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Abstract. A simple hierarchical clustering algorithm called CLUBS (for CLus-
tering Using Binary Splitting) is proposed. CLUBS is faster and more accurate
than existing algorithms, including k-means and its recently proposed refine-
ments. The algorithm consists of a divisive phase and an agglomerative phase;
during these two phases, the samples are repartitioned using a least quadratic dis-
tance criterion possessing unique analytical properties that we exploit to achieve
a very fast computation. CLUBS derives good clusters without requiring input
from users, and it is robust and impervious to noise, while providing better speed
and accuracy than methods, such as BIRCH, that are endowed with the same
critical properties.

1 Introduction

The clustering challenge. Cluster analysis represents a fundamental and widely used
method of knowledge discovery, for which many approaches and algorithms have been
proposed over the years [9]. Among the most popular methods, we find partition-based
clustering (e.g. k-means[10]), density based clustering (e.g. DBScan[6]), hierarchical
methods (e.g. BIRCH[14]) and grid-based methods (e.g. STING [13]). The continu-
ous stream of clustering algorithms proposed over the years underscores the fact that
the logical and algorithmic complexities of this many-facet problem have yet to be
tamed completely, and that along with the great progress achieved in the past, signif-
icant progress should be expected in the future. In particular, it is well known that no
clustering algorithm completely satisfies both accuracy and efficiency requirements,
thus a good clustering algorithm has to be evaluated w.r.t. some external criteria that
are independent from the metric being used to compute clusters. Indeed, in this paper
we propose an algorithm that significantly improves the state of the art in clustering
analysis, with respect to speed, repeatability, and accuracy whose performances have
been evaluated using widely accepted clustering validity metric.
Current Solutions: Who is the best in terms of speed and accuracy? In order to com-
pare our performances we preliminary tested existing clustering solutions. We chose
algorithms that are widely used by data miners due to their general purpose nature.
More in detail, we evaluated algorithms that satisfy user needs in a wide variety of ap-
plication scenarios. In terms of speed of computation, the standard of paragon is set
by the k-means [10] algorithm that has as objective minimizing the average distance
of the samples from their cluster centroids. Owning to its efficiency, simplicity, and the
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naturalness of its objective, k-means has become the most widely used clustering algo-
rithm in practical applications. But k-means also suffers from serious shortcomings: in
particular, the algorithm does not assure repeatability of results, which instead depends
on the choice of the initial k points. In practice, therefore, the data mining analyst will
have to select the value of k, and the initial k points, via some exploratory dry runs.
k-means’ shortcomings have motivated much research work [11,2,4], seeking to reduce
the variability of the results it produces and bring it closer to the ‘unsupervised learning’
archetype. A second line of research has instead produced different mining algorithms
to overcome k-means’ problem while keeping with its general objective of clustering
the points around centroids. Approaches such as grid-based clustering work by parti-
tioning the data space into cells arranged in a grid and then merging them to build clus-
ters, while density based approaches search for fully-connected dense regions. Finally,
hierarchical clustering methods work by performing a hierarchical decomposition of
data in either bottom-up (agglomerative) or top-down (divisive) way. In this respect hi-
erarchical approaches offer good performances w.r.t. the accuracy of clustering. All the
techniques mentioned here present advantages and weakness that will be discussed in
detail in the related work section. For the goal of assessing the quality of our approach,
it is worth noticing that the hierarchical clustering algorithm BIRCH [14] is stable (i.e.
its results do not vary depending on some initial parameter setting), accurate, impervi-
ous to noise and scalable to very large data sets. However, BIRCH is typically not as
fast as k-means.

Our Solution. The above thought-provoking discussion guided our search for a new
clustering algorithm. Indeed, in this paper we propose a new hierarchical algorithm
called CLUBS (for CLustering Using Binary Splitting) whose speed performances are
better than k-means and whose accuracy overcomes previous hierarchical algorithms
while operating in a completely unsupervised fashion. The first phase of the algorithm is
divisive, as the original data set is split recursively into miniclusters through successive
binary splits: the algorithm’s second phase is agglomerative since these miniclusters
are recombined into the final result. Due to its features our algorithm can be used also
for refining other approaches performances. As an example it can be used to overcome
k-means initial assignment problem since its low complexity will not affect the overall
complexity while the accuracy of our results will guarantee an excellent initial assign-
ment of cluster centroids. Further, our approach induces during execution a dynamic
hierarchical grid that will better fit the dataset w.r.t. classical grid approaches that ex-
ploit a fixed grid instead. Finally, the algorithm exploits the analytical properties of the
Quadratic Sums of Squares (SSQ in the following) function to minimize the cost of
merge and split operations, and indeed the approach results really fast. One may argue
that many different measures could be used for cluster computation but the accuracy of
SSQ is as good as other cluster distance measures (e.g. Single Link, Complete Link,
Average) for real case scenarios and its computation can be made faster than other
measures. These properties are discussed in Section 2.
Main Difference of CLUBS w.r.t. other approaches. CLUBS works in a completely
unsupervised way and overcomes the main limitations that beset other algorithms. In
particular, we have that (1) CLUBS is not tied to a fixed grid, (2) it can backtrack on pre-
viously wrong calculation, and (3) it performs also well on non-globular clusters where
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clusters are not spherical in shape, this feature will be intuitively understood after the
partitioning and recombination strategy will be detailed in Section 3 (BIRCH does not
perform as well, because it uses the notion of radius or diameter to control the boundary
of a cluster, and the same drawback also affects k-means like algorithms). Moreover we
have that (4) CLUBS can detect the natural clusters present in data, while in Birch each
node in the auxiliary tree exploited (called CF tree) can hold only a limited number of
entries due to its size thus a CF tree node does not always correspond to what a user may
consider a natural cluster. Finally, (5) density based algorithms like DBSCAN are very
sensitive to clustering parameters like Minimum Neighborhood Points and they fail to
identify clusters if density varies and if the data set is too sparse and different sampling
affects density measures, however we compared CLUBS against OPTICS that allows
to detect clusters with different densities instead. As will be clear by experimental eval-
uation, CLUBS does not suffer these limitations due to unique features of SSQ and the
two-phase algorithm.

2 Background

After recalling some basic notions used in our algorithm, we discuss binary partitioning
and the cluster quality measures there used. Throughout the paper, for each dataset a
d-dimensional data distribution D is assumed. D will be treated as a multi-dimensional
array of integers with volume nd (without loss of generality, we assume that all dimen-
sions of D have the same size). The number of non-zero elements of D will be denoted
as N . A range ρi on the i-th dimension of D is an interval [l..u], such that 1 ≤ l ≤
u ≤ n. Boundaries l and u of ρi are denoted by lb(ρi) (lower bound) and ub(ρi) (upper
bound), respectively. The size of ρi will be denoted as size(ρi) = ub(ρi)− lb(ρi) + 1.
A block b (of D) is a d-tuple 〈ρ1, . . . , ρd〉 where ρi is a range on the dimension i, for
each 1 ≤ i ≤ d. Informally, a block represents a “hyper-rectangular” region of D. A
block b of D with all zero elements is said to be a null block. The volume of a block
b = 〈ρ1, . . . , ρd〉 is given by size(ρ1)× . . .× size(ρd) and will be denoted as vol(b).
Given a point in the multidimensional space x = 〈x1, . . . , xd〉, we say that x belongs to
the block b (written x ∈ b) if lb(ρi) ≤ xi ≤ ub(ρi) for each i ∈ [1..d].

Given a block b = 〈ρ1, . . . , ρd〉, let x be a coordinate on the i-th dimension of b such
that lb(ρi)≤x<ub(ρi). Coordinate x divides the range ρi of b into ρlowi = [lb(ρi)..x]

and ρhighi = [(x+1)..ub(ρi)], thus partitioning b into blow=〈ρ1, . . . , ρlowi , . . . , ρd〉 and
bhigh = 〈ρ1, . . . , ρhighi , . . . , ρd〉. The pair 〈blow, bhigh〉 is said to be the binary split of
b along the dimension i at the position x; dimension i and coordinate x are said to be
the splitting dimension and the splitting position, respectively.

Informally, a binary partition can be obtained by performing a binary split on D (thus
generating the two sub-blocksDlow and Dhigh), and then recursively partitioning these
two sub-blocks with the same binary hierarchical scheme.

Definition 1. Given a d-dimensional data distribution D with volume nd, a binary par-
tition BP of D is a binary tree such that the root of BP is the block 〈[1..n], . . . , [1..n]〉
and for each internal node p of BP the pair of children of p is a binary-split of p. �
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Clustering Computation Preliminaries. Given a dataset DS cluster analysis aims at
producing a clustering C = {C1, · · · , Cn} that is a subset of the set of all subsets of
DS such that C contains disjoint (non-overlapping) subsets, covering the whole object
set (we refer in this paper exclusively to hard clustering problem, where every data point
belongs to one and only one cluster). Consequently, every point x ∈ DS is contained
in exactly one and only one set Ci. These sets Ci are called clusters.

Definition 2. Let Cs be a cluster (set) of N d-dimensional points. Let
S = (S1, . . . , Sd) =

∑
p∈Cs

p be the vector representing the sum of points in

Cs. The center of Cs is C0
s = S

N . Let Q = (Q1, . . . , Qd), where Qi =
∑

p∈C p2i , be
the vector whose i-th coordinate is the sum of the squared i-th coordinates of the points
in S. The SSQ (Sum of Squares) of Cs is defined as:

SSQ(Cs) =
∑

p∈Cs
dist2(p,C0

s ) =
∑

p∈C

∑d
i=1(pi − C0

s )
2 =

∑d
i=1

∑
p∈C(pi − C0

s )
2 =

∑d
i=1

∑
p∈C(p

2
i − 2 · pi · C0

s + (C0
s )

2) =
∑d

i=1

∑
p∈C p2i − 2 · C0

s ·∑p∈C pi +N · (C0
s )

2)

we recall that N is the number of points in C and
∑

p∈C pi = C0
s ·N

thus we obtain by substituting:

∑d
i=1

∑
p∈C p2i −

∑d
i=1

(
∑

p∈C pi)
2

N

finally by definition of Qi and Si we obtain:

SSQ(Cs) =
∑d

i=1(Qi − S2
i

N ) (1)

From the latter, it is clear that, in order to quickly compute the SSQ of a cluster, we
need only to store Q, S, and N . In the next section we will show how these information
can be used effectively and efficiently to optimize the divisive and agglomerative steps
of the CLUBS algorithm.

3 CLUBS: A New Clustering Algorithm

In order to obtain a good tradeoff between accuracy and efficiency we exploit in this pa-
per a new really fast hierarchical approach. Among hierarchical algorithms, bottom-up
approaches tend to be more accurate but have a higher computational cost than the top-
down approaches [9]. The higher cost is due to the higher number of candidate clusters
to be taken into account. To overcome this limitation, in our approach, the agglomera-
tive step is only used on mini-clusters generated by a first divisive process, this results in
a remarkable efficiency increase. Top-down partitioning exploiting greedy algorithms
has been widely used in the multidimensional data compression due to its efficiency.
Here we use a similar divisive approach to minimize the SSQ among the data belong-
ing to clusters, we recall again that in literature many measure have been proposed (e.g.
EES) that works in a similar way as SSQ but we chose SSQ since it offers a really fast
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computation while maintaining an high accuracy in cluster model evaluation. Thus, our
clustering algorithm consists of two steps, where in the first step we use binary hierar-
chical partitioning to produce a set of mini-clusters and in the second step, we pairwise
merge the mini-clusters so obtained in a bottom-up fashion. In both steps the clusters
are defined by a hierarchical partition of the multi-dimensional space. The partition can
be compactly represented by a binary tree (BT in the following), where:1) each node is
associated with a range of the multi-dimensional domain; 2) the root is associated with
the whole data domain; 3)for each inner node n, its children are associated with a pair
of ranges representing a (rectangular) partition of n.

Each node also maintains summary information about points inside its range, to ex-
pedite the clustering computation. The top-down splitting works as follows. As aux-
iliary structure, we maintain a priority queue of clusters whose elements are ordered
on the basis of the SSQ of each cluster. At each iteration, the algorithm performs the
following two steps: A) select the cluster Cs that exhibits the highest SSQ (i.e. the one
on top of the priority queue), and then B) partition this Cs in such a way that the overall
SSQ reduction, denoted ΔSSQ, is maximized. For step B, we compute ΔSSQ(i, j)
for each dimension i and for each cutting position j; then we choose the position j that
guarantees the maximum ΔSSQ. This computation can be done very efficiently since
we pre-compute Q and S, and therefore we need a single scan of the data. We repeat
these two steps, A and B above, while ΔSSQ is greater than the average SSQ. We
recall that the partition (i.e., the cluster tree) is built by exploiting a greedy strategy. To
this end, the tree is constructed top-down, by means of leaf-node splitting. At each step,
the leaf with the largest SSQ is chosen, and it is split as to maximize ΔSSQ . Being
SSQ a measure of a range skewness, we perform splits as long as ΔSSQ remains “sig-
nificant”. After the early splits that yield large SSQ reductions, the values of ΔSSQ
become smaller and smaller, until after n splits both SSQ and ΔSSQ become 0 (since
each point has become its own cluster). Thus, the average SSQ reduction per split is
SSQ0/n, and we will compare this value against the current ΔSSQ to decide when
we should stop splitting, The rationale for this criterion is clearly illustrate by Fig. 1,
where the typical ΔSSQ slope is displayed against the average SSQ: there is no gain in
splitting beyond the turning point (marked with a solid circle) since the SSQ reduction
is less than the average ΔSSQ and thus imputable to random distributions rather than
cluster-like ones.

Fig. 1. Average SSQ and ΔSSQ example plots
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The splitting process just described is tied to the grid partitioning and thus may
cause a non-optimal splitting of some clusters. The successive phase overcomes this
limitation since the merging is performed considering all the possible pairs of adjacent
mini-clusters, and recombining those that offer best SSQ reduction. This agglomerative
process offers significant advantages. One is that it merges clusters in different grid
partitions, thus overcoming non optimal splits obtained in the first phase (see Fig. 3(b)
and Fig. 3(c)). The second critical advantage is that the computational complexity of
this bottom-up step is very low since the number of merging steps is related to the
number clusters that is very low compared to usual dataset sizes. The final advantage
is that this phase also halts automatically, producing an algorithm that does not require
any seeding or other parameters from the user a really nice feature that is not shared by
all clustering algorithms.

The Clustering Algorithm. Fig. 2 provides a more formal description of the CLUBS
algorithm. We use the initializeTree to load the dataset into the root of the auxiliary tree
structure BT exploited for partitioning. Once the tree structure has been initialized the
topdownsplitting step starts. In particular, the root of BT is added to a priority queue
whose ordering criterion is based on the SSQ values of clusters stored in the queue.
The initial cluster assignment performed by initializeClusters is composed by the root
r of BT and the initial SSQ is the one computed on r. The function computeAver-
ageDeltaSSQ averages the actual SSQ for all the points in the cluster. The function
computeWeightedDeltaSSQ is applied to the cluster Cs that is currently on top of the
priority queue. The weightedΔSSQ is computed as the average gain of SSQ obtained
by splitting Cs as explained above for ΔSSQ, i.e. we pre-compute the marginal sums
(S and Q) for a given splitting point (w.r.t the coordinates ordering) and reassigning the
splitting point based on these partial sums. In order to improve the effectiveness of splits
the value of ΔSSQ is raised to a power of p, p < 1, thus obtaining weightedΔSSQ

value. If weightedΔSSQ is greater than avgDeltaSSQ computed by computeAver-
ageDeltaSSQ then we proceed with the split, otherwise we do not. We use values of p
that are less than 1, since for p ≥ 1 we would end up splitting clusters where the gain
does not exceed the Average ΔSSQ associated with a random distribution. This would
result in a large number of small clusters, where both intra-cluster and inter-cluster dis-
tances small. We instead seek values of p that reduce the former while magnifying the
latter. We determined experimentally that the best value is p = 0.8 regardless the dataset
feature thus the user is not required to set any parameter, due to space limitations we
cannot report here the detailed discussion of the experiments being conducted.

When no more top-down splits are possible, the topDownSplitting ends and we begin
the bottomUpMerging. In order to obtain more compact clusters, we select (by running
selectBestPair) the pair of clusters that, if merged, yields the least SSQ increase (that is
assigned to minInc by function computeSSQIncrease). This merging step is repeated
until minInc becomes larger than avgDeltaSSQ. Fig. 3 shows the algorithm in ac-
tion. After three steps, the initial samples in 3(a) are partitioned according to the grid
shown in Fig. 3(b). The algorithm takes seven more splitting steps producing the parti-
tion of Fig. 3(c). The merging phase produces the final five clusters that a human will
instinctively recognize at a glance Fig. 3(d).
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Input:
A dataset DS of n points
Output:
A set of clusters C.
Vars:
An auxiliary binary tree BT ;
An initial cluster assignment C′.
Method: CLUBS
1: BT := initializeTree(DS);
2: C′ := topDownSplitting(BT );
3: C := bottomUpMerging(C′);
4: return C;

Function topDownSplitting(BT ) : C′;
Vars:
A priority queue PQ;
A boolean finished;
A double ΔSSQ;
A double avgDeltaSSQ;
Method:
1: PQ := add(BT.root());
2: C′ = initializeClusters;
3: finished = false;
4: avgΔSSQ = computeAverageDeltaSSQ();
5: while !finished do begin
6: Cs = PQ.get();
7: weightedΔSSQ = computeWeightedDeltaSSQ(Cs);
8: if (weightedΔSSQ > avgΔSSQ) then
9: C′ := update(C′);
10: else finished = true;
11: end while
12: return C′;

Function bottomUpMerging(C′) : C;
Vars:
A pair of cluster Pair;
A double avgDeltaSSQ;
A double minInc;
Method:
1: C := C′;
2: Pair := selectBestPair(C′);
3: minInc := computeSSQIncrease(Pair);
4: avgDeltaSSQ = computeAverageDeltaSSQ();
5: while minInc < avgDeltaSSQ do begin
6: C := merge(Pair);
7: Pair := selectBestPair(C);
8: minInc := computeSSQIncrease(Pair);
9: end while;
13: return C;

Fig. 2. The CLUBS clustering algorithm
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We point out that producing axis parallel cuts is not a limitation, we can still obtain,
in our approach, non parallel cuts however this will not improve the performances of
the algorithm. Furthermore, also grid based approaches are tied to parallel cuts since
they allow more efficient computation without paying any accuracy loss.

In terms of computational complexity, we see that, in order to split, we have to com-
pute the SSQ for each dimension and for each splitting point. Thus, each split has a
complexity O(n · d · l) and we perform s splits. The bottom-up step contributes to the
overall complexity with a term O(k2) where k is the number of clusters, since for each
cluster we have to consider all the possibly adjacent clusters for merging; but since
k << n we can disregard this term. Thus the complexity is as follows:

Proposition 1. Algorithm CLUBS works in O(n · d · l · s) where n is the number of
points, d is the number of dimensions, l is the number of splitting positions for each
dimension and s is the number of splits.

4 Experimental Evaluation

An extensive set of experiments was executed to evaluate the performance of CLUBS.
In particular, we compared our method with BIRCH [14], K-means++ [2](we refer to it
as KM++) and k*-means [4] (we refer to it as SMART) and OPTICS [1].

Our test suite encompasses a large number of widely used benchmarks over a wide
spectrum of different characteristics. Due to space limitations we can present here a
small subset of the results, so we choose the really interesting results we obtained on a
severe test bench, i.e. microarray data. We used two publicly available dataset on Gene
Expression Omnibus Database: a dataset provided by [8], Dataset 1 hereafter, and a
dataset provided by [5], Dataset 2 hereafter.

As regards Dataset 1, authors examined 42 patients by using Affymetrix HU133A
(Affymetrix, Santa Clara CA) microarrays. Patients were subdivided in three groups.

(a) (b)

(c) (d)

Fig. 3. Execution steps of CLUBS
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Women at usual breast cancer risk undergoing mammoplasty reduction (RM) , women
with breast cancer undergoing surgery for either an ER+ or ER- breast tumor (HN), and
high-risk patients, consisting of women undergoing prophylactic mastectomy (PM).
Dataset providers selected 98 differentially expressed genes in HN w.r.t. RM and they
built a matrix of these genes for all three groups. The resulting dataset was analyzed by
clustering in order to catch the difference among three groups.

Dataset 2 comprises samples extracted from human breast cancer cells analyzed
using the Affymetrix U133A 2.0 gene chips (Affymetrix, Santa Clara, CA). Dataset
provider considered 4 group of cells treated with 20 lh/ml of actein at 6 and 24 hours,
and cells treated with 40 lg/ml of actein at 6 and 24 hours in order to elucidate the effect
of actein. The initial preprocessing was performed using the GCRMA method. The sta-
tistical significance of differential expression with respect to the same reference value
was calculated using the empirical Bayesian LIMMA (LI Model for MicroArrays).

We started our analysis considering these preprocessed datasets on which we used
CLUBS and the other clustering algorithms for the sake of comparison. The obtained
results are reported in Table 1 where values represent SSQ per dataset and milliseconds.

The results obtained are quite convincing both for the accuracy and the execution
times where CLUBS offer best performances. In particular our clustering method cor-
rectly detected the number of clusters in the data (3 clusters for Dataset 1 and 4 clusters
for Dataset 2). Indeed, CLUBS showed a nice feature when clustering Dataset 1: the HN
group contains two subgroups ER+ and ER-, CLUBS during the splitting step identified
these two subgroups that have been collapsed in a single cluster after the merging step.
To asses, the validity of the approach we exploited several method-independent quality
measure that are reported in the following.

Quality of Clustering Results. Here we will evaluate the quality of the results CLUBS
produces and its reliability. The issue of finding method-independent measures for clus-
tering results has been the source of much topical discussions, but over time sound
measures have emerged that can be used reliably to compare the quality of the results
produced by a wide range of clustering algorithms [3]. In particular the following three
measures have sound theoretical and practical bases. The Variance Ratio measures the
ratio between the average distance between points belonging to different clusters and
the average distance between points within the same cluster [3]. The range of variance
ratio is [0,∞) and larger values of variance ratio indicate better clustering quality. The
Relative Margin reports the average of the Relative Point Margin defined as the ra-
tio between the distance of a given point x to the center of the cluster it belongs to

Table 1. Accuracy and Time Performances for our test datasets

Algorithm Dataset1 Dataset2
SSQ time SSQ time

CLUBS 2.01E+8 2.513 1.77E+2 0.0784
OPTICS 3.55E+8 5.271 1.79E+2 0.2456
BIRCH 2.67E+8 9.124 1.78E+2 0.3522
KM++ 4.31E+8 2.913 1.76E+2 0.1154

SMART 4.65E+8 3.025 1.81E+2 0.1243
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and the distance between x and the closest cluster center different from the cluster x
belongs to [3]. The range of relative margin is [0, 1), and lower relative margin indi-
cates a better clustering. The Weakest Link measure is defined as the maximal value
of weakest link over all pairs of points belonging to the same cluster, divided by the
shortest between-cluster distance [3]. The range of values of weakest link is [0,∞).
Lower values of weakest link represent better clusterings. The results obtained for the
above mentioned quality measures are given in Table 2(a): they show that CLUBS out-
performs other methods significantly, producing values for Relative Margin & Weakest
Link (resp. Variance Ratio) that are significantly lower (larger) than those other meth-
ods, i.e. clusters of much better quality. These results also confirm that CLUBS finds
the exact number of clusters and the quality of the found cluster is overwhelming w.r.t
the other methods.

Additional Quality Measures. SSQ is a natural and widely used norm of similarity,
but a devil’s advocate can point out that other clustering algorithms might not measure
their effectiveness in terms of SSQ or even the compactness of each cluster around
its centroid. Thus, in this section we will measure the quality of the clusters produced
by CLUBS using very different criteria inspired by the nearest subclass classifiers that
were previously used in a similar role in [12] and [7].

A first relevant evaluation measure in this approach is the error rate of a k-Nearest
Neighbor classifier defined by the clustering results. This value provide relevant in-
formation about the ability of the clustering method under evaluation to minimize the
errors due to incorrect assignment of points to the proper cluster. Indeed, this informa-
tion is crucial for biological data analysis. Thus, for each point, we can check whether
the dominant class of the k closer elements allows to correctly predict the actual class
of membership (there is no relationship between the value of k used here and that of k-
means). Thus, the total number of points correctly classified measures the effectiveness

Table 2. Clustering Quality Measures Evaluation

(a) (b)

Dataset 1 #Clusters Variance Relative Weakest
Ratio Margin Link

M-CLUBS 3 75.41 0.098 0.817
OPTICS 5 56.18 0.135 2.045
BIRCH 6 63.42 0.176 1.934
KM++ 3 65.44 0.157 4.152

SMART 3 64.77 0.198 4.789
Dataset 2 #Clusters Variance Relative Weakest

Ratio Margin Link
M-CLUBS 4 81.33 0.066 0.713
OPTICS 4 67.18 0.153 1.876
BIRCH 4 70.41 0.182 1.943
KM++ 4 68.67 0.201 3.412

SMART 4 69.97 0.225 3.725

Dataset 1
method/index ε ek=10 qk=10

CLUBS 0.0661 0.0984 0.9998
OPTICS 0.1253 0.1976 0.8934
BIRCH 0.1154 0.2010 0.9756
KM++ 0.1002 0.1974 0.9803
SMART 0.1086 0.2101 0.9057

Dataset 2
method/index ε ek=10 qk=10

CLUBS 0.0054 0.0352 0.9999
OPTICS 0.0432 0.1312 0.9875
BIRCH 0.0165 0.0953 0.9923
KM++ 0.0487 0.1657 0.9764
SMART 0.0568 0.1789 0.9734
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of the clustering at hand. Formally, the error ek(D) of a k-NN classifier exploiting a the
distance matrix among every pair of points. D can be defined as

ek(D) =
1

N

N∑

i=1

γk(i)

where N is the total number of points, and γk(i) is 0 if the predicted class of the i-th
point (xi) coincides with its actual class, and 1 otherwise. Low values of the ek(D)
index denote high-quality clusters.

Following [7], we can go deeper in our evaluation by measuring the average number
of elements, in a range of k elements (we recall again that we use the expected clus-
ter size value), having the same class as the point under consideration. Practically, we
define qk as the average percentage of points in the k-neighborhood of a generic point
belonging to the same class of that point. Formally:

qk(D) =
1

N

N∑

i=1

|Nk(i) ∩ Cl(i)|
min(k, ni)

where Cl (i) represents the actual class associated with the i-th point in the dataset,
ni = |Cl(i)|, and Nk(i) is the set of k points having the lowest distances from xi,
according to the distance used at hand. This value will provide a really interesting in-
formation, in fact it will measure the purity of the clusters since it take into account the
number of points wrongly assigned to a cluster. In principle, a Nearest Neighbor classi-
fier exhibits a good performance when qk is high. Furthermore, qk provides a measure
of the stability of a Nearest-Neighbor: high values of qk make a k-NN classifier less sen-
sitive to increasing values k of neighbors considered. The sensitivity of the clustering
can also be measured by considering, for a given group of points x, y, z, the probability
that x and y belong to the same class and z belongs to a different class, but z is more
similar to x than y is. We denote this probability by ε(D), estimated as:

ε(D) =
1

N

N∑

i=1

⎛

⎝ 1

(ni − 1)(N − ni)

∑

Cl(j)=Cl(i),j �=i

∑

Cl(k) �=Cl(i)

δD(i, j, k)

⎞

⎠

where δD is 1 if D(i, j) < D(i, k), and 0 otherwise. This value gives information
about the ambiguity in cluster assignments. Here too, low values of ε(D) denote a good
performance of the clustering under consideration.

The results in Table 2(b) show that CLUBS produces better results than the other
algorithms. Table 2(b) shows that CLUBS offers the best performance on all indices
and in particular the really high values of qk (it is practically 1 since it detects exactly
the number of clusters for each dataset and the point assignment to cluster is correct)
allow to asses that the clusters are well defined, and CLUBS outperforms both BIRCH
and OPTICS. In measuring ek and qk, we used neighborhoods of size 10 (this value is
the actual cluster size available by datasets provider). The overall structure of the clus-
ters and the points distribution for Dataset 1 (results in Table 2(b)) produced superior
performance for CLUBS on every index, with particularly low values of ε. This result is
confirmed also for Dataset 2 and suggests that CLUBS exhibits the highest effectiveness
compared to the other approaches even when SSQ is not the chosen metric.
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5 Conclusion

The naturalness of the hierarchical approach for clustering objects is widely recog-
nized, and also supported by psychological studies of children’s cognitive behaviors1.
CLUBS is providing the analytical and algorithmic advances that have turned this in-
tuitive approach into a data mining method of superior accuracy, robustness and speed.
The speed achieved by our approach is largely due to CLUBS’ ability of exploiting the
analytical properties of its quadratic distance functions to simplify the computation. We
conjecture that similar benefits might be at hand for situations where the samples are in
data streams or in secondary store. These situations were not studied in this paper, but
represent a promising topic for future research.
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