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Preface

As the Program Committee Co-chairs, we welcome you to the proceedings of
the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD 2013), held at Gold Coast, Australia, during April 14-17, 2013.

The PAKDD conference series, since its inception in 1997, has been a leading
international conference in the areas of data mining and knowledge discovery
(KDD). It provides an inviting and inspiring forum for researchers and practi-
tioners, from both academia and industry, to share new ideas, original research
results, and practical experience. The 17th edition continued the great tradition,
and had three world-class keynote speeches, a wonderful technical program, a
handful of high-quality tutorials and workshops, as well as an interesting invited
talk from industry.

The PAKDD 2013 conference received 363 submissions to the technical pro-
gram, involving more than 1,000 authors in total. In the rigorous double-blind
review process, each submission was reviewed by one senior Program Commit-
tee member and at least three Program Committee members. Many submissions
were extensively and thoroughly discussed by the reviewers. Based on the de-
tailed and critical discussion and reviews, the senior Program Committee mem-
bers made recommendations. Overall, 98 papers from 341 authors were accepted
in the technical program, yielding a 27% acceptance rate. Of these, 39 (10.7%)
had long presentations (30 minutes) and 59 (16.3%) had short presentations (15
minutes). The technical program consisted of 22 sessions, covering the general
fields of data mining and KDD extensively, including pattern mining, classifi-
cation, graph mining, applications, machine learning, feature selection and di-
mensionality reduction, multiple information sources mining, social networks,
clustering, text mining, text classification, imbalanced data, privacy-preserving
data mining, recommendation, multimedia data mining, stream data mining,
data preprocessing and representation.

We were lucky to have three world-class keynote speakers this year. Usama
Fayyad, a renowned pioneer in big data entrepreneurship, addressed us on the
big picture of big data. Huan Liu, a world-wide leader in social media mining,
discussed this exciting new frontier of data mining. Qiang Yang, a famous expert
on artificial intelligence and machine learning, talked on how machine learning
can address the big data challenge. We were also pleased to have Alexandros
Batsakis as an invited speaker from industry. He shared with us the latest de-
velopments on big data analytics infrastructure and enterprise applications.

The conference also included six workshops, covering a few exciting and fast-
growing hot topics. We also had five very timely and educational tutorials, cov-
ering the hot topics of social networks, transfer learning, stream mining, outlier
detection, and feature discovery.



VI Preface

In addition to the intellectually inspiring keynote speeches, technical pro-
gram, workshops and tutorials, we had several dynamic social events to facili-
tate communication and informal interaction, including a welcome reception, a
banquet, and an excursion.

Putting together a conference like PAKDD is never easy. It becomes pos-
sible only with tremendous contributions from the organizing team and many
volunteers. We thank Jiuyong Li, Kay Chen Tan, and Bo Liu for organizing the
workshop program. We also thank Tu Bao Ho and Mengjie Zhang for organizing
the tutorial program. We are grateful to Chengqi Zhang for his leadership in
the award selection. We owe a big thank-you to the 39 senior Program Commit-
tee members, 151 Program Committee members, and the external reviewers for
their great contributions and collaboration. We thank Guandong Xu for assem-
bling the proceedings. We also thank the General Chairs, Hiroshi Motoda and
Longbing Cao, and the local organization team for their great support. Without
the dedicated hard work of so many people, PAKDD 2013 would simply have
been mission impossible.

February 2013 Jian Pei
Vincent S. Tseng
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Abstract. Similarity in people to people (P2P) recommendation in
social networks is not symmetric, where both entities of a relationship
are involved in the reciprocal process of determining the success of the
relationship. The widely used memory-based collaborative filtering (CF)
has advantages of effectiveness and efficiency in traditional item to people
recommendation. However, the critical step of computation of similar-
ity between the subjects or objects of recommendation in memory-based
CF is typically based on a heuristically symmetric relationship, which
may be flawed in P2P recommendation. In this paper, we show that
memory-based CF can be significantly improved by using a novel asym-
metric model of similarity that considers the probabilities of both pos-
itive and negative behaviours, for example, in accepting or rejecting a
recommended relationship. We present also a unified model of the funda-
mental principles of collaborative recommender systems that subsumes
both user-based and item-based CF. Our experiments evaluate the pro-
posed approach in P2P recommendation in the real world online dating
application, showing significantly improved performance over traditional
memory-based methods.

Keywords: Social Network Mining, Recommender Systems.

1 Introduction

Memory-based collaborative filtering (CF) is the basis of many commercial rec-
ommender systems, of which Amazon’s [I3] item-based approach is probably
the best known. In this work we present a unified framework incorporating both
item-based and user-based CF and within it develop a novel probabilistic method
of similarity that overcomes some of the limitations of previous approaches.
Conventional recommender systems attempt to discover user preferences over
items by modelling the relation between users and items. The aim is to recom-
mend items that match the taste (likes or dislikes) of users in order to assist
the active user, i.e., the user who will receive recommendations, to select items
from an overwhelming set of choices. It is used to 1) predict whether a partic-
ular user will like a particular item (a prediction problem), or 2) identify a set
of N items that will be of interest to a certain user (a Top-N recommendation

J. Pei et al. (Eds.): PAKDD 2013, Part II, LNAI 7819, pp. 1-[Z] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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problem). Recently, recommender systems have also been extended to people to
people (P2P) recommendation to model the relation between the active user and
other users by finding user preferences over other users.

Assuming that users with similar tastes would rate items (or other users)
similarly, memory-based collaborative filtering (CF) methods recommend items
based on heuristic aggregated user preferences for items, independent of the
availability of item descriptions. In this paper we formalise memory-based CF's
in a uniform way that allows the derivation of a probabilistic method, PROCF,
that is shown to improve performance in a P2P recommendation application.

Section [2] discusses related work. Section [B] defines the problems. Section M
develops a probabilistic approach for both recommendation and ranking. Exper-
imental evaluation is in Section [Bl and we conclude in Section

2 Related Work

CF algorithms fall into two categories: model-based and memory-based ap-
proaches. Model-based CF [II2[T0/16] uses the collection of ratings to learn a
model, which is then used to make rating predictions. Although model-based
methods have reported higher accuracy of recommendation than memory-based
approaches, there are some limitations. These methods are computationally ex-
pensive since they usually require all users and items to be used in creating
models, and the number of users and items is typically large. Memory-based CF
is popular in many commercial recommender systems, being effective and easy
to implement. Memory-based approaches [2ITIIT3II8] make rating predictions
based on the entire set or a sample of items previously rated by users. The un-
known rating value r. s of the active user ¢ for an item s is typically computed
as an aggregate of the ratings of users similar to ¢ for the same item s. This
aggregate can be an average or a weighted sum, where the weight is a distance
that measures the similarity between users ¢; and co. By using similarity as a
weight, more similar users make a greater contribution to a predicted rating.
In memory-based CF, similarity computation between items or users is essen-
tial. The definition of similarity measure varies depending on the recommenda-
tion application. Often the similarity between two users is based on the ratings
of items both users have rated. Two of the most popular approaches are corre-
lation [TTJI8] and cosine-based [2JI7]. Extensions to these include default voting,
inverse user frequency, case amplification, and weighted-majority prediction [2If7].
Usually these use heuristics to model the weights and are not able to handle the
different rating scales of different users. Solutions to this problem include the ad-
justed weighted sum and preference-based filtering [14], which focuses on predict-
ing the relative preferences of users instead of absolute rating values.
Memory-based probabilistic CF is an alternative. Yu et al. [20] use a mixture
model for user preferences. Deshpande and Karypis [8] proposed conditional
probability based similarity in item-based CF. These models only consider com-
mon purchase information, which causes the problem that frequently purchased
items tend to have high conditional probabilities, leading to reduced diversity
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in recommendation [9]. Adding a scaling parameter to control for the effect of
popular items in the model may help, but finding a suitable parameter value be-
comes challenging. Also, these methods are uni-directional, relying only on users’
taste, so they are not applicable to P2P recommendation, which is reciprocal.

People recommenders deal with the problem of finding meaningful relation-
ships among people or organisations. In online social networks, relationships
can be friends [I9] e.g., on Facebook, professional contacts [3] e.g., on LinkedIn,
online dating [512], or jobs on employment websites [I5]. The nature of these do-
mains makes P2P recommender systems significantly different from traditional
item to people (I2P) recommenders. The basic difference in the people recom-
mender domain is the characteristic of reciprocal relationships.

3 Problem Statement

Recommender systems can be classified into two general classes: classical item to
people recommender systems (I2PRec) and people to people recommender sys-
tems (P2PRec). In classical I2PRec, there are two types of entities, buyers (e.g.,
customers) and items (e.g., books, movies, songs). In recent P2PRec [5], there
only exists a uniform entity type: users (e.g., online dating service subscribers,
job seekers and employers). To distinguish the different roles in a recommenda-
tion, we use subject, S = {s1,..., 55|}, to refer to the recommendation recipient
(e.g., customers in I2PRec and active partner seekers for P2PRec) and object,
O = {o1,...,0/0|}, to refer to the recommendation candidate (e.g., books in
I2PRec and partner seekers in P2PRec). Recommender systems using CF meth-
ods rely on collaborative information. There are several types of collaborative
information. One important distinction is between explicit (i.e., ratings, up and
down votes) and implicit (i.e., clicks, purchases, contacts, replies) expressions of
user preferences. Depending on the type of system, implicit information may be
positive-only, i.e., no recorded negative preference observations, or positive-and-
negative, i.e., both positive and negative preference observations are available.
In I2PRec, collaborative information used in traditional CF is merely based on
the behaviours of subjects, i.e., the preference of buyers determines the transac-
tions that represent the collaborative information. However, in P2PRec, collab-
orative information usually depends on behaviours of both subject and object,
since the relationship between the subject and the object can only be estab-
lished when both parties agree on it, denoted by a successful interaction (i.e.,
the subject makes contact to express interest and gets positive feedback from
the object). We use so' to refer to this, representing the establishment of a
successful interaction. Similarly, so™ refers to an unsuccessful interaction. This
requires P2PRec to consider collaborative information based on behaviours of
both subject and object rather than only those of subject, which consequently
prevents traditional I2PRec from solving the P2P recommendation problem [4].
The task of P2P recommendation from implicit, positive and negative, pref-
erences is to rank the objects from a candidate set O€ for a subject according to
the probability of establishing a relationship between them based on the collab-
orative information. This task is related to, but distinct from, rating prediction,
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Fig. 1. A general framework for CF. In user- Fig. 2. Construction of probabilistic
based CF (UBCF) (resp. item-based CF similarity. Actor and Imitator both in-
(IBCF)), Coactor is the candidate entity (ac- teract with Coactor entities, with four
tive entity), Actor the entity similar to the possible outcomes, e.g., the label (++)
active entity (candidate entity), Imitator the means that both interactions have a
active entity (candidate entity). (Section[3)  positive outcome.
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where the task is to predict how much a subject will like an object. Therefore, a
ranked list of candidate objects for each subject, rather than an explicit rating,
is the output of a typical P2P recommender.

Similarity. Memory-based CF approaches to recommender systems differ ac-
cording to the method used to compute the similarity between the various sub-
jects/objects, which consequently determines the overall performance of the rec-
ommender. In general, the similarity between two entities should be high if they
have interacted with a large set of others in common and low if few in common.
In this case, the similarity between two entities is symmetric since the common
set is shared with both entities and no other information is considered. But this
may not be sufficient, since other subjects/objects that were not interacted with
in common by the similar pairs, but only by one in the pair, can have impact
on the similarity and thus the recommendation. When using information from
such entities not interacted with in common by the similar pairs, similarity be-
comes naturally asymmetric, since each entity in the pair can have a different
set contacted by it alone. For example, in P2P recommendation, Bob may pre-
fer Alice since she is younger than 30 years old and likes music, while Charlie
could also prefer Alice, but only because she has age less than 30. Thus, Bob is
similar to Charlie since they have a common preference and vice versa. In sym-
metric similarity, similarity to each other is the same since they prefer the same
woman. However, Diana, who is 20 years old but hates music could be preferred
by Charlie but not by Bob, since Bob prefers women who like music. This shows
that Bob and Charlie’s preferences are not the same, and moreover, that Bob’s
similarity to Charlie is different from Charlie’s to Bob, and thus asymmetric.

Similarity can be represented by similar pairs. There are two roles within a
similar pair: actor and imitator, as illustrated in Fig. [l To define those two
roles, we first define the coactor:
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Definition 1. A coactor is the entity who interacts with both entities in a sim-
tlar pair, i.e., either the candidate of recommendation in user-based CF or the
active entity in item-based CF.

In the example, Bob is similar to Charlie. If Emma is preferred by Bob and
likes music, we can recommend Emma to Charlie by user-based CF. Or if Emma
prefers Bob, we can recommend Charlie to Emma by item-based CF. In both
cases, we call Emma a coactor, the person who either receives recommendations
or is recommended. The two roles within a similar pair are defined as:

Definition 2. An actor is the entity within a similar pair that provides collab-
orative information, i.e., the entity who actually interacted with the coactor.

Bob is a actor in our example since he interacted with the coactor Emma.

Definition 3. An imitator is the other entity in the similar pair with similar
behaviour to the actor, i.e., either the active entity in user-based CF or candidate
in item-based CF.

Charlie is an imitator in our example for his similarity to the actor Bob. Given
the above definitions, we formally define symmetric and asymmetric similarity:

Definition 4. A symmetric similarity is a measurement of the amount of com-
monality in the behaviour of an actor and its imitator.

Definition 5. An asymmetric similarity is a measurement of the combined
(e.g., summed) amount of commonality and difference in the behaviour of an
actor and its imitator.

These definitions subsume both user-based and item-based CF into a novel uni-
fied model, which reveals the fundamental principles that drive the formation
of collaborative recommender systems by discovering the relation among the
entities involved in the collaborative recommendation (Fig. [I).

4 Methods

In this section, we describe the probabilistic CF framework and apply it to the
task of P2P recommendation from implicit, positive and negative, feedback.

4.1 Conditional Probabilistic Similarity

We define probabilistic similarity in the context of item-based CF as the prob-
ability that an action succeeds given that the subject of recommendation had a
positive interaction with one of the similar objects and the subject attempted
the same action with another similar object. This definition is sufficiently gen-
eral to cover both item-based and user-based CF (Fig. ). It also covers people
to people recommendation, in which there are two types of actions: acceptance,
i.e., positive feedback, and rejection, i.e., negative feedback. Depending on the
type of action we can then define the probability of acceptance or rejection:
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Definition 6. The acceptance probability P(i|j) is the probability a positive ac-
tion will occur with entity pair i given a positive action occurred with pair j:

P(act,ict)  |aet Niet|eer

P(ict|act) = P(ict|ac™,ic) = Plact,ic) — |ae+ Nielocs
i (&

(1)
where P is the probability, E the set of entities in the training set, 7 the imitator
in Definition [3], ¢ the coactor in Definition [l and a the actor in Definition

Definition 7. The rejection probability P(x|y) is the probability a negative ac-
tion will occur with entity pair x given a positive action occurred with pair y:

RSN
P(ic”|act) = jac™ A€ |eer (2)
Note that the conditional probability-based similarity of [8] occurs as a special
case of this framework when there is only a single type of action. For example,
in item-based CF the similarity between two items is the conditional probability
that one item will be purchased given that the other has been purchased. This is
equivalent to P(ic|ac), which is obtained by dropping the sign of the interactions
and simplifying in either of Definitions [Tl or 2l when they become identical.

To compute the acceptance and rejection probability, as shown in Fig. 2]
we first find the number (C) of common entities each of which has a positive
action with the actor, and either a positive or negative action with the imitator.
Here the common entities with negative actions with respect to the actor (—+
or ——), shown greyed-out in Fig. Bl are not taken into account. Secondly, we
count how many of those have positive actions in common with the imitator (A),
and how many of them have negative actions with the imitator (B). Then, the
acceptance probability is (A) divided by (C) and the rejection probability is (B)
divided by (C). For the example in Fig. 2] the number of such common entities
(in the dashed circle) is 4. Out of these the number of entities having positive
actions with the imitator (++) is 2 and those having negative actions (+—) is 2.
Therefore, the acceptance probability is 2/4 = 0.5 and the rejection probability
is 2/4 = 0.5. In this case the actor and imitator as similar entities have equivalent
acceptance and rejection probability with respect to the coactors.

~ Jaet Nieleer

4.2 Probability Residue

We consider both acceptance probability and rejection probability in estimating
the impact of the preferences of similar entities. If we have a similar pair for
which the acceptance probability (P, for short) is greater than the rejection
probability (P~), we would naturally be inclined to decide that the similar pair
will contribute to the acceptance of the recommendation of a similar entity.
Conversely, if P~ is greater than PT, we would be inclined to consider rejection.
To justify this decision procedure, we can calculate the probability of error.
Whenever we observe a particular similar pair 4, the probability of an error is:

P(error|i) = {

P~ if we decide acceptance 3)
PT if we decide rejection
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Given i we can minimise the probability of error by deciding acceptance if PT >
P~ and rejection otherwise. Thus, the probability residue is the contribution of
each similar entity to the ranking by minimising the decision error:

Definition 8. The probability residue is the difference between the acceptance
probability and rejection probability:

Wai = P(ict|act) — P(ic”|act) = P* — P~ (4)

The probability residue reflects the balance of the acceptance and rejection prob-
ability of an interaction between a pair of entities. It measures the degree to
which the interaction departs from random, i.e., increases the possibility of ei-
ther success or failure. Thus, a similar entity will contribute towards a positive
rating and thus success if the probability residue wy; > 0, contribute towards
a negative rating and thus failure if the probability residue wy; < 0, or not
contribute to recommendation at all if the probability residue wy; = 0.

For the example in Fig. 2l the probability residue is 0 and thus will be ignored
in recommendation, since the actor as a similar entity to the imitator, as an
active entity or candidate, has equivalent acceptance and rejection probability.

4.3 Rating

Rating of candidates as active entities is then based on probability residues. It
is the sum of probability residues of all the entities similar to the current active
entity corresponding to a candidate:

T:Zwk (5)

kes
where S is the set of similar entities and wy, the probability residue of Definition 8l

Theorem 1. If w is a probability residue and |S| is the number of similar enti-
ties, then the candidate rating function v of Equation [d is a non-monotonically
increasing function on the number of similar entities |S|.

Proof. Since w; could be negative, for all |S1| and | S| such that |S1| < |Sa|, one
could have 7(|S1]) > r(]S2|) according to Equation Bl Thus function r does not
preserve the ordering and is non-monotonic.

Notice that this non-monotonic characteristic of the rating function is desired
in recommender systems. In conventional recommender systems [ITJI38], the
rating functions are usually monotonically increasing on the number of similar
entities. This is a problem since it will cause popular (i.e., preferred by a large
number of entities) or active (i.e., preferring a large number of entities) entities
to have higher rating than others since popular or active entities have usually
more similar entities than other entities.

More specifically, popular objects are preferred by a large number of subjects
and thus have more chance to be co-preferred with other objects, which makes
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popular objects have more similar objects than non-popular ones. Similarly,
active subjects prefer a large number of objects and thus have more chance to
co-prefer with other subjects, which makes active subjects have more similar
subjects than non-active ones. However, since the rating function defined in
Equation[(lis non-monotonic it is not necessarily increasing for popular or active
entities. Therefore, by using the probability residue defined above, we are able
to avoid the common problem of favouring popular entities in recommendation,
and therefore increase the diversity as shown in Section Bl Promoting novel
recommendation generates global diversity and improves user experience [6].

A ranked candidate list is then generated by descending sort of all candidates
on rating. For tied ratings, we have two steps: (i) favour the candidate with a
greater total number of interactions used in calculating similarity; and if this is
also tied (i) favour the candidate with more contributed similar pairs. In these
rare cases the increased support means favouring more reliable ratings.

4.4 Summary of the ProCF Algorithm

The proposed framework is realised in the PROCF algorithm. It constructs a
similarity table and then generates a recommended candidate list for each sub-
ject. Specifically, to construct the similarity table, PROCF collects all similar
pairs, each of which has at least one common coactor, and then assigns each pair
a probability residue value according to Equation @ To generate recommenda-
tions for an active entity, PROCF finds each imitator in the similarity table for
which all pairs of their corresponding actors were interacted with by the active
entity. It then computes a rating for the imitator according to Equation Bl and
adds the imitator to the recommendation list.

The complexity of PROCF is approximately O(N), and O(N?) in the worst
case, where N is the number of entities in the training set, since it examines
N entities and up to N — 1 other entities for each entity. However, because
the average entity interaction vector is extremely sparse, the performance of
the algorithm tends to be closer to O(N) in practice. Scanning every entity
is approximately O(N) rather than O(N?) because almost all entity interaction
vectors contain only a small number of interactions with other entities. Although
there are a few entities who interact with a significant percentage of all other
entities, each still only requires O(IN) processing time.

5 Experiments

In these experiments, we evaluate the proposed approach on people to peo-
ple recommendation (Top-N recommendation) in a demanding real-world social
network data set. We compare the proposed probabilistic CF method to several
conventional recommendation strategies based on a set of common evaluation
metrics. Owing to space restrictions, we can only summarize our results, which
will be detailed in an extended version of the paper.
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Datasets. Data was collected from a commercial online dating site. In online
dating, people are looking for potential partners. A user contacts people they like
by sending messages. Receivers of messages then have options to reply, positively
if they like the sender, negatively if they do not like the sender or are not sure,
or they may just not reply. Specifically, the data contains interaction records,
each of which represents a contact by a tuple containing the identities of the
sender and receiver and whether the contact was accepted (positive response
from receiver to sender) or not. The former case is denoted a successful or positive
interaction, otherwise it is unsuccessful or negative.

The training set covered a four week period in February, 2010 and the test set
a one week period from the first of March, 2010 (test results from a three week
period from the same date were essentially identical and are omitted due to lack
of space). Training and test sets contained all users with at least one contact in
the respective periods. The training (resp. test) sets contained 166699 (95814)
users with a total of 1710332 (436128) interaction tuples. Of these 264142 (66482)
were positive interactions and 1446190 (369646) were negative (including non-
replies). The default success rate (DSR), the proportion of interactions that were
positive, was 15.4% (15.2%).

Methodologies. We compare the proposed algorithm with the P2P Best 2CF+
method [12] on their evaluation metric and a new metric defined below. As far
as we are aware this is the best-performing published CF method for recom-
mendation in online dating. Model-based methods such as matrix factorisation
methods were also tested but were not able to handle such a large dataset.

We trained PROCF and Best 2CF+ using the above training set. The learned
model for each approach was then tested by generating the Top-N recommenda-
tions for each user in the test set. Finally, recommendations from PROCF and
Best 2CF+ were evaluated as described below and the results are compared.

Evaluation Metrics. Evaluation in this domain is more complex than standard
CF applications. Metrics used to capture key aspects of system performance
are defined as follows. Precision/Success Rate(SR): proportion of interactions
predicted to be successful that were actually successful to all predicted successful
interactions (PSI). Default Success Rate(DSR): proportion of actual successful
interactions (SI) to all interactions in the dataset. SRI: ratio of SR to DSR.
Recall and F Value: recall is proportion of true PSI to all true SI. F Value is
defined by F = %L ;;CSZZ‘ZZZi’;%}EiZ’}fl Accept Rate and ARI: accept rate (AR) is
proportion of true PSI to all PSI with either positive or negative reply. ARI
is the ratio of AR to default accept rate without recommendation. Reject Rate
and RRI: reject rate (RR) is proportion of false PSI with negative reply to
all PSI with any reply. RRI is the ratio of RR to default reject rate without
recommendation.

We use SRI to test how likely recommendation is to help the active user to
have a positive interaction. Recall and F value tests how different user behaviour
based on recommendation is to default. Finally, ARI and RRI test responses of
the recommended user when the active user follows the recommendation.
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Table 1. Average Positive Reply Rate per Receiver

baseline all 100 90 8 70 60 50 40 30 20 10
B2CF 0.372 0.370 0.370 0.370 0.370 0.371 0.371 0.371 0.371 0.372 0.374 0.378
ProCF 0.372 0.369 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.372 0.379

Results. A comparison of PROCF and Best2CF+ on the test set in terms of the
evaluation metrics is shown in Fig. Bl Clearly PROCF outperforms Best 2CF+
on precision for all Top-N recommendations; the most significant comparative
improvement is on Top 100 where PROCF outperforms Best 2CF+ by 34%.
SRI shows that although Best 2CF+ improves the baseline performance of the
system for all Top-N, PROCF achieves greater improvement. Since [I2] show
that Best 2CF+ outperforms traditional CFs on P2P recommendation, PROCF
has a clear advantage. This suggests that considering both positive and negative
collaborative information in creating similar pairs using probability residue leads
to recommending users with higher probabilities of successful interaction with
the active user. Recall and F Value improvements for PROCF indicates greater
reliability in recommendation. Also, PROCF shows increased accept rate and
reduced reject rate for the most highly ranked users. This supports the hypothesis
that by looking at the difference between positive and negative information,
PROCF can down-rank candidates with higher reject rate while up-ranking those
with higher accept rate.

In Table [, we show the average positive reply rate (APRR) per receiver over
all recommended users compared to the those over all users in datasets. We
also compared PROCF to Best 2CF+ on APRR with PROCF shown in bold
in the figure. We can see from the results that both Best 2CF+ and PROCF
have a similar APRR to the baseline over all Top-IV. Best 2CF+ achieved smaller
APRR than the baseline except from Top 20 and 10 while PROCF achieved even
smaller APRR than Best 2CF+ except only Top 10. This indicates that PROCF
does not recommend users who have higher positive reply rate. In contrast,
it recommends users with lower positive reply rate in general. A recommender
system that prefers recommending users with higher positive reply could improve
the success rate. However, PROCF does not have a concentration bias on those
users and thus does not commit the problem of recommending very frequent
items as in [§]. Diversity in P2P recommendation is important; for example,
recommending people who always say “yes” to any contact is poorly personalized
and leads to poor recommendation performance. PROCF’s achievement of high
success rate while maintaining diversity is a significant result.

Discussion. The experiments have shown that PROCF implementing our proba-
bilistic similarity function significantly outperforms Best 2CF+ on all evaluation
metrics used. This proves that PROCF also outperforms all standard CF meth-
ods and combined CF methods evaluated in [I2]. Note that PROCF achieved its
performance by a single improved CF method not by any combination of CFs or
profile-based methods. The characteristics of PROCF and its good performance
suggest it could be used as an improved standard CF method to be integrated
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Fig.3. Results on Test Set (1-7 March, 2010). PROCF significantly outperformed
Baseline and Best 2CF+ in precision, accept rate and reject rate on all Top-N evalu-
ations and improved the recall/F value from Top 50 to Top 10). (For reject rate/RRI,
the lower the better. For others, the higher the better.)

into existing common recommendation frameworks for increased performance.
Beside good performance, PROCF has the advantage of being simple, easy to
implement and fast. All presented algorithms were implemented using SQL in
Oracle 11. PROCF required about 1 hour for training and several minutes for
testing on a workstation with 64-bit Windows 7 Professional, 2 processors of
Intel(R) Xeon(R) CPU x5660@2.80GHz and 32GB RAM.

6 Conclusion

We presented a general and straightforward framework, PROCF, for recom-
mender systems. Although PROCF is in general applicable to both I2P and P2P
recommendation, this paper focuses on P2P recommendation only. We demon-
strated the usefulness of PROCF in a set of extensive experiments. The ex-
periments were conducted on demanding real world datasets collected from a
commercial social network site. The experimental evaluation of PROCF shows
that it is suitable for P2P recommendation. The comparative evaluation to two of
the best CF methods on this task shows that PROCF outperforms the best CF-
based method for P2P recommendation. We also showed that PROCF retains
diversity of recommendation while providing higher accuracy recommendation.
It does not only recommend a small group of users with high positive reply rate.

An appealing property of our framework is its simplicity and modularity.
Because it follows a standard CF framework with its improved similarity and
ranking functions, it can be applied or integrated into existing CF recommender
systems to improve system performance.

In the future, we will extend this work to test PROCF using other probabilistic
functions for similarity and other distribution functions for calculating proba-
bility residue. We will also investigate the integration of profile based approach
into PROCF for even better recommendation performance.
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Abstract. Social network based applications such as Facebook, Mys-
pace and LinkedIn have become very popular among Internet users,
and a major research problem is how to use the social network infor-
mation to better infer users’ preferences and make better recommender
systems. A common trend is combining the user-item rating matrix and
users’ social network for recommendations. However, existing solutions
add the social network information for a particular user without con-
sidering the different characteristics of the products to be recommended
and the neighbors involved. This paper proposes a new approach that
can adaptively utilize social network information based on the context
characterized by products and users. This approach complements several
existing social network based recommendation algorithms and thus can
be integrated with existing solutions. Experimental results on Epinions
data set demonstrate the added value of the proposed solution in two
recommendation tasks: rating prediction and top-K recommendations.

1 Introduction

Recommender Systems have achieved great success and are becoming increasingly
popular in real world applications. For example, online stores, such as Amazon and
Netflix, provide customized recommendations for products or services based on
a user’s history. Many techniques have been proposed to make recommendations
for the users, among which collaborative filtering is one of the most popular ap-
proaches. The task of collaborative filtering is to predict the utility of items to a
particular user based on the user’s history and other users’ ratings.

With the increasing popularity of social network based applications such as
Facebook, Myspace and LinkedIn, how to make recommendations with addi-
tional information from a user’s social network has become an important re-
search topic. In real life, we often turn to our friends for some recommendations.
Besides, people with close relationship are likely to have similar tastes. There-
fore, a user’s social network may have two effects in the real world: help us in-
fer users’ preferences and influence users’ behaviors. Hence, social network info
might be an important element that recommender algorithms can take advantage
of. Recently, several researchers have started to tackle this problem [11][10] [9]. For
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example, Jamali et al. proposed a a model-based approach utilizing matrix fac-
torization techniques and incorporating trust propagation mechanisms [3]. Kon-
stas et al. adopt a Random Walk framework and focus on investigating the role
of additional relationships, such as friendships and social tags [6].

However, most of prior research only focused on a single-domain recom-
mendation and thus the solutions are less likely to work well in open domain
recommenders systems. There are three differences between the two kinds of
recommender systems: 1) Data is sparser in the open-domain systems. Open-
domain systems have much more items but less user feedback. That means the
user-item rating matrix is sparser in open-domain systems. Thus traditional col-
laborative filtering cannot achieve as good performance as in the single-domain
systems. 2) Data distribution varies according to the different domains. For
example, in the Epinions data set, online stores get more reviews(average 10
ratings/item), yet books tend to get less reviews(average 2 ratings/item)[] 3)
The social network structure is more complicated than the single-domain sys-
tem. Social network has been used to measure users’ similarities and infer users’
preferences in recommender systems. Most of prior research assumed that those
people trusted by same user have the same influence for the user. However in the
real world, people always selectively adopt others’ opinions. Some persons are
good at software, some persons are good at sports. People will consult different
persons due to the products they want to purchase. Each person may involve in
multiple social networks, we shouldn’t consider them equally.

Recently, Hao et al.[§] introduced a framework combining social networks
and collaborative filtering techniques for recommendation in an open domain
data set epinions.com. However, similar to existing research on social network
based recommender systems, their solution also combines the information using a
static weight, without considering how to balance the weights between user-item
ratings and social network information based on the context.

Motivated by early research on social network based recommender systems,
this paper focuses on a problem that existing solutions have not addressed: how
to differentiate the effect of social network info based on recommendation con-
text. Without loss of generality, we focus on three variables that characterize
the context: item category, the number of observed ratings for the user and
characteristics of the neighbors. Our experiments are based on these three char-
acteristics. We propose a solution to modify some existing social network based
recommendation algorithms so that the context could be considered.

Based on experimental results, we found: 1) users’ social networks influence
users’ behaviors and are useful for inferring users’ preference; 2) how to balance
the weights between user-item ratings and social network information is de-
pendent on the recommendation context and neighbors involved. Our proposed
approaches using adaptive weights can capture the recommendation context and
thus outperform the approaches using a static weight; 3) utilizing social network
information can help overcome the negative effect of rating variance, especially

! Based on the statistics of our crawled data.
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in an open-domain recommender system; 4) weighted differentiation of each in-
dividual in a social network can better model the influence of the social network.

2 Social Recommendation Approaches

Our approach is to start with state-of-the-art social network recommendation al-
gorithms, modify them so that product and neighborhood characteristics will be
considered when we trade off the predicted user preferences (without considering
social information) and user’s neighbors’ preferences.

Assume there are N items, M users in a recommender system. The rating
of user i for item j is denoted by r; ;. All the ratings from users to items are
denoted by a user-rating matrix R = {r; ;}. For some recommender systems,
users are connected in a social network. For example, if user 7 selects user k as a
trustable person or his/her friend, there is a directed connection from user ¢ to
user k. This network can be represented as a M x M matrix S = {s; x}, where
s;,; denotes how well user ¢ trust user k. In the simplest case, s; = 1 means
user i trusts user k, otherwise 0. The task is to recommend a list of items to a
user, and good items are those that user is likely to purchase, rate high, or click.

2.1 Singular Value Decomposition

Singular Value Decomposition(SVD) is a widely used collaborative filtering algo-
rithm. The central idea is factorizing the user-item rating matrix into low-rank
approximation based on low-dimensional hidden representations of users and
items, then utilizing them to predict the missing values in the rating matrix.
Let U € RP*M and V € RP*N be latent user and item matrices, with column
vectors u; and v; representing the latent/hidden vectors of user i and item j
respectively. D is the dimension of latent vectors. There are various ways to find
the latent representations of users and items. We can view it as a statistical
modeling problem, where the observed ratings are generated as follows [12]

p(R|U,V,0?) = H N (rij

ri;ER

u/v;,0?) (1)

where N (z|p,0?) is a Gaussian distribution with mean p and variance o2.

The dot product of latent user and item vectors ul v; is the expected mean
of rating r; ;. The latent vectors are assumed to be generated independently
from Gaussian distributions of zero-mean: p(Ulo2) = Hi\il N(u;]0,021) and
p(V|o2) = vazl N (v;|0,021) where o, is the variance of the Gaussian distri-
bution for users and o, is the variance of the Gaussian distribution for items. I
is an identity matrix. Hence, the posterior distribution over the user and item
latent vectors is given by

M N
p(U,V|R, 0% 02%,0?) H N(rijlulv;, UZ)XHN(ui\O, o2T)x H N(v;]0,02T)
rijER i=1 j=1
We can find u; and v; by maximizing the above posterior likelihood. The rating
for user ¢ and item j, if not available, can be predicted as r; ; = uiij.
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2.2 Factorization with Social Network

In trust-aware recommender systems, users express trust for other users. When
user u trusts user k, they may have similar preference to some extent, or user k
may affect user u’s decisions. Social Trust Ensemble is a probabilistic framework
that naturally fused users’ tastes and their trusted friends’ favors [§]. In this
framework, the conditional distribution over the observed ratings is modeled as:

M N
p(R,U,V|S, 02, o%,0%) x HN(uAO,aiI) X HN(V]"0,0'?)I) (2)

i=1 j=1

< ] Weil(eiul v+ 1 —aij) Y sixufv;),o®)]

ri;ER ket (i)

The model assumes the ratings are generated from different Gaussian distri-
butions. The mean of the Gaussian distribution that generates a rating r; ; is
determined by the latent vectors of user u; and item v; as well as the users in
user 4’s social network, which is denoted as 7(¢). The contributions from the two
parts are weighted by the parameter ¢ ;. In [8], «; ; is fixed as the same value
for different user 7 and item j. It ignores the recommendation context associated
with ratings. We will discuss this issue and propose a new solution later.

2.3 Adaptive Weights Based on User and Product Characteristics

In formula (@), a; ; and s; 3, balance the information from users’ own character-
istics and their friends’ favors. a; ; controls how much the model should trust
the user vs. the neighbors, and s; ; controls how much one should trust user k.
A straightforward way is to define a fixed value for all the «; ; [§]. For instance,
a;; = 0.4 for all (i, j) pairs means whatever the situation is, a user’s own hidden
representation contributes 40% and social network contributes 60%. However, in
real life, how much to trust others depends on many factors. For example, if item
k is a movie, user 7 may ask his/her friends or read reviews before watching it. If
item k is a hard drive, the user ¢ may have clear idea about his/her preferences
(size, price range) and can judge the quality easily without consulting friends.

To make «; ; context-sensitive, we propose to set the value of o ; based on
the features of user ¢ and item j using the following sigmoid function:

Qg = sz’gmoid(waivj) (3)

where w € R and f; ; is a P-dimensional feature vector about user i and item j.
Each dimension of f; ; corresponds to one feature, and each feature value could
be binary or numeric. The features could include user characteristics (gender,
location, etc.) and item characteristics(price, category, etc.). The features could
also include interactions between users and items. For example, a binary value
indicating whether user ¢ is familiar with products in the same category/brand
of item j, or the frequency of user i visiting the web pages mentioning product
J. The sigmoid function is used to restrict the value of a; ; between 0 and 1.



Product and User Dependent Social Network Models 17

According to the formula (@), the recommendation algorithm decides how
much to adopt the social networks’ opinions based on the characteristics of users
and items. The rating 7; ; can be estimated as follows:

7.5 = sigmoid(w™ f; ;)ul v; + (1 — sigmoid(w'f; ;) Z sipupvy (4
ker (i)

We further assume w follows a Gaussian distribution N (0, 02 T). Thus the max-
imum likelihood estimation of the parameters can be learned by minimizing the
following loss function (the negative log likelihood of the observation):

1 )\ 2
lossrsuyvw = Y o (733 =Ti5) +Z | w [f5 +Z Ivi 3+ w3
ri,jER

where Ay = %, Ay = T2, Aw = a -
The solution can be found using conjugate gradient algorithm. The gradient

of u;, v; and w can be calculated as below:

Oloss
ou § @i j(Fij —1ij)vj+ E , E , — i) (Pej = Te5)Sti vy + Al
1

rijER tep(i)re,;ER
Oloss R
Sy, = D (P — i)+ (T—aig) > sipme) +Aov;
J rijER ker (i)
ol
8088: Z(fi’jfr” uvj Zszkukvja £+ AW
w rijER ker(i)
where o] ; = exp(w'f;;)/(1 4 exp(w'f;;))? is the derivative of the sigmoid

function. ¢(7) is the set of all the users who trust user i.

2.4 Adaptive Weights Based on Individual Neighbors

;. captures how a particular neighbor % affects the prediction. According to
the definition of s; ; and 7(i), we have the following three approaches:

Social Trust Model. A straightforward way is adopting a commonly used
social network definition of recommender systems, which is so-called social trust
network. In this scenario, 7(4) is the social network explicitly expressed by user .
For example, in Epinions.com, each user can express his/her Web of Trust by
marking some other users as “trustable”. Then the set 7(i) contains all the
users who are selected by user i. There are several possible reasons that user
i add user k into his/her trust list. First, they might know each other in the
real life. Second, user ¢ has read the reviews and ratings provided by user k,
and found them valuable or consistent with his/her own tastes. In both cases,
social trust network has much potential to be utilized for better inference of
users’ preferences. It is worth mentioning that the trust value is binary in most
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recommender systems. This means we do not know how much user ¢ trusts each
individual in the trust list. If we simply treat all trusted users on user ¢’s list
equally, the definition of s;  is s; = \r(lz‘)| where |7(4)| is the number of trusted

users by user ¢ in the set 7(7).

Social Influence Model. The social trust model mentioned above utilizes a
user’s social network to infer the user’s preference. Now we further discuss how
we model the social network influencing users’ behaviors. Consider a scenario in
the real world, where user i knows nothing about the movie “Avatar” initially.
He found more and more people around him have watched the movie, are talking
about it and rate it highly. Then there is a high probability that user 7 will be
influenced by people around and go to the theater for “Avatar”, even if he usually
does not watch Action Sci-Fi movies or movies in general.

To model the influence from one’s social network, we restrict s; j, as follows:
s;, = 1 if user k purchased or rated item j; otherwise s; , = 0. While predicting
7i,5, the social influence network being considered contains all the users who are
trusted by user ¢ and also purchased/rated the target item j.

Neighborhood Model with Implicit Social Network . The above models
treat different individual’s opinion in the social network equally. However, people
adopt others’ opinions differently. For close friends that people know well, they
trust them highly. In this case, we probably want to use a high value for s; ;. For
people they are not familiar with, one may cautiously take the advice. In this
case, we may want a low value for s; ;. Even for the same person, people will
trust him/her in varying degrees in different recommendation contexts. Besides,
social network information is not always available for a recommender system.
Based on above two considerations, we propose to utilize user’s neighborhoods,
which can be found using standard collaborative filtering algorithms, as implicit
social network. In this model, 7(i) is the top-N nearest neighbors of user i. To
calculate the similarity between users, several similarity measures have been
proposed before. Without loss of generality, we use cosine similarity in the space
of items. We use U; and Uy, to indicate the ith and kth row of the rating matrix.
Then similarity between user i and user k is defined as sim;; = \|UI;T|f~I|\JIIiTk|\'
According to the similarities between users, we select top N nearest neighbors
for each user i as the implicit social network 7(i). s; 5 is defined based on the
similarity sim;; with a normalizing factor so that ZkeT(i) Sik = 1:

StMy i,

ZtET(i) S1M ¢

()

Sik

3 Experimental Methodology

We collect evaluation data set from FEpinions.com which is a consumers review
website. Users can review items and provide integer ratings from 1 to 5. Epinions
also provides the user profiles and item descriptions, such as item category. As a
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trust-aware system, users can explicitly express the trust statements in Epinions.
Each user maintains a “trust” list which includes some trustable users.
Researchers have used Epinions data set for various research on recommender
systems, however, none of the existing data sets contain all the information we
need. The data set used in this paper is a new collection we collected by crawling
Epinions.com on Oct 2009. We first crawled the ratings and trust statements of
the top reviewers and then move to the users who trust top reviewers or who
are trusted by top reviewers. We crawled users’ ratings and trust statements
following users’ social networks. As a result, we collected a data set that contains
56,859 users, 271,365 items, and 1,154,812 ratings. There are totally 603,686 trust
statements. Most of the items are assigned into one category by epinions.com.
10,994(19.3%) users only rate one item. 26,712 users(47%) rated no more than 5
items. We use two sets of binary features to represent recommendation context.
The first is item categories assigned by Epinions.com. The second is the group
id that characterizes the number of items the user rated. We classify users into
7 groups (1:17, 2:42-5” 3:46-10”, 4:“11-20”, 5:“21-40”, 6:“41-80”, 7:“>80”).
We carry out experiments on two recommendation tasks:

Rating Prediction Given a user ¢ and an item j, the task is to predict the
rating of user ¢ on item j. For this task, we randomly select 80% rating data
for training, 10% for testing, and 10% for cross validation (hold out data set).
The prediction accuracy is measured by Root Mean Square Error(RMSE).

Top-K Recommendation In real life, a user wants the system to suggest a
list of top K items that the user has not yet rated/purchased/seen before.

We design the experiments to answer the following questions: 1) How does
the setting of the factor «; ; affect the performance? 2) How does the selection
of a user’s social network 7(7) affect the performance? 3) Does weighting each
neighbor’ opinion differently improve the performance?

To answer question 1), we compare two different settings of «; ;. One is to
define a fixed value for all the «; ; [8]. The other is to assign adaptive weights
based on characteristics of users and items (Section [Z3]). To differentiate the two
settings, we use “A” for the approaches with «; ; that is adaptive for different
users and items, and “F” for the approaches with a fixed value for all o .
To answer question 2), we compare the three models in Section Z4] to utilize
social network information. The models are denoted by “Trust”, “Influence” and
“Neighborhood” respectively. To answer question 3), we compare two settings of
s; 1 when using neighborhood as an implicit social network: using the similarities
measure as formula ([B]) vs. assigning equal weights to all the neighbors.

The algorithms compared in our experiments are summarized as follows:

— SVD: Baseline approach as described in Section 2]

— F-Trust: Social trust network with a fixed «a value (Section 2:4)).

A-Trust: Social trust network with adaptive « values (Section 223)).

F-Influence: Social influence network with a fixed « value (Section [27]).

— A-Influence: Social influence network with adaptive o values.

— F-Neighborhood: This approach uses neighborhood as implicit social network
(Section 24) and a fixed « value.
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— A-Neighborhood: This approach uses neighborhood as implicit social network
and adaptive a values.
— F-Neighborhood-E: A variation of F-Neighborhood that sets s; , = 1/|7(7)].
— A-Neighborhood-E: A variation of A-Neighborhood that sets s; = 1/|7()].

All the approaches are based on the parameter setting A, = A\, = A\, = 0.2. For
the Neighborhood based approaches, we use the top 10 nearest neighbors. Based
on validation set, we found the fixed « values (o = 0.3 for F-Trust, o = 1.0 for
F-Influence, and o = 0.2 for F-Neighborhood.)

4 Experimental Results

4.1 Results on Rating Prediction

Table 1. Performance comparison Table 2. Performance on the subsets

Dimensionalit Influence Subset Trust Subset
Model D=5 D210 D20 Model RMSE a RMSE a
SVD 1.0747 1.0683 1.0812 SVD 1.0467 - 1.0773 -
F-Trust 1.0516 1.0434 1.0528 F-Trust 1.0009 0.3 1.0382 0.3
A-Trust 1.0481 1.0387 1.0416 A-Trust 1.0002 - 1.0347 -
F-Influence 1.0740 1.0673 1.0820 F-Influence 1.0447 0.9 1.0779 1.0
A-Influence  1.0682 1.0618 1.0664 A-Influence  1.0373 - 1.0747 -
F-Neighborhood 1.0262 1.0212 1.0270 F-Neighborhood 1.0115 0.3 1.0323 0.2
A-Neighborhood 1.0238 1.0142 1.0022 A-Neighborhood 1.0023 - 1.0251 -

Table [l summarizes the results on the whole test data. We conduct experiments
on three latent vector dimensions: 5, 10, and 20. There are several things worth
mentioning. First, it shows social network information is valuable. Social network
based approaches outperformed baseline SVD. Second, it shows A-Neighborhood
performs better than other methods. The improvement of using neighbors over
SVD is not surprising. Because factorization captures global structure of the rat-
ing matrix, while neighborhood captures local regularization of the data space.
Combining these complementary information has the same effect as the Netflix
competition winner’s solution, which combines nearest neighbors with factor-
ization models [7]. However, it is interesting to see that neighborhood models
perform better than social influence and social trust models, since neighborhood
models do not use any user identified social network info. Third, it shows the
performance of every approach improves when we vary « based on recommen-
dation context (users and items). The improvements are different when using
different social network information. One possible reason is the sparsity of so-
cial networks. In Epinions data set, almost every user has neighborhood, while
only 59.5% of ratings in the test data have social trust information and only
18.2% have social influence information. Therefore, the overall performance may
be dominated by the rating pairs without explicit social information. That also
answers why F-Influence performs best with o = 1.0.

Performance of Different Social Networks. To focus on the effect of differ-
ent social networks, we created two test data subsets. One subset (Trust Subset)
consists of ratings with social trust info. Both Trust and Neighborhood based
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approaches can be used to predict all the test cases, while Influence based ap-
proaches can not be used on part of this subset. Thus the second subset (Influ-
ence Subset) is much smaller and consists of the ratings with all three kinds of
social info available. This data set contains 6618 users and 21,599 ratings. Table
shows the results on the two smaller test data sets We observe that Trust
based approaches are comparable with Neighborhood based approaches, although
Neighborhood based approaches are clearly better than the others on the whole
test data (Table[Il). On the influence subset, trust based approaches outperforms
Neighborhood based approaches. The results suggest that a recommender system
may want to use a hybrid neighborhood-trust network model.

1.5

Table 3. Performance on two settings
of s; x when using neighborhood as im-
plicit social network

-
[N]

—-*Variance
3-A-Influence
-e-SVD
—-9-A-Neighborhood
-#-A-Trust
identical s; %
Model RMSE
F-Neighborhood-E 1.0257
A-Neighborhood-E 1.0200

Root Mean Square Error (RMSE)
Variance of Observed Ratings

T 25 610 1120 2140 4180 80 weighted i,k
Number of Observed Ratings Model RMSE

F-Neighborhood 1.0212
Fig. 1. Comparison on different num- A-Neighborhood  1.0163
ber of observed ratings based on the

whole test data

Performance on Different Users. We analyze how the size of training data
per user affects the performance of different algorithms. We group all the users
into 7 classes based on the number of observed ratings in the training data.
Figure [ shows the macro RMSE on different user groups. The horizontal axis
describes how many training ratings are available for a user in that class. It
shows that A-Trust and A-Neighborhood almost consistently outperform SVD
and A-Influence, especially when users have less than 6 ratings. It’s surprising
that RMSE increases when the number of observed ratings is more than 10. To
understand this, we look at the rating variance for each user group. We find that
variance and RMSE have the similar trend, both of them tend to increase after
observing more than 10 ratings (Figure [I). When user has fewer ratings, those
ratings usually are about one or two aspects and thus the variance is small; when
the user provide more ratings, those ratings consist of user’s multiple interests.
When we use all ratings to predict a rating in a specific aspect, products that
are irrelevant to the target item may hurt the performance. Therefore, the initial
decrease of RMSE is because the increase of observed ratings makes the model
know more about users while the influence of rating variance confuses the model

2 In the rest of this paper, all the experimental results are using 10-dimensional latent
vector setting, where 10 is found by the validation data set.
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and hurts the performance. It suggests that user ratings on one category may
hurt the prediction of user ratings in another category.

Impact of Parameter s;j. In our approaches, the parameter s;j; indicates
how much user ¢ would trust user k. Table Bl shows the results of two settings
of s; when using neighborhood as an implicit social network. It is clear that
weighting others’ opinions based on the similarity (*-Neighborhood) can achieve
better performance than treating all opinions equally (*-Neighborhood-E).

4.2 Further Analysis about Social Influence

We did some further analysis by looking at the weights learned (the component
values of WE for different contexts for social recommendation model, and the
goal is to answer the following questions: 1) How does the number of observed
ratings affect the weight of social network? 2) How does the size of a user’s trust
list affect the weight of social network? 3) Is a user more likely to be influenced
when his uncertainty about the product is high? (We assume a user may be more
uncertain about the product quality if the product quality tends to be subjective,
such as for books/movies, instead of objective, such as for PC/memory.)

Figure2(a) shows that, as the number of training ratings increases, the weights
learned by A-Neighborhood become smaller, while the weights learned by A-Trust
increase. The weight is a tradeoff between uncertainty about neighbors’ ratings
vs. uncertainty about the user’s own ratings. In A-Neighborhood, the neighbors
found are unreliable when the user has fewer ratings, therefore, A-Neighborhood
does not weight neighbors’ opinions high in these cases [1]. In A-Trust, the user’s
own prediction is more reliable when the number of ratings is high, thus A-Trust
does not weight neighbors’ opinions high.

To answer question 2), we introduce a new feature, the size of social trust
network, for A-Trust. Figure[2l(b) shows the weights learned by A-Trust increases
with the size of social trust network. That means the model considers larger
social trust networks less reliable than smaller ones. One possible reason is that,
a large social network is more likely be selected arbitrarily by a user, while a
small social network tends to be selected more seriously and hence more reliable.

Figure [2(c) shows the learned weights for different categories. It seems that
categories more related to personal experiences tend to have higher weights.
Instead, the categories whose ratings are more subjective tend to have lower
weights, probably because a user is more uncertain about these products and is
likely to be influenced by people they trust.

4.3 Results on Top-K Recommendations

A more realistic task for a recommender system is to recommend K items that
users may like. In this section, we simulate the real scenario and investigate the
effect of our approaches on the task of top-K recommendations.

3 According to formula (@), a larger weight value means that less emphasis is placed
on social network information.
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Fig. 2. Learned weights for different features. In Figure(c), item categories form 1 to 14
are: Books, Music, Kids & Family, Hotel & Travel, Software, Sports & Outdoors, Pets,
Electronics, Games, Wellness & Beauty, Movies, Education, Online Stores & Services,
Personal Finance.
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Fig. 3. Performance on Top-K Recommendation Task. The right plot concentrates on
the top 2% ranking region.

Previous works on this task tend to adopt classic IR measures such as PQN
and Recall [][2]. However, without complete relevance judgements for each indi-
vidual user, standard IR evaluation is almost infeasible. Thus we use a variation
of the evaluation method in [7]. We randomly sample 10% from the rating data
set (4,7,7;,;). Then for each user in the sampled data set, we randomly choose
one user-item pair with a 5-star rating. This gives 15,025 user-item testing pairs.
To simulate the scenario that we only want to recommend the 5-star items to
users, we treat 5-star pairs as relevant. The Epinions data is an open-domain
data set with multiple categories. Intuitively, a book and a song are hard to com-
pare. We assume that a user wants to purchase one specific kind of item, such as
a book, and the system needs to rank items in this category. Therefore, for each
testing pair (i, j), we randomly sample 1000 additional items which user ¢ has
not rated from the same category as item j. For example, if user 7 purchased a
book, we randomly select 1000 additional books as candidates to be ranked.

Figure[3l compares four methods: SVD, A-Trust, A-Influence, A-Neighborhood.
In real systems, only top K items might be recommended. Therefore, we focus on
the top 2% ranking area (top 20 ranked items out of 1000) (FigureBI(b)). First, it
shows all the social network based approaches outperform SVD. That means we
can benefit from utilizing social network information in top-K recommendation
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task. Second, it shows A-Influence is not as good as A-Trust and A-Neighborhood
due to the sparsity of social network.

5 Conclusions and Future Work

We investigated three ways to combine social network and matrix factoriza-
tion for recommender systems. All three methods work better than the baseline
method. This means social network is useful for recommendation. The three
methods have different properties. When social trust information is applicable,
Social Trust Model always works better than SVD, especially when a user has few
ratings. Social Influence Model is not always applicable. When it is applicable,
making recommendations using the influence from people a user trust can also
improve the performance for two tasks. When the social network information is
not available, we can find implicit N Nearest Neighbors and use the Neighbor-
hood model to combine neighbors’ predictions with the SVD prediction. This is
a first step to adaptively weight the info from neighbors. Future work includes
adapting the influence for other social network based recommendation methods.
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Abstract. We study the problem of identifying representative users in
social networks from an information spreading perspective. While tradi-
tional network measures such as node degree and PageRank have been
shown to work well for selecting seed users, the resulting nodes often have
high neighbour overlap and thus are not optimal in terms of maximising
spreading coverage. In this paper we extend a recently proposed statisti-
cal learning approach called skeleton learning (SKE) to graph datasets.
The idea is to associate each node with a random representative node
through Bayesian inference. By doing so, a prior distribution defined over
the graph nodes emerges where representatives with high probabilities
lie in key positions and are mutually exclusive, reducing neighbour over-
lap. Evaluation with information diffusion experiments on real scientific
collaboration networks shows that seeds selected using SKE are more ef-
fective spreaders compared with those selected with traditional ranking
algorithms and a state-of-the-art degree discount heuristic.

1 Introduction

In a social network, a small subset of representative nodes can help establish a
hierarchical messaging scheme: the correspondence with each individual node is
through a nearby representative. Despite that the word “representative” can be
interpreted in different ways in social analysis, here, the purpose of such a hier-
archy is to broadcast information efficiently with constrained resources. Locally,
these representatives should lie in hub positions so as to minimize the rout-
ing cost to their nearby nodes. Globally, there should be as few representatives
governing different regions so as to save resources.

From a machine learning perspective, a closely related problem is spectral
clustering [1H3], where the network is partitioned into a fixed number of densely-
connected sub-networks with sparser connections between them. This technique
has been applied to social networks, e.g., for community detection [4,15] and spam
nodes identification [6]. It is powerful in depicting complex clusters with simple
implementations. It is computationally expensive for large datasets, especially
when a proper number of clusters has to be searched over [4].

J. Pei et al. (Eds.): PAKDD 2013, Part II, LNAI 7819, pp. 25-B6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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In the data mining community, the graph-based ranking algorithms [7-9] have
a profound impact on the present World Wide Web and citation analysis systems.
They rank graph nodes based on the general idea that the value of one node is
positively related to the value of its neighbours. These approaches are further
investigated by machine learning researchers using spectral graph theory [10, [11]
and random walks [12]. In our task of selecting representatives, the highly ranked
nodes by these algorithms usually have high neighbour overlap because of the
mutual reinforcement between connected high degree nodes.

Motivated by seeking effective marketing strategies, efforts have been made
to select a set of influential individuals [13-15] and to maximize their influence
through information diffusion [16, [L7]. Although the optimization problem is
generally NP hard [13], reasonable assumptions lead to polynomial-time solv-
able models [14] and efficient implementations with approximation bounds [15].
Targeting at similar objectives, methods from different perspectives are devel-
oped with improved speed and performance |18, [19].

This work provides a novel approach to measure the representativeness of
graph nodes based on skeleton learning (SKE) [20]. It assigns each node a prob-
ability of being a representative and minimizes the communication cost from
a random node to its corresponding representative. This method is different
from other approaches in two aspects. First, the learned distribution has low
entropy with the representative nodes having large probability and the non-
representative nodes having probability close to zero. Second, the representative
nodes are mutually exclusive: if a node already has a nearby representative, it will
penalize the representativeness of other nearby candidates. Such exclusiveness
is not implemented as heuristics in a greedy manner |18], but fits in a minimiz-
ing message length framework and allows global coordination in arranging the
representatives.

The rest of this paper is outlined as follows. Section [2] introduces the skeleton
learning. Section [J] presents the recent development of this approach on social
network analysis. Section ] and Section Bl show the experimental results on toy
datasets and real social networks, respectively. Finally, Section [ concludes.

2 Skeleton Learning

This section briefly reviews the recently proposed skeleton learning [20]. Given a
set of samples X = {z;}7 ; C RP, this unsupervised method learns a probability
a; for each &; (3., o = 1), so that the probability mass highlights the samples
on the “skeleton” of the structures and diminishes on outliers.

The input samples are first encoded into a probability matrix P,xn = (p;|;)
as in Stochastic Neighbour Embedding [21], so that

pij = exp(—hjllx; — z;|?)
=
T iy exp(—hylles — x4?)

denotes the probability of node 7 receiving a message originated from node j
with respect to space adjacency. In Eq.(d)), ||-|| is 2-norm, and h; > 0 is a kernel

(1)
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width parameter, which can be fixed so that the entropy of p.; equals to a pre-
specified constant [21]. The latent distribution e = (v, ..., ) corresponds to
a discrete random variable, or the index j € {1,2,...,n} of a random skeleton
point x; € X. By assumption, this random point sends out a message with
respect to Ppx,. Any x; € X, upon receiving such a message, can infer the
location of the skeleton point using Bayes’ rule as

@ Pilj
qjli = , : (2)
2 i O Pilj
The objective is to optimally route from a random location in X to its skeleton
point, which is implemented by minimizing

n

E(a) = *Z Z qj)i log pjyi (3)

i=1 jij#i

with respect to a. Through such minimization, a compact set of skeleton po-
sitions with large «; can be learned. As compared to clustering methods, the
skeleton model is a prior distribution defined on the observations, and the effec-
tive number of skeleton points shrinks continuously during learning. Therefore
no model selection is necessary to determine an appropriate number of clusters,
and the learning process can be terminated at anytime to produce reasonable
results. However, the effect of the kernel width parameter h; must be carefully
investigated depending on application. In image denoising [20], it shows better
performance in preserving the manifold structure as compared to a state-of-the-
art denoising approach [22]. The gradient-based algorithm has a complexity of
O(n?) at each step, which limits its scalability.

3 Skeleton Learning on Graphs

The skeleton learning method introduced in Section [2] is performed on a set of
coordinates for denoising and outlier detection. This section extends the idea
to graph datasets and discusses related problems. Assume the input data is a
graph G = (V, &), where V = {1,2,...,n} is the set of vertices and & = {(4, )}
is the set of edges. Throughout this paper, an undirected graph is treated as its
directed version by replacing each edge i <> j with two opposite arcs (,7) and
(4,4). We aim to discover a random representative characterized by a discrete
distribution @ = (a1, ..., a,) defined on V, so that any random node in V can
communicate with it in the most efficient and economical way.

We first construct a channel between two random nodes so that the communi-
cation cost can be measured. The input graph G can be equivalently represented
by its normalized adjacency matriz A = (a;;) with

1 if (¢,7) €&
0 otherwise,

aij = 0ij/di, b5 = { (4)
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where d; is the outdegree of the node i. If a node i has at least one outgoing
link, the i'th row of A defines a discrete distribution representing how likely
¢ influences the other nodes according to the graph structure. To deal with
nodes with no outgoing links or incoming links, we allow each node ¢ to teleport
to another random node with a small probability v. In social networks, such
teleportation models i’s influence through external ways not restricted by the
network [7, 23]. Consider 7 sending a message to one unique receiver other than
7 at time 0. The probability that node j receives this message in one time step
can be defined as p;;; = (1 —v)ay; +v/(n —1) (j # 4). In matrix form it is
equivalently

P=(1-va+ "
n

71(eeT—I), (5)

where e = (1,...,1)T and I is the identity matrix. If we allow this message
to pass around in G for 7 times (7 = 1,2,...) after time 0, the probability for
each node j holding the message is given by the i’th row of the matrix P7. It
represents i’s indirect influence over G through information spreading. In the
extreme case when 7 — oo, all rows of P™ will tend to be the same, or the
equilibrium distribution corresponding to the PageRank (PR) measure [7]. To
distinguish the “outgoing ability” of different nodes, 7 should be a small value
(e.g., 1 or 2) so that each node can only reach a local region around itself.
Without loss of generality, we focus on the case 7 = 1 unless otherwise specified.

Assume a latent prior distribution a of each node being the information
source. The sender i, upon any node j receiving a message, can be identified
with Bayesian inference in Eq.([2)) (with ¢ and j interchanged). The total com-
munication cost for every node j € V to reply to its information source is given
by Eq.(@). By minimizing such a cost, & can be learned so that this communi-
cation loop is established in the optimal way.

More intuitively, consider without loss of generality the graph G as a social
network of n persons. A directed link (i,j) € £ means that 7 could easily in-
fluence j because of personal relationship, etc. One real-life example could be j
“follows” i on some microblogging website. In this context, the meaning of being
a representative can be understood from Eq.([B). To minimize F(«), on average
—logpjj; should be small, which means the representative j can perceive news
from its surrounding nodes easily. As another condition, g.;; should have low
entropy, which means each person i selects the candidate which influences 4 the
most, and deselects other nearby candidates being its representative.

Implementation

The skeleton learning is implemented by gradient descent to minimize E(a).
The gradient of E(a) has the form [20]

OF 1
P == Z Q5o 10gpj|z‘ - Z ql)i,« 10gpl|i . (6)
J

Qi — .
ey L:l#1
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Algorithm 1. Skeleton Learning on Graph Datasets

Input: A graph G = (V,€) with n nodes; a small teleport probability v
Output: A discrete distribution & = (a1, ..., an) to measure the
representativity of each node

1 begin

2 a <+ (1/n,...,1/n); v+ 7y0; po = v/(n —1) // 7: learning rate
3 repeat

4 V=(Vi,--,Vn) < 0; 7c <0

5 foreach node i in S (see comments in the end) do

6 pi<_(1_1’)2]}]’%1’0‘1/%+V(1_ai)/(n_1)

// d;j is the out-degree of node j

7 Ei+—-(1-v) Zj:j%i o logpji/d; — VZj:j;ti ajlogpjji/(n —1)
Ei < Ei/pi

9 foreach j in Pre(i) do  // Pre(i) is the set of predecessors
10 Vi < Vi — (1 —v)(logp;; + Ei)/(d;p:)
11 end
12 foreach j in Suc(i) do // Suc(i) is the set of successors
13 Vi« ;i — v(logpjji —logpo)/ ((n — 1)pi)
14 end

15 Vi < Vi +v(logpo + Ei)/ (n— 1)pi)

16 Ve < Ve — v(logpo + Ei)/ ((n — 1)p:)

17 end

18 V<V + Ve

19 a + aoexp(—y Vv o) // "o" is the element-wise product
20 normalize o so that Y, a; =1
21 until convergence or the number of iterations reaches a pre-specified value
22 end

/* If S§=V, o is updated on every full scan of the whole dataset;
if S is a small random subset of V, a is updated with stochastic
gradient descent (more efficient and scalable) */

Along —0E/0a;, the candidate weight ¢ is adjusted at each step. Intuitively
Eq.(@) says, for each node ¢ within j’s reachable range, j serves as a potential
information source of 4 (the value g;|; o is significant enough based on Eq.(2)),
and such ¢ provides feedback to a; based on how efficiently it can reach back to
J- If the length —logp;); is shorter than the average length — ZH# q1ji,a log )i,
then OFE/0a; < 0 and «; increases, which means that ¢ “votes” for j to become
its representative. On the other hand, if the route ¢ — j is too costly, ¢ casts a
negative vote for j. This type of gradient was discussed in a statistical machine
learning framework [24] and further explored here in a non-parametric setting.

In general, each gradient descent step requires O(|V|?) computation [20] be-
cause P is dense. However, the fact that most entries of the transition matrix P
equal v/(n — 1) can lead to more efficient implementations. On graph datasets,
the gradient in Eq.(@) is further written as
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OF 1—v v v
P ZAZJ* Z(Aij*AiO)* ZAiOa
N T i n—1.55 n-157
1 1 v
Ay = D (Ingj\i +Ez‘), Ay = b 10gni1 +E; |,
Q; 1—q
i = (1 — J ‘.
pi = ( V)_‘ ‘derl/n_l
Jij—i
1—v Q
Ei=- Z q5li log pjji = — P; Z d: log pj)i
Jij#i vogg—i Y
v v v
- ajlogpi; — log 1—a; — a;
pi(n—1) Z I e pi(n —1) n—1 Z J

Jui—yg Jii—jg

In Algorithm [ the simple gradient descent has a computational complexity
of O(|€]) in each iteration. The stochastic gradient descent (SGD) [25] version
reduces this computation time to O(max(d;) - |S|). Besides the learning rate,
the algorithm has only one parameter v. By default we set v = 0.2 in the
following experiments. On real large social networks, the node degrees follow an
exponential distribution, which may lead to trivial solutions if v is too large.
For example, one node with significant number of links could become the sole
representative over the whole network and communicate with the unconnected
nodes through teleport. In this case we have to lower the value of v to penalize
the teleport communication and to discover more representatives.

4 Toy Problems

Figure [I] presents several toy social networks. Table [Il shows the «; value and
the PageRank value of each node. In Figure [[l(a), only one person (node 1)
is acquainted to all the others. SKE has successfully identified it as the sole
representative. Figure [[{b) shows two groups of people, each with a central hub
(node 1 and node 5), and a link from node 1 to node 5. The SKE values are
very concentrated on these two centers, with node 5 having slightly larger weight
due to the fact that no edge exists from node 5 to node 1. This type of penalty
becomes clearer in the network shown in Figure[Il(c). In this example, each node
has exactly the same indegree. There is one node 3 which links to all the other
nodes, while half of the linked nodes do not respond. Its «; is close to zero,
meaning that it has been identified as a spam node. In general, the PageRank
values are less concentrated and do not reveal such information.

The proposed method is further tested on two “Primary School Cumulative
Networks” [26] , where the nodes represent students or teachers and the edges
represent their face-to-face interactions. We only consider strong interactions,
which are defined as all such edges (4, B) if A and B has interacted for at least

! http://www.sociopatterns.org/datasets/primary-school-cumulative-networks
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Table 1. SKE and PageRank results on the toy networks in Figure[]

Node 1 2 3 4 5 6 7 8
PageRank 0.46 0.18 0.18 0.18
Network 1 i/ 0.99 000 0.00 0.00
Network o PageRank 017 006 006 006 032 011 011 011
SKE 0.41 00l 00l 00l 044 004 004 0.04
Network 3 PageRank 017 022 022 022 017
SKE 020 0.30 000 0.30 0.20

Q@ @—a

(a) Network 1

(c) Network 3

Fig. 1. Toy social networks

2 minutes and on at least 2 occasions. As a result, there are 236 nodes and 1954
edges in network 1, and there are 238 nodes and 2176 edges in network 2.

Figure [ shows the visualization of the network on day 1, where the SKE
value «; is intuitively presented by the size of the corresponding circle and the
node degree is presented by the color density. We see that the representatives
(large circles) do not necessarily have high degrees (dense color), and vice versa.
This is further confirmed by looking at the accurate measurements given in
Table B2l Among the top ranked nodes, some have small degrees, such as node
“1843” in day 1, node “1521” and “1880” in day 2. We further look at the
average degree of their neighbours (D,,). All these three nodes have a relative
small value of D,,, which means some of their neighbours are poorly-connected.
The connections with these non-so-popular nodes are highly valued in the SKE
measurement. On the other hand, among the bottom ranked nodes, some have
large degrees, such as node “1628” and node “1428” in day 1, node “1766” and
“1778” in day 2. Generally they have a relative large D,, value. Although they
are well-connected, their relationships are mostly established with popular nodes,
and thus have little value. We also see that the SKE measure has a “sharper”
distribution as compared to PageRank, where the tail nodes have very small
values. The effective number of skeleton points (given by exp{—>_, a;loga;},
or the number of uniformly distributed points with the same entropy as «) is
95.8 and 91.3 in network 1 and 2, respectively.

5 Information Diffusion on Collaboration Networks

We test the proposed approach as a seeding method for information diffusion
in social networks [15], so that a small subset of seeds (corresponding to the
representatives as discussed above) could influence as many nodes as possible.
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28

-- node degree ->

L o

Fig. 2. SKE results on Primary School Cumulative Networks (day 1). The node size
represents the SKE value. The node color represents its degree (the darker the higher).

Table 2. Different measures of nodes in the cumulative network dataset. For each day,
the columns show (1) node ID (2) class ID if the node is a child, or “Teachers” (3)
degree D (4) average degree D, of its neighbours (5) PageRank (PR) in percentage
(6) a; (SKE) in percentage. The nodes are ordered by «;.

Cumulative Network Day 1 Cumulative Network Day 2
Node Class D D, PR SKE Node Class D D, PR SKE
1890 2B 35 19.3 0.80 4.3 1745 Teachers 28 21.5 0.57 4.4
1650 Teachers 25 16.0 0.65 3.4 1521 Teachers 8 6.9 047 3.3
1783 1A 19 186 046 3.1 1668 Teachers 21 19.2 0.47 3.0
1743 2B 28 18.9 0.67 3.0 1443 5B 23 17.1 058 2.9

1843 3A 15 16.1 041 24 1880 4B 8§ 83 043 2.7
1628 2A 23 213 0.57 0.0 1766 1A 11 187 031 0.0
1649 2A 7 163 026 0.0 1799 1A 9 196 0.26 0.0
1483 5A 4 16.0 0.18 0.0 1772 1A 8 159 0.26 0.0
1858 2B 7 21.0 023 0.0 1519 4A 2 21.0 0.13 0.0
1511 5A 9 203 027 0.0 1819 4B 5 12.6 0.27 0.0
1428 5B 12 211 033 0.0 1778 1A 11 229 0.29 0.0
1803 4B 6 182 0.22 0.0 1753 Teachers 3 23.0 0.14 0.0
1710 2B 5 240 0.19 0.0 1710 2B 8 29.6 0.21 0.0
1854 2B 5 234 0.18 0.0 1807 4B 2 11.5 0.16 0.0
1898 2B 5 238 019 00 1760 1A 3 237 014 0.0
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We use the collaboration networks in the Stanford Large Network Dataset
Collection] [27]. ca-GrQc is a co-authorship network of physics publications,
compiled from the General Relativity section of Arxiv. It has 5,242 nodes
representing authors and 14,496 edges representing co-authorships. Similarly,
ca-HepTh, ca-HepPh and ca-AstroPh are collaboration networks of different
domains on Arxiv. Their sizes denoted by #nodes/#edges are 9,877/25,998,
12,008/118,521,18,772/198,110, respectively. All datasets are undirected and
unweighted, which means the accurate number of times that two authors have
collaborated is discarded. For each dataset, five different seeding methods are
applied, which select seeds based on descending degree, descending PageRank
value, descending SKE value («;) computed by simple gradient descent and
stochastic gradient descent, and the degree discount heuristic [18], respectively.
The damping factor in PageRank is set to be 0.85 by convention. The teleport
probability v in SKE is set to be 0.2.

To evaluate the seeding quality, we apply two different diffusion models,
namely Independent Cascade Model (ICM) [17] and Linear Threshold Model
(LTM) |16], once the selected seeds are marked as being activated. Both of these
models expand the activated set of nodes in discrete steps with respect to the
network structure. In ICM, an activated node v has a single chance to activate a
neighbour w with the probability p, .,. By discarding the number of times that
two authors have cooperated, diffusion with ICM becomes harder because v has
one link instead of several parallel links connecting with j. In LTM, a node v will
be activated once the proportion of activated neighbours reaches a node-specific
threshold 6,,. At convergence, the size of the activated set quantifies the influence
of the initial seeds. To average the effect of random factors, the experiment for
each seeding set is repeated for 100 times.

Figure Bla-d) shows the size of the activated set varying with the number
of seeds on ca-GrQc and ca-HepTh using ICM. Figure Bl(g) condenses the re-
sults on ca-AstroPh and ca-HepPh using 100 seeds with ICM. Generally SKE
and DegreeDiscount outperform PageRank, which in turn outperforms Degree.
Basically SKE tries to place the minimum number of seeds while guaranteeing
the influence coverage over different regions. The good performance of DegreeD-
iscount is due to a similar mechanism to penalize clustered seeds [18]. While
the two approaches are comparable on ca-GrQc, seeding with SKE is obviously
better on ca-HepTh (ICM probability=0.2), ca-AstroPh and ca-HepPh (ICM
probability=0.1). Moreover, SKE can adapt to network changes through online
learning, which is not straightforward for DegreeDiscount. Note, the SGD ver-
sion of SKE has comparable performance with the simple implementation and
is about ten times faster. FigureBl(h) shows the results with different values of v
in the range [0.01,0.3]. We see that the influence coverage has a small variation
and thus is not sensitive to this configuration.

As Figure [B(e-f) displays, the performance of SKE falls behind PageRank on
the LTM experiments. Such results are expected. LTM, as well as the weighted
independent cascade model [15], requires a certain proportion of v’s neighbours

2 http://snap.stanford.edu/data/index.html
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Fig. 3. The number of influenced nodes on collaboration networks
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to be activated in order for v to be activated. However, SKE places seeds so that
they have less overlap and thus is not recommended in similar diffusion models,
where more exposure to the spread increases the likelihood of activation.

6 Conclusion

We have extended a recently proposed skeleton learning approach [20] to social
network analysis. From an information diffusion perspective, the method aims to
identify representative individuals that have greater potential influence over the
network. In a minimizing communication cost framework, the gradient-based op-
timization naturally allows nodes to cast negative votes to each other in order to
derive a set of mutually exclusive candidates. Consequently, the resulting repre-
sentatives lie in different regions which helps avoid overlap of neighbour sets. The
computational complexity in each optimization step is improved from O(|V|?)
to O(]€]) (V: node set; E: edge set) and is further boosted with stochastic gradi-
ent descent. As presented in our experiments, this approach is able to discover
important individuals who have fewer connections and are thus not considered
by traditional methods such as PageRank. On real collaboration networks with
the independent cascade model [17], the proposed method outperforms the tra-
ditional ranking algorithms and the degree discount heuristic [18]. As for future
work, we are interested in varying this technique for linear threshold model [16]
and exploring other application scenarios such as community finding [5, [28].
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Abstract. We consider the problem of competitive influence mazximiza-
tion where multiple pieces of information are spreading simultaneously in
a social network. In this problem, we need to identify a small number of
influential nodes as first adopters of our information so that the informa-
tion can be spread to as many nodes as possible with competition against
adversary information. We first propose a generalized model of compet-
itive information diffusion by explicitly characterizing the preferences of
nodes. Under this generalized model, we show that the influence spread-
ing process is no longer submodular, which implies that the widely used
greedy algorithm does not have performance guarantee. So we propose a
simple yet effective heuristic algorithm by tracing the information back
according to a properly designed random walk on the network, based
on the postulation that all initially inactive nodes can be influenced by
our information. Extensive experiments are conducted to evaluate the
performance of our algorithm. The results show that our algorithm out-
performs many other algorithms in most cases, and is very scalable due
to its low running time.

1 Introduction

Online social networks such as Facebook and Twitter are becoming an impor-
tant medium for fast and widespread dissemination of ideas, innovations and
products |6, [7]. Substantial attention has been gained to investigating the infor-
mation spreading in these networks [1-4]. One interesting problem with practical
importance, which is formally referred to as influence maximization, is to find a
small set of influential nodes (seed nodes) properly, through which the informa-
tion can be spread to as many nodes as possible under a cascade adoption in the
network. Kempe et al. [1] first formulated the influence maximization problem by
modeling the information diffusion as a discrete stochastic process. They further
show that the influence spreading process has the properties of monotonicity and
submodularity (i.e. having a diminishing marginal return property). Due to such
properties, the greedy algorithm based on a hill-climbing strategy can achieve
(1 —1/e) of the optimal solution.

J. Pei et al. (Eds.): PAKDD 2013, Part II, LNAI 7819, pp. 37-f8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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However, in many real world scenarios, there may be competing relationships
between multiple pieces of information in the social network, such as the com-
petition between iPhone ws. Android, Chrome vs. Firefox vs. IE, etc. For such
competing pieces of information, one node usually accepts only one of them and
discards all the others. In most cases, a node will accept the information which
comes first. But when different pieces of information reach a node at almost the
same time, the node needs to choose one of the competing information according
to personal preference.

In deciding which information to adopt, several adoption models have been
proposed to simulate such process when competitive information reaches a node
simultaneously, with respect to different scenarios. For instance, Borodin et al.
[14] consider that a node will choose uniformly at random one of the incoming in-
formation; Budak et al. [9] assume that the “good” information always beats the
misinformation, while Xinran He et al. [13] address that people are more likely
to believe the negative information. In contrast to all these works, in this paper,
we present a generalized model for competitive information diffusion, where the
preferences of nodes are characterized explicitly by a probability distribution
and the information to be adopted is determined according to the distribution.
As will be mentioned later, our model generalizes the adoption models proposed
in [9, 113, [14].

Based on this generalized model, we present a comprehensive study of the
competitive influence mazimization problem [10]. In the presence of adversary
information, the goal is to choose a set of seed nodes such that our information
can be spread to as many nodes as possible. We show that, under this model,
the influence spreading process is no longer submodular, which implies that the
typical greedy algorithm cannot guarantee the worst-case performance anymore.
Rather than applying the greedy approach, we propose a simple heuristic algo-
rithm using a properly designed random walk on the social network. In this
algorithm, by postulating that the specified information has been spread to ev-
ery node in the network, we identify the most influential nodes by tracing the
information back based on the random walk to find where it is most likely from.
Extensive experiments are conducted to evaluate the performance and scalabil-
ity of our algorithm on real social networks with high-clustering and scale-free
properties. As shown by the results, our algorithm outperforms many other algo-
rithms in most cases. Besides, compared with the greedy algorithm which is still
effective, our algorithm achieves a comparable performance but is much more
scalable due to its much less running time.

The rest of this paper is organized as follows: In Section 2] we show previous
works on information diffusion processes in social networks. In Section [ we
introduce our generalized model and formalize the competitive influence maxi-
mization problem. The main algorithm is presented in Section [l In Section [B]
we compare the performance and scalability of our algorithm with some other
heuristics. Section [f] concludes this paper.
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2 Related Work

Extensive researches have studied the problem of influence mazximization. It is
the problem of identifying a small number of nodes as seed set so that the infor-
mation spreading is maximized. Kempe et al. [1] first formulated influence max-
imization as a discrete optimization problem with Independent Cascade Model
(ICM) and Linear Threshold Model (LTM). Both models have the properties
of monotonicity and submodularity. With such properties, greedy algorithm us-
ing hill-climbing strategies can achieve (1 — 1/e) of the optimal. However, this
algorithm needs Monte Carlo method to simulate the network massive times
so is computationally expensive. Many following works have been proposed to
improve the efficiency of this algorithm [2-5], but scalability remains a key chal-
lenge. Moreover, they ignore the effects of competing information.

Recent researches show that there exists competing campaigns in real social
networks. A lot of them have focused on deciding which information to choose
when competing innovations or products reach at the same time. Barathi et
al. [10] studied a similar problem where there are multiple players spreading
their information to compete in one social network. How would each player
choose the set of early adopters to begin the competing campaign? The authors
augmented ICM by adding continuous time for each edge so information will not
compete on the nodes. They also assumed that diffusion probability for different
players is the same and show that the influence spreading process is submodular
for the last player. Borodin et al. [14] considered the competitive information
diffusion under threshold models. In their model, a node will choose randomly
uniformly one of the incoming information to adopt. Budak et al. [9] investigated
the problem of limiting misinformation in a social network. In the presence of
misinformation, which k& nodes should be chosen as “good” information adopters
to limit the spreading of misinformation. In their diffusion model, the good
information always beats the misinformation when they reach a person at the
same time. The problem is submodular when the limiting campaign information
is accepted by users with probability 1. Xinran He et al. |[13] also studied the
limiting problem but they thought misinformation always wins because people
are more likely to believe negative opinions. This problem is submodular under
LTM. Most of previous works try to give special cases of the diffusion model and
prove the influence spreading process is submodular. However, in our generalized
model, the competing influence maximization might not have such property and
the general cases remain unexplored.

3 Competitive Information Diffusion in Social Networks

In this section, we first present our generalized model for competitive information
diffusion. Then we will formulate the competitive influence maximization as a
discrete optimization problem.
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3.1 Diffusion Models

The social network is often represented as a directed graph G = (V, E) where
nodes represent individuals and edges represent social relationships between
them. We use Independent Cascade Model (ICM) as the basic model for in-
formation diffusion. In a information cascade, we say that a node is active if it
adopts the information, otherwise it is called inactive. Initially, only the seed
nodes in S are active. The diffusion process starts from the set S and unfolds
in discrete steps as follows: In each step t, the newly active nodes in S; try to
activate their neighbors with probability p. independently, where p. is an acti-
vation probability associated with each edge e € E. The newly activated nodes
are added into S;41. This process continues until no more nodes are activated
at some step t, i.e. Sy = 0.

We augment the ICM to present a generalized model called Weighted Compet-
itive Independent Cascade Model (WCICM). In this model, competing informa-
tion cascades start from disjoint seed sets S1, S, ...,S; and spread in the social
network to compete. We say a node is in color i if it adopts the ith information.
Initially, the nodes in S; are in color ¢ and there is no color for the inactive
nodes. The process unfolds in discrete steps as follows: at step ¢, a node u in
Si(t) tries to activate each of its inactive outgoing edge with probability p¢, . If
edge (u,v) is activated, it is colored as ¢y, = 7 at diffusion step T, = t. If there
is no other incoming edge to v at this step, then v will be colored as ¢, = i
at diffusion step T,, = t. But if multiple processes reach v at the same step, v
chooses one of them to adopt. In deciding which information to choose, users’
decision is characterized explicitly by a probability distribution. By assigning
a weight ¢(i) for information with color 4, v adopts color 7 with probability

(ur0)€EAcuy=i P(8)

Prlv adopts color i] = ZZ( bl that is, the decision of v adopting
s,v)EE sv

color 7 is determined by the weight of color i versus the total weight of incoming
information. If the weights are the same, v will choose uniformly at random one
of the information. Or if the weight is positive for one information and 0 for
others, this information will always win. So our model can generalize previous
models introduced in [9, [13, [14].

3.2 Problem Formulation

Consider the problem when r players compete in a social network G. Each of
them selects a disjoint set of seed nodes S; to start the competing campaign
sequentially. The information is spread in the network under the WCICM de-
scribed above. Suppose the first » — 1 players’ strategies have been fixed, namely
we have the knowledge of S1, S5, ...,S-_1. We need to identify a seed set S, of
size k for the last player. The goal is to maximize the expected number of nodes
in color r after information cascade. This competitive influence maximization
problem can be formulated as:

nax o(Sy) st.|Sr| =k (1)
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where o(5;) is the expected number of nodes in color ¢ when all information
diffusion processes stop.

4 Competitive Influence Maximization

In this section, we first show the NP-hardness of the problem and prove it does
not exhibit the submodular property. Then we will present a heuristic using
properly designed random walk on the social network to find the influential
nodes.

4.1 Hardness of Competitive Influence Maximization

Consider a special case of the competitive influence maximization problem when
there are no competing adversaries. Then it is exactly the problem of influence
maximization problem under the ICM, which can be reduced from the NP-
complete Set Cover problem in [1].

Theorem 1. The competitive influence maximization problem is NP-hard under
the WCICM.

Influence spreading of single seed set is monotone and submodular under the
ICM. Typically, a function o(-) is said to be submodular if it satisfies: o (SU{v})—
0(S) > o(TU{v})—o(T) for all elements v when S C T. With this property, the
greedy algorithm using hill-climbing method can achieve near optimal solution
with performance guarantee. However, in a competing campaign, the influence
spreading process is not submodular.

Claim. There exists counter example which is not submodular in the competitive
influence maximization under the WCICM.

Proof. Figure [Il shows a counter example: Adversary information starts from
node S; with color 1. Define S = () and 7' = {w} with color 2. We use identical
weight for each information, so a node will choose uniformly if two precesses reach
it at the same time. The edge in color ¢ means the probability of information
diffusion of S; on this edge is 1. Initially, we have o(S) = 0 and o(T) = 2.5
before adding v. When node v is set as color 2, we have o(S U {v}) = 1 and
o(TU{v}) = 4. So there is o(SU{v}) —c(S) < o(TU{v}) — o (T'), which implies
that the process does not exhibit the property of submodularity.

4.2 Random Walk to Find Influential Nodes

Since the influence spreading process under WCICM does not exhibit submod-
ular property, the greedy algorithm does not have performance guarantee. We
propose a heuristic using a properly designed random walk to find the influen-
tials. In this algorithm, we assume an ideal situation where all initially inactive
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Fig. 1. Counter example where the competitive influence spreading process does not
exhibit submodular property

nodes have been influenced by our information with color r. Under this postu-
lation, the information on each node traces back to find where it most likely
to be from. The nodes aggregating most information can be identified as our
seed nodes. To trace back, information random walks in the reverse direction
of where it was propagated from. The transfer probability of the information
walking from node u to node v is:

w’U’LL

Py, =
Zs:(s,u)EE Wsy

(2)

where w,,, is the weight of directed edge (v, u). So P, is the weighted proportion
of edge (v, u) among all incoming edges of w. It is easy to see that ) Py, =1,
and the transition probability of node u is only dependent on its current state.
So this is a Markov process with transition matrix P.

Specifically, if we define w,,, as 1 for any u and v, then this process is Pagerank
[15] with reverse directions. However, Pagerank neglects the impacts of compet-
ing information. In this work, the weight of each edge is determined by how much
v can influence u. Generally, if moving the information on u to v can increase
the probability of v influencing w, then the edge (v,u) has higher weight. So we
define the weight of (v,u) as:

Wyy = Pr[v activates ulv € Sy (3)

This means that the weight of (v, u) can be represented as the probability that v
can influence u given that v is a seed node. In a competing campaign, if v is a seed
node: a), the information from v can reach u first of all, Pr[v activates u] = 1;
b), the information from v will reach u with adversary information at the same
time; ¢), the information from v won’t reach u or the information will reach u
after some adversary information, Pr{v activates u] = 0. Above all three cases,
the probability depends on when will adversary information reach u. However,
it is hard to estimate the diffusion step of adversary information in a stochastic
diffusion process.

One possible solution is to simulate the network massive times to get deter-
ministic graphs each time. We can view the information diffusion on edges and
nodes as the results of coin flip with bias. In a deterministic graph, the diffu-
sion step of adversary information can be obtained using a BFS linear scan of
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the graph. The result is the average information value after convergence of each
outcomes of deterministic graphs. However, simulating the graph still takes too
much time. To get the influential nodes more efficiently, we follow the idea of
Shortest Path Model (SPM) introduced in [16]. In this model, a node can only
be activated through the shortest path between the initially active seed set. So
the diffusion step of each node is the shortest path between the node and the
seed nodes.

Claim. Assume the inactive node can only be influenced by the nearest seed
node, a node w will be colored as i if v € S; such that Yu € S; (j #iANj €
{0,1,...,7r}), |SP(v,w)| < |SP(u,w)| where SP(v,w) denotes the shortest path
from node v to node w.

Figure [2 presents one example of the diffusion process. The nodes 0 and 9 are
adversary seed nodes. The diffusion step is labeled in the brackets above each
node. The value is the length of shortest path from the seed nodes. The nodes
that are unreachable from seed nodes have step oo, they are nodes 4 and 5.

Fig. 2. One sample example of information diffusion process of adversary information

When multiple pieces of information reach u at the same time, the informa-
tion from v would compete with adversary information to influence w. Since
the information diffusion process is probabilistic, we need to get the propaga-
tion probability of the edge. In most cases, the activation probability p is often
not uniformly distributed, and there might be multiple edges between a pair of
nodes. Suppose the edges between node v and u are (v,u)!, (v,u)?, ..., each with
probability p, to be activated independently. Then the propagation probability
of edge (u,v) is

PPou =1 — H (1 = Pow) (4)

i:(v,u)t€EE

Suppose v is a seed node with color r, and the adversary information from node
w will reach u at diffusion step T, then the probability of v can influence u is
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d(Cvu) * PPvu

Zw:(w,u)EE/\Twu:I ¢(cwu) * DPwu + ¢(cvu) * PPou
()

which is the weight of directed edge (v,u): wy,. For a large scale-free social

network, it is almost impossible that the transition matrix P is periodic. The

random walk will converge to a stationary distribution. In the experiment, we

show that the distribution converges very fast. The detail of this algorithm is

presented in Algorithm [II We call this algorithm CompeteRank.

Prv activates ulv € S,] =

Algorithm 1. Compete Rank(G, Si—1), k, p, max iterations, min delta)

Sadversary Uie{l,Q,m,r—l} Si;
foreach v € V/Saaversary do Ty < 00, I,
foreach v € Sqaversary do T, < 0;
for v € V do // Get the diffusion step of each node
for s € Saquersary do
Get shortest path SP(s,v), u is the second last node on SP(s,v);
if |SP(s,v)| < T, then
T, « |SP(s,v)|;
v.weights < ppuv * ¢(Cuv);
else if |SP(v,s)| = T, then
v.weights < v.weights + ppuv * P(Cuv);

1 .
|V —Sadversaryl’

for u € V/Sadversary do // Compute the transition matrix P
for v: (v,u) € E do
PPou*d(cou)

Wyy = u.weights+ppyy *¢(Cuu);
Wy .

Py +
uw Ysi(s,u)eB Wsu’

for i <+ 1 to max iterations do // Random walk to find influentials

foreach v € V do I, « I,;
for u € V/Saduersary do

for v: (v,u) € E do

I, I, + I, % P,y

diff ey o = Lo;
if dif f < min delta then

break;

pick the first k£ nodes as Sy;

5 Evaluation

5.1 Experiment Setup

We use 3 social network data sets from [17] to evaluate our algorithms. The
first one is ca-GrQc: an academic collaboration network from scientific collabo-
rations between authors’ papers submitted to General Relativity and Quantum
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Cosmology category with 5242 nodes and 28980 edges. The nodes in the network
represent authors and the edges indicate coauthor relationships. Each coauthor
paper is represented as a single chance for one author to influence another. The
second one is ca-HepTh: a collaboration network from papers submitted to High
Energy Physics with 9877 nodes and 51971 edges. The third one is ca-CondMat:
also a collaboration network from papers submitted to Condense Matter cate-
gory with 23133 nodes and 186936 edges. All of them are scale-free networks with
high clustering. Without loss of generality, we use identical activation probabil-
ity for the edges as 0.1 or 0.01. In CompeteRank, max iterations = 1000 and
min delta = 0.00001 are considered to be reasonable threshold values. Since
the influence spreading is a stochastic process, we use Monte-Carlo method to
simulate the graph for R = 1000 times to get the average influence value of
the competing seed sets under the WCICM. The algorithms compared to Com-
peteRank are:

— Greedy: This algorithm uses a hill-climbing strategy to greedily find the
node that has maximal influence at each step.

— Degree Centrality: The heuristic identifies the nodes with highest degree.

— Early Infectees: It chooses seeds that are expected to be infected first.
The graph is simulated R times, and the nodes are ordered by the number
of simulations they are firstly infected.

— Largest Infectees: This heuristic chooses seeds that are expected to the
most nodes if they were to be infected themselves. A more detailed descrip-
tion can be referred to |9]. The graph should also be simulated R times.

5.2 Competitive Influence Spreading

We first evaluate the influence spreading of different algorithms on the data sets.
The adversary seed nodes are chosen using Degree Centrality with fixed size as
100. Since we do not care the influence spreading of adversary nodes, they can
be assumed from single player. Figure [ presents the results of our experiments.

Figure and Figure are the results of ca-GrQc and ca-HepTh data set
with p = 0.1. We use identical weight for different information, so when multiple
pieces of information reach a node at the same time, it will choose randomly uni-
formly one of them. In this case, Greedy, Largest and CompeteRank all perform
very well. Even the influence spreading function is not submodular, Greedy is
still effective. This might be the reason that counter examples rarely exist. Farly
performs very poor in both experiments. So blocking the influence spreading of
adversary nodes does not help much in the spreading of our information. Com-
peteRank outperforms the Degree over about 50% sometimes. The gap is even
larger than influence maximization of single set. This is because Degree neglects
the effect of adversary information.

Figure is the result of ca-CondMat data set with p = 0.01. We do not
include the Greedy algorithm in this experiment since it takes too much time.
When p is small, the effect of competing nodes also becomes smaller. So Largest
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Fig. 3. Influence Spreading of Seed Sets

is not effective as before while Degree achieves much better performance. Clearly,
our CompeteRank performs the best of all.

In Figure we show the results of ca-HepTh with p = 0.01. We have ¢(1) =
1 and ¢(2) = 0, so adversary information always beats our information when
they reach a node at the same time. In this case, CompeteRank performs even
better than the Greedy algorithm. And both of them significantly outperform
others heuristics.

5.3 Convergence and Scalability

In Figure we show the iterations for our algorithm to converge. We use
I, = 1 for the each of the node initially. The algorithm can converge to a
reasonable tolerance in about 50 iterations in all three cases. Generally, the social
networks are expander-like graphs. The random walk on an expander which has
an eigenvalue separation is rapidly-mixing.

Figure presents the running time of our algorithms. In this experiment,
we use identical p = 0.01 for all the data sets to select 100 seed nodes. It is
evident that Greedy takes too much time. What is worse, some improvements
like the “CELF” proposed by Leskovec et al. |2] does not work here, because
the influence spreading process is not submodular. Degree is the most efficient
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of all. The running time of CompeteRank, Largest and FEarly are similar with
an acceptable running time. Moreover, the time of CompeteRank does not grow
much with the increase size of data sets.

6 Conclusion

In this work, we studied the problem of competitive influence mazimization in
a social network. We introduced a generalized model called WCICM for com-
petitive information diffusion which could characterize users’ preference for each
information explicitly. In this model, the influence spreading process is no longer
submodular, so greedy approach does not have performance guarantee. We pro-
posed a simple yet effective heuristic algorithm called CompeteRank. In this
algorithm, the influential nodes can be identified by tracing the information
back according to a properly designed random walk on the network, based
on the postulation that all the nodes have been influenced. Extensive exper-
iments on different data sets were conducted. The results revealed that even
without submodular property, the greedy algorithm can still be effective. How-
ever, the computation cost is too expensive. Our algorithm is very comparable
to the greedy approach and outperforms other well-known heuristics in most
cases. Some of them, like Largest and Degree, only perform well in certain cir-
cumstances. We also analyzed the convergence and scalability of our algorithm.
The results showed that CompeteRank can converge very fast with low running
time.
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Abstract. With the popularity of Web 2.0 sites, social networks today
increasingly involve different kinds of relationships among different types
of users in a single network. Such social networks are said to be multi-
dimensional. Analyzing multi-dimensional networks is a challenging re-
search task that requires intelligent visualization techniques. In this paper,
we therefore propose a visual analytics tool called ViStruclizer to analyze
structures embedded in a multi-dimensional social network. ViStruclizer
incorporates structure analyzers that summarize social networks into both
node clusters each representing a set of users, and edge clusters represent-
ing relationships between users in the node clusters. ViStruclizer supports
user interactions to examine specific clusters of users and inter-cluster
relationships, as well as to refine the learnt structural summary.

1 Introduction

Web 2.0 sites widely adopt online social networks as the means to connect their
users with one another to encourage users to participate in information sharing
(e.g., friendship network in Faceboo) as well as to collaborate with one another
(e.g., collaboration networks in Wikipedi). Unlike traditional social networks
which involve a single type of nodes or actors and a single relation type, these
online social networks are heterogeneous and of large scale, where multiple types
of nodes and relations may exist in the same network.

In network analysis, the term “mode” refers to a distinct set of entities [14],
a network with different types of objects is therefore called a Multi-Mode
Network.

Example 1. An online social network provides a platform for friends to share
photos and videos. There are three types of objects in this network, namely
people, photos and videos. This network is therefore a multi-mode network.

We would like to make a remark about the modes here. The modes of nodes
give an explicit grouping of the nodes. This grouping is however, not always

! www.facebook. com
2 . wikipedia.org

J. Pei et al. (Eds.): PAKDD 2013, Part II, LNAI 7819, pp. 49-B0] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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informative as there are other implicit groupings of nodes that are more inter-
esting. The implicit structure to be discovered should be orthogonal to the modes
of the nodes, and it reveals the implicit groups from the observed interactions
among the nodes. Hence, for multi-mode networks, it is important to extract
their implicit structures even though the modes are known.

There are also networks with different types of relations, each representing
one type of interaction. It is often that multiple relations co-exist between a
pair of individuals. For example, a user in the network can send a message to
another user, or comment on another user’s status. Since each type of interac-
tion suggests a different association between two users [5], if we had only one
relation to represent different types of interactions, there would have been too
much loss in the network information. Therefore, we define a Multi- Relational
Network to be one that describes the relationship from one object to another
as a composition of different relations.

Ezample 2. Individuals in the social network, mentioned in Example [l send
messages or comments to one another. Each user may also upload a photo or a
video, or comment on others’ photos or videos. There may exist some interaction
links between a photo and a video, if they are taken at the same location, or the
photo is captured from the video. This network is illustrated by Figure [l where
multiple types of relations and objects can be found.

Send Message Comment

Ind1v1duals

Upload Comment
Comment Upload

Photos " Same Place Videos

\/

Captured from

Fig. 1. A Multi-Dimensional Social Network

The network in Figure[Ilis multi-mode and multi-relational at the same time.
A network with heterogeneous types of nodes and relations is therefore regarded
as a Multi- Dimensional Network. Multi-mode networks and multi-relational
networks are just special cases of multi-dimensional networks. The analysis of
multi-dimensional networks is known to be harder than simple networks and is
currently an active research topic [4].
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As social networks grow in size, they become more difficult to analyze as
there are many nodes and relation edges. A typical user can only handle less
than a hundred of nodes and edges. Beyond that, visualization techniques have
to be used [2[8/11]. These techniques usually summarize large social networks
into smaller and simpler networks that are human-interpretable. This summa-
rization process essentially groups nodes and edges in an original network into
a simple network of node clusters and relationships between node clusters. The
grouping however is not arbitrary. It ought to preserve information contained in
the original network. Otherwise in the extreme case, the summarized network
may consist of only one node cluster containing all nodes and such a summarized
network does not help user-interpretation.

Many existing network visualization and summarization techniques [TOI7/T3|T6]
are designed mainly for simple social networks, but not for multi-dimensional net-
works. Recent works, OntoVis[I2] and FacetAtlas[3], focus on visualizations of
heterogeneous networks. However, OntoVis is mainly designed for multi-mode
networks, as edge types are determined by node types and multiple types of
relations between two nodes are not taken into consideration. FacetAtlas visu-
alizes multi-dimensional networks in multiple facets. But again, their nodes are
connected by at most one type of relation, i.e., an edge 