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Abstract. Manifold ranking (MR), as a powerful semi-supervised learning al-
gorithm, plays an important role to deal with the relevance feedback problem in 
content-based image retrieval (CBIR). However, conventional MR has two main 
drawbacks: 1) in many cases, it is prone to exploit “unreliable” unlabeled images 
when deployed in CBIR due to the semantic gap; 2) the performance of MR is 
quite sensitive to the scale parameter used for calculating the Laplacian matrix. 
In this work, a self-immunizing MR approach is presented to address the draw-
backs. Concretely, we first propose an elastic kNN graph as well as its con-
structing algorithm to exploit unlabeled images “safely”, and then develop a local 
scaling solution to calculate the Laplacian matrix adaptively. Extensive experi-
ments on 10,000 Corel images show that the proposed algorithm is more effec-
tive than the state-of-the-art approaches. 

Keywords: content-based image retrieval, relevance feedback, self-immunizing 
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1 Introduction 

With the ubiquitous use of digital images in a large number of practical applications, 
Content-Based Image Retrieval (CBIR) has drawn substantial research attention in 
many computer communities during the past two decades [2]. A main challenge in 
CBIR is the so-called semantic gap, i.e. the low-level visual features are not sufficient 
to characterize the high-level semantics of images. Relevant feedback has been shown 
as a powerful tool for bridging the semantic gap by exploiting the user’s interaction 
with CBIR system. During the past years, a wide variety of relevant feedback tech-
niques have been proposed, most of which belong to the family of supervised learning 
[14, 2].  

One critical research topic related to relevance feedback is to learn with few labeled 
training examples, as few users are patient to label a lot of images during the interac-
tion. To this end, semi-supervised learning [1] has been applied to relevance feedback 
[3, 4, 8, 9, and 13]. A popular semi-supervised learning method used in CBIR is the 
manifold ranking (MR) that aims to learn a ranking function by making use of the 
underlying geometrical structure of the given image database. Previous studies have 
shown that MR is one of the most promising and successful semi-supervised learning 
techniques for relevance feedback [3, 7, 10 and 11]. 
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Fig. 1. An illustration of our motivation: (a) The adjacency matrix of a kNN graph built on a set 
of 10,000 images, each consecutively-numbered 100 images in which belong to the same se-
mantic category; (b) The “trusted” interval of a labeled image; and (c) An example of a labeled 
image with “unreliable” unlabeled nearby neighbors. 

However, it has been found that the performance of semi-supervised learning may 
be even worse than the supervised learning when “unreliable” unlabeled data is ex-
ploited [5]. Taking MR as an example, it assumes that a labeled example and its (un-
labeled) nearby neighbors trend to have similar properties, and thus their ranking scores 
should be approximate, but this assumption may not be true in CBIR due to the semantic 
gap. To verify the efficacy of this assumption, we conducted an empirical study on a set 
of 10,000 images, each consecutively-numbered 100 images in which belong to the 
same semantic category. Given the image set, a kNN graph is constructed and corres-
ponding adjacency matrix is shown by Figure 1a. Ideally, for each image i , we expect 
its k nearest neighbors appear within a “trusted” interval 

( )floor 100 100,i × ( )floor 100 100 100i × +   (e.g., if an image id is 1588, its 

“trusted” interval should be [1501, 1600]), since the images within this interval belong 
to the same class as illustrated in Figure 1b, where ( )floor •  denotes the integer op-

eration. Figure 1a shows that most nonzero elements distribute around the principal 
diagonal of the adjacency matrix, which means most neighbor points are inside their 
trusted interval. But there are still many nonzero elements far away from the principal 
diagonal, i.e. the neighbor points are outside the trusted interval (an example is illu-
strated by Figure 1c), and, in this case, the performance of MR may degenerate. 
Moreover, the performance of MR is sensitive to the scale parameter used for calculating 
the Laplacian matrix. Such a parameter is usually hard to tune with very few labeled 
examples [11], which is a common issue in graph-based semi-supervised learning. 

To address the above problems, this paper presents a Self-immunizing manifold 
ranking (Simar) approach for relevance feedback in CBIR, which is able to exploit 
unlabeled images “safely” and tune the scale parameter adaptively. Concretely, we first 
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propose a new graph structure named elastic kNN graph and corresponding constructing 
algorithm. In this structure, the creditable relationship between each labeled image and its 
nearby neighbors can be dynamically adjusted by monitoring the change of retrieval 
performance. Also, a local scaling solution is employed by Simar to tune the scale pa-
rameter for Laplacian matrix calculation, which is beneficial to the data distribution with 
multi-scales, e.g. image database. Our empirical study shows encouraging results in 
comparison to some existing semi-supervised learning algorithms widely used in 
CBIR.  

The remainder of this paper is organized as follows. Section 2 elaborates the pro-
posed Simar approach. Section 3 shows experimental evaluations. Finally, section 4 
concludes this paper. 

2 The Proposed Simar Approach 

In this section, we first formulate relevance feedback in CBIR as a semi-supervised 
graph-based ranking problem, and then present an elastic kNN graph structure and a 
local scaling method to facilitate the setting of parameters. 

2.1 Preliminaries 

Let { }1 n= , ,X x x  denote an image database, where each 
i

d∈x   represents an 

image by a d-dimensional feature vector. To discover the geometrical structure of the 
given image database, a graph (such as kNN graph) is usually built on X  and we 

define n n×∈W   as corresponding adjacency matrix with element ijw  saving the 

weight of the edge between point i  and j . Normally the weight can be calculated 

using a Gaussian kernel 

( )( )2 2exp i jij d ,w σ−= x x  (1) 

if ( )
j ikN∈x x  or ( )i jkN∈x x , otherwise 0ijw = , where ( )kN x  denotes the set 

of the k nearest neighbors of x , and ( )i jd ,x x  is a distance metric (such as L1 dis-

tance) between ix  and jx . Finally, we define a label vector as [ ]1
, ,

n

T
y y=y   to 

record the user’s judgment in relevance feedback loops, in which an element 1iy =  if 

ix  is the query or labeled as positive, 1iy = −  if ix  is labeled as negative, and 

0iy =  otherwise. 

Given W  and y , the goal of our Simar approach is to learn a ranking function 

f : →X   that assigns each image 
i

x  a ranking score 
i

f  according to its relevance 

to user’s query. Similar to other MR methods, Simar aims to find an optimal f *  by 
solving the following optimization problem: 
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2

2

1 1

1 1 1
O f

2

n n

ij i j i i
i ,j= i=ii jj

w f f f y
D D

μ
 
 = − + −  
 
   (2) 

where 0μ >  is the regularization parameter and D is a diagonal matrix with 

1

n

ii ijj=
D = w . The first term is a smoothness constraint that makes the nearby images 

share close ranking scores. The second term is a fitting constraint which means the 
ranking result should fit to the label assignment. By minimizing ( )O f , we get the 

optimal f by the following closed form 

( ) 1
f *

n α −= − yI S  (3) 

where ( )1 1+μα = , nI  is an identity matrix with n n× , and 1 2 1 2− −=S D WD  is the 

symmetrical normalization of W. In large scale problems, we prefer to use the iteration 
scheme: 

( ) ( ) ( )f 1 f 1t+ t +α α= −S y . (4) 

During each round of iteration, each data point receives information from its 
neighbors (first term). And retains its initial information (second term). The iteration 
process is repeated until convergence.  

As illustrated by Eq. (3) and (4), one of the key issues is to design an appropriate S , 
and more precisely to design W , which depends on two key parameters: the number of 
the nearest neighbors k used for constructing kNN graph and the scale parameter σ  
used by Gaussian kernel. We will discuss how to tune the parameters in the following 
subsections. 

2.2 Constructing an Elastic kNN Graph 

Constructing an appropriate graph is one of the keys to develop a high-performance 
MR scheme. As mentioned, the kNN graph is a popularly used structure, but it is prone 
to exploit “unreliable” unlabeled images, as illustrated by Figure 1. To “safely” exploit 
unlabeled images, we expect that the constructed graph could dynamically update the k 
value in a query session, in order to maintain a relatively confidential connecting 
relationship between each labeled image and its nearby unlabeled neighbors. To this 

purpose, for each image 
i

x , we suggest using a large k in our approach when its most 

neighbors are inside its “trusted” interval because corresponding (unlabeled) nearby 
neighbors are “reliable” in this case. Conversely, a small k is preferable in order to 
reduce the likelihood of exploiting the “unreliable” neighbors. At worst, no unlabeled 
images are considered and our Simar approach will degenerate to a supervised ranking 
method. In this way, we can guarantee that our semi-supervised ranking method will 
never worse than a supervised one. 

Given the labeled image set, a challenge is to probe whether most of their (unla-
beled) nearby neighbors are inside the corresponding “trusted” intervals, since the 
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images are not indexed by semantic in real-world applications. Considering this, Simar 
adopts an indirect strategy, that is, in each round of feedback the “reliability” of the 
unlabeled images used by current ranker is evaluated by monitoring the changes in its 
retrieval performance. Concretely, the retrieval performance is measured by using the 

precision rate defined as Number of  postive retrievals
Number of total retrievals 100%Precision = ×  via the user’s feedback 

on image retrievals. If the current precision curPrecision  is greater than the previous 

precision prePrecision , then the “reliability” of the unlabeled images exploited cur-

rently is enhanced, and the value of k should be enlarged. On the other hand, if 

cur prePrecision Precision< , then it means that the “reliability” of the unlabeled images 

exploited currently is receded, and the value of k should be decreased. With these 
considerations, we adaptively tune the parameter k according to 

( )( )floor 1cur pre cur prek k Precision Precision= + − . (5) 

to “safely” exploit the unlabeled images.  
Note that the Precision mentioned here is calculated with the number of relevant 

images that appear in a fixed number of retrievals. Suggested by Luxberg [6], the initial 
value of k, used at the first round of feedback, is set to ( )floor log n  for the asymptotic 

connectivity purpose. 

2.3 Local Scaling 

As mentioned before, the performance of MR is sensitive to the scale parameter σ . Some 
previous works [3, 7 and 10] suggested running their MR algorithms repeatedly for a 
number of σ  values and selecting the one leading to the highest average precision. 
However, the performance of this approach is heavily depended on the testing data and the 
range of values to be tested still has to be set manually. What is worse, there may not be a 
single value of σ  that works well for all data points when the input data with different 
local statistics, which is the common case in the image database. Therefore, we try to 
address this shortcoming from a local scaling view, i.e. calculating a local scale parameter 
for each image, instead of selecting a single scale parameter for all images. 

Inspired by the self-tuning spectrum clustering technique [12], the scale parameter 
can be regarded as some measure when two data points are considered similar. This 
provides an intuitive way for selecting possible σ . Let iσ  and jσ  denote the local 

scaling parameters of image ix  and jx  respectively. The distance from ix  to jx  as 

‘seen’ by ix  can be defined as ( )i j id , σx x  while the converse is ( )j i jd , σx x . 

Hence, the square distance 2d  between two images can be generalized as: 

( ) ( ) ( )2
i j j i i j i j i jd , d , = d ,σ σ σ σx x x x x x , (6) 

and the weight of the edge between a pair of images, i.e. Eq. (1), can be rewritten as: 

( ) ( )( )2exp i j i jij d= ,w σ σ− x x . (7) 
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Intuitively, a small iσ  is preferable when ix  is residing in a tight local region, 

while a large iσ  is preferable when ix  is residing in a sparse local region. To this 

purpose, the selection of the local scale iσ  can be done by studying the local statistics 

of the neighborhood of ix . Considering the efficiency, we use the distance from ix  to 

its k-th nearest neighbor ikx  to represent the local statistic, i.e. iσ =  ( )i ikd ,x x  

where ( )floor logk n=  that gave good result in our experiment. 

2.4 Implementation Issues 

For the real-time response purpose, previous work suggested using a sparse represen-
tation for the affine matrix W  and calculating it off-line [3]. However, different from 
conventional MR, Simar requires updating matrix W  on-line because elastic kNN 
graph is considered. Our idea is to calculate an initial affine matrix with a large k value 
off-line, and then add or remove elements into/from the matrix according to the 
changes of k values on-line. In the way, we can update matrix W  with low computa-
tional cost. The key steps are summarized as follows. 

Step 1 (off-line): Starting with a large 
0

k (=100) value, for each image, we search its 

0k  nearest neighbors from database and store their identities in a matrix G  0n k×∈ , 

where each element ijg  denotes the identity of the j-th nearest neighbor of image ix . 

Based on G , the initial affinity matrix 0W  is calculated by Eq. 7. 

Step 2 (off-line): In the first round of feedback, given ( )1 floor logk n= , the affinity 

matrix 1W  (initialized by n n×0 ) is generated based on 0W  and G  by copying ele-

ments from 0W  to 1W . For example, given image ix , the identity of its j-th nearest 

neighbor is ijg , and corresponding affinity between ix  and its j-th nearest neighbor 

can be gained by: ( ) ( )1 0, ,ij iji g i g←W W . 

Step 3 (on-line): After the second round of feedback, the affinity matrix curW  used 

currently is updated by monitoring the changes of retrieval performance. In details, 

curk  is first calculated by Eq. 5; then, based on 0W  and G , we add elements into 

curW  when cur prek k> , while remove elements from curW  when cur prek k< . The de-

tailed updating rules can be described as: 

if cur prek k>  then  /* adding elements into curW  */ 

for 1i =  to n  

    for 1prej k= +  to curk  

      ( ) ( )0, ,cur ij iji g i g←W W ; 

    end for 

end for 



432 J. Wu et al. 

 

else  /* removing elements from curW  */ 

for 1i =  to n  

    for prej k=  to 1curk +  with step=-1 

      ( ), 0cur iji g ←W ; 

    end for 

end for 

end if 

Another issue is with respect to the out-of-sample search. If the query image is not in 

the database, we first connect the query with its 
0

k  nearest neighbors from database 

images, meanwhile, add a new row to G , with each element store the identify of the 
corresponding neighbor. Then, we calculate the edge weights by Eq. 7 and add one row 
and one column to 0W , with each element equal to the corresponding edge weight. All the 

other operations will be performed similarly using the enlarged matrix 0W  and G . 

3 Experimental Study 

In this section, we show several experimental results and comparisons to evaluate the 
effectiveness of Simar scheme on a real world image database. All algorithms in ex-
periments are implemented in MATLAB 2008 and run on a PC with Intel Core (TM) 
Duo 2.93 GHZ processor and 2GB RAM. 

3.1 Experimental Setup 

Experiments are performed on a set of 10,000 images picked from the Corel database. 
These images belong to 100 semantic classes, each of which has 100 images.  

Three different features are used to represent the images, including a 64-dimensional 
color histogram, an 18-dimensional wavelet-based texture and a 5-dimensional edge 
direction histogram. At last, each image is represented as an 87-dimensional feature 
vector.  

We use PR-graph and P@TopN to evaluate the effectiveness of image retrieval 
methods. PR-graph depicts the relationship between precision and recall of a specific 
retrieval method. In general, a PR-graph can also be summarized into one statistic 
value, i.e. MAP (mean average precision). However, PR-graph can hardly reflect the 
changes of retrieval performance caused by feedbacks directly. P@TopN emphasizes 
the retrieval performance at a particular scope N, which describes the relationship 
between precision and round of feedback at top N retrieval results. Thus it can com-
pensate for the deficiency of PR-graph. 

3.2 Comparison Methods 

To examine the efficacy of the proposed Simar approach, several existing 
semi-supervised learning solutions for relevance feedback in CBIR are compared in our 
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empirical study. (1) Conventional MR [3] serves as a baseline method that applies 
regular MR algorithm to learn a ranking function. The setting of parameters is consis-
tent with [3], i.e. 0.99=α , 0.05=σ and 200k= . (2) Co-training [15] first trains two 
independent rankers using different distance metrics, and then each ranker labels for the 
other ranker its two most confident images from unlabeled data for the purpose  
of enriching the training set. (3) SemiBoost [8] iteratively learns an ensemble of  
SVMs using a similar procedure of boosting algorithm. In particular, both labeled and  

 

(a)

(b) 

(c)

Fig. 2. PR-graphs of the proposed method 
compared with some existing methods at the 
(a) 1st, (b) 2nd and (c) 3rd round of feedback. 

(a)

(b) 

(c)
Fig. 3. Precisions of the proposed method 
compared with some existing methods at the 
Top (a) 20, (b) 60 and (c) 100 retrievals.
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unlabeled images are exploited in the boosting procedure. The SVM is implemented 

using  LIBSVM toolbox. Furthermore, in order to study whether the elastic kNN graph is 

useful, a degenerated variant of Simar, termed SimarDeg, is evaluated in the comparison. 

(4) SimarDeg is almost the same as Simar except that the former use the fixed kNN graph 

( ( )floor logk n= ), instead of the elastic kNN graph, to calculate the Laplacian matrix. 

3.3 Performance Evaluation 

To evaluate the average performance, we conducted every experiment on a set of 200 
random queries sampled from our image dataset. At the beginning of retrieval, the 
database images are ranked according to their Euclidean distances to the query image 
and top ten images are labeled as the initially labeled training data. Then, various 
methods are then applied to rerank the database images. For each compared method, 
after obtaining a query, several rounds of feedback were performed, and in each round 
the user labeled ten images as the feedback. 

 

Fig. 4. MAP of the proposed method com-
pared with its degenerated variant. 

 

Fig. 5. P@Top 20 of the proposed method 
compared with its degenerated variant. 

Table 1. MAPs of the four compared methods 

 Simar MR Co-training SemiBoost 

Round 1 0.287 0.062 0.156 0.081 

Round 2 0.324 0.113 0.25 0.177 

Round 3 0.338 0.152 0.303 0.234 

At first, the performance of Simar, MR, Co-training and SemiBoost are compared. 
The PR-graph at the 1st, 2nd, and 3rd round of feedback are shown in Figure 2, and the 
corresponding MAP statistic is tabulated in Table 1, where the best performance has 
been boldfaced. The precision curve at top 20, top 60, and top 100 retrieval results are 
presented in Figure 3. Several observations can be drawn from the experimental results. 
First, by comparing the two MR approaches, the performance of Simar is much better 
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than conventional MR. Note that the main difference between them is that Simair 
calculates the Laplacian matrix using an adaptive scale parameter while conventional 
MR does this using a fixed scale parameter, which verifies the usefulness of our local 
scaling solution. Furthermore, in most cases, Simar outperforms Co-training and Se-
miBoost, especially at the first round of feedback, which is meaningful to the real world 
applications because it is not practical to require the user to provide many rounds of 
feedback and therefore the retrieval performance at the 1st round of feedback is the most 
important. Finally, it is impressive that at all rounds of feedback, the MAP of Simar is 
always the best. That means the MR approach is more effective than other 
semi-supervised ranking methods when the parameters are tuned appropriately. 

In order to study whether the elastic kNN graph employed in our approach is bene-
ficial or not, Simar is compared with its degenerated variant SimarDeg. Figure 4 and 
Figure 5 print the MAP and the P@Top20 of the two algorithms at 1st to 5th round of 
feedback, respectively. As can been seen, the performance of Simar and SimarDeg are 
close to each other at the first two rounds of feedback, and then Simar growingly 
outperforms SimarDeg with the increase of the rounds of feedback. It is conjectured 
that the number of labeled images is small at the first two rounds of feedback, the 
probability of exploiting the “unreliable” unlabeled images (the nearby neighbors of the 
labeled images) would be low, and thus the impact of the elastic kNN graph is trivial. 
By gradually adding the user’s feedbacks, the elastic kNN graph is increasingly helpful 
to Simar. 

4 Conclusions 

In this paper, we presented a novel MR approach for relevance feedback in CBIR, 
which addressed the two main drawbacks of regular MR algorithm. In particular, we 
employed an elastic kNN graph in MR to reduce the risk of exploiting “unreliable” 
unlabeled data, and developed a local scaling solution to facilitate the setting of the 
scale parameter used for calculating Laplacian matrix. We conducted extensive expe-
riments to evaluate the performance of our techniques for relevance feedback in CBIR, 
from which the promising results showed the advantages of the proposed approach in 
comparison to several existing methods. In the future work, we will take more visual 
features into consideration and evaluate our method on other databases. 
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