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Abstract. Most of the existing clustering approaches are applicable to
purely numerical or categorical data only, but not both. In general, it is
a nontrivial task to perform clustering on mixed data composed of nu-
merical and categorical attributes because there exists an awkward gap
between the similarity metrics for categorical and numerical data. This
paper therefore presents a general clustering framework based on the
concept of object-cluster similarity and gives a unified similarity met-
ric which can be simply applied to the data with categorical, numeri-
cal, or mixed attributes. Accordingly, an iterative clustering algorithm
is developed, whose efficacy is experimentally demonstrated on different
benchmark data sets.

1 Introduction

To discover the natural group structure of objects represented in numerical or
categorical attributes [1], clustering analysis has been widely applied to a va-
riety of scientific areas. Traditionally, clustering analysis mostly concentrates
on purely numerical data only. The typical clustering algorithms include the
k-means [2] and EM algorithm [3]. Since the objective functions of these two
algorithms are both numerically defined, they are not essentially applicable to
the data sets with categorical attributes. Under the circumstances, a straight-
forward way to overcome this problem is to transform the categorical values
into numerical ones, e.g. the binary strings, and then apply the aforementioned
numerical-value based clustering methods. Nevertheless, such a method has ig-
nored the similarity information embedded in the categorical values and cannot
faithfully reveal the similarity structure of the data sets [4]. Hence, it is desirable
to solve this problem by finding a unified similarity metric for categorical and
numerical attributes such that the metric gap between numerical and categori-
cal data can be eliminated. Subsequently, a general clustering algorithm which
is applicable to various data types can be presented based on this unified metric.

In this paper, we will propose a unified clustering approach for both categorical
and numeric data sets. Firstly, we present a general clustering framework based
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on the concept of object-cluster similarity. Then, a new metric for both of numer-
ical and categorical attributes is proposed. Under this metric, the object-cluster
similarity for either categorical or numerical attributes has a uniform criterion.
Hence, transformation and parameter adjustment between categorical and nu-
merical values in data clustering are circumvented. Subsequently, analogous to
the framework of k-means, an iterative algorithm is introduced to implement the
data clustering. This algorithm conducts an efficient clustering analysis without
manually adjusting parameters and is applicable to the three types of data: nu-
merical, categorical, or mixed data, i.e. the data with both of numerical and
categorical attributes. Empirical studies have shown the promising results.

2 Related Works

Roughly, the existing clustering approaches dealing with data sets which con-
tain categorical attributes can be summarized into the four categories [5]. The
first category of the methods is based on the perspective of similarity. For ex-
ample, based on Goodall similarity metric [6] that assigns a greater weight to
uncommon feature value matching in similarity computations without assuming
the underlying distributions of the feature values, paper [7] presents the Sim-
ilarity Based Agglomerative Clustering (SBAC) algorithm. This method has a
good capability of dealing with the mixed numeric and categorical attributes,
but its computation is quite laborious. Beside the similarity concepts, the sec-
ond category is based on graph partitioning. A typical example is the CLICKS
algorithm [8], which mines subspace clusters for categorical data sets. This novel
method encodes a data set into a weighted graph structure, where each weighted
vertex stands for an attribute value and two nodes are connected if there is a
sample in which the corresponding attribute values co-occur. It is experimen-
tally demonstrated that CLICKS outperforms ROCK algorithm [9] and scales
better for high-dimensional data sets. However, this algorithm is not applicable
to data mixed with categorical and numerical attributes and its performance
also depends upon a set of parameters whose tuning is quite difficult from the
practical viewpoint. The third category is entropy-based methods. For example,
the COOLCAT algorithm [10] utilizes the information entropy to measure the
closeness between objects and presents a scheme to find a clustering structure
via minimizing the expected entropy of clusters. The performance of this al-
gorithm is stable for different data sizes and parameter settings. Nevertheless,
this method can only be applied to purely categorical data and cannot handle
numerical attributes. The last category of approaches attempts to give a dis-
tance metric between categorical values so that the distance-based clustering
algorithms (e.g. the k-means) can be directly adopted. Along this line, the most
cost-effective one may be the k-prototype algorithm proposed by Huang [11]. In
this method, the distance between two categorical values is defined as 0 if they
are the same, and 1 otherwise while the distance between numerical values is
quantified with Euclidean distance. Subsequently, the k-means paradigm is uti-
lized for clustering. However, since different metrics are adopted for numerical
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and categorical attributes, a user-defined parameter is utilized to control the
proportions of numerical distance and categorical distance. Nevertheless, vari-
ous settings of this parameter will lead to a totally different clustering result.
A simplified version of k-prototype algorithm namely k-modes [12, 13], which is
applicable for purely categorical data clustering, has also been widely utilized
due to its satisfactory efficiency, and different improvement strategies have been
explored on this method [14–16].

3 Object-Cluster Similarity Metric

The general task of clustering is to classify the given objects into several clusters
such that the similarities between objects in the same group are high while the
similarities between objects in different groups are low [17]. Therefore, clustering
a set of N objects, {x1,x2, . . . ,xN}, into k different clusters, denoted as C1, C2,
. . ., Ck, can be formulated to find the optimal Q∗ via the following objective
function:

Q∗ = argmax
Q

F (Q) = argmax
Q

[

k∑

j=1

N∑

i=1

qijs(xi, Cj)] (1)

where s(xi, Cj) is the similarity between object xi and Cluster Cj , and Q = (qij)
is an N × k partition matrix satisfying

k∑

j=1

qij = 1, and 0 <

N∑

i=1

qij < N, (2)

with
qij ∈ [0, 1], i = 1, 2, . . . , N, j = 1, 2, . . . , k. (3)

Evidently, the desired clusters can be obtained by (1) as long as the metric of
object-cluster similarity is determined. In the following sub-sections, we shall
therefore study the similarity metric.

3.1 Similarity Metric for Mixed Data

This sub-section will study the object-cluster similarity metric for mixed data.
Suppose the mixed data xi with d different attributes consists of dc categorical at-
tributes and du numerical attributes, i.e. dc+du = d. xi can be therefore denoted
as [xc

i
T ,xu

i
T ]T with xc

i = (xc
i1, x

c
i2, . . . , x

c
idc

)T and xu
i = (xu

i1, x
u
i2, . . . , x

u
idu

)T .
Then, we have xu

ir (r = 1, 2, . . . , du) belonging to R and xc
ir (r = 1, 2, . . . , dc)

belonging to dom(Ar), where {A1, A2, . . . , Adc} are the dc categorical attributes
and dom(Ar) contains all possible values that can be chosen by attribute Ar . For
categorical attributes, the value domains are finite and unordered, dom(Ar) with
mr elements can be therefore represented with dom(Ar) = {ar1, ar2, . . . , armr}.

Firstly, we focus on the difference between categorical attributes and numeri-
cal attributes. For categorical attributes, each attribute can usually represent an
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important feature of the given object. Therefore, when we conduct classification
or clustering analysis, we often investigate the categorical attributes one by one
such as Decision Tree method. By contrast, the numerical attributes are often
treated as a vector and handled together in clustering analysis. Based on these
observations, for the mixed data xi, the du numerical attributes can be treated
as a whole but the dc categorical attributes should be investigated individually.
Let the object-cluster similarity between xi and cluster Cj , denoted as s(xi, Cj),
be the average of the similarity calculated based on each attribute, we will have

s(xi, Cj) =
1

d
s(xc

i1, Cj) +
1

d
s(xc

i2, Cj) + ...+
1

d
s(xc

idc
, Cj) +

du
d
s(xu

i , Cj)

=
1

d

dc∑

r=1

s(xc
ir , Cj) +

du
d
s(xu

i , Cj). (4)

That is, the similarity between each numerical attribute and the cluster Cj is
replaced with the similarity between the cluster and the whole numerical vector
xu
i . Moreover, if we denote the similarity between xc

i and Cj as s(x
c
i , Cj), we can

get

s(xc
i , Cj) =

1

dc

dc∑

r=1

s(xc
ir , Cj) =

dc∑

r=1

1

dc
s(xc

ir , Cj). (5)

Then, (4) can be further rewritten as

s(xi, Cj) =
dc
d

dc∑

r=1

1

dc
s(xc

ir , Cj)+
du
d
s(xu

i , Cj) =
dc
d
s(xc

i , Cj)+
du
d
s(xu

i , Cj), (6)

where s(xc
i , Cj) is actually the similarity on categorical attributes and s(xu

i , Cj)
is the similarity on numerical attributes. Subsequently, the object-cluster simi-
larity metric can be obtained based on the definitions of s(xc

i , Cj) and s(xu
i , Cj).

Similarity Metric for Categorical Attributes. In (5), we have assumed
that each categorical attribute has the same contribution to the calculation of
similarity on categorical part. However, from the practical viewpoint, due to the
different distributions of attribute values, categorical attributes each often have
unequal importance for clustering analysis. In light of this characteristic, (5)
should be further modified with

s(xc
i , Cj) =

dc∑

r=1

wrs(x
c
ir , Cj), (7)

where wr is the weight of categorical attribute Ar satisfying 0 ≤ wr ≤ 1 and
dc∑
r=1

wr = 1. That is, the object-cluster similarity for categorical part is the

weighted summation of the similarity between the cluster and each attribute
value. Weight factor wr describes the importance of each categorical attribute
and is utilized to control the contribution of attribute-cluster similarity to object-
cluster similarity.
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Definition 1. The similarity between a categorical attribute value xc
ir and clus-

ter Cj, i ∈ {1, 2, . . . , N}, r ∈ {1, 2, . . . , dc}, j ∈ {1, 2, . . . , k}, is defined as:

s(xc
ir , Cj) =

σAr=xc
ir
(Cj)

σAr �=NULL(Cj)
, (8)

where NULL refers to empty, and σAr=xc
ir
(Cj) counts the number of objects (also

called instances hereinafter) that have the value xc
ir for attribute Ar in cluster

Cj.

From Definition 1, we can find that this metric of attribute-cluster similarity
has the following properties:

(1) 0 ≤ s(xc
ir , Cj) ≤ 1;

(2) s(xc
ir , Cj) = 1 only if all the instances belonging to cluster Cj have the value

xc
ir for attribute Ar, and s(xc

ir , Cj) = 0 only if no instance belonging to
cluster Cj has the value xc

ir for attribute Ar.

According to (7) and (8), the object-cluster similarity for categorical part can
be therefore calculated by

s(xc
i , Cj) =

dc∑

r=1

wrs(x
c
ir , Cj) =

dc∑

r=1

wr

σAr=xc
ir
(Cj)

σAr �=NULL(Cj)
, (9)

where i ∈ {1, 2, . . . , N}, and j ∈ {1, 2, . . . , k}.

Remark 1. Since 0 ≤ s(xc
ir , Cj) ≤ 1 and

dc∑
r=1

wr = 1, we have:

s(xc
i , Cj) =

dc∑

r=1

wrs(x
c
ir , Cj) ≥

dc∑

r=1

(wr · 0) = 0,

and

s(xc
i , Cj) =

dc∑

r=1

wrs(x
c
ir , Cj) ≤

dc∑

r=1

(wr · 1) =
dc∑

r=1

wr = 1.

That is, for any i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , k}, the value of s(xc
i , Cj)

will fall into the interval [0, 1].

Next, we discuss how to estimate the importance of each categorical attribute.
From the view point of information theory, the significance of an attribute can
be regarded as the inhomogeneity degree of the data set with respect to this
attribute. Furthermore, it is described in [18] that if the information content of an
attribute is high, the inhomogeneity of the data set is also high for this attribute.
Hence, the importance of any categorical attribute Ar (r ∈ {1, 2, . . . , dc}) can
be calculated by

HAr = −
mr∑

t=1

p(art) log p(art) (10)
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with

p(art) =
σAr=art(X)

σAr �=NULL(X)
, (11)

where art ∈ dom(Ar), p(art) is the probability of attribute value art, mr is
the total number of values that can be chosen by Ar and X is the whole data
set. Furthermore, according to (10), the more different values an attribute has,
the higher its significance is. However, in practice, an attribute with too many
different values may have little contribution to clustering. For example, the ID
number of instances is unique for each instance, but this information is useless
for clustering analysis. Hence, (10) can be further modified with

HAr = − 1

mr

mr∑

t=1

p(art) log p(art). (12)

That is, the importance of an attribute is quantified by its average entropy over
each attribute value. The weight of each attribute is then computed as

wr =
HAr

dc∑
t=1

HAt

, r = 1, 2, . . . , dc. (13)

Subsequently, the object-cluster similarity on categorical part can be given by

s(xc
i , Cj) =

dc∑

r=1

⎛

⎜⎜⎜⎝
HAr

dc∑
t=1

HAt

· σAr=xc
ir
(Cj)

σAr �=NULL(Cj)

⎞

⎟⎟⎟⎠. (14)

In practice, for an attribute Ar, if all the instances to be classified have the
same value a, it can be obtained from (12) and (11) that the importance of this
attribute will be 0 as p(a) = 1 and log(1) = 0. Then, the corresponding attribute
weight will also be zero and this attribute will have no contribution to the whole
clustering learning.

Similarity Metric for Numerical Attributes. Since the distance between
each vector xu

i can be numerically calculated, the similarity metric for numerical
attributes can be defined based on the measure of distance. According to [19]
and [20], it is a universal law that the distance and perceived similarity between
numerical vectors are related via an exponential function as follows:

s(xA,xB) = exp(−Dis(xA,xB)), (15)

where Dis stands for a distance measure. Moreover, it can be observed that the
magnitudes of distances between instances from variant data sets may have a
significant difference in practice. To avoid the potential influence of this scenario,
we can further use proportional distance instead of absolute distance to estimate
the similarity between numerical vectors.
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Definition 2. The object-cluster similarity between numerical vector xu
i and

cluster Cj , i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , k}, is given by

s(xu
i , Cj) = exp

⎛

⎜⎜⎝− Dis(xu
i , cj)

k∑
t=1

Dis(xu
i , ct)

⎞

⎟⎟⎠ , (16)

where cj is the center of all numerical vectors in cluster Cj .

It can be seen from Definition 2 that the values of this similarity metric also
fall into the interval [0, 1]. In practice, different distance metrics can be utilized
to calculate Dis(xu

i , cj). For example, if the Minkowski distance is adopted, we
shall have:

Dis(xu
i , cj) =

(
du∑

r=1

|xu
ir − cjr |p

)1/p

, (17)

where p > 0 is a constant which characterizes the distance function. A typically
special case of (17) is the Euclidean distance with p = 2.

Finally, according to (6), (14), and (16), the object-cluster similarity metric
for mixed data is defined as

s(xi, Cj) =
dc
d

dc∑

r=1

⎛

⎜⎜⎜⎝
HAr

dc∑
t=1

HAt

· σAr=xc
ir
(Cj)

σAr �=NULL(Cj)

⎞

⎟⎟⎟⎠+
du
d

exp

⎛

⎜⎜⎝− Dis(xu
i , cj)

k∑
t=1

Dis(xu
i , ct)

⎞

⎟⎟⎠ ,

(18)
where i = 1, 2, . . . , N , j = 1, 2, . . . , k. It can be seen that the defined similarities
for categorical and numerical attributes in (18) are in the same scale. Hence,
unlike k-prototype method, there is no need any more to manually adjust the
parameter to control the proportions of numerical and categorical distances for
different data sets.

4 Iterative Clustering Algorithm

This paper concentrates on hard partition only, i.e., qij ∈ {0, 1}, although it can
be easily extended to the soft partition in terms of posterior probability. Under
the circumstances, given a set of N objects, the optimal Q∗ = {q∗ij} in (1) can
be given by

q∗ij =
{
1, if s(xi, Cj) ≥ s(xi, Cr), 1 ≤ r ≤ k,
0, otherwise.

(19)

Therefore, similar to the learning procedure of k-means, an iterative algorithm,
denoted as OCIL, can be conducted to implement the clustering analysis as
shown in Algorithm 1.

The first step in OCIL algorithm, i.e. Step 1, is a procedure for the calcu-
lation of object-cluster similarity. Thus, we can find that the iterative steps of
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Algorithm 1 Iterative clustering learning based on object-cluster similarity
metric (OCIL)

Require: data set X = {x1,x2, . . . ,xN}, number of clusters k
Ensure: cluster label Y = {y1, y2, . . . , yN}
1: Calculate the importance of each categorical attribute according to (12), if appli-

cable
2: Set Y = {0, 0, . . . , 0} and randomly select k initial objects, one for each cluster
3: repeat
4: Initialize noChange = true
5: for i = 1 to N do
6: y

(new)
i = arg max

j∈{1,...,k}
[s(xi, Cj)]

7: if y
(new)
i �= y

(old)
i then

8: noChange = false
9: Update the information of clusters C

y
(new)
i

and C
y
(old)
i

, including the fre-

quency of each categorical value and the centroid of numerical vectors
10: end if
11: end for
12: until noChange is true
13: return Y

OCIL algorithm is the same as the k-means algorithm and the only difference is
the measurement of similarity between object and clusters. Therefore, the effec-
tiveness of the proposed similarity metric can be easily evaluated by comparing
OCIL with other similar algorithms, such as k-means and k-prototype. Next,
we further give the time complexity analysis of OCIL algorithm. It can be ob-
served that the computation cost of Step 1 is O(mNdc), where m is the average
number of different values that can be chosen by each categorical attribute. For
each iteration, the cost of the “for” statement is O(mNkdc + Nkdu). Hence,
the total time cost of this algorithm is O(t(mNkdc + Nkdu)), where t stands
for the number of iterations. From the practical viewpoint, k, m and t can be
regarded as a constant in most cases. Therefore, the time complexity of this
algorithm approaches to O(dN). Hence, the proposed algorithm is efficient for
data clustering, particularly for a large data set.

5 Experiments

This section is to investigate the effectiveness of the proposed approach to data
clustering. We applied it to various categorical and mixed data sets obtained from
UCI Machine Learning Data Repository1 and compared its performance with the
existing counterparts. Since the proposed method on numerical data degenerates
to the k-means algorithm, the effectiveness of OCIL algorithm on numerical
data set is transparent. Hence, there is no need to investigate it any more. Each
algorithm was coded with MATLAB and all experiments were implemented by

1 See http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/


Unified Metric for Categorical and Numerical Attributes in Data Clustering 143

a desktop PC computer with Intel(R) Core(TM)2 Quad CPU, 2.40 GHz main
frequency, and 4GB DDR2 667 RAM.

Moreover, in our experiments, the clustering accuracy [21] for measuring the
clustering performance was estimated by

ACC =

∑N
i=1 δ(ci,map(ri))

N
,

where N is the number of instances in the data set, ci stands for the provided
label, map(ri) is a mapping function which maps the obtained cluster label ri to
the equivalent label from the data corpus by using the Kuhn-Munkres algorithm,
and the delta function δ(ci,map(ri)) = 1 only if ci = map(ri), otherwise 0.
Correspondingly, the clustering error rate is computed as e = 1−ACC.

5.1 Performance on Mixed Data Sets

In the following experiments, we will investigate the performance of the proposed
algorithm on real data sets in comparison with the existing counterparts. Firstly,
experiments were conducted on mixed data and the information of selected data
sets is shown in Table 1. The performance of the proposed method has been
compared with the k-prototype algorithm [11] and k-means algorithm, whose
time complexity are also O(Nd). In k-prototype method, the distance regulation
parameter γ was set at 0.5σ [11], where σ is the average standard deviation
of numerical attributes. When utilizing k-means, the categorical values were
transformed into integers in our experiments. Moreover, the Euclidean distance
has been adopted as the distance metric of numerical vectors for consistency.
Each algorithm has been run 100 times on each data set and the clustering
results are summarized in Table 2.

Table 1. Statistics of mixed data sets

Data set Instance Attribute (dc + du) Class

Statlog Heart 270 7 + 6 2
Heart Disease 303 7 + 6 2
Credit Approval 653 9 + 6 2
German Credit 1000 13 + 7 2
Dermatology 366 33 + 1 6
Adult 30162 8 + 6 2

It can be seen that, both with random initializations, the proposed algorithm
OCIL has an obvious superiority in terms of clustering accuracy over the k-
prototype and k-means methods. This result shows that, in comparison with
numerically representing the distance between categorical values, the proposed
similarity metric in this paper is a more reasonable measurement for clustering
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Table 2. Clustering errors of OCIL on mixed data sets in comparison with k-prototype
and k-means

Data set K-means K-prototype OCIL

Statlog 0.4047±0.0071 0.2306±0.0821 0.1716±0.0065
Heart 0.4224±0.0131 0.2280±0.0903 0.1644±0.0030
Credit 0.4487±0.0016 0.2619±0.0976 0.2519±0.0966
German 0.3290±0.0014 0.3289±0.0006 0.3057±0.0007
Dermatology 0.7006±0.0216 0.6903±0.0255 0.3051±0.0896
Adult 0.3869±0.0067 0.3855±0.0143 0.3079±0.0305

Table 3. Comparison of average convergent time and iterations between k-prototype
and OCIL

Data set
Time Iterations

K-prototype OCIL K-prototype OCIL

Statlog 0.0519s 0.0516s 3.09 3.07
Heart 0.0639s 0.0576s 3.54 3.02
Credit 0.1323s 0.1625s 3.18 4.26
German 0.2999s 0.2023s 5.29 3.15
Dermatol 0.3674s 0.1888s 7.27 4.32
Adult 15.2795s 9.6774s 10.93 6.78

Table 4. Statistics of categorical data sets

Data set Instance Attribute Class

Soybean 47 35 4
Breast 699 9 2
Vote 435 16 2
Zoo 101 16 7

Table 5. Comparison of clustering errors on categorical data sets

Data set H’s k-modes N’s k-modes OCIL

Soybean 0.1691±0.1521 0.0964±0.1404 0.1017±0.1380
Breast 0.1655±0.1528 0.1356±0.0016 0.0934±0.0009
Vote 0.1387±0.0066 0.1345±0.0031 0.1213±0.0010
Zoo 0.2873±0.1083 0.2730±0.0818 0.2681±0.0906

analysis on mixed data. Moreover, comparing the average running time of OCIL
and k-prototype algorithms listed in Table 3, we can find that, although OCIL
needs additional time to calculate the weight of each categorical attribute, its
total running time is no more than k-prototype’s one. A plausible reason can
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be found from Table 3 is that the convergence speed of OCIL is usually faster
than k-prototype in most cases we have tried so far. Therefore, the proposed
similarity metric is efficient for mixed data clustering.

5.2 Performance on Categorical Data Sets

We further investigated the performance of the proposed algorithm on purely
categorical data. The information of four different benchmark data sets we uti-
lized has been summarized in Table 4. To conduct comparative studies, we have
also implemented the other two existing categorical data clustering algorithms:
original k-modes (H’s k-modes) [12] and k-modes with Ng’s dissimilarity met-
ric (N’s k-modes) [16]. In this experiment, each algorithm was conducted with
random initializations. Table 5 lists the average value and standard deviation in
error obtained by OCIL and the other two algorithms, respectively. It can be
seen that the proposed clustering method has competitive advantage in terms of
clustering accuracy and robustness compared with the other two methods.

6 Conclusion

In this paper, we have proposed a general clustering framework based on object-
cluster similarity, through which a unified similarity metric for both categorical
and numerical attributes has been presented. Under this new metric, the object-
cluster similarity for categorical and numerical attributes are with the same scale,
which is beneficial to clustering analysis on various data types. Subsequently,
analogous to k-means method, an iterative algorithm has been introduced to
implement the data clustering. The advantages of the proposed method have
been experimentally demonstrated in comparison with the existing counterparts.
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