy protection utilities used to to publish a privacy preserving graph.

7 Conclusion

Untrusted brokers in pub/sub lead to the leakage of subscribers’ privacy. To address this
problem, we propose a k-subscription-anonymity model and use cloaked subscriptions
to protect subscribers’ privacy. To trade-off the efficiency goal and privacy requirement,
we consider an integer programming-based optimization problem, and relax it to a lin-
ear programming problem. We propose a guaranteed rounding algorithm to optimally
minimize the expected forwarding cost. The experimental results indicate that the solu-
tion requires a slightly higher cost to offer the privacy protection. As the future work,
we are interested in adapting other stronger privacy protection model (e.g., differential
privacy [9]) in the pub/sub. In addition, we are planning to plug-in the privacy-aware
solution into more semantic filtering pub/sub [17].
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Abstract. Check-in services, one of the most popular services in Geo-Social
Networks (GeoSNs) may cause users’ personal location privacy leakage. Al-
though users may avoid checking in places which they regard as sensitive, adver-
saries can still infer where a user has been through linkage of multiple background
information. In this paper, we propose a new location privacy attack in GeoSNs,
called hidden location inference attack, in which adversaries infer users’ loca-
tion based on users’ check-in history as well as check-in history of her friends
and similar users. Then we develop three inference models (baseline inference
model, CF-based inference model and HMM-based inference model) to capture
the hidden location privacy leakage probability. Moreover, we design a privacy
alert framework to warn users the most probable leaked locations. At last, we
conduct a comprehensive performance evaluation using two real-world datasets
collected from Gowalla and Brightkite. Experiment results show the accuracy of
our proposed inference models and the effectiveness of the privacy alert frame-
work.

Keywords: Privacy-preserving, location privacy, location-based social network,
inference attack.

1 Introduction

Geo-Social Network (GeoSN) is a kind of social network services where one or more
individuals of similar interests or commonalities, connect with each other based on
their geographical locations, such as, Foursquare, Gowalla and Brightkite. One of the
most popular services in GeoSNs is check-in service, from which a user can report
publicly which POI (Point of Interest) she has visited. Moreover, users can share their
experiences at these places, such as giving commentary on the service or taste of food in
a restaurant. The popularity of check-in service is not only because of its fun and online
connectivity to friends, but also because of the material benefits. For example, free
drinks or coupons are given to users who frequently check in a coffee shop. Therefore,
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users usually have a strong incentive to check in as more POIs as they can if there are
no privacy concerns.

Generally speaking, users engaged in GeoSNs are in two categories: real name users
and pseudonym users. Real name users use their true names as identifiers, people might
easily associate their usernames in GeoSNs with individuals in reality. Pseudonym users
prefer to use pseudonyms as their identifiers, which can avoid being directly associated
with themselves in reality. For both kinds of users, publication of locations from check-
in services raise severe privacy threats. Location is considered as private when it is itself
sensitive or it may lead to disclosure of sensitive information. For example, by knowing
a person is at a church during a religious festival, adversaries may infer the user’s reli-
gious belief with a high probability. Even if the user is using her real name in GeoSNs,
she may not be willing to expose her religious belief. On the other hand, location itself
may act as a quasi-identifier. When location information is linked with other external
knowledge, it may compromise user’s anonymity and hence allow adversaries to asso-
ciate the user’s identity to sensitive information. People may argue that, users should be
aware of location privacy leakage and avoid checking in sensitive places, or places that
may expose their identities. This is undesirable for the following two reasons: (i). Users
are eager to check in when they go to somewhere because of mental joy and material
benefits. If too many POIs are considered as sensitive and could not be checked in, it
may cause a negative impact on user experience; (ii). Although users may avoid check-
ing in sensitive places (e.g., churches, hospitals or bars), they may not be aware of their
hidden location privacy leakage, which is caused by linkage of users’ check-in time,
historical check-in behavior, as well as check-in behavior of other users, etc. That is to
say, if a user does not check in a POI which she regards as sensitive, adversaries can still
infer the probability of the user’s visit to the POI. Leakage of hidden location privacy
raises even more serious privacy threats to GeoSN users, since most of these POIs are
where users intend to hide. A detailed example of hidden location privacy leakage is
shown in Figure 1.

(li, ti)

(li+1, ti+1)

n0
n1

n2
n3

n4

n5n6Road 
Network

Path1

Path2

Path3

Bar

Hospital

Path1

Path2

Path3

Check-in POI

Hidden location

Fig. 1. An example of hidden location privacy leakage

As shown in Figure 1, a GeoSN user uk checks in POI li at time ti. When she
reaches li+1 at time ti+1, she sends a check-in request at li+1. There might be pri-
vacy threat in this situation. Since the road network is publicly accessible, adversaries
know that uk might have taken one of the paths among Path1(n2n3n4), Path2(n1n4) and
Path3(n1n0n6n5n4) to get to li+1. Since Path3 is a long way, uk might not prefer to travel
on it. Suppose there is an AIDS hospital on Path1 and a bar on Path2. Although uk

doesn’t check in the bar or the hospital for fear of privacy leakage, adversaries may
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infer how likely she has visited one of them through linkage of multiple background
information, summarized as follows.

– Geographical information, e.g., road networks, travel distances and check-in time,
etc. If the time spent between li and li+1 is less than or equal to the shortest time that
one can reach li+1 from li, then uk definitely does not visit any other POIs during
her movement.

– Historical information, e.g., u′
ks historical check-ins and her friends’ historical

check-ins, etc. If adversaries know the majority of users may check in the bar on
Path2 when they move from li to li+1, adversaries may infer that uk probably visited
the bar during her movement from li to li+1.

– Social information, e.g., social relationships, user closeness and similarity, etc. Sup-
pose uk checks in li and li+1 at ti and ti+1 respectively, a friend of uk, say u j checks
in li around ti and li+1 shortly before ti+1. Apparently, uk was hanging out with
u j. If u j checks in the bar on Path2, adversaries may infer uk also visited the bar
although she didn’t check in.

In this paper, we study the problem of hidden location inference attack in GeoSNs.
The key challenge of our proposal is how to accurately and efficiently evaluate the hid-
den location leakage probability (HLPL-probability) and rank hidden locations based
on the probability, as well as designing a privacy alert framework for GeoSN users.
Contributions of this paper are summarized as follows.

– We propose a new privacy attack model, called hidden location inference attack in
GeoSNs, from which users’ most probable visited locations can be inferred through
linkage of multiple background information.

– We propose three inference models to derive the HLPL-probability, they are base-
line inference model, CF-based inference model and HMM-based inference model.
The basic idea is that a user’s visit behavior may be inferred by historical check-
ins, as well as check-ins of her close friends and similar users. Then we employ
Bayes’ law, collaborative filtering and hidden Markov model respectively to derive
the HLPL-probability.

– We design a novel privacy alert framework for GeoSN users to detect hidden lo-
cation privacy leakage. We then implement our proposed inference models in this
framework under road network constraints.

– Finally, we experimentally evaluate the inference models on two real-world datasets.
Results show accuracy of the inference models and the effectiveness of the privacy
alert framework.

The rest of the paper is organized as follows. Section 2 summarizes related work. Sec-
tion 3 formally defines concepts that we study in this paper. In section 4, we illustrate
our proposed inference models. Section 5 proposes the privacy alert framework. Exper-
imental results are presented in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

We conduct a brief review of existing studies on GeoSN data analysis, privacy-preserving
and location prediction in GeoSNs.
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Studies on GeoSN data analysis mainly focus on analyzing GeoSN users’ behavioral
patterns, social relationships, how social relationships and user mobilities affect each
other, etc. Noulas et al. analyze user check-in dynamics, demonstrating how it reveals
meaningful spatio-temporal patterns in Foursquare [6]. Studies in [8] mainly focus on
how users’ social relationships are affected by their distances and how users’ social ties
stretch across space. The above two papers study either spatial property or social prop-
erty in GeoSNs separately. Cho et al. study both GeoSN user mobilities and social rela-
tionships jointly in [2]. It is claimed that more than 50% of GeoSN users’ movements
are affected by their friends. This fully support our research in this paper. Meanwhile,
new privacy threats arise in the context of GeoSNs. In [3], authors notice that contents
published by GeoSN users may lead to users’ location privacy leakage or absence pri-
vacy leakage. The former is caused by uncontrolled exposure of users’ geographical
locations, while the latter concerns on the absence of a user from a geographic position.
Authors propose a spatial generalization and publication delay method to solve these
problems. Predicting users’ social ties and locations is a new research topic in GeoSNs.
Backstrom et al. predict home addresses of Facebook users based on addresses of users’
friends [1]. It is claimed that this method dominates an IP-based one. More recently, [9]
proposes to predict a trip’s destination against data sparsity problems, then they develop
a method which can select a minimum number of locations that a user has to hide in
order to avoid privacy leak. The most related work to ours is proposed by Sadilek et al.
in [7], which proposes to predict both social ties and locations of a user. In location pre-
diction, a dynamic Bayesian network model is utilized to predict un-observed locations
discretely.

Our proposal is different from [7] in the following two aspects: (i). We infer users’
HLPL-probability between users’ two observed check-ins, and rank hidden locations
based on the probability. In our proposal, hidden locations are real-world semantic
places where users might visit. However, situations in [7] are quite different, the inferred
locations might be any geographic location. (ii). We propose a privacy alert framework
under road network constraints, the most probable leaked hidden locations and corre-
sponding HLPL-probability are pushed to users, which is obviously different from [7].

3 Preliminaries

A check-in activity consists of three factors: user, POI and check-in time. A GeoSN
user may check in several POIs in her everyday life trajectories. Checks-in activities
ordered by time constitute of a check-in sequence of the user.

Definition 1. (Check-in Sequence) A user’s check-in sequence S is a set of POIs or-
dered by check-in time S={uk, (l1, t1), . . ., (li, ti), . . ., (ln, tn)}, where uk is the identifier
of the user, li and ti represent where uk checks in and when she checks in respectively.

In real-world, a user may repeatedly check in several POIs where she frequently visits.
Therefore, a POI may appear more than once in one’s check-in sequence, with different
timestamps. A similar definition of check-in sequence is visit sequence, which consists
of a set of doublets of POIs where the user has visited and corresponding timestamps.
Note that, visit sequence is a superset of check-in sequence, since people may visit a
number of POIs where they do not check in.
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Definition 2. (Hidden Location) Given POIs li and li+1 which are checked in by user
uk at time ti and ti+1 respectively. A hidden location lm is a POI that might be visited by
uk when she moves from li to li+1, but not checked in by uk at time tm (ti < tm < ti+1).

Hidden location inference attack is a kind of location privacy attacks, from which
adversaries can infer users’ most probable visited hidden locations. One of the most
serious consequences of hidden location privacy leakage is that users cannot control
the privacy leakage, sometimes they do not even aware of their hidden location privacy
leakage. Therefore, a privacy alert mechanism is required to warn users when their
hidden location privacy is threatened.

4 Inference Models

The GeoSN service providers collect user generated data, including check-in sequences,
social relationships and user profile information, etc. We make a widely accepted as-
sumption that GeoSN service providers are un-trusted, which means service providers
may analyze user data itself or may share it with the third party. Either of them may
cause users’ hidden location privacy leakage. Take user uk as an example. Suppose uk

has checked in POI li and li+1 at ti and ti+1 respectively, li and li+1 are called observed
locations. The time interval between two check-ins can be represented as Δ t = ti+1 - ti.
Given a hidden location lm between two observed locations, we propose three inference
models to infer the HLPL-probability, explained in the following subsections.

4.1 Baseline Inference Model

Users’ check-in behaviors follow certain patterns or change periodically between two
POIs, this can be obtained by aggregating users’ history check-in behaviors [6]. Thus,
adversaries can use majority users’ behavioral patterns to “guess” how likely one would
visit a POI. Given a hidden location lm and the time interval between two check-ins Δ t,
the HLPL-probability can be denoted as a posterior probability P(V i,m,i+1

k |Δ t), where

V i,m,i+1
k denotes uk’s sub-visit sequence that contains li, lm and li+1 sequentially. Since

uk has already checked in li and li+1, the key point of P(V i,m,i+1
k |Δ t) is how likely uk

would have visited lm during her movement from li to li+1. According to Bayes’ Law,
P(V i,m,i+1

k |Δ t) can be calculated as follows.

P(V i,m,i+1
k |Δ t) =

P(Δ t|V i,m,i+1
k )P(V i,m,i+1

k )

P(Δ t)
(1)

Given a definite Δ t for uk, P(Δ t) is a constant, equation (1) can be simplified to
P(V i,m,i+1

k |Δ t)≈ P(V i,m,i+1
k )×P(Δ t|V i,m,i+1

k ). The baseline inference model aggregates

users’ historical check-in behaviors to draw an inference. Thus, P(V i,m,i+1
k ) can be cal-

culated by equation (2).

P(V i,m,i+1
k ) =

∑s Ci,m,i+1
s

∑s Ci,i+1
s

(2)
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Equation (2) measures the fraction of sub-check-in sequences which check in lm from
all sub-check-in sequences that move from li to li+1. Ci,i+1

s represents a sub-check-in
sequence s that consists of li and li+1 sequentially. Ci,m,i+1

s =1 if and only if one checks
in li, lm and li+1 sequentially in s, otherwise, Ci,m,i+1

s =0.
In equation (1), Δ t= ti+1 - ti which represents the time interval between u′

ks two
observed check-ins also has spatial reach-ability meaning. If uk cannot reach li+1 from
li within Δ t, uk definitely does not have time to visit any other locations, P(V i,m,i+1

k |Δ t)
must be zero. Note that, the time interval of two check-ins may not be exactly the
same. Thus, we make use of an upper bound of Δ t. Formally, we have P(Δ t|V i,m,i+1

k )≤
P(Δ ts ≤ Δ t|V i,m,i+1

k ), which can be calculated by equation (3).

P(Δ t|V i,m,i+1
k )≤ P(Δ ts ≤ Δ t|V i,m,i+1

k ) =
∑s Ci,m,i+1

s ×P(Δ ts ≤ Δ t)

∑s Ci,m,i+1
s

(3)

where Δ ts represents the time interval between checking in li and li+1 of sub-check-in
sequence s. We then multiply P(V i,m,i+1

k ) and P(Δ t|V i,m,i+1
k ) to get u′

ks HLPL-probability
of hidden location lm.

• Weighted by Friend Closeness
In practice, friends tend to have similar behaviors because they are friends and might
share lots of common interests or always hang out together, thus leading to similar visit
behaviors. Besides, friends in GeoSNs tend to have friendships in reality [4]. Previous
studies show that friendships in GeoSNs have more influences over one’s behaviors [8].
Thus, we refine the baseline inference model by introducing a parameter called friend
closeness. Given two users u j and uk, u j is one of u′

ks friends, we adopt a formula in [10]
to compute closeness of uk and u j, also shown as follows.

ωc(uk,u j) = α
|Fk ∩Fj|
|Fk ∪Fj|

+(1−α)
|Lk ∩Lj|
|Lk ∪Lj|

(4)

where α is a turning parameter ranging within [0,1]. Fk and Fj represent friend sets
of uk and u j respectively, Lk and Lj represent POI sets where uk and u j have checked
in respectively. Friends with more common friends means they have close social ties;
friends who show more similar check-in behaviors should have much similar tastes.
We have an observation that, friends with close social ties and similar tastes may have
higher probability to hang out together. Therefore, we give it a higher weight in the
inference equation, thus, P(V i,m,i+1

k ) can be calculated by equation (5).

P(V i,m,i+1
k ) =

∑s(1+ωc(uk,u j))C
i,m,i+1
s

∑s(1+ωc(uk,u j))C
i,i+1
s

(5)

where, Ci,m,i+1
s and Ci,i+1

s have no difference from equation (2) and P(Δ t|V i,m,i+1
k ) is

calculated by equation (3) as previously. By inclusion of friend closeness, the HLPL-
probability is more affected by one’s close friends than other normal users. It should
be noted that, the baseline inference model can deal with one hidden location each
time, if there are multiple hidden locations among two observed check-ins, it should be
executed several times.
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4.2 CF-Based Inference Model

Collaborative Filtering (CF) is a method of making predictions about interests of a
user by collecting preferences or taste information of many other users, a user’s rating
on an object can be inferred through ratings of her similar users. In GeoSNs, similar
users who might share a lot of common interests tend to have similar visit behaviors.
Accordingly, adversaries can infer the HLPL-probability using CF. In order to calculate
user similarity, we introduce a concept called visit probability sequence to evaluate
users’ visit probabilities to a set of POIs.

Definition 3. (Visit Probability Sequence) Given a sub-check-in sequence s={l1, l2,
. . ., ln}. u′

ks visit probability sequence of s is a set of probabilities PVuk={PV 1
uk, PV 2

uk,
. . ., PV n

uk}, where PV i
uk

∈ [0,1] denotes u′
ks visit probability to POI li.

User similarity between uk and u j can be calculated by the cosine similarity of their
visit probability sequences, as shown in equation (6).

sim(uk,u j) =
∑i PV i

uk
PV i

u j√
∑i PV i

uk

2
√

∑iPV i
u j

2
(6)

In equation (6), uk and u j do not need to have friendships in GeoSNs. PV i
uk

∈[0,1] and
PV i

u j
∈[0,1] denote uk and u′

js visit probability to POI li respectively. A special case

of visit probability sequence is the check-in sequence, in which PV i
uk=1 if uk checks

in li and PV i
uk=0 if uk does not. For each user uk, we utilize two matrices to calculate

u′
ks visit probability to hidden locations, as shown in Figure 2. Matrix S is a user-user

matrix, each value sk j in S represents the similarity between uk and u j, calculated by
equation (6). Matrix U is a location-user matrix, each value ukn represents u′

ks visit
probability to ln. Users in matrix U are the top-n most similar users of uk and locations
in matrix U are u′

ks hidden locations between two observed check-ins. Matrix U is
initialized by u′

ks check-in sequence. We then calculate user similarity through their
check-in sequences, and put user similarities into matrix S for initialization. In matrix
U , u′

ks visit probabilities to hidden locations are the missing values. Equations (7) and
(8) illustrate how to infer the missing values using classical CF method.

Fig. 2. Matrices in CF-based inference model

ruk,ln = k× ∑
u j∈Sk

sim(uk,u j)× ru j ,ln (7)

k =
1

∑u j∈Sk
|sim(uk,u j)|

(8)



384 Z. Huo, X. Meng, and R. Zhang

where ruk,ln represents u′
ks visit probability to hidden location ln, the higher the value

is, more probable that uk has visited ln. Sk denotes u′
ks similar user set, ru j ,ln is u′

js visit
probability to location ln, where, u j is one of u′

ks similar users. In equation (7), the sim-
ilarity between uk and u j, sim(uk,u j) is used as a weight, more similar uk and u j are,
more weight ru j,ln will carry in predicting ruk,ln . When we say u j is a similar user of uk,
we mean sim(uk,u j) >0. After initialization of matrices S and U , we begin to calculate
u′

ks ratings on hidden locations in matrix U . We get u′
ks ratings on hidden locations in

matrix U through repeatedly calculating the following steps, until the matrices converge.

– Calculate users’ visit probabilities to hidden locations through equation (7) and (8),
then update matrix U .

– Calculate user similarities using equation (6), then update matrix S.

We then compute the posterior probability to derive the HLPL-probability according
to equation (1). Given Δ t, the HLPL-probability P(V i,m,i+1

k |Δ t) can be calculated by
equation (9).

P(V i,m,i+1
k |Δ t) = ruk,lm ×

∑u j∈Sk
Ci,m,i+1

u j P(Δ tu j ≤ Δ t)

∑u j∈Sk
Ci,i+1

u j

(9)

In equation (9), Sk denotes u′
k similar user set, u j is one of u′

ks similar users. Δ tu j is
the time interval between u j checks in li and li+1. Once CF-based inference model is
executed, the missing values in matrix U is completed, thus, u′

ks HLPL-probability for
each hidden location is derived.

4.3 HMM-Based Inference Model

Hidden Markov Model (HMM) is a statistical Markov model in which the system be-
ing modeled is assumed to be a Markov process with hidden states. If one can make
predictions for the future of the process based solely on its present state, it is a Markov
process. In the previous section, we hold the opinion that users’ visit probability to a
POI can be inferred though historical information, but this does not mean users’ next
location can be predicted based on all historical check-in sequences. Actually, given the
moving speed and road network conditions, u′

ks current location can be inferred solely
based on the previous state (where uk checks in, as well as where u′

ks friends and similar
users check in, etc.). Therefore, we utilize Hidden Markov Model (HMM) to represent
users’ transitions among hidden locations.

lm1 lmi lmn

lf1 lfn ls1 lsn A t… …

Hidden
States

Observed
States

Fig. 3. HMM-based Inference Model
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Given two POIs li and li+1 which uk has checked in, we build a HMM-based infer-
ence model for each user, as shown in Figure 3. Nodes in white are observed nodes,
while nodes in gray are hidden nodes which correspond to hidden locations that uk

might visit during two observed check-ins. Here we just list three hidden nodes as an
example. The observed nodes l f 1 to l f n are where u′

k s top-n closest friends check in
within time Δ t (time interval between two observed check-ins). The observed nodes ls1

to lsn represent where u′
ks top-n similar users check in within time Δ t, but without users

who appear in the top-n closest friends. Node AΔ t is the attribute of Δ t, e.g., weekends
or weekdays, morning, noon or evening of a day. All the observed nodes and hidden
nodes are discrete.

We train the HMM model using the real-world datasets through Expectation - Max-
imization (EM) algorithm. In the expectation step, we complete the dataset using the
current parameters θ (t) (always start with random values) to calculate the expected val-
ues of the log likelihood function, denoted as equation (10).

Q(θ |θ (t)) = EH|O,θ (t) [logP(O,H|θ )] (10)

where O is a set of observed nodes, while H is a set of hidden nodes. In the Maximiza-
tion step, we use the completed dataset to find a new maximum likelihood estimate for
a vector of unknown parameter θ , the target function is denoted as equation (11).

θ (t+1) = argθ maxlog(Q(θ |θ (t))) (11)

where θ (t+1) is the final parameters of the HMM model. The algorithm repeats the two
steps until it converges. After we get a set of parameters of the HMM model, transi-
tion probabilities among hidden locations are derived, which happens to be the HLPL-
probability in our settings. Then we infer the hidden location sequence that is most
likely to have generated the observed locations. We use Viterbi algorithm to efficiently
infer the hidden location sequence. The target function can be denoted as equation (12).

H∗ = argmaxlog(P(H|O)) (12)

Equation (12) represents the conditional probability of the hidden node H, given ob-
servations O. We apply dynamic programming in this problem, thus achieving a time
complexity of O(|O| × |H|2), where |O| is the number of observations and |H| is the
number of hidden nodes.

5 Hidden Location Privacy Alert Framework

5.1 System Model

Our hidden location privacy inference framework is based on the client-inference server-
GeoSN server model as depicted in Figure 4.

There are two main components in the inference server, namely, hidden location finder
and probability estimator. Hidden location finder finds out all the hidden locations be-
tween li and li+1 for each user, and calculates the shortest road network distance between
li and li+1. Probability estimator is in charge of estimating users’ HLPL-probabilities us-
ing the inference models we previously defined and rank hidden locations based on the
probability. Each client uk, sends her check-in requestCk(li+1, ti+1) at location li+1 along
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Hidden Location 
Finder 

Probability 
Estimator

Check-in 
Service

Proximity Service 
… …

Check-in Data / 
Social Data

Inference Server LSNS ServerUsers

Pre-Check-in 
Module Check in

Background 
infomation

P(Vk3
i,m,i+1)

P(Vk2
i,m,i+1)

P(Vk1
i,m,i+1)

uk1

uk2

uk3

Ck1(li+1,ti+1)

Ck2(li+1,ti+1)

Ck3(li+1,ti+1)

Fig. 4. System Architecture

with check-in time ti+1 to the pre-check-in module. The received requests are sent to the
hidden location finder, which derives u′

ks latest check-in location li and check-in time
ti. Hidden locations between two check-ins are found out by hidden location finder, and
passed to probability estimator. The background information for inference is acquired
from GeoSN server. At last, the most probable leaked hidden locations with correspond-
ing HLPL-probability are pushed to users, as a privacy alert. Users could decide whether
to check in or not according to their privacy preferences.

5.2 Algorithms

The inference models and the privacy alert framework are implemented in the road
network space rather than free space. In our settings, a road network is represented as an
undirected graph G(V,E); each road segment is represented by edges in G, intersections
of the routes are represented by vertices in V . GeoSN users’ moving speed is bounded
by the average maximum moving speed of road segments.

Given a user uk, we prune two situations that uk may not visit any hidden location: (i).
If Δ t ≤ Dist(li ,li+1)

vmax
, uk must definitely not visit any hidden location, since the time is not

enough for uk to visit any location when she moves from li to li+1. Where Dist(li, li+1)
is the shortest road network distance between li and li+1, vmax is the average maximum
moving speed of routes li → li+1. (ii). If Dist(li ,li+1)

vmax
< Δ t < Min(Δ t j), uk may probably

not visit hidden locations, since the time spent between li and li+1 is less than any
sub-check-in sequence that begins with li and ends with li+1. Where Min(Δ t j) is the
minimum time cost between two observed check-ins for any user. In the last case, if
Δ t ≥ Min(Δ t j), we need to find out all the hidden locations between li and li+1, which
is accomplished by algorithm FindHiddenLocation, then we utilize three inference
models to calculate the HLPL-probability (due to space limitation, the details will not
be explained again in this subsection).

Finding out all the un-checked-in POIs between li and li+1 as hidden locations is
unrealistic and useless, since POIs located on a far or unpopular path may rarely be
visited by GeoSN users. Therefore, we only take two kinds of POIs into consideration:
(i). POIs on the shortest path between li and li+1. (ii). POIs on the popular paths between
li and li+1. The details are shown in Algorithm 1.

In Algorithm 1, we utilize the A∗ algorithm to find the shortest path between li and
li+1, since the shortest path is always a choice to users when they go to somewhere (line
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Algorithm 1. FindHiddenLocation

Input : POIs li and li+1; road network G(V,E); a set of history check-in sequences S;
Output: A set of hidden locations Lm; length of the shortest path Dist(li, li+1);

1 Pathsh ← A∗(G, li, li+1);
2 Lm ← POIs on Pathsh;
3 Dist(li,li+1) ← distance between li and li+1 on Pathsh;
4 Tag each check-in sequence in S as unscanned;
5 while exists a check-in sequence in S unscanned do
6 Scan the next check-in sequence S;
7 Tag S as scanned;

8 if count(li
Δ t1<δ t−−−−→ lm

Δ t2<δ t−−−−→ li+1)> δp then
9 Lm ← Lm

⋃
lm

10 Return Lm and Dist(li, li+1);

1-3). Without loss of generality, we scan each check-in sequence in S and identify POIs
that frequently appear on a popular path between li and li+1, then put them into Lm. If the

support of a check-in pattern li
Δ t1<δ t−−−−→ lm

Δ t2<δ t−−−−→ li+1 is larger than the support threshold
δp, lm can be regarded as a hidden location (line 4-9). We have a key observation that the
temporally consecutive check-ins of uk could signal correlations between two POIs, but
as the time interval increases, that two check-ins are not strictly consecutive. In order
to solve this problem, we make use of a time threshold δt , which is used to estimate
whether a check-in pattern is valid or not. Δ t1 and Δ t2 represent the corresponding
check-in time intervals. At last, hidden location set Lm and the shortest path distance
between li and li+1 are returned.

6 Experiments

The design of the experiments aims to achieve the following goals: (i) Analyze prop-
erties of the experiment datasets; (ii) Learn the performance of each inference model;
(iii) Learn the effectiveness of the privacy alert framework.

6.1 Experimental Setup

We run our experiments on two real-world GeoSN datasets, made available by Cho et
al. [2]. The datasets collect users’ social relationships and check-in behaviors from Feb.
2009 to Oct. 2010 in Gowalla and Apr. 2008 to Oct. 2010 in Brightkite. We also obtain
the road network data of California, which contains 21,693 edges and 104,407 POIs. We
pre-process both datasets, check-ins in California and related users are left. As a result,
the Gowalla dataset contains 15,116 users and 675,809 check-ins, while the Brightkite
dataset contains 9,435 users and 541,169 check-ins. Detailed information about both
datasets are shown in Table 1.

Besides, we randomly select 22,495 pairs of consecutive check-ins, distributions
of check-in time interval and distance between two consecutive check-ins are shown
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Table 1. Detailed information about Gowalla and Brightkite

Total check-ins Total users Area size (km2) Avg. check-in interval(h)
Gowalla Brightkite Gowalla Brightkite Gowalla Brightkite Gowalla Brightkite
675,809 541,169 15,116 9,435 443,556 443,556 40.31 56.81
Density(user/km2) Check-in / user Check-in / POI Avg. check-in distance(km)
Gowalla Brightkite Gowalla Brightkite Gowalla Brightkite Gowalla Brightkite

0.03 0.02 44.71 57.36 6.29 6.10 19.02 15.39

in Figure 5. It can be seen that, about 60% consecutive check-ins occur within a time
interval of 104s in Gowalla and 33% in Brightkite, and about 55% consecutive check-ins
occur within a distance of 1km for both datasets.

6.2 Performance Metrics

Since real hidden locations are invisible in check-in datasets, we make an assumption of
our dataset that a user visits a POI if and only if she checks in the POI. Then two hidden
location datasets are generated in our experiments. Given a user uk, hidden location set
I is generated by marking off a part of POIs that uk has checked in; hidden location
set II is generated by adding POIs which are geographically located between li and li+1

that uk does not check in. We then evaluate four performance metrics: (i) The ratio of
recovered hidden locations to the number of hidden locations in hidden location set I,
represented as true positive rate; (ii) Average HLPL-probability of hidden location set
I, represented as AV G@I; (iii) The ratio of recovered hidden locations to the number of
hidden location set II, represented as false positive rate; (iv) Average HLPL-probability
of hidden location set II, represented as AVG@II. The true negative rate and false
negative rate can be derived from the above metrics.
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Fig. 5. Datasets attribute

6.3 Study on Accuracy

We evaluate the performance of following inference models: baseline inference model,
denoted by BI; baseline inference model weighted by friend closeness, denoted by
WFI; CF-based inference, denoted by CFI; HMM-based inference, denoted by HMMI.
We measure AVG@I, AVG@II, true positive rate and false positive rate on both datasets.
For each inference model, we randomly select 3,000 users and choose li and li+1 in each
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user’s check-in sequence. The selection of li and li+1 should satisfy a constraint that
time interval Δ t is bounded by 5 times of average check-in time interval (since more
than 96.6% consecutive check-ins have a time interval within 5 times of average check-
in time interval for Gowalla and 97.1% for Brightkite). For each user, we randomly
mark off 5, 10, 15 and 20 visited POIs between li and li+1 as hidden location set I, and
add 5, 10, 15 and 20 un-checked-in POIs that geographically locate between li and li+1

as hidden location set II. In the HMM-based inference model, we use Matlab toolbox
for HMM [5] to train the HMM model. We utilize historical check-ins of one’s top-5
close friends and top-5 similar users as training set.
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Fig. 6. Performance estimation on true / false positive rate

The experimental results in Figure 6 and Figure 7 indicate that, performance on all
the metrics are not seriously affected by the increasing number of the marked off /
added locations, showing that our inference models work with large number of hid-
den locations. In Figure 6, the higher the true positive rate is, the better the inference
model performs, and the false positive rate represents just the opposite. It can be seen
that the HMM-based inference model always exhibits the best performance in terms of
true positive rate and false positive rate, under all values of marked off / added loca-
tions, showing the strength of combining locations of one’s friends and similar users to
infer one’s hidden location. Besides, the learning technique which captures the transi-
tion probability between one’s visited locations also makes the HMM-based inference
model outstanding. BI and W FI have the same true positive rate and false positive rate,
since WFI is a special case of BI, it can recover hidden locations which BI can also do.
It should be noted that, although the BI and WFI performs not bad on true positive rate,
but the performance differences among users are quite huge, about 16.1% users have
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zero true positives on Gowalla, and about 18% on Brightkite. This is because some
users’ check-in sequences are un-popular, making it hard to infer wether the user has
visited the hidden locations through historical check-in sequences. The HMM-based
inference model is much better, only less than 5% users have zero true positives on both
datasets. Another drawback of BI and WFI inference models is that, they have high
false positive rate, especially in areas with dense check-in activities. It should be noted
that, CF-based inference model have both low true positive rate and low false positive
rate, which is also caused by the data sparsity problem. Since there are few similar users
that visit a hidden location in a given time span, thus resulting in the poor performance
on true positive rate.
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Fig. 7. Performance estimation on average HLPL-probability

In Figure 7, the higher the AVG@I value is, the better the inference model performs,
while AV G@II value just represent the opposite. It can be seen that, the AVG@I value
dominate the AVG@II value on all numbers of marked off / added locations, show-
ing that our inference models can recover the hidden locations and derive the HLPL-
probabilities effectively. WFI and BI have the same true positive rate and false positive
rate, the difference is that, W FI performs slightly better on both metrics than that of
BI, since both datasets are sparse (as shown in Table 1), the co-appearance of two users
does not always happen, making the W FI model performs not as well as expected. The
HMM-based inference model performs the best on AVG@I and AVG@II among all
inference models, the AVG@I value of HMMI reaches almost 60% and the AV G@II
value is even below 5% on all values of marked off / added locations. We do not test
the precision of hidden location visit sequences generated by HMMI, since it is not our
concern in this paper.
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6.4 Study on Efficiency

We study the efficiency of the privacy alert framework, showing that the average re-
sponse time from sending a check-in request to the inference server to get a privacy alert
is in minutes level. Although the response time does not satisfy the real-time applica-
tions well, the framework is still available, since the response time is much shorter than
users’ average stay time at a place. How to improve the efficiency of the privacy alert
framework will be considered in the future work. One possible solution is to separate
the whole procedure into the training phase and the inference phase [9]. The training
phase can be performed offline, which may sharply reduce the response time.

7 Conclusions and Future Work

Check-in service in GeoSNs raises serious privacy concerns. In this paper, we propose
a new privacy attack called hidden location inference attack. To accurately derive the
HLPL-probability, we propose three inference models. At last, we design a privacy alert
framework to warn users the most probable leaked hidden locations/visit sequence. We
evaluate the inference models on two real-world datasets, experiment results indicate
that the HMM-based inference model has the best performance among all.

Our future work are in two-fold. First, we will investigate how to improve the perfor-
mance of the inference models against data sparsity problem. Second, we plan to study
how to protect users’ hidden location privacy against the attack models. One of the pos-
sible solutions could be adding fake check-in POIs when a check-in activity happens.
While the challenging problems are how to balance the privacy and utility of users’
check-in, as well as considering users’ privacy preferences, etc.
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Abstract. Publication of the private set-valued data will provide enormous op-
portunities for counting queries and various data mining tasks. Compared to those
previous methods based on partition-based privacy models (e.g., k-anonymity),
differential privacy provides strong privacy guarantees against adversaries with
arbitrary background knowledge. However, the existing solutions based on dif-
ferential privacy for data publication are currently limited to static datasets, and
do not adequately address today’s demand for up-to-date information. In this pa-
per, we address the problem of differentially private set-valued data release on an
incremental scenario in which the data need to be transformed are not static. Mo-
tivated by this, we propose an efficient algorithm, called IncTDPart, to incremen-
tally generate a series of differentially private releases. The proposed algorithm is
based on top-down partitioning model with the help of item-free taxonomy tree
and update-bounded mechanism. Extensive experiments on real datasets confirm
that our approach maintains high utility and scalability for counting query.

Keywords: Differential privacy, set-valued data, incremental updates.

1 Introduction

Set-valued data, in which a set of items are associated with an individual, is common
in database ranging from web query logs, to credit card transactions, and to shopping
transaction databases of customers’ behavior. Publishing and sharing set-valued data
is important, since they enable researchers to analyze and explore interesting patterns
and knowledge. For example, revealing strong correlations and trends from collected
patient health records can be a valuable knowledge base for society; for a retail com-
pany, analyzing common customer behavior from online shopping data can provide
useful information for advertising. However, such data usually contains specific sensi-
tive information (e.g., pregnancy test, health care), and directly releasing raw data could
violate individual privacy and may result in unveiling the identity of the individual as-
sociated with a particular transaction. To prevent such information leakage, set-valued
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data must be sanitized before release. Previous works have been made in addressing the
problem of set-valued data publication. Terrovitis et al. [1] propose a local and global
recoding method km-anonymity, and He and Naughton [2] enhanced [1] by a top-down,
partition-based approach to handling the same question. However, recent efforts have
shown that the above partition-based privacy models are vulnerable to many types of
privacy attacks, such as composition attack [3], and foreground knowledge attack [4].
Recently, differential privacy [5] has emerged as one of the most promising models for
releasing different types of private data, because it can provide strong privacy guaran-
tees against adversaries with arbitrary background knowledge (this claim may not be
valid in some cases where there exist correlations among records [6], but in this paper
we assume that records are independent of each other). The main idea of differential
privacy is to inject noise into a dataset so that an adversary cannot decide whether a
particular record is included in the dataset or not. The noise level is controlled by pri-
vacy budget ε . There have been a few set-valued data publishing algorithms proposed
in the recent work, such as [7, 8], that efficiently publish such data under differential
privacy. These approaches, however, only deal with static set-valued data releases. That
is, all these approaches assume that they work in a one-time fashion: sanitize the entire
database and obtain the statistic information. This assumption often heavily limits the
applicability of these differentially private methods, as in many dynamic applications
set-valued datasets are updated incrementally.

Example 1. Consider a supermarket’s store T, shown in Table 1, which is required
to share the transactional items purchased by its various customers with market re-
searchers. In order to protect customers’ privacy, the supermarket sanitize all the items
prior to releasing. At first glance, the task seems reasonable straightforward, as existing
techniques in [7, 8] can efficiently anonymize the items. The challenge is, however, that
T is growing daily due to the appending of newly purchased items for existing customers
and/or insertion of new shopping items for new customers, shown in Table 2, and it is
critical for the market researchers to receive up-to-date items in timely manner.

Table 1. The original database T

TID Items Purchased
T1 {apple,banana,cherry,melon}
T2 {apple,cherry}
T3 {cherry,melon}
T4 {apple,melon}

Table 2. The Incremental Update ΔT1

TID Items Purchased
T5 {banana,cherry,melon}
T6 {melon,cherry}
T7 {apple,melon}

Due to the inherent dynamics and high-dimensionality of set-valued data in the context
of incremental updates, it is challenging to apply differential privacy to incrementally
publishing set-valued data. In the real world transactional data usually arrives in batches
to update original database incrementally. Thus, a differentially private mechanism must
periodically update the published statistics as new data items are inserted or removed.
We assume the coming update is large enough that it can support differential privacy.
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In order to employ the existing methods to publish the updates, two straightforward
solutions may be developed.

Solution 1: Sanitizing Incremental Updates. Support a series of updates arriving. This
solution is to sanitize and publish each update independently so that it satisfies differ-
ential privacy. For example, we employ DiffPart method [7] to separately release Table
1 and Table 2. Then researchers can merge multiple those released datasets together
for comprehensive analysis. Although straightforward, the major drawback of this so-
lution is when researchers merge multiple noisy statistics, the error is accumulated in
the merged results. So the results become noisier over time, which may lead to lower
data quality.

Solution 2: Publishing Sanitization of Current Versions. This solution is to sanitize
and publish the entire dataset whenever the dataset is augmented with new updates
(e.g., merging the update ΔT1 to T ). In this way, researchers are always provided with
up-to-date statistics information. Although this can be easily accomplished by using the
existing methods, there are two significant drawbacks. First, K such updates will raise
the privacy budget to Kε . This means that the more updates we have, the higher the
amount of noise we need to add to each release. Another, if the number of updates is
infinite, then ε-differential privacy will be eroded.

In the above solutions, the error increases with the number of updates, either because
the noise accumulates (as in solution 1), or because the amount of noise relies on the
number of updates (as in solution 2). This means that we cannot have an infinite number
of updates. In other words, streaming approaches proposed in [10, 9] cannot be applied
in our scenario because data stream has its own characteristics such as dynamics, con-
tinuity, and infinity. To tackle the above challenges, we investigate the problem of how
to publish set-valued data against incremental updates while maintaining ε-differential
privacy. First, we design a update-bounded mechanism to limit the number of updates
which can help to reduce the error caused by the above two solutions. Second, based
on update-bounded mechanism, we propose an efficient algorithm, called IncTDPart
(Incrementally Top-Down Partitioning manner) to release set-valued data with the help
of item-free taxonomy tree. In our algorithm, we incrementally maintain a tree struc-
ture, called TBP-Tree (Taxonomy-Based Partitioning Tree), in which leaf nodes store
p-sum value (i.e., accumulated noisy counts) that can be used to construct a release after
each update. Third, extensive experiments on several real datasets demonstrate that the
proposed methods generate high utility for incrementally counting queries and scales to
large datasets.

The remainder of this paper is organized as follows: Section 2 discusses related work.
Section 3 briefly overviews ε-differential privacy and problem statement. Section 4
proposes a differentially private algorithm IncTDPart to support set-valued data releases
against incremental updates. The experimental evaluation of our methods is presents in
Section 5, and Section 6 concludes our work.

2 Related Work

The notion of differential privacy was presented by Dwork et al in [5]. The same authors
also propose the addition of Laplace noise to guarantee differential privacy [11]. Work
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on differential privacy has initially focused on answering statistical queries (e.g., count
queries, range queries). However, a few recent works started addressing non-interactive
data release that achieves differential privacy such as histograms publication [13, 12],
and search logs releases [14]. McSherry et al [15]. present differentially private rec-
ommendation algorithms in Netflix prize competition. More recently, several works
studied differentially private mechanism for releasing set-valued data [8, 7]. Chen et
al. [7] presented the publishing of set-valued data while satisfying differential privacy,
and in [8] they studied differentially private transit data publication. They present al-
gorithms in [8, 7], which partition the set-valued data in top-down fashion guided by
taxonomy tree, and release the noisy counts of the set-valued data at leaf nodes. Their
methods generate synthetic set-valued data which can support counting queries. How-
ever, the existing publication approaches are currently limited to static datasets, do not
adequately address the incremental updates. Among the existing approaches, the ones
most related to ours are by Chan et al. [10] and Dwork, et al. [9], which continuously
release statistics in the context of data streams. Due to the characteristics of data stream
itself, their methods are not favorable to releasing set-valued datasets against updates.

In addition, there is a series of works [16, 18, 17] which are based on partition-based
privacy models (e.g., k-anonymity) for incrementally releasing relational databases.
The work [16] is among the first to identify possible attacks in the dynamic scenario.
This work analyzes various inference channels that may exist in multiple anonymized
datasets and discusses how to avoid such inferences. Xiao et al. [17] propose the novel
m-invariance framework. This simple yet elegant method is the first work that success-
fully anonymizes a fully dynamic dataset. To enhance the methods in [17], He et al.
[18] propose a graph-based anonymization algorithm to cope with equivalence attack.
However, recent works have shown that these methods based on partition-based models
are much weaker privacy notion than differential privacy.

3 Preliminaries

Let I={I1, I2, ..., I|I|} be the universe of items, where |I| is the size of the universe. The
T={t1, t2, ..., t|T |} denotes the initial set-valued table as it is created before updating,
where each record ti ∈ T is a non-empty subset of I. Let ΔT1, ΔT2,... present the in-
cremental updates (insertions only in this paper) to the table T . We assume that in the
series of tables T, ΔT1, ΔT2,..., the item domain is fixed, that is, the universe of items is
not changed. Suppose the item universe I={I1, I2, I3, I4}, Table 3 presents an example of
initial set-valued database T . Table 4 and Table 5 present the incremental updates ΔT1,
ΔT2 to Table 3.

Fig. 1. IFT-Tree

Table 3. initial T

TID Items
t1 {I1, I2}
t2 {I2}
t3 {I1}

Table 4. update ΔT1

TID Items
t4 {I1, I2, I3, I4}
t5 {I2, I4}
t6 {I2}

Table 5. update ΔT2

TID Items
t7 {I1, I2, I3, I4}
t8 {I2, I3, I4}
t9 {I1, I2}
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3.1 Item-Free Taxonomy Tree

In this paper, we assume that the series of tables T , ΔT1, ΔT2,..., are associated with
a single taxonomy tree. In classical generalization mechanism, taxonomy tree relies
on the original semantic of generalization to map several differential items to a single
value in the destination nodes. In our method, we release only original items and counts,
regardless of their semantics. Therefore, the taxonomy tree could be item free.

Definition 1. (Item-Free Taxonomy Tree). An Item-Free Taxonomy Tree (IFT-Tree) is
a taxonomy tree, whose internal nodes consist of their leaves, not necessarily to take
into account the semantic generalization of the leaves.

For example, Fig. 1 presents an item-free taxonomy tree for Table 3, Table 4, and Table
5, and one of its internal nodes I{3,4}={I3, I4}. An item can be mapped to an internal
node if it is in the node’s set. In this example, items {I1, I2} can be generalized to I{1,2},
items {I3, I4} can be generalized to I{3,4}, and the two sets I{1,2}, I{3,4} can be further
generalized to I{1,2,3,4}.

3.2 Differential Privacy

Differential privacy, in general, guarantees that changing or removing any record from
a database has negligible impact on the output of any analysis based on the databases.
Therefore, an adversary will learn nothing about an individual, regardless of whether
her record is present or absent in the database. Formally, in the context of incremental
updates, differential privacy [5] is defined below.

Definition 2. (ε-Differential Privacy). A randomized mechanism Ag for supporting in-
cremental updates satisfies ε- differential privacy, iff for any output O of Ag and for any
two neighbor databases T1 and T2, we have

Pr[Ag(T1) = O]≤ exp(ε) ·Pr[Ag(T2) = O] (1)

where ε is the privacy budget, and the probability is taken over the randomness of Ag.
The neighbor database is obtained by removing on arbitrary record from either the
original set-valued data, or any of the updates.

A principal technique for achieving differential privacy is Laplace mechanism [11]. A
fundamental concept of this technique is the global sensitivity of a function f that maps
underling databases to vectors of reals.

Definition 3. (Global Sensitivity). For any function f : T→ Rd, the sensitivity of f is
defined as follow.

Δ f = max
T1,T2

‖ f (T1)− f (T2)‖1 (2)

for all T1,T2 differing in at most one record.
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The global sensitivity is also called L1-sensitivity due to the L1-norm used in its defini-
tion, which takes the maximum over all pairs of neighboring databases.

Laplace Mechanism. Dwork et al. [11] propose the Laplace mechanism which takes a
database T, a function f, and the privacy budget ε . It first computes the true output f (T ),
and then adds properly calibrated Laplace noise to the output. The noise is sampled from
a Laplace distribution with the probability density function Pr(x|b)= 1

2b e−|x|/b, where b
is dominated by both Δ f and the allocated privacy budget ε .

Theorem 1. For any function f : T→ Rd, the private mechanism Ag

Ag(T ) = f (T )+ 〈Y1(Δ f/ε),Y2(Δ f/ε), ...,Yd(Δ f/ε)〉 (3)

gives ε-differential privacy, where Yi(Δ f/ε)(1 ≤ i ≤ d) are i.i.d Laplace variables with
scale parameter Δ f/ε .

Differential privacy has two important properties that are extensively used when differ-
ential privacy is employed to support combined computations. These two properties are
known as sequential and parallel compositions [18].

3.3 Utility Metrics

In the incremental update case, sanitized set-valued data is mainly used to answer count
queries that are crucial to counting queries task. We employ relative error [19] to mea-
sure the utility of the sanitized data. Given a series of databases T,ΔT1,ΔT2, ..., and let
Ti be T ∪i

j=1 ΔTi after appending the i-th incremental update (i ≥ 1).

Definition 4. (Incremental Count Query). Given an initial dataset T , after the i-th
incremental update (i ≥ 1), for a given set of items I′ drawn from the universe I, an
incremental count query Q over Ti is defined to be Q(Ti)=|{t ∈ Ti : I′ ∈ t}|.
relative error(RE): This measures the error to the actual answer on the actual database
Ti, which is formalized as follows.

RE =
|Q(T̃i)−Q(Ti)|
max{Q(Ti),b}

(4)

where Q(T̃i) denotes the answer on the sanitized database T̃i, Q(Ti) denotes the true
answer on the actual database Ti, and b denotes a sanity bound used to mitigate the
influences of queries with extremely small selectivities.

Problem Statement. Given a private parameter ε , a transactional table T and a series
of updates ΔT1,ΔT2, ... to T, our objective is to generate a series of publications which
satisfy differential privacy against incremental updates.

4 Update-Bounded Sanitization Algorithm

In our setting, due to the set-valued dataset incremental update, a private mechanism
must update the published statistics as new updates arrive. Thus, traditional differen-
tially private mechanisms either fail to apply directly to our setting, or result in an
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unsatisfactory loss in terms of utility or privacy if applied naively (e.g., Solution 1 and
Solution 2). To tackle the drawbacks caused by Solution 1 and Solution 2, we propose
a novel constraint method, called Update-Bounded Mechanism, to limit the number of
incremental updates.

Definition 5. (Update-Bounded Mechanism). Given U ∈ N, an incremental release
mechanism Ag is U-bounded if it only accepts updates at most U. In other words, Ag
needs to require a priori knowledge of an upper bound on the number of updates.

Based on update-based mechanism, we present the IncTDPart algorithm that recur-
sively partitions the series of set-valued datasets with the help of an IFT-Tree against
incremental updates.

We first provide an overview of our IncTDPart algorithm in Algorithm 1. The al-
gorithm first builds the IFT-tree H by iteratively grouping f nodes from one level to an
upper level until a root is reached. If the size of the item universe is not divided by f , the
remainder can be as a group. Given Ti={T,ΔT1,ΔT2, ...}, a privacy budget ε , an upper
bound of updates U and an IFT-Tree H, it returns a series of sanitized databases satisfy-
ing differential privacy. Based on the given IFT-Tree H, we employ DiffPart method to
sanitize the initial dataset T, and release T̃ . IncBuildTBP-Tree incrementally maintains
a noisy taxonomy-based partitioning tree by a top-down manner, and releases the series
of sanitized datasets T̃i.

Algorithm 1. IncTDPart
Input: T,ΔT1,ΔT2, ...,ΔTU : The initial dataset T, and a series of updates; U :
The upper bound on updates; ε: The privacy budget; f : The fan-out of IFT-Tree
Output: The sanitation T̃ , T̃i,...
1: SemiEmSet ← /0; NoEmSet ← /0;
2: Construct an IFT-Tree H with fan-out f ;
3: ε ′ ← ε

U+1 ;
Sanitizing the initial dataset T
4: T BP-Tree(0) ← Di f f Part(T,H,ε ′);
5: SemiEmSet←semi-non empty nodes of T BP-Tree(0);
6: NoEmSet←non empty nodes of T BP-Tree(0);
7: Release T̃ ;
Sanitizing the incremental updates
7: for each ΔTi(1 ≤ i ≤U) do
8: Root of T BP-Tree(i−1) ← all records in ΔTi;
9: T BP-Tree(i) ← IncBuildTBP-Tree(ΔTi, ε ′,H);
10: Update SemiEmSet, NoEmSet;
11: Release leaf nodes’ information of T BP-Tree(i);
12: Return T̃ , T̃i,...;

4.1 The Initial Dataset Sanitization

In principle, we can use any set-valued data sanitization algorithm to sanitize the initial
dataset, as long as the sanitized results are differentially private. For example, given the
initial dataset T , ε ′, and H, we use DiffPart method to release T̃ . The method recursively
distributes the records in T into disjoint sub-datasets with more specific representations
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in a top-down manner. In this method, ε ′
2 budget is used to guide the partitioning process

of sub-datasets, and the rest ε ′
2 plus the budget left from the partitioning process to

construct the release in the leaf nodes. In the top-down partitioning manner, all the
records in T can be generalized a common generalization, called hierarchy cut which
consists of a set of nodes in H. A record can be generalized to a hierarchy cut if every
item in the record can be generalized to a node in the cut and every node in the cut
generalizes some items in the record. For example, the record t1={I1, I2} in Table 1
can be generalized to the cuts {I{1,2}} and {I{1,2,3,4}}, but not {I{1,2}, I{3,4}}, while
t4={I1, I3} in Table 2 can be generalized to the cut {I{1,2}, I{3,4}}. Fig.2 demonstrates
partitioning the three records T ={t1, t2, t3} into three leaf nodes of the TBP-tree such
that each node contains the noisy count (e.g., 1 is the noisy count of the leftmost leaf
node). Every node in the TBP-Tree consists of three fields: hierarchy cut, records, and
nc, where hierarchy cut denotes the generalization of children of the node, records
registers which records contain the hierarchy cut or its subsets, and nc refers to the
accumulated noisy counts from the initial dataset T to the current update ΔTi.

Fig. 2. The TBP-Tree on the initial dataset T

To conveniently partition the nodes in TBP-Tree, we propose an noisy p-sum mech-
anism to record the accumulated noisy counts. That is, each node v (or a hierarchy cut)
in the TBP-Tree is associated with a p-sum(v). After a new batch of incremental up-
dates, the IncTDPart method will release noisy versions of these p-sums in leaf nodes
in TBP-Tree.

Definition 6. (noisy p-sum). The noisy p-sum of a hierarchy cut in each node of TBP-
Tree is the number of records in consecutive updates which contain the hierarchy cut
or its subsets. Let 1≤ m ≤ n. We use the notation ∑[m,n] = ∑n

j=m nc j({Ii}) to denote
the noisy p-sum involving the hierarchy cut {Ii} m trough n, where m and n denote the
update timestamps in the sequence of updates.

For example, in Fig.2, the p-sum of the hierarchy cut {I2} is ∑[0,0]=nc0({Ii})=2. Ac-
cording to the definition, the ∑[m,n] of some hierarchy cut can be computed by ∑[1,n]-
∑[1,m]. This is quite consentient for researchers to obtain the noisy counts at every
update step or any range of updates.

4.2 TBP-Tree Incremental Construction

Our strategy for IncBuildTBP-Tree is to recursively group records in ΔTi into disjoint
subsets based on H, either allocate records into relative nodes of the previous T BP-
Tree(i−1), or create some new nodes that do not exist in the previous tree. Procedure 1
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presents the details of IncBuildTBP-Tree. To incrementally build TBP-Trees based on
the coming updates, we employ a uniform privacy budget allocation scheme, that is,
divide the total privacy budget ε into equal portions ε ′= ε

U+1 , each is used for incre-
mentally maintaining a TBP-Tree. For constructing the nodes of the TBP-Tree in each
update, we use the same budget allocation scheme as DiffPart method that reserves ε ′

2 to

generate the noisy sizes of leaf nodes, and the rest ε ′
2 to guide the top-down partitioning

process.

Procedure 1. IncBuildTBP-Tree
Input: ΔTi: The i-th update; ε ′: The allocated privacy budget for i-th update; H:
The IFT-Tree; T BP-Tree(i−1): The (i-1)-th TBP-Tree after the (i-1)-th update;
Output: The i-th taxonomy-based partition tree T BP-Tree(i)
1: Vector V1 ←all sub-partitions of T,ΔT1,ΔT2, ...,ΔTi−1;
2: Partition p ←all records in ΔTi;
3: Add p to the root of T BP-Tree(i−1);
4: p.cut ← the root of H;

5: p.ε̃ ′= ε ′

2 ; p.α= p.ε̃ ′

|InternalNodes(p.cut)| ;

6: Select a node v from p.cut to partition;
7: Generate all non-empty sub-partition to P;
8: Allocate record in ΔTi to P;
9: for each sub-partition pi ∈ P do
10: if pi ∈ V1 then
11: if pi ∈ NoEmSet and pi is not a leaf node then
12: FollowPreviousTraces(pi,H, p.α);
13: if pi ∈ SemiEmSet and pi.(∑i−1

j=0 nc j +nci)≥ θ1 then

14: pi.ε̃ ′=p.ε̃ ′-p.α;

15: pi.α= pi.ε̃ ′

|InternalNodes(pi.cut)| ;

16: Add pi to V1;
17: else
18: if pi.nci ≥ θ1 then
19: Repeat Lines 14-16;
20: for j = 1, j ≤ 2l-|P| do // l is the number of v′s children
21: if p j.nc ≥ θ1 then
22: Randomly generate an empty sub-partition p′

j;
23: Repeat Lines 14-16;
24: if pi.nci ≥ θ2 and pi is a leaf node then
25: Add nci copies of pi.cut to T̃i;
26: else
27: Add pi to V1;
28: Return T BP-Tree(i);

To make the partition process easier in the updates, we define Non-Empty node and
Semi-Non Empty node in each TBP-Tree.

Definition 7. (Non-Empty node and Semi-Non Empty node). Let θ1 be a pre-defined
threshold. Give any non-leaf node v of the TBP-Tree(i), and let p-sum(v)=∑i−1

j=0 nc j+nci

be its current accumulated noisy counts. The two concepts are defined as follow.
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v =

⎧⎨⎩
Non-Empty node, i f p-sum(v)≥ θ1

Semi-Non Empty node, i f 0 < p-sum(v)< θ1

(5)

NoEmSet and SemEmSet are two node sets that consist of Non-Empty nodes, and Semi-
Non Empty nodes, respectively.

As the description of Procedure 1, on the i-th update ΔTi arriving, we first insert the
records in ΔTi into the root of T BP-Tree(i−1), and recursively partitions them into dis-
joint subsets. If some records is added to those non-leaf nodes which are non-empty,
we call FollowPreviousTraces to track the children traces of the non-leaf nodes in T BP-
Tree(i−1), and allocate relative records (Lines 11-12). To some records are allocated to
semi-non empty nodes which are in internal levels, we check whether the p-sums of the
semi-non empty nodes exceed the threshold θ1. If so, then we either further to partition
the nodes or start to construct new releases in leaf level (Lines 14-16). If some records
are added to new nodes that do not exist in T BP-Tree(i−1), Lines 18-19 are called to
check whether to further partition or release these new nodes.

During partitioning ΔTi, many empty nodes will be generated, which are associated
with zero number of records. It is critical to prune out the empty nodes in that may lead
to poor utility of the release. [20] has indicated that the number of empty nodes k fol-
lows the binomial distribution B(m, pθ1 ), where m is the total number of empty nodes

we have to check and pθ1= exp(−αθ1)
2 . We can select k uniformly random empty nodes

without replacement with noisy counts sampled from the cumulative distribution func-
tion P(x)=1-exp(αθ1 −αx) (∀x ≥ θ1). Lines 20-23 show the details of how to generate
the empty nodes. Each non-leaf partition pi.cut in Procedure 1 tracks its unused privacy
budget ε̃ ′ and computes the portion of privacy budget α for the next partition operation.

To calculate the budget α , we have to obtain the maximum number of partition op-
erations InternalNodes(pi.cut) from pi.cut to leaf nodes. Chen et al. [7] points out that
|InternalNodes(pi.cut)|=∑ui∈cut |InternalNodes(ui,H)|, where |InternalNodes(ui,H)|
denotes the number of internal node of the subtree of H rooted at ui. After the i-th up-
date, in the leaf node level of the T BP-Tree(i), if a leaf node pi satisfying pi.nci ≥ θ2

(Lines 24-25), we add nci copies of pi to the T̃i. Fig.3 shows the sanitized release after
the ΔT1, ΔT2 appended the initial dataset T .

Fig. 3. The TBP-Tree after ΔT1, ΔT2 updates
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Example 2. Given the update ΔT2 in Table 5, the privacy budget ε ′, Procedure 1 works
as follows (see Fig.3 for an illustration). It first distributes t9 into the v1 node, and t7,
t8 into the v2 node. Due to the same partitioning traces of the v1 node in T BP-Tree(2)
as TBP-Tree(1), we directly add t9 to the v3 leaf node. The p-sum(v3) is 3 that equals
nc0(v3)+nc2(v3). The v2 node in T BP-Tree(1) is semi-non empty node in terms of p-
sum(v2) ≤ θ1. The inserted t7, t8 records change the node into a non empty node. So,
we further split the v2 node, and obtain three leaf nodes (e.g., the v4 node).

4.3 Thresholds θ1, θ2 Computation

A node in the T BP-Tree(i) is further expanded if its p-sum value is not less than the
threshold θ1. In the static scenario of TBP-Tree, the threshold of non-empty and empty
nodes θ1=C1

√
2

α (constant times of the standard deviation of noise), and the threshold of

leaf nodes publication θ2=C2
√

2
α , where α is the privacy budget assigned to the nodes.

However, for the incremental updates, θ1 and θ2 may be changed at each time of up-
date. A straightforward scheme would be using a fixed multiple value of the standard
deviation of noise, that is, in different nodes of each TBP-Tree , one can use multiple
value of standard deviation of noise to guide the partitions in terms of the budget α .
Differing from the simple method, we propose an more significant scheme using the
mean of multiple value of the standard deviation of noise. Let αi, ...,α j be the allocated
privacy budgets in the series of datasets T,ΔT1, ...,ΔTU for a non-empty or empty node.
The threshold θ1 (i.e., mean) can be defined as follow. According to the same idea as
θ1, we can obtain θ2. Here, C1,C2 are two constants defined by data publishers.

θ1 =
∑ j

m=i

√
2C1
αm

j− i+ 1
(6)

θ2 =
∑ j

n=i

√
2C2
αn

j− i+ 1
(7)

Example 3. In Fig.3, there are four records t4, t5, t7, t8 in node v2, two of which came
from ΔT1, the other two from ΔT2. In T BP-Tree(1), the privacy budget assigned to v2 is

α1= ε ′
6 , and α2= ε ′

6 in TBP-Tree(2). According to the above equations, we get θ1= 3
√

2C1
ε ′ .

Due to p-sum(v2)≥ θ1, we further partition the node v2.

4.4 Analysis

Privacy Analysis. We give the differential privacy guarantee of our method below.

Theorem 2. Each of the updates of IncTDPart algorithm is ε
U+1 -differentially private,

where U is the upper bound on the number of the updates.

Proof. We prove the theorem by the definition of ε-differential privacy. Consider two
neighboring datasets T1 and T2. We first consider Lines 7-11 of Algorithm 1, that is, the
incremental construction of TBP-Tree. Let this part be denoted by Ag. Given any update
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timestamp i(1 ≤ i ≤U), and ε ′ (ε ′= ε
U+1 ), and let the i-th TBP-Tree be denoted by Treei.

In essence, Treei is constructed on the noisy answers to a set of incremental counting
queries. Let each root-to-leaf path be indexed by k. We denote a node in level l and path
k by vkl , its privacy budget by ε ′

kl , and its incremental count in T1 and T2 by Q(T1)kl and
Q(T2)kl , respectively. We first claim that a single record can only affect at most 2c (c ≤ f )
root-to-leaf paths, where 2c is the children number of the node vkl . Then we have

Pr(Ag(T1) = Treei)

Pr(Ag(T2) = Treei)
=

h

∏
l=1

2c

∏
k=1

exp(−ε ′
kl

|TC(vkl )−Q(T1)kl |
2c )

exp(−ε ′
kl

|TC(vkl )−Q(T2)kl |
2c )

≤ exp
(

∑h
l=1 ∑2c

k=1 ε ′
kl |Q(T1)kl−Q(T2)kl |

2c

)
≤ exp

(
1
2c ∑h

l=1 ∑2c

k=1 ε ′
kl

)
where TC(vkl) is the true count of the node vkl , h is the height of the Treei.
Since ∑l ε ′

kl=ε ′, we have Pr(Ag(T1)=Treei)
Pr(Ag(T2)=Treei)

≤ exp(ε ′).

The use of privacy budget on different updates follows sequential composition [18].

Theorem 3. (Sequential Composition). If a randomized algorithm Ag runs a sequence
of Ag1(T ), Ag2(T ),..., AgU(T ) over the dataset T, where each Agi provides εi differen-
tial privacy, then Ag(T) is ∑U

i=1 εi-differentially private.

We now show that Algorithm 1 satisfies ε-differential privacy.

Theorem 4. IncTDPart algorithm is ε-differentially private.

Proof. Given the upper bound U on updates. According to the Theorem 2, we obtain
that each of the updates of IncTDPart algorithm satisfies ε

U+1 -differential privacy. Be-
sides the initial dataset, we run IncTDPart algorithmU+1 times. According to Theorem
3, we get ∑U+1

i=1
ε

U+1 =ε . Therefore, IncTDPart algorithm is ε-differentially private.

5 Experiments

In this section, we evaluate the utility of our proposed algorithm in terms of utility for
incremental counting queries, and examine the scalability of our method for processing
large-scale datasets. Our implementation was done in C++, and all experiments were
performed on an Intel Core 2 Duo 2.94GHz Pc with 4GB RAM. Extensive experiments
were performed on two real datasets, MSNBC [21], and kosarak [22], which record the
URL categories visited by users in time order, and clickstream data, respectively.

Table 6. Shows more details of the two datasets

Dataset N |I| Avg|t|
MSNBC 989,818 17 1.72
Kosarak 990,002 41,270 8.1

The characteristics of the datasets are summarized in Table 6, where N is the number
of records in each datasets, |I| the number of distinct items and Avg|t| the average record
length. We compare the utility and scalability of our method IncTDPart described in
Algorithm 1 to the two straightforward solutions discussed in Section 1. We use Stra-
Solu1 and Stra-Solu2 to denote the two basic methods, respectively.
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5.1 Utility

Based on the above two datasets, we perform our experiment to demonstrate the util-
ity of our method under different number of updates. In the experiment, we randomly
chose 400,000 records as the initial dataset T from MSNBC and Kosarak, respectively,
and chose another 10,000 records without replacement as the incremental update ΔTi.

Effect of U on Utility. In the first set of experiments, we examine the relative error
(RE) of incrementally counting queries on the sanitized datasets under varying the up-
per bound U from 10 to 50, and fixing f =10. For each dataset, we randomly generate
a counting query whose items is drawn from I. Fig. 4 and Fig.5 show the relative error
of IncTDPart, Stra-Solu1, and Stra-Solu2 with respect to different privacy budget ε .
The relative error decreases when ε varies from 0.5 to 1.0 because less Laplace noise
is injected. From the two figures, we can see that the error of the two straightforward
solutions are larger than that of IncTDPart algorithm in all cases. When the upper bound
U increases, the performances of Stra-Solu1 and Stra-Solu2, especially Stra-Solu1, de-
teriorate sharply because they do not employ the update-bounded mechanism to incre-
mentally release the sanitized datasets.
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Fig. 4. Relative error under MSNBC dataset
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Fig. 5. Relative error under Kosarak dataset

5.2 Scalability

In the last set of experiments, we examine the scalability of our method against Stra-
Solu1 and Stra-Solu2. The runtime is used as our performance metric, which is dom-
inated by the datasets size and item universe size. We first evaluate the efficiency of
the three algorithms by varying the dataset size from 500K to 900K and setting ε=1.0,
U=50, and f =10. Fig.6(a) and Fig.6(b) show the runtime of the three methods under the
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two datasets MSNBC and Kosarak. As dataset size grows, in particular, the size exceeds
600K, the runtime of Stra-Solu1 and Stra-Solu2 increase more dramatically. This is be-
cause when increasing dataset size, the two methods have to take more time to partition
numerous candidate nodes under lacking the help of taxonomy-based partitioning tree.
As expected, the runtime of our method is linear of the dataset size. Fig.6(c) presents
how the runtime varies under different item universe size on the dataset Kosarak, where
ε=1.0, U=50, and f =10. From the Fig.6(c), it can be seen that the runtime of our algo-
rithm scales linearly with the increase of universe size, however, the runtime of Stra-
Solu1 and Stra-Solu2 grows quickly.
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Fig. 6. Scalability under MSNBC and Kosarak datasets

6 Conclusions

In this paper, we have studied the problem of releasing set-valued data against incre-
mental updates in the framework of differential privacy. Based on the update-bounded
mechanism, we first proposed an efficient algorithm IncTDPart for answering the in-
crementally counting queries with the help of taxonomy-based partitioning tree. We
dynamically maintained the tree to partition the incremental records. Then we proved
our algorithm that satisfied ε-differential privacy. Experiments on real datasets show
that our algorithm outperforms the two straightforward solutions. As the future work,
we will investigate how to preserve ε-differential privacy against incremental updates
for other application scenarios (e.g., releasing sequential data, and temporal data).

Acknowledgement. We sincerely thank Yin Yang (ADSC) for his comments.
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Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 48–63. Springer, Heidel-
berg (2006)

17. Xiao, X., Tao, Y.: m-invariance: Towards privacy preserving republication of dynamic
datasets. In: Proc. of the 27th International Conference on Management of Data (SIGMOD
2007), pp. 689–700 (2007)

18. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In: Proc. of the 29th International Conference on Management of Data (SIGMOD
2009), pp. 19–30 (2009)

19. Xiao, X., Bender, G., Hay, M., Gehrke, J.: iReduct: differential privacy with reduced relative
errors. In: Proc. of the 31th International Conference on Management of Data (SIGMOD
2011), pp. 229–240 (2011)

20. Gormode, G., Procopiuc, M., Srivastava, D.: Differentially private summaries for sparse data.
In: Proc. of the 15th International Conference on Database Theory (ICDT 2012), pp. 299–
311 (2012)

21. UCI machine learning repository, http://archive.ics.uci.edu/ml
22. Frequent itemset mining dataset repository, http://fimi.ua.ac.be/data/

http://archive.ics.uci.edu/ml
http://fimi.ua.ac.be/data/


Consistent Query Answering Based on Repairing

Inconsistent Attributes with Nulls

Jie Liu, Dan Ye, Jun Wei, Fei Huang, and Hua Zhong

Institute of Software, Chinese Academy of Sciences
Beijing, China 100190

{ljie,yedan,wj,huangfei06,zhongh}@otcaix.iscas.ac.cn

Abstract. Although integrity constraints can successfully capture data
semantics, the actual data in the database often violates such constraints.
A Consistent Query Answer (CQA) in a possibly inconsistent database
is an answer which is true in every minimal repair of the database. It has
been proved that for most constraints and queries CQA is a NP problem
based on repairing by tuple deletions or tuple insertions. Furthermore,
repairing by deleting tuples will also cause information losing. In this pa-
per we present a new repair semantics named repairing with nulls, which
replaces the inconsistent attribute values with nulls. To capture all the
inconsistent attribute values, we study the transitivity of nulls and pro-
vide an algorithm to extend the original constraints. Based on repairing
with nulls, there will be only one repair and CQA can be computed in
PTIME by SQL query rewriting. Finally, we study the performance of
our new approach for CQA by detailed experiments.

Keywords: Consistent Query Answering, integrity constraint, data se-
mantics, query rewritting.

1 Introduction

SQL queries are the basis of data analysis. When there are inconsistencies in the
database, the result will also be untrusted. There are two main approaches to
deal with the inconsistencies so far: Consistent Query Answering (CQA) [1,10,8]
which computes consistent answers without changing the database and data
cleaning [15] which repairs the original databases by some strategy. Data cleaning
techniques are used to identify the inconsistency and rectify errors to restore the
database to be consistent. Data cleaning has some limitations. For example,
maybe we have no writing privilege to the date source, maybe we have not
enough knowledge to resolve conflicts and maybe we would not like to change
the data source anyway.

CQA still have little real applications so far [6], because existing repair se-
mantic have no clear application semantics and most algorithms are of high
computing complexity. In this paper we will focus on applying CQA in statis-
tical analysis applications. When data are collected for analysis, each individ-
ual is corresponding to one real object but may be with incorrect attributes.
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Some attributes are inconsistent when we define some constraints. We present a
new repair semantic, that is to repair inconsistent attributes with NULL. Then
the dataset will restore to be consistent.

Example 1. Consider a database instance I1 in Figure 1 with two relations
order (oid, orderpri, shippri) and lineitem (lid, oid, quan,disc,iname) which are
integrated from autonomy databases of several sale departments and contain the
information about the custom orders. In order, oid is the key attribute, orderpri
is the priority of the order, and shippri whcih records the priority of the shipment
of each order entry. The priority is a positive value between 1 to 5 inclusive and
the lower value means the higher priority. In lineitem, lid is the key attribute,
quan is the quantity (quan) of the item in the order, (disc) is discount and
( iname) is name of the item. The value of disc ranges from 0 to 0.10 inclusive.
User specifies an integrity constraint: iff the quantity of the items in lineitem less
than 20 should not have order priority higher than 3 level, that is ic1: ∀xyzwuv
¬(order(x, y) ∧lineitem(u, y, v) ∧y < 3 ∧ v < 20). The entry in lineitem whose
quantity is less than 15 should not has discount more than 0.06, that is ic2: ¬
(lineitem(u, y, v, w) ∧ v < 15 ∧ disc > 0.06). The order with shipprio less than
3 should not be greater than 3, that is ic3: ¬ (order(x, y, z) ∧ z < 3 ∧ y > 3).

oid orderpri shippri

o1 o105 (2) [2]
o2 o210 5 5
o3 o110 (2) 3
o4 o101 3 4
o5 o211 4 4

lid oid quan disc iname

l1 L10 o105 (18) [0.07] book1
l2 L11 o210 12 0.03 cd1
l3 L12 o110 (16) 0.04 book1
l4 L13 o101 22 0.05 book1
l5 L14 o211 (14) (0.08) cd2

(t) the value t violating ics directly
[t] the value t impacted by transitivity of nulls

Fig. 1. The order and lineitem relations

By checking each integrity constraint independently, we find that tuple o1 and
l1 violate ic1, tuple o3 and l3 violates ic1 and tuple l5 violates ic2. According to
semantics of repairing with nulls, the orderpri ’s value of o1 and o3, the quan’s
of l1, l3, l5 and the disc’s value of l5 are repaired as null. All of these values are
surrounded by parentheses. Take o1 into account, the value of shippri less than
3, shippri(o1) < 3 |= true which means that its orderpri ’s value should not be
greater than 3 in order to satisfy ic3. Since the orderprio’s value of o1 is repaired
with null according to ic1, the shippri ’s value should be repaired with null to
satisfy ic3. With the same reason, due to disc(l1) > 0.06 |= true, the disc’s value
of l1 should be repaired as null according to ic2. These values are surrounded by
square brackets. Consider o3, the shipprio’s value is 3, which make ic3 satisfied.
Hence we consider the shipprio of o3 is consistent with the value unchanged.

If two integrity constraints (ics) have common attribute variables, the incon-
sistent attributes w.r.t one ic will influence the attributes in the other constraint.
We define this influence as transitivity of nulls. Hence, the integrity constraints
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should be extended to filter out all inconsistent attribute values. In section 3,
we will provide a algorithm to compute the extended ics.

The first step in repairing with nulls is to locate all the inconsistent attribute
values. We can rewrite the constraints to SQL clause to fetch the inconsistent
attribute values. However, if several constraints have common attributes, they
will influence each other. We define this issue as the transitivity of nulls and
present an algorithm to extend the original constraints. Then we can execute
the constraints in any order to get the same answers.

The target of this research is to compute consistent query answer from an
inconsistent database instance with the database unchanged. We provide the
SQL rewriting techniques to return CQA for the original queries rather than
repair the database really. Under this repair semantics we find there is only one
repair, hence CQA can be computed in PTIME.

The plan of the paper is as follows. In Section 2, we introduce basic concepts
and provide a precise definition of the semantics of repairing with nulls. In Sec-
tion 3, we illustrate the transitivity of nulls in details and provide an algorithm
to extend the constraints to deal with the transitivity. In Section 4 and Section
5, we give the SQL rewriting algorithms for non-aggregation queries and aggre-
gation queries respectively. In Section 6, we show our experiments design and
analyze the overhead of the rewriting. In Section 7, we briefly discuss related
work. Conclusion and a discussion of possible future research directions will be
provided in Section 8.

2 Preliminaries

In this paper, we only consider the denial constraints for the reason that most
common integrity constraints are of this form.

Definition 1. (Denial constraints [11]) Denial constraints are in the form of:

∀x̄1, . . . , x̄k,¬(P1(x̄1) ∧ · · · ∧ Pm(x̄m) ∧ φ(x̄1, . . . , x̄k))

WherePi is a relation predicate, x̄i is a sequence of attribute variables or constants
and φ(x̄1, . . ., x̄k) is a sequence of atomic formulas referring to built-in predicates,
such as x > 1, x = y etc. Ab denotes the set of attribute variables involved in φ,
andAr denotes the other attribute variables in the constraints. Note that, the func-
tional dependencies and exclusion constraints are of the above form.

Definition 2. (Inconsistent Attribute) A database instance I is consis-
tent, if I satisfies a set of integrity constraints IC, that is I |= IC; inconsistent
otherwise. A tuple t̄ is a consistent if I(t̄) |= IC, inconsistent otherwise. If t̄ is
inconsistent, Sic(t̄) is a set of integrity constraints which the inconsistent tuple t̄
violated, Av(t̄) is the set containing attribute variables in Ab of all ics in Sic(t̄).
Tuple t̄’s attribute v is inconsistent attribute if v ∈ Av(t̄); consistent otherwise.

Example 2. Consider example 1, I1 is inconsistent, o1 and l1 are inconsistent
tuples. Sic(o1) and Sic(l1) is {ic1}, Av(o1) is {orderpri} and Av(l1) is {quan}.
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Definition 3. (Repairing with Nulls) Consider a database instance I with a
set of integrity constraints IC. Given a tuple t̄, I(t̄) � IC, ∀ vi ∈ Av(t̄), replace
the vi’s value of t̄ with null.

If integrity constraints in IC are unrelated, that is they do not have common
attribute variables, we can filter out the inconsistent attribute values easily by
adding the constraints into the original quires.

Definition 4. (Transitivity of nulls) Consider two integrity constraints ici
and icj which have common attribute variables v̄. v̄i and v̄j denote attribute
variables only in each constraint respectively. There is a database instance I. t̄ is
an inconsistent tuple violating ic1, where v̄i, v̄ ∈ Av(t̄). φj(v̄j) is a conjunctive
sequence of atomic formulas referring to built-in predicates in icj . If φj(v̄j) |=
true, the v̄j ’s values of t̄ are inconsistent and should be repair with nulls.

Definition 5. (Database repair) Given an integrity constraints set IC and
an inconsistent database instance I. Inull is a repair of I w.r.t IC by nulls, if
Inull |= IC.

Definition 6. (Consistent Query Answering) Given a database instance I
with a integrity constraints set IC. A ground tuple t̄ is a consistent answer to a
query q over the database I, if Inull |= q(t̄). The definition is shown as follows:

CQAq
IC(I) = QAq(I ′)

3 Locating the Inconsistent Attributes

To filter out all the inconsistent attributes, the original ics should be extended.
If the attributes of tuples satisfy the extended ics, they are consistent. In this
section we provide an algorithm to compute the extension of ics. We illustrate
it with following examples.

Example 3. (ICs extension) Consider a database instance I with three in-
tegrity constraints:

ic1: ¬(P1(Ā1) ∧ φx(x) ∧ φv(v)),
ic2: ¬(P2(Ā2) ∧ ϕx(x) ∧ ϕy(y)),
ic3: ¬(P3(Ā3) ∧ ψy(y))

q is a query involving an attribute variable v. Ψ(v) is the extended ic about v for
query q, whose calculation process is shown as follows:

Ψ(v) = ¬{(P1(Ā1) ∧ [(φx(x) ∧ φv(v))
∨(P1(Ā1) ∧ φv(v) ∧ x = null)]} (3.1)

= ¬{P1(Ā1) ∧ [(φx(x) ∧ φv(v))
∨(φv(v) ∧ (P2(Ā2) ∧ ((ϕx(x) ∧ ϕy(y))

∨(ϕx(x) ∧ y = null))]} (3.2)
= ¬[(P1(Ā1) ∧ φx(x) ∧ φv(v))

∨(P2(Ā2) ∧ φv(v) ∧ ϕx(x) ∧ ϕy(y))
∨(P3(Ā3) ∧ φv(v) ∧ ϕx(x) ∧ ψy(y))] (3.3)
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ic1 is the directly relevant constraints involving v. ic1 and ic2 has common at-
tribute variable x, the inconsistent values of x w.r.t ic2 will impact the variable
v in ic1 which is shown is expression (3.1). Similarly, the inconsistent values of
y will impact the variable x in ic2 and then impact v in ic1, which is shown in
expression (3.2).

To generalize the previous example to an algorithm for all situations. Let us con-
sider how to handle the situation that the relationship of the integrity constraints
contains a cycle. We illustrate this in the next example.

Example 4. (Cyclic ICs extension)Wemodify the Ex 4 with another three ics:

ic1: ¬(P1(Ā1) ∧ φx(x) ∧ φz(z) ∧ φu(u)),
ic2: ¬(P2(Ā2) ∧ ϕx(x) ∧ ϕy(y) ∧ ϕv(v)),
ic3: ¬(P3(Ā3) ∧ ψz(z) ∧ ψy(y) ∧ ψw(w)).

Each ic has a common attribute variable with other two ics. Consider a query q
referring variable u. The extended ic Ψ(u) is computed as follows:

Ψ(u) = ¬[(P (Ā1) ∧ φx(x) ∧ φy(y) ∧ φu(u)) (3.4)
∨(P1(Ā1) ∧ φz(z) ∧ φu(u) ∧ x = null (3.5)

∨(P1(Ā1) ∧ φx(x) ∧ φu(u) ∧ z = null)]} (3.6)
(3.2) = P1(Ā1) ∧ φz(z) ∧ φu(u)

∧[(ϕx(x) ∧ ϕy(y) ∧ ϕz(z))
∨(ϕx(x) ∧ ϕv(v) ∧ y = null)]

= (P1(Ā1) ∧ P2(Ā2) ∧ φz(z) ∧ φu(u)
∧φ2(x) ∧ ϕy(y) ∧ ϕz(z))

∨(P1(Ā1) ∧ P2(Ā2) ∧ P3(Ā3)
∧φz(z) ∧ φu(u) ∧ ϕx(x) ∧ ϕv(v)

∧ψz(z) ∧ ψy(y) ∧ ψw(w) (3.7)
(3.3) = P1(Ā1) ∧ φx(x) ∧ φu(u)

∧[(ψz(z) ∧ ψy(y) ∧ ψw(w))
∨(ψz(z) ∧ ψw(w) ∧ y = null)]

= (P1(Ā1) ∧ P3(Ā3) ∧ φx(x) ∧ φu(u)
∧ψz(z) ∧ ψy(y) ∧ ψw(w))

∨(P1(Ā1) ∧ P2(Ā2) ∧ P3(Ā3)
∧φx(x) ∧ φu(u) ∧ ψz(z) ∧ ψw(w)

∧ϕx(x) ∧ ϕy(y) ∧ ϕv(v) (3.8)

After several extensions of atomic formula with nulls, Ψ(u) reaches a fixed point,
Ψ(u) = ¬((3.4) ∧ (3.7) ∧ (3.8)).

Proposition 1. Given a database instance I with a set of integrity constraints
IC. q is a query referring a sequence of attribute variables v̄ over the database
I. Ψ(v̄) is the extended constraint over v̄ according to transitivity of nulls. A
ground tuple t̄ is consistent to q, if and only if I(t̄) |= Ψ(v̄).

In the following section, we provide a algorithm base the IC Relational Graph
to compute the extended integrity constraints. Let us introduce the definition of
IC Relational Graph.
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Definition 7. (IC relational graph) Consider a set of integrity constraints
IC, G(Vic, E) is an Integrity Constraints Relational Graph (ICRG). gi denotes
node of ici and eij means that there are some common attributes involved both
in ici and icj , where gi ∈ Vic and eij ∈ E.

Algorithm 1. CalCons:Calculate the consistent constraint for the original query.
recvQueuei: the queue of gi storing the constraint expression from neighbor nodes;
curExpi: current extended constraint expression for gi;
Aq: the set of attributes involved in the query q;

foreach ici ∈ IC
recvQueuei := ∅
expChangedi := false

foreach ici ∈ IC
foreach p ∈ Aq

if p ∈ Ai

currExpi := calConjuctiveExp(ici,null,null)
foreach gj adjacent to gi

ENQUEUE(recvQueuej, currExpi)
while(there is a recvQueuei <> ∅)

tmpExp := DEQUEUE(recvQueuei)
foreach conjunctive clause c in tmpExp

if c is not implied by currExpi
currExpi := currExpi ∨ c
expChangedi := true

if c and ici has common attribute variables
newClause := calConjunctiveExp(ici, icj, c)
if newClause is not implied by currExpi

currExpi := currExpi ∨ newClause
expChangedi := true

if expChangedi = true
foreach gj adjacent to gi

ENQUEUE(recvQueuej, currExpi)
return currExp

Algorithm 2. CalConjuctiveExp(gi, gj, c): Calculate the extended conjunctive
expression.
gi, gj: the nodes of integrity constraint relational graph;
c: a conjunctive expression from gi to gj;

newClause := null
foreach attribute p ∈ c && p /∈ ici

newClause := newClause ∧ φi(p)
expChangedi := true

foreach built-in predicate φ(q) ∈ icj
newCluase := newClause ∧ φj(q)

return newClause
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Given a set of integrity constraints, we can form a IC Relational Graph (ICRG),
then compute the extended constraints for attribute variables. We present the
algorithm CalCon to compute extended constraints. First, the set of original
ics are represented as a ICRG. Each node g is associated with a recvQueue
which stores the constraints from the neighbor nodes and the currExp main-
tains the constraint ever calculated. Given a query q, Aq is the set of attribute
variables involved in q. If the ici of node gi directly referring the attributes
in q, gi is marked as a start of the calculation process. The currExpi is ini-
tialized with ici, and is pushed to the recvQueuej of the gi’s neighbor nodes.
When a node gj receives a constraint expression recvExp from its neighborhood,
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e1: ϕ1(x)∧ϕ1(y)∧ϕ1(u) e2: ϕ1(z)∧ϕ1(u)∧ϕ2(x)∧ϕ2(v)

e3: ϕ1(x)∧ϕ1(u)∧ϕ3(y)∧ϕ3(z)∧ϕ3(w)

e4: ϕ1(z)∧ϕ1(u)∧ϕ2(x)∧ϕ2(v)∧ϕ3(y)∧ϕ3(z)∧ϕ3(w)

e5: ϕ1(x)∧ϕ1(u)∧ϕ3(z)∧ϕ3(w)∧ϕ2(x)∧ϕ2(y)∧ϕ2(v)

Fig. 2. The execution of CalCons for Example 5
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first gj merges each conjunctive clause of recvExpj into currExpj if the clause
is not implied by currExpj . Then node gj extends the clauses which involve the
common variables of ancestor node with taking its constraint icj into consid-
eration together. If the new conjunctive clause is not implied in the currExpj ,
it is merged into currExpj and node gj refreshes neighbor’s recvQues. The al-
gorithm CalConjunctiveExp is used to generate the new conjunctive clause in
this process. Finally, Ψ(v̄) reaches a fixed point with each currExp has the same
value. In this process, the attribute variables can be pre-sorted, and conjunc-
tive clauses can be indexed to speed up the verification of implication of two
constraint expressions. Let us illustrate this algorithm by following example.

Example 5. The calculation process of Ψ(u) for example 4 is provided in Figure
5. As is shown, each node represents a denial integrity constraint, each edge is
marked with the common attribute variables of each two constraints. Node g1
is associated with query directly, and its recvQueuei is initialized with its own
constraint e1. Then, the node g1 calculates the current constraint ¬(e1) and
sends the result to its neighborhoods g2 and g3. This is shown in Figure 5(b).
Each expression ei is a conjunctive clause. The expression in the recvQueue is
followed by the calculation result surrounded by square brackets, if the original
expression is changed in the calculation process. When g2 and g3 receive the
expressions from g1, they compute the extended constraint expression and deliver
it to their neighborhoods if the expression changed. Finally, as Figure 5(f) shows,
the currExp of each node has the same value and recvQueue is empty.

4 Non-aggregation Query Rewriting

In this section, we illustrate the rewriting strategy for queries which not involve
any aggregation expressions. In section 5, we will consider the queries that include
aggregation. We illustrate the rewriting approach with the following example.

Example 6. (Ex1 continued) Consider a query Q3 over the database instance
of example 1. We want to retrieve the order id whose priority is greater than 2.

Q3 : select oid from order o
where g.orderpri > 2

Q3 involves attribute orderpri. According to algorithm CalCons, Ψ( orderpri)
is: ¬[order (oid, orderpri, shippri) ∧ lineitem (lid, oid, quan, disc) ∧ ((orderpri
< 3 ∧ quan < 20) ∨ (orderpri > 3 ∧ shipprio < 3) ∨ (orderpri < 3 ∧ quan
< 15 ∧ disc > 0.06))]. We merge the extended constraint Ψ( orderpri) into the
original query. The consistent query rewriting of Q3 is described as follows:
with Candidates as(

select * from order o

where o.orderpri > 2),

Candidates 1 as (

select * from Candidates cand join lineitem l on cand.oid = l.oid

where (cand.orderpri>= 3 or l.quan>= 20) and ( cand.orderpri<= 3 or cand.shippri

>= 3)),
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Candidates 2 as (

select * from Candidates 1 cand 1

where cand 1.orderpri >= 3 or cand 1.quan >= 15 or cand 1.disc <= 0.06))

select oid from Candidates 2

The subquery Candidates extracts the tuples satisfying the original query con-
ditions. The tuples that violate ic1 or ic3 directly are filtered out after the execu-
tion of subquery Candidates 1. The subquery Candidates 2 filter out the tuples
whose values of orderpri are impacted by the inconsistent values of quan accord-
ing to ic2. Finally, the last select clause return the result set on the projected
attribute oid.

Algorithm 3. ConsistentQuery(Q, IC): Get the consistent query answers.
Consider a query Q of following form:

select S from R
where W order by O

S: the list of attributes selected;
W: the where clause consisting of several predicates;
O: the list of attributes ordered by
AttrA := ∅
foreach attribute p ∈ S || p ∈ W || p ∈ O

AttrA := AttrA ∪ p
conExp := CalCons(Attr)
i := 0
foreach conjunctive expression c in conExp

Condidatesi+1 := CalCandidates(i, c)
i := i + 1

conAnsers := select S from Candidatesi order by O

ConsistentQuery is the rewriting algorithm for queries without aggregation ex-
pressions. Without loss of generality, we consider the queries without aggregation
in following form:

select S from R
where W order by O

Notice that, most of queries are of the above form. Although there are also some
queries with nested subqueries, most of them can be unnested.

First the procedure CalCons produces the extended integrity constraints Ψ(v̄)
for the attributes v̄ involved int the query. The Ψ(v̄) is a disjunctive expression
consisting of several conjunctive formulas. Second, we modify the original query
q to q′ with the order clause and projection removed, and then compute the re-
sult set of q′ as initial set of candidates. The purpose of removing projection is to
preserve the attributes which might be used in the following procedure of filter-
ing the inconsistent tuples. By only focusing on the candidates, we can reduce
the quantity of tuples for the following filtering sharply. For each conjunctive
expression c in Ψ(v̄), we filter out the tuples violating c. The tuples left are con-
sidered as candidates for the next iteration until all the conjunctive expressions
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are processed. Finally, we calculate the consistent query answers according to
the last set of candidates by adding projection and the order clause back.

The algorithm CalCandidates is to filter out the inconsistent tuples for a
conjunctive constraint expression. It takes two parameters as input: a set of
candidates and a conjunctive expression which should be satisfied. For each
relation predicate in conjunctive c, if it is not in the set of relations of the
input set of candidates, we join it with the candidates on certain attributes;
otherwise if it is already joined in the candidate but with other attributes, we
add a new equivalent expression on the join attributes to the where clause. Last,
the formulas referring to built-in predicates in c are merged into the whereClause
to filter the inconsistent tuples.

Algorithm 4. CalCandidates(i, c): For a given conjunctive clause c, calculate
the subquery Candidatesi
Rp: the set of relations which are included in Candidatesi;
Ap: the set of attributes which appear in relation predicates of c;
selectClause := null

WhereClause := null
joinClause := null
foreach relation predicate p in c

if p is not in Rp

joinClause := joinClause + “join p”
foreach attribute v ∈ p

if v ∈ c
joinClause := joinClause + “on p.a = CandidateSeti.a”

else if p is joined with other attributes
foreach join attribute vj

whereClause := whereClause + “and”+ candi.v = p.vj
foreach built-in predicate p in c

whereClause := whereClause + “and”+ tranPredictR(p)
CandidateSeti+1 as (select * from CandidateSeti + joinClause+whereClause)
return CandidateSeti+1

5 Aggregation Query Rewriting

In this section, we present rewriting strategy for the queries that may have
grouping and aggregation.

Example 7. (Ex1 continued) Consider a query Q4 that computes the average
percent of discount of all items in relation lineitem.

Q4: select avg(disc) as aveDisc
from lineitem

Take tuple l1 and l5 into consideration. As illustrated in example 1, the disc’s
value of l2 is inconsistent w.r.t ic1 and the value of l1 is inconsistent due to the
transitivity of null value of ic1. As we know, the value of disc is allowed with
a value between 0 and 0.1 inclusive. Both of the value of l1 and l5 are in the
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range. Hence we assume l′1 as l1’s repair: l′1(L10, o105, null, [0, 0.10], book1)
and l′5 as l5’s repair: l

′
5(L14, o211, null, [0, 0.10], cd2). The result for query Q4

is a range [0.026, 0.064].
The bound strategy for the aggregate expressions is used in [1,10], which

returns a range rather than a exact value. In this work, we also adopt this method
for queries with aggregation. Like [10], we consider SQL queries of following form:

select A, Agg(e1) as E1, · · · , Agg(ek) as Ek

from R
where W and group by A

Definition 8. (Consistent answer for aggregate expression) Consider
an inconsistent database instance I and a set of integrity constraints IC. q is
a query with aggregation expressions. Agg(E) is an aggregate expression. Icon
is a set of consistent tuples after applying consistent query on attributes which
are involved in aggregate expressions and Iincon is a set of inconsistent tuples.
Agg(E)(I) is computed as follows:

– Consider the situation that the domain of each attribute vi involved in aggre-
gation expression is finite. I ′con is a ranged set of Icon, where each tuple t̄ in
I ′con comes from Icon and its value of vi is a range whose bottom bound and
upper bound are both the original value of t̄. I ′incon is a ranged set of Iincon,
where each tuple t̄ in I ′incon comes from Iincon and its value of vi is a range
whose bottom bound is the bottom bound of DOM(vi) and upper bound is
the upper bound of DOM(vi). The consistent answers for Agg(E)(I) is:

Agg(E)(I) = Agg(E)(I ′con
⋃

I ′incon)

– If domain of some attributes is infinite or undefined, the consistent answers
for Agg(E) is:

Agg(E)(I) = Agg(E)(I ′con)

The algorithm ConsistentQueryAgg is for rewriting queries with aggregation and
grouping. Unlike algorithm ConsistentQuery, we calculate the extended con-
straints for the set of attributes in aggregation expressions and for the set of
attributes in non-aggregation expressions separately. If the attributes vi involved
in aggregation have a finite domain, the values of vi of inconsistent tuples should
be repaired with a range, whose bounds are the bounds of DOM(vi). This task
is finished by algorithm CalFilteredSet. The aggregation attributes of final con-
sistent tuples Candidatesn should be also modified with a range for the union
operations with the ranged FilteredSets. The bottom and upper bound values
of Candidatesn + 1 are both the original value. If the domain of the attributes
involved in aggregation is undefined, those attributes should be excluded for the
query.
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Algorithm 5. ConsistentQueryAgg(i, c):Calculate the
consistent answers for aggregation queries
Consider a query Q of following form:

select S, agg1(e1) as E1, ... , aggn(en) as En

from F where W
group by G order by O

AttrWGO := ∅
foreach attribute v ∈ W || v ∈ G || v ∈ O

AttrWGO := AttrWGO ∪ v
conWGO := CalCon(AttrWGO)
Candidates0 := ConsistentQuery(q′, IC)
foreach ei ∈ Q

AttrEi := ∅
foreach attribute v ∈ ei

AttrEi := AttrEi ∪ v
conEi := CalCons(AttrEi)

foreach i = 1 to |conE|
FilteredSeti := CalF ilteredSet(i, conEi)
Candidatesi := CalCandidates(i, conEi)
n := i

Candidatesn+1 as (
select S, v1 as bottom(v1), v1 as upper(v1)

,..., vn as bottom(vn), vn as upper(vn)
from Candidatesn)

conAnswers := select S,
agg1(e1) as E1, ... , aggn(en) as En

from (FilteredSet1 union all ...
union all FilteredSetn
union all Candidatesn+1)

from F where W
group by G order by O

Algorithm 6. CalF ilterSet(i, c): Calculate the
filtered set for given candidates.
Rp:the set of relations which are
in the candidates.
joinClause := ∅
foreach relation predicate p ∈ c

if p /∈ Rp

joinClause := joinClause + “join p”
foreach attribute v ∈ p

if v ∈ c
joinClause := joinClause +

“on p.a = CandidateSeti.a”
whereClause := ∅
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foreach built-in predicate pb ∈ c
whereClause := whereClause + “or”

tranPredict(pb)
FilterSeti+1 as (

select S, bottom(v1), upper(v1)
,..., bottom(vn), upper(vn)

from CandidateSeti
joinClause
whereClause)

return FilterSeti+1

6 Experiment

In this section, we report the results for the experiment in order to quantify the
overhead of the execution of the SQL rewriting generated by our algorithm.

6.1 The Setting for the Experiments

The experiment were performed on a Dell Optiplex 170L PC with a 2.8 GHz Intel
Pentinum 4 CPU and 1GB of RAM using oracle 10g as the relational database
under Windows XP Professional.

We present experimental results for queries 3, 6, 10, 12 14 which are taken
from the TPC-H specification. The queries in the TPC-H specification are pa-
rameterized. In the experiments, we used the values which the standard suggests
in all the queries. For each query, the number of relations in the from clause,
the number of attributes in the select clause and the number of attributes in
aggregate expressions are provided as follows.

We experimented with a number of inconsistent database, considering the
following parameters:

– The size s of the database. We considered database of 0.5GB, 1GB, 2GB
and 3GB. A database of 1GB has 8,661,245 tuples.

– The percentage p of the database that is inconsistent, For example on a 1GB
database instance where p is 30%, there are total about 2.5 million tuples
violate integrity constraints (ic). Without loss of generality, we assume each
constraint with same quantity of inconsistent tuples.

– The max number nr of the database relations involved in all connected sub-
graphs of ICRG. A connected subgraph is a component where each node
can reaches all of other nodes. More relations in a subgraph means that the
integrity constraints are more complicated.

DBGEN is a recommended data generator of TPC-H specification. It assigns
random values in the domain to some attribute of tuples and certain special
values to the others1. Hence we develop a program to create inconsistent database
instances based on DBGEN. The program works as follows. Support that we

1 The attribute o shippriority of all tuples in relation orders is initialized with 0.
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want to generate an instance of 0.5GB where p=30% on with three integrity
constraints. We use DBGEN to create a random database instance first. Then we
extract the inconsistent tuples. For each ic, if there are not enough inconsistent
tuples (0.05GB), we modify the consistent tuple into inconsistent, otherwise
change the extra inconsistent tuples into consistent.

Relation ProjAttrs AggrAttrs

Q3 3 4 1
Q6 1 1 1
Q10 4 8 1
Q12 2 3 2
Q14 2 2 2

Fig. 3. Propertes of queries

6.2 Experimental Results

In the rewriting queries, the common subquery expressions are specified in a
WITH clause. By this strategy, the result of these subquery are temporarily
stored rather than compute several times. Hence the execution time will im-
proved considerably.
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In Figure 4, we first compare the performance of all queries and rewritings
on a 1GB database and a IC set containing three integrity constraints, where
p = 10%, = 3, nr = 2. Each integrity constraint have common attributes with
each other. The increasing execution time ranges from 3.5%(Q3) to 61%(Q10)
except Q14. We argue that the size of candidates which satisfy the original query
condition with all grouping removed will impact the overhead of the rewritten
queries. In the algorithm ConsistentQuery, we remove all the grouping of original
query and take the result set as initial candidates for following computations.
The size of candidates for Q6 and Q10 is 114,705 and 114,160 and the sizes of
candidates for other queries are bellow 30 thousand. The reason for the exception
of Q14 is that there is like expression in where clause which takes high cost. The
rewriting of Q14 filters the inconsistent tuples to reduce the size of candidates
for the like operation.
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We also studied the effect of the amount of the relations in the IC Connected
Graph (ICG), we post four different groups of integrity constraints. Each group
has 4 ics and different amount of relations involved. In Figure 5, We report
results for one query (Q6) for 1GB database with 10% inconsistency since that
Q6 involves just one relation. The result shows that more relations involved in
a connected component of ICRG, the overhead of rewriting increases more fast.
This is caused by the join operations between different relations. However, in
most applications, the size of database relations involved in related integrity
constraints is small. Hence this will not bring too much overhead. In Figure 6,
we found that the percentage p has little influence on the execution time of the
original queries and the rewriting.

Finally, the scalability of CQA based on repairing with nulls is shown in Figure
7. We explored databases of 0.5GB, 1GB, 2GB, 3GB with 10% inconsistency and
an ic set of size 3. We report the execution time of the rewriting for queries Q3,
Q6, Q10 and Q12. The result shows that the running time grow in linear time
complexity with the size of the database.

7 Related Work

The notion of consistent query answer (CQA) is first defined in [4] based on prov-
ability in minimal logic. [1] proposes a query rewriting algorithm for quantifier-
free first-order logic under binary universal integrity constraints and provides
the proof of completeness, soundness and termination in theory. Since [1] there
have been plenty of researches in computational complexity of CQA [7,14,13]
and some consistent query system with powerful logic, such as [16]. However
these programs focus on expressiveness of constraints and queries rather than
scalability. Most of this system are only applicable for small size database due
to the high computational complexity.

The database repairs considered so far have not explicitly consider that a
database may have nulls. [3] used a different, more syntactic approach that
simulates SQL nulls within a logic programming method to repair specifications.
In our work, we provide a formal definition of repair semantics with nulls and a
rewriting algorithm under denial integrity constraints.
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ConQuer [10] is a CQA system using sql rewriting. It proposes a rewriting al-
gorithm for C forest queries in a limited context that each relation has at most
one key function dependency. Hippo [8] is another system, which uses conflict-
hypergraph to computes the consistent answers by a Java programm rather than
existing database system. This method is infeasible for large-scale database due to
high computational complexity andmemory cost for constructing the hypergraph.

There are also considerable work in repairing the inconsistent database. [2]
presented a approach to repair the values of attributes automatically, they are
both based on certain cost functions and distance definitions to “guess” the
suitable value of inconsistent attributes. [17] introduce a method to construct a
nucleus: a single database to rectify errors within a tuple. However these methods
are still with considerably high computational complexity.

8 Conclusion and Future Work

In this paper, we first present a repair semantics that can by applied to statisti-
cal analysis. Then we provide a rewriting algorithm for queries with respect to
denial integrity constraints to fetch consistent answering. The experiment shows
that our approach is feasible and efficient for various queries under different per-
centage of inconsistency and large-scale database by utilizing existing database
system. We will continue to research on how to apply CQA in real application
with properly repair semantics.
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Abstract. The Skyline query and its variants have been extensively explored in 
the literature. Existing approaches, except one, assume that all dimensions are 
available for all data items. However, many practical applications such as sensor 
networks, decision making, and location-based services, may involve incomplete 
data items, i.e., some dimensional values are missing, due to the device failure or 
the privacy preservation. In this paper, for the first time, we study the problem of 
efficient k-Skyband (kSB) query processing on incomplete data, where 
multi-dimensional data items are missing some values of their dimensions. We 
formalize the problem, and then present several efficient algorithms for tackling 
it. Our methods employ some novel concepts/structures (e.g., expired skyline, 
shadow skyline, thickness warehouse, etc.) to improve the search performance. 
Extensive experiments with both real and synthetic data sets demonstrate the 
effectiveness and efficiency of our proposed algorithms.  

1 Introduction  

Skyline query has been shown as a powerful tool in many applications involving 
multi-criteria decision making. Given a set S of multi-dimensional data objects, a 
skyline query returns all the objects that are not dominated by any other object in S. 
Here, an object o dominates another object o′ iff o is not worse than o′ in all dimensions 
and strictly better than o′ in at least one dimension. A classical example of hotel 
reservation system is depicted in Figure 1(a), where each point in a 2D space 
corresponds to a hotel record. The x-axis captures the distance (of every hotel) to the 
beach, while the y-axis represents its room price. In this case, hotel d dominates b since 
d is cheaper and closer to the beach. As hotels d, h, and j are not dominated by any 
other hotel, they constitute the skyline of the set S = {a, b, c, d, e, f, g, h, i, j}. All these 
skyline hotels offer more interesting and preferable choices for users.  

The Skyline query and its variants have been extensively explored in the literature. 
Existing approaches, except one [11], assume that all dimensions are available for all 
data items. However, incomplete data items exist in many real applications such as 
sensor networks, decision making, and location-based services, i.e., some dimensional 
values are missing, due to the device failure or the privacy preservation. For instance, 
when people are invited to fill out a form (e.g., questionnaire), some ones are not 
willing to provide their privacy information (e.g., age, occupation, etc.). Hence, the  
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Fig. 1. Illustration of skyline and k-Skyband queries 

data in the questionnaire might be incomplete. Another example is that, in a sensor 
network, sensor data cannot be captured at a certain timestamp because of the device 
failure. Thus, the sensor data may also be incomplete. Motivated by these, query 
processing over incomplete data has been paid attentions by the database community 
[1, 4, 10, 11, 15, 20]. In addition, skyline queries on incomplete data may not report all 
of the desirable objects, due to the non-transitive and cyclic of the dominance 
relationship (to be further discussed in Section 3).  

In this paper, for the first time, we study the problem of k-Skyband (kSB) query 
processing on incomplete data, which retrieves the incomplete objects that are 
dominated by at most k other objects. Our problem is inherently different than the 
existing uncertain queries. First, the uncertainty is expressed in terms of probabilities. 
Second, the uncertain query assumes that the probabilities for some data items have 
been specified for the original dataset. However, in practical applications (e.g., Google 
Squared), it is usually not easy for each data item to set the probabilities. Consequently, 
the algorithms for processing uncertain queries are not applicable to the kSB query 
over incomplete data.  

A naive solution is to use bucket to partition the whole dataset according to the 
bitmap, and then compute the k-Skyband of the dataset. Unfortunately, this solution is 
inefficient for a large data set due to the exhaustive comparisons. To address this, we 
propose (i) the Virtual Point based algorithm (VP), which uses the concepts/structures 
of virtual point, expired skyline (ES), and shadow skyline (SS); and (ii) the k-iSkyband 
algorithm (kISB), a specific algorithm designed for the kSB query on incomplete data, 
which employs two novel concepts/structures, namely, thickness warehouse (TW) and 
ES, to further improve the search performance. In brief, the key contributions of this 
paper are summarized as follows:  

 We identify the problem of kSB query processing in the context of incomplete 
data. To the best of our knowledge, there is no prior work on this problem.  

 We formalize the kSB query over incomplete data, and analyze its properties.  
 We utilize some novel concepts/structures (e.g., ES, SS, TW, etc.), and propose 

several efficient algorithms to compute k-Skyband objects.  
 We conduct extensive experimental evaluation using both real and synthetic data 

sets to verify the effectiveness and efficiency of our proposed algorithms.  

The rest of the paper is organized as follows. Section 2 briefly reviews the related work. 
Section 3 presents the problem formulation and its characteristics. Section 4 elaborates 
three algorithms for efficiently processing the kSB query on incomplete data, and 
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discusses their correctness and time complexities. Extensive experiments and our 
findings are reported in Section 5. Finally, Section 6 concludes the paper with some 
directions for future work.  

2 Related Work 

In this Section, we overview the existing work related to the kSB query on incomplete 
data, namely, traditional skyline queries, skyline queries over uncertain data, and 
queries on incomplete data.  

Traditional Skyline Queries. Borzsonyi et al. [3] first introduce the skyline operator 
into the database community, and develop two algorithms, i.e., Block Nested Loops 
(BNL) and Divided-and-Conquer (D&C), for computing the skyline. Chomicki et al. 
[6] present the Sort-Filter-Skyline (SFS) algorithm that is an improved version of BNL. 
Bartolini et al. [2] propose the Sort and Limit Skyline algorithm (SaLSa) to avoid 
scanning the complete set of sorted data objects. Kossmann et al. [12] develop a 
Nearest Neighbor (NN) approach to obtain the skyline using an R-tree. Papadias et al. 
[16] improve the NN method, and propose a Branch and Bound Skyline (BBS) 
algorithm to retrieve the skyline by traversing the R-tree once in the best-first manner. 
Zhang et al. [23] investigate a dynamic indexing technique for skyline objects. 
Recently, many variations of the skyline operator have also been extensively explored, 
such as k-Skyband [16], reverse skyline [7], reverse k-Skyband [14], subspace skyline 
[18], metric skyline [5, 8], to name but a few. Unfortunately, none of all these 
algorithms is designed to aim at incomplete data.  

Skyline Queries on Uncertain Data. Pei et al [17] first introduce the skyline query 
over uncertain data, and develop the bounding-pruning-refining techniques to handle it 
efficiently. Lian and Chen [13] investigate the probabilistic reverse skyline query in 
both monochromatic and bichromatic fashion. Zhang et al. [22] explore efficient 
skyline computation against sliding windows on uncertain data stream, using the 
specified probability thresholds. Recently, ranking with uncertain score functions [21] 
and probabilistic threshold query [19] are studied as well. Nonetheless, as pointed out 
in Section 1, these problems differ from ours because the uncertainty is expressed in 
terms of probabilities, while the incompleteness means some dimensional values of the 
data items are missing without the knowledge of probabilities. Therefore, the above 
algorithms cannot be used to solve our problem.  

Queries on Incomplete Data. The most related work to ours is the problem of skyline 
query over incomplete data [11]. Specifically, Khalefa et al. [11] define the dominance 
relationship on incomplete data, and describe the non-transitive and cyclic properties. 
Then, three algorithms, namely, Replacement, Bucket, and ISkyline, are proposed, and 
the ISkyline algorithm performs the best. Other queries over incomplete data include 
ranking queries [20] and top-k queries [9]. In addition, Imielinski and Lipski [10] 
discuss the fundamental concept of c-table and its restrictions to simple tables with 
variables. Indexes on incomplete databases are studied in [4, 15]. Antova et al. [1] 
present the World-set Algebra language that can map from a complete database to an 
incomplete one. To our knowledge, this is the first attempt on the problem of 
k-Skyband query processing over incomplete data.  
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3 Problem Formulation  

In this section, we present the dominance relationship over incomplete data, and then 
formally define the k-Skyband query on incomplete data.  

For complete data, an object o dominates another object o′ iff o is not worse than o′ 
in all dimensions, and strictly better than o′ in at least one dimension. For incomplete 
data, however, with the existence of incomplete dimensional values, the traditional 
definition of dominance relationship is not applicable any longer. Without loss of 
generality, we assume that the smaller value is better, and at least one dimensional 
value of any data object is known. Based on the two assumptions, the dominance 
relationship over incomplete data is defined below.  

Definition 1 (Dominance Relationship on incomplete data) [11]. Given any two 
D-dimensional objects o and o′, with missing values on some dimensions, and let o.[i] 
be the i-th dimensional value of o, object o dominates another object o′ if the following 
two conditions hold: (1) for all dimensions i, either o.[i] is unknown and/or o′.[i] is 
unknown, or o.[i] ≤ o′.[i]; and (2) there is at least one dimension j (≠ i), where both o.[j] 
and o′.[j] are known, and o.[j] < o′.[j].  

In the rest of paper, we use a dash “-” to represent a missing value. For example, a 
three-dimensional object o is denoted as (-, 5, 3), if its first dimensional value is missing 
and the last two dimensional values are 5 and 3. For example, object m = (-, 4, 5, -) is 
said to dominate object n = (4, 6, -, 8) since m.[2] (= 4) < n.[2] (= 6) satisfies. As another 
example, considering two objects p = (-, 6, 8, -) and q = (4, -, -, 7), they do not dominate 
each other as they do not have common known dimension.  

Unfortunately, as pointed out in [11], the dominance relationship over incomplete 
data loses the transitivity, which is the basis of almost all previous skyline query 
processing algorithms. Furthermore, there may have a cyclic dominance relationship, 
meaning that none of the objects of a data set is considered as a skyline object. 
Consider, for instance, object l = (5, -, 4, 10) and the aforementioned objects m and n. 
According to Definition 1, n dominates l since both n.[1] < l.[1] and n.[4] < l.[4] hold, 
and l dominates m due to l.[3] < m.[3]. Nevertheless, as mentioned above, when 
comparing n with m, m dominates n (rather than n dominates m), indicating that the 
dominance relationship on incomplete data is cyclic (i.e., non-transitive). In this case of 
cyclic dominance, none of the three objects can be considered as a skyline object.  

Take a data set S = {m, n, l} as an example. If we assume that all the missing values are 
3, namely, m = (3, 4, 5, 3), n = (4, 6, 3, 8), and l = (5, 3, 4, 10) in which the numbers with 
underlines represent the missing values, then we observe that all the three objects are 
skyline objects, since they are not dominated by each other. Thus, the results reported by 
the skyline query on incomplete data may ignore some qualified objects, because a 
desirable object may be discarded by the algorithm if an important and essential value is 
missing. Consequently, the skyline query over incomplete data can not offer all the 
desirable choices due to the non-transitive and cyclic dominance relationship. On the 
other hand, some objects in the result returned by the skyline query on incomplete data 
may also be the unqualified objects. For example, consider a data set E = {e1, e2, e3}, 
where e1 = (-, 4, -, 2), e2 = (5, -, 3, -), e3 = (3, 7, -, -). It is easy to say that e1 is the skyline of 
the data set E. However, if e1 = (6, 4, 5, 2). e2 = (5, 2, 3, 1), and e3 = (3, 7, 3, 2) in the real 
complete data set, objects e2 and e3 (instead of e1) are the skyline of the data set.  
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In order to get the most desirable objects and provide more preferable choices for 
users, the k-Skyband query provides an opportunity, which can get more interesting 
objects. Motivated by this, in this paper, we investigate the problem of k-Skyband 
query over incomplete data, and formalize it as follows.  

Definition 2 (k-Skyband query on incomplete data). Given a D-dimensional object 
set S where every object is missing some value(s) of its dimension(s), but has at least 
one known dimension, a k-Skyband (kSB) query over S find the set of k-Skyband objects 
Ssb ⊆ S such that each object o ∈ Ssb is dominated by at most k objects in S, while every 
object o′ ∈ S – Ssb is dominated by more than k objects in S.  

Actually, the argument k is a parameter of skyline thickness. In particular, the skyline 
query is a conventional k-Skyband query when k = 0. For instance, Figures 1(a) and 
1(b) illustrate the examples of 0-Skyband query (i.e., Skyline) and 2-Skyband query 
(on complete data), respectively. In Figure 1(b), the object b belongs to the result of the 
2-Skyband query as only two objects d and h dominate the object b. Nevertheless, the 
object e does not belong to the result of the 2-Skyband query since it is dominated by 
three objects f, h, and j.  

In addition, like [11], we also utilize the bitmap vector for ease of representation and 
computation. A D-dimensional incomplete object corresponds to a bitmap vector of D 
bits, in which 1 and 0 denote the complete dimension and incomplete dimension, 
respectively. As an example, the bitmaps of the previous objects m = (-, 4, 5, -), n = (4, 
6, -, 8), and l = (5, -, 4, 10) are 0110, 1101, and 1011, respectively. Hence, the two 
objects are comparable iff the bitwise-and of their bitmaps is not zero. For example, 
objects m and n are comparable as 0110 AND 1101 is 0100.  

4 Algorithms for kSB Queries on Incomplete Data  

In this section, we present three algorithms, namely, Baseline algorithm, Virtual Point 
based algorithm (VP), and k-iSkyband algorithm (kISB), for answering kSB queries 
over incomplete data, and then, analyze the correctness and time complexities of our 
proposed algorithms, respectively.  

Since the dominance relationship on incomplete data is non-transitive and cyclic 
(mentioned in Section 3), we cannot directly apply the existing traditional kSB query 
algorithm [16] to tackle our problem. Similar to the bucket algorithm [11], a naïve 
solution is to partition all input objects into different buckets and the objects in every 
bucket have the same bitmap, and then utilize the traditional kSB query algorithm to 
compute the k-Skyband for the objects in the same bucket by ignoring all incomplete 
dimensions. Here, we call a set of k-Skyband for each bucket as the local k-Skyband set 
(LkSB), all the local k-Skyband sets as the candidate k-Skyband set (CkSB), and the 
final result as the global k-Skyband set (GkSB).  

Consider, for instance, Figure 2, where 40 objects are divided into 5 buckets A, B, C, 
D, and E, based on their bitmaps. First, we compute L2SB (k = 2) for every bucket, 
denoted by the shaded area in Figure 2. Overall, we have 27 local 2-Skyband objects in 
C2SB. Then, we conduct exhaustive pairwise comparisons in C2SB to discard the 
unqualified candidate 2-Skyband objects in C2SB. Finally, in order to refine the final 
result, for each remaining candidate object in C2SB, we compare it with the local  
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Fig. 2. Example of Baseline algorithm 

non-2-Skyband objects of the comparable buckets, after which G2SB = {A3, A5, B5, C2, 
D4, E6} as the 2-Skyband of the specified 40 objects.  

Recall that the example above, our Baseline algorithm has three phases: (1) Phase 1: 
Objects are partitioned into different buckets according to the bitmap, and LkSB is 
computed for every bucket. (2) Phase 2: In CkSB, objects are conducted exhaustive 
pairwise comparisons to prune unqualified candidates. (3) Phase 3: GkSB is obtained 
after comparing the remaining qualified objects in CkSB against all the local non-kSB 
objects. However, the Baseline algorithm is very inefficient, due to the prohibitive 
comparisons involved in Phase 2, especially for larger volume of CkSB.  

Motivated by this, we develop two efficient algorithms, i.e., VP and kISB, for 
processing the kSB query over incomplete data. Our methods have no assumption of 
index availability and data pre-processing, and employ some novel techniques (e.g., 
thickness warehouse, expire skyline, etc.) to improve the search performance.  

4.1 Virtual Point Based Algorithm  

Given the fact that Baseline algorithm ignores the correlation among buckets, which 
may result in many objects in CkSB, we propose a new algorithm, namely, VP, which 
uses three concepts/structures, i.e., virtual point, ES, and SS, to reduce the number of 
comparisons. Before presenting VP, we briefly explain them.  

The virtual point is employed to reduce the number of the objects in LkSB and thus 
the number of the objects in CkSB. The number of comparisons in CkSB significantly 
decreases accordingly. A virtual point is that when local kSB objects s, r in CkSB are 
from different buckets S, R, and s dominates r, the virtual point of s will be added to the 
bucket R for reducing the number of objects in the LkSB of S. As shown in Figure 2, A2 
and B1 in L2SB are from different buckets, and A2 dominates B1. Hence, we insert the 
virtual object of A2, denoted by A2v (as shown in Figure 3), into the bucket B, after 
which B3 is no longer a 2SB object in B since it is dominated by B1, B4, and A2v. Here, 
A2v = (-, -, 1, 3), which only maintains the values on the same dimensions as bucket B, 
and other dimensional values are represented as “-”.  

Similarly, we utilize the expired skyline (ES) to reduce the number of comparisons 
involved in CkSB. ES is to keep the discarded objects when performing comparisons  
in CkSB. As depicted in Figure 3, for example, A4 is already dominated by A2 and A3  
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Algorithm 1. Virtual Point Based Algorithm (VP)
Input: an incomplete data set S, a parameter k
Output: the result set GkSB of the kSB query on S  
1: initialize sets CkSB = ES = SS = GkSB = ∅  
2: repeat  
3:    read object o from S  
4:    node N ← node corresponding to the bitmap of o  
5:    if N = NULL then  
6:       create and initialize node N with the bitmap of o  
7:    end if  
8:    is-local ← Is-LkSB(o, N), or add o to SS if necessary  
9:    if is-local = TRUE then  

10:       Insert-CkSB(o), or add o to ES if necessary   // using virtual point  
11:    end if  
12: until the end of S  
13: Insert-GkSB-with-ES(CkSB, ES)   // using ES  
14: Insert-GkSB-with-SS(CkSB, SS)   // using SS  
15: Get-GkSB(CkSB)   // using Lemma 1  
16: return GkSB  
 

in a bucket A. If we now evaluate A4 and compare A4 with C2 in C2SB (k = 2), we 
identify that C2 dominates A4, and thus A4 is not a 2-Skyband object any more, and it is 
pruned away and is preserved in ES to avoid unnecessary comparisons later. After 
finishing all the comparisons among the objects in CkSB, the remaining candidate 
objects are compared against the objects in ES to further refine the result.  

For each bucket, we utilize the shadow skyline (SS) to store the objects which are 
dominated by more than k virtual objects, but are the real local skyline objects without 
taking into account virtual points. As an example, in Figure 3, an object D2 is kept in the 
SS of a bucket D because, D2 is dominated by virtual points A2v, A3v, A5v, B4v, and B5v, 
and it is not dominated by any other object in D. In this way, after the candidate object 
A3 compares with D2, it is unnecessary for A3 to compare against the objects D6, D7, and 
D8 in the local non-kSB set of D, since there is no any object in D that can dominate A3 
yet. Here, it is worth noting that, the local non-kSB set is different from that in the 
baseline algorithm. In particular, it keeps the local non-kSB objects but not in SS with 
considering virtual points. Using SS, the candidate objects compare against SS before 
they compare with the local non-kSB set of every bucket, in order to avoid the 
comparisons with the local non-kSB set of unnecessary buckets. However, which is the 
unnecessary bucket? We answer it in Lemma 1 below.  

Lemma 1. Assume that a candidate k-Skyband object o has compared against the 
objects in the SS of a bucket B. If o is not dominated by any object in B, there is no 
object in B dominating o. Here, we call B is the unnecessary bucket w.r.t. o.  

Proof. Assume that there exists an object b in the bucket B that dominates o but have 
not compared with o yet, the object b must be one of three cases: (1) Case 1: b belongs 
to the LkSB of B. For a local k-Skyband object, b has been added to CkSB, and hence it 
must compare against o either in CkSB or in ES, which contradicts with the 
assumption. (2) Case 2: b is in the SS of B. Clearly, this case cannot happen. (3) Case 
3: b is preserved in the local non-kSB set of B. Then, there must exist an object b′ that 
belongs to the LkSB of B and dominates b. Due to Case 1, this case cannot take place. 
Consequently, the proof completes.   
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Fig. 3. Example of VP algorithm 

The pseudo-code of VP algorithm is shown in Algorithm 1. It takes an incomplete 
data set S and a parameter k as inputs, and returns the result set GkSB of the kSB query 
over S. Initially, VP initializes sets CkSB, ES, SS, and GkSB (line 1). It then evaluates 
sequentially the objects in S (lines 2-12). For each object o ∈ S, VP gets the node N that 
corresponds to the bitmap of o, or creates N if it has not been created previously (lines 
4-7). Next, the function Is-LkSB(o, N) is called to determine whether o is a local kSB 
object, or if necessary, add o to the set SS (line 8). If yes, VP invokes the function 
Is-CkSB(o) to decide whether it inserts o into the set CkSB, or store o in the set ES if 
necessary (lines 9-11). Also, the virtual point of o is added to the corresponding buckets 
if necessary. Thereafter, functions Insert-GkSB-with-ES(CkSB, ES), 
Insert-GkSB-with-SS(CkSB, SS), and Get-GkSB(CkSB) are used to refine CkSB and 
obtain GkSB by comparing all candidate objects in CkSB against all objects in ES, SS, 
and the local non-kSB set of necessary buckets (lines 13-15). Finally, the query result 
set GkSB is returned, and the algorithm terminates (line 16).  

Example 1. Figure 3 depicts the example of VP algorithm, where the deep shaded area, 
the light shaded area, and the white area in each bucket represent virtual points and 
LkSB, SS, and the local non-kSB set, respectively. Also, the sets CkSB and ES are 
illustrated in Figure 3, after evaluating all objects. Note that, the number of objects in 
CkSB reduces significantly to 6 from 27, and the objects in CkSB are the actual result.  

4.2 k-iSkyband Algorithm  

It is worth pointing out that, in VP, virtual point may incur the redundant storage and 
comparisons, since the virtual point of a real data object might be inserted into many 
buckets and compare with the objects in those buckets. Motivated by this, we develop 
another novel algorithm, namely, kISB, which exploits the characteristic of k-Skyband 
to efficiently prune the unqualified objects in CkSB as early as possible, and employs 
the two concepts/structures, i.e., TW and ES (discussed in Section 4.1), to improve the 
efficiency of the search. We explain TW briefly before discussing kISB.  
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Algorithm 2. k-iSkyband algorithm (kISB)

Input: an incomplete data set S, a parameter k
Output: the result set GkSB of the kSB query on S  
1: initialize sets TW = ES = GkSB = ∅  
2: repeat  
3:    read object o from S  
4:    node N ← node corresponding to the bitmap of o  
5:    if N = NULL then  
6:       create and initialize node N with the bitmap of o  
7:    end if  
8:    Is-LkSB(o, N)  
9: until the end of S  

10: hash the objects in all LkSBs into TW based on their dominated times  
11: Get-Candidate(TW), or add o to ES if necessary  
12: Insert-GkSB-with-ES(TW, ES)   // using ES  
13: Get-GkSB(TW)   // using Lemma 2  
14: return GkSB  

 
In order to avoid the exhaustive comparisons in CkSB, kISB hashes the objects in all 

LkSBs into TW according to their dominated times. Also, a special comparison 
criterion is defined based on TW. The comparison criterion is that the objects with 
more dominated times are verified earlier, and they are compared against the objects in 
ascending order of the dominated times. The reason is that the objects with more 
dominated times can be easily validated unqualified ones, and the objects with less 
dominated times have more powerful dominance capacity. For example, as illustrated 
in Figure 4, TW consists of three heaps storing the objects whose dominated times are 
0, 1, and 2, respectively, in which the hash key of each heap is the dominated times. 
Then, we first compare the objects in the heap of key = 2 with the objects in the heap of 
key = 0, instead of comparing object pairs in the heap of key = 0. In this way, the total 
number of comparisons is reduced significantly.  

Like VP, ES is also utilized to improve the performance of kISB. For instance, as 
shown in Figure 2, since there is no object from other buckets that dominates B5 yet if 
the comparisons between B5 and the objects in ES are finished, it is unnecessary for B5 
to compare against the LkSBs of the other four buckets. Similar to VP, we derive 
Lemma 2 to avoid comparing the remaining objects in TW with the local non-kSB set 
in unnecessary buckets (involved in the last phase of the Baseline algorithm).  

Lemma 2. For any object o (from a bucket O) in TW, if there is no object o′ (from a 
bucket O′ ≠ O) in TW or ES which dominates o, all the objects in O′ do not dominate o, 
i.e., there exists no object in O′ dominating o.  

Proof. Assume that there is an object s in the bucket O′ which dominates the object o 
but not in TW or ES. According to kISB, the object s belongs to the local non-kSB set 
of O′, as all local kSB objects have been inserted into TW or ES. Thus, s is dominated 
by more than k objects, meaning that there exists an object r in the LkSB of O′ which 
dominates s, and r must be in TW or ES. Since s dominates o, r dominates o due to s 
and r sharing with the same bucket. There exists an object r in TW or ES that 
dominates o, which contradicts with the condition of Lemma 2. Consequently, the 
proof completes.  
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Fig. 4. Example of kISB algorithm 

The pseudo-code of kISB algorithm is presented in Algorithm 2. In the first place, 
kISB initializes sets TW, ES, and GkSB (line 1). Then, it evaluates sequentially the 
objects in an input incomplete data set S (lines 2-9). For each object o ∈ S, kISB finds 
its corresponding node N using the bitmap of o (line 4), or create N if it does not exist 
currently (lines 5-7). Next, the function Is-LkSB(o, N) is invoked to insert the object o 
into the LkSB of the node N if o is a local kSB object (line 8). kISB proceeds in the same 
manner until the end of S. Thereafter, kISB hashes the objects in all LkSBs (i.e., CkSB) 
into TW based on their dominated times (line 10), calls Get-Candidate(TW) to conduct 
the comparisons in TW according to the aforementioned comparison criterion, or if 
necessary, add o to the set ES (line 11), uses Insert-GkSB-with-ES(TW, ES) to compare 
the objects in TW with the objects in ES, for refining the candidate objects (line 12). 
Finally, kISB employs Get-GkSB(TW) to obtain and return the query result GkSB, by 
comparing the remaining candidate objects in TW against the local non-kSB objects of 
necessary buckets based on Lemma 2 (lines 13-14).  

Example 2. Back to the running example illustrated in Figure 2, where the deep shaded 
area represents the LkSB of each bucket. Also, GkSB, ES, and TW involved in kISB are 
depicted in Figure 4. As the thickness parameter k is 2, the TW contains three heaps 
based on the dominated times of every object. The objects in the same heap have the 
same key (i.e., the dominated times). For example, the objects A2, A3, and A5 in the same 
heap have the same dominated times 0. According to the comparison criterion, the 
objects in the heap of key = 2 are firstly selected (e.g., C1), and then, the object C1 
compares with some object in the heap of key = 0 (e.g., A5). Since A5 dominates C1, the 
dominated times of C1 increases 1, and thus, C1 is inserted into ES and removed from 
TW. kISB proceeds in the same fashion until all the objects in TW have been evaluated. 
In the end, the result set GkSB is returned after comparing the remaining objects in TW 
with the objects (needed to be compared) in ES and local non-kSB set of unnecessary 
buckets, and the algorithm terminates.  

4.3 Discussion  

In this subsection, we prove the correctness of our proposed algorithms (i.e., Baseline, 
VP, and kISB), and then analyze their time complexities.  

Theorem 1. All the proposed algorithms find exactly the actual k-Skyband objects on 
incomplete data, i.e., every algorithm has no false negatives and no false positives.  

Proof. First, no result is missed (i.e., no false negatives) as only unqualified objects are 
eliminated by the dominance relationship over incomplete data (see Definition 1), and 
only unnecessary buckets are pruned by Lemmas 1 and 2. Second, all the objects that 
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can be the k-Skyband objects are evaluated by comparing them against all other objects 
in order to ensure no false positive.   

Let |S| be the cardinality of a dataset S, α be the average cost of inserting an object into 
its corresponding bucket, χ be the average number of objects needed to be compared in 
the sets CkSB (TW), and β be the average cost of refining the qualified objects in CkSB 
(TW) for obtaining the final result.  

Theorem 2. The time complexity of the algorithms Baseline, VP, and kISB is O(|S| × α 
+ χ2 + β), O(|S| × αVP + χVP

2 + βVP), and O(|S| × α + χkISB
2 + βkISB), respectively.  

Proof. For the Baseline algorithm, it takes O(|S| × α) to insert all of the objects into 
their corresponding buckets; O(χ2) to conduct the comparisons in CkSB; and O(β) to 
compare the remaining candidate objects in CkSB with the local non-kSB objects of 
their corresponding buckets. Hence, the total time complexity of Baseline is O(|S| × α 
+ χ2 + β). For the VP algorithm, it takes O(|S| × αVP) to insert all of the objects into  
their corresponding buckets, where αVP is larger than α due to virtual points; O(χVP

2) to 
perform the comparisons in CkSB, where χVP is smaller than χ as the number of 
candidates objects needed to be compared is reduced by using the virtual points; and 
O(βVP) to obtain the final result by the comparisons between the remaining candidate 
objects and all the objects in ES, SS, and the local non-kSB objects of their 
corresponding buckets, where βVP is smaller than β due to ES, SS, and Lemma 1.  
Thus, the total time complexity of VP is O(|S| × αVP + χVP

2 + βVP). For the kISB 
algorithm, it takes O(|S| × α) to insert all of the objects into their corresponding buckets 
(similar as Baseline); O(χkISB

2) to conduct the comparisons in CkSB, where χkISB is 
smaller than χVP as the number of candidates objects needed to be compared is further 
reduced by using TW. Also, O(βkISB) is needed to compare the remaining candidate 
objects in TW against the objects in ES and the local non-kSB objects of the 
corresponding buckets. Here, βkISB is smaller than β since kISB uses ES and Lemma 2 
to reduce the unnecessary comparisons. Therefore, the total time complexity of kISB  
is O(|S| × α + χkISB

2 + βkISB).  

5 Experimental Evaluation  

In this section, we experimentally evaluate the performance of our algorithms, namely, 
Baseline, VP, and kISB. We describe the experimental settings, and then report the 
experimental results and our findings. All algorithms were implemented in C++, and all 
experiments are conducted on an Intel Core 4 Duo 2.8GHz PC with 4GB RAM, 
running Microsoft Windows XP Professional Edition.  

5.1 Experimental Setup  

In our experiments, we use both real and synthetic data sets to verify our algorithms. 
We employ two real datasets, i.e., MovieLens and NBA. (1) MovieLens: It contains 
3900 movie records, where each object has 6040 dimensions representing the ratings of 
6040 audiences. The rating values vary from 1 to 5, and the higher rating means  
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Fig. 5. kSB cost on incomplete data vs. k 

the better recognition. The incomplete rate of MovieLens is 95%, i.e., only 5% of the 
ratings are available. (2) NBA: It includes the records for 16000 NBA players, where 
each record has 17 dimensions representing various technical statistics of every NBA 
player. Although the NBA data is rather complete, we explicitly remove some statistics 
in order to achieve the 20% incomplete rate for evaluating the performance of our 
algorithms. Following the common methodology in [11], we also create some 
100-dimensional Synthetic datasets with cardinality in the range [100K, 500K] and 
incomplete rate in the range [5%, 80%].  

We study the performance of our algorithms in terms of the number of comparisons 
and the CPU time. We investigate several factors, including the k-Skyband thickness k, 
cardinality N, dimensionality dim, incomplete rate i, and the rate of bucket number r. In 
each experiment, the default of k, N, dim, i, and r are 3, 300K, 60, 20%, and 20% 
respectively, and only one factor varies, whereas the others are fixed to their defaults.  

5.2 Performance Study  

The first set of experiments evaluates the effect of the k-Skyband thickness k on the 
efficiency of our algorithms. Figure 5 illustrates the number of comparisons and CPU 
time (in seconds) respectively with respect to k on real and synthetic datasets, varying k 
from 0 to 6. Clearly, in all cases, Baseline is several orders of magnitude worse than VP 
and kISB, and kISB performs the best. This is because the exhaustive pairwise 
comparisons involved in Baseline are very costly. In the sequel, we only focus on the 
experimental results of VP and kISB over Synthetic datasets, since they always exceed 
Baseline in all cases. The CPU time increases with k. The reason is that, as k grows, 
more candidate objects need to be checked, resulting in more number of comparisons.  
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Fig. 6. kSB cost on incomplete data vs. N 

The second set of experiments studies the impact of the dataset cardinality N on the 
performance of our algorithms. Figure 6 shows all the experimental results by varying 
N between 100K and 500K. Again, kISB outperforms the other algorithms and the 
difference increases with N. This is because the number of the candidate k-Skyband 
objects grows as N ascends.  

Then, we investigate the influence of the dimensionality dim on the efficiency of our 
algorithms. Figure 7 depicts all the experimental results on both real and synthetic 
datasets. As expected, kISB also performs the best, and the cost increases with the 
growth of dim. The reason is that, as dim ascends, the dominance capacity of objects 
decreases, incurring more number of candidate k-Skyband objects.  

Next, we inspect the impact of the incomplete rate i on the performance of our 
algorithms. Towards this, we employ Synthetic datasets, and change i in the range [5%, 
80%]. Figure 8 plots the performance of VP and kISB algorithms. Obviously, kISB is 
better than VP in all cases. Note that, the number of comparisons and CPU time for the 
algorithms drop as i grows, especially for VP. This is because the comparable objects 
significantly decrease with the growth of incomplete rate.  

Finally, we study the effect of the rate of bucket number r on the efficiency of our 
algorithms. Similarly, we use Synthetic datasets, and vary r from 5% to 80%. Figure 9 
illustrates the cost of the algorithms as a function of r. Clearly, kISB outperforms VP in 
all cases. Note that, the number of comparisons is not very sensitive to r, since the final 
query result is invariable no matter how large the r is. In addition, the CPU time of VP 
ascends gradually as r grows. The reason behind is that, the number of virtual points 
increases with r.  
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6 Conclusions  

This paper, for the first time, studies the problem of efficient k-Skyband (kSB) query 
processing on incomplete data, where multi-dimensional data items are missing some 
values of their dimensions. This problem is not only interesting from a research point of 
view, but also useful in many real applications such as decision making and 
location-based services. To efficiently answer the kSB query over incomplete data, we 
propose three algorithms, namely, Baseline, VP, and kISB, which employ a series of 
novel concepts (e.g., ES, SS, TW, etc.) to improve the search performance. Extensive 
experimental evaluation using both real and synthetic datasets demonstrates that kISB 
outperforms significantly the other algorithms in all cases. In the future, we intend to 
further improve the efficiency of our algorithms. Also, we plan to extend our methods 
to tackle other queries (e.g., Top-k Skyline query) over incomplete data.  
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Abstract. Frequent pattern mining is commonly used in many real-life
applications. Since its introduction, the mining of frequent patterns from
precise data has drawn attention of many researchers. In recent years,
more attention has been drawn on mining from uncertain data. Items
in each transaction of these uncertain data are usually associated with
existential probabilities, which express the likelihood of these items to
be present in the transaction. When compared with mining from precise
data, the search/solution space for mining from uncertain data is much
larger due to presence of the existential probabilities. Moreover, we are
living in the era of Big Data. In this paper, we propose a tree-based
algorithm that uses MapReduce to mine frequent patterns from Big un-
certain data. In addition, we also propose some enhancements to further
improve its performance. Experimental results show the effectiveness of
our algorithm and its enhancements in mining frequent patterns from
uncertain data with MapReduce for Big Data analytics.

1 Introduction

Frequent pattern mining aims to discover implicit, previously unknown, and
potentially useful knowledge—in the form of frequently occurring patterns—from
large amounts of data. Since its introduction [2], the research problem of mining
frequent patterns has drawn attention of many researchers. Over the past two
decades, numerous methods have been proposed to mine and visualize frequent
patterns [8, 20] as well as other related patterns [10, 14, 18, 24]. Examples of
these methods include the classical Apriori algorithm [3] and the tree-based FP-
growth algorithm [9]. Both algorithms mine frequent patterns from transaction
databases of precise data.

However, there are situations in which users are uncertain about the presence
or absence of some items or events [13, 15]. For example, a physician may highly
suspect (but cannot guarantee) that a patient suffers from some specific diseases.
The uncertainty of such suspicion can be expressed in terms of existential prob-
ability. As a concrete example, a physician may suspect that a patient has (i) a
75% likelihood of suffering from a flu and (ii) a 33 1

3% likelihood of suffering from
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a cold (regardless of having or not having the flu). Here, in this uncertain dataset
of patient records, each transaction represents a patient’s visit to a physician’s
office. Note that a patient may suffer from multiple diseases at the same time
(i.e., multiple items may appear together in the same transaction). Each item
(representing a potential disease) in the transaction is associated with an exis-
tential probability expressing the likelihood of a patient having that disease in
that visit. With this notion, each item in a transaction in traditional databases
of precise data can be viewed as an item with a 100% likelihood of being present
in the transaction.

Other examples of uncertain data include datasets of satellite images, where
each item in a transaction expresses the likelihood of the presence of an object
captured in an image. As the third example, each transaction in a dataset for an
election expresses the likelihood of a collection of candidates chosen by (the se-
cret ballot of) a voter. These are just a few examples of many real-life situations
in which data are uncertain. Hence, efficient algorithms for mining uncertain
data are in demand. Over the past few years, a few algorithms [1, 15–17] have
been proposed to mine frequent patterns serially from static datasets of uncer-
tain data. Note that the presence of existential probabilities in these uncertain
datasets leads to a huge number of possible worlds [13] when using probabilistic-
based mining of frequent patterns. In other words, the search space for frequent
pattern mining from uncertain data can be much larger than that from precise
data.

The situation has been worsen as we have moved into the era of Big Data [23].
When mining from vast amounts of Big Data, more efficient approaches (besides
serial approach) are needed. To handle Big Data, some researchers proposed
the use of MapReduce, which mines the search space with distributed or parallel
computing. However, earlier works on MapReduce focused on data processing [7]
or data mining tasks other than frequent pattern mining (e.g., clustering [5],
outlier detection [11], structure mining [27]). Although two recent works [21, 25]
were proposed to mine frequent patterns, both of them mine precise data (instead
of uncertain data).

Hence, some natural questions to ask are: Can we use MapReduce to mine un-
certain data? Can we use MapReduce to perform tree-based mining of uncertain
data? How can we further speed up the mining process? In response to these
questions, we propose a tree-based algorithm called MR-growth, which uses
MapReduce to mine frequent patterns from uncertain data in a pattern-growth
fashion for Big Data analytics. Moreover, our additional key contributions of this
paper include the three enhancements to the MR-growth algorithm.

This paper is organized as follows. The next section gives background and
related work. In Section 3, we propose our MR-growth algorithm for mining fre-
quent patterns from uncertain data using MapReduce. Section 4 discusses three
enhancements to our MR-growth algorithm. Evaluation results and conclusions
are presented in Sections 5 and 6, respectively.
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2 Background and Related Work

In this section, we provide background on frequent pattern mining from uncertain
data and on MapReduce. We also discuss some related works.

2.1 Mining Frequent Patterns from Uncertain Data

When using probabilistic-based mining [6, 15, 19] with the “possible world” in-
terpretation [13], a pattern is considered frequent if its expected support is no
less than the user-specified minsup threshold. When items within a pattern X
are independent, the expected support of X in the databaseDB can be computed
by summing (over all transactions t1, . . . , t|DB|) the product (of existential prob-
abilities within X):

expSup(X) =

|DB|∑
i=1

(∏
x∈X

P (x, ti)

)
, (1)

where P (x, ti) is an existential probability of item x in transaction ti. With
this definition of expected support, the existing tree-based UF-growth algorithm
mines frequent pattern from uncertain data as follows. The algorithm first scans
the dataset once to compute the expected support of all domain items (i.e.,
singleton itemsets). Infrequent items are pruned as their extensions/supersets
are guaranteed to be infrequent. The algorithm then scans the dataset the sec-
ond time to insert all transactions (with only frequent items) into an UF-tree.
Each node in the UF-tree captures (i) an item x, (ii) its existential probability
P (x, ti), and (iii) its occurrence count. At each step during the mining process,
the frequent patterns are expanded recursively.

2.2 The MapReduce Programming Model

MapReduce [7] is a high-level programming model for processing vast amounts of
data. Usually, MapReduce uses parallel and distributed computing on clusters or
grids of nodes (i.e., computers). The ideas behind MapReduce can be described
as follows. As implied by its name, MapReduce involves two key functions: “map”
and “reduce”. The input data are read, divided into several partitions (sub-
problems), and assigned to different processors. Each processor executes the
map function on each partition (subproblem). The map function takes a pair
of 〈key, value〉 data and returns a list of 〈key, value〉 pairs as an intermediate
result:

map: 〈key1, value1〉 %→ list of 〈key2, value2〉,
where (i) key1 & key2 are keys in the same or different domains, and (ii) value1 &
value2 are the corresponding values in some domains. Afterwards, these pairs are
shuffled and sorted. Each processor then executes the reduce function on (i) a
single key value from this intermediate result together with (ii) the list of all
values that appear with this key in the intermediate result. The reduce function
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“reduces”—by combining, aggregating, summarizing, filtering, or transforming—
the list of values associated with a given key (for all k keys) and returns a list
of k values:

reduce: 〈key2, list of value2〉 %→ list of value3,

or returns a single (aggregated or summarized) value:

reduce: 〈key2, list of value2〉 %→ value3,

where (i) key2 is a key in some domains, and (ii) value2 & value3 are the
corresponding values in some domains. Examples of MapReduce applications
include the construction of an inverted index as well as the word counting of a
document.

2.3 Related Work

Earlier works on MapReduce focused either on data processing [7] or on some
data mining tasks other than frequent pattern mining (e.g., outlier detection [11],
structure mining [27]). Recently, Lin et al. [21] proposed three Apriori-based al-
gorithms called SPC, FPC and DPC to mine frequent patterns from precise data.
Among them, SPC uses single-pass count to find frequent k-itemsets at the k-th
pass of the database scan (for k ≥ 1). FPC uses fixed-passes combined-counting
to find all k-, (k + 1)-, ..., (k +m)-itemsets in the same pass of database scan.
On the one hand, this fix-passes technique fixes the number of required passes
from K (where K is the maximum cardinality of all frequent itemsets that can
be mined from the precise data) to a user-specified constant. On the other hand,
due to combined-counting, the number of generated candidates is higher than
that of SPC. In contrast, DPC uses dynamic-passes combined-counting, which
takes the benefits of both SPC and FPC by taking into account the workloads
of nodes when mining frequent itemsets with MapReduce. Like these three al-
gorithms, our proposed MR-growth algorithm also uses MapReduce. However,
unlike these three algorithms (which mine frequent itemsets from precise data
using the Apriori-based approach), our proposed MR-growth algorithm mine fre-
quent itemsets from uncertain data using a tree-based approach. Note that the
search/solution space for frequent pattern mining from uncertain data is much
larger than frequent pattern mining from precise data due to presence of the
existential probabilities.

Riondato et al. [25] proposed a parallel randomized algorithm called PARMA
for mining approximations to the top-k frequent itemsets and association rules
from precise data using MapReduce. Although PARMA and our MR-growth
algorithm both use MapReduce, one key difference between the two algorithms is
that we aim to mine truly frequent (instead of approximately frequent) itemsets.
Another key difference is that we mine from uncertain data (instead of precise
data).
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3 Our MR-Growth Algorithm for Mining Frequent
Patterns from Uncertain Data with MapReduce

In this section, we propose our MR-growth algorithm, which uses MapReduce
to mine frequent patterns from huge amounts of uncertain data in a tree-based
pattern-growth fashion. The algorithm can be divided into multiple stages.

First, MR-growth reads a huge dataset of uncertain data. As each item in the
dataset is associated with an existential probability, MR-growth aims to com-
pute the expected support of all domain items (i.e., singleton itemsets) by using
MapReduce. The expected support of any itemset can be computed by using
Equation (1). Moreover, when computing singleton itemsets, such an equation
can be simplified to become the following:

expSup({x}) =
|DB|∑
i=1

P (x, ti), (2)

where P (x, ti) is an existential probability of item x in transaction ti. Specifically,
MR-growth divides the uncertain dataset into several partitions and assigns
them to different processors. During the mapping phase of this stage, the mapper
function receives 〈transaction ID, content of that transaction〉 as input. For every
transaction ti, the mapper function emits a 〈key, value〉 pair for each item x ∈ ti.

What should be the emitted pair? A naive attempt is to emit 〈x, 1〉 for each
occurrence of x ∈ ti. It would work well when mining precise data because each
occurrence of x leads to an actual support of 1. In other words, occurrence of
x is the same as the actual support of x when mining precise data. However,
this is not the case when mining uncertain data. The occurrence of x can be
different from the expected support of x when mining uncertain data. For in-
stance, consider an item a with existential probability of 0.9 that appears only
in transaction t1. Its expected support may be higher than item b that appears
seven times but with an existential probability of 0.1 in each appearance. Then,
expSup({a}) = 0.9 > 0.7 = expSup({b}). Hence, instead of emitting 〈x, 1〉 for
each occurrence of x ∈ ti, MR-growth emits 〈x, P (x, ti)〉 for each occurrence of
x ∈ ti. In other words, the mapper function can be specified as follows:

For each transaction ti ∈ partition of the uncertain dataset do
for each item x ∈ ti do

emit 〈x, P (x, ti)〉.
This results in a list of 〈x, P (x, ti)〉 pairs for many different x and P (x, ti). Af-
terwards, these pairs are shuffled and sorted. Each processor then executes the
reduce function on the shuffled and sorted pairs to obtain the expected support
of x. In other words, the reducer function can be specified as follows:

Set expSup(x) = 0;
For each x ∈ 〈x, list of P (x, ti)〉 do

for each P (x, ti) ∈ 〈x, list of P (x, ti)〉 do
expSup(x) = expSup(x) + P (x, ti).

emit 〈x, expSup(x)〉.
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Table 1. A sample transaction dataset of uncertain data

TID Itemsets

t1 {a:0.5, b:0.5, c:1.0, d:1.0, u:0.5}
t2 {a:0.5, b:0.5, p:0.5}

Example 1. Let us consider an uncertain dataset as shown in Table 1 with
minsup=1.0 For the first transaction t1, the mapper function outputs 〈a, 0.5〉,
〈b, 0.5〉, 〈c, 1.0〉, 〈d, 1.0〉, 〈u, 0.5〉. Similarly, for the second transaction t2, the map-
per function outputs 〈a, 0.5〉, 〈b, 0.5〉, 〈p, 0.5〉. These pairs are then shuffled and
sorted. Afterwards, the reducer reads 〈a, [0.5, 0.5]〉, 〈b, [0.5, 0.5]〉, 〈c, [1.0]〉,
〈d, [1.0]〉, 〈p, [0.5]〉, 〈u, [0.5]〉 and outputs 〈a, 1.0〉, 〈b, 1.0〉, 〈c, 1.0〉, 〈d, 1.0〉, 〈p, 0.5〉,
〈u, 0.5〉 (i.e., items and their corresponding expected support). ��

Next, MR-growth reads the singleton items and their associated existential sup-
ports, and prunes the infrequent items. Then, it splits the list containing fre-
quent singletons into distinct groups and assigns a unique ID to each group.
The new list containing group-to-singleton mappings is called a group list (G-
list). To summarize, this stage identifies which conditional trees should be mined
together on one computing node.

Example 2. Let us continue with our example. At this stage, MR-growth prunes
items u and p because their existential support equals to 0.5 < 1.0=minsup.
Given that we want to split the remaining (frequent) items a, b, c and d into
two groups (the number of items which are mapped to a given group can be
determined automatically depending on the number of computing nodes), this
stage yields 〈Group1: a, b〉 and 〈Group2: c, d〉. ��

The next stage is an important and computationally intensive stage. Here, MR-
growth identifies all group-dependent transactions. First, on each machine ex-
ecuting the mapper functions, MR-growth loads the G-list into main memory,
and creates a reverse map that maps singletons to their corresponding group ID.
Then, each mapper receives 〈key = groupID, value = DB(groupID)〉 as input.
For every transaction ti inDB(groupID), MR-growth substitutes all transaction
items with their corresponding group IDs from the reverse map, creating a new
list I of the same size as the transaction size. For each groupID in I, MR-growth
locates the rightmost appearance L of groupID in I, and emits a new (truncated)
transaction, in the form of 〈key′ = groupID, value′ = ti[1]ti[2] . . . ti[L]〉.

Afterwards, MR-growth receives group-dependent transactions in the form of
〈key = groupID, value = {t1 . . . tn}〉 and inserts them into a tree, creating
a compressed tree-based representation of these group-dependent transactions.
MR-growth then collects the group-dependent UF-trees and merges them into
one single tree, from which frequent patterns can be mined.

Example 3. Let us continue with our example. After replacing the transaction
items with their corresponding group IDs, we get the two lists as summarized in
Table 2.



446 C.K.-S. Leung and Y. Hayduk

Table 2. Group lists

Group List groupIDs

1 〈1, 1, 2, 2〉
2 〈1, 1〉

For the first transaction t1, the rightmost appearance of groupID 1 is 2 (in-
dicating the appearance of a, b ends in the 2nd position of transaction t1). So,
〈1, [a:0.5, b:0.5]〉 is emitted. Similarly, the rightmost appearance of groupID 2 is
4 (indicating the appearance of c, d ends in the 4th position of transaction t1).
So, 〈2, [a:0.5, b:0.5, c:1.0, d:1.0]〉 is emitted. In a similar fashion, for the second
transaction t2, the rightmost appearance of groupID 1 is 2 (indicating the ap-
pearance of a, b ends in the 2nd position of transaction t2). So, 〈1, [a:0.5, b:0.5]〉
is emitted.

MR-growth then merges both group-dependent transactions in the UF-tree.
Notice that we can merge the two received group-dependent transactions into
one branch of the UF-tree for Group1: (a:0.5):2 and (b:0.5):2 when using the
(item:probability):count notation. For Group2, MR-growth receives 〈2, [a:0.5,
b:0.5, c:1.0, d:1.0]〉 as input and inserts the single group-dependent transaction
into a new UF-tree. To summarize, the algorithm emits 〈1, [(a:0.5):2, (b:0.5):2]〉
and 〈2, [(a:0.5):1,(b:0.5):1,(c:1.0):1,(d:1.0):1]〉.

Afterwards, for Group1, the reducer function receives one UF-tree in the 〈1,
[(a:0.5):2,(b:0.5):2]〉 format, mines patterns having items a and b from that tree,
but it does not discover any frequent patterns. Similarly, for Group2, the reducer
function receives 〈2, [(a:0.5):1, (b:0.5):1, (c:1.0):1, (d:1.0):1]〉 as input, mines that
tree for patterns having items c and d, and emits 〈{c, d}:1.0〉 as the only frequent
pattern. ��

4 Enhancements to MR-Growth

While our proposed MR-growth algorithm efficiently mines frequent patterns
from uncertain data, we propose three enhancements in this section to further
speed up the mining process.

4.1 Enhancement #1: Multi-core Processors in the ForkJoin
Framework

To increase the mining speed, we exploit machines having multi-core processors
by using the ForkJoin framework [12]. The main goal of the ForkJoin framework
is to split computationally intensive tasks into multiple pieces, which can then
be performed in parallel, to minimize the execution time of the algorithm. Un-
like MapReduce (in which the developer does not need to explicitly control the
work distribution process), ForkJoin requires the developer to explicitly control
the work distribution process. In the Java programming language, the ForkJoin
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framework also uses the concept of work stealing, where the thread (which com-
pletes the work assigned to it) can steal tasks from other threads and assign the
tasks to idle threads as efficiently as possible.

Each thread maintains a task queue and repeatedly takes the next available
task from the head of its queue until the task queue becomes empty. Each time
when a thread does not have any pending work to complete (i.e., its queue is
empty), the thread becomes a thief. It selects a different thread at random, and
tries to steal a task from the tail of the queue of the chosen thread. Once the
task is completed, this process is repeated (i.e., steal a task from the tail of the
queue of some random thread, which can be the previously selected one).

To summarize, we enhance our MR-growth algorithm by taking the following
steps:

1. detect the number Ncores of processing cores on a multi-core processor;
2. divide the list of group-dependent items Gi into approximately equal parts

such that each thread (running on a different processing core) is responsible

for mining |Gi|
Ncores

items, and insert these items into the queue of each thread;
3. when any given thread finishes constructing and mining conditional trees for

all its assigned singletons, the algorithm attempts to steal a singleton from
the queue of a random thread.

This enhancement is particularly beneficial in MapReduce infrastructures hav-
ing a limited number of computing nodes. Each group ID is mapped to many
singleton items. Hence, each computing node is responsible for the construction
and the mining of conditional trees for a number of domain items (i.e., singleton
itemsets).

4.2 Enhancement #2: Efficient Conditional Tree Construction

In this section, we discuss the next enhancement, which allows us to construct
conditional trees without constructing projected trees first. Recall that to con-
struct a conditional tree, the MR-growth algorithm first constructs a projected
tree and then prunes the locally-infrequent nodes from it to create a conditional
tree.

Our enhancement for conditional tree construction to our proposed MR-
growth algorithm can be described as follows. The conditional tree is constructed
using two traversals of the main tree. The first bottom-up traversal accumulates
the counts of all encountered items on the path, flagging all visited nodes. Then,
by traversing the same path again but top-down—which can be accomplished by
recursively visiting only the flagged child nodes, the second scan traverses the
main tree in a depth-first manner to build a conditional tree. Specifically, the
algorithm performs the following steps:

1. For each item x in the header table, traverse the tree bottom-up and count
the occurrence of each encountered item on the tree path;

2. If the parent node of the current node has more than one child, flag the
current node with item x (i.e., childNode.flag=x);
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Table 3. A sample transaction database of precise data

TID Itemsets (Ordered) Frequent Itemsets

t1 {a, b, c, d, u} {a, b, c, d}
t2 {a, b, p} {a, b}
t3 {a, j, b, c, i, d} {a, b, c, d}
t4 {g, a, n, b} {a, b}
t5 {l, a, b,m, c} {a, b, c}
t6 {a, c, q, t, u, g, w, d} {a, c, q, t, u, w, d}
t7 {h, a, q, t, u, w} {a, q, t, u, w}
t8 {b, c, q, u, t, w, k} {b, c, q, t, u, w}

3. Determine which items are locally frequent, and insert them into the new
header table, which will be associated with the conditional tree;

4. Traverse the tree again in a top-down fashion. When a node with multiple
children is encountered, visit each of the children and flag it with item x;

5. For each visited node, check if it is frequent. Add the frequent nodes to the
new conditional tree; and

6. Stop traversing the current branch if all children of the current node are
guaranteed to be infrequent.

Example 4. Let us consider the dataset shown in Table 3. Without loss of gener-
ality, when building the {d}-conditional tree, MR-growth with Enhancement #2
first traverses each {d}-link (circled nodes denote {d}-link nodes) bottom-up.
Then, it accumulates the count of the encountered items in the header table.
For nodes having multiple children, it flags each child node with {d}. Fig. 1
demonstrates the process of building a {d}-conditional tree. Nodes visited dur-
ing the first traversal are surrounded by squares, and nodes visited during the
second traversal are bolded. During the second traversal, we can stop the traver-
sal of both branches early (e.g., after visiting a node with item c) because, thanks
to the information collected during the first traversal of the tree, we know that
any items after item c in any path are guaranteed to be infrequent.

Using the tree in Fig. 1, let us compute the amount of allocated memory and
calculate the number of visited node required by the original version of MR-
growth vs. the version enhanced by this efficient conditional tree construction.
During the first bottom-up traversal, MR-growth (w/ Enhancement #2) visited
9 nodes in the main tree and did not allocate any new nodes. Then, MR-growth
(w/ Enhancement #2) traversed the tree once again in the top-down fashion. It
visited 4 nodes in the main tree and allocated 2 nodes for the new conditional
tree. To summarize, MR-growth (w/ Enhancement #2) traversed 13 nodes and
allocated 2 new nodes; it did not perform any memory deallocations. In contrast,
the original version of MR-growth visited 9 nodes (in the main tree) + 8 nodes
(in the projected tree) = 17 nodes as well as allocated 9 new nodes for the
projected tree, 7 of which needed to be deallocated in the conditional tree. ��

As observed from the above example, the benefits of employing Enhancement #2
include the following:
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Fig. 1. The efficient construction of a {p}-conditional tree

1. its efficient tree node allocation, which avoids the need of (i) allocating mem-
ory for infrequent nodes in a projected tree and (ii) freeing it when pruning
a projected tree or a conditional tree;

2. its efficient tree traversal, which visits all of the tree nodes only twice in the
worst case.

4.3 Enhancement #3: Sampling

Sampling is a commonly used technique in many data mining tasks, especially
when trying to find an approximate solution (instead of an accurate one). It was
observed [26] that the UF-tree is usually bigger than the FP-tree because the
former captures both items and their existential probabilities from the uncertain
datasets whereas the latter captures only the items from the precise databases.
As the tree gets bigger, it takes longer to build and traverse. Consequently,
mining with UF-trees usually takes longer than mining with FP-trees.

The idea of our Enhancement #3 is that, instead of building a UF-tree during
the mining process, we adopt the Concatenating Sample method [4]. For every
〈x, P (x, ti)〉-pair in each transaction ti, we generate a random real number r
in the range (0,1]. If r is ≥ P (x, ti), then we include x in the current sample.
Otherwise (i.e., when r < P (x, ti), we omit x from the current sample. At the end
of this sampling process, we obtain a “possible” world instance for the uncertain
dataset. For example, t1 = {a, b, d} and t2 = {b, p} can be one such “possible”
world instance. We can then mine frequent patterns from such an instance in
the same way that we mine frequent patterns from precise data (e.g., using
FP-growth [9]).

As one sample is subject to bias, we repeat the above process to obtain a
few samples and mine frequent patterns from each of these samples. Given these
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samples, we apply the enhanced version of MR-growth to mine frequent pat-
terns. As we are dealing with “possible” world instances in the same way that
we mine precise data, we need to modify the mapper and reducer function for
this enhancement. For example, instead of letting mapper emit 〈x, P (x, ti)〉, we
modify the mapper to emit 〈x, 1〉.

As this mining process gives an approximate solution, a post-processing step
(which requires one more—i.e., the third—scan of the dataset). So, we also need
to modify the reducers to execute this post-processing step.

5 Experimental Results

In this section, we evaluate our proposed MR-growth algorithm and its enhance-
ments. Experiments were run using either a single machine or the Amazon EC2
cluster. Specifically, some experiments were executed on a machine with an In-
tel Core i7 4-core processor (1.73 GHz) and 8 GB of main memory, running
a 64-bit Windows 7 operation system. All versions of the algorithm were im-
plemented in the Java programming language. The stock version of Apache
Hadoop 0.20.0 was used. As for the datasets for experiments, we used those
benchmarks (e.g., accidents, connect4 and mushroom) from the UCI Machine
Learning Repository (http://mlearn.ics.uci.edu/MLRepository.html) and
the FIMI repository (http://fimi.ua.ac.be). Some other experiments were
run on the Amazon EC2 cluster—specifically, 11 m2.xlarge computing nodes
(http://aws.amazon.com/ec2). As Calders et al. [4] suggested that two sam-
ples per transaction were sufficient to approximate (i.e., with less than 0.02%
error) the expected supports of the mined patterns for most datasets, we also
used two samples per transaction in the experiments.

In addition to the above real-life benchmark datasets, we also generated three
new synthetic datasets using the IBM Quest Dataset Generator [3] for our evalu-
ations. The generated data ranges from 2M to 5M transactions with an average
transaction length of 10 items from a domain of 1K items. As these datasets
originally contained only precise data, we assigned to each item contained in
every transaction an existential probability from the range (0,1].

5.1 Evaluation of MR-Growth

In this experiment, we executed our MR-growth algorithm in the MapReduce
environment with 11 nodes. Fig. 2(a) shows that, while the sequential version
of the UF-growth algorithm took more than 120,000 seconds to execute, its
corresponding version required less than 20,000 seconds in the MapReduce en-
vironment.

Observed from Fig. 2(b), when the total execution time of the MR-growth al-
gorithm was low, speedup of 7 to 8 times over its sequential version was achieved.
When we increased the dataset size, the algorithm achieved a speedup of approx-
imately 8.5 times on 11 nodes.

In terms of accuracy, as an exact algorithm, our MR-growth algorithm found
the same sets of truly frequent patterns as those returned by UF-growth [15].
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(a) Runtime (b) Speedup

Fig. 2. UF-growth vs. MR-growth

5.2 Evaluation of Enhancement #1: MR-Growth with ForkJoin

This experiment demonstrates the effect of employing multiple threads for min-
ing frequent patterns with our MR-growth algorithm. As the tests were executed
on a 4-core machine, we varied the number of threads from 1 to 4.

For the accidents dataset, Fig. 3(a) shows that, when the execution time was
short, the algorithm took longer on multiple threads than on a single thread. The
reason is that, as there is not enough work to do in the parallel, the algorithm
cannot take advantage of multiple cores. When the algorithm executed for a
longer period of time (e.g., more than 100 seconds), sub-linear speedup was
achieved as shown in Fig. 3(b). Fig. 3 also shows the experimental results for
other datasets (e.g., connect4 and mushroom).

As this enhancement aims to speed up the mining process, it does not change
the accuracy of the mining results.

5.3 Evaluation of Enhancement #2: Efficient Conditional Tree
Construction

In this experiment, we compared the execution time of the original version of
MR-growth with the version enhanced with the efficient conditional tree con-
struction as discussed in Section 4.2.

Fig. 4 shows that, for small minsup values, both versions yielded the final
result in less than 200 seconds for the accidents dataset. The performance dif-
ferences became apparent only when minsup was lowered to 30%. As for the
connect4 and mushroom datasets, the enhanced version of the MR-growth al-
gorithm outperformed the original version. Fig. 4 also highlights that the en-
hanced MR-growth algorithm performed better (e.g., the difference were more
than 300 seconds in some cases).

In terms of accuracy, frequent patterns mined by MR-growth with Enhance-
ment #2 were identical to those mined by MR-growth without this enhancement.

5.4 Evaluation of Enhancement #3: MR-Growth with Sampling

We evaluated Enhancement #3 by comparing the execution times of the orig-
inal version of MR-growth with the version enhanced with sampling. Fig. 5(a)
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(a) Runtime (b) Speedup

Fig. 3. MR-growth with ForkJoin

illustrates that MR-growth (w/ sampling) consistently yielded the final result
quicker than the original version of MR-growth.

Moreover, to test the capacity of the MR-growth algorithm to further offload
work to different processor cores by using the ForkJoin framework (Enhance-
ment #1), we compared the execution times of MR-growth with one thread
on ForkJoin vs. MR-growth with two threads on ForkJoin. We observed from
Fig. 5(b) that, while the execution time of MR-growth on two threads was lower,
the overall benefits of distributing work to multiple threads was not too signifi-
cant. This behaviour is expected because Amazon uses virtualization to expose
virtual processing cores on shared hardware resources, which degrades potential
speedup. Significant performance improvements could be observed in MapRe-
duce environments built from high-performance machines [22].

As MR-growth with Enhancement #3 approximated expected supports, the
mined frequent patterns were not identical to those mined by MR-growth with-
out this enhancement. However, the differences were not too significant. In other
words, the algorithm produced an acceptable approximation to truly frequent
patterns.



Mining Frequent Patterns from Uncertain Data with MapReduce 453

Fig. 4. MR-growth (without vs. with Efficient Conditional Tree Construction)

(a) MR-growth: With Enhancement #3 (b) With Enhancements #1 & #3

Fig. 5. MR-growth with Sampling (Enhancement #3) + 1 or 2 threads in ForkJoun
(Enhancement #1)

6 Conclusions

There are many real-life situations in which we observe uncertain data (e.g., in
temperature and wind speed readings, patient diagnosis, and satellite imaging).
Given the probabilistic nature of these data, it may take a long time and more
resources to mine frequent patterns from uncertain data. Currently, many state-
of-the-art algorithms for mining frequent patterns from uncertain data may not
provide superb performance because most of them are not crafted to execute in
parallel. In this paper, we introduced our MR-growth algorithm, which provides
the possibility to construct and mine smaller-sized UF-trees on distributed ma-
chines. Our experimental results demonstrate the effectiveness of employing the
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MapReduce programming model for mining frequent patterns from uncertain
data for Big data analytics. Moreover, the use of MapReduce yields significant
speedups to our MR-growth algorithm. As for the use of the ForkJoin frame-
work, it is beneficial for networks where computing nodes contain multi-core
processors. As ongoing and future work, we plan to conduct more extensive ex-
periments (e.g., evaluate the effect of the number of nodes in the MapReduce
environment on the runtime). We also target at finding a framework, possibly
an extension of MapReduce, which would allow us to recursively build sub-trees
and schedule their mining on available computation resources.
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and University of Manitoba.
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Abstract. A reverse k-nearest neighbors (RkNN) query returns all the
objects that take the query object q as their k nearest neighbors. How-
ever, data are often uncertain in numerous applications. In this paper,
we focus on the problem of processing RkNN on uncertain data. A
probabilistic RkNN (PRkNN) query retrieves all the objects that have
higher probabilities than a user-specified threshold to be the RkNN of
q. The previous work for answering PRNN query are mainly based on
the distance relationship between uncertain objects, and are inapplicable
for PRkNN when k > 1. In this paper, we design a novel algorithm for
PRkNN query to support arbitrary values of k on the basis of two prun-
ing strategies, namely spatial pruning and probabilistic pruning. The spa-
tial pruning rule is defined on both the distances and the angle ranges
between uncertain objects. And an efficient upper bound of probability is
estimated by the probabilistic pruning algorithm. Extensive experiments
are conducted to study the performance of the proposed approach. The
results show that our proposed algorithm has a better performance and
scalability than the existing solution regarding the growth of k.

1 Introduction

A reverse k-nearest neighbors (RkNN) query returns all the objects taking the
query object as their k nearest neighbors. This type of query is very practical
and important because of its applications in decision support system, profile-
based marketing and maintaining document repositories, and received plenty of
research interests in recent years [1–3]. However, data are often uncertain in
numerous applications due to limitations of measuring equipment, delayed data
updates, or privacy protection.

In this paper, we investigate the problem of probabilistic RkNN (PRkNN)
query which is to find the probable RkNNs with probability higher than a
user-specified threshold. PRkNN query has many important applications. For
example, a restaurant may want to find the residents that consider it as their k-
nearest neighbors. For privacy reasons, only the residential blocks where they live
are available, but the exact positions of their houses are not clear. Additionally,
people may have more than one activity place, such as house, supermarket,
shopping mall and so on. Therefore, each block or place is assigned a probability.
An example is shown in Fig. 1, the appearance probability of the place a1 is 0.7.

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 456–471, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Since the location of the object is uncertain, the distance between each pair
of the uncertain objects is not a fixed value but a number of possible values with
probabilities. Therefore, the previous approaches for answering RkNN query on
certain data are not directly applicable to uncertain data, and it is not trivial
to process RkNN query on such uncertain data.

a1

q

a2

b1
b2

p=0.7 p=0.3

p=0.4 p=0.6

p=0.9 p=0.1
c1

c2

p=0.8

p=0.2

d1

d2

Fig. 1. An example of R2NN on uncertain data

To the best of our knowledge, there are three solutions [4–6] to solve the prob-
lem of PRkNN query on uncertain data when k = 1. However, the algorithms
in [4,5] cannot be applied to the case when k > 1. Although the algorithm in [6]
can be extended to this case, it is not very efficient with the increment of k and
finding an optimal depth value depth for its pruning technique is not a trivial
task. Motivated by this, we propose a new approach for PRkNN which sup-
ports arbitrary value of k following the general framework proposed in [6]. Our
contributions in this paper are summarized as follows:

1. A novel spatial pruning algorithm called CPAI (angle interval based on
conceptual partitioning) is designed based both on the distances between
uncertain objects and the angle ranges of objects w.r.t. the query object.

2. An efficient probabilistic pruning technique called UBPrunig (upper bound
pruning) is proposed which utilizes the results of CPAI. Further, an opti-
mized strategy is proposed to improve the pruning.

3. Extensive experiments are devised to study the performance of the proposed
approach. The experimental results show that our proposed algorithm out-
performs the existing solution.

The rest of this paper is organized as follows. Section 2 briefly reviews the related
work on RNN query on certain and uncertain data respectively. Section 3 for-
mally defines the PRkNN query on uncertain database. Section 4 presents the
techniques of spatial pruning, probabilistic pruning and verification for process-
ing PRkNN query efficiently. Extensive experiments are conducted in Section 5
to evaluate the efficiency of the methods. Finally, Section 6 concludes the paper
and sketches some future works.
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2 Related Work

In recent years, a number of studies have been focused on query processing on
certain [1, 2, 7] and uncertain data [8–10]. Our work concentrate on the prob-
abilistic RkNN query on uncertain data, in this section, the existing work on
RkNN query on certain and uncertain data are briefly reviewed.

Since Korn et al. [1] introduced the concept of RNN query which is aimed
to find all the objects that take the query object as their nearest neighbors,
many efficient algorithms about RNN query and its variations have been pro-
posed. The nearest neighbor for every object p was pre-computed in [1]. Yang
et al. [11] designed a new index RkNN -tree which can efficiently support both
nearest neighbor and reverse nearest neighbor query. Stanoi et al. [12] proposed
a method (denoted as 60◦-pruning) without any pre-computation based on some
interesting propositions. Xia et al. [13] extended 60◦-pruning to monitor the con-
tinuous RNN query on moving objects. Wu et al. [14] provided a new continuous
verification method called CRang-k similarly based on the 60◦-pruning idea.

Through the above-mentioned work, it can be found that the methods on the
basis of the 60◦-pruning idea still perform better even if the objects are moving
or the k value is greater than 1. In this paper, we exactly exploit the idea to
process RkNN query on uncertain data for the first time.

To the best of our knowledge, there are currently three algorithms for answer-
ing PRNN query on uncertain data, but all have some limitations for extending
to PRkNN . Cheema et al. [5] (denoted as CLWZP ) designed novel pruning
rules each generated a pruning region and presented several optimizations for
PRNN . CLWZP has a very complex spatial pruning technique when computing
the pruning region, which makes the method inapplicable to the PRkNN where
k > 1. Lian et al. [4] (denoted as LC) also provided techniques to solve PRNN
query. They focused on the case where the uncertain objects are represented by
continuous probabilistic density function and approximate each uncertain object
by a sphere. For the PRkNN (k > 1), the pruning rules lose efficacy. In addi-
tion, since the probabilistic pruning sphere has to be pre-computed using τ , it
is not possible to change τ during query processing. Lately, Bernecker et al. [6]
proposed a general framework and developed an efficient algorithm (denoted as
HP ) for PRNN query. They adopted a new pruning mechanism and decom-
posed the uncertain objects to get a more tighter bound in the probabilistic
pruning phase. Though HP can be extended to PRkNN (k > 1) as demon-
strated in [6], the efficiency is dissatisfactory. Besides, finding an optimal depth
value depth which represents the extent of decomposition is not a trivial task.

The above methods are all proposed based on the spatial relationship between
uncertain objects, while our algorithm takes the angle range into account, which
can improve the pruning efficiency.

3 Problem Definitions

In this section, first the definition of conventional reverse k-nearest neighbors
query is reviewed; then, the uncertainty model used in this paper is presented;
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Table 1. Notations

Notation Definition

U a set of uncertain objects

u,Ui an uncertain object or ith uncertain object in U

uj jth instance of an uncertain object

puj the appearance probability of the instance uj

λ the user-specified probability threshold

finally, the PRkNN problem in uncertain databases is formally defined. For
references, the notations and their definitions used throughout the paper are
summarized in Table 1.

Definition 1 (conventional reverse k-nearest neighbors, RkNN). Given
a set of objects P , and q is the query object, a conventional reverse k nearest
neighbors query of q (RkNN(q)) returns all the objects p ∈ P which take q as
their k nearest neighbors. Formally, RkNN(q) = {p|q ∈ kNN(p)}.

Uncertainty Model. There are two major ways in describing an uncertain
object, either continuously which uses a probability density function (pdf) [8,
15] or discretely which uses a discrete set of alternative values associated with
assigned probablities [16–20]. In this paper, we follow the discrete one. It’s worth
mentioning that a continuous pdf can be converted to a discrete one by sampling
methods. Given a set of uncertain objects U = {U1, ..., Un}. In the discrete cases,
each uncertain object Ui is represented by a set of points (instances) u1, ..., um,
and each instance uj is assigned with an appearance probability denoted by puj .
Assuming that the probability distribution of every object is independent and
the probability of each instance is independent of other instances as well. Then
the equation

∑m
j=1 puj = 1 holds.

Definition 2 (probabilistic reverse k-nearest neighbors, PRkNN).Given
a set of uncertain objects U = {U1, ..., Un}, a query object q, and a user-specified
probability threshold λ ∈ (0, 1], a PRkNN query of q returns all the objects
u ∈ U that being RkNNs of q with probabilities higher than λ, that is,

PRkNN(q) = {u|PRkNN(q,u) ≥ λ} = {u|
∑
uj∈u

puj · PRkNN(q,uj ) ≥ λ} (1)

PRkNN(q,uj) denotes the probability of an instance uj ∈ u being the RkNN of
q, it can be computed as

PRkNN(q,uj ) =
∑
W∈Ω

(

n−1∏
j′=1

Puj′ · δ) (2)

where Ω is the set of all possible worlds, and W is a possible world of Ω. W =
{u1, ..., un−1} is a set of n − 1 instances from different uncertain objects in U
excluding the object that contains uj. The value of δ is 1 if q is the kNNs of uj

in the selected W and 0 otherwise.
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Consider the example of Fig. 1 which shows the uncertain objects A, B, C,
and D. Table 2 demonstrates the process of calculating PR2NN(q,b1). The sum of
the values (is equal to 0.202) is the probability of b1 to be the PR2NN of q. The
value of PR2NN(q,b2) can be computed in the same way. Finally, the probability
of uncertain object B being the P2NN is the sum of the two results.

Table 2. Illustration of calculating PRkNN(q,b1)

Possible world Appearance probability δ Value

{a1, c1, d1} 0.7× 0.9× 0.8 0 0

{a1, c1, d2} 0.7× 0.9× 0.2 1 0.126

{a1, c2, d1} 0.7× 0.1× 0.8 1 0.056

{a1, c2, d2} 0.7× 0.1× 0.2 1 0.014

{a2, c1, d1} 0.3× 0.9× 0.8 0 0

{a2, c1, d2} 0.3× 0.9× 0.2 0 0

{a2, c2, d1} 0.3× 0.1× 0.8 0 0

{a2, c2, d2} 0.3× 0.1× 0.2 1 0.006

0.202

4 PRkNN Processing

In the following subsections, we introduce the details of our algorithms for efficient
PRkNN processing following the framework proposed in [6] using the totally dif-
ferent techniques.

4.1 Spatial Pruning

The objective of the spatial pruning phase is to prune the objects as many as pos-
sible just utilizing their spatial locations without considering the probability dis-
tributions. In this subsection, the important insights for the PRkNN problems
are identified and a proposition is proposed. Next, based on this proposition, a
novel spatial pruning algorithm is designed. It utilizes both the distances and the
angle ranges (Definition 3) between objects, and adopts the conceptual space par-
titioning method proposed by Mouratidis et al. [7] as the underlying structure. At
last, to further reduce the space visited, an optimized strategy is proposed.

Definition 3 (angle range). Given an uncertain object Ui and a query q,
the angle range of Ui w.r.t. q is an interval [MinA,MaxA], where MinA is
the minimum angle between q and all the instances of Ui whereas MaxA is the
maximum one.

a) Proposition. As introduced in Section 2, Stanoi et al. [12] proposed the
60◦-pruning technique to solve the RNN problem on certain data. It divides the
space into 6 equal disjoint pie regions S1 to S6 around q. It can be proved that
only the NN results of q in each region can possibly be the RNNs of q. However,
the observation cannot be applied to the uncertain scenario directly. As shown in
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Fig. 3. Proof for Proposition 1

Fig. 2, there does not exist any object which is the NN(q) in S1 definitely. Next,
the insights of the RkNN query on uncertain objects are investigated and the
new proposition is developed. For the convenience of discussion, we reference the
spatial domination concept proposed in [21] and redefine it for PRkNN query.

Definition 4 (dominance relation). Given an uncertain object Ui, an in-
stance uj′ of another uncertain object and a query object q, Ui dominate uj′

w.r.t. q iff for all instances uj ∈ Ui it holds that dist(uj , uj′) < dist(q, uj′) and
denoted as Ui ≺q uj′ .

Obviously, if k uncertain objects can be found that dominate uj′ w.r.t. q, it can
be said that the probability of uj′ to be the RkNN of q is 0. So it can be pruned
in the spatial pruning phase.

Proposition 1. Given an uncertain object Ui, an instance uj′ of another un-
certain object and a query object q, Ui ≺q uj′ can be inferred if they satisfy
the following conditions: i) the angle range of the Ui w.r.t. q (later we omit
”w.r.t.q” for shortness) is no greater than 60 degree. ii) for each instance uj ∈ Ui,
dist(uj, q) < dist(uj′ , q). iii) the angle formed by uj′ and q is within the angle
range of the Ui w.r.t. q.

Proof: To show Prop.1 holds, assume w.l.o.g. that there is an uncertain object
(has three instances, u1, u2 and u3), and an instance (u1′) from another object
which satisfies the three conditions shown in the Fig. 3. Considering the triangle
&u2qu1′ , it is known that dist(u2, q) < dist(u1′ , q), so ∠1 < ∠2. According to the
condition i), it can be deduced that ∠3 < 60◦ =⇒ ∠1+∠2 > 120◦ =⇒ ∠2+∠2 >
120◦ =⇒ ∠2 > 60◦ =⇒ ∠3 < ∠2, and therefore dist(u2, u1′) < dist(q, u1′). The
inequalities dist(u1, u1′) < dist(q, u1′) and dist(u3, u1′) < dist(q, u1′) both can
be obtained in the similar way. Consequently, it can be concluded that U1 ≺q u1′

based on the Definition 4. Hence, the proposition holds.

b) The Spatial Pruning Algorithm. The above proposition states that each
uncertain object whose angle range is less than 60◦ can produce a pruning region.
Fig. 4 shows an example, the shade regions are generated by U1, U2 and U3. The
spatial pruning algorithm has three steps corresponding to the three conditions
in Prop.1: (1) Adopt the conceptual space partitioning method to traverse the
objects from the nearest to furthest w.r.t. q. (2) Store the pruning regions in
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the AIList (angle interval list) in the form of three tuples (MinA,MaxA, level)
where MaxA−MinA ≤ 60◦. (3) Prune the instance whose angle is covered by
AIList k times. The details of these three steps are presented as below.

1. The conceptual space partitioning method organizes the cells around q into
conceptual rectangles as illustrated in Fig. 5. Each rectangle is defined by a
direction (up-U, down-D, left-L and right-R) and a level number. Our spatial
pruning step access objects in ascending level order and it guarantees that
the instances are visited in the order of nearest to furthest. Consequently,
condition ii) in Prop.1 can be satisfied.

Fig. 4. An example of spatial pruning

U2

U1

U0

R2R1R0

D2

D1

D0

L1 L0L2

q

Fig. 5. The conceptual space partitioning
around q

2. AIList (actually is an array which consists of k lists) is maintained for
PRkNN query. If the angle range of an uncertain object is less than 60◦, its
angle range and the corresponding level number are inserted into AIList in
the form of (MinA,MaxA, level). And if the angle intervals in AIList can
full cover q (the combined interval covers [−π, π]) for k times, the spatial
phase can be terminated (according to Definition 4 and Prop.1).

3. Given an instance uj , its level number and angle denoted by uj .level and
uj .angle respectively. If there exists any k three tuples (MinA,MaxA, level)
in AIList which satisfies the two conditions: MinA < uj.angle < MaxA
and uj .level > level, it can be inferred that uj must be in the pruning
regions and can be pruned safely. Or else, uj is not in the pruning regions
by now and should be inserted into the CandidateSet. As shown in Fig. 4,
the instances a1, b1, b2 and c1 can be pruned when k = 1, while only the
instance b2 can be pruned if k = 2.

Based on the above analysis and discussion, an efficient spatial pruning algorithm
is proposed for PRkNN , namely CPAI (angle interval based on conceptual
partitioning ). The pseudo code of CPAI is shown in Algorithm 1.

The output of CPAI includes two sets, pruned set pndSet and candidate
set cndSet. Particularly, pndSet contains the pruned instances which may be
used to prune other instances in the next step, while set cndSet contains all the
instances that cannot be pruned by CPAI and needs further checked.
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The algorithm mainly consists of two parts, searching the angle intervals (lines
5-11) and pruning the instances based on Prop. 1 (lines 13-16). For the first part,
when all the instances of an uncertain object Ui have been visited, its angle
interval is inserted into AIList if its angle range is less than 60◦. After updating
AIList, line 11 checks AIList whether it full covers 360◦ k times (function
Iffullcovered), and CPAI can be terminated if it returns true. For the second
part, if the angle of an instance is covered by AIList (function Ifcovered), it
can be safely pruned based on Proposition 1. But it is removed to the set pndSet
instead of being dropped for the reason that the pruned instances are likely to
be used in the probabilistic pruning phase.

Since CPAI terminates when AIList full covers 360◦ k times, the performance
of the spatial pruning phase is affected by the value of k and the data distribution.
Meanwhile, it can be seen that the growth of k only rises the times used to
decide whether 360◦ is covered but does not obviously increase the difficulty in
computation.

Algorithm 1. CPAI(k, q, λ)

input : Value k for PRkNN , query object q
output: The pruned set pndSet and the candidate set cndSet

1 initialize the heap H by pushing all the instances in the cell containing q into
the heap;

2 int currentLeverl = 0;
3 while H!= ∅ do
4 for each instance uj in H do
5 compute the angle of uj , uj .angle;
6 if uj is the last instance of Ui then
7 compute the MinA and MaxA of uncertain object Ui;
8 if (MaxA-MinA) < 60◦ then
9 AI(MinA, MaxA, currentLeverl);

10 InsertAI(AI , ∗AIList);
11 if Iffullcovered(∗AIList)==true then
12 return;

13 if Ifcovered(uj .angle, AIList[i])==true then
14 insert uj into pndSet;

15 else
16 insert uj into cndSet

17 currentLeverl ++;
18 push all the instances whose level is equal to currentLeverl into H ;

19 return;

c) The Optimizing Strategy. It is worth mentioning that when AIList full
covers a certain quadrant, the cells with larger level numbers in this quadrant
can be pruned. That’s because the angle range of those cells must be covered
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by AIList. Furthermore, when the angle range of a cell is covered by AIList,
the cell can be pruned in the same way. As shown in Fig. 6, the cells in the
shaded region are not going to be visited. This optimizing strategy can help
CPAI further reduce the number of uncertain objects to be visited.

4.2 Probabilistic Pruning

The probabilistic pruning phase is performed for the uncertain objects whose
instances cannot be pruned in the spatial pruning phase. In this subsection, an
efficient probabilistic pruning algorithm (namely UBPruing) is designed which
is based on algorithm CPAI. It utilizes the upper bound of the probabilities
(denoted as UB) to prune the objects whose UBs are less than the probabilistic
threshold λ. Moreover, an optimizing strategy is proposed to improve the pruning
efficiency by sorting the objects according to their appearance probabilities in
descending order.

q

R1

Fig. 6. The cells in the shaded region can
be pruned

q

uj

Fig. 7. The instances in InfluSet(uj)
come from the shaded region

a) The Probabilistic Pruning Algorithm. Considering an uncertain object
Ui, the pruning algorithm mainly consists of three part, finding its influence set
(the instances having effect on its probability being the result), computing its
UB and deciding whether it can be pruned or not.

Assuming uj one of the instances in cndSet, what is concerned is the influ-
ence set of uj . These influential instances are denoted as InfluSet(uj). Obvi-
ously, only the instances located much closer to uj than q might be contained
in InfluSet(uj). As introduced previously, the level number of a cell indicates
the number of rectangles between q and itself, certainly, also indicates the rough
distance between q and itself. If the cells around uj are partitioned into con-
ceptual rectangles in the similar way as q, the level number of the instances in
InfluSet(uj) w.r.t. uj must be no larger than the lever number of uj w.r.t. q.
An example is shown in Fig. 7, the instances in the shaded region formed the
InfluSet(uj). Fortunately, the majority of the instances are stored in pndSet
and cndSet. So, for each uncertain object in cndSet, UBPruing first finds its
InfluSet(uj) from the two sets, and then computes its UB, finally prunes the
uncertain objects whose UBs are less than the threshold λ.
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Now, the formulas to compute the UB of an instance and an uncertain object
are presented in Equation 3 and Equation 4, respectively. Assuming the number
of uncertain objects in InfluSet(uj) is m+1. In Equation 3, W = u1, ..., um is a
set of m instances from m different uncertain objects in InfluSet(uj) excepting
Ui which contains uj, and Ω denotes the set of all possible worlds among the
m uncertain objects. Puj′ is the appearance probability of the instance uj′ , and∏m

n=1 Puj′ denotes the appearance probability of one possible world in Ω. It is
known that the appearance of any possible world contributes to the probability of
uj can not be the PRkNN result. Hence, the sum of the appearance probabilities
of all the possible worlds is the probability that uj can not be the PRkNN result.
Noting that InfluSet(uij) is produced just by pndSet and cndSet rather than
the whole conceptual rectangles. Therefore, when the sum is subtracted from 1,
what can be obtained is the upper bound of probability of uj rather than the
exact probability.

UB(uj) = 1−
∑
W∈Ω

m∏
n=1

Puj′ (3)

In Equation 4, s is the number of existing instances of Ui in cndSet. The UB
of an uncertain object is the sum of all its unpruned instances’ appearance
probabilities multiplies their corresponding UB.

UB(Ui) =
s∑

j=1

Puj · UB(uj) (4)

Algorithm 2 illustrates the probabilistic pruning procedure discussed above.
Lines 2-4 compute UB(uj) according to Equation 3, and line 5 computes UB(Ui)
according to Equation 4. If a certain UB(Ui) is less than the probabilistic thresh-
old λ, it is inserted to the refinement set rfnSet (line 7). At last, the algorithm
UBPruning returns the set rfnSet that contains the unpruned uncertain ob-
jects. Furthermore, they will be verified by the verification phase.

Algorithm 2. UBPruning(pndSet,cndSet, λ)

input : Two sets pndSet and cndSet, a probabilistic threshold λ.
output: The refinement set rfnSet

1 for each uncertain object Ui in cndSet do
2 for each instance uj belongs to Ui in cndSet do
3 find the InfluSet(uj) from pndSet and cndSet;
4 compute UB(uj);

5 compute UB(Ui);
6 if UB(Ui) < λ then
7 insert it to rfnSet;

8 return rfnSet;

The cost of UBPruing depends mainly on the computing the UB for each
uncertain object in cndSet, therefore, the decrement of the number of uncertain
objects in cndSet can improve the efficiency of pruning.
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b) The Optimizing Strategy. In addition, an optimal strategy is proposed for
computing UB(uj) (line 4). by sorting the objects according to their appearance
probabilities in descending order.

According to the Equation 3, it can be easily deduced that the more possible
worlds are, the smaller UB(uj) is, and the larger Puj′ is, the smaller UB(uj) is.
As the computing cost may be very expensive with the increasing number of pos-
sible worlds, UB(uj) can be relaxed by reducing the number of possible worlds
being considered to improve the probabilistic pruning. The optimizing strategy
gives priority to the instances having larger appearance probabilities. First it uses
these instances with higher priorities to computer a loose UB(uj), and further
gets the loose UB(Ui) (denoted as RUB(Ui). RUB(Ui) > UB(Ui)), then com-
pare RUB(Ui) with threshold λ. If RUB(Ui) < λ, Ui can be safely pruned right
now, otherwise more possible worlds should be considered to shrink theRUB(Ui).

4.3 Verification

In the verification phase, the algorithm computes, for each remaining uncertain
object in rfnSet, the exact probability being the result of PRkNN of q. An
uncertain object Ui for example, the algorithm can issue a probabilistic k-nearest
neighbors (PkNN) query of it using the existing method [22]. Obviously, the
probability of q being the result of PkNN of Ui is equal to the probability of Ui

being the result of q. If the value is larger than the threshold λ, it is returned,
otherwise it is discarded. It can be seen that the number of uncertain objects in
rfnSet directly determines the cost of verification phase. Therefore the larger
the value of λ is, the better the performance of verification will be.

5 Experimental Evaluation

5.1 Experiment Setup

We compare our algorithm (named AIUB) with the state-of-the-art PRkNN
query algorithm (named HP ) proposed in [6]. HP uses two R∗-trees, a global
one is for organizing the uncertain object approximations and a local one is
to index the instances of an uncertain object. We set the page size 1024 bytes
for the global tree, to a maximal capacity of three entries for the local trees,
and set the depth (representing the extent of partition) to 2. And the above
settings are recommended in the original paper. All the algorithms evaluated are
implemented in C++ with STL library support and compiled with GNU GCC.
The hardware platform is one IBM X3500 sever with 2 Quad Core 1333MHz
CPUs and 16G bytes memory under linux (Red Hat 4.1.2-42).

For the experiments, synthetic uncertain objects under the space with size
(16000×16000) are generated as follows: first, the centers (Gaussian or uniform
distribution) of the uncertain objects are created, then the instances of each
object are generated within their corresponding rectangles following uniform
distribution. The length of the rectangles is set based on the whole space and
the percentage varies from 1 to 4. Additionally, the appearance probabilities of
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Table 3. Specifications of Parameters

Parameter Value range Default value

# uncertain objects 2000, 4000, 6000, 8000 6000

Maximum # instances per object 100, 200, 400,800 200

Probability threshold λ 0.1, 0.3, 0.5, 0.7, 0.9 0.5

Value of k 5, 10, 15, 20, 25 15

Grid division 1002, 2002, 4002, 8002 2002

Maximum length of rectangle 1%, 2%, 3%, 4%, 5% 2%

Distribution of object centers Gaussian, uniform uniform

instances are also generated following either Gaussian or uniform distribution.
Analogously, the query objects follow the same distribution as the underlying
data set. Table 3 summarizes the parameters used in our experiments which may
have a potential impact on the performance. We evaluate the performance under
various parameters and data settings and all the parameters use the default
values unless specified. For each setting, we issue 100 queries and display the
average total cost (I/O and CPU time).

5.2 Evaluation Results

Fig. 8 shows the different numbers of candidate objects remained by the spatial
pruning steps of the two methods under the variation of the k value. It can
be seen that when k < 10, HP and AIUB have the similar pruning power.
Nevertheless, AIUB performs better than HP as the value of k increases. That’s
because HP only considers the spatial relationship between objects, and the
pruning rule cannot work well when k is too large. While AIUB utilizes both
the distance and the angle range to prune objects, the only job AIUB need to
do is to find more 360◦ full covers when k increases.

Fig. 9 reports the whole query time against the value of k. As expected, Fig.
8 and Fig. 9 have a similar trend. Compared to HP , the query speed of AIUB
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is almost double faster when k is larger than 15. This is mainly because that the
larger number of candidate objects returns, the more complex the probability
pruning and verification phases are. Thus it can be seen that the spatial pruning
power is very significant for the whole processing.

Fig. 10 evaluates the performances of HP and AIUB with increasing num-
ber of uncertain objects. It is not surprised to say that query time increases as
the number of objects gets larger. The computation cost of them both increase
mainly due to the increased verification cost caused by the returned larger num-
ber of objects (and in effect instances). Nevertheless, the scalability of AIUB is
better than that of HP regarding to the growth of k.
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Fig. 11 shows the effect of the maximum number of instances in each object.
The performance degrades as the number of instances increases. That is because
the verification phase becomes more expensive if each object has larger number
of instances.

In Fig. 12, we increase the probability threshold λ from 0.1 to 0.9. The query
time of both the algorithms decreases as the probability threshold increases. The
rationale is that with a greater value of λ, a majority of objects are pruned and
not requires to be verified which reduces the computation expense.
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Fig. 13 illustrates the query time of HP and AIUB under different data
distributions. HP has the similar performance with the two different data dis-
tributions, while AIUB has a clear advantage on Gaussian distribution. The
reason why AIUB on Gaussian data performs better than the uniform data is
that AIUB prunes instances level by level around q in the spatial pruning phase,
and it is more efficient under Gaussian distribution.

Fig. 14 investigates the performances of HP and AIUB with different max-
imum length of the rectangle which represent the region of the instances of
an uncertain object. The performance of both algorithms degrades against the
growth of length. For AIUB, the smaller rectangle means that the angle range of
the uncertain object is more likely less than 60◦, which can enhance the spatial
pruning power. When the length of rectangle is set to 4% or more of the whole
space, the performance degrades smoothly. This is because too much overlap
of objects invalids a majority of objects, and a few number of objects require
verification.
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Fig. 15 shows the running time of each phase of AIUB with the different
grid granularity. It can be seen that when we use grid index of 400× 400 cells,
AIUB performs the best. This is mainly due to that AIUB prunes objects
utilizing the objects in the lower level, too small division decreases the number
of objects in lower levels and weaken the pruning power of AIUB. As the grid
division increases, the performance degrades again. That is because too many
cells makes it costly to manage them.

6 Conclusions and Future work

In this paper, we discussed the problem of reverse k-nearest neighbors on un-
certain data and proposed a pipeline algorithm. We designed a spatial pruning
technique utilizing the distances between objects and the angle ranges of objects
w.r.t. query object. Based on the spatial pruning, an efficient probabilistic prun-
ing algorithm was proposed followed by an optimizing strategy. The extensive
experiments verified the pruning power and the efficiency. The pruning power
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and the efficiency were evaluated in a simulated environment, the results show
that our proposed algorithm has a better performance and scalability than the
existing solution when k > 1.

In the future, we will focus on the extension of our method to PRkNN query
on moving objects, and adapt it to the case that the query object is also uncertain.
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Abstract. Although there have been many efforts for management of
uncertain data, evaluating probabilistic inference queries, a known NP-
hard problem, is still a big challenge, especially for querying data with
highly correlations. The state-of-art exact algorithms for accelerating
the evaluation of inference queries are based on special indices. Besides,
with the observation of the existence of many frequent queries, some
researchers try to improve efficiency by reusing previously queried re-
sults. Indexing depends on the static properties like data distributions,
whereas caching is in favor of the dynamic features like query workload.
In this paper we propose a new approach for speeding up the evaluation
of inference queries by caching frequent results in a junction tree-based
hierarchical index. To the best of our knowledge, this is the first effort on
utilizing both the static (data) and dynamic (query workload) properties
to efficiently evaluate probabilistic inference queries. Moreover, according
to our experience, different caching strategies may significantly affect the
query performance. Basically a good caching strategy needs to have high
cache hit ratio with limited space budget.Based on these considerations,
we propose a novel caching approach, called FVEC, and present corre-
sponding algorithms for efficiently querying correlated uncertain data.
We further conduct a series of extensive experiments on large uncertain
datasets in order to illustrate the effectiveness and efficiency of our pro-
posed approaches. As illustrated by the results, compared with previous
solutions, our method could greatly improve the query performance.

1 Introduction

Recently data uncertainty becomes an intrinsic property in many applications.
For example, in an information integration system [6], the automatically gen-
erated schema mappings could be imprecise. Hence the data in the integrated
database would be uncertain. As another example, when extracting information
from unstructured data like web pages, top-k possible results would be gener-
ated and the database obtained would be a probabilistic database [18]. Due to
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its high applicability, the management of uncertain data is attracting more and
more research interests during the past decade.

One of the core problems for managing uncertain data is the evaluation of
probabilistic queries, a known #P-complete problem [5]. Generally, a probabilis-
tic query is to compute the probabilities of some complex random events based
on the joint distribution of all the uncertain data items in a dataset. In proba-
bilistic theory, it is exactly the process of probabilistic inference. Specifically, we
only discuss the queries of extracting the joint distribution of a set of variables
from the whole joint distribution. But our methods could be applicable for gen-
eral cases. In this paper, we use the two terms probabilistic query and inference
query interchangeably.

Many research works are proposed for solving this problem. Most of these
approaches are based on the assumption that uncertain data are either fairly
independent or partitioned in independent groups. Kanagal et al. propose a novel
index called INDSEP to efficiently query correlated uncertain data [8]. The main
idea of INDSEP is to cluster uncertain data into partitions and organize them
in a hierarchical structure. When evaluating probabilistic queries, INDSEP can
then prune many computation efforts with the hierarchical structure and the
pre-computed shortcut potentials.

The INDSEP structure is designed as a disk-based index. The main part of
the index is stored in disk and will be loaded into main memory in need. The
size of each index node is limited by the size of a disk page. However, as found
in many projects [3,5,9], the major bottleneck of answering probabilistic queries
is not I/O but CPU. Nowadays, it is not that expensive to buy a machine with
several gigabytes RAM, but the response time could still be quite long even if
the whole INDSEP structure has been loaded into the main memory.

On the other hand, in reality the Pareto principle is a common phenomena
in many applications. This principle, also known as the 80-20 rule, states that
roughly 80% of the queries focus on 20% data items [1]. With this observation,
and the availabity of large main memory, an intuitive solution is to cache frequent
results and use them for answering queries. In [15], the frequent intermediate
results are stored in the main memory in order to reduce response time.

The indecis are built based on the static properties like data distributions, e.g.
two variables X and Y would be probably placed in the same partition if they
have strong correlations. On the contrary, when deciding which items should be
cached, the major concern is the dynamic features like query workload, e.g. we
may consider to store the joint distribution of {X,Y, Z} if it is contained by many
previous queries. Intuitively, we can further improve the query performance by
benefiting from both the static (data) and dynamic (workload) features. Our
work is motivated by this observation. In brief, our basic idea is to adapt the
INDSEP structure to accommodate the frequent accessed results. We also revise
the original algorithm for evaluating inference queries on INDSEP so that the
cached results could be utilized.

However, this approach seems not to work well if we directly adopt the caching
strategy in [15], i.e. storing frequent intermediate results. According to our
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experimental results, this caching method, called SubQuery in this paper, can
only improve the query performance by about 10% compared with original IND-
SEP. The reasons are two folds. Firstly, there are huge number of possible in-
termediate queries and the cache hit ratio of SubQuery cannot be satisfactorily
high. Note that an intermediate query is exactly to extract the joint distribution
of a set of random variables. The number of possible intermediate queries, or
combinations of variables, would be extremely huge when the data set is large.
The second reason lies in its high space consumption. Storing a joint distribution
requires to store all the entries of this distribution, whose volume will increase
exponentially along with the enlargement of the number of variables contained
in the distribution. The SubQuery approach usually requires to cache sub-queries
with relatively large cardinality and consumes lots of space. We will revisit this
issue in Sec. 3.1.

With this concern, we propose a new caching technique, called Frequent-
Variables, which only store the joint distribution of frequent single variables with
their corresponding separators. Separators are special variables in junction-tree
which are required to connect the partial results from different partitions. More
details about separators and junction-tree would be discussed in Section 2. Com-
pared with SubQuery, the Frequent-Variables technique could control the size of
cached joint distributions because usually there are only few separators. In this
way, we could reduce the memory consumption. The cache hit ratio would also
be improved since we now able to reserve more frequent variables.

More importantly, different from [15], we are not only trying to match the
intermediate sub-queries with cached results, but also pruning unnecessary inter-
mediate sub-queries and consequentially shortening the evaluation path. Specif-
ically, we find that we can use some cached results for acceleration even if the
cached variables are NOT included in a query. Based on this observation, we
propose the so-called Express-Channels technique which could further save lots
of subqueries. Our proposed method integrates these two techniques. Hence we
call it FVEC (Frequent Variables with Express Channels).

Our major contributions in this paper are summarized as follows:

– An approach for efficiently querying large volume of uncertain data with
high correlations based on cached results.

– Novel caching approaches for storing the requent results.

– Efficient algorithms for evaluating inference queries based on the cached
information.

– Extensive experiments on large datasets for verifying the effectiveness and
efficiency of our proposed approaches.

Next we will review some issues which our work is based on, such as uncertain
data model, the junction tree and the INDSEP structures in Section 2. After
that, we will propose our approaches for caching frequent variables in Section 3,
and a series of techniques to make good use of cached results to prune subqueries
in Section 4. The experimental study will be illustrated in Section 5. Section 6
will discuss related works. We then conclude this paper in Section 7.
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2 Background Knowledge

In this section, we briefly review several important issues related to our work.
We will first introduce a data model for representing uncertain data.Secondly,
we will show the basic idea of junction tree [10], a data structure for efficient
processing of inference queries, and explain the structure of INDSEP [8], an
index for querying correlated uncertain data.

Fig. 1. GRN Representation for a Probabilistic Database

2.1 GRN Model

There have been several models for representation of uncertain data such as
attribute uncertainty and tuple uncertainty [14]. But most models are only ap-
plicable for data with no correlations. Recently Chen et al. propose a model
called GRN (Generator-Recognizer Network) for expressing correlated uncer-
tain data [2]. As our work focuses on querying highly correlated uncertain data,
we decide to adopt the GRN model.

The GRN model is a special Bayesian Network. Figure 1 illustrates a simple
example for representing a probabilistic database in GRN. Each node is labeled
with the random variable to which it is corresponded. Each arrow depicts a
dependency among variables and is attached with a conditional probability table
(CPT). The nodes labeled by X1 . . . X13 are tuple variables. Basically each tuple
in the probabilistic database will have a corresponding node in GRN. The nodes
G1 . . . G6 are called generators, which are inserted to express the correlations
among tuple variables. For example, with G1 and the attached CPTs, X1 and
X2 should be mutually exclusive. Finally, the nodes R1 . . . R5 are recognizers
for representing the correlations among X-tuples, e.g. two groups {X1, X2} and
{X3, X4, X5} are correlated with the existence of R1. .

2.2 Junction Tree and INDSEP

Intuitively, the evaluation efficiency would be much better if we can perform in-
ference on a small part of the whole distribution, which leads to the introduction
of junction tree [10]. The nodes in the Bayesian network would be clustered into
cliques. Each clique has the property that all nodes inside it are pairwise linked.
A junction tree will be obtained then by applying an elimination sequence on
the triangulated graph.
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In a junction tree, there are two types of nodes, clique nodes and separator
nodes. The clique nodes in the junction tree correspond to the maximal cliques
in GRN and the separator nodes correspond to the vertex sets that separate the
maximal cliques. Suppose χ is the set of all random variables, Ci is denoted as a
clique and sj is denoted as a separator, the overall joint distribution represented
by a junction tree can be computed as follows.

P (χ) =

∏
Ci

P (Ci)∏
sj
P (sj)

(1)

After construction and calibration, the potential of Ci (or sj) is exactly the
marginal distribution of Ci (or sj).

Fig. 2. The Partition Result for the Junction Tree Builit on Figure 1

Kanagal et al. find that we could avoid going into some of these intermediate
nodes if the joint distributions of some special variables are pre-computed. With
this observation, they propose the so-called INDSEP structure [8], which is to
hierarchically partition a junction tree into connected subtrees and subsequently
construct the index. Figure 2 shows a hierarchical partition of the junction tree
built on the above GRN. Each index node in INDSEP corresponds to a connected
subtree of the junction tree, and it has a set of separators which separate this
node from its siblings. A separator is basically a set of random variables. The
joint distribution of all the separators of a node is called shortcut potential and
can be used for speeding up query processing.

For completeness, we now briefly summarize the main idea of answering in-
ference queries on INDSEP. When receiving an inference query, INDSEP will
first search for the children nodes of the root which contain the queried vari-
ables. Next, a so-called Steiner tree [7] will be constructed which connect all the
target nodes. For each node in the Steiner tree, a subquery will be issued on it
which includes not only the corresponding query variables, but also separators of
this node. For the cases where a subquery contains separators only, INDSEP just
takes the node’s shortcut potential into computation. After obtaining the results
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of all subqueries, the final result will be obtained by computing the joint distri-
bution of all subquery results and intermediate separators, and marginaling out
the redundant variables. Note that this process is recursive, i.e. the evaluation of
each subquery will follow the same process before going down to the leaf level.
Imagine in an INDSEP containing thousands of nodes, the query performance
could be quite low when the queried variables are far away from each other.
The performance could still be improved greatly if the results of some queried
variables have been cached.

3 Caching Frequent Query Results

In this section, we will illustrate our approaches for caching frequent query re-
sults, i.e. SubQuery, and FVEC. We also give a detailed discussions to explain
why they have different performance.

Table 1. Results Cached in Each Node in Example 1

Node Cache(SubQuery) Cache(FVEC)
I1 {X1, X2, X4, G2} {X1, G2}, {X2, G2}, {X4, G2}, {R1, G1, G2}
I2 {X5, X6, X8, G2, G4} {X5, G2, G4} ,{X6, G2, G4} ,{X8, G2, G4}, {R2, G2, G4}, {R3, G2, G4}
I3 {X12, G4} {X12, G4} , {R5, G4}
P1 {X1, X2, R1} {X1, R1}, {X2, R1}
P2 {X4, R1, G2} {X4, R1, G2}
P3 {X5, X6, G2, G3} {X5, G2, G3}, {X6, G2, G3}
P4 {X8, G3, G4} {X8, G3, G4}
P6 {X12, G5} {X12, G5}

Example 1. For ease of illustration, we now give an example before touching
the detailed cache approaches. Suppose we now need to obtain the marginal
distribution P (X1, X2, X4, X5, X6, X8, X12) over the INDSEP structure shown
in Figure 2. The query is first performed on the root node. Since these variables
locate in I1, I2 and I3 respectively. The Steiner tree for connecting the two nodes
would be I1−I2−I3. Three sub-queries are then generated for these three nodes,
i.e. (X1, X2, X4, G2) for I1, (X5, X6, X8, G2, G4) for I2 and (X12, G4) for I3. Note
that when a children node v is queried, its separator Sv must be included in the
query. Otherwise we cannot assembly the final result with the partial ones [8].
This process will be repeated for each of these sub-queries until either the result
of a sub-query is found in one shortcut or a leaf node is met.

3.1 The SubQuery Approach

As shown in Example 1, when a query is evaluated over an INDSEP tree, many
sub-queries would be generated. Each sub-query may also be broken down into
several new children sub-queries. Following [15], the SubQuery approach will
store the results of frequent sub-queries at the corresponding nodes. For example,
since the sub-query (X1, X2, X4, G2) is queried over I1, we then store the result
P (X1, X2, X4, G2) at node I1. Similarly, we will store P (X5, X6, X8, G2, G4),
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P (X12, G4) at I2 and I3 respectively. In this way, when processing new queries,
we can avoid re-evaluate some intermediate queries if they are found in the cache.
Table 1 lists the cached data at each node after evaluating the query in Example
1 according to the Subquery approach. Moreover, we attach a memory limit on
each node, and adopt the classical LRU (Least Recently Used) algorithm for
updating a cache when it is full.

Discussions. According to the experimental results, the SubQuery approach
could really save the computation of many sub-queries and reduce the response
time. But the improvement is only about 10% compared with the original IND-
SEP without any cache. After careful analysis, we find an interesting phe-
nomenon that most cache hittings appear in low-level nodes. Due to the recursive
evaluation process, a sub-query generated in a high-level node usually results in
much more sub-queries than one generated in a low-level node. Hence it is more
valuable to kill sub-queries in high-level nodes. In our experiments, most killed
sub-queries by the Subquery approach locate in 4-5 levels (with tree height equals
to 5). That is why the performance is only slightly improved.

Why it is so hard to hit high-level caches? The reason lies in the number of
sub-queries. Note that a sub-query is exactly a combination of variables, and
the number of possible sub-queries would increase very fast when its cardinality
enlarges. On average, the cardinality of sub-queries appearing in high levels
would be larger than that of sub-queries in low levels. Hence there are large
number of possible sub-queries for high-level nodes and the chances of finding a
new query in the cache would be very low.

Another shortcoming of the Subquery approach is its high memory cost. The
data stored in cache are some joint distributions of several variables. The number
of entries in a joint distribution would increase exponentially with the number
of variables contained in it. For sub-queries with big cardinality, the memory
budget would be quickly run out, and we have to perform the cache updating
very often. Again, this problem will become much more serious in high-level
nodes where sub-queries are quite large. Frequently cache updating causes not
only extra time cost, but also low cache hit ratio.

With these observations, we decide to decompose the results of sub-queries
into small fragments, i.e. results of single variables. In this way, we are able
to accommodate more distributions within the same cache size, and to identify
frequent variables. Furthermore, we find that by leveraging some special variables
we could build express channels between the nodes in high-level and low-level.
With these channels, we could skip large parts of the evaluation path and reduce
the overall evaluation time. This approach, called Frequent Variable with Express
Channel (FVEC in short) will be illustrated in the next part.

3.2 The FVEC Approach

The FVEC approach is based on the idea of caching the distributions of frequent
variables. However, it is no use to cache the marginal distribution of any single
variables. For example, we cannot obtain the joint distribution of P (X1, X2)
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from the cached results P (X1) and P (X2) because they are not independent.
Specifically, we need to choose some bridge variables for a frequent variable
according to the d-separation theorem [2] and store the joint distribution of the
frequent variable and its bridges. In INDSEP, these bridge variables are usually
the separators of the node containing the frequent variable. For example, at node
I1 in Fig. 2, we should store P (X1, G2) at I1 when X1 is found to be frequent
since G2 is the separator of I1. Similarly, we store P (X5, G2, G4) at node I2.
Therefore, if (X1, X5) is queried in the future we could derive it by P (X1, G2) ∗
P (X5, G2)/P (G2). Here P (X5, G2) could be computed from P (X5, G2, G4).

Definition 1. Frequent-Variable. Suppose a variable X is found to be fre-
quent in a node v, the Frequent-Variable scheme will store P (X,Sv) at this node.
Here Sv is the set of separators of v.

Now we explain the idea of express channel. In Example 1, in order to evaluate
the sub-query (X12, G4), we need to build a long evaluation path from the root
node to the leaf node containing X12. During this process, we must process a
set of sub-queries, i.e. (G4, G5), (G5, R5) and (R5, X12), and obtain the final
result based on Equation 1. Suppose next time we want to query X13. We have
to go through the same evaluation path and evaluate almost the same set of
sub-queries except that the sub-query (R5, X12) is replaced by (R5, X13).

The evaluation of X13 could be accelerated if we cache the result P (G4, R5).
In this case, we just have two sub-queries (G4, R5) and (R5, X13). As shown by
the dotted red arrow in Fig. 2, this cache scheme is like to build a channel from
I2 to the leaf node. Hence we call it express channel. Note that in practical there
could be hundreds of thousands of variables and the evaluation path would be
much longer. Therefore this method could help us cut off many partial evaluation
path and skip many sub-queries.

Definition 2. Express-Channel. If a node v is accessed, we would store the
joint distributions of Sv and S′

v at each ancestor node v′ of v.

The major advantage of the express-channel scheme is the ability of killing many
sub-queries in high-level nodes. As aforementioned, with express channels, we can
directly pull the variables from leaf nodes. Moreover, note that with this scheme
we can accelerate queries with no cached variables, e.g. the above query X13.
This is because these channels are linked with separators and these separators
will be shared by different queries.

Finally, theFVECapproach is to store the results according to both frequent-
variable scheme and express-channel scheme. The cached data according to FVEC
approach in Example 1 are listed in Table 1. The items cached due to the express-
channel scheme are marked as red color.

4 Processing Inference Queries with Cached Results

We are now ready to illustrate the process of evaluating probabilistic inference
queries with cached results.
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4.1 Querying Algorithm

As explained in Sec. 3, the frequent results are cached in some nodes of INDSEP.
The original algorithm of processing inference queries over INDSEP, as proposed
in [8], needs to be revised in order to make use of cached results. Algorithm 1
lists the main steps of the revised querying algorithm, called queryWithCache.
The revised parts are highlighted in red color.

1 if v is a leaf node then
2 return extract(v.potential,q);

3 if config.option = ‘FVEC’ then
4 v′ ← findExpressChannel(v,q);
5 if v′ is NOT null then
6 return queryByChannel(v,v′ ,q);

7 construct a steiner tree T for q over the children nodes of v;
8 Φ ← ∅;
9 foreach node v′ in T do

10 q′ ← Sv′ ∪ (all variables inside v′ ∩ q) ;
11 if q′ is a sub set of any shortcut sc of v or v′ then
12 Φ ← Φ∪ extract(sc,q′);
13 continue;

14 r′ ← searchInCache(q′,v′);
15 if r′ is null then
16 r′ ← queryWithCache(v′,q′);

17 Φ ← Φ ∪ {r′} ;

18 r ←
∏

φ∈Φ φ∏
s∈T P (s) ;

19 return r;

Algorithm 1. queryWithCache(Node v, Query q)

This algorithm works in a recursive manner. When a query q is evaluated, we
invoke queryWithCache and set the root node as its input. Steps 1 and 2 are
to check whether the input node v is on the leaf level. If the answer is YES,
we can directly obtain the result by marginalizing q from v’s potential. The
function extract(Factor,Query) is to extract the marginal distribution of a set
of variables from a factor1. Steps 4 to 6 are only executed if the programme works
in the ‘FVEC’ mode, i.e. we can use the Express Channel to skip some parts of
the evaluation path. The details of leveraging express channels will be discussed
in Sec. 4.2. If a query cannot be accelerated by express channel, we then build a
Steiner tree at step 7, a path containing all variables in q. Step 8 is to initialize

1 In this paper, we will use the terms “factor” and “distribution” interchangeably and
ignore their difference in the probabilistic graphical model literatures.
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an empty set for storing results of sub-queries. Next we evaluate each sub-query
for every node v′ contained by the Steiner tree (steps 9-17). Firstly, we build
a sub-query (step 10) which contains the variables in v′’s separators, or in the
intersection of the variables in v′ and in q. Steps 11-13 try to find the result in
any short-cut of v or v′. If not found in short-cut, we then check whether the
result could be found in cache (steps 14-16). In step 17, we insert the result of
this sub-query into Φ. Finally, after collecting the results of each sub-query, we
obtain the result by Equation 1.

The searchInCache(q, v′) function (step 14) tries to find a match of q in
node v′. Here q matches a cached factor means that q is a subset of the variables
contained in this factor.

4.2 Leveraging Express Channels

The use of express channels to accelerate query evaluation consists of two ma-
jor steps. Firstly, we need to find whether there exists a channel and, if there
are multiple ones, choose the longest one. This task is solved by the
findExpressChannel(v, q) function. A channel is represented by a children node
of v, which means the item P (Sv, S

′
v) is contained in the cache of v. Therefore,

the path from v to v′ could be replaced by this channel factor. After that, we
invoke the function queryByChannel(v, v′, q) to obtain the result of q which
would cut off the path from v to v′.

Algorithm 2 lists the process of finding express channels. At the first step, we
retrieve the lower common ancestor (LCA) of all variables in q because a channel
must be shared by all the queried variables. Hence each common ancestor of all
queried variables is a candidate to construct a channel, with the LCA generating
the longest one. Steps 3 is to check whether the path < v, v′ > exists, i.e. the
joint distribution of Sv ∪ S′

v is cached. If not, we then set v′ as its parent node
and repeat this process. The loop ends if we find v′ becomes v, which means we
could not find a children node of v which can build a channel. A null value will
be returned for this case.

The queryByChannel(v, v′, q) function is not complicated. As listed in Algo-
rithm 3, the input query q is decomposed into two parts. The first part, i.e. (v′, q)
is obtained by invoking the queryWithCache function, which is not costly since
v′ usually locates in the levels very close to the leaf node. The second part, i.e.
(v, v′), can be loaded from cache. The final result is then obtained by combining
these two parts with Equation 1 (step 3).

5 Experimental Study

We now report our experimental results. All programs are implemented in C++
under gcc 4.1.2, and run on a machine with six-core 2.4G Hz Intel(R) Xeon(R)
CPU, 16G RAM and Linux 2.6.18. For comparison, we implement the INDSEP
index [8] based on an open source C++ library libDAI2. Without otherwise
specifications, each point in the following figures is an average of 200 runs.

2 http://cs.ru.nl/~jorism/libDAI/

http://cs.ru.nl/~jorism/libDAI/
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1 v′ ← getLCA(q) ;
2 while v′ != v do
3 if P (Sv ∪ S′

v) can be found in cache then
4 return v′;

5 v′ ← the parent node of v′;

6 return null ;

Algorithm 2. findExpressChannel(Node v, Query q)

1 r1 ← queryWithCache(v′, q ∪ Sv′) ;
2 r2 ← searchInCache(Sv ∪ Sv′ , v) ;
3 r ← r1r2∏

s∈S
v′

P (s) ;

4 return r;

Algorithm 3. queryByChannel (Node v, Node v′,Query q)

Datasets and Queries. We generate a probabilistic database with one relation
and 100,000 tuples, which is represented in GRN model. The uncertain data is
generated in the way that in GRN, each generator or recognizer is linked to
2-4 tuple variables. For comparison, we also generate probabilistic relations with
10K, 20K, and 50K tuples respectively3. The inference queries are all about
extracting the joint distribution of a set of random variables. The number of
variables contained in each query varies from six to ten, and on average a query
covers more than 60% range of the whole INDSEP. The queries are generated by
following the Pareto pattern, which means that among all queries 80% queried
variables come from a set containing 20% of the whole variables.

5.1 Parameter Tuning

Firstly, we illustrate our results for choosing appropriate node size, i.e. the maxi-
mum number of cliques contained in each INDSEP node. Note that our proposed
approach is main-memory based. It seems as if the larger node size, the shorter
INDSEP tree, and the better query performance.We test different node sizes on
querying INDSEP on the 100K dataset. As illustrated by Figure 3, the perfor-
mance does not keep increasing as the node size enlarges. The reason is due to
the high computation cost of handling node potentials during query evaluation.
This cost will increase exponentially when the node size enlarges and may totally
counteract the benefits obtained from the reduction of tree height. Based on this
observation, we set the node size as eight, the optimal point in Figure 3.

3 By default, the dataset contains 100K tuples.



Efficient Querying of Correlated Uncertain Data with Cached Results 483

We further run a series of experiments to detect the optimal value of cache
size, i.e. the maximum memory consumption permitted to store all the cached
factors. From Fig. 4, we can see that when the cache size increases, the response
time of both SubQuery and FVEC will drop in the initial phase, then increase
a little bit and finally become stable. When cache size is small, a larger cache
will accommodate more factors and help reduce the response time. But if the
cache size is big enough to store most frequent results, the performance cannot
be increased more. On the contrast, the response time may be longer since there
are many infrequent results reserved in cache and more efforts are needed to
search the cache. As implied by the results, we set the cache size as 200M for
the following experiments. We also compare the cache hit ratio, i.e. percent of
intermediate sub-queries which are skipped due to matched factors in the cache.
We can observe from Fig.5 that the cache hit ratio of FVEC is much higher than
that of SubQuery which is because the advantages of using smaller factors and
express channels. Also, the ratios will be become stable for both methods when
the cache size is big enough, which again explains why the performance will not
increase constantly when enlarging cache sizes.

5.2 Performance Comparison

Overall Performance. Figure 6 shows the comparison of three approaches,
i.e. INDSEP, Subquery and FVEC on the 100K data set. The x-axis shows the
sequence number of queries. Basically a sequence is a group of 200 queries. The
y-axis shows the average response time for each sequence. Clearly, the FVEC
outperforms the other two approaches. The relative improvement with respect to
INDSEP is more than 50 percents. The Subquery approach performs worse than
FVEC but better than INDSEP. This result is coincident with our estimation.
Our proposed approach will increase the cache hit ratio as discussed in Section 4
and it wins the best. The Subquery approach is based on the INDSEP and tries
to utilize cached results for answering queries, so it defeats INDSEP.
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In order to illustrate the fire up phase of collecting frequent variables, we
partially enlarge Figure 6 and show performance of processing the first 1,000
queries in Figure 7. Each point of Figure 7 is an average of 20 runs. From this
figure, we can see that in the beginning, the performance of the three approaches
are roughly the same. During the processing of queries, the response time of
Subquery and FVEC will decrease quickly, while the performance of INDSEP
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has no obvious changes. This because both Subquery and FVEC will cache some
results and use them for answering new queries. Hence their performance will
become better when experiencing more queries.

Finally, we test the average response time of the three approaches on four
datasets for processing 10,000 queries, with sizes of 10K, 20K, 50K and 100K
respectively. Figure 8 illustrates the result. We can find that FVEC always per-
forms the best among the three approaches, and the increasing rate is acceptable.
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Breakdown Analysis. We now illustrate why FVEC could perform the best
through several breakdown analysis. Firstly, we want to mention that during a
query evaluation the number of extended subqueries is one of the most crucial
factors which affect the response time. We compare the number of required
subqueries for the three approaches in Figure 9. Again FVEC performs the best.
Recall that FVEC can reduce the number of subqueries by completely matching
subqueries with cached result, and can skip many subqueries by the express
channels based on Algorithm 3.

As discussed before, a subquery may be again broken into a set of children
subqueries if it is issued on an non-leaf node. Hence on average a cache hitting
in an upper level could save much more subqueries than hittings in lower levels.
To illustrate this, we further compare the cache hit levels of the two caching
approaches in Figure 10. Here a cache hit happens if and only if a subquery
terminates by reusing some cached information. The y-axis of Figure 10 presents
the percents of cache hits at each level. From Figure 10, we can see that more
than 90% cache hittings of FVEC happens in the first two levels, while most
cache hittings of Subquery appear in the fourth and fifth levels. That explains
why FVEC performs much better than Subquery.
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Finally, we compare the average size of factors, i.e. the number of variables in
a factor. Note that the FVEC approach utilizes smaller factors to accommodate
more cached items 3.2. This motivation is verified by the results in Figure 11.
At the first level, the average factor size of Subquery is much larger than that
of FVEC. We also find that this effect is not that evident in lower levels. Note
that a sub-query evaluated in the first level would be decomposed into several
smaller sub-queries to the second level. Hence the size of sub-queries in lower
levels would be quite small (usually one or two) and this is why it is hard to
see the difference in these levels. Remember that the first level would be the
most important place to kill sub-queries. Thus FVEC could benefit a lot from
the larger capacity in the first level.

6 Related Works

Management of Uncertain Data. During the past decade, along with the
quick development of applications like mobile data management, sensor network,
data streams and data integration, processing uncertain data attract many re-
search interests from the database community. These works are mainly targeted
on uncertain data models [2], probabilistic queries [4,11], uncertain data in-
dex [17,8], and uncertain data mining [16].

Querying Uncertain Data. Evaluating probabilistic queries is known to be
#-complete [5]. Many solutions are proposed for improving the performance,
including Monte-Carlo sampling [4], verification and refinement approaches [19],
and uncertain data index [17] etc.. All of these works assume that there are no
correlations or only locally correlations, i.e. each uncertain data is only correlated
with several data items, and independent of others. Hence they are not applicable
for the applications where uncertain data are highly correlated with each other.

Works on querying correlated uncertain data usually represent uncertain data
by probabilistic graphical models (PGM) and regard this problem as performing
inference on PGM. Sen et al. utilize the shared correlations among uncertain
data to simplify the original PGM and reduce the query evaluation time [13].
In [8], the INDSEP structure is proposed for indexing correlated uncertain data,
which is adopted by this work. In [12], probabilistic inference is transformed to
SAT and existing solutions for SAT could be adopted for solving inference. None
of these works consider the use of cached results for accelerating future query
evaluation. The work most related to ours is [15]. Instead of storing intermediate
results as [15] does, we cache the results of each frequent variable in order to
increase the cache hit ratio. Also, we try to cut off unnecessary path from the
evaluation path with the express channel technique.

7 Conclusion and Future Works

In this paper, we address the problem of answering probabilistic inference queries
over large volume of uncertain data with high correlations. In order to solve
this problem, we propose to cache the result of each frequent single variable in
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INDSEP and design a series of novel techniques for efficient processing inference
queries with cached information. According to our experimental results, our
proposed approach is both effectiveness and efficient compared with the state-
of-the-art works. About the future work, we plan to study how to further improve
query performance with some approximates and/ or cloud computing techniques.
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