
A. Agrawal et al. (Eds.): IITM 2013, CCIS 276, pp. 123–132, 2013.
© Springer-Verlag Berlin Heidelberg 2013

CUDA Based Interactive Volume Rendering
of 3D Medical Data

Piyush Kumar and Anupam Agrawal

Information Technology Department
Indian Institute of Information Technology, Allahabad

{rs109,anupam}@iiita.ac.in

Abstract. Improving the image quality and the rendering speed have always
been a challenge to the programmers involved in large scale volume rendering
especially in the field of medical image processing. The paper aims to perform
volume rendering using the GPU, in which, with its massively parallel
capability has the potential to revolutionize this field. The final results would
allow the doctors to diagnose and analyze the 2D CT-scan data using three
dimensional visualization techniques. The system is used in two types of data,
one is human abdomen (45 MB) and colon_phantom8 (300MB) volume data.
Further, the use of CUDA framework, a low learning curve technology, for
such purpose would greatly reduce the cost involved in CT scan analysis; hence
bring it to the common masses. The volume rendering has been done on Nvidia
Tesla C1060 card and its performance has also been benchmarked.

1 Introduction

Since ancient times vision has been an important part of how a human perceives the
environment around him. Vision is responsible for providing inputs upon which
necessary action is performed. Then came the advent of television when the world
around was projected on a screen having only two dimensions. However, long before
that various other forms of projection on two dimensions have been in use. A point in
this case is the painting by the ancient artists which have depth in them. Soon, it was
realized that if the data by other senses can also be projected in a form which is
visible, then, new information can be extracted out of that.

The term visualization means the construction of a visual image in the mind.
Scientific visualization is an important part of 3D computer graphics. Volume data is
used for visualizing purpose. A typical 3D volumetric data set is a group of 2D slice
images acquired by CT, MRI machines or 3D scanners. 3D MRI or CT data
reconstruction is a complicated and challenging problem with high computing density
and also a time consuming process. Volume rendering is a method which is used to
visualize this type of dataset. This is also called direct volume rendering. It is a set of
techniques used to display a 2D projection of a 3D discretely sampled data set.

The complicated and challenging problems are now easier due to the fast
development of the parallelism technique in parallel computing. Especially thankful
to multi-core CPU and CUDA on GPU making fast 3D reconstruction practically
possible [1]. The 3D volume data would be reconstructed and rendered in just a few

124 P. Kumar and A. Agrawal

seconds after scanning by the scanner. This is very helpful in the field of medical
operations/ surgeries and online inspection. Here, it can be easier to run complex
filtering and segmentation based techniques in real-time. With the development of
APIs just like CUDA and OpenCL, the flexibility for scientific visualization
programming has achieved new heights [2].

This paper will go through some literature review of the volume rendering in
scientific visualization in next section. The third section explains the proposed
methodology and its implementation in CUDA on GPU. A few interactive result
snapshots and performance analysis results are summarized in fourth section. Finally we
have concluded these entire things with the future work in the end of the fifth section.

2 Literature Review

Ray casting algorithm for volume rendering was first introduced by Kajiya [3]. The
ray casting algorithm is an important approach for volume visualization. This has
mainly come through two phase process. One is CPU-based and the other is GPU-
based. Here, it would explore the method with the help of graphical model and the
CUDA model [1].

During rendering, optical properties are accumulated along each viewing ray to
form an image of the data. Here, an optical model was used to map data values to
optical properties. The role of optical model is to describe that how particles in the
volume interact with light. Optical parameters are specified by the data values
directly, or they are computed from applying one or more transfer functions to the
data [4]. The transfer functions can either be applied before the interpolation from the
surrounding scalar values (pre-classification) and interpolating the resulting RGBA
values, or after the interpolation of post-classification [4]. The most commonly used
algorithms are summarized here which were: splatting, shear-warp, texture mapping,
and ray casting under Direct Volume Rendering. But the ray casting is the most
popular method for volume rendering [4].

Generally the same process is used to do this for all rendering techniques as [4]:

• Splatting method: It is a technique, where every volume element is
splatted on the projection plane in a systematically back to front order.
These splats are rendered with various attributes depending on the
volume density and the transfer function.

• Shear-Warp method: It is a factorization technique, where the viewing
transformation is used. The faces of the volume become axis aligned with
image plane and voxels (volume element) to pixels scale is fixed. If all
slices have been rendered, the buffer is warped into the desired
orientation.

• Texture mapping: This approach is based on blending of textured slices.
Volume is stored on the GPU in three sets of 2D textures. One set of 2D
texture for each dimension. These textures are rendered using alpha
blending. The second possibility is to store volume in one 3D texture and
then render polygons using alpha blending.

 CUDA B

• Volume Ray C
our research wo
volume renderi
casting techniqu

2.1 Volume Ray Castin

General ray casting is based
eye, through an object, thu
For ray casting through vol
eye until it leaves the datase

Direct volume renderin
visualization without extra
idea is to accumulate the o
along the ray emanating fro

Fig.

Fig.1. illustrates how th
object: dark blue voxels in
algorithm. The light navy b
involved. Images are creat
accumulating the resulting o

Fig. 2. Four basic steps of vo
Compositing Rays [5]

Based Interactive Volume Rendering of 3D Medical Data

Casting: It is a basic technique for volume visualization
ork, initially we will concentrate on this technique of di
ing for a large scale dataset. The GPU-based volume r
ue provides high-quality result at interactive frame rates [

ng Approach

d on the idea of shooting rays, which originate in the use
us computing the colours of the pixels passed by the ra
lumetric data, each ray is traversed from the location of
et [4] [13].
ng methods are used to generate 3D volumetric d
cting the surface geometry from the data [12]. The ba
optical properties such as color and opacity as we tra

om each pixel of the screen.

. 1. Casting Rays through an Object [4]

he rays are cast from the eye through the screen and
the volume object are the voxels that are traversed by

blue pixels on the output screen represent the pixels that
ted by sampling the volume along all viewing rays
optical properties [6].

olume ray casting: (1) Ray Casting (2) Sampling (3) Shading

125

n. In
irect
ray-
[3].

er’s
ays.
f the

data
asic
avel

the
the
are
and

g (4)

126 P. Kumar and A. Agr

The basic four steps are
are shown in above Fig.2. w
rays.

2.2 CUDA Based Arch

The hardware has been de
resulting in high performan
Architecture) device has de
shown in Fig.3.

Fig. 3. Show

In the above figure the
which computes several nu
thread according to its threa
block has its own block id.
thread block can synchroniz

Systematically Processin

1. Copy data from ma
2. CPU instructs the p
3. GPU execute paral
4. Copy the result fro

The implementation of the
and ray casting method usin
et. al [4] proposed a volume
segment using B-spline.

rawal

used in the method of volume ray casting algorithm wh
which are: ray casting , sampling, shading, and composit

itecture

esigned to support lightweight driver and runtime lay
nce. The structure of the CUDA (Compute Unified Dev
escribed in the form of threads, blocks, and grid [9]. Thi

wing the distribution threads in CUDA [9] [14]

minimal execution unit is thread. The GPU is a dev
umbers of threads at a time. The CUDA API defines e
ad id and the batch of threads is organized as a block. E
 The batch of blocks is then organized as a grid [14]. O
ze and efficiently shared through shared memory.
ng flow on CUDA, as shown in Fig.4., has following ste

ain memory to GPU memory.
process to GPU.
llel in each core.

om GPU memory to main memory.

e ray casting architectures of volume visualization [4]
ng CUDA can be observed from [7] [10] [11]. Changgo
e ray casting method which performs sampling within a

hich
ting

yers,
vice
is is

vice
each
Each
One

eps:

[8]
ong
ray

 CUDA Based Interactive Volume Rendering of 3D Medical Data 127

Fig. 4. Processing Flow on CUDA [9]

3 Proposed Methodology

Direct volume rendering or volume rendering method is used to generate 3D volume
data visualization without extracting the surface geometry from the sampled data.

The basic idea is to accumulate the optical properties such as color and opacity as
we travel along the ray emanating from each pixel of the screen. We have used a form
of direct rendering approach called the Ray casting. It’s a form of image rendering
approach based on volume rendering. The whole procedure is defined as a block

Fig. 5. Block Diagram of Proposed Methodology

Raw data processing to form a 3D array

Calculation of camera angle and ray formation

Intersection detection of ray and the plane

Ray Traversing

Sampling and Interpolation

Classification and Screen Mapping

Calculation of RGBA using Transfer Function

128 P. Kumar and A. Agrawal

diagram as shown in Fig.5. Here, first take the raw data for processing to form a 3D
array. Raw data is format in which two or multiple dimensions. The volume rendering
would be done on Nvidia Tesla C1060 card.

3.1 The Graphics Model

In the graphical process model the GPU rendering is a fixed pipeline mode. The
approach would first take a volume data and evaluate the vertices. Then rasterization
is applied for the segmenting the data. Rasterization is used to defining the data in a
sequential grid form. After segmentation then check the frame cache for the
segmented voxels. This is shown in Fig.6.

Fig. 6. Block Diagram of Rendering Pipeline

3.2 Ray Casting Implementation Using CUDA

Volume rendering is used for describing the visualization of 3D data. This visualizes
the sampled functions of all three spatial dimensions by evaluating of the 2D
projections. The volume rendering has been performed using two type of datasets of
size 300 MB (colon_phantom8) and 45 MB (stent8 (human abdomen)) using CUDA.
The dimensions of volume size of one data set are 512x512x442 and another is
512x512x128 [16].

Algorithm: Ray Casting Technique

 For each Pixel
1. For each f(i,j,k) along a Ray from pixel
2. Check f(i,j,k) in classification tables
3. If new substance

a. Find Surf Normal/Compute color
b. Weight color by Opacity
c. Accumulate color contribution

and Opacity
4. Pixel gets accumulated color

The advantages of using ray casting algorithms are [6]:

• No binary classification, e.g., inside or outside as in surface fitting methods
• Shows structure between surfaces
• Displays small and poorly defined features
• Readily parallelizes

Vertex

Frame Cache Segmentation

RasterizationVolume Data

 CUDA Based Interactive Volume Rendering of 3D Medical Data 129

Algorithm: CUDA-based Volume Rendering with Ray Casting
Technique

(Each Block executes the following in parallel on GPU)

1. Render image using CUDA
 map backbuffer to get CUDA device pointer
 cutilSafeCall(cudaGraphicsMapResources();
 cutilSafeCall(cudaMemset();
 call CUDA kernel, writing results to backbuffer

render_kernel(gridSize, blockSize, d_output, width,
height, density, brightness, transferOffset,
transferScale);

 Display results using OpenGL (called by GLUT)
Now encode for performing the operations

gridSize=dim3((width, blockSize. x), (height,
blockSize. y));

2. Load raw data from disk
 void *loadRawFile()

 if (check fps limit) CUDA device with highest Gflops/s
 else (First initialize OpenGL context, so we can properly

set the GL for CUDA then use command-line
specified CUDA device, otherwise use device with
highest Gflops/s)

 Then load volume data and synchronize
 cudaThreadSynchronize();

 calculate new grid size
 gridSize = dim3((width, blockSize.x), (height,

blockSize.y));
 call CUDA kernel, writing results to Buffer

copyInvViewMatrix(invViewMatrix,
sizeof(float4)*3);

 Start timer 0 and process n plane loops on the GPU

3. Then free CUDA Buffer Memory
 freeCudaBuffers();

This system is doing by a single CUDA kernel. Conventional ray casting algorithms
specify the ray attributes through the volume rendering of the volume dataset. In this
algorithm, the opacity required for the changing the sampling rate globally or locally
will be evaluated by equation 1:

 1 1 (1)

130 P. Kumar and A. Agrawal

Where, αcorrected is adjusted opacity and αstored is opacity stored in transfer function.
Transfer functions shows variation between opacity and scalar values. Now the
whole algorithm is given below:

4 Experimental Results

We have implemented the ray casting based volume rendering using CUDA and
tested it on a datasets of size 300 MB and 45 MB. The colon_phantom8
(512x512x442) and human abdomen (512x512x128) datasets can be downloaded
from http://www.gris.uni-tuebingen.de/edu/areas/scivis/volren/datasets/new.html [16].
Skin transparency based on density achieved along with the ability to rotate camera.
This is shown in Fig.7. and Fig.8.

Fig. 7. Results from 45 MB dataset of human abdomen

Fig. 8. Results including transparency from a 300MB dataset

The volume size of one data set is 512x512x442 and another is 512x512x128.
These data sets give better result which is visualized with the help of ray casting
algorithm using OpenGL in CUDA.

The above Table 1 and Fig.9 are showing the result analysis on two types of
volume data sets. This shows that if use data of 512x512x442 in CPU the result would
be problem in execution. But for another dataset CPU is given 10 fps which is less

 CUDA Based Interactive Volume Rendering of 3D Medical Data 131

Table 1. Comparison Results of performance on a NVIDIA Tesla C1060 GPU

Data Set Name Volume Size Dimension Rendering speed (FPS)
CPU GPU(CUDA)

colon_phantom8

(300 MB)

512x512x442 -- 30

stent8 (human abdomen
45 MB)

512x512x128

10 40

than as compared to GPU’s result. Both data sets give almost 30 and 40 frames per
second result with CUDA based rendering on GPU. The volume rendering has be
done on a system equipped with Nvidia Tesla C1060 card with Nvidia GeForce 9500
GT. CUDA toolkit 4.0 is used in i7 950 CPU.

Fig. 9. Graph shows difference in CPU fps and GPU fps

5 Conclusion and Future Work

The advent of GPU’s is changing the way complex computations were done till now.
We envisaged that it would play a major role in the medical domain where doctors
would be able to diagnose and analyze results provided by CT scans and MRI scans.
The computational ability provided by the modern GPU’s has enabled us to produce a
three dimension interactive virtual human form.

To prototype the potential of CUDA in volume rendering, we used a data set of
300 MB through which we can zoom inside to get a better view or rotate to see the
figure from a different angle. Further, through transparency change different organs
hidden by layers of skin would also be visible.

The CUDA based code can be made to run on huge data sets of the order of giga
bytes as explored in [15]. Currently a lot of research is going on in this front.

132 P. Kumar and A. Agrawal

References

1. 1. Bi, W., Chen, Z., Zhang, L., Xing, Y., Wang, Y.: Real-Time Visualize the 3D
Reconstruction Procedure Using CUDA. In: IEEE Nuclear Science Symposium
Conference Record, pp. 883–886 (2009)

2. Zwecke, Eduard, Markus, Katja, Wien: GPU-based Multi-Volume Rendering of Complex
Data in Neuroscience and Neurosurgery. PhD Thesis. Eurographics Digital Library Vienna
University of Technology (2009), http://www.cg.tuwien.ac.at/research/
publications/2009/beyer-2009-gpu/

3. James, K.T.: Ray Tracing Volume Densities. In: Proc. SIGGRAPH ACM, pp. 165–174
(1984)

4. Zhang, C., Xi, P., Zhang, C.: CUDA-based Volume Ray-Casting Using Cubic B-spline. In:
IEEE International Conference on Virtual Reality and Visualization, pp. 84–88 (2011)

5. Wikipedia: Volume Ray Casting (last accessed November 10, 2012)
6. John, P.: Volume Visualization with Ray casting (1997),

http://web.cs.wpi.edu/~matt/courses/cs563/talks/powwie/p1/ra
y-cast.htm (last accessed November 30, 2012)

7. Suryakant, P., Narayanan, P.J.: Ray Casting Deformable Models on the GPU. IEEE
ICVGIP, 481–488 (2008)

8. Susanne, S.K., Jose, G., Fabio, M., Andreas, A.M.E., Chrestoph, Z., Enrico, G., Renato, P.:
Interactive Multiscale Tensor Reconstruction for Multiresolution Volume Visualization. IEEE
Transactions on Visualization and Computer Graphics, 2135–2143 (2011)

9. NVIDIA CUDA (Compute Unified Device Architecture) programming guide version 1.0
(2007), http://www.nvidia.in (last accessed November 26, 2012)

10. Jens, F., Susanne, K.: Parallel Volume Rendering Implementation on Graphics Cards
Using CUDA, pp. 143–153. Springer, Heidelberg (2010),
http://link.springer.com/content/pdf/10.1007%2F978-3-642-
16233-6_15 (last accessed November 30, 2012)

11. Bi, W., Chen, Z., Zhang, L., Xing, Y., Wang, Y.: Real-Time Visualize the 3D
Reconstruction Procedure Using CUDA. In: IEEE Nuclear Science Symposium Conf., pp.
883–886 (2009)

12. Milan, I., Joe, K., Aaron, L., Charles, H.: Volume Rendering Techniques. Book Randima
Fernando. GPU Gems NVIDIA, pp. 667–672 (2004), http://http.developer.
nvidia.com/GPUGems/gpugems_ch39.html (last accessed November 15, 2012)

13. Philipp, S., Maxim, M., Renato, P.: Extinction-based Shading and Illumination in GPU
Volume Ray-Casting. IEEE Transactions on Visualization and Computer Graphics,
1795–1802 (2011)

14. Zhao, Y., Cui, X., Cheng, Y.: High-Performance and Real-Time Volume Rendering in
CUDA. In: IEEE International Conference on Biomedical Engineering and Informatics
China, pp. 1–4 (2009)

15. Agrawal, A., Josef, K., Gordon, C.J., Nigel, M.J., Feng, D., Marco, V., Fulvia, T., Debora,
T.: Enabling the interactive display of large medical volume datasets by multiresolution
bricking. ACM The Journal of Supercomputing, 3–19 (2010)

16. New Real World Medical Datasets, http://www.gris.uni-tuebingen.de/
edu/areas/scivis/volren/datasets/new.html (last accessed December 20,
2012)

	CUDA Based Interactive Volume Renderingof 3D Medical Data
	Introduction
	Literature Review
	Volume Ray ng Castin Approach
	CUDA Based Arch itecture

	Proposed Methodology
	The Graphics Model
	Ray Casting Implementation Using CUDA

	Experimental Results
	Conclusion and Future Work
	References

