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Abstract. We propose a theoretically and practically improved density-
based, hierarchical clustering method, providing a clustering hierarchy
from which a simplified tree of significant clusters can be constructed. For
obtaining a “flat” partition consisting of only the most significant clus-
ters (possibly corresponding to different density thresholds), we propose
a novel cluster stability measure, formalize the problem of maximizing
the overall stability of selected clusters, and formulate an algorithm that
computes an optimal solution to this problem. We demonstrate that our
approach outperforms the current, state-of-the-art, density-based clus-
tering methods on a wide variety of real world data.

1 Introduction

Density-based clustering [1,2] is a popular clustering paradigm. However, the
existing methods have a number of limitations: (i) Some methods (e.g., DB-
SCAN [3] and DENCLUE [4]) can only provide a “flat” (i.e. non-hierarchical)
labeling of the data objects, based on a global density threshold. Using a single
density threshold can often not properly characterize common data sets with
clusters of very different densities and/or nested clusters. (ii) Among the meth-
ods that provide a clustering hierarchy, some (e.g., gSkeletonClu [5]) are not
able to automatically simplify the hierarchy into an easily interpretable repre-
sentation involving only the most significant clusters. (iii) Many hierarchical
methods, including OPTICS [6] and gSkeletonClu, suggest only how to extract
a flat partition by using a global cut/density threshold, which may not result in
the most significant clusters if these clusters are characterized by different den-
sity levels. (iv) Some methods are limited to specific classes of problems, such
as networks (gSkeletonClu), and point sets in the real coordinate space (e.g.,
DECODE [7], and Generalized Single-Linkage [8]). (v) Most methods depend on
multiple, often critical input parameters (e.g., [3], [4], [7], [8], [9]).

In this paper, we propose a clustering approach that, to the best of our knowl-
edge, is unique in that it does not suffer from any of these drawbacks. In detail,
we make the following contributions: (i) We introduce a hierarchical clustering
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method, called HDBSCAN, which generates a complete density-based clustering
hierarchy from which a simplified hierarchy composed only of the most signifi-
cant clusters can be easily extracted. (ii) We propose a new measure of cluster
stability for the purpose of extracting a set of significant clusters from possi-
bly different levels of a simplified cluster tree produced by HDBSCAN. (iii) We
formulate the task of extracting a set of significant clusters as an optimization
problem in which the overall stability of the composing clusters is maximized.
(iv) We propose an algorithm that finds the globally optimal solution to this
problem. (v) We demonstrate the advancement in density-based clustering that
our approach represents on a variety of real world data sets.

The remainder of this paper is organized as follows. We discuss related work
in Section 2. In Section 3, we redefine DBSCAN, and we propose the algorithm
HDBSCAN in Section 4. In Section 5, we introduce a new measure of cluster
stability, propose the problem of extracting an optimal set of clusters from a
cluster tree, and give an algorithm to solve this problem. Section 6 presents an
extensive experimental evaluation, and Section 7 concludes the paper.

2 Related Work

Apart from methods aimed at getting approximate estimates of level sets and
density-contour trees for continuous-valued p.d.f. — e.g., see [8] and references
therein — not much attention has been given to hierarchical density-based clus-
tering in more general data spaces. The works most related to ours are those in
[6,9,5,10]. In [6], a post-processing procedure to extract a simplified cluster tree
from the reachability plot produced by the OPTICS algorithm was proposed.
This procedure did not become as popular as OPTICS itself, probably because
it is very sensitive to the choice of a critical parameter that cannot easily be deter-
mined or understood. Moreover, no automatic method to extract a flat clustering
solution based on local cuts in the obtained tree was described. In [9], an im-
proved method to extract trees of significant clusters from reachability plots was
proposed that is less sensitive to the user settings than the original method in
[6]. However, this method is based on heuristics with embedded threshold values
that can strongly affect the results, and the problem of extracting a flat solution
from local cuts in the cluster tree was practically untouched; the only mentioned
(ad-hoc) approach was to arbitrarily take all the leaf clusters and discard the
others. In [5], the original findings from [6,9,11] were recompiled in the particular
context of community discovery in complex networks. However, no mechanism to
extract a simplified cluster tree from the resulting (single-linkage-like) clustering
dendrogram was adopted, and only a method producing a global cut through the
dendrogram was described. The algorithm AUTO-HDS [10] is, like our method,
based on a principle used to simplify clustering hierarchies, which in part refers
back to the work of [12]. The clustering hierarchy obtained by AUTO-HDS is
typically a subset of the one obtained by our method HDBSCAN. Conceptually,
it is equivalent to a sampling of the HDBSCAN hierarchical levels, from top to
bottom, at a geometric rate controlled by a user-defined parameter, rshave. Such
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a sampling can lead to an underestimation of the stability of clusters or even
to missed clusters, and these side effects can only be prevented if rshave → 0.
In this case, however, the asymptotic running time of AUTO-HDS is O(n3) [13]
(in contrast to O(n2 log n) for “sufficiently large” values of rshave). In addition,
the stability measure used in AUTO-HDS has the undesirable property that the
stability value for a cluster in one branch of the hierarchy can be affected by the
density and cardinality of other clusters lying on different branches. AUTO-HDS
also attempts to perform local cuts through the hierarchy in order to extract a
flat clustering solution, but it uses a greedy heuristic for selecting clusters that
may give suboptimal results in terms of an overall stability.

3 DBSCAN Revisited — The Algorithm DBSCAN*

Let X = {x1, · · · ,xn} be a data set of n objects, and let D be an n× n matrix
containing the pairwise distances d(xp,xq), xp,xq ∈ X, for a metric distance
d(·, ·).1 We define density-based clusters based on core objects alone:

Definition 1. (Core Object): An object xp is called a core object w.r.t. ε
and mpts if its ε-neighborhood contains at least mpts many objects, i.e., if
|Nε(xp)| ≥ mpts, where Nε(xp) = {x ∈ X | d(x,xp) ≤ ε} and | · | denotes
cardinality. An object is called noise if it is not a core object.

Definition 2. (ε-Reachable): Two core objects xp and xq are ε-reachable w.r.t.
ε and mpts if xp ∈ Nε(xq) and xq ∈ Nε(xp).

Definition 3. (Density-Connected): Two core objects xp and xq are density-
connected w.r.t. ε and mpts if they are directly or transitively ε-reachable.

Definition 4. (Cluster): A cluster C w.r.t. ε and mpts is a non-empty maximal
subset of X such that every pair of objects in C is density-connected.

Based on these definitions, we can devise an algorithm DBSCAN* (similar to
DBSCAN) that conceptually finds clusters as the connected components of a
graph in which the objects of X are vertices and every pair of vertices is adja-
cent if and only if the corresponding objects are ε-reachable w.r.t. user-defined
parameters ε and mpts. Non-core objects are labeled as noise.

Note that the original definitions of DBSCAN also include the concept of
border objects, i.e., non-core objects that are within the ε-neighborhood of a core
object. Our new definitions are more consistent with a statistical interpretation
of clusters as connected components of a level set of a density (as defined, e.g.,
in [14]), since border objects do not technically belong to the level set (their
estimated density is below the threshold). The new definitions also allow a precise
relationship between DBSCAN* and its hierarchical version, to be discussed
next. This was only approximately possible between DBSCAN and OPTICS.

1 The matrix D is not required if distances d(·, ·) can be computed from X on demand.
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4 Hierarchical DBSCAN* — HDBSCAN

In this section, we introduce a hierarchical clustering method, HDBSCAN, which
can be seen as a conceptual and algorithmic improvement over OPTICS. Our
method has as its single input parameter a value for mpts, which is a classic
smoothing factor in density estimates whose behavior is well understood (meth-
ods with a corresponding parameter, e.g., [6,10,7,8], are quite robust to it).
Different density levels in the resulting density-based cluster hierarchy will then
correspond to different values of the radius ε.

For a proper formulation of the density-based hierarchy w.r.t. a value of mpts,
we define the notions of core distance and a symmetric reachability distance
(following the definition used in [11]), a new notion of ε-core objects, as well as
the notion of a conceptual, transformed proximity graph, which will help us to
explain a density-based clustering hierarchy.

Definition 5. (Core Distance): The core distance of an object xp ∈ X w.r.t.
mpts, dcore(xp), is the distance from xp to its mpts-nearest neighbor (incl. xp).

Definition 6. (ε-Core Object): An object xp ∈ X is called an ε-core object
for every value of ε that is greater than or equal to the core distance of xp w.r.t.
mpts, i.e., if dcore(xp) ≤ ε.

Definition 7. (Mutual Reachability Distance): The mutual reachability dis-
tance between two objects xp and xq in X w.r.t. mpts is defined as
dmreach(xp,xq) = max{dcore(xp), dcore(xq), d(xp,xq)}.
Definition 8. (Mutual Reachability Graph): It is a complete graph, Gmpts , in
which the objects of X are vertices and the weight of each edge is the mutual
reachability distance (w.r.t. mpts) between the respective pair of objects.

Let Gmpts,ε ⊆ Gmpts be the graph obtained by removing all edges from Gmpts

having weights greater than ε. From Definitions 4, 6, and 8, it is straightforward
to infer that clusters according to DBSCAN* w.r.t. mpts and ε are the connected
components of ε-core objects in Gmpts,ε; the remaining objects are noise. Con-
sequently, all DBSCAN* partitions for ε ∈ [0,∞) can be produced in a nested,
hierarchical way by removing edges in decreasing order of weight from Gmpts .

Proposition 1. Let X be a set of n objects described in a metric space by
n×n pairwise distances. The partition of this data obtained by DBSCAN* w.r.t
mpts and ε is identical to the one obtained by first running Single-Linkage over
the transformed space of mutual reachability distances, then, cutting the result-
ing dendrogram at level ε of its scale, and treating all resulting singletons with
dcore(xp) > ε as a single class representing “Noise”.

Proof. Proof sketch as per discussion above, after Definition 8. �	
Proposition 1 states that we could implement a hierarchical version of DBSCAN*
by an algorithm that first computes a Single-Linkage hierarchy on the space of
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Algorithm 1. HDBSCAN main steps

1. Compute the core distance w.r.t. mpts for all data objects in X.
2. Compute an MST of Gmpts , the Mutual Reachability Graph.
3. Extend the MST to obtain MSText, by adding for each vertex a “self edge”
with the core distance of the corresponding object as weight.
4. Extract the HDBSCAN hierarchy as a dendrogram from MSText:

4.1 For the root of the tree assign all objects the same label (single “cluster”).
4.2 Iteratively remove all edges from MSText in decreasing order of weights

(in case of ties, edges must be removed simultaneously):
4.2.1 Before each removal, set the dendrogram scale value of the current
hierarchical level as the weight of the edge(s) to be removed.
4.2.2 After each removal, assign labels to the connected component(s)
that contain(s) the end vertex(-ices) of the removed edge(s), to obtain
the next hierarchical level: assign a new cluster label to a component if
it still has at least one edge, else assign it a null label (“noise”).

transformed distances (i.e., mutual reachability distances) and, then, processes
this hierarchy to identify connected components and noise objects at each level.
Here, we propose a more efficient and elegant equivalent solution.

A density-based cluster hierarchy has to represent the fact that an object o
is noise below the level l that corresponds to o’s core distance. To represent this
in a dendrogram, we propose to include an additional dendrogram node for o at
level l representing the cluster containing o at that level and higher. To directly
construct such a hierarchy, we propose an extension of a Minimum Spanning
Tree (MST) of the Mutual Reachability Graph Gmpts , from which we then can
construct the extended dendrogram by removing edges in decreasing order of
weights. More precisely, we extend the MST with edges connecting each vertex
o to itself (self-loops), where the edge weight is set to the core distance of o.
These “self edges” will then be considered when removing edges.

Algorithm 1 shows the pseudo-code for HDBSCAN, which has as inputs a
value for mpts and the data set X. It produces a clustering tree that contains all
partitions obtainable by DBSCAN* (w.r.t. mpts) in a hierarchical, nested way.
It also contains nodes that indicate when an isolated object changes from core
(i.e., dense) to noise. The result is called the “HDBSCAN hierarchy”. Using an
implementation of Prim’s algorithm based on an ordinary list search (instead of
a heap) to construct the MST, the method can be fully implemented in O(dn2)
running time, where d is the number of data attributes. Also, by noticing that
only the currently processed hierarchical level is needed at any point in time,
the algorithm needs to keep in main memory essentially the data set X and the
extended MST that can be constructed directly from it, which requires O(dn)
space. If a data matrix D is provided as input in lieu ofX, the algorithm requires
O(n2) space instead, but its time complexity reduces to O(n2).
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Algorithm 2.HDBSCAN step 4.2.2 with (optional) parametermclSize ≥ 1

4.2.2 After each removal (to obtain the next hierarchical level), process one at a
time each cluster that contained the edge(s) just removed, by relabeling its
resulting connected subcomponent(s):

Label spurious subcomponents as noise by assigning them the null label. If all
subcomponents of a cluster are spurious, then the cluster has disappeared.
Else, if a single subcomponent of a cluster is not spurious, keep its original
cluster label (cluster has just shrunk).
Else, if two or more subcomponents of a cluster are not spurious, assign new
cluster labels to each of them (“true” cluster split).

4.1 Hierarchy Simplification

The HDBSCAN hierarchy can easily be visualized as a traditional dendrogram
or related representations. However, these plots are not easy to interpret or pro-
cess for large and “noisy” data sets, so it is a fundamental problem to extract
from a dendrogram a summarized tree of only “significant” clusters. We propose
a simplification of the HDBSCAN hierarchy based on a fundamental observation
about estimates of the level sets of continuous-valued probability density func-
tions (p.d.f.), which refers back to Hartigan’s concept of rigid clusters [14], and
which has also been employed similarly by Gupta et al. in [10]. For a given p.d.f.,
there are only three possibilities for the evolution of the connected components
of a continuous density level set when increasing the density level (decreasing
ε in our context) [12]: (i) the component shrinks but remains connected, up to
a density threshold at which either (ii) the component is divided into smaller
ones, or (iii) it disappears. This observation can be applied to the HDBSCAN
hierarchy to select only those hierarchical levels in which new clusters arise by
a “true” split of a cluster, or in which clusters disappear; these are the levels
in which the most significant changes in the clustering structure occur. When
decreasing ε, the ordinary removal of noise objects from a cluster is not a “true”
split; a cluster only shrinks in this case, so it should keep the same label.

We can generalize this idea by setting a minimum cluster size, a commonly
used practice in real cluster analysis (see, e.g., the notion of a particle in AUTO-
HDS [10]). With a minimum cluster size, mclSize ≥ 1, components with fewer
than mclSize objects are disregarded, and their disconnection from a cluster does
not establish a “true” split. We can adapt HDBSCAN accordingly by changing
Step 4.2.2 of Algorithm 1 as shown in Algorithm 2: a connected component is
deemed spurious if it has fewer than mclSize objects or, for mclSize = 1, if it
is an isolated, non-dense object (no edges). Any spurious component is labeled
as noise and its removal from a bigger component is not considered as a cluster
split. In practice, this can reduce the size of the hierarchy dramatically.

The optional parameter mclSize represents an independent control for the
smoothing of the resulting cluster tree, in addition to mpts. To make HDBSCAN
more similar to previous density-based approaches and to simplify its use, we
can set mclSize = mpts, which turns mpts into a single parameter that acts as
both a smoothing factor and a threshold for the cluster size.
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5 Optimal Non-hierarchical Clustering

In many applications a user is interested in extracting a “flat” partition of the
data, consisting of the prominent clusters. Those clusters, however, may have
very different local densities and may not be detectable by a single, global density
threshold, i.e., global cut through a hierarchical cluster representation. In this
section, we describe an algorithm that provides the optimal global solution to
the formal optimization problem of maximizing the overall stability of the set of
clusters extracted from the HDBSCAN hierarchy.

5.1 Cluster Stability

Without loss of generality, let us initially consider that the data objects are de-
scribed by a single continuous-valued attribute x. Following Hartigan’s model
[14], the density-contour clusters of a given density f(x) on 
 at a given density
level λ are the maximal connected subsets of the level set defined as {x | f(x) ≥
λ}. Most density-based clustering algorithms are to some extent based on this
concept. The differences lie in the way the density f(x) and the maximal con-
nected subsets are estimated, e.g., DBSCAN* estimates the density-contour clus-
ters for a density threshold λ = 1/ε and a (non-normalized) K-NN estimate (for
K = mpts) of the density f(x), given by 1/dcore(x).

HDBSCAN produces all possible DBSCAN* solutions w.r.t. a given value
of mpts and all thresholds λ = 1/ε in [0,∞). Intuitively, when increasing λ
(i.e., decreasing ε), clusters get smaller and smaller, until they disappear or
break into sub-clusters; more prominent clusters will “survive” longer after they
appear. To formalize this concept, we adapt the notion of excess of mass [15]:
Imagine increasing the density level λ, and assume that a density-contour cluster
Ci appears at level λmin(Ci). The excess of mass of Ci is defined in Equation
(1), and illustrated in Figure 1, where the darker shaded areas represent the
excesses of mass of three clusters, C3, C4, and C5. The excess of mass of C2

(not highlighted in the figure) encompasses those of its descendants C4 and C5.

E(Ci) =

∫
x∈Ci

(
f(x)− λmin(Ci)

)
dx (1)

The excess of mass exhibits a monotonic behavior along any branch of the hier-
archical cluster tree. As a consequence, this measure cannot be used to compare
the stabilities of nested clusters, such as C2 against C4 and C5. To be able to
do so, we introduce here the notion of Relative Excess of Mass of a cluster Ci,
which appears at level λmin(Ci), as:

ER(Ci) =

∫
x∈Ci

(
λmax(x,Ci)− λmin(Ci)

)
dx (2)

where λmax(x,Ci) = min{f(x), λmax(Ci)}, and λmax(Ci) is the density level at
which Ci is split or disappears. For example, for cluster C2 in Figure 1 it follows
that λmax(C2) = λmin(C4) = λmin(C5). The corresponding relative excess of
mass is represented by the lighter shaded area in Figure 1.
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Fig. 1. Illustration of a density func-
tion, clusters, and excesses of mass
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Fig. 2. Illustration of the optimal selec-
tion of clusters from a given cluster tree

For a HDBSCAN hierarchy, where we have a finite data set X, cluster labels,
and density thresholds associated with each hierarchical level, we can adapt
Equation (2) to define the stability of a cluster Ci as:

S(Ci) =
∑

xj∈Ci

(
λmax(xj ,Ci)−λmin(Ci)

)
=

∑
xj∈Ci

( 1

εmin(xj ,Ci)
− 1

εmax(Ci)

)
(3)

where λmin(Ci) is the minimum density level at which Ci exists, λmax(xj ,Ci)
is the density level beyond which object xj no longer belongs to cluster Ci, and
εmax(Ci) and εmin(xj ,Ci) are the corresponding values for the threshold ε.

5.2 Optimization Algorithm

Let {C2, · · · ,Cκ} be the collection of all clusters in the simplified cluster hier-
archy (tree) generated by HDBSCAN, except the root C1, and let S(Ci) denote
the stability value of each cluster. The goal is to extract the most “prominent”
clusters (plus possibly noise) as a “flat”, non-overlapping partition. This task
can be formulated as an optimization problem with the objective of maximizing
the sum of stabilities of the extracted clusters in the following way:

max
δ2, ... ,δκ

J =
κ∑

i=2

δi S(Ci)

subject to

⎧⎪⎨
⎪⎩

δi ∈ {0, 1}, i = 2, · · · , κ∑
j ∈ Ih

δj = 1, ∀h ∈ L

(4)

where δi (i = 2, · · · , κ) indicates whether cluster Ci is included in the flat solu-
tion (δi = 1) or not (δi = 0), L = {h | Ch is a leaf cluster} is the set of indexes
of leaf clusters, and Ih = {j | j �= 1 and Cj is ascendant of Ch (h included)} is
the set of indexes of all clusters on the path from Ch to the root (excluded).
The constraints prevent nested clusters on the same path to be selected.
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Algorithm 3. Solution to Problem (4)

1. Initialize δ2 = · · · = δκ = 1, and, for all leaf nodes, set Ŝ(Ch) = S(Ch).
2. Starting from the deepest levels, do bottom-up (except for the root):

2.1 If S(Ci) < Ŝ(Cil) + Ŝ(Cir ), set Ŝ(Ci) = Ŝ(Cil) + Ŝ(Cir ) and set δi = 0.

2.2 Else: set Ŝ(Ci) = S(Ci) and set δ(·) = 0 for all clusters in Ci’s subtrees.

To solve Problem (4), we process every node except the root, starting from
the leaves (bottom-up), deciding at each node Ci whether Ci or the best-so-far
selection of clusters in Ci’s subtrees should be selected. To be able to make
this decision locally at Ci, we propagate and update the total stability Ŝ(Ci) of
clusters selected in the subtree rooted at Ci in the following, recursive way:

Ŝ(Ci) =

{
S(Ci), if Ci is a leaf node

max{S(Ci), Ŝ(Cil) + Ŝ(Cir )} if Ci is an internal node
(5)

where Cil and Cir are the left and right children of Ci (for the sake of simplicity,
we discuss the case of binary trees; the generalization to n-ary trees is trivial).

Algorithm 3 gives the pseudo-code for finding the optimal solution to Problem
(4). Figure 2 illustrates the algorithm. Clusters C10 and C11 together are better
than C8, which is then discarded. However, when the set {C10, C11,C9} is
compared to C5, they are discarded as C5 is better. Clusters {C4} and {C5}
are better than C2, and C3 is better than {C6,C7}, so that in the end, only
clustersC3, C4, andC5 remain, which is the optimal solution to (4) with J = 17.

Step 2.2 of Algorithm 3 can be implemented in a more efficient way by not
setting δ(·) values to 0 for discarded clusters down in the subtrees (which could
happen multiple times). Instead, in a simple post-processing procedure, the tree
can be traversed top-down in order to find, for each branch, the shallowest cluster
that has not been discarded (δ(·) = 1). Thus, Algorithm 3 can be implemented
with two traversals through the tree, one bottom-up and another one top-down.
This results in an asymptotic complexity of O(κ), both in terms of running time
and memory space, where κ is the number of clusters in the simplified tree (which
is typically much smaller than the number of data objects).

6 Experiments and Discussion

Data Sets. We report the performance on 9 individual data sets plus the av-
erage performance on 2 collections of data sets, representing a large variety
of application domains and data characteristics (no. of objects, dimensionality,
no. of clusters, and distance function). The first three data sets (“CellCycle-
237”, “CellCycle-384”, and “YeastGalactose”) represent gene-expression data.
CellCycle-237 and CellCycle-384 were made public by Yeung et al. [16]; they
contain 237 resp. 384 objects (genes), 4 resp. 5 known classes, and have both
17 dimensions (conditions). YeastGalactose contains a subset of 205 objects
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(genes) and 20 dimensions (conditions) used in [17], with 4 known classes.
For these data sets we used Euclidean distance on the z-score normalized ob-
jects, which is equivalent to using Pearson correlation on the original data.
The next three data sets are the Wine, Glass, and Iris from the UCI Repos-
itory [18], containing 178, 214, resp. 150 objects in 13, 9, resp. 4 dimensions,
with 3, 7, resp. 3 classes. For these data sets we used Euclidean distance.
The last three individual data sets consist of very high dimensional represen-
tations of text documents. In particular, “Articles-1442-5” and “Articles-1442-
80”, made available upon request by Naldi et al. [19], are formed by 253 ar-
ticles represented by 4636 and 388 dimensions, respectively. “Cbrilpirivson”
[20] is composed of 945 articles represented by 1431 dimensions and is avail-
able at http://infoserver.lcad.icmc.usp.br/infovis2/PExDownload. The number
of classes in all three document data sets is 5, and we used the Cosine measure as
dissimilarity function. In addition to individual data sets we also report average
performance on two collections of data sets, which are based on the Amsterdam
Library of Object Images (ALOI) [21]. Image sets were created as in [22] by
randomly selecting k ALOI image categories as class labels 100 times for each
k = 2, 3, 4, 5, then sampling (without replacement), each time, 25 images from
each of the k selected categories, thus resulting in 400 sets, each of which con-
tains 2, 3, 4, or 5 clusters and 50, 75, 100, or 125 images (objects). The images
were represented using six different descriptors: color moments (144 attributes),
texture statistics from the gray-level co-occurrence matrix (88 attributes), Sobel
edge histogram (128 attributes), 1st order statistics from the gray-level histogram
(5 attributes), gray-level run-length matrix features (44 attributes), and gray-
level histogram (256 attributes). We report average clustering results for the
texture statistics, denoted by “ALOI-TS88”, which is typical for the individual
descriptors. We also show results for a 6-dimensional representation combining
the first principal component extracted from each of the 6 descriptors using
PCA, denoted by “ALOI-PCA”. We used Euclidean distance in both cases.

Algorithms. Our method, denoted here by “HDBSCAN(EOM)” (EOM refers
to cluster extraction based on Excess Of Mass), is compared with: (i) AUTO-
HDS [10]; and (ii) a method referred to here as “OPTICS(AutoCl)”, which
consists of first running OPTICS, and then using the method proposed by Sander
et al. [9] to extract a flat partitioning. We set mpts (nε in AUTO-HDS, MinPts
in OPTICS) equal to 4 in all experiments. The speed-up control value ε in
OPTICS was set to “infinity”, thereby eliminating its effect. For AUTO-HDS,
we set the additional parameters rshave to 0.03 (following the authors’ suggestion
to use values between 0.01 and 0.05) and particle size, npart, to mpts − 1. The
corresponding parameter mclSize in HDBSCAN was set equivalently to mpts.

2

Quality Measures. The measures we report are the Overall F-measure [23]
and Adjusted Rand Index [24], denoted by “FScore” resp. “ARI”, which are
measures commonly used in the literature. In addition, we also report the fraction
of objects assigned to clusters (as opposed to noise), denoted by “%covered”.

2 We also tried other values of mpts, rshave, and npart/mclSize, with similar results.
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Table 1. Results for all data sets

OPTICS(AutoCl) AUTO-HDS HDBSCAN(EOM)
Data Set ARI FScore %covered ARI FScore %covered ARI FScore %covered

CellCycle-237 0.62 0.71 0.80 0.04 0.29 0.37 0.48 0.66 0.65
CellCycle-384 0 0.37 1 0.35 0.50 0.46 0.35 0.50 0.47
YeastGalactose 0.96 0.97 0.96 0.94 0.96 0.96 0.94 0.97 0.96
Wine 0.16 0.48 0.77 0.12 0.37 0.72 0.29 0.62 0.97
Glass 0.23 0.49 0.76 0.12 0.37 0.45 0.24 0.51 0.79
Iris 0.33 0.61 0.83 0.11 0.40 0.46 0.57 0.78 1
Articles-1442-80 0.91 0.96 0.96 0.66 0.74 0.76 0.93 0.97 0.98
Articles-1442-5 0.89 0.94 0.93 0.60 0.76 0.73 0.90 0.95 0.94
Cbrilpirivson 0.01 0.07 0.11 0.04 0.21 0.34 0.19 0.47 0.48
ALOI-TS88 0.45 0.67 0.74 0.50 0.70 0.78 0.63 0.79 0.85
ALOI-PCA 0.61 0.78 0.83 0.56 0.74 0.81 0.72 0.85 0.91

Clustering Results. The results obtained in our experiments are shown in
Table 1. The highest obtained values for each data set are highlighted in bold.
Note that HDBSCAN(EOM) outperforms the other two methods in a large
majority of the data sets (in many cases by a large margin) and, in almost all
cases, it covers a larger fraction of objects while having also high FScore and ARI
values. A high fraction of clustered objects is only good when also the clustering
quality is high. E.g., for CellCycle-384, OPTICS(AutoCl) covers 100% of the
data, but with an ARI of 0, a meaningless clustering. In one of the only two
cases where HDBSCAN(EOM) does not perform best, YeastGalactose, its ARI
is very close to (and its FScore matches that of) the “winner”, OPTICS(AutoCl).

The collections of image data sets, ALOI-TS88 and ALOI-PCA, allowed us
to perform paired t-tests with respect to ARI and FScore, confirming that the
observed differences in performance between all pairs of methods is statistically
significant at the α = 0.01 significance level. This means that the methods
are doing indeed different things, and, in particular, that HDBSCAN(EOM)
significantly outperforms the others on these data set collections.

7 Final Remarks

A novel density-based clustering approach has been introduced that provides: (i)
a complete density-based clustering hierarchy representing all possible DBSCAN-
like solutions for an infinite range of density thresholds and from which a simpli-
fied tree of significant clusters can be extracted; and (ii) a flat partition composed
of clusters extracted from optimal local cuts through the cluster tree. An exten-
sive experimental evaluation on a wide variety of real world data sets has shown
that our method performs significantly better and more robust than state-of-the-
art methods. Our work lends itself to a number of interesting challenges for fu-
ture work, which includes integration of semi-supervision and the consideration of
subspaces.
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