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Abstract. Falls are a major risk for the elderly and where immediate
help is needed. The elderly, especially when suffering from dementia, are
not able to react to emergency situations properly, thus falls need to
be detected automatically. An overview of different classes of fall detec-
tion approaches is presented and a vision-based approach is introduced.
We propose the use of a Kinect to obtain 3D data in combination with
fuzzy logic for robust fall detection and show that our approach outper-
forms current state-of-the-art algorithms. Our approach is evaluated on
72 video sequences, containing 40 falls and 32 activities of daily living.

1 Introduction

Wild et al. [1] show that the mortality of fallers is higher compared to other
elderly. Moreover, if elderly are not able to get up on their own again they may
lie on the floor for hours, until help is provided [1]. Noury et al. [2] have shown
that getting help quickly after a fall reduces the risk of death by over 80% and
the risk of hospilization by 26%. Furthermore, elderly suffering from dementia
are not able to react to emergency situations properly [3]. Hence, the aim of
assistive systems is not only to assist, but also to reduce the cognitive load on
the user [4]. This motivates the introduction of a fall detection system, which
is able to detect falls and raise alarms automatically. Moreover, these systems
boost the confidence of elderly in living independently [5]. The contribution of
this paper is to present an overview of current state-of-the-art fall detection
approaches and to introduce a robust vision-based fall detection system using
3D data obtained by the Kinect in combination with fuzzy logic.

Fall detection systems can be divided into three major approaches [5]: wear-
able devices, ambient devices and camera-based (or vision-based) approaches.
Figure 1 shows an overview of the three major approaches including divisions
for each of these approaches into smaller and thus more specific approaches.

Wearable devices broadly used to assist elderly are panic buttons, which need
to be worn (e.g. on the wrist) by the elderly and pressed if an emergency situation
occurs and help is needed [6]. These devices have the main drawback that elderly
need to push the button actively - if they are not able to push the button (e.g. due
to the lost of consciousness), help can not be provided. Hence, wearable sensors
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detecting falls automatically have been developed (e.g. [7–11]). These wearable
sensors detect the body orientation, the impact of falling (using accelerometers)
or the amount of activity/movement. Särelä et al. [11] combine a panic button
(i.e. button on the wrist) together with a movement sensor to detect emergency
situations automatically if the user is not able to push the button any more.
Noury et al. [10] combine the measurement of the impact together with the
measurement of the body orientation and the vibrations on the body surface to
build a fall detection device which they called ”actimeter”. The main advantage
of wearable devices are costs, as such systems are cheap - the main disadvantage
is that sensors need to be worn, which is very intrusive [5].

Fig. 1. Classification of fall detection approaches taken from [5]

Ambient devices are multiple sensors which are installed within the flat [5],
turning the flat into a smart home [12] being able to support elderly living alone
at home [13]. Approaches and sensors used in this field are very broad, including
measuring the vibration of the floor to detect falls [14, 15], detecting falls by using
pressure mats [6, 16] or motion sensors [16]. Ambient sensors are not intrusive,
as they can be hidden within a smart home, but have the drawback of a high
false alarm rate [5].

Vision-based systems are able to overcome limitations of other sensor types
[17], but raise privacy issues. Hence, in contrast to Xinguo [5], we propose to not
record any video data in order to respect concerns about privacy. Vision-based
systems can be distinguished between systems using 2D images and systems
using 3D data (e.g. obtained by multiple cameras [18] or 3D sensors [19]). To
overcome limitations of multiple cameras (e.g. calibration is needed) and 3D
sensors (e.g. availability and costs) we propose to use the Kinect as a vision-
based 3D sensor for fall detection.

In contrast to the focus on the fall event mentioned by Xinguo [5], we neither
focus on the fall event nor do we constrict a fall to time constraints (i.e. the fall
process lasts from x to y seconds). Hence we propose to automatically raise an
alarm if a person is detected to be on the ground and is not able to get up any
more, as this is the situation where help is needed - independently of the reason
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for being on the floor (falling or lying down on purpose). Hence, if a person lies
down on the floor on purpose and is not able to get up again, an alarm will
be raised since help is needed anyway. Furthermore our approach combines and
benefits from all sub categories of vision-based approaches defined by Xinguo
[5]: body shape change analysis is done by analysing the major orientation of
the person, whereas a person lying on the ground is seen as inactivity analysis,
since the person is not moving or getting up. Furthermore, 3D motion analysis is
done by tracking the person’s skeleton position in a 3D environment over time.

The rest of this document is structured as follows: Section 2 provides an
overview of state-of-the-art approaches in the field of vision-based fall detection.
The methodology of our fall detection approach is introduced in Section 3, an
empirical evaluation is presented in Section 4. Finally, a conclusion is drawn in
Section 5.

2 State-of-the-Art

2.1 Body Shape Change Analysis

The shape of a person implies the orientation and thus is used to distinguish
whether a person is in an upright position or not. The use of the bounding box
aspect ratio (width to height ratio) to detect falls is proposed by Anderson et al.
[20]. If people are in an upright position, the bounding box aspect ratio is bigger
than one (i.e. height > width). In case of a fall, the ratio changes to a value
smaller than one (i.e. height < width). Another approach presented by Rougier
et al. uses information of an approximated ellipse instead of a bounding box [21].
Falls are detected by analyzing the orientation of the ellipse as well as the ratio of
the major axis of the ellipse. Figure 2 illustrates these two approaches and depicts
the shape of a person during a normal activity and during a fall. Furthermore, the
corresponding bounding boxes and ellipses to analyze the bounding box aspect
ratio and the orientation of the ellipse are illustrated. The use of a bounding
box and an approximate ellipse for fall detection is feasible, but depends on
the quality of the background segmentation. Assuming that the background
segmentation yields in robust results, the fall detection also yields in robust
results. A fall into the direction of the camera only using 2D images cannot be
recognized by both approaches, as the change of orientation of the person cannot
be detected.

Approaches not using 3D sensors reconstruct 3D information for humans from
silhouettes gained by different camera views [22]. The human is represented by
the use of voxels allowing to identify different states (upright, on–the–ground
and in–between), depending on the shape of the person. The quality of this
approach also depends on the quality of background segmentation, but it has
the main drawback of needing a calibrated camera setup.

Zambanini et al. [18] propose a method to detect falls by using multiple cam-
eras, and they distinguish between an uncalibrated camera-setup and a cali-
brated camera-setup. When using an uncalibrated camera-setup, scene analysis
is performed on each camera individually. Afterwards, the individual results are
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combined to get an overall decision. In contrast, if information from multiple
cameras using a calibrated camera-setup is combined to reconstruct the person
in 3D space, the combination takes place at an early stage. Feature extraction
is done on the 3D reconstruction of the person and a decision whether a fall
occurred or not is made afterwards. Compared to other works (e.g. [23]), their
system is not vulnerable to low-quality images (e.g. high noise and low resolu-
tion) as only basic information (i.e. silhouettes) are extracted from the image
anyway. Using a calibrated camera-setup results in a higher accuracy than using
an uncalibrated camera-setup, but it is practically not possible to calibrate the
cameras if they are installed in an elderly person’s flat or house.

Time-of-Flight cameras [24] are generating depth maps and can be used for
fall detection [25]. Jansen et al. [19] mention the higher accuracy in contrast to
stereo vision and propose a system for pose recognition discriminating the poses
standing, sitting or lying by thresholding the height of the centroid. They state
that their approach works in nursing homes reliably, but not in real homes due
to false alarms.

2.2 Inactivity Detection

Unusual inactivity can be determined by tracking people from an overhead posi-
tion [26, 27]. Therefore, zones with low activity (and little motion) are identified
automatically and marked as an inactivity zones (e.g. sofa). Unusual inactiv-
ities are detected by analyzing the motion. If the amount of motion is below
a threshold and occurred outside of the learned inactivity zones, this event is
defined to be an unusual inactivity (e.g. person is lying on the floor). Inactivity
detection is only able to detect falls indirectly by the lack of motion. Therefore
it is important to ensure that the system is able to handle new situations (e.g.
a chair is moved to a new position, thus moving the inactivity zone) properly.

A combination of applying a statistical model of inactivity zones and shape-
based fall detection is introduced by Zweng et al. [28]. A so called accumulated
hitmap models areas with low and high activities. In combination with their
shape-based fall detection, the robustness of their approach is enhanced.

Fig. 2. Analysis of the bounding box aspect ratio and the orientation of the ellipse to
detect falls
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2.3 3D Motion Analysis

3D head motion analysis by using stereo vision sensors to detect falls is used
by Belbachir et al. [29]. These biologically-inspired sensors feature a massively
parallel pre-processing and reduce the amount of data in comparison to stereo
vision cameras as they are not frame-based, but event-based. Hence, the motion
of people can be determined and the position of the person can be extracted. A
fall is detected by tracking the position and velocity of the head, as they assume
the position of the head changes rapidly during a fall. Another approach by
Rougier et al. [30] uses 3D information obtained by one single camera to track
the head of the person and to obtain its trajectory. Not only the head position
but also the motion speed is taken as an indicator for falls as the motion speed
is assumed to be higher during a fall than during activities of daily living.

The approaches of Zambanini et al. [18], Belbachir et al. [29] and Rougier et
al. [30] consider motion speed to detect falls, as they assume that the velocity is
higher during a fall than during activities of daily living. From our point of view
this assumption should not be made, as falls can also occur slowly and thus are
not detected using these approaches.

In contrast to the definition introduced by Xinguo [5], we do not restrict 3D
motion analysis to the head of a person, as other body parts (e.g. centroid) are
analyzed as well. An approach using Time-of-Flight cameras detects moving re-
gions within the 3D points cloud in a first step [25]. The person (foreground) is
segmented from the background and - in contrast to other works analyzing the
head position - the distance of the person’s centroid to the ground floor is ana-
lyzed. This results in an efficiency of 80% and a reliability of 97.3% when using a
centroid-ground floor distance of 0.4 meters as threshold [25]. Furthermore they
propose to extract the skeleton from the depth data to analyse the orientation
of the person’s spine.

Since the introduction of the Kinect sensor in 2010, a new 3D sensor is avail-
able. Smisek et al. [31] analyzed the depth resolution and accuracy of the Kinect.
Evaluation shows that regarding multi-view reconstruction the Kinect overper-
forms a Time-of-Flight sensor (SwissRanger SR-4000) and the quality is almost
equal to a reconstruction using a 3.5 Mega Pixel SLR Stereo approach. Using
the Kinect sensor for fall detection is proposed by Rougier et al. [32], but they
focus on low level vision tasks like foreground / background segmentation and
detecting the ground plane. Their proposed fall detection algorithm analyzes the
distance between the centroid of the body and the ground floor as well as motion
speed. Mastorakis et al. [33] use the Kinect and the 3D bounding box to detect
falls. Falls are detected by analyzing the velocity of the person (i.e. falls occur
if the velocity is higher than a threshold) as well as by assuming that a fall is
followed by an inactivity period (i.e. no motion after a fall). Motion speed is not
a suitable feature for fall detection as the motion speed is not necessarily high
during a fall. Furthermore motion can occur after a fall since elderly might be
able to crawl on the floor.
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3 Methodology

Zweng et al. [28] show that the accuracy of their fall detection approach is higher
when using a 3D reconstruction of the person, but having the main drawback
of needing a calibrated camera setup. Therefore we propose to use a 3D recon-
struction of a person, but using the Kinect instead of multiple cameras. Due
to the use of infrared light, the Kinect also works during the night, when falls
of elderly occur (e.g. when going to the bathroom in the dark). Furthermore,
changing lighting conditions (e.g. switching the lights on and off) does not affect
the results of the Kinect. Hence, the results (e.g. foreground/background seg-
mentation, tracking) are more robust when using the Kinect than using standard
IP cameras.

Our fall detection approach combines body shape analysis together with in-
activity detection and 3D motion analysis. A fall is detected by analyzing the
body orientation and the height of the spine. If a person is detected to be on the
floor and is not able to get up on her/his own within a specified time, an alarm
is triggered (inactivity detection).

The workflow of our approach is shown in Figure 3. Starting with a depth
image obtained by the Kinect, skeleton information is extracted and the ground
plane is estimated by OpenNI [34]. The skeleton information provided by OpenNI
is optimized for being in an upright position (since it was developed for the use
with the Xbox), but also works in different positions (e.g. lying on the floor).
Based on the coordinate data of the skeleton, features to determine the pose of
the person (i.e. orientation of the body and distance to the ground) are extracted.
A final decision about the pose of the person is made by applying fuzzy logic. This
simplistic approach is chosen to reduce the computational load of our algorithm
and therefore there is no need for special system requirements when running our
approach. The evaluation shows that our approach already yields in reasonable
results.

Fig. 3. Workflow

3.1 Feature Extraction

The depth image of a person includes the skeleton information of the shoulder
(center), spine and hip (center). Since the coordinates are not in 2D but in 3D
space and the ground plane equation is known, the pose of the person can be
illustrated relative to the ground floor, depicted in Figure 4. Therefore the major
axis of the person is estimated by approximating the coordinates of the shoulder,
spine and hip by a line. This line is approximated by calculating the mean slope
between these three skeleton coordinates. Afterwards the following features are
calculated:
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– Similarity between the body orientation and the ground plane: the pose is
estimated by calculating the similarity of the person’s orientation and the
ground floor. If the orientation of the person is parallel to the ground floor,
the person is defined to be ”lying” (either on the floor or on the bed). If
the major orientation is orthogonal to the ground floor, the person is in the
position ”upright”. Although this is only an approximate approach, experi-
mental results show that this is already sufficient to detect falls with a high
accuracy.

– Spine distance to the ground floor: the distance between the spine and the
ground floor is calculated, allowing to determine whether the person is lying
on the floor or e.g. on the bed. The integration of this feature is essential,
since otherwise it is not possible to determine if a person is lying on the bed
or on the floor, which results in false alarms.

The use of the similarity of the body orientation and the ground floor is illus-
trated in Figure 4a and Figure 4b: in contrast to a person being in an upright
position (shown in Figure 4a), a person lying on the floor is shown in Figure 4b.
Therefore the similarity of the body orientation can be used as a feature to
distinguish between these poses. The need for analyzing the spine distance is
illustrated in Figure 4c and Figure 4d: Figure 4c shows a person sitting on a
chair, whereas a person is sitting on the floor is illustrated in Figure 4d.

Fig. 4. Person (a) being in an upright position, (b) lying on the floor, (c) sitting on a
chair and (d) sitting on the floor

3.2 Pose Estimation Based on Fuzzy Logic

Similar to Anderson et al. [22] and Zweng et al. [28], pose estimation is based
on confidence values for the poses ”upright”, ”in between” and ”lying on the
floor”. In contrast to Zweng et al., our pose estimation and fall detection is only
based on features introduced in Section 3.1 and motion speed is not taken into
consideration. This is done in order not to constrain the fall event, but to be
able to detect a variety of falls - even those, which occur slowly. To be able to
differentiate between our three defined poses, trapezoidal functions [35] for the
poses are created by finding thresholds empirically. Figure 5a depicts the trape-
zoidal function of the posture confidence depending on the body orientation.
The posture confidence with respect to the ground plane distance is shown in
Figure 5b.
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Posture confidences for the orientation and the height of the body are calcu-
lated independently in the first step. To get an overall decision whether a fall
occurred, the confidence values are combined by calculating the arithmetic aver-
age. This combination results in three confidence values for the poses ”upright”,
”in between” and ”lying on the floor”. The final decision whether a fall occurred
is made by thresholding the confidence values. Eliminating outliers is achieved
by analyzing the average of pose confidences over time (e.g. 50 frames).

Fig. 5. Definition of fuzzy boundaries for the (a) orientation similarity and (b) spine-
ground distance

4 Evaluation

Falls are simulated in a way that is similar to the definition of falls by Noury et
al. [2], but using an extended version of scenarios, depicted in Table 1. The ad-
ditionally added scenarios are ”sitting down on a chair and falling while getting
up”, ”lying down to a bed and falling out of the bed” and ”falling into cam-
era direction”. These scenarios are added to enhance the quality of evaluation.
Furthermore two scenarios are taken out of the original definition of Noury et
al. since we do not agree with the uniqueness of the outcome. The modification
results in 18 different sequences, containing ten falls and eight no-falls. These
scenarios are simulated by two subjects, simulating each scenario twice. This
results in an overall set of 72 videos, containing 40 falls and 32 no-falls.

Experiments have shown that the pose ”in between” is not necessarily needed
for evaluation, as analyzing only two poses is sufficient. We present our results
using a precision-recall curve alternatively to the ROC curve [36] since it is
not possible to specify the number of negative samples as the overall number
of negative samples is not known in advance (a negative sample in our dataset
is specified as a ”no fall” event). Since our algorithm is frame-based, ”no fall”
events occur in each sequence (even if it is a sequence containing a fall event),
since most of the frames are ”no falls” and only a few frames show the fall
respectively a person lying on the floor. Hence we cannot define all frames not
containing a fall as ”negative samples”, but we cannot define only 32 negative
samples either. The precision-recall curve in Figure 6 is generated by varying
the thresholds tupright and tlying.
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Table 1. Definition of scenarios, similar to Noury et al. [2]

Our approach results in an accuracy of 98.6% on 72 videos, resulting in one
FP in the whole dataset. This FP occurs due to a tracking error after a fall,
since the person is not tracked correctly while getting up again. Hence, a second
fall is detected within the same sequence but as this fall does not occur in the
time interval specified in the ground truth annotation, it is marked as a FP.

These results show that our approach outperforms other state-of-the-art ap-
proaches (e.g. [25],[28]). Although the evaluation is not based on the same dataset
(due to the lack of dataset/code availability), the evaluation setting is simi-
lar (laboratory setting is similar to Zweng et al.[28]). Furthermore, similar to

Fig. 6. Precision-recall curve of our fuzzy fall detection approach
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Zweng et al.[28] the fall scenarios defined by Noury et al.[2] are used. Our ap-
proach results in only one FP on the whole dataset whereas the ROC curve from
Zweng et al.[28] indicates a higher number of FP. Furthermore, the use of the
Kinect offers practical advantages: it is robust to changing lighting conditions,
also works also during the night and the installation in real homes is simplified
by using only one sensor without the need for a complex calibration.

5 Conclusion

This article discussed state-of-the-art approaches based on different classes of
fall detection. We introduced the combination of 3D tracking data obtained by
the Kinect together with fuzzy logic for fall detection. Evaluation showed that
this approach results in a high accuracy, being able to detect falls robustly.
Our proposed approach was evaluated on a dataset of 72 video sequences and
outperformed other state-of-the-art approaches. The fall dataset was recorded in
cooperation with medical scientists and care taker organizations and is publicly
available1.
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