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Abstract. The Infinite Relational Model (IRM) introduced by Kemp
et al. (Proc. AAAI2006) is one of the well-known probabilistic generative
models for the co-clustering of relational data. The IRM describes the
relationship among objects based on a stochastic block structure with
infinitely many clusters. Although the IRM is flexible enough to learn
a hidden structure with an unknown number of clusters, it sometimes
fails to detect the structure if there is a large amount of noise or outliers.
To overcome this problem, in this paper we propose an extension of the
IRM by introducing a subset mechanism that selects a part of the data
according to the interaction among objects. We also present posterior
probabilities for running collapsed Gibbs sampling to learn the model
from the given data. Finally, we ran experiments on synthetic and real-
world datasets, and we showed that the proposed model is superior to
the IRM in an environment with noise.

Keywords: relational data, co-clustering, generative model, subset se-
lection.

1 Introduction

A relational data amongm objects and n objects is a bipartite network on a set of
m vertices and another set of n vertices, which describes the relationships among
objects in social, physical, and other phenomena. Equivalently, a relational data
is represented by a matrix with m rows and n columns. For example, POS data
is a relational data between customers and items, and a friend list of a social
network service (SNS) such as the Facebook is a relational data among users.

With the emergence of such large amounts of relational data, there has been
an increase in the interest in methods that can efficiently discover hidden interac-
tion patterns among objects from given relational data. For example, enterprises
involved in e-commerce and SNS might want to know about the following rela-
tionships:

– Which type of items does a customer purchase using e-commerce?
– Which other users are in a relationship with a SNS user?
– To which user does another user re-tweet when communicating on Twitter?

J. Pei et al. (Eds.): PAKDD 2013, Part II, LNAI 7819, pp. 147–159, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



148 I. Ohama et al.

Clustering methods are among the most effective approaches to obtain answers to
such questions, and several methods have been proposed so far [5,3,4,16]. The Infi-
nite Relational Model (IRM) [11] is a well-known and important generative model
that represents processes for generating relational data. Co-clustering based on
the model can produce a proper set of clusters that summarizes the relationships
among objects. Moreover, the number of clusters is automatically estimated from
the input data, even when the cluster structure and its size are unknown.

However, the IRM might fail to detect unknown structures when the data
has a large amount of noise or the model can describe only a part of the data.
Owing to the use of infinite clustering based on the Dirichlet Process (DP) [6],
the IRM works to some extent, but it finds many small clusters to adapt itself
to contradicting data. In fact, the problem of the co-clustering of real-world
datasets is often difficult, because the data are noisy or sparse. For example, a
spam blog that leaves comments randomly on other blogs has too many links.
Such a noisy blog makes it difficult to analyze the relationship among blogs.
Moreover, an inactive blog, which the author is not eager to write, has very few
links. Such an insignificant blog also becomes an obstacle in finding important
clusters. As we show later in Section 5, co-clustering with the IRM on such
ill-formed data finds ineffective clusters.

To handle these ill-formed data, we incorporated a subset selection mechanism
into the IRM and proposed a new relational model. In our model, the relevance of
each object is parameterized by an individual Bernoulli parameter. The relevance
indicates the degree of confidence with which an object forms informative relations
coming from the latent cluster structure. For example, for POS data, an active
customer tends to generate relevant relations with many items, as done by a well-
known item as well. Their relevance becomes comparatively high in our model.
Then, either a relevant relation or an irrelevant relation is generated stochastically
for pair-wise objects according to the interaction of their relevance parameters.

Our contributions in this paper are summarized as follows:

– We proposed a new generative model, which is an extension of the IRM
and incorporates a subset selection mechanism, whereby a subset of the
relational data is determined by the interaction of the objects’ relevances.
By estimating the relevance of each object from the data, we diminished the
effect of the irrelevant relations and performed co-clustering accurately.

– We derived posterior probabilities for running the Collapsed Gibbs Sampling
[12] in order to infer the parameters of the model.

– We performed experiments on synthetic and real-world datasets. The experi-
mental results for the synthetic datasets showed that our model significantly
improved the performance of co-clustering compared with the IRM. For the
real-world datasets, our model could successfully find major categories as
clusters from the datasets. An estimated relevance of object can be viewed
as the popularity or representativeness of the object within a cluster.

Therefore, the proposed method is effective in analyzing noisy relational data.
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1.1 Related Works

Hoff et al. [8] discussed an ill-formed problem with clustering vector data. They
introduced a background distribution that describes irrelevant elements within
the vector data, so that their model can find cluster robustly against noise based
on a relevant subset of the data.

Ishiguro et al. [10] extended the IRM with a similar idea. They introduced
switch variables to indicate whether an object is relevant for cluster analysis, or
is an irrelevant troublesome one. In their model, only relationships among rele-
vant objects are analyzed. That is, their model is an object-wise subset model.
However, in some cases, it would not be preferable to select subset of objects
for clustering target. For example, when we utilize co-clustering results for rec-
ommendation, we want to suggest the nearest cluster for any object. In our new
model, the clustering target is selected in a relation-wise manner.

2 Relational Data and the Infinite Relational Model

In this section, we first define the relational data discussed in this paper. Then,
we discuss the IRM, a generative model for co-clustering relational data.

Let T 1 = {O1
i }N

1

i=1 and T 2 = {O2
j }N

2

j=1 be the sets of objects. We define the

relational data between T 1 and T 2 as R : T 1×T 2 → {0, 1}. If R(i, j) = 1(0), we
say that there is a link (non-link) between O1

i and O2
j

1. For a purchase dataset,

T 1 and T 2 are the sets of customers and items, respectively. We can represent
customer i’s purchase of item j by R(i, j) = 1, while R(i, j) = 0 indicates that
customer i have not bought item j. The co-clustering problem on relational data
is to estimate cluster assignments z1 = {z1i }N

1

i=1 ∈ C1 and z2 = {z2j }N
2

j=1 ∈ C2

based on given data R, where C1 = {1, 2, · · · ,K} and C2 = {1, 2, · · · , L} are
the sets of cluster indices for T 1 and T 2, respectively.

The IRM proposed by Kemp et al. [11] is a generative model for relational
data that can co-cluster objects based on the similarities of the relationships
among the objects. In the IRM, the Dirichlet Process (DP) [6] is used as a prior
distribution for the number of clusters. The DP is a nonparametric stochastic
process that can be viewed as an infinite-dimensional Dirichlet distribution, and
can generate any-dimensional multinomial distributions. Therefore, the IRM can
adaptively estimate the number of clusters for the observed data. The generative
model of the IRM is described as follows:

z1i | γ1 ∼ CRP(γ1), z2j | γ2 ∼ CRP(γ2), (1)

η(k, l) |β ∼ Beta(β, β), (2)

R(i, j) | η(z1i , z2j ) ∼ Bernoulli(η(z1i , z
2
j )), (3)

1 We focus on a 2-type (T 1 × T 2) binary relationship in this paper, although
several variations of relationships can be considered straightforwardly, such as
discrete/continuous-valued relations and multi-type relations represented by a tensor.
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Fig. 1. Graphical representations of the generative models. Circle nodes denote vari-
ables, square nodes denote constants, shaded nodes denote observations, and round-
edged squares indicate the dimensions of variables.

where CRP(·) is the Chinese Restaurant Process (CRP) [2], which is one of the
well-known constructive algorithms of DP; Beta(·, ·) is the beta distribution; and
Bernoulli(·) is the Bernoulli distribution, respectively. Figure 1a shows the IRM
graphically.

We will briefly review the above process. First, the cluster assignments z1i
and z2j are given by CRPs (Eq. (1)), where γ1 and γ2 are the concentration
parameters of the DP that controls the number of clusters to be generated. We
denote the cluster assignments for all objects other than object i as z1

−i. When
z1
−i is given, the conditional probability P (z1i = k∗ | z1

−i, γ
1) that z1i is assigned

to the cluster k∗ by CRP is given as follows:

P (z1i = k∗ | z1
−i, γ

1) ∝
{
m1

−i,k∗ (if m1
−i,k∗ > 0),

γ1 (if k∗ is new cluster),
(4)

where m1
−i,k∗ is the number of objects other than object i that are assigned to

the cluster k∗. As Eq. (4) shows, the assignment z1i basically depends on the
probability proportional to the number m1

−i,k∗ of objects that belong to each

cluster. However, new clusters are generated at the rate γ1. Assume that K ×L
clusters (C1 = {1, 2, · · · ,K} and C2 = {1, 2, · · · , L}) have been generated for
T 1 × T 2. Then, from Eq. (2), a Bernoulli parameter η(k, l) is given according to
the beta prior for each pair of clusters C1 ×C2. The parameter η(k, l) indicates
the intensity of the relationship between an object in the cluster k and an object
in the cluster l. Finally, the relation R(i, j) is generated from the corresponding
Bernoulli trial (Eq. (3)).

3 The Relevance-Dependent Infinite Relational Model

In this section, we present our new model, called the Relevance-Dependent Infi-
nite Relational Model (rdIRM).

In real-world relationships, whether each relation is intentionally generated
depends on the objects related to the relation. In the case of a purchase, a
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customer who knows about a large number of items will have a certain opinion
about whether he needs these items. As a result, this customer will generate
very important relations that are relevant to decide his cluster assignment. In
contrast, a customer who knows only about a few items will have vague opinions.
Thus, relations that are generated by this customer would be irrelevant. That
is, such an irrelevant relation should not affect the co-clustering. For the items,
it is reasonable to consider that similar properties exist in terms of popularity.

To model the above situation, for each object O1
i and O2

j , we introduce rele-

vance parameters ρ1i , ρ
2
j ∈ [0, 1] that indicate the degree of confidence to generate

the relevant relations. Then, we consider a generative mechanism in which each
relation R(i, j) between objects is generated from a mixture of the distribution
inherent in a cluster η(k, l) (foreground distribution) and the distribution com-
mon to the entire data η0 (background distribution). We can construct such a
mechanism as follows:

r1i→j ∼ Bernoulli(ρ1i ), r2j→i ∼ Bernoulli(ρ2j),
ri,j = f(r1i→j , r

2
j→i), ηi,j = ri,j × η(z1i , z

2
j ) + (1− ri,j)× η0,

where f(·, ·) is an arbitrary Boolean function that returns 1 or 0. The above
mechanism enables us to embed a relevance-dependent subset selection into the
relational model: only the informative (relevant) relations are generated from the
foreground distribution η(k, l), and the background distribution η0 describes the
non-informative (irrelevant) part of the relational data. For example, when f is a
logical sum, it corresponds to that we make the mixture rate as 1−(1−ρ1i )(1−ρ2j).

When f is a logical product, the mixture rate becomes ρ1i ×ρ2j . The other logical
functions work similarly.

To summarize, the generative process for the rdIRM is defined as follows:

z1i | γ1 ∼ CRP(γ1), z2j | γ2 ∼ CRP(γ2), (5)

η(k, l) |β ∼ Beta(β, β), η0 |β0 ∼ Beta(β0, β0), (6)

ρ1i |β1 ∼ Beta(β1, β1), ρ2j |β2 ∼ Beta(β2, β2), (7)

r1i→j | ρ1i ∼ Bernoulli(ρ1i ), r2j→i | ρ2j ∼ Bernoulli(ρ2j), (8)

ri,j = f(r1i→j , r
2
j→i), ηi,j = ri,j × η(z1i , z

2
j ) + (1 − ri,j)× η0, (9)

R(i, j) | ηi,j ∼ Bernoulli(ηi,j). (10)

Figure. 1b graphically represents this model.
Now, we will briefly explain the rdIRM process. First, the cluster assignments

z1 and z2 are given as in the original IRM, (Eq. (5)). Second, the foreground
distribution η(k, l) and the background distribution η0 are independently given
from a beta prior (Eq. (6)). Third, the relevances ρ1i and ρ2j for O1

i and O2
j ,

respectively, are given from beta priors (Eq. (7)). Fourth, the two switches r1i→j

and r2j→i are given by a Bernoulli trial with corresponding relevances (Eq. (8)).

Fifth, either the foreground η(k, l) or the background η0 is selected by the in-
teraction of r1i→j and r2j→i via logical function f (Eq. (9)). Finally, the relation
R(i, j) is generated from the selected probability (Eq. (10)).
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The difference between our rdIRM and the original IRM is that we modeled a
generative process of noisy relationships by introducing objects’ relevances and
their interaction mechanism. That is, our rdIRM can co-cluster relational data
based on a subset of relations that are relevant to underlying cluster structures.

When f is a logical sum, a relevant relation can be generated when at least
one of the related objects O1

i or O2
j has high relevance. This models situations in

which the relevant relationship between objects can be generated by a one-sided
request, such as sending an e-mail or following a hyperlink on the Internet. When
f is a logical product, the relevant relation is generated only when the objects
cooperate with each other. This models situations in which an object that wants
to have a relevant relation with another can be constrained from doing so. Of
course, we can employ other logical functions for other interaction models.

4 Inference

We use the Collapsed Gibbs Sampler [12] to infer the parameters of the rdIRM2.
Given ri,j , the relational data R are separated into a foreground part and a
background part; thus, the relevances ρ1i , ρ

2
j and the link probabilities η(k, l), η0

can be integrated out. Therefore, the inference of the rdIRM is performed by
sampling the assignments z1, z2 and the switches r1, r2 one after the other. In
this section, we only show the derived posteriors for running the Gibbs sampling
below, because of the space limitation.

4.1 Sampling Cluster Assignments z1, z2

Because z2j can be sampled in the same way as z1i , we concentrate on z1i . We can

assume that the switch variables r (r1 and r2) have already been given before
taking a sample of z1i , so that the cluster assignments are influenced only by
the foreground part of the observations. Therefore, the conditional posterior for
z1i = k∗ is derived as follows:

P (z1i = k∗ | z1−i, z
2 , r,R, β, γ1) ∝

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1
−i,k∗

∏

l∈C2

B(m+i
r (k∗,l)+β,m+i

r (k∗,l)+β)

B(m
−i
r (k∗,l)+β,m

−i
r (k∗,l)+β)

(if m1
−i,k∗ > 0),

γ1
∏

l∈C2

B(m+i
r (k∗,l)+β,m+i

r (k∗,l)+β)

B(β,β)
(if m1

−i,k∗ = 0),

(11)

Here, we use B(·, ·) to denote the beta function. Symbols mr (mr) denote the
numbers of links (non-links) in the foreground part of the observation, and are
computed as follows:

m+i
r (k∗, l) =

∑∑

s∈T1,j∈T2:

z1s=k∗(z1i :=k∗),
z2j=l

(R(s, j) × ri,j) , m+i
r (k∗, l) =

∑∑

s∈T1,j∈T2:

z1s=k∗(z1i :=k∗),
z2j=l

((1−R(s, j)) × ri,j) ,

m−i
r (k∗, l) =

∑∑

s∈T1,j∈T2:

z1s=k∗(s�=i),

z2j=l

(R(s, j)× ri,j) , m−i
r (k∗, l) =

∑∑

s∈T1,j∈T2:

z1s=k∗(s�=i),

z2j=l

((1−R(s, j))× ri,j) .

2 Approximative approaches such as variational inference [7] are preferable for han-
dling large scale data. However, for the sake of accuracy, we used a sampling approach
in this paper.
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Note that if ri,j = 1 for all (i, j), Eq. (11) is equivalent to the original IRM’s
sampler.

4.2 Sampling Switch Variables r1
i→j, r

2
j→i

As the sampling of r2j→i is done in the same way as the sampling of r1i→j , we

concentrate on r1i→j . Given z1 and z2, we have a finite number K×L of clusters.

Thus, the conditional posterior for r1i→j is derived as follows:

P (r1i→j |z1,z2, r1
−(i→j), r

2,R, β, β0, β1)

∝ P (R(i, j) | r1i→j , r
1
−(i→j), r

2,R−(i,j), β
0)1−f(r1i→j ,r

2
j→i)

× P (R(i, j) |z1,z2, r1i→j , r
1
−(i→j), r

2,R−(i,j), β)
f(r1i→j ,r

2
j→i)

× P (r1i→j | r1
i→(−j), β

1), (12)

where R−(i,j) denotes the whole set of R excluding R(i, j). Similarly, r1
−(i→j)

denotes the whole set of r1 without r1i→j , and r1
i→(−j) denotes a vector of r1i→ts

that are related to object i without r1i→j . The terms on the right-hand side of

Eq. (12) are computed as follows:

P(R(i, j) | r1i→j , r
1
−(i→j)

, r2,R−(i,j), β
0) =

(m
−(i,j)
r

+β0)R(i,j)(m
−(i,j)
r

+β0)1−R(i,j)

m
−(i,j)
r

+m
−(i,j)
r

+2β0
,

P(R(i, j) | z1, z2, r1i→j , r
1
−(i→j)

, r2,R−(i,j), β) =
(m

−(i,j)
r (k,l)+β)R(i,j)(m

−(i,j)
r (k,l)+β)1−R(i,j)

m
−(i,j)
r (k,l)+m

−(i,j)
r (k,l)+2β

,

P (r1i→j | r1
i→(−j)

, β1) =

(n
−(i,j)

r1
i

+β1)
r1i→j (n

−(i,j)

r1
i

+β1)
1−r1i→j

N2−1+2β1 ,

where m
−(i,j)
r and m

−(i,j)
r denote the numbers of links and non-links, respec-

tively, such that rs,t = 0 for all pairs (s, t) �= (i, j); m
−(i,j)
r (k, l) and m

−(i,j)
r (k, l)

denote the numbers of links and non-links, respectively, such that z1s = k, z2t = l

and rs,t = 1 for all pairs (s, t) �= (i, j); and n
−(i,j)

r1
i

and n
−(i,j)

r1
i

denote the num-

bers of r1i→t = 1{t �= j} and r1i→t = 0{t �= j}, respectively, within r1
i→(−j).

Specifically, these counts are computed as follows:

n
−(i,j)

r1
i

=
∑

t∈T 2:t�=j

(
r1i→t

)
, n

−(i,j)

r1
i

=
∑

t∈T 2:t�=j

(
1− r1i→t

)
,

m
−(i,j)
r =

∑∑
s∈T1,t∈T2:
(s,t) �=(i,j)

(
R(s, t)× (1 − f(r1s→t, r

2
t→s))

)
,

m
−(i,j)
r =

∑∑
s∈T1,t∈T2:
(s,t) �=(i,j)

(
(1−R(s, t))× (1− f(r1s→t, r

2
t→s))

)
,

m
−(i,j)
r (k, l) =

∑∑
s∈T1,t∈T2:

z1s=k,z2t=l,
(s,t) �=(i,j)

(
R(s, t)× f(r1s→t, r

2
t→s)

)
,

m
−(i,j)
r (k, l) =

∑∑
s∈T1,t∈T2:

z1s=k,z2t=l,
(s,t) �=(i,j)

(
(1−R(s, t))× f(r1s→t, r

2
t→s)

)
.
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5 Experiments

In this section, we present our experimental results. To clarify the effectiveness
of our subset selection mechanism, the performance of our rdIRM is compared
with that of the original IRM. Through all the experiments, we assumed that
the priors of all the binary variables in the generative models were uniform
(Beta(1.0, 1.0)). In addition, we estimated the concentration parameters γ1, γ2

for the DPs assuming Gamma priors by sampling method presented in [8].

5.1 Experiments on Synthetic Datasets

We prepared 12 synthetic datasets. First, in accordance with the generative
model of our rdIRM, we created five synthetic datasets, Data1(0.0), Data1(0.2),
Data1(0.5), Data1(0.8), and Data1(1.0), where the numbers in parentheses in-
dicate the background link probabilities η0 for the datasets. We set the logical
function f for the rdIRM to be a logical sum. The cluster assignments z1 and z2

were independently generated from fixed-dimensional multinomial distributions.
The parameter values used for generating the datasets were N1 = N2 = 200,
β = (0.5, 0.5), and β1 = β2 = (4.0, 3.0); the number of clusters were set as K = 4
and L = 5, and the parameters for the multinomials were π1 = (0.4, 0.3, 0.2, 0.1)
and π2 = (0.33, 0.27, 0.20, 0.13, 0.07) for T 1 and T 2, respectively. Next, we
also created five synthetic datasets in a similar manner (from Data2(0.0) to
Data2(1.0)), except that we set the logical function f to be a logical product
and we set both β1 and β2 to be (4.0, 2.0). Finally, we created two datasets
without background influences, (Data1(NULL) and Data2(NULL)). We applied
the logical sum version of the rdIRM to Data1 and the logical product version
to Data2.

We used three measures to evaluate clustering performance. One was the
Adjusted Rand Index (ARI) [9], which is widely used for computing the similarity
between true and estimated clustering results. The ARI takes a value in the
range 0.0 – 1.0, and takes a value of 1.0 when a clustering result is completely
equivalent to the ground truth. Another was the number of erroneous estimated
clusters (EC). We computed the average of these measures for the two sets T 1

and T 2. The rest was the test data log likelihood (TDLL), which indicates the
predictive robustness of a generative model; we hid 1.0% of the observation
during inference (keeping it small so that the latent cluster structure did not
change), and measured the averaged log likelihood such that a hidden entry
would take the actual value. A larger value is better, and a smaller one means
that the model overfits the data. Finally, we repeated the experiment 10 times
for each dataset using different random seeds to find an overall average.

Table 1 lists the computed measures. In the case of every dataset, except
Data1(NULL) and Data2(NULL), we confirmed that the rdIRM outperformed
the IRM. In particular, the rdIRMmaintained good performance for sparse (η0 ≈
0.0) or dense (η0 ≈ 1.0) data. We also list in Table 2 the maximum a posteriori
(MAP) estimations of the background probability η̄0 and the estimated ratios of
the foreground for synthetic datasets, except Data1(NULL) and Data2(NULL).
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Table 1. ARI, EC, and TDLL on synthetic datasets

ARI EC TDLL

Dataset IRM rdIRM IRM rdIRM IRM rdIRM

Data1(NULL) 1.000 0.999 0.000 0.030 -0.302 -0.261
Data1(0.0) 0.712 0.999 0.678 0.022 -0.410 -0.315
Data1(0.2) 0.806 1.000 0.480 0.010 -0.432 -0.363
Data1(0.5) 0.868 0.993 0.270 0.090 -0.459 -0.405
Data1(0.8) 0.834 0.999 0.388 0.013 -0.462 -0.385
Data1(1.0) 0.806 0.999 0.435 0.025 -0.425 -0.330

Data2(NULL) 1.000 0.996 0.000 0.000 -0.316 -0.232
Data2(0.0) 0.629 0.980 1.053 0.020 -0.424 -0.196
Data2(0.2) 0.627 0.913 0.735 0.105 -0.576 -0.431
Data2(0.5) 0.759 0.930 0.488 0.105 -0.614 -0.526
Data2(0.8) 0.724 0.917 0.738 0.097 -0.558 -0.438
Data2(1.0) 0.644 0.981 0.910 0.083 -0.390 -0.183

Table 2. Estimated back-
ground probabilities (η̄0) and
the FRs

Dataset η̄0 FR

Data1(0.0) 0.0085 0.8484
Data1(0.2) 0.1970 0.8462
Data1(0.5) 0.4531 0.8588
Data1(0.8) 0.7674 0.8607
Data1(1.0) 0.9876 0.8611

Data2(0.0) 0.0022 0.4884
Data2(0.2) 0.2139 0.4548
Data2(0.5) 0.5033 0.4658
Data2(0.8) 0.7845 0.4397
Data2(1.0) 0.9872 0.4654

The ground truths of the foreground ratios (FRs) are 0.8197 for Data1 and
0.4622 for Data2. As the table shows, the rdIRM performs well in estimating the
ground truths.

5.2 Experiments with Real-World Datasets

We applied the rdIRM to two real-world datasets. One was the “MovieLens”
dataset3, which contains a large number of user ratings of movies on a five-point
scale. In our experiment, we created a binary relational dataset with a threshold
that yields R(i, j) = 1 for ratings higher than 3 points and R(i, j) = 0 for all
other ratings. That is, a relational value R(i, j) = 1 indicates that user i likes
movie j. There are a total of 943 users and 1,682 movies in the dataset, and 3.5%
of the relations are links. The other dataset was the “animal-feature” dataset
[14], which includes relations between 50 animals and 85 features. Each feature
is rated on a scale of 0–100 for each animal. We prepared the binary data with
a threshold that yields R(i, j) = 1 for all ratings higher than the average of the
entire set of ratings (20.79). That is, we used the relational value R(i, j) = 1
(R(i, j) = 0) to indicate that animal i has (does not have) feature j. In this
dataset, 36.8% of the relations are links.

We used a logical sum version of the rdIRM for the MovieLens dataset and
a logical product version for the animal-feature dataset. Our reason to use the
former was that a user can watch any movie according to his or her preference,
and similarly, movies are usually promoted independent of the users. Therefore,
it seemed natural that the foreground (relevant relations) for the MovieLens
dataset should be generated as per either the user’s relevance ρ1i or the movie’s
relevance ρ2j . On the other hand, animal features are acquired through evolution
based on the specific type of animal. For example, aquatic features such as
“swims” or “water” cannot be acquired by terrestrial animals. Therefore, the
type of animal limits the features that it can acquire, and conversely, the type

3 http://movielens.umn.edu/

http://movielens.umn.edu/
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(a) MovieLens (IRM), TDLL = -0.135 (b) MovieLens (rdIRM), TDLL = -0.097

(c) animal-feature (IRM), TDLL = -0.393 (d)animal-feature (rdIRM), TDLL = -0.213

Fig. 2. Clustering results for the real-world datasets. Black and white dots indicate
links and non-links, respectively. In the rdIRM’s results, gray dots indicate the areas
that were estimated as background (irrelevant to cluster). Note that the objects within
each cluster are sorted by descending order of the estimated relevances ρ̄1i and ρ̄2j .
“TDLL” is the computed test data log likelihood for each dataset.

of feature limits the types of animals that are related to that feature. Therefore,
we used the logical product version of the rdIRM for the animal-feature dataset.

Figure 2 shows the clustering results and the computed TDLL for these real-
world datasets. Figure 3 shows color maps for the estimated foreground proba-
bilities η̄(k, l). The background probabilities η0 that the rdIRM estimated were
0.0000 for the MovieLens dataset and 0.0036 for the animal-feature dataset.
It can be seen that the original IRM organized many non-informative cluster-
blocks, because the IRM considered that all the relations were relevant for cluster
analysis. In contrast, the rdIRM found more vivid cluster structures owing to
the use of our subset selection mechanism, which selects an informative subset
of relations via the interaction of the objects’ relevances. The computed TDLLs
show that the rdIRM predicts hidden entries more robustly than does the orig-
inal IRM for both datasets.

The left side of Table 3 lists the examples of the movie clusters produced by
the rdIRM for the MovieLens dataset. In the columns for the number of links
and ρ̄2j , it can be seen that ρ̄2j tends to increase with the number of links. This
means that we can regard the relevances as an indication of the popularity of
the movies within the cluster. On the other hand, the original IRM treats all
the links and non-links as relevant, so that the differences of the popularity of
movies popularity affect the cluster assignment. The right side of Table 3 lists
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Table 3. Examples of the clusters obtained by the rdIRM. The first column lists
the object (Title/Feature). The second column lists the number of links related to the
object (LNKS). The third column lists the estimated relevance (ρ̄2j). The fourth column
lists the cluster indices that were obtained by the original IRM (ZIRM). The left side
tables are for the MovieLens dataset. The right side tables are for the animal-feature
dataset.

Movie cluster 6 (contains 6 movies.)

Title LNKS ρ̄2j ZIRM

Star Wars 501 0.9111 28
Return of the Jedi 379 0.5534 9
Independence Day 228 0.0921 25
Star Trek 220 0.1905 25

Movie cluster 7 (contains 40 movies.)

Title LNKS ρ̄2j ZIRM

Silence of the Lambs 344 0.9132 26
Pulp Fiction 294 0.7598 26
Usual Suspects 232 0.6233 20
Alien 223 0.5164 20
Terminator 217 0.5608 20
Seven(Se7en) 167 0.3376 15

Movie Cluster 2 (contains 35 movies.)

Title LNKS ρ̄2j ZIRM

W.W. & the Chocolate F. 189 0.7196 27
Birdcage 154 0.4762 17
Truth About Cats & Dogs 148 0.3386 17
Happy Gilmore 74 0.0360 2
Kingpin 73 0.1196 2

Feature cluster 1 (contains 10 features.)

Feature LNKS ρ̄2j ZIRM

swims 10 0.9808 2
water 10 0.9808 2
coastal 8 0.9231 2
arctic 9 0.8846 2
flippers 7 0.8077 2

Feature cluster 5 (contains 15 features.)

Feature LNKS ρ̄2j ZIRM

paws 19 0.9615 27
nestspot 31 0.9423 20
claws 19 0.9038 22
small 23 0.7885 21

Feature cluster 6 (contains 8 features.)

Feature LNKS ρ̄2j ZIRM

meat 20 0.9808 17
fierce 21 0.9231 17
hunter 17 0.8846 17
stalker 10 0.4808 16
scavenger 6 0.1538 1
flys 1 0.0769 1
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(b) MovieLens (rdIRM)
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Fig. 3. The estimated foreground link probabilities η̄(k, l)
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the examples of the feature clusters obtained by the rdIRM for the animal-
feature dataset. As with the results for the MovieLens dataset, we can see that
the estimated ρ2j tends to increase with the number of links. One interesting
result produced by the rdIRM is that representative features such as “swims,”
“water,” “paws,” “nestspot” and “meet” were found to have high relevance in
their clusters. From these results, we can say that the relevances estimated by
the rdIRM indicate the popularities or representativeness of the objects. Con-
sequently, the rdIRM finds clusters in terms of major categories by introducing
the relevance-dependent subset selection mechanism.

6 Conclusions

In this paper, we proposed a new probabilistic relational model called the
Relevance-Dependent Infinite Relational Model (rdIRM), which is suitable for
noisy relational data analysis. The rdIRM parameterizes objects’ relevances
and incorporates a relevance-dependent subset selection mechanism, so that the
rdIRM can estimate objects’ relevances, and can co-cluster noisy relational data
selecting only relevant relations that are informative for co-cluster analysis.

Our experiments with synthetic datasets confirmed that the rdIRM can find
proper clusters in a noisy relational data, especially, in sparse or dense data.
Moreover, our experiments on real-world datasets confirmed that the clusters
obtained by the rdIRM represent major categories and that the estimated rele-
vances can be viewed as the popularity or representativeness of the objects.

Our future research plans include extending the rdIRM so that it can also
estimate the logical function f , which was given statically in this paper. We are
also interested in applying our relevance-based subset selection mechanism to
more advanced relational models, such as the mixed (or multiple) membership
models [1,13], the hierarchical structure models [15], and the time-varying models
[7].
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