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Abstract. Similarity in people to people (P2P) recommendation in
social networks is not symmetric, where both entities of a relationship
are involved in the reciprocal process of determining the success of the
relationship. The widely used memory-based collaborative filtering (CF)
has advantages of effectiveness and efficiency in traditional item to people
recommendation. However, the critical step of computation of similar-
ity between the subjects or objects of recommendation in memory-based
CF is typically based on a heuristically symmetric relationship, which
may be flawed in P2P recommendation. In this paper, we show that
memory-based CF can be significantly improved by using a novel asym-
metric model of similarity that considers the probabilities of both pos-
itive and negative behaviours, for example, in accepting or rejecting a
recommended relationship. We present also a unified model of the funda-
mental principles of collaborative recommender systems that subsumes
both user-based and item-based CF. Our experiments evaluate the pro-
posed approach in P2P recommendation in the real world online dating
application, showing significantly improved performance over traditional
memory-based methods.

Keywords: Social Network Mining, Recommender Systems.

1 Introduction

Memory-based collaborative filtering (CF) is the basis of many commercial rec-
ommender systems, of which Amazon’s [13] item-based approach is probably
the best known. In this work we present a unified framework incorporating both
item-based and user-based CF and within it develop a novel probabilistic method
of similarity that overcomes some of the limitations of previous approaches.

Conventional recommender systems attempt to discover user preferences over
items by modelling the relation between users and items. The aim is to recom-
mend items that match the taste (likes or dislikes) of users in order to assist
the active user, i.e., the user who will receive recommendations, to select items
from an overwhelming set of choices. It is used to 1) predict whether a partic-
ular user will like a particular item (a prediction problem), or 2) identify a set
of N items that will be of interest to a certain user (a Top-N recommendation
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problem). Recently, recommender systems have also been extended to people to
people (P2P) recommendation to model the relation between the active user and
other users by finding user preferences over other users.

Assuming that users with similar tastes would rate items (or other users)
similarly, memory-based collaborative filtering (CF) methods recommend items
based on heuristic aggregated user preferences for items, independent of the
availability of item descriptions. In this paper we formalise memory-based CFs
in a uniform way that allows the derivation of a probabilistic method, ProCF,
that is shown to improve performance in a P2P recommendation application.

Section 2 discusses related work. Section 3 defines the problems. Section 4
develops a probabilistic approach for both recommendation and ranking. Exper-
imental evaluation is in Section 5 and we conclude in Section 6.

2 Related Work

CF algorithms fall into two categories: model-based and memory-based ap-
proaches. Model-based CF [1,2,10,16] uses the collection of ratings to learn a
model, which is then used to make rating predictions. Although model-based
methods have reported higher accuracy of recommendation than memory-based
approaches, there are some limitations. These methods are computationally ex-
pensive since they usually require all users and items to be used in creating
models, and the number of users and items is typically large. Memory-based CF
is popular in many commercial recommender systems, being effective and easy
to implement. Memory-based approaches [2,11,13,18] make rating predictions
based on the entire set or a sample of items previously rated by users. The un-
known rating value rc,s of the active user c for an item s is typically computed
as an aggregate of the ratings of users similar to c for the same item s. This
aggregate can be an average or a weighted sum, where the weight is a distance
that measures the similarity between users c1 and c2. By using similarity as a
weight, more similar users make a greater contribution to a predicted rating.

In memory-based CF, similarity computation between items or users is essen-
tial. The definition of similarity measure varies depending on the recommenda-
tion application. Often the similarity between two users is based on the ratings
of items both users have rated. Two of the most popular approaches are corre-
lation [11,18] and cosine-based [2,17]. Extensions to these include default voting,
inverse user frequency, case amplification, and weighted-majority prediction [2,7].
Usually these use heuristics to model the weights and are not able to handle the
different rating scales of different users. Solutions to this problem include the ad-
justed weighted sum and preference-based filtering [14], which focuses on predict-
ing the relative preferences of users instead of absolute rating values.

Memory-based probabilistic CF is an alternative. Yu et al. [20] use a mixture
model for user preferences. Deshpande and Karypis [8] proposed conditional
probability based similarity in item-based CF. These models only consider com-
mon purchase information, which causes the problem that frequently purchased
items tend to have high conditional probabilities, leading to reduced diversity
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in recommendation [9]. Adding a scaling parameter to control for the effect of
popular items in the model may help, but finding a suitable parameter value be-
comes challenging. Also, these methods are uni-directional, relying only on users’
taste, so they are not applicable to P2P recommendation, which is reciprocal.

People recommenders deal with the problem of finding meaningful relation-
ships among people or organisations. In online social networks, relationships
can be friends [19] e.g., on Facebook, professional contacts [3] e.g., on LinkedIn,
online dating [5,12], or jobs on employment websites [15]. The nature of these do-
mains makes P2P recommender systems significantly different from traditional
item to people (I2P) recommenders. The basic difference in the people recom-
mender domain is the characteristic of reciprocal relationships.

3 Problem Statement

Recommender systems can be classified into two general classes: classical item to
people recommender systems (I2PRec) and people to people recommender sys-
tems (P2PRec). In classical I2PRec, there are two types of entities, buyers (e.g.,
customers) and items (e.g., books, movies, songs). In recent P2PRec [5], there
only exists a uniform entity type: users (e.g., online dating service subscribers,
job seekers and employers). To distinguish the different roles in a recommenda-
tion, we use subject, S = {s1, ..., s|S|}, to refer to the recommendation recipient
(e.g., customers in I2PRec and active partner seekers for P2PRec) and object,
O = {o1, ..., o|O|}, to refer to the recommendation candidate (e.g., books in
I2PRec and partner seekers in P2PRec). Recommender systems using CF meth-
ods rely on collaborative information. There are several types of collaborative
information. One important distinction is between explicit (i.e., ratings, up and
down votes) and implicit (i.e., clicks, purchases, contacts, replies) expressions of
user preferences. Depending on the type of system, implicit information may be
positive-only, i.e., no recorded negative preference observations, or positive-and-
negative, i.e., both positive and negative preference observations are available.

In I2PRec, collaborative information used in traditional CF is merely based on
the behaviours of subjects, i.e., the preference of buyers determines the transac-
tions that represent the collaborative information. However, in P2PRec, collab-
orative information usually depends on behaviours of both subject and object,
since the relationship between the subject and the object can only be estab-
lished when both parties agree on it, denoted by a successful interaction (i.e.,
the subject makes contact to express interest and gets positive feedback from
the object). We use so+ to refer to this, representing the establishment of a
successful interaction. Similarly, so− refers to an unsuccessful interaction. This
requires P2PRec to consider collaborative information based on behaviours of
both subject and object rather than only those of subject, which consequently
prevents traditional I2PRec from solving the P2P recommendation problem [4].

The task of P2P recommendation from implicit, positive and negative, pref-
erences is to rank the objects from a candidate set Oc for a subject according to
the probability of establishing a relationship between them based on the collab-
orative information. This task is related to, but distinct from, rating prediction,
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Fig. 1. A general framework for CF. In user-
based CF (UBCF) (resp. item-based CF
(IBCF)), Coactor is the candidate entity (ac-
tive entity), Actor the entity similar to the
active entity (candidate entity), Imitator the
active entity (candidate entity). (Section 3)
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Fig. 2. Construction of probabilistic
similarity. Actor and Imitator both in-
teract with Coactor entities, with four
possible outcomes, e.g., the label (++)
means that both interactions have a
positive outcome.

where the task is to predict how much a subject will like an object. Therefore, a
ranked list of candidate objects for each subject, rather than an explicit rating,
is the output of a typical P2P recommender.

Similarity. Memory-based CF approaches to recommender systems differ ac-
cording to the method used to compute the similarity between the various sub-
jects/objects, which consequently determines the overall performance of the rec-
ommender. In general, the similarity between two entities should be high if they
have interacted with a large set of others in common and low if few in common.
In this case, the similarity between two entities is symmetric since the common
set is shared with both entities and no other information is considered. But this
may not be sufficient, since other subjects/objects that were not interacted with
in common by the similar pairs, but only by one in the pair, can have impact
on the similarity and thus the recommendation. When using information from
such entities not interacted with in common by the similar pairs, similarity be-
comes naturally asymmetric, since each entity in the pair can have a different
set contacted by it alone. For example, in P2P recommendation, Bob may pre-
fer Alice since she is younger than 30 years old and likes music, while Charlie
could also prefer Alice, but only because she has age less than 30. Thus, Bob is
similar to Charlie since they have a common preference and vice versa. In sym-
metric similarity, similarity to each other is the same since they prefer the same
woman. However, Diana, who is 20 years old but hates music could be preferred
by Charlie but not by Bob, since Bob prefers women who like music. This shows
that Bob and Charlie’s preferences are not the same, and moreover, that Bob’s
similarity to Charlie is different from Charlie’s to Bob, and thus asymmetric.

Similarity can be represented by similar pairs. There are two roles within a
similar pair: actor and imitator, as illustrated in Fig. 1. To define those two
roles, we first define the coactor :
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Definition 1. A coactor is the entity who interacts with both entities in a sim-
ilar pair, i.e., either the candidate of recommendation in user-based CF or the
active entity in item-based CF.

In the example, Bob is similar to Charlie. If Emma is preferred by Bob and
likes music, we can recommend Emma to Charlie by user-based CF. Or if Emma
prefers Bob, we can recommend Charlie to Emma by item-based CF. In both
cases, we call Emma a coactor, the person who either receives recommendations
or is recommended. The two roles within a similar pair are defined as:

Definition 2. An actor is the entity within a similar pair that provides collab-
orative information, i.e., the entity who actually interacted with the coactor.

Bob is a actor in our example since he interacted with the coactor Emma.

Definition 3. An imitator is the other entity in the similar pair with similar
behaviour to the actor, i.e., either the active entity in user-based CF or candidate
in item-based CF.

Charlie is an imitator in our example for his similarity to the actor Bob. Given
the above definitions, we formally define symmetric and asymmetric similarity:

Definition 4. A symmetric similarity is a measurement of the amount of com-
monality in the behaviour of an actor and its imitator.

Definition 5. An asymmetric similarity is a measurement of the combined
(e.g., summed) amount of commonality and difference in the behaviour of an
actor and its imitator.

These definitions subsume both user-based and item-based CF into a novel uni-
fied model, which reveals the fundamental principles that drive the formation
of collaborative recommender systems by discovering the relation among the
entities involved in the collaborative recommendation (Fig. 1).

4 Methods

In this section, we describe the probabilistic CF framework and apply it to the
task of P2P recommendation from implicit, positive and negative, feedback.

4.1 Conditional Probabilistic Similarity

We define probabilistic similarity in the context of item-based CF as the prob-
ability that an action succeeds given that the subject of recommendation had a
positive interaction with one of the similar objects and the subject attempted
the same action with another similar object. This definition is sufficiently gen-
eral to cover both item-based and user-based CF (Fig. 2). It also covers people
to people recommendation, in which there are two types of actions: acceptance,
i.e., positive feedback, and rejection, i.e., negative feedback. Depending on the
type of action we can then define the probability of acceptance or rejection:
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Definition 6. The acceptance probability P (i|j) is the probability a positive ac-
tion will occur with entity pair i given a positive action occurred with pair j:

P (ic+|ac+) = P (ic+|ac+, ic) = P (ac+, ic+)

P (ac+, ic)
=

|ae+ ∩ ie+|e∈E

|ae+ ∩ ie|e∈E
(1)

where P is the probability, E the set of entities in the training set, i the imitator
in Definition 3, c the coactor in Definition 1 and a the actor in Definition 2.

Definition 7. The rejection probability P (x|y) is the probability a negative ac-
tion will occur with entity pair x given a positive action occurred with pair y:

P (ic−|ac+) = |ae+ ∩ ie−|e∈E

|ae+ ∩ ie|e∈E
(2)

Note that the conditional probability-based similarity of [8] occurs as a special
case of this framework when there is only a single type of action. For example,
in item-based CF the similarity between two items is the conditional probability
that one item will be purchased given that the other has been purchased. This is
equivalent to P (ic|ac), which is obtained by dropping the sign of the interactions
and simplifying in either of Definitions 1 or 2, when they become identical.

To compute the acceptance and rejection probability, as shown in Fig. 2,
we first find the number (C) of common entities each of which has a positive
action with the actor, and either a positive or negative action with the imitator.
Here the common entities with negative actions with respect to the actor (−+
or −−), shown greyed-out in Fig. 2, are not taken into account. Secondly, we
count how many of those have positive actions in common with the imitator (A),
and how many of them have negative actions with the imitator (B). Then, the
acceptance probability is (A) divided by (C) and the rejection probability is (B)
divided by (C). For the example in Fig. 2, the number of such common entities
(in the dashed circle) is 4. Out of these the number of entities having positive
actions with the imitator (++) is 2 and those having negative actions (+−) is 2.
Therefore, the acceptance probability is 2/4 = 0.5 and the rejection probability
is 2/4 = 0.5. In this case the actor and imitator as similar entities have equivalent
acceptance and rejection probability with respect to the coactors.

4.2 Probability Residue

We consider both acceptance probability and rejection probability in estimating
the impact of the preferences of similar entities. If we have a similar pair for
which the acceptance probability (P+, for short) is greater than the rejection
probability (P−), we would naturally be inclined to decide that the similar pair
will contribute to the acceptance of the recommendation of a similar entity.
Conversely, if P− is greater than P+, we would be inclined to consider rejection.
To justify this decision procedure, we can calculate the probability of error.
Whenever we observe a particular similar pair i, the probability of an error is:

P (error|i) =
{
P− if we decide acceptance
P+ if we decide rejection

(3)
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Given i we can minimise the probability of error by deciding acceptance if P+ >
P− and rejection otherwise. Thus, the probability residue is the contribution of
each similar entity to the ranking by minimising the decision error:

Definition 8. The probability residue is the difference between the acceptance
probability and rejection probability:

ωai = P (ic+|ac+)− P (ic−|ac+) = P+ − P− (4)

The probability residue reflects the balance of the acceptance and rejection prob-
ability of an interaction between a pair of entities. It measures the degree to
which the interaction departs from random, i.e., increases the possibility of ei-
ther success or failure. Thus, a similar entity will contribute towards a positive
rating and thus success if the probability residue ωai > 0, contribute towards
a negative rating and thus failure if the probability residue ωai < 0, or not
contribute to recommendation at all if the probability residue ωai = 0.

For the example in Fig. 2 the probability residue is 0 and thus will be ignored
in recommendation, since the actor as a similar entity to the imitator, as an
active entity or candidate, has equivalent acceptance and rejection probability.

4.3 Rating

Rating of candidates as active entities is then based on probability residues. It
is the sum of probability residues of all the entities similar to the current active
entity corresponding to a candidate:

r =
∑
k∈S

ωk (5)

where S is the set of similar entities and ωk the probability residue of Definition 8.

Theorem 1. If ω is a probability residue and |S| is the number of similar enti-
ties, then the candidate rating function r of Equation 5 is a non-monotonically
increasing function on the number of similar entities |S|.
Proof. Since ωi could be negative, for all |S1| and |S2| such that |S1| ≤ |S2|, one
could have r(|S1|) ≥ r(|S2|) according to Equation 5. Thus function r does not
preserve the ordering and is non-monotonic.

Notice that this non-monotonic characteristic of the rating function is desired
in recommender systems. In conventional recommender systems [11,13,8], the
rating functions are usually monotonically increasing on the number of similar
entities. This is a problem since it will cause popular (i.e., preferred by a large
number of entities) or active (i.e., preferring a large number of entities) entities
to have higher rating than others since popular or active entities have usually
more similar entities than other entities.

More specifically, popular objects are preferred by a large number of subjects
and thus have more chance to be co-preferred with other objects, which makes
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popular objects have more similar objects than non-popular ones. Similarly,
active subjects prefer a large number of objects and thus have more chance to
co-prefer with other subjects, which makes active subjects have more similar
subjects than non-active ones. However, since the rating function defined in
Equation 5 is non-monotonic it is not necessarily increasing for popular or active
entities. Therefore, by using the probability residue defined above, we are able
to avoid the common problem of favouring popular entities in recommendation,
and therefore increase the diversity as shown in Section 5. Promoting novel
recommendation generates global diversity and improves user experience [6].

A ranked candidate list is then generated by descending sort of all candidates
on rating. For tied ratings, we have two steps: (i) favour the candidate with a
greater total number of interactions used in calculating similarity; and if this is
also tied (ii) favour the candidate with more contributed similar pairs. In these
rare cases the increased support means favouring more reliable ratings.

4.4 Summary of the ProCF Algorithm

The proposed framework is realised in the ProCF algorithm. It constructs a
similarity table and then generates a recommended candidate list for each sub-
ject. Specifically, to construct the similarity table, ProCF collects all similar
pairs, each of which has at least one common coactor, and then assigns each pair
a probability residue value according to Equation 4. To generate recommenda-
tions for an active entity, ProCF finds each imitator in the similarity table for
which all pairs of their corresponding actors were interacted with by the active
entity. It then computes a rating for the imitator according to Equation 5 and
adds the imitator to the recommendation list.

The complexity of ProCF is approximately O(N), and O(N2) in the worst
case, where N is the number of entities in the training set, since it examines
N entities and up to N − 1 other entities for each entity. However, because
the average entity interaction vector is extremely sparse, the performance of
the algorithm tends to be closer to O(N) in practice. Scanning every entity
is approximately O(N) rather than O(N2) because almost all entity interaction
vectors contain only a small number of interactions with other entities. Although
there are a few entities who interact with a significant percentage of all other
entities, each still only requires O(N) processing time.

5 Experiments

In these experiments, we evaluate the proposed approach on people to peo-
ple recommendation (Top-N recommendation) in a demanding real-world social
network data set. We compare the proposed probabilistic CF method to several
conventional recommendation strategies based on a set of common evaluation
metrics. Owing to space restrictions, we can only summarize our results, which
will be detailed in an extended version of the paper.
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Datasets. Data was collected from a commercial online dating site. In online
dating, people are looking for potential partners. A user contacts people they like
by sending messages. Receivers of messages then have options to reply, positively
if they like the sender, negatively if they do not like the sender or are not sure,
or they may just not reply. Specifically, the data contains interaction records,
each of which represents a contact by a tuple containing the identities of the
sender and receiver and whether the contact was accepted (positive response
from receiver to sender) or not. The former case is denoted a successful or positive
interaction, otherwise it is unsuccessful or negative.

The training set covered a four week period in February, 2010 and the test set
a one week period from the first of March, 2010 (test results from a three week
period from the same date were essentially identical and are omitted due to lack
of space). Training and test sets contained all users with at least one contact in
the respective periods. The training (resp. test) sets contained 166699 (95814)
users with a total of 1710332 (436128) interaction tuples. Of these 264142 (66482)
were positive interactions and 1446190 (369646) were negative (including non-
replies). The default success rate (DSR), the proportion of interactions that were
positive, was 15.4% (15.2%).

Methodologies.We compare the proposed algorithm with the P2P Best 2CF+
method [12] on their evaluation metric and a new metric defined below. As far
as we are aware this is the best-performing published CF method for recom-
mendation in online dating. Model-based methods such as matrix factorisation
methods were also tested but were not able to handle such a large dataset.

We trained ProCF and Best 2CF+ using the above training set. The learned
model for each approach was then tested by generating the Top-N recommenda-
tions for each user in the test set. Finally, recommendations from ProCF and
Best 2CF+ were evaluated as described below and the results are compared.

Evaluation Metrics. Evaluation in this domain is more complex than standard
CF applications. Metrics used to capture key aspects of system performance
are defined as follows. Precision/Success Rate(SR): proportion of interactions
predicted to be successful that were actually successful to all predicted successful
interactions (PSI). Default Success Rate(DSR): proportion of actual successful
interactions (SI) to all interactions in the dataset. SRI : ratio of SR to DSR.
Recall and F Value: recall is proportion of true PSI to all true SI. F Value is
defined by F = 2∗Precision∗Recall

Precision+Recall . Accept Rate and ARI : accept rate (AR) is
proportion of true PSI to all PSI with either positive or negative reply. ARI
is the ratio of AR to default accept rate without recommendation. Reject Rate
and RRI : reject rate (RR) is proportion of false PSI with negative reply to
all PSI with any reply. RRI is the ratio of RR to default reject rate without
recommendation.

We use SRI to test how likely recommendation is to help the active user to
have a positive interaction. Recall and F value tests how different user behaviour
based on recommendation is to default. Finally, ARI and RRI test responses of
the recommended user when the active user follows the recommendation.
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Table 1. Average Positive Reply Rate per Receiver

baseline all 100 90 80 70 60 50 40 30 20 10

B2CF 0.372 0.370 0.370 0.370 0.370 0.371 0.371 0.371 0.371 0.372 0.374 0.378
ProCF 0.372 0.369 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.372 0.379

Results. A comparison of ProCF and Best2CF+ on the test set in terms of the
evaluation metrics is shown in Fig. 3. Clearly ProCF outperforms Best 2CF+
on precision for all Top-N recommendations; the most significant comparative
improvement is on Top 100 where ProCF outperforms Best 2CF+ by 34%.
SRI shows that although Best 2CF+ improves the baseline performance of the
system for all Top-N , ProCF achieves greater improvement. Since [12] show
that Best 2CF+ outperforms traditional CFs on P2P recommendation, ProCF
has a clear advantage. This suggests that considering both positive and negative
collaborative information in creating similar pairs using probability residue leads
to recommending users with higher probabilities of successful interaction with
the active user. Recall and F Value improvements for ProCF indicates greater
reliability in recommendation. Also, ProCF shows increased accept rate and
reduced reject rate for the most highly ranked users. This supports the hypothesis
that by looking at the difference between positive and negative information,
ProCF can down-rank candidates with higher reject rate while up-ranking those
with higher accept rate.

In Table 1, we show the average positive reply rate (APRR) per receiver over
all recommended users compared to the those over all users in datasets. We
also compared ProCF to Best 2CF+ on APRR with ProCF shown in bold
in the figure. We can see from the results that both Best 2CF+ and ProCF
have a similar APRR to the baseline over all Top-N . Best 2CF+ achieved smaller
APRR than the baseline except from Top 20 and 10 while ProCF achieved even
smaller APRR than Best 2CF+ except only Top 10. This indicates that ProCF
does not recommend users who have higher positive reply rate. In contrast,
it recommends users with lower positive reply rate in general. A recommender
system that prefers recommending users with higher positive reply could improve
the success rate. However, ProCF does not have a concentration bias on those
users and thus does not commit the problem of recommending very frequent
items as in [8]. Diversity in P2P recommendation is important; for example,
recommending people who always say “yes” to any contact is poorly personalized
and leads to poor recommendation performance. ProCF’s achievement of high
success rate while maintaining diversity is a significant result.

Discussion.The experiments have shown that ProCF implementing our proba-
bilistic similarity function significantly outperforms Best 2CF+ on all evaluation
metrics used. This proves that ProCF also outperforms all standard CF meth-
ods and combined CF methods evaluated in [12]. Note that ProCF achieved its
performance by a single improved CF method not by any combination of CFs or
profile-based methods. The characteristics of ProCF and its good performance
suggest it could be used as an improved standard CF method to be integrated
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Fig. 3. Results on Test Set (1-7 March, 2010). ProCF significantly outperformed
Baseline and Best 2CF+ in precision, accept rate and reject rate on all Top-N evalu-
ations and improved the recall/F value from Top 50 to Top 10). (For reject rate/RRI,
the lower the better. For others, the higher the better.)

into existing common recommendation frameworks for increased performance.
Beside good performance, ProCF has the advantage of being simple, easy to
implement and fast. All presented algorithms were implemented using SQL in
Oracle 11. ProCF required about 1 hour for training and several minutes for
testing on a workstation with 64-bit Windows 7 Professional, 2 processors of
Intel(R) Xeon(R) CPU x5660@2.80GHz and 32GB RAM.

6 Conclusion

We presented a general and straightforward framework, ProCF, for recom-
mender systems. Although ProCF is in general applicable to both I2P and P2P
recommendation, this paper focuses on P2P recommendation only. We demon-
strated the usefulness of ProCF in a set of extensive experiments. The ex-
periments were conducted on demanding real world datasets collected from a
commercial social network site. The experimental evaluation of ProCF shows
that it is suitable for P2P recommendation. The comparative evaluation to two of
the best CF methods on this task shows that ProCF outperforms the best CF-
based method for P2P recommendation. We also showed that ProCF retains
diversity of recommendation while providing higher accuracy recommendation.
It does not only recommend a small group of users with high positive reply rate.

An appealing property of our framework is its simplicity and modularity.
Because it follows a standard CF framework with its improved similarity and
ranking functions, it can be applied or integrated into existing CF recommender
systems to improve system performance.

In the future, we will extend this work to test ProCF using other probabilistic
functions for similarity and other distribution functions for calculating proba-
bility residue. We will also investigate the integration of profile based approach
into ProCF for even better recommendation performance.
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