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Abstract. Principal Component Analysis (PCA) is a multivariate
statistical dimensionality reduction method that has been applied suc-
cessfully in many pattern recognition problems. In the research area of
analysis of faces particularly, PCA has been used not only as a pre-
processing step to produce accurate analytical model for automated face
recognition systems, but also as a conceptual framework for human face
coding. Despite the well-known attractive properties of PCA, the tradi-
tional approach does not incorporate high level semantics from human
reasoning which may steer its subspace computation. In this paper, we
propose a method that allows PCA to incorporate such semantics ex-
plicitly. It allows an automatic selective treatment of the variables that
compose the patterns of interest, performing data feature extraction and
dimensionality reduction whenever some high level information in the
form of labeled data are available. The method relies on spatial weights
calculated, in this work, by separating hyperplanes. Several experiments
using 2D frontal face images and different data sets have been carried out
to illustrate the usefulness of the method for dimensionality reduction,
interpretation, classification and reconstruction of face images.

1 Introduction

Principal Component Analysis (PCA) [1, 2] is the best known multivariate sta-
tistical linear method for dimensionality reduction and has been applied success-
fully in many pattern recognition problems to reduce the computational costs,
mitigate the curse of dimensionality and improve the classification performance.

In the research area of analysis of faces particularly, PCA has been used not
only as a pre-processing step to produce accurate and computational efficient
model for automated face recognition systems [3, 4], but also as a conceptual
framework for human face reasoning and coding [5–8]. However, despite the
well-known attractive properties of PCA in both computer vision and human
perception communities, incorporating prior information in its process remains
a challenge. In face recognition, without prior information important content-
based features represented by principal components with small eigenvalues may
be discarded reducing the accuracy of the automated representation. Analo-
gously, PCA with no prior knowledge is a non-supervised algorithm unable to
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convey the different visual cues that create, for instance, a separate human per-
ception coding for facial identity and expression [9].

The development of techniques that bring together dimensionality reduction
and prior knowledge can be performed in the framework of supervised learning
approaches. However, when only a small number of labeled samples are avail-
able, multivariate supervised dimensionality reduction methods tend to perform
poorly due to overfitting [10]. Such problem has been addressed recently by a
number of works related to semi-supervised dimensionality reduction methods
[11–15]. A common issue to all semi-supervised learning techniques is how to
optimize the regularization parameters necessary to blend supervised and non-
supervised information often represented by local and global scatter matrices.

In this paper, we address this issue through separating hyperplanes. We pro-
pose a spatially weighted form of PCA that incorporates domain knowledge and
generates an embedding space that preserves the optimality properties of di-
mensionality reduction and interpretability of the standard PCA. Unlike other
similar projection approaches that either formulate their solutions in conjunction
with parametric [16–18] or non-parametric [19] models or are restricted to the
number of groups of patterns available [20], in our method a separating hyper-
plane, based on a discriminant criterion, is computed and discriminant weights
are determined and used to generate the spatially weighted PCA subspace. In
this sense, weights incorporate separately the prior knowledge extracted from the
labeled data and can be systematically computed through any hyperplane direc-
tion. The approach is a simple way of allowing an automatic selective treatment
of the variables that compose the patterns of interest, performing data feature
extraction and dimensionality reduction whenever some high level semantics in
the form of spatial weights are available.

2 A Priori-Driven PCA

Let an N × n training set matrix X be composed of N input samples (or pat-
terns of interest, such as face images) with n variables (or attributes, such as
pixels), that is, X = (x1,x2, . . . ,xN )T . This means that each column of matrix
X represents the values of a particular variable observed all over the N samples.
Let this data matrix X have covariance matrix

S =
1

(N − 1)

N∑

i=1

(xi − x̄)(xi − x̄)T , (1)

where xi = [xi1, xi2, . . . , xin]
T and x̄ is the grand mean vector of X .

It is a proven result that the set of m (m ≤ n) eigenvectors of S, which corre-
sponds to the m largest eigenvalues, minimizes the mean square reconstruction
error over all choices of m orthonormal basis vectors [21].

To note explicitly the spatial association between the jth and kth variables,
we can rewrite the sample covariance matrix S described in equation (1) in order
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to indicate the position of each variable in the N samples. When n variables are
observed on each sample, the sample variation can be described by the following
sample variance-covariance equation [22]:

S = {sjk} =

{
1

(N − 1)

N∑

i=1

(xij − x̄j)(xik − x̄k)

}
, (2)

for j = 1, 2, . . . , n and k = 1, 2, . . . , n. The covariance sjk between the jth and
kth variables reduces to the sample variance when j = k, sjk = skj for all j and
k, and the covariance matrix S contains n variances and 1

2n(n − 1) potentially
different covariances [22].

It is clear from equation (2) that the variable deviations from the mean have
the same importance in the standard sample covariance matrix S formulation.
In other words, all the n variables are equally weighted. However, there are
situations where this should not be the case, particularly in pattern recognition
problems where some parts of the samples might be more informative than
others.

2.1 Weighted Sample Covariance

The well-known Pearson’s sample correlation coefficient between the jth and kth

variables is defined as [22]:

rjk =
sjk√

sjj
√
skk

(3)

=

∑N
i=1(xij − x̄j)(xik − x̄k)√∑N

i=1(xij − x̄j)2
√∑N

i=1(xik − x̄k)2
,

for j = 1, 2, . . . , n and k = 1, 2, . . . , n. It is important to note that rjk = rkj for
all j and k.

From equation (3), it is clear that the sample correlation coefficient is a nor-
malized version of the sample covariance, where the product of the square roots
of the sample variances, known as the sample standard deviations, provides the
spatial normalization of the sum of the variable deviations from the mean [22].
In other words, rjk is a measure of the linear association between two variables
that does not allow variables with larger variance or scale to dominate the corre-
sponding deviations from the mean and, consequently, the subspace calculation
of PCA.

In our method, we want to give higher importance to the variables which
characterise a class of interest. However, the variables that vary most are not
necessarily the ones that allow best interpretation of the sample groups. There-
fore, we need to define a measure of association between variables, based on the
Pearson’s sample correlation coefficient, which uses the notion of spatial weights
and is more or less dominant depending on the values of each spatial weight.
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Extending equation (3), we can define a weighted sample covariance r∗jk be-

tween the jth and kth variables by [23]

r∗jk =
(
√
wj

√
wk)sjk√

sjj
√
skk

(4)

=

∑N
i=1

√
wj(xij − x̄j)

√
wk(xik − x̄k)√∑N

i=1(xij − x̄j)2
√∑N

i=1(xik − x̄k)2
,

for j = 1, 2, . . . , n and k = 1, 2, . . . , n. The spatial weighting vector

w = [w1, w2, . . . , wn]
T (5)

is such that wj ≥ 0 and
∑n

j=1 wj = 1, where each wj measures the spatial

power of the jth variable. Thus, when n variables are observed on N samples,
the weighted sample covariance matrix R∗ can be described by

R∗ =
{
r∗jk

}
=

⎧
⎨

⎩

∑N
i=1

√
wj(xij − x̄j)

√
wk(xik − x̄k)√∑N

i=1(xij − x̄j)2
√∑N

i=1(xik − x̄k)2

⎫
⎬

⎭ , (6)

for j = 1, 2, . . . , n and k = 1, 2, . . . , n. The weighted sample covariance r∗jk
between the jth and kth variables is equal to wj when j = k, r∗jk = r∗kj for all j
and k, and so the matrix R∗ is a nxn symmetric matrix.

Let R∗ have respectively P ∗ and Λ∗ eigenvector and eigenvalue matrices, that
is,

P ∗TR∗P ∗ = Λ∗. (7)

The set of m (m ≤ n) eigenvectors of R∗, that is, P ∗ = [p∗
1,p

∗
2, . . . ,p

∗
m], which

corresponds to the m largest eigenvalues, defines a new orthonormal coordinate
system for the training set matrix X and is called here as the spatially weighted
principal components.

In the last years, weighted PCA techniques have been proposed [24, 23, 25, 26]
to obtain a consistent subspace representation of the original data in the pres-
ence of noise, outliers and missing data. However, a key remaining issue for the
weighted PCA methods in general is how to automatically compute the optimal
weights to combine low level features, such as colour, shape and texture inherent
to problems like face image analysis, with high level semantics, such as labeled in-
formation from human reasoning. In other words, the remaining question is: how
can we define spatial weights wj to incorporate prior knowledge? Our approach is
to define a systematic method to compute the weights from labeled data.
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2.2 The Spatial Weights

We propose the idea of using the discriminant weights given by statistical sep-
arating hyperplanes as the spatial weights of the weighted sample correlation
matrix defined in equation (6). The models need some labeled data of N pairs

(x1, y1), (x2, y2), . . . , (xN , yN ), (8)

where the xi ∈ �n denote the ith training observations and yi are scalars that
correspond to the classification labels. For simplicity and without loss of gener-
ality, we concentrate on two-class problems, that is, yi ∈ {−1, 1}.

One way to define the parametric spatial weights is provided by Linear Dis-
criminant Analysis (LDA) [27, 21]. LDA depends on all of the data, even points
far away from the separating hyperplane and its main objective is to find a
projection vector wlda that maximizes the Fisher’s criterion [21]:

wlda = argmax
w

∣∣wTSbw
∣∣

|wTSww| . (9)

The Sb and Sw matrices are the between-class and within-class scatter matrices.
The vector wlda defines the normal vector of the hyperplane that best separates
the two classes.

Alternatively, to allow the investigation of spatial discriminant weights de-
termined by non-parametric separating hyperplanes, we can use the Support
Vector Machine method [28] based on the risk-minimization approach. The pri-
mary purpose of SVM is to maximize the width of the margin between two
distinct sample classes [28]. Given a training set as described in the formulation
(8), the SVM method seeks to find the hyperplane defined by

f(x) = (x ·w) + b = 0, (10)

which separates positive and negative observations with the maximum margin.
It can be shown that the solution vector wsvm is defined in terms of a linear
combination of the training observations, that is,

wsvm =
N∑

i=1

αiyixi, (11)

where αi are non-negative coefficients obtained by solving a quadratic optimiza-
tion problem with linear inequality constraints. Those training observations xi

with non-zero αi lie on the boundary of the margin and are called support vectors
[28].

2.3 The Step-by-Step Algorithm

The main steps for calculating the spatially weighted principal components P ∗ =
[p∗

1,p
∗
2, . . . ,p

∗
m] of an N×n training set matrix X composed of N input samples

with n variables can then be described as follows:
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1. Calculate the spatial weighting vector w = [w1, w2, . . . , wn]
T using some la-

beled data and a separating hyperplane method, as described in the previous
sub-section;

2. Normalize w such that wj ≥ 0 and
∑n

j=1 wj = 1, that is, replace wj with
|wj |∑n

j=1 |wj | ;
3. Standardize all the n variables of the data matrix X such that the new

variables have x̄j = 0 and s2j = sjj = 1, for j = 1, 2, . . . , n. In other words,
calculate the grand mean vector

x̄ =
1

N

N∑

i=1

xi = (x̄1, x̄2, . . . , x̄n)

and the vector of variances (s21, s
2
2, . . . , s

2
n), where

s2j =
1

(N − 1)

N∑

i=1

(xij − x̄j)
2,

and replace xij with zij given by

zij =
xij − x̄j√

s2j

for i = 1, 2, . . . , N and j = 1, 2, . . . , n;
4. Spatially weigh up all the standardized zij variables using the normalized

weighting vector w calculated in step 2, that is

z∗ij = zij
√
wj ;

5. The spatially weighted principal components P ∗ are then the eigenvectors
corresponding to the m largest eigenvalues of (Z∗)TZ∗, where

Z∗ = {z∗1, z∗2, . . . , z∗N}T .

3 Experimental Results

We have divided our experimental results into two parts. Firstly, we have inves-
tigated the usefulness of the priori-driven principal components in recognizing
samples compared to the standard PCA and the corresponding separating hy-
perplanes. Then, in the second part, we have analyzed the effectiveness of the
new principal components in reconstructing samples compared to the standard
PCA.

The following two-group separation tasks have been performed using frontal
face images: (a) Gender experiments (female versus male samples); (b) Facial
expression experiments (non-smiling versus smiling). The goal of the gender
experiment is to evaluate the method proposed on a discriminant task where



242 C. Thomaz et al.

the differences between the groups are evident. The facial expression experi-
ment poses an alternative analysis where there are subtle differences between
the groups.

In all experiments, the total number of training examples N is limited and
significantly less than the dimension of the feature space, that is, N � n. To
address this problem for the Fisher’s criterion, we have calculated the leading
eigenvector wlda by using two different approaches. The first approach, based
on the Zhu and Martinez method [29], replaces Sw with the nxn identity matrix
and wlda becomes simply the leading eigenvector of Sb. The other, based on
the Maximum uncertainty Linear Discriminant Analysis (MLDA) proposed by
Thomaz et al. [30], considers the issue of regularizing the Sw estimate with a
multiple of the identity matrix.

3.1 Recognition Rate

We have used two publicly available data sets to evaluate the classification per-
formance of the spatially weighted principal components: FEI [31] and FERET
[32]. The FEI data set is composed of 200 subjects (100 men and 100 women).
Each subject has two frontal images (one with a neutral or non-smiling expres-
sion and the other with a smiling facial expression). In total 400 images were used
to perform the gender and expression experiments. In the FERET database, we
have used 200 subjects (107 men and 93 women). Each subject has two frontal
images (one with a neutral or non-smiling expression and the other with a smil-
ing facial expression), also providing a total of 400 images to perform the gender
and expression experiments. We adopted the 10-fold cross validation method to
evaluate the classification performance of all the methods. Throughout all the
classification experiments, we have assumed that the prior probabilities and mis-
classification costs are equal for both groups. On the PCA subspace, the mean
of each class has been calculated from the corresponding training images and
the Mahalanobis distance from each class mean has been used to assign a test
observation to either groups. In all the standard and weighted PCA experiments,
we have considered different numbers of principal components to calculate the
recognition rates of the corresponding methods implemented. Additionally, as
benchmark measures, we have also calculated the classification performance of
the separating hyperplanes on the corresponding original spaces.

Figure 1 shows the recognition performance of the 10-fold cross validation of
the gender experiments using the FEI and FERET databases and different num-
bers k of principal components selected by the corresponding largest eigenvalues.
The horizontal dashed lines denote the separating hyperplanes’ classification
accuracies using all the original features available without any dimensionality
reduction. It can be seen that even in such experiments where the differences
between the sample groups are not subtle, the use of prior information given by
labeled samples improves the discriminant power of the principal components,
allowing similar or higher average recognition rates with the same number of
components. For instance, in the gender experiments using the FEI database,
all the spatially weighted PCA methods consistently outperform the standard
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PCA when the number of principal components retained has been higher than
10, that is, when k ≥ 10. In the gender experiments using the FERET database,
which is composed of frontal face images not as well aligned as in the FEI
database, the superiority of the spatially weighted PCA is less evident, but still
it is possible to see a better classification performance than the standard PCA
when using few principal components, that is, when 5 ≤ k < 40. Additionally, it
is possible to see on the boxplots of Figure 1 that the top recognition rates of the
spatially weighted principal components are comparable to or higher than the
separating hyperplanes, but less sensitive to the parametric (Zhu&Martinez and
MLDA) or non-parametric (SVM) discriminant information used, particularly
for the FEI experiments.

The importance of allowing a priori-driven treatment of individual pixels and,
consequently, minimizing the potential problem of discarding information related
to subtle group differences on the first components of the standard PCA can be
seen in Figure 2. In both FEI and FERET face databases, the average recogni-
tion rates of the spatially weighted principal components are much higher than
the standard ones when the original dimensionality of the data is considerably

Fig. 1. Gender recognition performance of spatially weighted PCA (wPCA) compared
to standard PCA using the FEI and FERET databases with 10-fold cross validation.
On the left there are the average recognition rate curves using different numbers of
principal components. As reference values, the horizontal dashed lines denote the cor-
responding separating hyperplane classification accuracies using all the original features
without any dimensionality reduction. On the right there are boxplots of the top recog-
nition rates achieved on a specific number of principal components for each method
considered.
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reduced. For example, when using only k = 5 spatially weighted principal com-
ponents in the FEI face database, it is possible to achieve an average recognition
rate of approximately 92% compared to 55% of the standard PCA. A significant
improvement in classification performance is illustrated as well in the expression
experiments using the FERET face database, where the spatially weighted and
the standard principal components have achieved respectively approximately
71% and 57% with k = 40 components, for instance. In the expression experi-
ments, more remarkably, the top recognition rates of the spatially weighted PCA
are also comparable to or higher than the separating hyperplanes, but much less
sensitive to the choice of using parametric or non-parametric spatial discriminant
weights and consequently less prone to overfitting.

Fig. 2. Expression recognition performance of spatially weighted PCA (wPCA) com-
pared to standard PCA using the FEI (top) and FERET (bottom) databases with
10-fold cross validation. On the left there are the average recognition rate curves using
different numbers of principal components. As reference values, the horizontal dashed
lines denote the corresponding separating hyperplane classification accuracies using
all the original features without any dimensionality reduction. On the right there are
the boxplots of the top recognition rates achieved on a specific number of principal
components for each method considered.

3.2 Reconstruction

The reconstruction task cannot be performed by separating hyperplanes because
both parametric and non-parametric classifiers retain only the information nec-
essary to discriminate the classes, which is not enough to represent them back
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in the original feature space. In terms of the spatially weighted principal com-
ponents, however, we can carry out an overall reconstruction process similar to
unweighted PCA, but more efficient for making predictions especially on the ma-
jor axes of projection because of the spatial weights control over the individual
pixels within the face images.

Figure 3 shows two examples of the correlations between an image and its re-
construction. Data is given for the whole image and three smaller parts (eyes, nose
and mouth) exclusively. The subjects are a male smiling (left on Figure 3) and a
female with neutral expression (right on Figure 3) taken from the FEI database.
The images are projected into the eigenspace and then reconstructed using 5, 10,
20, 40, 80, 160, 320 and all principal components. Three different methods were
used for each experiment which are, from top to bottom: standard PCA, spatially
weightedPCAusing gender and spatiallyweightedPCAusing expression.The spa-
tial weights were calculated using theMLDAmethod and the other two separating
hyperplanes considered in the previous subsection gave similar correlation results.

It is possible to see that the eigensubspace composed of the weighted principal
components tends to reconstruct first the most informative parts of the face images
for predicting differences relating to the choice of spatial weights. For example, on
the left part of Figure 3 the image to be reconstructed is of a smiling face. Hence it
is the region around the mouth that carries the most important discriminant infor-
mation. Using spatially weighted PCA, with the expression discriminant weights
we need only 5 weighted principal components to reconstruct the mouth with high
correlation (> 0.7). Standard PCA needs at least 20 components to reconstruct
the mouth correctly. The feature space weighted by gender information does not

Fig. 3. Correlations between parts of smiling male (left) and non-smiling female (right)
images and their reconstructions using different numbers of principal components and
the following feature spaces (from top to bottom): standard PCA, PCA weighted by
gender and PCA weighted by expression. The images show some of the partial recon-
structions.
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focus on large changes in the mouth, but contains information on other parts of
the faces that better describe the main differences between male and female. It
overtakes the standard PCA in reconstruction accuracy with around 40 compo-
nents. A similar behavior can be observed on the right part of Figure 3, but now
exemplifying a non-smiling sample reconstruction.

4 Conclusion

We have proposed a priori-driven PCA method using a modification of the Pear-
son’s correlation formula that incorporates domain knowledge and generates an
embedding space that preserves the properties of dimensionality reduction and
interpretability of the standard PCA, without jeopardizing its inherent straight-
forward and simple calculation. This approach might be particularly useful for
visual analytics and human perception experiments because it not only provides
a more flexible form of data compression unlimited by the number of separating
groups or classes, but also extracts relevant features in low dimension spaces
providing better understanding and interpretation of the data for any specific a
priori information of interest.
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