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Abstract. We propose a novel framework for associating multi-target
trajectories across multiple non-overlapping views (cameras) by con-
structing an invariant model per each observed target. Ideally, these mod-
els represent the targets in a unique manner. The models are constructed
by generating synthetic images that simulate how targets would be seen
from different viewpoints. Our framework does not require any training
or other supervised phases. Also, we do not make use of spatiotempo-
ral coordinates of trajectories, i.e., our framework seamlessly works with
both overlapping and non-overlapping field-of-views (FOVs) as well as
widely separated ones. Also, contrary to many other related works, we
do not try to estimate the relationship between cameras that tends to
be error prone in environments like airports or supermarkets where tar-
gets wander about different areas, stop at times, or turn back to their
starting location. We show the results obtained by our framework on a
rather challenging dataset. Also, we propose a black-box approach based
on Support Vector Machine (SVM) for fusing multiple pertinent algo-
rithms and demonstrate the added value of our framework with respect
to some basic techniques.

1 Introduction

Tracking targets across multiple cameras, also known as the “handover” problem,
is an important problem in computer vision, in general, and visual surveillance,
in particular, where common applications are motivated by large surveillance sys-
tems installed in complex compounds. The goal is to maintain the identities of
targets traveling across cameras, disappearing and later reappearing at a differ-
ent location. The task of target tracking in a single view (single camera) has been
studied quite extensively (see, e.g., [1,3,18]) and is not the focus of this work. We
assume, in fact, that this fundamental building block is given. Tracking analysis
of a single view produces a set of trajectories representing the target motions in a
given FOV, independently from other views. Our goal is to associate trajectories
belonging to the same target from multiple, independently-analyzed views.

To make aforementioned associations between trajectories, we compute a sig-
nature for each trajectory. This signature consists of models representing the
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target that originated the trajectory. Ideally, trajectory signatures belonging to
the same target are more similar than those belonging to different targets. We
obtain associations based on construction of invariant features. As opposed to
common feature extraction techniques (e.g., SIFT [13]) that search for invariant
features with respect to scale, rotation, etc., we explicitly promote invariance
to any feature extracted from an observed target. We do that by generating
synthetic images that simulate how the target would be seen from different
viewpoints. This approach is different from various common approaches utilized
in related work, whereby probability models evaluate inter-camera relationships
to predict the associations between trajectories.

Our approach does not rely on spatiotemporal coordinates, color cues, and
similar information that is usually exploited in other related work. Instead, by
using our innovative scheme of invariant signature models constructed from a
target’s trajectory, we employ, essentially, an alternative technique for invariant
feature extraction to finding trajectory association. Our solution can then be
fused nicely with other, more common approaches. Indeed, we present also an
SVM-based black-box fusion scheme that can easily be used to combine multiple
pertinent algorithms and demonstrate its added value.

This paper is organized as follows. Section 2 provides an overview of related
research in this area. Section 3 presents our framework for trajectory associa-
tion. Section 4 presents our black-box approach for fusing a variety of pertinent
algorithms. In Section 5 we present our experimental results. Section 6 makes
concluding remarks.

2 Related Work

Recently, there has been a growing interest in tracking targets between blind
regions, i.e., non-overlapping regions, which give rise to target disappearances
at certain time intervals. In [4] a system for multi-camera tracking in “blind”
regions is described. In order to match targets between different cameras, the au-
thors assume that targets move in a fairly constant velocity. They utilize a known
camera topology to construct a probabilistic prediction of where and when a tar-
get, disappearing from one view, will appear in a nearby view. This assumption
does not hold in a supermarket-like environment where people wander about
the different aisles, stop at times, or turn back to their starting location. In
[9] a different approach is taken, whereby the camera topology and path prob-
abilities are learned during a training phase. This method is constrained to a
small number of cameras. It is quite cumbersome and even infeasible to have
such a training phase when dealing with large scale premises with hundreds of
cameras. On the other hand, an unsupervised method for learning the topol-
ogy of a camera network is presented in [14]. The system learns “Entry” and
“Exit” zones in each camera view according to a training dataset that contains
a large number of sample trajectories. Then, a probabilistic graph representing
links between these zones is learned based on the training dataset, using ex-
pectation maximization (EM) methods. The resulting graph is used to predict
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the location where a disappeared target might reappear. This unsupervised ap-
proach of learning a prediction model might suffer from poor accuracy in a large
camera network with substantial amount of targets moving around, constantly
disappearing and reappearing. The model might set high probabilities to links
between “Entry” and “Exit” zones based on trajectories that are assumed to
represent the same target but which in fact do not.

A very common approach of handling the problem of tracking across multiple
disjoint views is based on color histogram comparisons (see, e.g., [8,10,11,15,17]).
Issues such as differences in illumination, pose, and internal parameters between
different cameras are discussed in [10]. The authors show that all brightness
transfer functions, from a given camera to another, lie in a low-dimensional sub-
space which can be learned by supervised methods using labeled learning sets.
In [11] the authors deal with the problem of tracking across multiple cameras
by combining location prediction and appearance model matching. The location
prediction is based on Kalman filters (KF), and the appearance model is con-
structed from multiple color distribution components, each of which is obtained
by partitioning the blobs (representing the detected target) into their polar rep-
resentation. This localization of color properties provides an advantage over a
simple color model, whereby a single histogram represents the entire target.

The main task of our work is to find associations between trajectories of targets
seen from several arbitrary viewpoints. Approaching the problem is often based
on feature matching techniques, which have been studied extensively (see, e.g.,
[2,7,13,15,16]). The methods presented in these papers extract features that are
invariant to affine transformations (i.e., scale, rotation, and shear), noise, illumi-
nation, etc. Such features can then be matched, regardless of the viewpoint of a
target or an object. This insight serves as an inspiration for our target association
scheme.

Fusion methods have also been introduced extensively in this domain. In [10]
the authors combine space-time cues with an appearance matching scheme based
on a Maximum Likelihood (ML) estimation framework. In order to overcome
appearance changes between cameras, a brightness transfer function is learned
during a training phase. Space-time cues are also learned during this training
phase. The ML estimation framework is then used to assign correspondences
between tracked targets. In [12] the authors combine three different feature types
(the color histogram, covariance matrix, and Histogram of Oriented Gradients
(HOG) features) using the Multiple Instance Learning (MIL) method. Similarity
measures based on these features, among a set of automatically collected training
samples, form a “feature pool”. The MIL boosting algorithm is then applied to
select discriminative features from this pool and their corresponding weighted
coefficients. We propose a simple, yet effective black-box approach for fusing a
variety of pertinent algorithms without any knowledge of the internal structure of
the fused algorithms. This is in contrast to the above approaches whereby fusion
is accomplished within the core of the algorithms, requiring the utilization of
heuristics which makes it more complex.
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3 Our Trajectory Association Framework

To associate trajectories across multiple views, we will compute a signature for
each trajectory. These signatures will be used subsequently to compare between
trajectories and obtain associations. Subsections 3.2–3.3 describe the process of
signature computation and comparison.

3.1 Model Construction

We refer to the constructed model that describes, ideally, the target of a tra-
jectory in a unique manner as an “invariant feature”. The following paragraphs
describe in detail the model construction.

ROI Selection. Contrary to the approach taken in many related works, we
compute the descriptor over a specific region of interest (ROI), rather than the
entire region where the target is captured. We will be interested specifically
in regions containing a persons head. This is motivated by several reasons: (1)
The head includes facial features that identify the target uniquely. (2) The head
forms a fairly rigid surface relative to other moving parts of the human body
like the arms. This helps when comparing descriptors computed from different
viewpoints of the same target. (3) The head is the topmost body part, making it
less prone to occlusions. (4) In practice, the region we use includes not only the
head but also the upper body part that captures slightly areas from the neck and
shoulders. This upper body part is still fairly rigid, yet often includes distinctive,
informative characteristics about the target, e.g., texture of shirt, type of collar,
tie, scarf, etc.

We extract the head region automatically from the bounding ellipse of the
target in the frame obtained by a visual tracker. Calculating a bounding rectangle
of the head region relative to the bounding ellipse is based on fixed coefficients
learned a prior, as illustrated in Figure 1.

Descriptor Computation. Once a region is determined, a descriptor is com-
puted from the image data in the region. We use a Histogram of Oriented Gra-
dients (HOG) proposed in [7] to represent the data in the region. Namely, we
compute a HOG feature by concatenating 8-bin orientation histograms calcu-
lated in 6×6 cells over the region, resulting in a row vector of size 288.

We note that the specific HOG feature we chose as a descriptor is not neces-
sarily optimal for the task of trajectory association. Other types of descriptors
could be used coherently with our framework. The type of descriptor used is not
as important as the invariance required from the constructed model to changes
in scale, rotation, viewpoint, and to some extent, also perspective distortions.
This construction is the foundation of our framework as described henceforth.

Invariant Model Construction. Computing a single descriptor for the head
region in the original frame (as captured by the camera) is not enough to match
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Fig. 1. Positioning of rectangle representing region of head relative to bounding ellipse
of target; height and width of bounding rectangle are set with respect to lengths of
major and minor axes of ellipse (0.25H and 0.55W , respectively); center of rectangle
(point B) is located on major axis; rectangle (aligned with major and minor axes of
ellipse) is tilted by an angle of ϑ

this instance of the head with other instances of the same target, taken from
different viewpoints. Therefore, we simulate, as much as possible, how a given
target would be seen from different viewpoints. We do that by applying various
affine transformations to the ROI in the original frame and then computing
the corresponding descriptors of these transformed regions. We realize that it
is not possible to construct a full 3D model of a face given the data quality we
deal with. Still, applying rather “small” affine transformations provides various
simulated viewpoints of the head.

An affine transformation can be represented by the seven parameters: scale-x,
scale-y, translation-x, translation-y, shear-x, shear-y and rotation. We denote
these parameters by Sx, Sy, Tx, Ty, Rx, Ry, and ϑ, respectively. Each of the
seven parameters can be expressed by a 3×3 transformation matrix of homoge-
neous coordinates. These parameters can be combined to form a variety of affine
transformations by using matrix composition. Recall that the head region is cap-
tured by a rectangle, i.e., it can be represented by a 3×3 affine transformation
matrix (with respect to a reference 1×1 rectangle centered at the origin) that is
composed of several transformation matrices of homogeneous coordinates. Let G
be that rectangular head region centered at point C = (Cx, Cy) with width W ,
height H , and counter-clockwise rotation ϑ′ with respect to C. The composition
corresponding to G is given by

⎛
⎝

1 0 Tx

0 1 Ty

0 0 1

⎞
⎠
⎛
⎝

cosϑ −sinϑ 0
sinϑ cosϑ 0
0 0 1

⎞
⎠
⎛
⎝

1 Rx 0
0 1 0
0 0 1

⎞
⎠
⎛
⎝

1 0 0
Ry 1 0
0 0 1

⎞
⎠
⎛
⎝

Sx 0 0
0 Sy 0
0 0 1

⎞
⎠ (1)
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where

Sx = W ; Sy = H ; Tx = Cx ; Ty = Cy ; Rx = 0 ; Ry = 0 ; ϑ = ϑ′ (2)

We compute N � 1 descriptors, corresponding essentially to N different affine
transformations applied to the original head region. It is important that these
transformations be diversified, albeit rather slightly, to avoid an intense distor-
tion of the information contained in the relevant region. Having experimented
with various values, we picked eventually N = 1000. (A larger number of trans-
formations did not yield significantly better results.) We thus generate at random
1000 affine transformations as follows. Each affine transformation is associated
with a 7-element list of the form (ΔSx, ΔSy, ΔTx, ΔTy, ΔRx, ΔRy, Δϑ), where
each element is chosen at random from the range [−0.2,+0.2], i.e., each ran-
dom generation corresponds to a perturbation of the given image by an affine
transformation with the following parameters:

Sx = 1 +ΔSx ; Sy = 1 +ΔSy ; Tx = ΔTx ; Ty = ΔTy

Rx = ΔRx ; Ry = ΔRy ; ϑ = Δϑ (3)

(with ϑ in radians). We end up with a list containing 1000 descriptors and a list
containing corresponding representations of 1000 affine transformations. That
is, for each i, 1 ≤ i ≤ 1000, descriptor di corresponds to the set of coefficients
of affine transformation ti. Eventually, associations are determined by an iter-
ative algorithm; at each iteration, given a descriptor d, it looks for the affine
transformation t that “best fits” this descriptor. We have considered, among
others, perspective transformations and non-linear transformations, but settled
eventually for a simpler linear mapping according to the standard least squares
approach. Let D be the domain of descriptors and let T be the domain of affine
transformations. We want to determine a linear mapping L : D → T . Since the
output t ∈ T consists of seven parameters, there is a need to determine seven
linear mappings, L1, . . . , L7, each of which corresponds to a single parameter
of the ultimate affine transformation. Finding these linear mappings requires
solving an overdetermined system of linear equations. Each of these seven linear
mappings is essentially a list of 288 coefficients corresponding to the elements of
a descriptor. The linear least squares method finds these coefficients, such that
the error over the entire data (1000 instances in our case) is minimized. Once the
seven linear mappings are determined, we concatenate them to form the final
288× 7 matrix L. Given a descriptor d, the corresponding affine transformation
t can be computed by:

[
t
]
1×7

=
[
d
]
1×288

· [L]
288×7

(4)

We can construct also the model that represents the head of a target in the
frame using the data computed. The model consists of the following four items:
(1) The vertical and horizontal gradient images calculated from the frame during
the computation of the HOG feature. (2)model-region: the head region extracted
from the bounding box of the target. (3) model-descriptor : a single descriptor
computed for the model-region. (4) The linear mapping matrix L.



378 S. Daliyot and N.S. Netanyahu

Fig. 2. Flowchart of iterative descriptor-to-model comparison

3.2 Signature Computation

Note that a model represents only a single target in a single frame. The purpose
of a signature is to represent an entire trajectory, which spans usually multi-
ple frames. A signature is a collection of models computed from frames of the
trajectory. Through-out the frames of a trajectory, the target is captured from
different viewpoints and in different poses. However, the target may look very
similar in many frames. We want to keep only the frames in which the target
looks different with respect to other frames of the trajectory. We start with an
empty signature and append to it models from each frame that introduces new
data not yet encountered. Starting with the first frame, the signature is still
empty; hence, a model is always computed from this frame and added to the
signature. Examining consecutive frames, the head in each frame is compared to
models already appended to the signature in previous frames. If a head model is
“similar enough” to any of the previous models, the frame in question is skipped.
On the other hand, if the head is “distinct enough” from all previous models, a
new model is computed for the current frame and appended to the signature.

Descriptor-to-Model Comparison. A fundamental element of the signature
construction algorithm is the ability to compare a targets head in a given frame
to models, which already reside in the signature. That is, to compute the dis-
tance between a given head and a model. Once we compute this distance, a
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simple threshold can be used to decide whether the head in question is “similar
enough” to any of the models in the signature. We start by computing a single
descriptor for the head region in a given frame. We will refer to this head region
as frame-region and to the corresponding descriptor computed for that region
as frame-descriptor. To compute the aforementioned distance, we use an itera-
tive approach. The iterative descriptor-to-model comparison approximates the
frame-descriptor to the model-descriptor. This is done by iteratively applying an
(inverse) affine transformation to the frame-region, re-computing a descriptor for
the resulting region and comparing it to the model-descriptor. Computing the
(inverse) affine transformation that should be applied to the frame-region is done
using the linear mapping matrix L and the descriptor obtained at each iteration.
Figure 2 presents a flowchart of the iterative descriptor-to-model comparison. At
the first iteration, the algorithm computes in Step 3 the frame-descriptor from
the frame-region. Initially, the affine transformation T applied to the frame-
region in Step 2 is the identity matrix, so that there is no effect on the re-
gion. In consecutive iterations, however, the frame-region will be transformed,
yielding a so-called transformed frame-descriptor. In Step 4, the transformed
frame-descriptor is compared to the model-descriptor, yielding a distance be-
tween the two. (The distance is the angle (in degrees) between the two unit
vectors.) If the distance decreases, the algorithm continues to Step 6. Otherwise,
the algorithm terminates, returning the minimal distance encountered so far.
Steps 6-8 comprise the essence of our framework. First, the transformed frame-
descriptor is multiplied by the linear regression matrix of the model, resulting
in an affine transformation represented by a vector of seven parameters. Re-
call that the linear mapping matrix was calculated from corresponding pairs of
affine transformations and descriptors. Intuitively, the product of an arbitrary
descriptor and the linear regression matrix of a model yields an affine transfor-
mation that should approximate in some sense the descriptor of the model head
to that arbitrary descriptor. Namely, the affine transformation obtained should
approximate the model-descriptor to the frame-descriptor. However, since we
want to approximate actually the frame-descriptor to the model-descriptor, we
need to apply the inverse affine transformation to the frame-region. Steps 7 and
8 do exactly that. In Step 7 an affine transformation is composed out of the
seven parameters obtained by the multiplication, and in Step 8 the inverse of
this affine transformation is applied to the affine transformation T that process
adjusts the (inverse) affine transformation applied to the frame-region, as long as
the distance between the frame-descriptor and the model-descriptor continues
to decrease.

Horizontal Flipping. We exploit the fact that a human head is usually sym-
metric along the horizontal axis to enhance a signature computation. In addition
to comparing the descriptor representing a head region in a given frame to the
models contained in the signature, we will compare also a descriptor derived
from a horizontally-flipped image of the frame. The final distance between the
head in a given frame and a head model is defined as the minimum distance be-
tween the model-descriptor and the two descriptors, i.e., the one computed for
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the original frame and that computed for the horizontally-flipped frame. This
enables to reduce the number of models contained in the signature, thereby re-
ducing computation time and space. Also, we exploit this flipping element, while
comparing between signatures, to improve significantly the total matching rate
(see next subsection).

3.3 Signature Comparison

Before presenting the algorithm for signature comparison, CompareSignatures,
we define an algorithm for comparing models, CompareModels. In the previ-
ous subsection we presented an algorithm for comparing a single descriptor to
a model, the iterative descriptor-to-model comparison. We later obtained an
enhanced algorithm, ModelWithHorzFlip, using horizontal flipping. We utilized
this enhanced algorithm for comparing also between models. Given two models,
model1 and model2, CompareModels compares the two models and returns a
scalar representing the distance between them. The algorithm is symmetric, i.e.,
model1 is compared to model2 and vice versa. First the algorithm calls Com-
pDescToModelWithHorzFlip with input information of the frame-region from
model1 and model2 as the model-descriptor. This means that transformed de-
scriptors are computed from the gradient images of model1 and approximated
to the model-descriptor contained in model2 using the linear mapping matrix
of model2. Then, the opposite comparison is performed, i.e., transformed de-
scriptors computed from the gradient images of model2 are approximated to
the model-descriptor contained in model1. The distance between the two models
is defined as the average between the values returned by the two comparisons
performed.

We now sketch the CompareSignatures algorithm. Given two signatures, sig1
and sig2, all models of sig1 are compared to all models of sig2 using the Com-
pareModels algorithm. The minimum distance among all comparisons is returned
as the distance between the two signatures. Final trajectory associations are
obtained based on these distances by comparing them, for example, against a
specified threshold.

4 Fusing Multiple Algorithms

The insight of establishing an improved outcome based on the fusion of multi-
ple algorithms has long been recognized. Fusion methods have been introduced
extensively in the domain of object matching across different views (see, e.g.,
[10,12]). We propose a simple, yet effective black-box approach for fusing a vari-
ety of matching algorithms. We let every algorithm run independently and return
a distance (or grade) that is assigned to each pair of trajectories among a set
of labeled training samples. Once the results from all algorithms are available,
we train a Support Vector Machine (SVM) module [5] using the labeled training
samples based on the distances obtained by the different algorithms. Samples of
the SVM training set are compiled from all possible pairs of trajectories from



A Framework for Inter-camera Association of Multi-target Trajectories 381

the labeled training samples. Each sample has several features that are captured
by the distances provided by the different algorithms for that specific sample.
(Note that a sample represents a pair of trajectories; hence a distance or a grade
is assigned to this pair by each algorithm.) The number of sample features is
equal to the number of different algorithms that are fused. The sample class is
assigned a value according to ground truth; if the two trajectories in the sample
represent the same target, the class is set to 1, and otherwise to 0. The out-
come of the training process is an SVM module that accepts a list of distances
obtained by the different algorithms for a given pair of trajectories. The output
of the SVM module is one of two possible classes, 1 and 0, as defined above. In
order to assess the quality of the SVM module that was constructed, we used
the well-known K-fold cross-validation technique (with K = 10). The accuracy
was stable across all 10 repetitions, i.e., the variance between the 10 results was
very low. This indicates that the module is well-balanced and coherent. Results
are presented in the next section.

Using a labeled training set should not imply there is a need for a training
phase or some supervised procedure each time the fusion is invoked with a new
camera network. The labeled set is utilized to train an SVM module on the
outputs of the fused algorithms. Theoretically, the same labeled dataset can be
utilized repeatedly for different invocations and different algorithms. Of course,
using a training set created from actual data of a given camera network is likely
to yield better results. Note that the fusion is adapted in a modular manner
upon the introduction of a new algorithm. One need only train a modified SVM
module with the new additional data obtained by that algorithm, which is an
unsupervised procedure that can be handled automatically.

The above is a “black-box” approach since no knowledge of the internal struc-
ture of the fused algorithms is needed. The only requirement from an additional
fused algorithm is a coherent output of the distance (or grade) between all tra-
jectory pairs. This is a rather elementary requirement from an algorithm whose
purpose is to find associations between trajectories.

5 Experimental Results

All experiments were done using a 30-minute recorded scene of six cameras
installed at the lobby of a facility according to the model shown in Figure 3.
The views of the six cameras are shown in Figure 4. The scene includes both
congested and sparse scenarios. A visual tracker was used to analyze separately
the recorded video of each of the six cameras and produce trajectories of detected
targets. Trajectories of 12 targets in the scene were manually labeled to form a
dataset that serves as ground-truth. The 12 targets produced 98 trajectories in
the scene. Each of the 98 trajectories was compared to all trajectories (including
itself), yielding distances per each trajectory pair, i.e., ( 12 × 98 × 99 =) 4851
entries altogether.

Figure 5 presents precision vs. recall results for our trajectory association frame-
work before and after the horizontal flipping. (Precision and recall are determined
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Fig. 3. Model of lobby showing positions of six cameras partially covering the area

by thenumber of “true-positives”, “false-positives”, and“false-negatives” returned
by our algorithm over all trajectory pairs.) The optimal accuracy of 82% is quite
impressive given the challenging dataset we experimented with. The accuracy is
given by the F -measure (also known as the F1-score), which is the harmonic mean
of precision and recall, i.e.,

F -measure = 2× Precision×Recall
Precision+Recall (5)

As mentioned in the Introduction, our algorithm for trajectory association does
not consider spatiotemporal coordinates, color cues, or similar information that is
exploited in other related work. Instead, it introduces a new type of information
based on invariant features. This approach lends itself to further improvement
by fusing it with other more common approaches. To validate this assumption,
we implemented two additional basic algorithms and examined the results due
to fusion of all three. The first additional algorithm is based on color histograms.
That is, the distance between two trajectories is based on the Euclidean distance
between the color histograms computed from the blobs of the relevant targets.
Color histograms were constructed based on the three RGB channels of the
frames. We allocate 16 bins to each of the three channels. We then concatenate
them and normalize the resulting 48-bin histogram. The accuracy obtained by
this algorithm is 76%. The second additional algorithm is based on spatiotem-
poral information. All trajectories from all cameras are projected into a common
coordinate system and a grade is assigned to each pair of trajectories as follows.
Two trajectories recorded at the same time frame but in distant locations are
assigned a grade of −1, meaning they belong to different targets. This is based
on the fact that a target cannot be in two different locations at the same time.
A grade in the range (0, 1] is assigned to two trajectories recorded at the same
time frame that are in close vicinity. The exact grade is computed based on the
spatial distance between the two trajectories. Finally, a grade of 0 is assigned
to all other trajectory pairs, indicating the algorithm does not have sufficient
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Camera 1 Camera 2 Camera 3

Camera 4 Camera 5 Camera 6

Fig. 4. Views of six cameras positioned according to model presented in Figure 3

information to obtain a reliable decision. The accuracy obtained by this algo-
rithm for our dataset is 35%. This poor outcome is a result of the inability of
the algorithm to compare between trajectories that are not adjacent in time or
space. When executed only on a subset of the trajectories that do have adjacent
spatiotemporal information it produces an impressive accuracy of 95%.

We fused our algorithmic framework with the color-based and spatiotemporal-
based algorithms using our black-box technique. Fusing the three algorithms is
pretty straightforward; we let every algorithm run independently and yield its
own results. A sample (point in the graph) provided as input to the SVM module
represents a pair of trajectories and consists of the distances/grades obtained by
the three algorithms for that pair. A 10-fold cross validation procedure was ex-
ecuted to evaluate the accuracy of the SVM module. Figure 6 presents the final
point classification according to the support vectors that were computed by the
SVM module in one of the 10 iterations of the cross validation procedure. Pre-
cision, recall, and accuracy (F -measure) were calculated during each iteration
and then averaged to yield the ultimate measures of the fusion. The bottom-
line averages obtained for precision, recall, and accuracy are 94%, 83%, and
88%, respectively. Recall that the accuracies obtained when running the three
algorithms independently were 35%, 76%, and 82% by the spatiotemporal-based
algorithm (run on the entire dataset), the color-based algorithm, and our frame-
work, respectively. Clearly, the bottom-line 88% accuracy obtained by the fusion
comprises an improvement in comparison to each of the three independent algo-
rithms. Evidently, the fact that each algorithm obtains trajectory associations
based on a different type of information causes a significant mutual improvement.

Having established the added value of our framework relatively to the above
basic approaches, it would be of interest, of course, to carry out a more compre-
hensive study with respect to various recent methods, e.g., [6,19].
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Fig. 5. Precision vs. recall before (red) and after (blue) horizontal flipping; note gain
in accuracy of over 10%

Fig. 6. Final classification of all pairs according to SVM module fusing our framework,
color-based, and spatiotemporal-based algorithms: Pairs with positive classification,
i.e., matches (cyan), pairs with negative classification, i.e., non-matches (magenta),
and the planar separator computed by the SVM module



A Framework for Inter-camera Association of Multi-target Trajectories 385

6 Conclusions

We have presented a novel basic framework for constructing an invariant de-
scriptive model of a target for trajectory association across multiple views. Un-
like many other related works, our system does not assume a constant velocity
of moving targets and does not require a learning phase to construct a statisti-
cal model of target motions. Instead, we showed how to construct an invariant
model for a target to represent it uniquely across multiple views. The model is
constructed by generating synthetic target images that simulate how a target
would be seen from different viewpoints. A regression analysis is then used to
capture this simulated model in a compact and efficient manner. Next, an iter-
ative convergence scheme is employed to compare between constructed models
and find trajectory correspondences.We demonstrated the relatively high success
rate of this approach, especially when fused with other, more common methods.
Specifically, we examined fusion with two common techniques based on color
histograms and spatiotemporal information. We showed that fusing the results
from these common techniques with those of our framework yields an evident
gain in accuracy. To carry out the fusion we introduced an effective black-box
technique based on SVM. Our fusion technique cancels the need for sophisticated
or heuristic methods to combine the outputs of multiple association algorithms.

The system was tested using real-world surveillance videos from a network of
six cameras with nearly 100 trajectories. To the best of our knowledge, this is a
much larger dataset than most datasets used in previous related work. Still, our
system manages to yield a remarkable accuracy of close to 90%.
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