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Abstract. The wrapper feature selection approach is useful in identi-
fying informative feature subsets from high-dimensional datasets. Typ-
ically, an inductive algorithm “wrapped” in a search algorithm is used
to evaluate the merit of the selected features. However, significant bias
may be introduced when dealing with highly imbalanced dataset. That
is, the selected features may favour one class while being less useful to
the adverse class. In this paper, we propose an ensemble-based wrapper
approach for feature selection from data with highly imbalanced class
distribution. The key idea is to create multiple balanced datasets from
the original imbalanced dataset via sampling, and subsequently evaluate
feature subsets using an ensemble of base classifiers each trained on a
balanced dataset. The proposed approach provides a unified framework
that incorporates ensemble feature selection and multiple sampling in a
mutually beneficial way. The experimental results indicate that, overall,
features selected by the ensemble-based wrapper are significantly bet-
ter than those selected by wrappers with a single inductive algorithm in
imbalanced data classification.

1 Introduction

Feature selection is a critical procedure for high-dimensional data classification.
The benefits of feature selection are several-fold and dependent on the applica-
tions. For creating classification models, feature selection can often improve pre-
dictive accuracy and comprehensibility [1]. For many bioinformatics applications,
feature selection is a critical procedure for identifying important biomarkers [2].

The techniques for feature selection are commonly classified as filter approach,
wrapper approach, and embedded approach. Filter approach and embedded ap-
proach are relatively computationally efficient and are commonly applied as a
fast feature ranking procedure [3]. In contrast, wrapper approach evaluates fea-
tures by performing internal classification with a given inductive algorithm [4].
Therefore, they are much more computation intensive. Nevertheless, wrapper ap-
proach remains attractive for two reasons. Firstly, wrapper approach evaluates
features iteratively with respect to an inductive algorithm. Therefore, features
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selected by wrapper approach are more likely to suit the inductive algorithm,
and therefore, yield high classification accuracy [4]. Secondly, wrapper approach
evaluates features jointly and are effective in capturing intrinsic relationships
such as interactions among multiple features [5].

Learning from imbalanced data is an important problem in many data mining
applications. Such a case arises when samples from one class significantly out-
number those from the other class. Imbalanced data are common in text mining
[6] and bioinformatics where the minority class often represents the rare cases. It
is well known that many classification algorithms are sensitive to the imbalanced
class distribution [7]. Therefore, many strategies have been proposed to deal with
class imbalance learning. Generally, they fall into two categories: cost-sensitive
learning and data sampling [8]. With cost-sensitive learning, a given algorithm
will receive a higher penalty when a mistake is made on the minority class than
on the majority class. The advantage of cost-sensitive learning is that it does
not modify the class distribution. However, an accurate cost-metric needs to be
specified beforehand. As for data sampling, the learning instances in the major-
ity class and minority class are manipulated in certain way so as to balance the
class distribution. The downside is that sampling strategies may introduce noise
or remove useful information while modifying class distribution.

The challenges of feature selection and imbalanced data classification meet
when the dataset to be analysed is of both high-dimensionality and highly im-
balanced class distribution [9]. In such a scenario, if wrapper approach is adopted
for feature selection, the inductive algorithm may introduce significant bias be-
cause the merit of the feature subset is evaluated based on the performance of
the inductive algorithm. Therefore, if the inductive algorithm favours a single
class, the features selected will also bias to this class while being less useful to
the adverse class.

In this study, we propose an ensemble-based wrapper approach for feature
selection from highly imbalanced datasets. The proposed algorithm retains the
advantages of wrapper feature selection while also maximises data usage and
reduce feature selection bias simultaneously by training multiple base classifiers
with balanced sample subsets. A hybrid multiple sampling procedure is employed
to create balanced sample subsets. Together we introduce a unified framework
that incorporates ensemble feature selection and multiple sampling in a mutually
beneficial manner.

The paper is organised as follows. In Section 2, we outline the proposed frame-
work and describe each component in details. Section 3 describes the experimen-
tal procedure. Results are presented in Section 4 and Section 5 concludes the
paper.

2 Ensemble-Based Wrapper Approach

Wrapper algorithms, in general, consist of three main components [10]: (1) a
search algorithm, (2) a fitness function, and (3) an inductive algorithm. The



546 P. Yang et al.

proposed system adheres to this structure. In this section, we outline the system
and describe each component.

2.1 System Overview

A schematic representation of the proposed ensemble-based wrapper approach is
shown in Figure 1. The imbalanced training dataset is balanced by a hybrid sam-
pling approach (which will be explained in Section 2.3). Such a hybrid sampling
procedure is applied multiple times producing multiple sets of balanced training
data each of which is used to train a base classifier. The base classifiers trained
on the balanced datasets are subsequently applied to classify an imbalanced test
dataset. The classification distributions of each sample in the test dataset are
normalised and combined, and the area under ROC curve (AUC) is calculated
as the fitness indices for feature selection. The wrapper procedure terminates
when it reaches a predefined number of iteration or a desired number of features
is selected (i.e. greedy search), and the final feature subsets are used for further
validation.
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Fig. 1. A schematic representation of the ensemble-based wrapper approach

2.2 Search Algorithm

There are several popular search strategies, including hill climbing algorithms
best exemplified by forward selection and backward elimination [11,12] and evo-
lutionary algorithms such as genetic algorithm [13] and particle swarm optimi-
sation [14].

In this study, we apply two search algorithms. The first one is a hill climb-
ing algorithm that starts with an empty set and greedily selects a feature at a
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time that maximises the given fitness function. This is a typical greedy forward
selection approach and at each step the best feature f∗ is determined by:

f∗ = argmax
f �∈S

fitness(S ∪ {f})

where S is the set that contains the features selected so far and f is a feature
under evaluation according to a fitness function.

The second search algorithm is a simple elitism genetic algorithm. The feature
size is pre-specified and the algorithm selects the best feature set that maximises
the given fitness function through genetic operations such as crossover and mu-
tation. Here each feature in the best set S∗ is determined simultaneously:

S∗ = arg max
i=1...p

fitness(Si)

where p is the population size of the genetic algorithm.
The above two typical yet simple wrapper procedures offer a transparent way

to compare different inductive components.

2.3 Hybrid Sampling from Imbalanced Data

Sampling is a popular approach to balance the dataset with imbalanced class
distribution. The simplest methods are random under-sampling and random
over-sampling [15]. The random under-sampling method balances the dataset
by randomly removing samples in the majority class. On the contrary, the ran-
dom over-sampling method balances the dataset by sampling from the minority
class with/without replacement and reattaching them to the dataset. A more
sophisticated approach is to synthesise “new” samples from the minority class
(known as SMOTE) [16]. Several studies also found that better results can be
achieved by increasing minority samples and decreasing majority samples simul-
taneously [17,18].

Here we apply our own hybrid approach in which the dataset (denoted as D)
is balanced by increasing minority class with SMOTE and decreasing majority
class with random under-sampling as follows:

IR = Random(Imaj , (Nmaj − 3/2×Nmin))
IS = SMOTE(Imin, 1/2×Nmin)
D∗ = (Imin ∪ IS) ∪ (Imaj\IR)

where Imaj , Imin, Nmaj and Nmin are the majority samples, minority samples,
and their sample sizes, respectively. Random(.) randomly selects from Imaj a
subset of samples IR and SMOTE(.) creates synthetic samples IS using Imin.
The balanced dataset D∗ retains the original minority samples and introduces
1/2 × Nmin synthetic minority samples. The majority samples IR are reduced
to match the new set of minority samples in D∗ and result in a class ratio of 1.
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2.4 Ensemble Learning

The classic idea of ensemble is to generate multiple datasets using a sampling
method such as bootstrap, and train a set of homogeneous learning algorithms
which classify new instances in a consensus manner [19]. This idea has been
extended both to imbalanced data classification [20] and feature filtering [21].
However, no work has been done to unify them as a single procedure which may
be mutually beneficial.

Here, we extend the idea of ensemble to feature selection in a wrapper manner
and provide a unified framework that incorporates ensemble feature selection as
well as multiple sampling. Specifically, given a training dataset constrained by
a set of features S, suppose we apply the above hybrid sampling procedure L
times, each time producing a balanced sampling dataset D∗S

i (i = 1...L), and
each sampling dataset is used to train a base classifier denoted as hi. Then,
the ensemble classification distribution y of each test sample x is computed as
follows:

pE(y|x,S) = 1

L

L∑

i=1

Prob(hi(x),D
∗S
i )

where Prob(hi(x),D
∗S
i ) is a probability vector computed by using an ensemble

of L base classifiers (hi), each is trained on a balanced sampling set D∗S
i selected

by the feature set S. Therefore, both feature set information and data sampling
information are incorporated in an ensemble framework.

2.5 Fitness Function

An inductive algorithm (classifier) is commonly used to generate fitness indices
in wrapper algorithms. It is well known that the overall accuracy as a metric
is biased when the class distribution is imbalanced in the data. A more reliable
way to compute the fitness of a feature set in such a case is to use the area
under the ROC curve (AUC). AUC is a numeric value summarising the trade-off
between the true positive rate and the false positive rate across the entire sample
classification distribution of a dataset.

When using a single inductive algorithm, the AUC value is directly calculated
by sorting the classification probability of each sample, calculating trade-off value
of the true positive rate and false positive rate at each classification threshold,
and calculating the area under the trade-off values. As to the ensemble classi-
fier, classification distribution of each sample is combined and normalised across
all base classifiers. Then, the same procedure as those for a single inductive
algorithm is applied to calculate the AUC value.

Accordingly, we define the fitness of a feature subset as follows:

fitness(S) = AUC(p(y|x1,S)...p(y|xm,S))

where x1 is the first sample in the test dataset and m is the total sample size.
Function AUC(.) calculates the AUC value.
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2.6 Main Algorithm of Ensemble-Based Wrapper Approach

Algorithm 1 represents the core of the ensemble-based wrapper approach in
pseudo-code:

Algorithm 1. Ensemble Component

Input: A feature subset S; Imbalanced training set DT and test set Dt

Output: Fitness of S

1: Fit = 0;
2: // constrain the data dimension using the input feature subset:
3: DS

T = constrainDataDimension(DT , S);
4: E = ∅;
5: for i = 1 to L do
6: // Sampling to create a balanced dataset using training set:
7: D∗S

i = hybridSampling(DS
T );

8: // Train a base classifier using balanced dataset:
9: hi = trainClassifier(D∗S

i );
10: // Add the base classifier to the ensemble:
11: E = E ∪ hi;
12: end for
13: DS

t = constrainDataDimension(Dt, S);
14: // Apply the ensemble of classifiers to the test set:
15: Fit = calculateAUC(E, DS

t );
16: return Fit;

The ensemble component is independent from the search algorithm. It is flex-
ible and can be reused in different wrapper algorithms.

3 Experimental Procedure

In this section, we summarise the datasets used for evaluation and detail the
algorithms and parameter settings. Following that, the performance evaluation
is described.

3.1 Datasets and Data Partitioning

We used 5 datasets with high-dimensionality and highly imbalanced class distri-
bution. Table 1 summarises the datasets.

Specifically, fbis, re0, and oh5 are text mining datasets extracted by Han
and Karypis [22]. The ALL (acute lymphoblastic leukemia) dataset is from a
leukemia study [23], and the oil dataset is from study [24].

For datasets with multiple classes, we reserved the class with the small-
est number of samples as the minority class and combined the other classes
as the majority class. To make the problem computationally less demanding,
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Table 1. Summary of datasets

Name # Sample # Feature Minority class ratio

fbis 1250 2000 0.0304
re0 1504 2886 0.0073
oh5 918 3012 0.0643
ALL 248 12626 0.0605
oil 937 50 0.0438

for datasets with very high dimensions, we applied a χ2 filtering to reduce the
feature size to 500.

The datasets are partitioned using the double-level cross-validation strategy.
That is for each dataset, we partitioned it using a 2-fold stratified cross-validation
to obtain the training and evaluation sets. For the training set, it is further par-
titioned using a 5-fold stratified cross-validation to obtain the internal training
and internal testing sets for feature selection. The evaluation set is reserved from
the feature selection procedure and is only used for evaluating the usefulness of
the selected features after the feature selection procedure.

3.2 Algorithms and Parameter Settings

For the greedy forward feature selection algorithm, we specified it to search 20
steps in which 1 to 20 features are selected one after an other. As for the genetic
algorithm, we set both the population size and the termination generation to
20. The crossover probability and the mutation probability are 0.7 and 0.1,
respectively. The “chromosome” is coded as a string of feature indexes, and the
chromosome size of 1 to 20 are tested which corresponds to the feature subset size
of 1 to 20. Different from the greedy forward feature selection algorithm which
builds the feature subset on previously selected features, the genetic algorithm
tests different size of feature subsets separately.

The decision tree algorithm (J48) is used for induction in our wrapper al-
gorithms. In ensemble learning, the decision tree algorithm is prevailingly used
as the base classifier because it is relatively fast to train and unstable to small
changes in the data [25]. These are the important merits to our wrapper algo-
rithms since we need to evaluate features using multiple classifiers in an efficient
manner. Yet, it is widely known that the decision tree algorithm is sensitive to
the imbalance of the data class distribution [26]. Hence, it is of both theoretical
and practical interests to use decision tree in our experimental settings. For the
ensemble wrapper, we used the ensemble size of 20. That is 20 different sampling
dataset are produced in each iteration and 20 decision tree classifiers are trained
on these sampling dataset and then used for feature selection.

To evaluate the selected features, we used 6 different classification algorithms,
including random forest (RF), nearest neighbour with k=3 (3-NN), nearest
neighbour with k=7 (7-NN), logistic regression (LogReg), multiple layer percep-
tron (MLP), and alternating decision tree (ADTree). The rationale is that if the
wrapper algorithm is able to select useful features, the selected features should
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be able to improve the classification result regardless what type of classification
algorithm is used. Therefore, evaluating a wide range of different classifiers can
better reflect the genuine usefulness of the selected features.

3.3 Performance Evaluation

In this study, we focus on comparing wrapper algorithms with ensemble-based
imbalanced sampling and classification component to wrapper algorithms with
a single inductive algorithm. We refer to the first approach as the ensemble ap-
proach and the latter as the single approach. To summarise the performance
results, the AUC values obtained from each classifier using features selected
by ensemble approach and single approach are compared. If the ensemble ap-
proach yields a higher AUC value compared to the single approach, we label it
as “ensemble win”. Similarly, if the ensemble approach yields a lower AUC value
compared to the single approach, we label it as “single win”. When the AUC
values from these two approaches are equal, we obtain a “tie”. The comparison
is conducted from feature size 1 to 20.

In addition, the Friedman test [27] is applied to evaluate the performance of
each classifier. The confidence of 95% is used under the null hypothesis that the
performance of each classifier is not significantly different by using the features
selected by the ensemble approach and the single approach. The null hypothesis
is rejected if there are significant performance difference when using features
selected by ensemble approach as to single approach.

4 Results

AUC comparison of ensemble wrapper and single wrapper using greedy forward
feature selection with fbis and re0 dataset are plotted in Figure 2 and Figure 3,
respectively. As can be seen, the ensemble wrapper approach exhibited a better
performance compared to the single wrapper approach. We summarise results
in Figures 2 and 3 and the rest of the comparison across using feature sets with
size from 1 to 20 in Table 2 and Table 3 (see 3.3 for details of the summarisation
method). Specifically, Table 2 shows the comparison of the ensemble approach
and the single approach using greedy forward selection algorithm, and Table 3
shows the comparison using genetic algorithm. It is clear that across all datasets
most classifiers achieves better classifications using features selected by ensemble
approach than those selected by single approach. This implies that the ensemble
approach is more robust to high-dimensionality and highly imbalanced class
distribution. Hence, the features selected by the ensemble approach are likely to
be more useful to both the majority class and the minority class.

The greedy forward selection appears to be more sensitive to ensemble com-
ponent. In most cases, the improvements are significant. In comparison, genetic
algorithm based selection is less sensitive to the ensemble component, and most
improvements are moderate. This may attributed to their different feature se-
lection styles. That is, greedy forward selection builds the feature subset on
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Table 2. Comparison of ensemble and single approaches using greedy forward selection

fbis dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 17 17 20 14 13 15
Single Win 3 3 0 6 7 5

Friedman Test 0.0017 � 0.0017 � 7.74e-6 � 0.073 0.1797 0.0253 �
Re0 dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 20 20 20 20 20 20
Single Win 0 0 0 0 0 0

Friedman Test 7.74e-6 � 7.74e-6 � 7.74e-6 � 7.74e-6 � 7.74e-6 � 7.74e-6 �
Oh5 dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 12 16 6 15 13 17
Single Win 7 3 13 4 6 2

Tie 1 1 1 1 1 1
Friedman Test 0.251 0.0029 � 0.108 0.011 � 0.108 5.79e-4 �

ALL dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 15 15 15 17 15 6
Single Win 5 5 5 3 5 14

Friedman Test 0.025 � 0.025 � 0.025 � 0.0017 � 0.025 � 0.073

Oil dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 19 7 10 15 18 19
Single Win 1 13 10 5 2 1

Friedman Test 5.69e-5 � 0.179 1 0.025 � 3.46e-4 � 5.69e-5 �
� Results with significant differences (p-value lower than 0.05) using Friedman test
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Fig. 2. AUC comparison of ensemble wrapper and single wrapper using greedy forward
selection and fbis dataset. The feature size from 1 to 20 selected by ensemble and single
wrappers are evaluated by 6 different classification algorithms.
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Table 3. Comparison of ensemble and single approaches using genetic algorithm

fbis dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 16 12 16 13 11 17
Single Win 4 8 4 7 9 3

Friedman Test 0.0073 � 0.3711 0.0073 � 0.1797 0.654 0.0017 �
Re0 dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 13 16 18 15 11 15
Single Win 7 4 2 5 9 5

Friedman Test 0.1797 0.0073 � 3.46e-4 � 0.025 � 0.654 0.025 �
Oh5 dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 11 12 12 14 12 11
Single Win 9 8 8 6 8 9

Friedman Test 0.654 0.3711 0.3711 0.1797 0.3711 0.654

ALL dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 12 16 16 13 17 16
Single Win 8 4 4 7 3 4

Friedman Test 0.3711 0.0073 � 0.0073 � 0.1797 0.0017 � 0.0073 �
Oil dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 12 15 12 13 19 15
Single Win 8 5 8 7 1 5

Friedman Test 0.3711 0.025 � 0.3711 0.179 5.69e-5 � 0.025 �
� Results with significant differences (p-value lower than 0.05) using Friedman test.
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Fig. 3. AUC comparison of ensemble wrapper and single wrapper using greedy forward
selection and re0 dataset. The feature size from 1 to 20 selected by ensemble and single
wrappers are evaluated by 6 different classification algorithms.

previously selected features. Therefore, if a good feature is selected, it will con-
tinually be used in later iterations. Whereas, the genetic algorithm tries different
size of feature subsets separately, and for each run the initiation, crossover, and
mutation operations introduces randomness to the selection procedure. It follows
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that the greedy forward selection approach is likely to aggregate the effect of the
ensemble through iterations, while the genetic algorithm approach may reduce
the effect of the ensemble due to its stochastic behaviour.

It is interesting to see that different classification algorithms performed dif-
ferently even with the same set of features. For the extreme case, in Table 2
the classification results of 7-NN on oh5 dataset and 3-NN and 7-NN on oil
dataset contradict to the rest of the classifiers. Even for classifiers with similar
comparison results, each of them may still behave differently throughout the
feature subset size of 1 to 20. For example, in Figure 2, RF shows an increasing
trend when more features are added. However, LogReg and ADTree indicate a
decreasing trend when more features are included, whereas the performance of
MLP increases first and then decreases. Note that the same sets of features and
the same evaluation dataset are used for each classification algorithm. There-
fore, it is clear that using a single classification algorithm for results evaluation
is insufficient. Instead, multiple classification algorithms should be evaluated in
order to reflect the general usefulness of the selected features.

5 Conclusion

In this study, we proposed an ensemble approach that incorporate feature selec-
tion and imbalanced data sampling in a wrapper framework. Using two search
algorithms and several high-dimensional and highly imbalanced datasets, we
demonstrated that features selected by the ensemble-based wrapper approach
are more useful than the traditional approach (i.e. using single inductive algo-
rithm) in terms of feature selection and imbalance learning. This implies that
the traditional approach that uses a single inductive algorithm for feature evalu-
ation may perform suboptimally when the dataset is of both high-dimensionality
and highly imbalanced class distribution. By designing a multiple sampling and
an ensemble feature evaluation components, we can correct the undesirable bias
and identify more useful features and/or feature subsets.
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