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Abstract. We describe a face modelling tool allowing image represen-
tation in a high-dimensional morph space, compression to a small num-
ber of coefficients using PCA[1], and expression transfer between face
models by projection of the source morph description (a parameterisa-
tion of complex facial motion) into the target morph space. This tech-
nique allows creation of an identity-blended avatar model whose high
degree of realism enables diverse applications in visual psychophysics,
stimulus generation for perceptual experiments, animation and affective
computing.

1 Introduction

The human face is host to one of the highest-bandwidth channels of natural
communication that can exist between two people. Facial expressions pass in-
formation from brain to brain through a sequence of processes: motor neuron
spike trains, muscle activation, deformation of the facial surface, then via visible
light to the observer’s optic nerve and visual channels. Each medium encodes
information in a different modality. In this work we focus on the development of
novel technical methods to allow us to explore the expressor’s and the observer’s
high-level neural codes and how they mediate identity perception.

Consider a high-resolution portrait video V of a distinctively recognisable dy-
namic expression sequence, and a second video M in which an actor is mimicking
that expression. Intuitively, we can cognitively represent the expression and the
two identities separately, because we can tell that the expression is constant and
we can recognise the two people present.

In reality, identity and expression may not be easily dissociable. The brain’s
distributed face processing system[2] may code expressions in terms of faces it
has already witnessed, or it may store them with reference to some average face,
conflating expression representations with the identity of the average. Identity
may also be coded from expression, as when we recognise someone from char-
acteristic facial action. Previous efforts at face transfer, such as[3], have mainly
focussed on transferring identity, not expression.

There is some evidence from primate studies[4] and clinically observed double
dissociations[5] that processing pathways for identity and expression are sep-
arate. However, these two components are certainly not separable by simple
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statistical techniques such as PCA. Although identity is responsible for more
variance than expression, naive PCA conflates identity and expression in com-
ponents of high variance[6].

Expression often involves motion[7–9]. The motion of the facial musculature
induces textural changes in a 2D image due to deformation and lighting effects.
Indeed, expression can be considered as change in a high-level representation of
facial structure. This can be perceived either from static or moving images, and
cognitive representations of identity may describe static or dynamic percepts.
Attribute judgements from static and dynamic images may not be completely
separate; it is possible that a static image might be used to seed a dynamic
cognitive model. For example, viewing a static image of a person throwing a
javelin can give a certain percept of acceleration and motion.

Our goal is the creation of diverse psychophysical stimuli and the design of
experiments investigating whether discrimination and recognition are possible
from motion alone. We describe two techniques aimed at retaining the dynamic
characteristics of expression while manipulating facial form.

Firstly, we show how a PCA morph model can enable the projection or
mimicry of source expressions onto a target face model. This allows the accu-
racy of natural mimicry to be measured by comparing the principal component
loadings of an original video clip, to those of a mimicked clip, projected into
the original actor’s expression space. One can imagine quantifying mimicry im-
provement during learning to shed light on how the developing brain learns facial
expressions through imitation[10].

Secondly, we leverage expression projection to create an identity-blended con-
trollable morph model, or avatar, with an identity that is a composite of several
sources. This enables the creation of identity-balanced stimuli.

The face space formalism[11] has proved an intuitive and useful guess at the
brain’s internal representation of facial characteristics. The näıve version[12]
applies principal component analysis directly to raw image data in image space,
producing a new coordinate frame whose axes correspond to the directions of
greatest variation in the original data.

The PCA technique can be extended, firstly by including morphological data
describing faces’ shape and secondly by modifying the representation of each face
so that it is relative to a mean. A series of portrait photographs can thus be used
to create a coordinate frame which efficiently expresses the variation present
in the input set. For ease of usage we will simply call this frame, face space,
recognising the more generic use of this term elsewhere in the literature[11].
When the input image set comprises diverse configurations of one person’s face,
the resulting PCA space is effectively a controllable model of that face.

In the study of the perception of dynamic facial expression it would be very
valuable to be able to separate facial motion from facial shape by mapping the
motion onto an average face. However, generating an average dynamic avatar
is non-trivial, requiring extensive software engineering efforts[13, 14], and 3D
graphic techniques often suffer from a lack of photorealism leading to the un-
canny valley effect[15].
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One cannot simply average up multiple faces performing some action under
instruction as the timing of the behaviour may differ radically between people,
leading to temporal misalignment and temporal blur. We have developed a novel
method to circumvent this problem. First we build individual expression spaces
for multiple actors. We then project frames from a sequence into the multiple
expression spaces and average over the result. The sequence of averages is then
processed by PCA to provide a photorealistic mean expression space.

2 PCA Modelling of Morphed Faces

This section describes in detail the pre-processing and PCA operations necessary
to transform a set of input images into a face model.

We begin with a set of n h×w input images Ii showing facial portraits of one
person effecting different expressions. One image is chosen as the reference image
Ir. Each image Ii is compared with the reference image using a gradient based
motion estimation algorithm(the McGM[16, 17]) which produces, for each image,
a full vector field (one vector per pixel) providing an estimate of the motion
between the reference and target images. This is effectively a dense registration
relation between Ir and each Ii. A vector from a point on Ir shows the new
location of that point on Ii, and we refer to one such set of vectors as a warp
field.

Each remaining image is represented by its difference from the reference image.
Ir should show a neutral expression, with the eyes open and the mouth slightly
open, showing the teeth and a small black area between them (so that the McGM
can find a way to warp the reference image to reconstruct any dental or buccal
features in the remaining images).

The multichannel gradient model (McGM[16, 17]) is a bio-inspired algorithm
which calculates a basis set of spatio-temporal derivatives by convolving the
image sequence with derivative of Gaussian filters, and then combines them to
form derivatives of the Taylor expansion in space and time. Ratios of the resulting
terms then yield robust estimates of image motion between the reference image
and each additional frame. In practice, each pair (Ir and one Ii) are converted
to greyscale and subsampled at several different resolutions before submission
to the McGM. The resulting lower-resolution warp fields are combined into one
field of the same size as Ii, which gives better results than single-scale motion
analysis.

In practice it is useful to constrain the input to some degree. Rigid head
movement (translation or rotation) should be kept to a minimum, either by
recording protocol or image registration by face detection (good results have
been obtained with the commercially available toolkit FaceAPI[18]), so that the
warp fields represent primarily changes in expression and not head movement.
The background should be a uniform colour so that it does not contribute to
the final model. Exposure and white balance should be kept constant during
recording. Once warp fields have been obtained for all images, the vectors at
each pixel are averaged to give the mean warp field.
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Each image Ii is now expressed as two components (a similar dissociation to
Blanz and Vetter’s separation of 3D shape and texture[19]):

– Texture Ti: an image showing the textural component of the face shown in
Ii. Anatomical points on textures are aligned with each other and with the
mean face, as Ti has been warped from Ii to align it with the mean face.

– Warp Wi: a warp field (full vector field the same size as Ti) showing how
Ti should be warped in order to realign it with the expression shown in Ii;
see Fig. 1(c). Operationally, the warp field is represented not by the relative
displacement of each pixel (a true vector coding) but as the new position of
each pixel (an absolute coding).

This representation decouples textural from configurational information, which
is useful. This means each can be be manipulated separately, as when the warp
field is amplified to caricature an expression[20].

Once each image Ii has been represented as a morph pair {Ti,Wi}, the data
are nearly ready for principal component analysis. Two final preprocessing steps
are performed: serialisation and mean relativisation.

As PCA operates on vectors of reals, not more complex data structures, each
morph tuple is serialised into a morph vector. This is done by iterating column-
wise across the elements of the texture’s colour channel matrices (R, G and then
B), followed by the x and y warp field matrices, and concatenating them into a
vector.

The final vector is of length w × h× (2 + 3), as each pixel in a w × h image
is linked with 2 reals coding the x and y components of Wi and 3 reals coding
the RGB colour channels of Ti. A morph vector contains all the information
necessary to reconstruct a face image, which is done by deserialising the vector,
displacing the texture pixels by the warp field, and interpolating. This process
is termed morphing (after the special effect[21]) and gives a very high-fidelity
reconstruction of Ii. The space of all possible morph vectors we refer to as morph
space, and it is a superset of that of all possible images (image space) as every
image can be exactly represented in morph space by a texture with zero warp
field.

We thus obtain n morph vectors Mi. The mean morph Mm is found and sub-
tracted from each Mi, giving mean-relative morph vectors Ri. This operation
models the assumption that identity changes are cognitively encoded in terms of
difference from a stored mean, although this property would of course be imple-
mented differently in the neural substrate than in the model’s source code. The
relation Mi = Ri +Mm splits each absolute morph vector (equivalent to a face
image) into a constant part and a variable (relative) part. Fig. 1(b) illustrates
the texture component of an example relative morph vector.

The relative morph vectors Ri are submitted directly to principal component
analysis, which finds a new orthogonal coordinate frame such that, iteratively,
each new axis encodes the maximum possible remaining variance in the data.
We term the new frame a PCA space or expression space1; dimensionality is

1 Face and expression spaces are mathematically identical, but expression is constant
in the former and identity is constant in the latter.
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(a) One frame from
a finished avatar.

(b) The (rescaled)
relative texture of
an Ii.

(c) Quiver plot
showing every 5th
vector of a warp
field.

(d) Avatar generation. The red-
bordered image is mimicked by seven
morph models, producing the seven
non-bordered images. These eight
images with similar expression are
then morph averaged, producing the
blue-bordered image, which is an
identity-blended frame of the final
avatar.

(e) Another example of the generation
of a blended-identity frame, this time
showing a non-smiling expression with
eyes closed.

Fig. 1. Components of a morph-modelled image and the avatar generation process

normally between 50 and 100, which allows for very accurate image reconstruc-
tion while retaining a high degree of compression (for 200× 240 images, morph
space dimensionality is 200× 240× 5 = 240, 000, so a 100-d expression space has
a compression factor of 2400).

Faces can now be expressed in terms of their coordinates in expression space,
which is to say their loadings on the principal component axes. Passage from
expression space to morph space is done by multiplying by a matrix encoding
the embedding of the expression space reference frame in relative morph space,
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which we term the expression space matrix P . Reconstruction of an image from
loadings l involves

1. Projection of expression space coordinates into relative morph space: R =
P × l, where R is the relative morph space coordinate vector.

2. Addition of the morph mean to generate absolute morph space coordinates
M = R+Mm

3. Image reconstruction by applying warp to texture and interpolating.

A full PCA face model consists of the expression space matrix P , the morph
mean Mm and the variances of each principal component (used to generate faces
in a realistic probability distribution).

3 Expression Projection

The twin decouplings of the morph space paradigm permit a very useful opera-
tion: the projection of an expression from one face model onto another. Consider
two PCA models A and B generated from input images of two different people
performing approximately the same sequence of expressions (or similar expres-
sions in a different order).

One might imagine that if facial morphologies are similar, the warp fields for
each expression will be similar. If lighting conditions and skin tones are similar,
the texture components will also be similar. Once mean warp fields and textures
have been found and subtracted, similarity of the relative warps and textures
depends only on similarity of actual expressions, not underlying facial attributes
(which are subtracted by the relativisation process).

The principal components (in other words, the orientation of expression space
in image space), however, are not guaranteed to be similar, as PCA may alter
the sign and ordering of components[1]. We therefore cannot rely on taking an
image Ia of person A, calculating its PC-loadings using A, and passing these
loadings to model B, to reconstruct an image of person B exhibiting a similar
expression. This process would rely on the two expression spaces being similarly
oriented in common image space (they do not need to have close origins, since
the correct morph mean for each model is subtracted and added in each case).
In practice, axis signing and ordering may be different, and simply transferring
the loadings does not always result in effective expression mimicry.

A more robust mimicry method is the following:

1. Start with an image Ia of person A, along with a PCA space A for that
individual and a PCA space B for person B. We have the morph means
Mma and Mmb.

2. Encode Ia as an absolute morph vector Ma and then a relative morph vector
Ra with (Ra = Ma −Mma).

3. Take the inner product of Ra with the PCA matrix for person B (Pb). This
gives a set of PC-loadings in person B’s expression space Eb. We have Lb =
Ra × Pb.
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This step in effect calculates the best possible representation of the vari-
able component of Ia (encoded by Ra) in Eb, the expression space for person
B. Even if Eb is very differently oriented from Ea, Ra will still be sensibly
reconstructable, even though its PC-loadings in Eb may be very different
than in Ea. The requirement that Ea and Eb be similarly oriented is thus
removed.

4. Generate a new relative morph vector Rb by multiplying the calculated load-
ings Lb by person B’s PCA matrix: Rb = Pb × Lb. This represents the re-
construction of Ra (the variable component of Ia) in Eb.

5. Add the mean morph vector Mmb of person B. This represents combining
the constant component of model B with the variable component transferred
from Ia. We are in effect applying the expression of Ia to the face of person
B. We have Mb = Rb +Mmb.

6. Reconstruct an image Ib from Mb by applying the warp component to the
texture component and interpolating.

This procedure is problematic when the source face is a very different shape from
the target face, as projecting the source relative morph vector into the target
PCA space will lead to an unnatural expression on the target (consider applying
the warp of a smile exhibited on a wide, short face to a narrow, tall face). This
mismatch can be avoided by transforming the warp and texture components of
the morph vector before projection.

This is done by manually placing 3 keypoints on the morph mean images
(which are generated during PCA modelling) for source and target identities,
one at the centre of each eye and one at the centre of the philtrum. These define
a triangle termed the faceframe. An affine transformation between source and
target faceframes is defined and applied to the relative warp field and texture;
this aligns them with the target faceframe, rendering it meaningful to add them
to the target’s morph mean. With 3 keypoints, only the eyes and philtrum are
perfectly aligned, but the improvement is still substantial.

Note also that the projected vector is mean-relative. Adding the projection
back on to the target’s morph mean therefore only makes sense if the means
describe a similar expression. For example, if the source’s mean shows an open
mouth and the target’s mean a closed mouth, a warp field showing a closed
mouth will contain much more motion if it is relative to the source. Relative to
the target, it will be nearly zero, as the mean’s mouth is already closed. Care
must this be taken to ensure mean similarity. We found that including a diverse
range of facial motion in the data worked well.

4 Avatar Generation

The projection process, as it allows expressions to be replicated across different
identities, enables another useful technique: the fusion of PCA models of several
different people into one PCA model depicting an artificial identity. Conceptually
and aesthetically, the physical characteristics of this new face are a blend of those
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of its ingredient faces. Mathematically, the new face is generated by morphing
together ingredient faces.

The naive mathematical implementation of blending is finding the mean in
a representational space. As Galton found[22], this approach does not succeed
if we average in image space, since not every point corresponds to an image.
Direct averaging produces ghosted images which are textural but not anatomical
hybrids. To generate sequences of realistic faces for mimicry animation we must
therefore use morph space, in which many points in the subspace spanned by
real data (input faces) correspond to anatomically plausible faces. Representing
static images in morph space and finding the mean implements identity blending
(like the classic morph special effect[21]) in static images. The same can be done
for a PCA model by statically blending different expressions and then applying
the PCA modelling procedure to the resulting images.

The following is a detailed description of our avatar generation process, as
illustrated by Fig. 1(d).

1. We begin with k identities, each set Sk containing nk portrait images of a
particular person. These are subject to the same constraints on alignment
and image characteristics as the single-identity PCA process described ear-
lier.

2. A reference image rk is chosen for each identity, subject to previously de-
scribed constraints.

3. A PCA model is generated for each identity, as described. Each model brings
with it a mean morph vector and an associated morph mean image.

4. Each morph mean image is displayed and 3 keypoints are manually placed,
one at the centre of each eye and one at the centre of the philtrum. These
define a triangle termed the faceframe fi.

5. Each input image Iki is projected into k − 1 other identities, producing k
copies of the same expression, which form the set eki . During projection, the
morph vector is affinely transformed to bring its faceframe into line with
that of the target identity.

6. Generated images are sharpened by convolving with an unsharp filter[23].
7. As images in the set eki have been projected into different faceframes, they are

not aligned, and so a second transformation is performed (this time on image
data only, as the generated images have no warp component). Each image in
each eki can be transformed onto either a) a reference faceframe fr (chosen
arbitrarily from among the k models) or b) the faceframe corresponding to
the source model for this expression (fk).

8. Once images in each eki have been aligned, they undergo the standard mod-
elling process, but without the final step of PC analysis. In other words, they
are each motion-compared with a reference image (we choose the projection
onto the reference identity Ir); warp fields are generated and resourced to
point from the mean warp; textures are reverse warped to align them onto
the mean warp; fields and textures are assembled into morph vectors; and
the mean morph vector is found. As each eki contains images of the same ex-
pression across multiple identities, the mean morph image will also exhibit
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that expression. Its identity, however, will have been morphed into a blend
of the k original identities.

9. The standard PCA modelling process is run on the set of blended images
from each eki ; as this only happens once, a new reference image can be chosen
in order to obtain the best warp fields. Alternatively, the reference image of
the reference model can be used. We obtain a PCA model with a wide range
of emotional diversity and a common blended identity. Its final appearance
is illustrated in Fig. 1(a).

5 Discussion

We have described a PCA modelling process allowing compression of face images
into a small number of expression space coordinates (principal component load-
ings), projection of expressions from one face model to another, and generation
of an identity-blended avatar.

The avatar generation technique outlined is robust across diverse facial ex-
pressions and variations in facial morphology. Realism can be reduced, however,
when the McGM is not able to accurately describe facial deformation by warp
fields in the initial PCA stage (due to unsuitable illumination or non-smooth
facial features such as glasses, piercings or facial hair) or where face shapes
are different enough to make alignment difficult during the two transformation
stages. As affine transforms are only done based on three keypoints, correspond-
ing facial features will not always be brought into alignment. This is only a major
problem if identities vary greatly in head size.

We envisage that future work could compensate for this problem by auto-
matically defining more keypoints using commercially available face recognition
software and transforming by arbitrary warping instead of affine transforma-
tion, as long as anatomical realism is maintained. The addition of subexpression
spaces which separately model individual features could allow constraints such
as rigidity to be placed on specific features such as teeth and eyes. It would also
allow comparison of the current (holistic) model with a local feature encoding
scheme.

Mimicry also requires evaluation, which is only possible by human subjects.
Meaningful expression transfer cannot be guaranteed without a full 3D model
of the underlying facial musculature and skin deformation; a user evaluation of
expression realism and accuracy of mimicry would be enlightening.

5.1 Applications of Mimicry

Our technique is nearly fully automated, requiring only one placement of three
keypoints per identity (not per frame). We have also produced good results using
completely automatic keypoint detection. Previous approaches required a large
amount of manual warping[24] or manual feature coding[25]

Computational mimicry has two main uses: generation of face stimuli which
imitate others, and characterisation of real mimicry by subjects. Given source
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morph vectors and a target PCA model, expressions can easily be projected
from source to target. This can be done either for static faces or, by separately
projecting each individual frame, for video sequences. Degrees of caricaturing
can easily be applied. Such stimuli could form part of diverse psychophysical
protocols, such as finding the detection threshold for erroneous mimicry or inves-
tigating to what extent caricaturing improves recognition. The ability to project
expression means that it can be kept constant, making it easier to isolate effects
due to changes in identity per se.

Natural mimicry can also be measured. Consider a protocol during which a
subject is asked to mimic a portrait video sequence while a portrait recording is
made. We can project the mimicry sequence from the subject into the PCA space
of the stimulus, giving a sequence of PC loading vectors in the same expression
space as the stimulus. This can be compared to the loading sequence of the
mimicked video, either visually (by viewing the stimulus and its projection side-
by-side) or using spatial distance measures or information theoretic measures
such as mutual information or Shannon entropy. This would allow measurement
of the distributed[2] face processing system’s imitation accuracy.

The morph space PCA strategy is an intuitive, untrained way to measure
mimicry in either human faces or artificial stimuli[26]; it could also be used to
benchmark other algorithms that perform imitation. The morph vector frame-
work presents opportunities for extension such as the inclusion of local feature
characteristics or high-level data concerning illumination or head direction.

5.2 Generating Stimuli with the Avatar

The ability to generate a blended avatar renders it possible to generate realis-
tic stimuli situated on the plausible side of the uncanny valley[15] (especially in
terms of skin tone) but free from real-world identity. This avoids problems of pri-
vacy and ethics compliance (as the avatar is not a real person) and experimental
bias (towards a particular identity). During the blending step, the output could
be shifted away from the mean morph to change the appearance of the avatar,
generating different identities for use in interactive software applications, games,
or media.

The more source identities an avatar is built from, the more attractive the
resulting PCA model will appear[27]. This could be leveraged in applications
where positively-connotated faces can lend an advantage, such as animated user
interface agents or virtual newsreaders[28].

In psychophysics, the avatar allows identity to be blended arbitrarily between
different models. This allows generation of stimuli for experiments which explore
identity perception.

The low computational demand of the PCA morph model also allows stimuli
to be dynamically generated during an experiment. We can imagine guiding a
subject to perform a search in face space (or expression space) by sequentially
choosing between several different frames, the next set of frames being generated
from coefficients in the direction indicated by the subject’s choice.
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5.3 Conclusion

Although identity and dynamic expression may not be dissociable or indepen-
dently encoded in the face processing system, they are to a certain extent com-
putationally dissociable, thanks to the encoding of dynamic expression as a high-
level (PCA) mean-relative representation of motion. When the input data are
constrained (in terms of lighting, head rigidity and image quality) such that
a motion evaluator can generate good-quality warp fields, this dissociation al-
lows motion and expression to be kept constant across multiple identities. In
turn, this technique allows generation of sets of images with similar expressions
which can be identity-blended. Both techniques enable the creation of useful
psychophysical stimuli.
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